Volume 1:
Compounds with Transition Metal–Carbon π-Bonds
and Compounds of groups 10–8 (Ni, Pd, Pt, Co, Rh,
Ir, Fe, Ru, Os)

Preface ... V

Table of Contents ... IX

Introduction
M. Lautens .. 1

1.1 Product Class 1: Organometallic Complexes of Nickel
J. Montgomery .. 11

1.2 Product Class 2: Organometallic Complexes of Palladium
1.2.1 Product Subclass 1: Palladium–Diene Complexes
J. M. Takacs, X. Jiang, and S. Vayalakkada 63

1.2.2 Product Subclass 2: Palladium–Allyl Complexes
R. W. Friesen ... 113

1.2.3 Product Subclass 3: Palladium–Alkene Complexes
J. M. Takacs, S. Vayalakkada, and X. Jiang 265

1.2.4 Product Subclass 4: Palladium–Alkene Complexes
J. M. Takacs and S. Vayalakkada 319

1.3 Product Class 3: Organometallic Complexes of Platinum
A. Ogawa and T. Hirao ... 389

1.4 Product Class 4: Organometallic Complexes of Cobalt
M. Malacia, C. Aubert, and J.-L. Renaud 439

1.5 Product Class 5: Organometallic Complexes of Rhodium
I. Ojima, A. T. Vu, and D. Bonafoux 531

1.6 Product Class 6: Organometallic Complexes of Iridium
J. M. O’Connor .. 617
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7</td>
<td>Product Class 7: Organometallic Complexes of Iron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.1</td>
<td>Product Subclass 1: Iron–Arene Complexes</td>
<td>G. R. Stephenson</td>
<td>749</td>
</tr>
<tr>
<td>1.7.2</td>
<td>Product Subclass 2: Iron–Dienyl Complexes</td>
<td>G. R. Stephenson</td>
<td>755</td>
</tr>
<tr>
<td>1.7.3</td>
<td>Product Subclass 3: Iron–Diene Complexes</td>
<td>G. R. Stephenson</td>
<td>778</td>
</tr>
<tr>
<td>1.7.4</td>
<td>Product Subclass 4: Iron–Allyl Complexes</td>
<td>G. R. Stephenson</td>
<td>826</td>
</tr>
<tr>
<td>1.7.5</td>
<td>Product Subclass 5: Iron–Alkene Complexes</td>
<td>G. R. Stephenson</td>
<td>839</td>
</tr>
<tr>
<td>1.7.6</td>
<td>Product Subclass 6: Iron–Carbene Complexes</td>
<td>G. R. Stephenson</td>
<td>846</td>
</tr>
<tr>
<td>1.7.7</td>
<td>Product Subclass 7: Iron–Alkyl Complexes</td>
<td>G. R. Stephenson</td>
<td>853</td>
</tr>
<tr>
<td>1.7.8</td>
<td>Product Subclass 8: Ferrocenes</td>
<td>M. Perseghini and A. Togni</td>
<td>889</td>
</tr>
<tr>
<td>1.8</td>
<td>Product Class 8: Organometallic Complexes of Ruthenium</td>
<td>N. Chatani</td>
<td>931</td>
</tr>
<tr>
<td>1.9</td>
<td>Product Class 9: Organometallic Complexes of Osmium</td>
<td>J. Gonzalez and W. D. Harman</td>
<td>981</td>
</tr>
</tbody>
</table>

Keyword Index
1017

Author Index
1055

Abbreviations
1107
Table of Contents

Introduction
M. Lautens

Introduction ... 1

1.1 Product Class 1: Organometallic Complexes of Nickel
J. Montgomery

1.1 Product Class 1: Organometallic Complexes of Nickel .. 11
1.1.1 Product Subclass 1: Nickel Complexes of 1,3-Dienes .. 12
 Synthesis of Product Subclass 1 ... 12
 1.1.1.1 Method 1: Ligand Exchange with Bis(11-cycloocta-1,5-diene)nickel(0) 12
 Applications of Product Subclass 1 in Organic Synthesis 13
 1.1.1.2 Method 2: Diene–Diene Cycloadditions ... 13
 1.1.1.3 Method 3: Diene–Alkyne Cycloadditions .. 14
 1.1.1.4 Method 4: Diene–Aldehyde Reductive Cyclizations 15
 1.1.1.5 Variation 1: Triethylsilane-Mediated Reactions 15
 1.1.1.6 Variation 2: Triethyborane-Mediated Reactions 16
 1.1.1.5 Method 5: 1,4-Dialkylation of Dienes .. 16
 1.1.1.6 Method 6: Hydrocyanation of Dienes .. 17
1.1.2 Product Subclass 2: Nickel–Allyl Complexes .. 17
 Synthesis of Product Subclass 2 ... 17
 1.1.2.1 Method 1: Oxidative Addition of Nickel(0) with Allylic Electrophiles 17
 1.1.2.2 Method 2: Addition of Alkylmagnesium Halides to Nickel(II) Salts 18
 1.1.2.3 Method 3: Oxidative Addition of Nickel(0) with Enones in the Presence of Lewis Acids ... 19
 1.1.2.4 Method 4: Oxidative Cyclization of Nickel(0) Complexes of Conjugated Dienes ... 20
 Applications of Product Subclass 2 in Organic Synthesis 21
 1.1.2.5 Method 5: Coupling of Allyl Halide Derived Nickel–Allyl Complexes with Alkyl Halides and Other Electrophiles 21
 1.1.2.6 Method 6: Coupling of Enal-Derived Nickel–Allyl Complexes with Alkyl Halides and Other Electrophiles 22
 1.1.2.7 Method 7: Coupling of Nickel–Allyl Complexes with Main Group Organometallics ... 24
 1.1.2.7.1 Variation 1: Allylic Ether Derived π-Allyl Complexes 24
 1.1.2.7.2 Variation 2: Enal-Derived π-Allyl Complexes 26
 1.1.2.7.3 Variation 3: Allylic Alcohol Derived π-Allyl Complexes 26
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.2.8</td>
<td>Method 8: Addition of Stabilized Nucleophiles to Nickel–Allyl Complexes</td>
<td>27</td>
</tr>
<tr>
<td>1.1.2.9</td>
<td>Method 9: Alkyne Insertions with Nickel–Allyl Complexes</td>
<td>27</td>
</tr>
<tr>
<td>1.1.2.10</td>
<td>Method 10: Alkene Insertions with Nickel–Allyl Complexes</td>
<td>29</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Product Subclass 3: Nickel–Alkyne Complexes</td>
<td>30</td>
</tr>
<tr>
<td>1.1.3.1</td>
<td>Method 1: Ligand Exchange with Nickel–Alkene Complexes</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Applications of Product Subclass 3 in Organic Synthesis</td>
<td>31</td>
</tr>
<tr>
<td>1.1.3.2</td>
<td>Method 2: Coupling of Alkynes with Carbon Dioxide</td>
<td>31</td>
</tr>
<tr>
<td>1.1.3.3</td>
<td>Method 3: Coupling of Alkynes with Isocyanides</td>
<td>32</td>
</tr>
<tr>
<td>1.1.3.4</td>
<td>Method 4: Coupling of Alkynes with Aldehydes</td>
<td>32</td>
</tr>
<tr>
<td>1.1.3.5</td>
<td>Method 5: Coupling of Two Alkynes</td>
<td>35</td>
</tr>
<tr>
<td>1.1.3.6</td>
<td>Method 6: Coupling of Alkynes with Alkenes</td>
<td>36</td>
</tr>
<tr>
<td>1.1.3.7</td>
<td>Method 7: [2 + 2 + 2] Cycloadditions</td>
<td>38</td>
</tr>
<tr>
<td>1.1.3.8</td>
<td>Method 8: Alkyne Carbonylation</td>
<td>40</td>
</tr>
<tr>
<td>1.1.3.9</td>
<td>Method 9: Alkyne Hydrocyanation</td>
<td>40</td>
</tr>
<tr>
<td>1.1.3.10</td>
<td>Method 10: Alkyne Hydrosilylation</td>
<td>40</td>
</tr>
<tr>
<td>1.1.3.11</td>
<td>Method 11: Alkyne Carbozincation</td>
<td>41</td>
</tr>
<tr>
<td>1.1.4</td>
<td>Product Subclass 4: Nickel–Alkene Complexes</td>
<td>42</td>
</tr>
<tr>
<td>1.1.4.1</td>
<td>Method 1: Ligand Exchange with Nickel(0) Complexes</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Applications of Product Subclass 4 in Organic Synthesis</td>
<td>43</td>
</tr>
<tr>
<td>1.1.4.2</td>
<td>Method 2: Conjugate Addition to Electrophilic Double Bonds</td>
<td>43</td>
</tr>
<tr>
<td>1.1.4.2.1</td>
<td>Variation 1: Organoaluminums</td>
<td>43</td>
</tr>
<tr>
<td>1.1.4.2.2</td>
<td>Variation 2: Organozincs</td>
<td>44</td>
</tr>
<tr>
<td>1.1.4.2.3</td>
<td>Variation 3: Organozirconiums</td>
<td>46</td>
</tr>
<tr>
<td>1.1.4.2.4</td>
<td>Variation 4: Direct Conjugate Addition of Alkyl Halides</td>
<td>47</td>
</tr>
<tr>
<td>1.1.4.3</td>
<td>Method 3: Coupling of Two Alkenes</td>
<td>48</td>
</tr>
<tr>
<td>1.1.4.4</td>
<td>Method 4: Alkene Carbonylation</td>
<td>51</td>
</tr>
<tr>
<td>1.1.4.5</td>
<td>Method 5: Alkene Hydrocyanation</td>
<td>52</td>
</tr>
<tr>
<td>1.1.4.6</td>
<td>Method 6: Alkene Hydrosilylation</td>
<td>53</td>
</tr>
<tr>
<td>1.1.4.7</td>
<td>Method 7: Alkene Hydroalumination</td>
<td>53</td>
</tr>
<tr>
<td>1.1.4.8</td>
<td>Method 8: Alkene Hydrozincation</td>
<td>55</td>
</tr>
<tr>
<td>1.1.4.9</td>
<td>Method 9: Alkene Carbozincation</td>
<td>56</td>
</tr>
<tr>
<td>1.1.4.10</td>
<td>Method 10: Homo-Diels–Alder Cycloadditions</td>
<td>57</td>
</tr>
<tr>
<td>1.1.4.11</td>
<td>Method 11: Alkene Polymerization</td>
<td>57</td>
</tr>
</tbody>
</table>
1.2 Product Class 2: Organometallic Complexes of Palladium

1.2.1 Product Subclass 1: Palladium–Diene Complexes
J. M. Takacs, X. Jiang, and S. Vayalakkad

<table>
<thead>
<tr>
<th>Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation and Characterization of</td>
<td>64</td>
</tr>
<tr>
<td>Palladium–Diene Complexes</td>
<td></td>
</tr>
<tr>
<td>Applications of Product Subclass 1</td>
<td>65</td>
</tr>
<tr>
<td>in Organic Synthesis</td>
<td></td>
</tr>
<tr>
<td>1,3-Dienes: The 1,4-Addition of</td>
<td>65</td>
</tr>
<tr>
<td>Nucleophiles</td>
<td></td>
</tr>
<tr>
<td>The Oxidative Addition of Carbon</td>
<td>67</td>
</tr>
<tr>
<td>Nucleophiles</td>
<td></td>
</tr>
<tr>
<td>The Reductive Addition of Carbon</td>
<td>69</td>
</tr>
<tr>
<td>Nucleophiles</td>
<td></td>
</tr>
<tr>
<td>The Oxidative Addition of Oxygen</td>
<td>70</td>
</tr>
<tr>
<td>Nucleophiles</td>
<td></td>
</tr>
<tr>
<td>The Reductive Addition of Oxygen</td>
<td>77</td>
</tr>
<tr>
<td>Nucleophiles</td>
<td></td>
</tr>
<tr>
<td>The Addition of Nitrogen Nucleophiles</td>
<td>78</td>
</tr>
<tr>
<td>The Reductive Addition of Sulfur</td>
<td>79</td>
</tr>
<tr>
<td>Nucleophiles</td>
<td></td>
</tr>
<tr>
<td>The Oxidative Carbylation of 1,3-Dienes</td>
<td>80</td>
</tr>
<tr>
<td>The Reductive Carbylation of 1,3-Dienes</td>
<td>81</td>
</tr>
<tr>
<td>Allenes: The Addition of Nucleophiles</td>
<td>82</td>
</tr>
<tr>
<td>The Addition of Carbon and Hydrogen Across the Allene</td>
<td>83</td>
</tr>
<tr>
<td>The Addition of Carbon and Silicon Across the Allene</td>
<td>88</td>
</tr>
<tr>
<td>The Addition of Heteroatoms (i.e., O, N, S, or Se) and Hydrogen Across the Allene</td>
<td>89</td>
</tr>
<tr>
<td>The Addition of the Oxygen, Nitrogen, or Carbon and Carbon Moiety Across the Allene</td>
<td>93</td>
</tr>
<tr>
<td>The Addition of the Oxygen or Nitrogen and Halogen Moiety Across the Allene</td>
<td>104</td>
</tr>
<tr>
<td>The Addition of the Oxygen, Nitrogen, or Carbon and Carbon Moiety via the Insertion of Carbon Monoxide or an Alkene</td>
<td>105</td>
</tr>
</tbody>
</table>

1.2.2 Product Subclass 2: Palladium–Allyl Complexes
R. W. Friesen

<table>
<thead>
<tr>
<th>Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmetalation with Allyl</td>
<td>115</td>
</tr>
<tr>
<td>Organometallics</td>
<td></td>
</tr>
<tr>
<td>From Allylsilanes</td>
<td>115</td>
</tr>
<tr>
<td>From Allylstannanes</td>
<td>116</td>
</tr>
<tr>
<td>From Allylmercurials</td>
<td>117</td>
</tr>
<tr>
<td>From Allyl Grignard Reagents</td>
<td>118</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>1.2.2.2</td>
<td>Method 2: From Allylic Hydrogen Abstraction of Alkenes</td>
</tr>
<tr>
<td>1.2.2.1</td>
<td>Variation 1: Palladation of Unsaturated Esters</td>
</tr>
<tr>
<td>1.2.2.2</td>
<td>Variation 2: Palladation of β-Oxo Esters and Diketene</td>
</tr>
<tr>
<td>1.2.2.3</td>
<td>Variation 3: Palladation of Unsaturated Ketones</td>
</tr>
<tr>
<td>1.2.2.4</td>
<td>Variation 4: Palladation of Unactivated Alkenes</td>
</tr>
<tr>
<td>1.2.2.3</td>
<td>Method 3: Bridge Splitting</td>
</tr>
<tr>
<td>1.2.2.4</td>
<td>Method 4: Palladation of 1,2-Dienes (Alkenes)</td>
</tr>
<tr>
<td>1.2.2.4.1</td>
<td>Variation 1: From Reaction of Alkenes and Palladium Salts</td>
</tr>
<tr>
<td>1.2.2.4.2</td>
<td>Variation 2: Insertion of Alkenes into Alkylpalladium Complexes</td>
</tr>
<tr>
<td>1.2.2.5</td>
<td>Method 5: Palladation of 1,3- and 1,4-Dienes</td>
</tr>
<tr>
<td>1.2.2.5.1</td>
<td>Variation 1: Hydropalladation of 1,3-Dienes</td>
</tr>
<tr>
<td>1.2.2.5.2</td>
<td>Variation 2: Heteropalladation of 1,3-Dienes</td>
</tr>
<tr>
<td>1.2.2.5.3</td>
<td>Variation 3: Methoxy palladation of Cyclic 1,4-Dienes</td>
</tr>
<tr>
<td>1.2.2.5.4</td>
<td>Variation 4: Insertion of 1,3-Dienes into Alkylpalladium Complexes</td>
</tr>
<tr>
<td>1.2.2.5.5</td>
<td>Variation 5: Palladation of Dienol Silyl Ethers</td>
</tr>
<tr>
<td>1.2.2.5.6</td>
<td>Variation 6: Reaction of Dienes and Organomercurials with Palladium Salts</td>
</tr>
<tr>
<td>1.2.2.6</td>
<td>Method 6: From Reaction of Allyl and Benzyl Halides</td>
</tr>
<tr>
<td>1.2.2.6.1</td>
<td>Variation 1: From Reaction with Allyl Halides</td>
</tr>
<tr>
<td>1.2.2.6.2</td>
<td>Variation 2: From Reaction with Benzyl Halides</td>
</tr>
<tr>
<td>1.2.2.7</td>
<td>Method 7: Insertion of Palladium(0) into Allyloxy Derivatives</td>
</tr>
<tr>
<td>1.2.2.8</td>
<td>Method 8: Palladation of Cyclopropane Derivatives</td>
</tr>
<tr>
<td>1.2.2.8.1</td>
<td>Variation 1: From Vinycyclopropanes</td>
</tr>
<tr>
<td>1.2.2.8.2</td>
<td>Variation 2: From Methylene cyclopropanes</td>
</tr>
<tr>
<td>1.2.2.8.3</td>
<td>Variation 3: From Cyclopropanes</td>
</tr>
<tr>
<td>1.2.2.9</td>
<td>Method 9: Palladative Coupling of Vinyl Organometallics with Alkenes</td>
</tr>
<tr>
<td>1.2.2.9.1</td>
<td>Variation 1: Vinylpalladation of Alkenes Using Vinylmercurials</td>
</tr>
<tr>
<td>1.2.2.9.2</td>
<td>Variation 2: Palladative Dimerization of Vinylsilanes</td>
</tr>
<tr>
<td>1.2.2.10</td>
<td>Method 10: Ligand Metathesis</td>
</tr>
</tbody>
</table>

Applications of Product Subclass 2 in Organic Synthesis | 154 |

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.11</td>
<td>Method 11: Allylsilanes from Reaction of Alkylpalladium Complexes and Disilanes</td>
<td>157</td>
</tr>
<tr>
<td>1.2.12</td>
<td>Method 12: Allylsilanes from Allylic Esters and Chlorides</td>
<td>158</td>
</tr>
<tr>
<td>1.2.12.1</td>
<td>Variation 1: Via Reaction with (Trialkysilyl)aluminum Reagents</td>
<td>158</td>
</tr>
<tr>
<td>1.2.12.2</td>
<td>Variation 2: Via Palladium-Catalyzed Electrocyclic Cleavage and Reaction with Trialkylchlorosilanes</td>
<td>159</td>
</tr>
<tr>
<td>1.2.12.3</td>
<td>Variation 3: Via Reaction with Disilanes</td>
<td>159</td>
</tr>
<tr>
<td>1.2.13</td>
<td>Method 13: Allylsilanes from Reduction of Allylic Carbonates</td>
<td>162</td>
</tr>
<tr>
<td>1.2.14</td>
<td>Method 14: Allylsilanes from Hydrolysislation of 1,3-Dienes with Silanes</td>
<td>162</td>
</tr>
<tr>
<td>1.2.15</td>
<td>Method 15: Allylstannanes from Allylic Acetates and Phosphates</td>
<td>163</td>
</tr>
<tr>
<td>1.2.15.1</td>
<td>Variation 1: Via Reaction with Trialkylstannylumines</td>
<td>163</td>
</tr>
<tr>
<td>1.2.15.2</td>
<td>Variation 2: Via Reaction with Trialkylchlorostannane and Samarium(II) iodide</td>
<td>164</td>
</tr>
<tr>
<td>1.2.16</td>
<td>Method 16: Allylmercurials from Reaction of Alkylpalladium Complexes and Metallic Mercury</td>
<td>165</td>
</tr>
<tr>
<td>1.2.17</td>
<td>Method 17: α,β-Unsaturated Esters from Dehydrogenation of Saturated Esters via Their Ketene Silyl Acetals</td>
<td>166</td>
</tr>
<tr>
<td>Section</td>
<td>Method</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| 1.2.18 | Method 18: | \(\alpha,\beta \)-Unsaturated Nitriles from Decarboxylation of Allyl \(\alpha \)-Cyano
carboxylates |
| 1.2.19 | Method 19: | \(\beta,\gamma \)-Unsaturated Esters from Carbynlation of Allylpalladium Complexes |
| 1.2.20 | Method 20: | \(\beta,\gamma \)-Unsaturated Esters from Carbynlation of Allylic Compounds |
| 1.2.20.1| Variation 1: | Via Allylic Carbonsates |
| 1.2.20.2| Variation 2: | via Allylic Esters |
| 1.2.20.3| Variation 3: | Via Allylic Phosphates |
| 1.2.21 | Method 21: | \(\beta,\gamma \)-Unsaturated Nitriles from Cyanation of Allylic Carbonsates and Acetates |
| 1.2.22 | Method 22: | \(\gamma,\delta \)-Unsaturated Esters from Allylation of Ketene Silyl Acetals |
| 1.2.23 | Method 23: | Aldehydes and Ketones from Oxidation of Allyl Carbonsates |
| 1.2.24 | Method 24: | \(\alpha,\beta \)-Unsaturated Aldehydes and Ktones from Oxidation of Allylpalladium Complexes |
| 1.2.25 | Method 25: | \(\alpha,\beta \)-Unsaturated Aldehydes and Ktones from Oxidation of Enol Derivatives |
| 1.2.25.1| Variation 1: | From Oxidation of Enol Carbonsates |
| 1.2.25.2| Variation 2: | From Oxidation of Enol Acetates |
| 1.2.25.3| Variation 3: | From Oxidation of Silyl Enol Ethers |
| 1.2.26 | Method 26: | \(\beta,\gamma \)-Unsaturated Ketones from Decarboxylation of Allyl \(\beta \)-Oxocarboxylates |
| 1.2.27 | Method 27: | \(\beta,\gamma \)-Unsaturated Ketones from Reaction of Allylpalladium Complexes with Acyli
er or Acynickel Carbanions |
| 1.2.28 | Method 28: | \(\beta,\gamma \)-Unsaturated Aldehydes and Ketones from Carbynlation of Allyl Halides with Organostannanes |
| 1.2.29 | Method 29: | \(\beta,\gamma \)-Unsaturated Ketones from Rearrangement of Cyclic Vinyl Epoxides |
| 1.2.30 | Method 30: | \(\gamma,\delta \)-Unsaturated Ktones from Allylation of Enolates and Enolate Equivalents |
| 1.2.31 | Method 31: | \(\gamma,\delta \)-Unsaturated Ketones from Decarboxylative Allylation of \(\beta \)-Oxo Esters and Acids |
| 1.2.31.1| Variation 1: | Decarboxylative Allylation of Allyl \(\beta \)-Oxocarboxylate Esters |
| 1.2.31.2| Variation 2: | Decarboxylative Alkylation of \(\beta \)-Oxo Acids with Allylic Electrophiles |
| 1.2.32 | Method 32: | \(\gamma,\delta \)-Unsaturated Aldehydes and Ketones from Rearrangement of Allyl Enol Carbonsates |
| 1.2.33 | Method 33: | Allylic Esters from Allylic Acetoxylation of Alkenes |
| 1.2.33.1| Variation 1: | \(\gamma \)-Acetoxy-(E)-\(\alpha,\beta \)-Unsaturated Esters and Sulfoxides from Acetoxylation of \(\beta,\gamma \)-Unsaturated Esters and Sulfoxides |
| 1.2.33.2| Variation 2: | Allylic Acetoxylation of Simple Alkenes |
| 1.2.34 | Method 34: | Allylic Esters from Allylpalladium Complexes |
| 1.2.35 | Method 35: | Allylic Esters from Reaction of Allyl Electrophiles with Carboxylate Anions |
1.2.36 Method 36: 4-Heterosubstituted 1-Acetoxyalk-2-enes from 1,3-Dienes 192
1.2.36.1 Variation 1: 1,4-Diacetoxyalk-2-enes from 1,4-Diacetoxylation
of 1,3-Dienes .. 193
1.2.36.2 Variation 2: 1-Acetoxy-4-chloroalk-2-enes from 1,4-Acetoxylorination
of 1,3-Dienes .. 194
1.2.36.3 Variation 3: 1-Acetoxy-4-(trifluoroacetoxy)alk-2-enes from
1,4-Acetoxytrifluoroacetoxylation of 1,3-Dienes 195
1.2.37 Method 37: Allylic Acetates by Rearrangement 196
1.2.38 Method 38: Allylic Ethers from Reaction of Allylic Electrophiles with
Alcohols and Alkoxide Anions ... 197
1.2.39 Method 39: Allylic Alcohols from Oxidation of Allylpalladium Complexes
1.2.40 Method 40: Homoolylic Alcohols by Carbonyl Allylation with
Allyl Organometallics Generated by Umpolung of
Allylpalladium Complexes .. 198
1.2.41 Method 41: S- Allyl Phosphorothioa tes from Rearrangement of
O-Allyl Phosphorothioates ... 200
1.2.42 Method 42: Allylic Sulfo nes from Reaction of Allylic Electrophiles with
Sulfimates .. 201
1.2.43 Method 43: Allylic Sulfo nes from Hydrosulfination of Allenes and
1,3-Dienes .. 203
1.2.44 Method 44: Allylic Sulfo nes from Rearrangement of O-Allyl Sulfo nates 205
1.2.45 Method 45: Allylic Sulfo nes from 1,3-Rearrangement of Allylic Sulfo nes 206
1.2.46 Method 46: Unsaturated Sulfo nes from Protioder palladation of
[4-Sulfonyl-(1,2,3-η)-alk-2-ethyl] palladium Complexes 207
1.2.47 Method 47: Allylic Sulfo nes from Reaction of Allylic Carbonates with Thiols
1.2.48 Method 48: Allylic Amines from Amination of Allylpalladium Complexes
1.2.49 Method 49: Allylic Amines from Amination of Allylic Electrophiles 209
1.2.49.1 Variation 1: Allylic Amination with Primary and Secondary Amines 210
1.2.49.2 Variation 2: Allylic Amination with Imides and Iminodicarbonates 211
1.2.49.3 Variation 3: Allylic Amination with Sulfo nates 212
1.2.49.4 Variation 4: Allylic Amination with Azide 213
1.2.50 Method 50: Allylic Amines from Hydroamination of Allenes 214
1.2.51 Method 51: 4-Vinylloxazolidin-2-ones from Vinyl Epoxides and
But-2-ene-1,4-diols ... 215
1.2.51.1 Variation 1: From Vinyl Epoxides 216
1.2.51.2 Variation 2: From But-2-ene-1,4-diols 217
1.2.52 Method 52: Homoallylic Amines by Imine Allylation with Allylstannanes
1.2.53 Method 53: Allylic Phosphine Sulfo nes from Displacement of
Allylic Carboxylates with Diphenylphosphorothioiylthium 218
1.2.54 Method 54: Allyl Arenes from Coupling of Allylic Electrophiles and
Aryl Organometallics .. 219
1.2.54.1 Variation 1: From Tetrabutylammonium Difluorotriphenylsilicate 220
1.2.54.2 Variation 2: From Arylstannanes 221
1.2.54.3 Variation 3: From Sodium Tetraphenylborate 222
1.2.54.4 Variation 4: From Arylzincs ... 223
1.2.54.5 Variation 5: From Aryl Grignard Reagents 224
1.2.55 Method 55: 1,3-Dienes from β-Elimination of Allylic Alcohol Derivatives
1.2.55.1 Variation 1: From Tetrabutylammonium Difluorotriphenylsilicate 225
1.2.55.2 Variation 2: From Arylstannanes 226
1.2.55.3 Variation 3: From Sodium Tetraphenylborate 227
Table of Contents

1.2.2.56
Method 56: 1,3-Dienes from Reductive Elimination of Dicarbonates of Enediols

--- 229

1.2.2.57
Method 57: 1,3-Dienes from Decarboxylative Elimination of β-Acetoxy Carboxylic Acids

--- 229

1.2.2.58
Method 58: 1,4-Dienes from Coupling of Alkenylzirconiums and Allylpalladium Complexes

--- 230

1.2.2.59
Method 59: 1,4-Dienes from Coupling of Vinyl Organometallics and Allyl Electrophiles

--- 231

1.2.2.59.1
Variation 1: From Alkenylaluminum Reagents

--- 231

1.2.2.59.2
Variation 2: From Vinylstannanes

--- 232

1.2.2.60
Method 60: 1,5-Dienes from Coupling of Allylstannanes and Allyl Electrophiles

--- 234

1.2.2.61
Method 61: 1,6-Dienes from Dimerization of Butadienes (Telomerization)

--- 235

1.2.2.62
Method 62: Methylene Cyclopentenones via [3+2]- Cycloaddition Reactions of Trimethylenemethanes

--- 237

1.2.2.63
Method 63: Vinylcyclopentenones via [3+2]- Cycloaddition Reactions of Vinylcyclopropanes

--- 240

1.2.2.64
Method 64: Vinylcyclopentenones from Palladium-Catalyzed Intramolecular Ene Reactions

--- 241

1.2.2.65
Method 65: Alkenes from Reduction of Allylic Heterostituents

--- 243

1.2.2.66
Method 66: 4-Substituted Alkenes from Alkylation of Stabilized Carbon Nucleophiles with Allyl Electrophiles

--- 245

1.2.3
Product Subclass 3: Palladium–Alkyne Complexes

J. M. Takacs, S. Vyalalakada, and X. Jiang

1.2.3

1.2.3
Product Subclass 3: Palladium–Alkyne Complexes

--- 265

1.2.3.1
Method 1: Preparations and Characterizations of Palladium–Alkyne Complexes

--- 266

1.2.3.2
Method 2: Addition of Oxygen Nucleophiles: Carboxylates

--- 268

1.2.3.2.1
Variation 1: Intramolecular Addition of Carboxylates Followed by Protonation

--- 269

1.2.3.2.2
Variation 2: Intramolecular Addition of Carboxylates Followed by Allylation

--- 272

1.2.3.2.3
Variation 3: Intramolecular Addition of Carboxylates Followed by Arylation or Vinylation

--- 274

1.2.3.3
Method 3: Addition of Oxygen Nucleophiles: Hydroxy Moieties

--- 276

1.2.3.3.1
Variation 1: Intramolecular Addition of Alcohols Followed by Protonation

--- 277

1.2.3.3.2
Variation 2: Intramolecular Addition of Alcohols Followed by Carbon Monoxide Insertion

--- 280

1.2.3.3.3
Variation 3: Intramolecular Addition of Alcohols Followed by Allylation

--- 282
XVIII Table of Contents

1.2.3.4 Variation 4: Intramolecular Addition of Alcohols Followed by
 Vinylation or Arylation .. 284
1.2.3.4 Method 4: Addition of Nitrogen Nucleophiles 287
1.2.3.4.1 Variation 1: Intramolecular Addition of Nitrogen Nucleophiles
 Followed by Protonation 288
1.2.3.4.2 Variation 2: Intramolecular Addition of Nitrogen Nucleophiles
 Followed by Allylation 291
1.2.3.4.3 Variation 3: Intramolecular Addition of Nitrogen Nucleophiles
 Followed by Vinylation or Arylation 294
1.2.3.4.4 Variation 4: Intramolecular Addition of Nitrogen Nucleophiles
 Followed by Vinylation or Arylation 297
1.2.3.5 Method 5: Addition of Carbon Nucleophiles 298
1.2.3.5.1 Variation 1: Intramolecular Addition of Malononitriles to Alkynes
 under Neutral Conditions 299
1.2.3.5.2 Variation 2: Tandem Michael Addition Followed by Intramolecular
 Addition of Malonate Derivatives to Alkynes 301
1.2.3.5.3 Variation 3: Intramolecular Addition of Malonate Derivatives to Alkynes
 under Strongly Basic Conditions: Four Modes of Reaction 302
1.2.3.6 Method 6: Addition of Sulfur Nucleophiles 303
1.2.3.6.1 Variation 1: Addition of Arenethiols to Alkynes To Form Vinyl Sulfides .. 304
1.2.3.6.2 Variation 2: Thiocarbonylation of Alkynes with Thiols and
 Carbon Monoxide ... 306
1.2.3.6.3 Variation 3: Addition of Diaryl Disulfides to Alkynes To Form
 1,2-Disulfanylalkenes 308
1.2.3.6.4 Variation 4: Thiocarbonylation of Acetylenes with Disulfides 309
1.2.3.6.5 Variation 5: Palladium-Catalyzed Thioboration of Acetylenes
 with 9-(Alkylsulfanyl)-9-borabicyclo[3.3.1]nonanes 311
1.2.3.7 Method 7: Addition of Halides 312
1.2.3.7.1 Variation 1: Palladium-Catalyzed Addition of Halides to Alkynes
 Followed by Alkene Insertion and Protonolysis 313
1.2.3.7.2 Variation 2: Palladium-Catalyzed Addition of Halides to Alkynes
 Followed by Alkene Insertion and β-Elimination 314
1.2.3.7.3 Variation 3: Palladium-Catalyzed Addition of Halides to Alkynes
 Followed by Alkene Insertion and Oxidation 315

1.2.4 Product Subclass 4: Palladium–Alkene Complexes
J. M. Takacs and S. Vayalakkada

1.2.4 Product Subclass 4: Palladium–Alkene Complexes 319
1.2.4 Synthesis of Product Subclass 4 320
1.2.4.1 Method 1: From a Palladium(II) Salt and an Alkene 320
1.2.4.2 Method 2: From Palladium(0) and an Alkene 321
1.2.4.3 Method 3: Palladium-Catalyzed Intermolecular Addition
 of Oxygen Nucleophiles: Water and Alcohols 322
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.4.3.1</td>
<td>Variation 1: Addition of Water to Terminal Alkenes To Form Ketones; the Wacker Oxidation</td>
</tr>
<tr>
<td>1.2.4.3.2</td>
<td>Variation 2: The Wacker Oxidation Using a Fluorous Biphasic System</td>
</tr>
<tr>
<td>1.2.4.3.3</td>
<td>Variation 3: The Wacker Oxidation in Solid-Phase Synthesis</td>
</tr>
<tr>
<td>1.2.4.3.4</td>
<td>Variation 4: Addition of Water to Terminal Alkenes To Form Aldehydes</td>
</tr>
<tr>
<td>1.2.4.3.5</td>
<td>Variation 5: Addition of Water to Allylic Carbonates To Form α,β-Unsaturated Aldehydes</td>
</tr>
<tr>
<td>1.2.4.3.6</td>
<td>Variation 6: Palladium-Catalyzed Oxidative Removal of Allyl Protecting Groups</td>
</tr>
<tr>
<td>1.2.4.3.7</td>
<td>Variation 7: Palladium-Catalyzed Oxidation of Internal Alkenes: Allylic and Homoallylic Ethers</td>
</tr>
<tr>
<td>1.2.4.3.8</td>
<td>Variation 8: Palladium-Catalyzed Oxidation of Internal Alkenes: Unsaturated Carbonyl Compounds</td>
</tr>
<tr>
<td>1.2.4.3.9</td>
<td>Variation 9: Intermolecular Addition of Alcohol To Form Acetals and Ketals</td>
</tr>
<tr>
<td>1.2.4.3.10</td>
<td>Variation 10: Intermolecular Addition of Alcohol To Form Acetals from α,β-Unsaturated Carbonyl Compounds</td>
</tr>
<tr>
<td>1.2.4.4</td>
<td>Method 4: Palladium-Catalyzed Heterocyclization:</td>
</tr>
<tr>
<td>1.2.4.4.1</td>
<td>Variation 1: Intramolecular Addition of Oxygen Nucleophiles</td>
</tr>
<tr>
<td>1.2.4.4.2</td>
<td>Variation 2: Intramolecular Addition of Alcohol Followed by β-Hydroxide Elimination</td>
</tr>
<tr>
<td>1.2.4.4.3</td>
<td>Variation 3: Intramolecular Addition of Alcohol Followed by β-Hydrogen Elimination</td>
</tr>
<tr>
<td>1.2.4.4.4</td>
<td>Variation 4: Intramolecular Addition of Alcohol Followed by β-Hydrogen Elimination: A Catalytic Asymmetric Variant</td>
</tr>
<tr>
<td>1.2.4.4.5</td>
<td>Variation 5: Intramolecular Addition of Alcohol Followed by Carbon Monoxide Insertion and Alcoholysis</td>
</tr>
<tr>
<td>1.2.4.4.6</td>
<td>Variation 6: Intramolecular Addition of Alcohol Followed by Alkene Insertion</td>
</tr>
<tr>
<td>1.2.4.4.7</td>
<td>Variation 7: Intramolecular Addition of Carboxylate Followed by β-Hydride Elimination</td>
</tr>
<tr>
<td>1.2.4.4.8</td>
<td>Variation 8: Intramolecular Addition of Carboxylate Followed by Carbon Monoxide Trapping</td>
</tr>
<tr>
<td>1.2.4.5</td>
<td>Method 5: Intermolecular Addition of Nitrogen Nucleophiles</td>
</tr>
<tr>
<td>1.2.4.5.1</td>
<td>Variation 1: Intermolecular Addition of Amines Followed by β-Hydride Elimination</td>
</tr>
<tr>
<td>1.2.4.5.2</td>
<td>Variation 2: Intermolecular Addition of Amides and Carbamates</td>
</tr>
<tr>
<td>1.2.4.6</td>
<td>Method 6: Palladium-Catalyzed Heterocyclization:</td>
</tr>
<tr>
<td>1.2.4.6.1</td>
<td>Variation 1: Intramolecular Addition of Amine Followed by β-Hydride Elimination</td>
</tr>
<tr>
<td>1.2.4.6.2</td>
<td>Variation 2: Intramolecular Addition of Amine Followed by β-Elimination: In Situ Reduction of Aromatic Nitro Compounds</td>
</tr>
<tr>
<td>1.2.4.6.3</td>
<td>Variation 3: Intramolecular Addition of Amine Followed by Carbon Monoxide Insertion</td>
</tr>
<tr>
<td>1.2.4.6.4</td>
<td>Variation 4: Intramolecular Addition of N-Sulfonyl and N-Acyl Derivatives Followed by β-Hydrogen Elimination</td>
</tr>
</tbody>
</table>
Table of Contents

1.2.4.6.5 Variation 5: Intramolecular Addition of N-Acyl and N-Sulfonyl Derivatives Followed by Carbon Monoxide Insertion (Carbonylation) 363

1.2.4.6.6 Variation 6: Intramolecular Addition of N-Acyl and N-Sulfonyl Derivatives Followed by Alkene Insertion 367

1.2.4.7 Method 7: Palladium(II)-Catalyzed [3,3]-Sigmatropic Rearrangements 367

1.2.4.7.1 Variation 1: Palladium(II)-Catalyzed Cope Rearrangements 368

1.2.4.7.2 Variation 2: Oxy-Cope Rearrangement 371

1.2.4.7.3 Variation 3: Claisen and Thia-Claisen Rearrangements 371

1.2.4.7.4 Variation 4: Enolate Claisen Rearrangements 374

1.2.4.7.5 Variation 5: Allylic Imidate Rearrangements 375

1.2.4.7.6 Variation 6: Allylic Ester Rearrangement 379

1.3 Product Class 3: Organometallic Complexes of Platinum

1.3.0 Product Class 3: Organometallic Complexes of Platinum 389

1.3.1 Product Subclass 1: Platinum–Cyclopentadienyl Complexes

1.3.1.1 Synthesis of Product Subclass 1 389

1.3.1.2 Method 1: Cyclopentadienylplatinum(II) Complexes from Platinum Halide Complexes and Cyclopentadienyl Anions 389

1.3.1.3 Method 2: Cyclopentadienylplatinum(IV) Complexes from Platinum Halide Complexes and Cyclopentadienyl Anions 391

1.3.2 Product Subclass 2: Platinum–Diene Complexes

1.3.2.1 Synthesis of Product Subclass 2 394

1.3.2.2 Method 1: Platinum(0)–Allene Complexes 394

1.3.2.3 Method 2: Platinum(II)–Allene Complexes 396

1.3.2.4 Method 3: Platinum(0)–Conjugated Polyene Complexes 397

1.3.2.5 Method 4: Platinum(II)–Conjugated Polyene Complexes 399

1.3.2.6 Method 5: Platinum(0)–Nonconjugated Polyene Complexes 400

1.3.2.7 Method 6: Platinum(II)–Nonconjugated Polyene Complexes 402

1.3.2.8 Applications of Product Subclass 2 in Organic Synthesis 404

1.3.2.9 Method 7: Platinum(0)-Catalyzed Dimerization of Conjugated Dienes and Related Reactions 404

1.3.3 Product Subclass 3: Platinum–Allyl Complexes

1.3.3.0 Synthesis of Product Subclass 3 405

1.3.3.1 Method 1: Allylplatinum Complexes from Platinum(II) Complexes and Allylic Compounds 405

1.3.3.2 Method 2: Allylplatinum Complexes by Addition of Platinum(II) Hydrides to Unsaturated Bonds 406

1.3.3.3 Method 3: Allylplatinum Complexes from Allylic Platinum(II) Precursors 407

1.3.3.4 Method 4: Allylplatinum Complexes from Platinum(0) Precursors 409
Table of Contents

1.3.4 Product Subclass 4: Platinum–Alkyne Complexes .. 411
Synthesis of Product Subclass 4 ... 411
1.3.4.1 Method 1: Platinum(0)–Alkyne Complexes Starting from
Platinum(II) Complexes ... 411
1.3.4.2 Method 2: Platinum(0)–Alkyne Complexes by Ligand-Exchange Reactions
with Platinum(0)–Phosphine Complexes ... 413
1.3.4.3 Method 3: Platinum(0)–Alkyne Complexes by Ligand-Exchange Reactions
with Platinum(0)–Alkene Complexes ... 414
1.3.4.4 Method 4: Platinum(II)–Alkyne Complexes by Ligand-Exchange Reactions
with Platinum(II) Halide and Related Complexes 416
Applications of Product Subclass 4 in Organic Synthesis 417
1.3.4.5 Method 5: Catalytic Addition of Main Group Element–Hydrogen Bond
Compounds to Acetylenes ... 417
1.3.4.5.1 Variation 1: Hydrosilylation .. 417
1.3.4.5.2 Variation 2: Addition of Other Main Group
Element–Hydrogen Bond Compounds ... 418
1.3.5 Product Subclass 5: Platinum–Alkene Complexes 420
Synthesis of Product Subclass 5 .. 420
1.3.5.1 Method 1: Platinum(0)–Monoalkene Polydentate Complexes 420
1.3.5.2 Method 2: Platinum(II)–Monoalkene Polydentate Complexes 421
1.3.5.3 Method 3: Platinum(0)–Monoalkene Monodentate Complexes
Starting from Platinum(II) Complexes .. 423
1.3.5.4 Method 4: Platinum(0)–Monoalkene Monodentate Complexes
by Ligand-Exchange Reactions with Platinum(0) Complexes 425
1.3.5.5 Method 5: Platinum(II)–Monoalkene Monodentate Complexes
by Ligand-Exchange Reactions ... 427
1.3.5.6 Method 6: Pentacoordinate Platinum(II)–Monoalkene
Monodentate Complexes .. 428
Applications of Product Subclass 5 in Organic Synthesis 430
1.3.5.7 Method 7: Catalytic Hydrogenation of Alkenes 430
1.3.5.8 Method 8: Catalytic Hydrosilylation of Alkenes and
Related Addition Reactions ... 431

1.4 Product Class 4: Organometallic Complexes of Cobalt
M. Malacria, C. Aubert, and J.-L. Renaud

1.4 Product Class 4: Organometallic Complexes of Cobalt 439
1.4.1 Product Subclass 1: Cobalt–Dienyl Complexes .. 439
Synthesis of Product Subclass 1 .. 440
1.4.1.1 Method 1: Bis(alkene)(cyclopentadienyl)cobalt(I) Complexes by
Ligand Exchange .. 440
1.4.1.1.1 Variation 1: Via Displacement of Carbon Monoxide 440
1.4.1.1.2 Variation 2: Via Ligand Substitution ... 441
Table of Contents

1.4.1.2 Method 2: Bis(alkene)(η^5-cyclopentadienyl)cobalt(I) Complexes by Reduction of Cobalt(II) Complexes 442

1.4.1.3 Variation 1: Via Elimination of Alkali Metal Cyclopentadienide 442

1.4.1.4 Method 2: Via Reduction of (Pentaalkylicyclopentadienyl)cobalt(II) Halide Dimers .. 443

1.4.1.5 Method 3: Dicarbonyl(η^5-cyclopentadienyl)cobalt(I) by Oxidative Addition ... 444

1.4.1.6 Method 4: Cyclopentadienyl(maleoylcobalt(III) and Cyclopentadienyl(phthaloylcobalt(III) Complexes by Insertion into Substituted Cyclobutenediones .. 444

1.4.1.7 Method 5: Cyclopentadienylbis(triarylphosphine)cobalt(I) Complexes by Reduction of Cobalt(III) Complexes 445

Applications of Product Subclass 1 in Organic Synthesis .. 446

1.4.1.8 Method 6: Hydroacylation ... 446

1.4.1.9 Method 7: Epoxide Opening ... 447

1.4.1.10 Method 8: Inter- and Intramolecular [2 + 2 + 2] Cyclizations ... 448

Variation 1: Intermolecular [2 + 2 + 2] Cyclization of Diynes and Nitriles: Synthesis of Pyridines .. 448

Variation 2: Inter- and Intramolecular [2 + 2 + 2] Cyclization of Triynes in Aromatic and Aqueous Solvents 451

Variation 3: Inter- and Intramolecular [2 + 2 + 2] Cyclization of Enediyines and Alkenediynes .. 455

Variation 4: Inter- and Intramolecular [2 + 2 + 2] Cyclization of Diynes with Heteroatom-Substituted Multiple Bonds 458

1.4.1.11 Method 9: Inter- and Intramolecular [2 + 2] Cyclizations ... 461

1.4.1.12 Method 10: Cobalt-Mediated Ene–yne Cyclizations ... 462

Variation 1: Alder Ene-Type Cyclizations of Enynes and Allenynes .. 463

Variation 2: Ene-Type Reactions of β-Oxo Ester ε-Ynes ... 464

Method 11: Synthesis of Quinones ... 466

1.4.2 Product Subclass 2: Cobalt–Diene Complexes ... 467

Synthesis of Product Subclass 2 ... 468

Method 1: Tricarbonyl(η^4-diene)cobalt(II) Tetrafluoroborate Complexes .. 468

Applications of Product Subclass 2 in Organic Synthesis ... 468

Method 2: 1,4-Difunctionalization of Dienes ... 468

Variation 1: Synthesis of Z-Disubstituted Alkenes ... 469

Variation 2: Synthesis of Heterocyclic Compounds ... 469

1.4.3 Product Subclass 3: Cobalt–Allyl Complexes ... 472

Synthesis of Product Subclass 3 ... 472

Method 1: Allylcobalt Complexes by Ligand Exchange ... 472

Method 2: Allylcobalt Complexes by Elimination of Leaving Groups ... 473

Method 3: Allylcobalt Complexes by Hydridocobaltation of 1,3-Dienes ... 475

Method 4: Allylcobalt Complexes by Addition of Alkyl- and Acylcobalt Complexes to Conjugated Dienes and Various Unsaturated Compounds ... 476

Science of Synthesis Original Edition Volume 1 © Georg Thieme Verlag KG
Table of Contents

1.4.3.3 Application of Product Subclass 3 in Organic Synthesis 478
1.4.3.3 Method 5: Synthesis of Acyldienes ... 478
1.4.3.6 Method 6: 1,4-Acylation/Alkylation of 1,3-Dienes and Allenes:
 Synthesis of Substituted Enones ... 479
1.4.3.7 Method 7: Acylation–Cyclization of Allenes: Synthesis of Heterocycles .. 481
1.4.3.8 Method 8: Synthesis of Butenolides ... 482
1.4.4 Product Subclass 4: Miscellaneous Complexes 483
 Synthesis of Product Subclass 4 ... 483
1.4.4.1 Method 1: Cobalt(III) Complexes ... 483
1.4.4.1.1 Variation 1: From Cobalt(III) Complexes 484
1.4.4.1.2 Variation 2: From Cobalt(II) Complexes 485
1.4.4.1.3 Variation 3: From Cobalt(I) Complexes 486
1.4.4.2 Method 2: (μ-Alkyne)hexacarbonyldicobalt(0) Complexes by
 Ligand Exchange ... 487
1.4.4.3 Method 3: Chlorotris(triphenylphosphine)cobalt(I) 488
1.4.4.4 Method 4: Tetrakis(trimethylphosphine)cobalt(0) by Reduction
 of Cobalt(II) Chloride .. 489
1.4.4.5 Method 5: Tetracarbonylhydridocobalt(I) 490
1.4.4.6 Method 6: Tris(acetylacetonato)cobalt(III) as a Precatalyst 491
1.4.4.7 Method 7: Cobalt(II) Complexes as Precatalysts 491
 Applications of Product Subclass 4 in Organic Synthesis 493
1.4.4.8 Method 8: Reformatsky- and Aldol-Type Reactions 493
1.4.4.9 Method 9: Silylcarbonylation ... 494
1.4.4.10 Method 10: Hydroformylation .. 496
1.4.4.11 Method 11: Synthesis of Epoxides .. 498
1.4.4.11.1 Variation 1: Synthesis of Enantiomerically Pure Epoxides Using
 Cobalt(III) Complexes ... 498
1.4.4.11.2 Variation 2: Synthesis of Epoxides Using Cobalt(II) Complexes
 under Neutral Conditions .. 499
1.4.4.12 Method 12: Carbon—Heteroatom Bond Formation 500
1.4.4.12.1 Variation 1: Cobalt(II)-Mediated Aerobic Oxygenation of Alkenes 500
1.4.4.12.2 Variation 2: Cobalt(II) Chloride Catalyzed Carbon—Heteroatom
 Bond Formation ... 501
1.4.4.13 Method 13: Synthesis of Carbonyl Compounds 502
1.4.4.13.1 Variation 1: Syntheses Catalyzed by Cobalt(II) Complexes 502
1.4.4.13.2 Variation 2: Syntheses Catalyzed by
 Chlorotris(triphenylphosphine)cobalt(I) .. 504
1.4.4.14 Method 14: C—C Bond Formation by Addition 504
1.4.4.14.1 Variation 1: Formation of C—C Bonds via Radical Addition Reactions 505
1.4.4.14.2 Variation 2: The Nicholas Reaction .. 508
1.4.4.14.3 Variation 3: The Inter- and Intramolecular Pauson–Khand Reaction 512
1.4.4.15 Method 15: C—C Bond Formation by Rearrangement 517
1.4.4.15.1 Variation 1: Rearrangement of 1-(Alk-1-ynyl)cyclopropanes 518
1.4.4.15.2 Variation 2: Diels–Alder Reaction with 2-Cobaloxime-Substituted
 1,3-Dienes ... 519
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4.15.3</td>
<td>Variation 3: Homo-Diels–Alder Reactions</td>
<td>520</td>
</tr>
<tr>
<td>1.4.15.4</td>
<td>Variation 4: Additional Methods</td>
<td>521</td>
</tr>
</tbody>
</table>

1.5

Product Class 5: Organometallic Complexes of Rhodium

I. Ojima, A. T. Vu, and D. Bonafoux

<table>
<thead>
<tr>
<th>Subclass</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>Product Class 5: Organometallic Complexes of Rhodium</td>
<td>531</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Product Subclass 1: Rhodium–Arene Complexes</td>
<td>532</td>
</tr>
<tr>
<td>1.5.1.1</td>
<td>Method 1: Cationic Complexes by Ligand Substitution</td>
<td>532</td>
</tr>
<tr>
<td>1.5.1.1</td>
<td>Variation 1: From Arenes and Cationic Rhodium–Diene Complexes</td>
<td>532</td>
</tr>
<tr>
<td>1.5.1.2</td>
<td>Variation 2: From Arenes and Rhodium–Acetylacetone Complexes</td>
<td>533</td>
</tr>
<tr>
<td>1.5.1.3</td>
<td>Variation 3: From Arenes and Rhodium(III) Chloride</td>
<td>534</td>
</tr>
<tr>
<td>1.5.1.4</td>
<td>Variation 4: From Arenes and Rhodium–Acetate Complexes</td>
<td>534</td>
</tr>
<tr>
<td>1.5.1.5</td>
<td>Variation 5: Via Displacement of Weakly Bound Ligands</td>
<td>535</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Product Subclass 2: Rhodium–Cumulene Complexes</td>
<td>536</td>
</tr>
<tr>
<td>1.5.2.1</td>
<td>Method 1: Cumulatriene Complexes by Ligand Substitution</td>
<td>536</td>
</tr>
<tr>
<td>1.5.2.2</td>
<td>Method 2: Cumulapentaene Complex by Ligand Substitution</td>
<td>537</td>
</tr>
<tr>
<td>1.5.3</td>
<td>Product Subclass 3: Rhodium–Diene Complexes</td>
<td>537</td>
</tr>
<tr>
<td>1.5.3.1</td>
<td>Method 1: Cyclopentadienylrhodium Complexes by Ligand Substitution</td>
<td>538</td>
</tr>
<tr>
<td>1.5.3.1</td>
<td>Variation 1: From Cyclopentadienyl Anions and Rhodium Halides</td>
<td>538</td>
</tr>
<tr>
<td>1.5.3.1.2</td>
<td>Variation 2: Cationic Bis(cyclopentadienyl) Complexes by Ligand Substitution</td>
<td>539</td>
</tr>
<tr>
<td>1.5.3.2</td>
<td>Method 2: From Pentamethylcyclopentadienyl Anions and Rhodium Halides</td>
<td>540</td>
</tr>
<tr>
<td>1.5.3.2.1</td>
<td>Variation 1: Dimeric Pentamethylcyclopentadienyl Complexes</td>
<td>541</td>
</tr>
<tr>
<td>1.5.3.2.2</td>
<td>Variation 2: Monomeric Pentamethylcyclopentadienyl Complexes</td>
<td>542</td>
</tr>
<tr>
<td>1.5.3.3</td>
<td>Method 3: Indenyl Complexes by Ligand Substitution</td>
<td>542</td>
</tr>
<tr>
<td>1.5.3.4</td>
<td>Method 4: Acyclic Pentadienyl Complexes by Dehydration</td>
<td>544</td>
</tr>
<tr>
<td>1.5.3.5</td>
<td>Method 5: η⁵-Cyclohexadienyl Complexes</td>
<td>544</td>
</tr>
<tr>
<td>1.5.3.5.1</td>
<td>Variation 1: Via Ligand Substitution</td>
<td>545</td>
</tr>
<tr>
<td>1.5.3.5.2</td>
<td>Variation 2: Cationic Complexes via Hydride Abstraction</td>
<td>546</td>
</tr>
<tr>
<td>1.5.3.5.3</td>
<td>Variation 3: Via Nucleophilic Addition to an Arene Ligand</td>
<td>546</td>
</tr>
<tr>
<td>1.5.3.6</td>
<td>Method 6: Norbornadienyl Complexes by Dehydration</td>
<td>547</td>
</tr>
<tr>
<td>1.5.3.7</td>
<td>Method 7: η⁵-Cycloheptadienyl Complexes by Nucleophilic Addition</td>
<td>548</td>
</tr>
<tr>
<td>1.5.3.8</td>
<td>Method 8: η⁵-Cyclooctadienyl Complexes</td>
<td>548</td>
</tr>
<tr>
<td>1.5.4</td>
<td>Product Subclass 4: Rhodium–Diene Complexes</td>
<td>549</td>
</tr>
<tr>
<td>1.5.4.1</td>
<td>Method 1: Allene Complexes by Ligand Substitution</td>
<td>549</td>
</tr>
<tr>
<td>1.5.4.2</td>
<td>Method 2: Alka-1,3-diene Complexes</td>
<td>550</td>
</tr>
<tr>
<td>1.5.4.2.1</td>
<td>Variation 1: Via Ligand Substitution</td>
<td>551</td>
</tr>
</tbody>
</table>
Table of Contents

1.5.4.2.2 Variation 2: Via Displacement of Weakly Bound Ligands 551
1.5.4.2.3 Variation 3: Cationic Complexes via Ligand Substitution 553
1.5.4.2.4 Variation 4: Cyclobutadiene Complexes via Alkyne Cyclodimerization 553
1.5.4.2.5 Variation 5: \(\eta^6 \)-Cyclopentadiene Complexes via Nucleophilic Addition to \(\eta^3 \)-Cyclopentadienyl Ligands ... 555
1.5.4.2.6 Variation 6: \(\eta^6 \)-Cyclopentadienone Complexes 556
1.5.4.3 Method 3: Cycloocta-1,5-diene Complexes ... 558
1.5.4.3.1 Variation 1: Via Ligand Substitution .. 558
1.5.4.3.2 Variation 2: Via Displacement of Weakly Bound Ligands 559
1.5.4.3.3 Variation 3: Homoleptic Cationic Cycloocta-1,5-diene Complexes via Anionic Ligand Abstraction ... 560
1.5.4.4.4 Variation 4: Monomeric Cycloocta-1,5-diene Complexes 561
1.5.4.4 Method 4: Norbornadiene Complexes .. 563
1.5.4.4.1 Variation 1: Via Ligand Substitution .. 563
1.5.4.4.2 Variation 2: Via Displacement of Weakly Bound Ligands 564
1.5.4.4.3 Variation 3: Homoleptic, Cationic Norbornadiene Complexes via Anionic Ligand Abstraction ... 565
1.5.4.4.4 Variation 4: Monomeric Norbornadiene Complexes 566
1.5.4.5 Method 5: Cycloocta-1,3,5,7-tetraene Complexes 567
1.5.4.6 Method 6: Synthesis of Cationic Chiral Diene Complexes 569

Applications of Product Subclass 4 in Organic Synthesis 571

1.5.4.7 Method 7: Reactions Involving Allenes .. 571
1.5.4.7.1 Variation 1: Carbonylate [4 + 1] Cycloaddition of Vinylallene 571
1.5.4.7.2 Variation 2: [4 + 2] Diene–Allene Cycloaddition 573
1.5.4.7.3 Variation 3: [5 + 2] Vinycyclopropane–Allene Cycloaddition 573
1.5.4.8 Method 8: [4 + 2] Cycloaddition Involving 1,3-Dienes 574

1.5.5 Product Subclass 5: Rhodium–Allyl Complexes 577

Synthesis of Product Subclass 5 ... 577

1.5.5.1 Method 1: Monoallyl Complexes via Transmetalation 577
1.5.5.2 Method 2: Allyl Complexes by Hydrometalation 579
1.5.5.3 Method 3: Allyl Complexes by Alkylation of Metal Salts 583
1.5.5.4 Method 4: Allyl Complexes by Oxidative Addition 583
1.5.5.5 Method 5: Bis(allyl) Complexes ... 585
1.5.5.6 Method 6: Tris(allyl) Complexes .. 587

Applications of Product Subclass 5 in Organic Synthesis 588

1.5.5.7 Method 6: Metallo-Ene Cyclization ... 588

1.5.6 Product Subclass 6: Rhodium–Alkyne Complexes 589

Synthesis of Product Subclass 6 ... 589

1.5.6.1 Method 1: Via Simple Alkyne Addition ... 589
1.5.6.2 Method 2: Via Displacement of Weakly Bound Ligands 590
1.5.6.3 Method 3: Alkyne-Bridged Dimeric Complexes via Ligand Displacement 592

Applications of Product Subclass 6 in Organic Synthesis 594

1.5.6.4 Method 4: [2 + 2 + 2] Cycloaddition ... 594
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5.6.1</td>
<td>Variation 1: ([2 + 2 + 2]) Cyclotrimerization</td>
<td>594</td>
</tr>
<tr>
<td>1.5.6.2</td>
<td>Variation 2: Silylcarbotricyclimerization of Triynes</td>
<td>596</td>
</tr>
<tr>
<td>1.5.6.5</td>
<td>Method 5: Rhodium-Catalyzed Pauson–Khand Reaction</td>
<td>596</td>
</tr>
<tr>
<td>1.5.6.6</td>
<td>Method 6: ([5 + 2])Vinylcyclopropane–Alkyne Cycloaddition</td>
<td>597</td>
</tr>
<tr>
<td>1.5.6.6.1</td>
<td>Variation 1: Intramolecular ([5 + 2]) Cycloaddition</td>
<td>598</td>
</tr>
<tr>
<td>1.5.6.6.2</td>
<td>Variation 2: Intermolecular ([5 + 2]) Cycloaddition</td>
<td>599</td>
</tr>
<tr>
<td>1.5.6.7</td>
<td>Method 7: Enyne Carbocyclization</td>
<td>600</td>
</tr>
<tr>
<td>1.5.6.8</td>
<td>Method 8: Silylcarbocyclization of 1,6-Dienes</td>
<td>600</td>
</tr>
<tr>
<td>1.5.6.8.1</td>
<td>Variation 1: Silylcarbocyclization of 1,6-Dienes</td>
<td>601</td>
</tr>
<tr>
<td>1.5.6.8.2</td>
<td>Variation 2: Silylcarbocyclization of Enynes</td>
<td>601</td>
</tr>
<tr>
<td>1.5.7</td>
<td>Product Subclass 7: Rhodium–Alkene Complexes</td>
<td>603</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 7</td>
<td>604</td>
</tr>
<tr>
<td>1.5.7.1</td>
<td>Method 1: Via Ligand Substitution</td>
<td>604</td>
</tr>
<tr>
<td>1.5.7.2</td>
<td>Method 2: Monomeric Complexes via Chlorine-Bridge Cleavage Reactions</td>
<td>605</td>
</tr>
<tr>
<td>1.5.7.3</td>
<td>Method 3: Via Displacement of the Ethene Ligand</td>
<td>606</td>
</tr>
<tr>
<td>1.5.7.4</td>
<td>Method 4: Via Displacement of Weakly Bound Ligands</td>
<td>607</td>
</tr>
<tr>
<td>1.5.7.5</td>
<td>Method 5: ([5 + 2]) Vinylcyclopropane–Alkene Cycloaddition</td>
<td>608</td>
</tr>
<tr>
<td>1.5.7.6</td>
<td>Method 6: Carbocyclization of 1,6-Dienes</td>
<td>609</td>
</tr>
<tr>
<td>1.5.7.7</td>
<td>Method 7: Intramolecular Hydroacylation</td>
<td>610</td>
</tr>
</tbody>
</table>

Section 1.6

Product Class 6: Organometallic Complexes of Iridium

J. M. O'Connor

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6</td>
<td>Product Class 6: Organometallic Complexes of Iridium</td>
<td>617</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Product Subclass 1: Iridium–Arene Complexes</td>
<td>617</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 1</td>
<td>618</td>
</tr>
<tr>
<td>1.6.1.1</td>
<td>Method 1: Preparation of Cationic Iridium(I)–Arene Complexes by Ligand Substitution</td>
<td>618</td>
</tr>
<tr>
<td>1.6.1.2</td>
<td>Method 2: Preparation of Cationic Iridium(I)–Arene Complexes by Elimination</td>
<td>618</td>
</tr>
<tr>
<td>1.6.1.2.1</td>
<td>Variation 1: From ([\text{Ir}_2(\mu-Cl)_2(\eta^4\text{-cod})_2] \text{ or } [\text{Ir}_2(\mu-Cl)_2(\eta^4\text{-Me}_2\text{TFB})_2]) and Silver(I) Tetrafluoroborate</td>
<td>618</td>
</tr>
<tr>
<td>1.6.1.2.2</td>
<td>Variation 2: From ([\text{Ir}([\text{acac}]\eta^4\text{-cod})]) and Triphenylcarbenium Tetrafluoroborate</td>
<td>620</td>
</tr>
<tr>
<td>1.6.1.2.3</td>
<td>Variation 3: From ([\text{Ir}_2(\mu-\text{OMe})_2(\eta^4\text{-cod})_2]) and Tetrafluoroboric Acid</td>
<td>620</td>
</tr>
<tr>
<td>1.6.1.2.4</td>
<td>Variation 4: From ([\text{IrCl}(\eta^4\text{-TFB})_2]) and Silver(I) Tetrafluoroborate</td>
<td>621</td>
</tr>
<tr>
<td>1.6.1.2.5</td>
<td>Variation 5: From ([\text{Ir}_2(\mu-\text{Cl})_2\text{Cl}_2(\eta^4\text{-cod})_2]) and Silver(I) Tetrafluoroborate</td>
<td>622</td>
</tr>
<tr>
<td>1.6.1.2.6</td>
<td>Variation 6: From ([\text{IrH}_2(\text{OCMe}_2)_2(\text{PPh}_3)_2])SbF_6</td>
<td>623</td>
</tr>
<tr>
<td>1.6.1.3</td>
<td>Method 3: Preparation of Cationic Iridium(I)–Arene Complexes by Addition</td>
<td>623</td>
</tr>
<tr>
<td>1.6.1.4</td>
<td>Method 4: Preparation of Dicationic Iridium(III)–Arene Complexes by Elimination</td>
<td>624</td>
</tr>
</tbody>
</table>
Table of Contents

1.6.1.4.1 Variation 1: From $[\text{Ir}_2(Cp^+)_2(\mu-\text{Cl})_2\text{Cl}_2]$ and Silver(I) Hexafluorophosphate or Tetrafluoroborate 624

1.6.1.4.2 Variation 2: From $[\text{Ir}_2(Cp^+)_2(\mu-\text{Cl})_2\text{Cl}_2]$ and Silver(I) Tetrafluoroborate Using an Acidic Workup 626

1.6.1.4.3 Variation 3: From $[\text{Ir}_2(Cp^+)_2(\mu-\text{Cl})_2\text{Cl}_2]$ and Trifluoroacetic Acid ... 627

1.6.1.5 Applications of Product Subclass 1 in Organic Synthesis ... 628

1.6.1.6 Method 5: Dehydration of Cyclohexene ... 628

1.6.2 Product Subclass 2: Iridium–Dienyl Complexes

Synthesis of Product Subclass 2 .. 630

1.6.2.1 Method 1: Preparation of Neutral Iridium(I)–Dienyl Complexes by Ligand Substitution .. 630

1.6.2.1.1 Variation 1: From $[\text{Ir}_2(\mu-\text{Cl})_2(\eta^4\text{-cod})_2]$ 630

1.6.2.1.2 Variation 2: From $[\text{Ir}_2(\mu-\text{Cl})_2(\eta^4\text{-coe})_2]$ 632

1.6.2.1.3 Variation 3: From $[\text{Ir}_2(\mu-\text{Cl})_2(\eta^4\text{-coe})_4]$ and Phosphines ... 632

1.6.2.1.4 Variation 4: From $[\text{Ir}_2(\mu-\text{Cl})_2(\eta^4\text{-coe})_4]$ and Ethene ... 634

1.6.2.1.5 Variation 5: From $[\text{Ir}_2\text{Cl}_4(\text{CO})_8]$.. 635

1.6.2.1.6 Variation 6: From $[\text{IrCl}_4\cdot 3\text{H}_2\text{O}]$... 635

1.6.2.2 Method 2: Preparation of Cationic Iridium(III)–Dienyl Complexes by Elimination ... 636

1.6.2.2.1 Variation 1: From $[\text{IrH}_2(\text{OCMe}_2)_2(\text{PPPh}_3)_2][\text{X} (\text{X} = \text{SbF}_5$ or $\text{BF}_4]$.. 636

1.6.2.2.2 Variation 2: From $[\text{Ir}(\text{Cp}^+)_2(\mu-\text{Cl})_2\text{Cl}_2]$... 637

1.6.2.3 Method 3: Preparation of Cationic Iridium(I)–Dienyl Complexes by Rearrangement ... 638

1.6.2.4 Method 4: Preparation of Cationic Iridium(III)–Cyclohexadienyl and Iridium(III)–Cycloheptadienyl Complexes by Elimination ... 640

1.6.2.4.1 Variation 1: From $[\text{IrH}_2(\text{OCMe}_2)_2(\text{PPPh}_3)_2][\text{BF}_4$... 640

1.6.2.4.2 Variation 2: From $[\text{Ir(\eta^4\text{-cod})_2L}_2][\text{SbF}_5 (L = \text{phospine})$... 641

1.6.2.4.3 Variation 3: Oxo-η^2-cyclohexadienyl Complexes from $[\text{Ir}_2(Cp^+)_2(\mu-\text{Cl})_2\text{Cl}_2]$.. 641

1.6.2.4.4 Variation 4: Imino-η^2-cyclohexadienyl Complexes from $[\text{Ir}_2(Cp^+)_2(\mu-\text{Cl})_2\text{Cl}_2]$.. 642

1.6.2.5 Method 5: Preparation of Cationic Iridium(III)–Cyclohexadienyl Complexes by Addition ... 644

1.6.2.6 Method 6: Preparation of (Dienyl)iridium(III) Complexes with Retention of the Cyclopentadienyl Ligand ... 645

1.6.2.6.1 Variation 1: Dienyl Hydrides from Borohydride and (Dienyl)iridium Halides ... 645

1.6.2.6.2 Variation 2: Dienyl Hydrides from Reaction of Dienyl Halides and Zinc/Acetic Acid ... 646

1.6.2.6.3 Variation 3: Conversion of $[\text{Ir}_2(Cp^+)_2(\mu-\text{Cl})_2(\mu-H)]$ into $[\text{Ir}(\text{Cp}^+)_2(\mu-H)]\text{PF}_5$... 647

1.6.2.6.4 Variation 4: Conversion of $[\text{Ir}_2(Cp^+)_2(\mu-H)]\text{PF}_5$ into $[\text{Ir}(\text{Cp}^+)_2\text{H}_2]$... 648

1.6.2.6.5 Variation 5: Dienyl Hydrides from Protonation at Iridium ... 649

1.6.2.6.6 Variation 6: Dienyl Fluoride Complexes by Ligand Substitution ... 650

1.6.2.6.7 Variation 7: Dienyl Alkoxide Complexes by Ligand Substitution ... 651

1.6.2.6.8 Variation 8: Dienyl Acetate Complexes by Ligand Substitution ... 652

1.6.2.6.9 Variation 9: Dienyl α-Amino Acidate Complexes by Ligand Substitution 652
1.6.2.6.10	Variation 10:	Dienyl Triflate (Coordinated) Complexes by Substitution	654
1.6.2.6.11	Variation 11:	Dienyl Hydroxo Complexes by Ligand Substitution	655
1.6.2.6.12	Variation 12:	A Dienyl μ-Oxo Complex by Ligand Substitution	656
1.6.2.6.13	Variation 13:	Dienyl Imido Complexes by Ligand Substitution	656
1.6.2.6.14	Variation 14:	A Mononuclear (Dienyl)iridium–Nitrosyl Complex by Ligand Substitution	657
1.6.2.6.15	Variation 15:	A Mononuclear (Dienyl)iridium–Aryldiazenido Complex by Ligand Substitution	658
1.6.2.6.16	Variation 16:	A Mononuclear (Dienyl)iridium–Amido Complex by Ligand Substitution	659
1.6.2.6.17	Variation 17:	(Dienyl)iridium–Amine Complexes by Ligand Addition	660
1.6.2.6.18	Variation 18:	Cationic (Dienyl)iridium–Amine Complexes by Ligand Addition	661
1.6.2.6.19	Variation 19:	Cationic (Dienyl)iridium–Acetonitrile Complexes	662
1.6.2.6.20	Variation 20:	(Dienyl)iridium–Alkyl Complexes by Substitution of Alkyl for Halide	663
1.6.2.6.21	Variation 21:	(Dienyl)iridium–Alkyl Complexes by Alkylation of a Dienyl Metalate Anion	664
1.6.2.6.22	Variation 22:	(Dienyl)iridium–Alkyl Complexes by Oxidative Addition of Alkanes to \([\text{Ir}(\text{Cp}^+)(\text{PM}_{2})]\)	665
1.6.2.6.23	Variation 23:	(Dienyl)iridium–Aryl Complexes by Oxidative Addition of Arenes	666
1.6.2.6.24	Variation 24:	(Dienyl)iridium–Alkyl Complexes by Oxidative Addition of Alkyl Halides	667
1.6.2.6.25	Variation 25:	(Dienyl)iridium–Carbon Monoxide Complexes by Substitution	667
1.6.2.6.26	Variation 26:	(Dienyl)iridium–Carbon Monoxide Complexes by Addition	668
1.6.2.6.27	Variation 27:	Dienyl Chloride Complexes by Oxidative Addition of Chlorine	669
1.6.2.6.28	Variation 28:	Dienyl Bis(Sulfido) Complexes by Substitution	669
1.6.2.6.29	Variation 29:	Dienyl Phosphine Complexes by Substitution	671
1.6.2.6.30	Variation 30:	\([\text{Ir}(\text{Cp}^+)(\text{POMe}_{2})]_{2}(\text{ClO}_{4})_{2}\) from \([\text{Ir}_{2}(\text{Cp})_{2}(\mu-\text{Cl})_{2}\text{Cl}_{2}]\)	672
1.6.2.6.31	Variation 31:	Dienyl Silyle complexes by Silylation of a Dienyl Metalate Anion	673
1.6.2.6.32	Variation 32:	Dienyl Bromo Complexes by Substitution	673
1.6.2.6.33	Variation 33:	Dienyl Bromo Complexes by Oxidative Addition of Bromine	674
1.6.2.6.34	Variation 34:	Dienyl Dicarbonyl Complexes by Oxidative Addition of Diselenides	674
1.6.2.6.35	Variation 35:	Dienyl Iodo Complexes by Oxidative Addition of Iodine	675
1.6.2.7	Method 7:	Conversion of Alkenes and Hexaborane(10) into Alkenylboranes	675
1.6.3	Product Subclass 3: Iridium–Diene Complexes	676	
1.6.3.1	Method 1:	Iridium–Diene Complexes by Ligand Substitution	677
1.6.3.1.1	Variation 1:	Synthesis of \([\text{Ir}(\text{η}^3-\text{C}_8\text{H}_8\text{triphos})]\text{BPH}_4\)	677
1.6.3.1.2	Variation 2:	From \([\text{Ir}_2(\mu-\text{Cl})_{2}(\text{η}^3-\text{coe})_{2}]\)	678
1.6.3.2	Method 2:	Iridium–Diene Complexes by Ligand Elimination	678
Table of Contents

1.6.3.2.1 Variation 1: Synthesis of $[\text{Ir}_2(\mu-\text{Cl})_2(\eta^5\text{-cod})_2]$... 679
1.6.3.2.2 Variation 2: Synthesis of $[\text{IrCl}(\eta^5\text{-TFB})_2]$... 680
1.6.3.2.3 Variation 3: Synthesis of $[\text{Ir}(\eta^5\text{-cod})_2]\text{BF}_4$.. 680
1.6.3.2.4 Variation 4: Synthesis of $[\text{IrCl}(\eta^5\text{-1,3-C_4H_5})(\eta^5\text{-cod})]$ 681
1.6.3.3 Variation 1: Synthesis of $[\text{Ir}(\eta^5\text{-1,3-C_4H_5})]$ from $[\text{Ir}(\text{Cp}^*)(\eta^5\text{-1,3-C_4H_5})]$.. 682
1.6.3.3.1 Variation 2: Synthesis of the η^5-Cyclohexadienone Complex $[\text{Ir}(\text{Cp}^*)(\eta^5\text{-C_4H_5}1\text{OMe})]$.. 683
1.6.3.4 Method 4: Iridium–Diene Complexes by Rearrangement 684
1.6.3.5 Method 5: Preparation of Iridium–Diene Complexes with Retention of the Diene Ligand .. 685
1.6.3.5.1 Variation 1: Synthesis of a (Diene)iridium Dihydride Complex: $\text{cis,trans-Ir}_2(\eta^5\text{-cod})(\text{PMePh}_3)_2]PF_6$.. 685
1.6.3.5.2 Variation 2: Synthesis of (Diene)iridium Hydride Complexes from HX Addition to Iridium .. 686
1.6.3.5.3 Variation 3: Synthesis of $[\text{IrH}(\eta^5\text{-cod})\text{PPh}_3]$.. 686
1.6.3.5.4 Variation 4: Synthesis of $[\text{Ir}_2(\mu-\text{OMe})_2(\eta^5\text{-cod})_2]$.. 687
1.6.3.5.5 Variation 5: Synthesis of $[\text{Ir}(\text{fac})(\eta^5\text{-cod})]$.. 688
1.6.3.5.6 Variation 6: Synthesis of Iridium–Amine Complexes: $[\text{IrCl}(\text{bipy})](\eta^5\text{-TFB})$.. 688
1.6.3.5.7 Variation 7: Synthesis of $[\text{Ir}(\text{Tp})(\eta^5\text{-cod})]$.. 689
1.6.3.5.8 Variation 8: Synthesis of $[\text{Ir}(\eta^5\text{-cod})(\text{py})]PF_6$.. 690
1.6.3.5.9 Variation 9: Synthesis of Iridium–Alkynyl Complexes: $[\text{Ir}(\text{C=CPh})(\eta^5\text{-cod})(\text{PCy}_3)]$.. 691
1.6.3.5.10 Variation 10: Synthesis of Iridium–Alkyl Complexes: $[\text{Ir}(/\text{Me})(\eta^5\text{-1,3-C_4H_5})_2]$.. 691
1.6.3.5.11 Variation 11: Synthesis of $[\text{Ir}(\eta^5\text{-cod})(\text{py})\text{PCy_3}]PF_6$.. 692
1.6.3.5.12 Variation 12: Synthesis of a Phosphinohydroxazole Complex: $[\text{Ir}(\eta^5\text{-cod})(\text{NP})]\text{BARF}$.. 692
1.6.3.5.13 Variation 13: Synthesis of a Neutral Phosphine Complex: $[\text{IrCl}(\eta^5\text{-cod})(\text{PPh}_3)]$.. 693
1.6.3.5.14 Variation 14: Synthesis of Neutral Phosphine Complexes with Retention of the Diene Ligand: $[\text{IrCl}(\eta^5\text{-cod})((-)-\text{Chiraphos})]$.. 694
1.6.3.5.15 Variation 15: Synthesis of $[\text{Ir}(\eta^5\text{-cod})\text{PPh}_3]_{2}\text{BF}_4$.. 695
1.6.3.5.16 Variation 16: Synthesis of $[\text{Ir}(\eta^5\text{-cod})\text{PMePh}_3]_{2}\text{Cl}$.. 696
1.6.3.5.17 Variation 17: Synthesis of $[\text{Ir}(\eta^5\text{-cod})((+)-\text{degusph})]\text{BF}_4$.. 697
Applications of Product Subclass 3 in Organic Synthesis .. 698
1.6.3.6 Method 6: Iridium–Diene Complexes as Catalyst Precursors .. 698
1.6.3.6.1 Variation 1: Hydrogenation of Carbonyl Compounds via Hydrogen Atom Transfer from Propan-2-ol .. 698
1.6.3.6.2 Variation 2: Hydrogenation of Ketones with Hydrogen .. 700
1.6.3.6.3 Variation 3: Asymmetric Hydroislylation of Ketones .. 703
1.6.3.6.4 Variation 4: Asymmetric Hydrogenation of Imines .. 705
1.6.3.6.5 Variation 5: Hydrogenation of Alkenes with $[\text{Ir}(\eta^5\text{-cod})(\text{py})\text{PCy}_3]PF_6$.. 709
1.6.3.6.6 Variation 6: Asymmetric Hydrogenation of Alkenes .. 710
1.6.3.6.7 Variation 7: Allylic Alkylation .. 711
1.6.3.6.8 Variation 8: Isomerization of Allyl Ethers 712
1.6.4 **Product Subclass 4: Iridium–Allyl Complexes** 714
 Synthesis of Product Subclass 4 .. 715
 1.6.4.1 Method 1: Preparation of Iridium–Allyl Complexes by Ligand Substitution 715
 1.6.4.1.1 Variation 1: From iridium Halides and Grignard or Organolithium Reagents 715
 1.6.4.1.2 Variation 2: Synthesis of the Cyclopropenyl Complex [Ir(η²-C₆H₄Bu)(CO)] 716
 1.6.4.2 Method 2: Preparation of Iridium–Allyl Complexes by Addition 717
 1.6.4.2.1 Variation 1: From Iridium(I) Precursors and Allyl Halides 717
 1.6.4.2.2 Variation 2: From [Ir₂(μ-Cl)₂(η²-coe)₂] and Allylbenzene 718
 1.6.4.2.3 Variation 3: From Diene Insertion into Ir=H Bonds 718
 1.6.4.2.4 Variation 4: From Nucleophilic Attack on a η²-Allenyl Ligand 719
 1.6.4.3 Method 3: Preparation of Iridium–Allyl Complexes by Elimination 720
 1.6.4.3.1 Variation 1: From [Ir₂(Cp*)₂(μ-Cl)₂Cl₂] and Dienes in the Presence of Alcohol and Base .. 720
 1.6.4.3.2 Variation 2: From [Ir₂(Cp*)₂(μ-Cl)₂Cl₂], Silver(I) Salts, and an Alkenone 721
 Applications of Product Subclass 4 in Organic Synthesis 722
 1.6.4.4 Method 4: Nucleophilic Attack on π-Allyl Intermediates 722
1.6.5 **Product Subclass 5: Iridium–Alkyne Complexes** 722
 Synthesis of Product Subclass 5 .. 723
 1.6.5.1 Method 1: Preparation of Iridium–Alkyne Complexes by Ligand Substitution 723
 1.6.5.2 Method 2: Preparation of Iridium–Alkyne Complexes by Addition 724
1.6.6 **Product Subclass 6: Iridium–Alkene Complexes** 725
 Synthesis of Product Subclass 6 .. 726
 1.6.6.1 Method 1: Preparation of Iridium–Alkene Complexes by Ligand Substitution 726
 1.6.6.2 Method 2: Preparation of Iridium–Alkene Complexes by Addition 727
 1.6.6.3 Method 3: Preparation of Iridium–Alkene Complexes by Elimination 728
 Applications of Product Subclass 6 in Organic Synthesis 729
 1.6.6.4 Method 4: Iridium–Alkene Complexes in Catalysis 729
1.6.7 **Product Subclass 7: Iridium–Carbene Complexes** 729
 Synthesis of Product Subclass 7 .. 730
 1.6.7.1 Method 1: Preparation of Iridium–Carbene Complexes by Ligand Substitution 730
 1.6.7.1.1 Variation 1: From [Ir(R'C≡CR'C≡CR')(NCMe)₂(PPh₃)₂]BF₄ and But-3-yn-1-ol ... 730
 1.6.7.1.2 Variation 2: A Vinlylidene Complex from [Ir[N(SiMe₃)₂CH₂PPh₂]₂(η²-coe)] and Acetylene ... 731
 1.6.7.1.3 Variation 3: A Vinlylidene Complex from [Ir₂(μ-Cl)₂(η²-coe)₄] and Sodium/1-Chloro-2-methylprop-1-ene ... 731
 1.6.7.2 Method 2: Preparation of Iridium–Carbene Complexes by Addition 732
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6.7.2.1</td>
<td>Variation 1: From (\text{[IrCl(CO)(PPh_3)_2]}) and ((\text{Chloromethylene})\text{dimethylammonium Chloride})</td>
<td>732</td>
</tr>
<tr>
<td>1.6.7.2.2</td>
<td>Variation 2: From (\text{[IrClH(OTf)(PPh_3)_2]}) and (\text{Benzylidene(methyl)ammonium Triflate})</td>
<td>733</td>
</tr>
<tr>
<td>1.6.7.3</td>
<td>Method 3: Preparation of Iridium–Carbene Complexes by Elimination</td>
<td>733</td>
</tr>
<tr>
<td>1.6.7.3.1</td>
<td>Variation 1: From (\text{[IrCl(CO)(PPh_3)_2]}) and Electron-Rich Alkenes</td>
<td>733</td>
</tr>
<tr>
<td>1.6.7.3.2</td>
<td>Variation 2: From (\text{[IrClH(PPh_3)_2]}) (\text{and Bis(trichloromethyl)mercury(II)})</td>
<td>734</td>
</tr>
<tr>
<td>1.6.7.3.3</td>
<td>Variation 3: From (\text{[IrClH(P-iPr_3)_2]}) and Acetylene</td>
<td>734</td>
</tr>
<tr>
<td>1.6.7.3.4</td>
<td>Variation 4: An Iridium–Allenylidene Complex from (\text{[Ir(C=CCPh_2OH)Cl(P-iPr_3)_2]})</td>
<td>735</td>
</tr>
<tr>
<td>1.6.7.4</td>
<td>Method 4: Preparation of Iridium–Vinylidene Complexes by Rearrangement</td>
<td>736</td>
</tr>
<tr>
<td>1.6.8</td>
<td>Product Subclass 8: Iridium–Carbyne Complexes</td>
<td>736</td>
</tr>
<tr>
<td>1.7</td>
<td>Product Class 7: Organometallic Complexes of Iron</td>
<td>745</td>
</tr>
<tr>
<td>1.7.1</td>
<td>Product Subclass 1: Iron–Arene Complexes</td>
<td>749</td>
</tr>
<tr>
<td>1.7.1.1</td>
<td>Method 1: Direct Complexation of Arenes</td>
<td>749</td>
</tr>
<tr>
<td>1.7.1.2</td>
<td>Method 2: Modification of (\eta^5)-Complexes</td>
<td>750</td>
</tr>
<tr>
<td>1.7.1.2.1</td>
<td>Variation 1: Replacement of Chloride in Chlorobenzene Complexes by Nucleophiles</td>
<td>751</td>
</tr>
<tr>
<td>1.7.1.2.2</td>
<td>Variation 2: Use of Palladium-Catalyzed Coupling in the Presence of Cationic Iron–Cyclopentadienyl Complexes</td>
<td>752</td>
</tr>
<tr>
<td>1.7.1.2.3</td>
<td>Variation 3: Use of Nucleophilic Complexes Obtained by Deprotonation of Arene–Cyclopentadienyliron Complexes</td>
<td>752</td>
</tr>
<tr>
<td>1.7.1.2.4</td>
<td>Variation 4: Nucleophile Addition to a Carbonyl Ligand</td>
<td>753</td>
</tr>
<tr>
<td>1.7.1.2.5</td>
<td>Variation 5: Hydrogenation of Ligands in the Presence of Cationic Iron–Cyclopentadienyl Complexes</td>
<td>753</td>
</tr>
<tr>
<td>1.7.1.3</td>
<td>Method 3: Metal Removal To Give Organic Products</td>
<td>753</td>
</tr>
<tr>
<td>1.7.2</td>
<td>Product Subclass 2: Iron–Diene Complexes</td>
<td>755</td>
</tr>
<tr>
<td>1.7.2.1</td>
<td>Method 1: Direct Complexation</td>
<td>755</td>
</tr>
<tr>
<td>1.7.2.1.1</td>
<td>Variation 1: Reaction of Cyclopentadienyl Anions with Iron Salts</td>
<td>755</td>
</tr>
<tr>
<td>1.7.2.1.2</td>
<td>Variation 2: Transfer of Cyclopentadienyliron</td>
<td>756</td>
</tr>
<tr>
<td>1.7.2.1.3</td>
<td>Variation 3: From Neutral Cyclopentadiene Derivatives</td>
<td>756</td>
</tr>
<tr>
<td>1.7.2.2</td>
<td>Method 2: Modification of (\eta^5)-Cyclopentadienyl Complexes</td>
<td>757</td>
</tr>
<tr>
<td>1.7.2.2.1</td>
<td>Variation 1: Friedel–Crafts Acylation of Ferrocene Complexes</td>
<td>757</td>
</tr>
<tr>
<td>1.7.2.2.2</td>
<td>Variation 2: Metalation of Ferrocene Complexes</td>
<td>758</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>1.7.2.2.3</td>
<td>Variation 3: Modification of Substituents on Ferrocene Complexes</td>
<td>758</td>
</tr>
<tr>
<td>1.7.2.2.4</td>
<td>Variation 4: Redox Chemistry at the Metal of Ferrocene Complexes</td>
<td>759</td>
</tr>
<tr>
<td>1.7.2.2.5</td>
<td>Variation 5: Protonation at Iron</td>
<td>759</td>
</tr>
<tr>
<td>1.7.2.2.6</td>
<td>Variation 6: Manipulation of Di-η-carbonyldicarbonylbis(η^1-cyclopenta-dienyl)diiron</td>
<td>759</td>
</tr>
<tr>
<td>1.7.2.3</td>
<td>Method 3: Preparation by Hydride Abstraction</td>
<td>760</td>
</tr>
<tr>
<td>1.7.2.3.1</td>
<td>Variation 1: Regioisomer Preparation without Rearrangement</td>
<td>761</td>
</tr>
<tr>
<td>1.7.2.3.2</td>
<td>Variation 2: Regioisomer Preparation with Rearrangement</td>
<td>762</td>
</tr>
<tr>
<td>1.7.2.4</td>
<td>Method 4: Preparation from η^1-Triene Complexes with Electrophiles</td>
<td>762</td>
</tr>
<tr>
<td>1.7.2.5</td>
<td>Method 5: Preparation from Dienol Complexes with Acid</td>
<td>763</td>
</tr>
<tr>
<td>1.7.2.5.1</td>
<td>Variation 1: Without Rearrangement</td>
<td>764</td>
</tr>
<tr>
<td>1.7.2.5.2</td>
<td>Variation 2: With Rearrangement</td>
<td>765</td>
</tr>
<tr>
<td>1.7.2.6</td>
<td>Method 6: Preparation by Demethoxylation in Acid</td>
<td>765</td>
</tr>
<tr>
<td>1.7.2.7</td>
<td>Method 7: Preparation by Oxidation with Thallium(III) Salts</td>
<td>767</td>
</tr>
<tr>
<td>1.7.2.8</td>
<td>Method 8: Preparation from Dienone Complexes</td>
<td>767</td>
</tr>
<tr>
<td>1.7.2.9</td>
<td>Method 9: Preparation from η^5-Complexes</td>
<td>768</td>
</tr>
<tr>
<td>1.7.2.9.1</td>
<td>Variation 1: Nucleophile Addition to η^5-Complexes at the π-System</td>
<td>768</td>
</tr>
<tr>
<td>1.7.2.9.2</td>
<td>Variation 2: Dealkoxylation of η^5-Complexes</td>
<td>770</td>
</tr>
<tr>
<td>1.7.2.10</td>
<td>Method 10: Nucleophile Addition to η^5-Complexes</td>
<td>770</td>
</tr>
<tr>
<td>1.7.2.10.1</td>
<td>Variation 1: Addition at the π-System</td>
<td>770</td>
</tr>
<tr>
<td>1.7.2.10.2</td>
<td>Variation 2: Addition next to the π-System</td>
<td>770</td>
</tr>
<tr>
<td>1.7.2.10.3</td>
<td>Variation 3: Addition at a Carbonyl Group</td>
<td>771</td>
</tr>
<tr>
<td>1.7.2.11</td>
<td>Method 11: Access to Salts by a Sequence of Nucleophile Addition and Leaving-Group Removal</td>
<td>771</td>
</tr>
<tr>
<td>1.7.2.11.1</td>
<td>Variation 1: Without Rearrangement</td>
<td>772</td>
</tr>
<tr>
<td>1.7.2.11.2</td>
<td>Variation 2: With Rearrangement</td>
<td>773</td>
</tr>
<tr>
<td>1.7.2.12</td>
<td>Method 12: Opening Cyclopropane Rings</td>
<td>774</td>
</tr>
<tr>
<td>1.7.2.13</td>
<td>Method 13: Preparation of Nonracemic Complexes</td>
<td>774</td>
</tr>
<tr>
<td>1.7.2.13.1</td>
<td>Variation 1: From Ferrocene Complexes by Asymmetric Induction</td>
<td>774</td>
</tr>
<tr>
<td>1.7.2.13.2</td>
<td>Variation 2: From Complexes Originating from Resolution or Asymmetric Induction</td>
<td>775</td>
</tr>
<tr>
<td>1.7.2.13.3</td>
<td>Variation 3: From Complexes Originating from Biological Sources</td>
<td>776</td>
</tr>
<tr>
<td>1.7.2.14</td>
<td>Method 14: Metal Removal To Give Organic Products</td>
<td>777</td>
</tr>
<tr>
<td>1.7.2.14.1</td>
<td>Variation 1: From Ferrocene Complexes</td>
<td>777</td>
</tr>
<tr>
<td>1.7.2.14.2</td>
<td>Variation 2: From Cationic η^1-Ligated Tricarbonyliron Complexes</td>
<td>777</td>
</tr>
<tr>
<td>1.7.2.14.3</td>
<td>Variation 3: From η^1-Cyclopentadienyl-Iron Complexes Formed by Nucleophilic Addition to η^5-Complexes</td>
<td>778</td>
</tr>
<tr>
<td>1.7.3</td>
<td>Product Subclass 3: Iron–Diene Complexes</td>
<td>778</td>
</tr>
<tr>
<td>1.7.3.1</td>
<td>Method 1: Preparation by Complexation</td>
<td>778</td>
</tr>
<tr>
<td>1.7.3.1.1</td>
<td>Variation 1: From Dienes without Rearrangement</td>
<td>778</td>
</tr>
<tr>
<td>1.7.3.1.2</td>
<td>Variation 2: From Dienes with Rearrangement</td>
<td>780</td>
</tr>
<tr>
<td>1.7.3.1.3</td>
<td>Variation 3: From Dienes and Alkynes by Reaction with η^1-Complexes</td>
<td>781</td>
</tr>
<tr>
<td>1.7.3.1.4</td>
<td>Variation 4: From Cyclohexadienones by Reduction</td>
<td>782</td>
</tr>
<tr>
<td>Variations</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>1.7.3.1.5</td>
<td>Variation 5: From Dihydrothiophene 1,1-Dioxides</td>
<td>782</td>
</tr>
<tr>
<td>1.7.3.1.6</td>
<td>Variation 6: From Allyl Alcohols</td>
<td>782</td>
</tr>
<tr>
<td>1.7.3.1.7</td>
<td>Variation 7: From Dihalides, Allyl Halides, and Phosphate Esters</td>
<td>782</td>
</tr>
<tr>
<td>1.7.3.1.8</td>
<td>Variation 8: From Pyrones</td>
<td>783</td>
</tr>
<tr>
<td>1.7.3.1.9</td>
<td>Variation 9: From Dimethylcyclopropanes</td>
<td>783</td>
</tr>
<tr>
<td>1.7.3.1.10</td>
<td>Variation 10: From Vinylcyclopropanes</td>
<td>784</td>
</tr>
<tr>
<td>1.7.3.1.11</td>
<td>Variation 11: From Allenes via Trimethylenemethane Lactones</td>
<td>784</td>
</tr>
<tr>
<td>1.7.3.2</td>
<td>Method 2: Preparation from η^1,η^1-Complexes</td>
<td>784</td>
</tr>
<tr>
<td>1.7.3.2.1</td>
<td>Variation 1: From Ferralactone Complexes</td>
<td>785</td>
</tr>
<tr>
<td>1.7.3.2.2</td>
<td>Variation 2: From η^1,η^1-Allenyl Complexes</td>
<td>785</td>
</tr>
<tr>
<td>1.7.3.2.3</td>
<td>Variation 3: Nucleophile Addition to Cationic η^1,η^1-Carbene Complexes</td>
<td>786</td>
</tr>
<tr>
<td>1.7.3.3</td>
<td>Method 3: Cyclodimerization of η^1-Ligands</td>
<td>786</td>
</tr>
<tr>
<td>1.7.3.4</td>
<td>Method 4: Nucleophile Addition to η^2-Complexes at the π-System</td>
<td>787</td>
</tr>
<tr>
<td>1.7.3.4.1</td>
<td>Variation 1: Cyclohexadienyl Complexes</td>
<td>787</td>
</tr>
<tr>
<td>1.7.3.4.2</td>
<td>Variation 2: Cycloheptadienyl Complexes</td>
<td>794</td>
</tr>
<tr>
<td>1.7.3.4.3</td>
<td>Variation 3: Cyclooctadienyl Complexes</td>
<td>795</td>
</tr>
<tr>
<td>1.7.3.4.4</td>
<td>Variation 4: Acyclic Dienyl Complexes</td>
<td>795</td>
</tr>
<tr>
<td>1.7.3.4.5</td>
<td>Variation 5: In Situ Generation of Acyclic Dienyl Complexes</td>
<td>797</td>
</tr>
<tr>
<td>1.7.3.4.6</td>
<td>Variation 6: Cyclopentadienyl Complexes</td>
<td>799</td>
</tr>
<tr>
<td>1.7.3.5</td>
<td>Method 5: Metal-Centered Reduction of η^3-Complexes at the π-System</td>
<td>799</td>
</tr>
<tr>
<td>1.7.3.6</td>
<td>Method 6: Modification of η^4-Complexes</td>
<td>799</td>
</tr>
<tr>
<td>1.7.3.6.1</td>
<td>Variation 1: By Acylation</td>
<td>799</td>
</tr>
<tr>
<td>1.7.3.6.2</td>
<td>Variation 2: By Lithiation and Addition of Electrophiles</td>
<td>800</td>
</tr>
<tr>
<td>1.7.3.6.3</td>
<td>Variation 3: By Palladium Coupling</td>
<td>801</td>
</tr>
<tr>
<td>1.7.3.6.4</td>
<td>Variation 4: Nucleophile Addition to η^1-Complexes at the π-System</td>
<td>802</td>
</tr>
<tr>
<td>1.7.3.6.5</td>
<td>Variation 5: Nucleophile Addition to η^2-Complexes at a Carboxyl Ligand</td>
<td>802</td>
</tr>
<tr>
<td>1.7.3.6.6</td>
<td>Variation 6: Nucleophile Addition to η^2-Complexes next to the π-System</td>
<td>803</td>
</tr>
<tr>
<td>1.7.3.6.7</td>
<td>Variation 7: Reactions of Enolates and Silyl Enol Ethers</td>
<td>806</td>
</tr>
<tr>
<td>1.7.3.6.8</td>
<td>Variation 8: Epoxide Formation and Cyclopropanation next to the π-System</td>
<td>807</td>
</tr>
<tr>
<td>1.7.3.6.9</td>
<td>Variation 9: Diol Synthesis next to the π-System</td>
<td>808</td>
</tr>
<tr>
<td>1.7.3.6.10</td>
<td>Variation 10: Cycloaddition Reactions next to the π-System</td>
<td>808</td>
</tr>
<tr>
<td>1.7.3.6.11</td>
<td>Variation 11: Functionalization of Cycloheptatriene Complexes</td>
<td>810</td>
</tr>
<tr>
<td>1.7.3.7</td>
<td>Method 7: Complexation of Heterodienes</td>
<td>810</td>
</tr>
<tr>
<td>1.7.3.8</td>
<td>Method 8: Additional Methods for the Formation of η^4-Complexes</td>
<td>811</td>
</tr>
<tr>
<td>1.7.3.8.1</td>
<td>Variation 1: Alkylation of η^1-Anions</td>
<td>811</td>
</tr>
<tr>
<td>1.7.3.8.2</td>
<td>Variation 2: From Pentacarbonyliron by Nucleophile Addition at Carboxyl</td>
<td>812</td>
</tr>
<tr>
<td>1.7.3.8.3</td>
<td>Variation 3: Exchange of Carboxyl for Phosphines, Phosphites, and Nitrosonium</td>
<td>812</td>
</tr>
<tr>
<td>1.7.3.9</td>
<td>Method 9: Preparation of Nonracemic Complexes</td>
<td>813</td>
</tr>
<tr>
<td>1.7.3.9.1</td>
<td>Variation 1: Asymmetric Complexation</td>
<td>813</td>
</tr>
<tr>
<td>1.7.3.9.2</td>
<td>Variation 2: Asymmetric Modification of Prochiral η^4-Complexes</td>
<td>815</td>
</tr>
<tr>
<td>1.7.3.9.3</td>
<td>Variation 3: By Asymmetric Induction and Kinetic Resolution with η^3-Complexes</td>
<td>816</td>
</tr>
<tr>
<td>1.7.3.9.4</td>
<td>Variation 4: Classical Resolution of Chiral η^4-Complexes</td>
<td>817</td>
</tr>
<tr>
<td>1.7.3.9.5</td>
<td>Variation 5: Kinetic Resolution of Chiral η^4-Complexes</td>
<td>818</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>1.7.3.10</td>
<td>Method 10: Metal Removal To Give Organic Products</td>
<td>818</td>
</tr>
<tr>
<td>1.7.3.10.1</td>
<td>Variation 1: Decomplexation without Ligand Modification</td>
<td>818</td>
</tr>
<tr>
<td>1.7.3.10.2</td>
<td>Variation 2: Decomplexation with Ligand Modification</td>
<td>822</td>
</tr>
<tr>
<td>1.7.3.11</td>
<td>Method 11: Reactions next to η¹-Complexes, Followed by Rearrangement</td>
<td>826</td>
</tr>
<tr>
<td>1.7.4</td>
<td>Product Subclass 4: Iron–Allyl Complexes</td>
<td>826</td>
</tr>
<tr>
<td>1.7.4.1</td>
<td>Method 1: Protonation of Diene Complexes</td>
<td>826</td>
</tr>
<tr>
<td>1.7.4.1.1</td>
<td>Variation 1: From η²-Complexes</td>
<td>827</td>
</tr>
<tr>
<td>1.7.4.1.2</td>
<td>Variation 2: From η¹-Complexes</td>
<td>827</td>
</tr>
<tr>
<td>1.7.4.1.3</td>
<td>Variation 3: During Direct Complexation of Allyl Alcohols and Dienes in the Presence of Acid</td>
<td>827</td>
</tr>
<tr>
<td>1.7.4.2</td>
<td>Method 2: Preparation by Leaving-Group Displacement from η²-Complexes</td>
<td>827</td>
</tr>
<tr>
<td>1.7.4.3</td>
<td>Method 3: Preparation by Opening Vinyl Epoxides and Cyclopropanes</td>
<td>828</td>
</tr>
<tr>
<td>1.7.4.3.1</td>
<td>Variation 1: From Epoxides</td>
<td>828</td>
</tr>
<tr>
<td>1.7.4.3.2</td>
<td>Variation 2: From Aziridines</td>
<td>830</td>
</tr>
<tr>
<td>1.7.4.3.3</td>
<td>Variation 3: From Cyclopropanes</td>
<td>830</td>
</tr>
<tr>
<td>1.7.4.4</td>
<td>Method 4: Nucleophile Addition at a Complexed π-System</td>
<td>830</td>
</tr>
<tr>
<td>1.7.4.4.1</td>
<td>Variation 1: Nucleophile Addition to η⁶-Complexes</td>
<td>830</td>
</tr>
<tr>
<td>1.7.4.4.2</td>
<td>Variation 2: Nucleophile Addition to η⁸-Complexes</td>
<td>831</td>
</tr>
<tr>
<td>1.7.4.5</td>
<td>Method 5: Nucleophile Addition to η⁸-Complexes next to the π-System</td>
<td>832</td>
</tr>
<tr>
<td>1.7.4.6</td>
<td>Method 6: Nucleophile Addition at a Carbonyl Ligand</td>
<td>833</td>
</tr>
<tr>
<td>1.7.4.6.1</td>
<td>Variation 1: Nucleophile Addition to η⁶,η⁸-Complexes</td>
<td>833</td>
</tr>
<tr>
<td>1.7.4.6.2</td>
<td>Variation 2: Nucleophile Addition to η⁸,η⁶-Complexes</td>
<td>834</td>
</tr>
<tr>
<td>1.7.4.7</td>
<td>Method 7: Additional Methods for the Formation of η⁸-Complexes</td>
<td>834</td>
</tr>
<tr>
<td>1.7.4.7.1</td>
<td>Variation 1: From η¹- to η¹-Diene Complexes by Carbonyl Insertion</td>
<td>834</td>
</tr>
<tr>
<td>1.7.4.7.2</td>
<td>Variation 2: Alkene Insertion</td>
<td>834</td>
</tr>
<tr>
<td>1.7.4.7.3</td>
<td>Variation 3: From η¹-Vinylketene Complexes</td>
<td>835</td>
</tr>
<tr>
<td>1.7.4.7.4</td>
<td>Variation 4: Reductive Methods To Make Anionic η³-Complexes</td>
<td>835</td>
</tr>
<tr>
<td>1.7.4.7.5</td>
<td>Variation 5: Exchange of Carbonyl for Nitrosonium</td>
<td>835</td>
</tr>
<tr>
<td>1.7.4.8</td>
<td>Method 8: Preparation of Nonracemic Complexes</td>
<td>835</td>
</tr>
<tr>
<td>1.7.4.9</td>
<td>Method 9: Metal Removal To Give Organic Products</td>
<td>836</td>
</tr>
<tr>
<td>1.7.5</td>
<td>Product Subclass 5: Iron–Alkene Complexes</td>
<td>839</td>
</tr>
<tr>
<td>1.7.5.1</td>
<td>Method 1: Direct Complexation of Alkenes</td>
<td>839</td>
</tr>
<tr>
<td>1.7.5.1.1</td>
<td>Variation 1: Ligand Exchange with a Butene Complex</td>
<td>839</td>
</tr>
<tr>
<td>1.7.5.1.2</td>
<td>Variation 2: Reaction with Nonacarbonyldiiron</td>
<td>839</td>
</tr>
<tr>
<td>1.7.5.1.3</td>
<td>Variation 3: Reaction with Pentacarbonyliron</td>
<td>840</td>
</tr>
<tr>
<td>1.7.5.2</td>
<td>Method 2: Protonation of η³-Complexes</td>
<td>840</td>
</tr>
<tr>
<td>1.7.5.2.1</td>
<td>Variation 1: Protonation of η¹-Allyl Complexes</td>
<td>840</td>
</tr>
<tr>
<td>1.7.5.2.2</td>
<td>Variation 2: Removal of Leaving Groups from η¹-Alkyl Complexes</td>
<td>841</td>
</tr>
<tr>
<td>1.7.5.2.3</td>
<td>Variation 3: Protonation at Iron</td>
<td>841</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>1.7.5.3</td>
<td>Method 3: Reactions of η^1~-Allyl Complexes with Electrophiles</td>
<td>841</td>
</tr>
<tr>
<td>1.7.5.3.1</td>
<td>Variation 1: Reaction with Aldehydes and Ketones in the Presence of a Lewis Acid</td>
<td>841</td>
</tr>
<tr>
<td>1.7.5.3.2</td>
<td>Variation 2: Reaction with Activated Alkenes</td>
<td>842</td>
</tr>
<tr>
<td>1.7.5.3.3</td>
<td>Variation 3: Reaction with η^2~-Alkene Complexes</td>
<td>843</td>
</tr>
<tr>
<td>1.7.5.3.4</td>
<td>Variation 4: Reaction with η^3~-Dienyl Complexes</td>
<td>843</td>
</tr>
<tr>
<td>1.7.5.4</td>
<td>Method 4: Nucleophile Addition at a Complexed π-System</td>
<td>843</td>
</tr>
<tr>
<td>1.7.5.4.1</td>
<td>Variation 1: Nucleophile Addition to η^1~-Complexes</td>
<td>843</td>
</tr>
<tr>
<td>1.7.5.4.2</td>
<td>Variation 2: Nucleophile Addition to η^1~-Complexes</td>
<td>843</td>
</tr>
<tr>
<td>1.7.5.4.3</td>
<td>Variation 3: Nucleophile Addition to η^1~-Complexes</td>
<td>844</td>
</tr>
<tr>
<td>1.7.5.5</td>
<td>Method 5: Preparation of Nonracemic Complexes</td>
<td>844</td>
</tr>
<tr>
<td>1.7.5.6</td>
<td>Method 6: Metal Removal To Give Organic Products</td>
<td>845</td>
</tr>
<tr>
<td>1.7.6</td>
<td>Product Subclass 6: Iron–Carbene Complexes</td>
<td>846</td>
</tr>
<tr>
<td>1.7.6.1</td>
<td>Method 1: Preparation by the Fischer Carbene Method</td>
<td>846</td>
</tr>
<tr>
<td>1.7.6.2</td>
<td>Method 2: Removal of Leaving Groups from Metal–Alkyl Complexes</td>
<td>847</td>
</tr>
<tr>
<td>1.7.6.3</td>
<td>Method 3: Modification of Other Carbene Complexes</td>
<td>848</td>
</tr>
<tr>
<td>1.7.6.3.1</td>
<td>Variation 1: Exchange of Substituents at the Carbene Complex</td>
<td>848</td>
</tr>
<tr>
<td>1.7.6.3.2</td>
<td>Variation 2: Reactions at Functional Groups Adjacent to the Carbene Complexes</td>
<td>848</td>
</tr>
<tr>
<td>1.7.6.4</td>
<td>Method 4: Preparation by Ring Expansion</td>
<td>849</td>
</tr>
<tr>
<td>1.7.6.5</td>
<td>Method 5: Preparation of Bridging Carbene Complexes</td>
<td>849</td>
</tr>
<tr>
<td>1.7.6.6</td>
<td>Method 6: Preparation of Nonracemic Complexes</td>
<td>851</td>
</tr>
<tr>
<td>1.7.6.7</td>
<td>Method 7: Cyclopropanation by Transfer of Diazoesters</td>
<td>852</td>
</tr>
<tr>
<td>1.7.6.8</td>
<td>Method 8: C—H Insertion Reactions</td>
<td>852</td>
</tr>
<tr>
<td>1.7.6.9</td>
<td>Method 9: Cyclization with Alkenes To Form Naphthols</td>
<td>852</td>
</tr>
<tr>
<td>1.7.6.10</td>
<td>Method 10: Removal of the Metal by Oxidation</td>
<td>853</td>
</tr>
<tr>
<td>1.7.7</td>
<td>Product Subclass 7: Iron–Alkyl Complexes</td>
<td>853</td>
</tr>
<tr>
<td>1.7.7.1</td>
<td>Method 1: Metal Addition to Organic Electrophiles</td>
<td>853</td>
</tr>
<tr>
<td>1.7.7.2</td>
<td>Method 2: Metal Addition to Organic Nucleophiles/Lewis Bases</td>
<td>854</td>
</tr>
<tr>
<td>1.7.7.3</td>
<td>Method 3: Nucleophile Addition to η^1~-Alkene Complexes</td>
<td>854</td>
</tr>
<tr>
<td>1.7.7.4</td>
<td>Method 4: Additional Methods for the Formation of η^1~-Alkyl Complexes</td>
<td>855</td>
</tr>
<tr>
<td>1.7.7.4.1</td>
<td>Variation 1: Nucleophile Addition to η^1~-Carbene Complexes</td>
<td>855</td>
</tr>
<tr>
<td>1.7.7.4.2</td>
<td>Variation 2: Nucleophile Addition to η^1~-Alkyne Complexes</td>
<td>855</td>
</tr>
<tr>
<td>1.7.7.4.3</td>
<td>Variation 3: Nucleophile Addition to Carbonyl Complexes</td>
<td>855</td>
</tr>
<tr>
<td>1.7.7.4.4</td>
<td>Variation 4: Deprotonation of η^2~-Alkene Complexes</td>
<td>856</td>
</tr>
<tr>
<td>1.7.7.5</td>
<td>Method 5: Reactions of Allyl Complexes</td>
<td>856</td>
</tr>
<tr>
<td>1.7.7.5.1</td>
<td>Variation 1: η^1~-Allyl Complexes</td>
<td>856</td>
</tr>
<tr>
<td>1.7.7.5.2</td>
<td>Variation 2: η^3~-Allyl Complexes</td>
<td>857</td>
</tr>
<tr>
<td>1.7.7.6</td>
<td>Method 6: Modification of Ligands in η^1~-Complexes</td>
<td>857</td>
</tr>
<tr>
<td>1.7.7.7</td>
<td>Method 7: Preparation of Nonracemic Complexes</td>
<td>859</td>
</tr>
</tbody>
</table>
Table of Contents

1.7.7.8 Applications of Product Subclass 7 in Organic Synthesis 860

Method 8: Oxidation of β-Products .. 860

1.7.7.8.1 Variation 1: Metal Removal To Generate a Carboxylic Acid 860

1.7.7.8.2 Variation 2: Metal Removal To Generate an Ester 861

1.7.7.8.3 Variation 3: Metal Removal To Generate an Amide 862

1.7.7.8.4 Variation 4: Metal Removal To Generate Alkyl Bromides or Epoxides 862

1.7.7.8.5 Variation 5: Metal Removal To Generate Cyclic Ketones 863

1.7.7.8.6 Variation 6: Metal Removal with Transmetalation to Mercury 863

1.7.7.9 Method 9: Additional Methods for Decomplexation of η³-Alkyl Complexes 864

1.7.7.9.1 Variation 1: Disproportionation of η³-Products 864

1.7.7.9.2 Variation 2: Photochemical Dimerization 864

1.7.7.9.3 Variation 3: Asymmetric Cycloaddition .. 864

1.7.7.10 Method 10: Formation and Reaction of Oxyallyl Cation Complexes 864

1.7.7.10.1 Variation 1: {4 + 3} Cycloaddition ... 864

1.7.7.10.2 Variation 2: {2 + 3} Cycloaddition ... 865

1.7.7.10.3 Variation 3: Electrophilic Substitution 865

1.7.7.11 Method 11: Application of Collman’s Reagent 865

1.7.7.11.1 Variation 1: Cyclization to Alkenes .. 866

1.7.7.11.2 Variation 2: Reductions with the Tetracarbonylhydroferrate Complex 867

1.7.8 **Product Subclass 8: Ferrocenes**

M. Perseghini and A. Togni

1.7.8.8 Applications of Product Subclass 8 ... 889

1.7.8.1 Method 1: Monosubstituted and 1,1’-Disubstituted Ferrocenes via Metalated Intermediates .. 890

1.7.8.1.1 Variation 1: Synthesis of Halogenated Ferrocenes 890

1.7.8.1.2 Variation 2: Synthesis of Hydroxyferrocene and 1,1’-Dihydroxyferrocene via the Ferroceneboronic Acids 891

1.7.8.1.3 Variation 3: Synthesis of Aminoferrocene and 1,1’-Diaminoferrocene 892

1.7.8.1.4 Variation 4: Synthesis of Carboxyferrocene, Formylferrocene, 1,1’-Dicarboxyferrocene, and 1,1’-Diformyferrocene 894

1.7.8.2 Method 2: Acylerrocenes under Friedel–Crafts Conditions 895

1.7.8.3 Method 3: Chiral 1-Ferrocenylalkyl Alcohols and 1-Ferrocenylalkylamines ... 895

1.7.8.3.1 Variation 1: Via Stereoselective Alkylation of Formylferrocene 896

1.7.8.3.2 Variation 2: Via Stereoselective Reduction of Acyl Intermediates 896

1.7.8.3.3 Variation 3: Via Enzymatic Methods .. 897

1.7.8.3.4 Variation 4: Via Racemate Resolution: Preparation of (R)- and (S)-1-Ferrocenyl-N,N-dimethylthelyamine .. 897

1.7.8.4 Method 4: Chiral (4,5-Dihydrooxazol-2-yl)ferrocenes 898

1.7.8.5 Method 5: Chiral Ferrocenyl Acetals ... 900

1.7.8.6 Method 6: Chiral Ferrocenyl Sulfoxides .. 902
Table of Contents

1.7.8

<table>
<thead>
<tr>
<th>Page</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>903</td>
<td>7</td>
<td>Chiral 1,2-Disubstituted Ferrocenes by Diastereoselective Functionalization</td>
</tr>
<tr>
<td>903</td>
<td>7.1</td>
<td>Variation 1: 1-Ferrocenyl-N,N-dimethylethylamine</td>
</tr>
<tr>
<td>907</td>
<td>7.2</td>
<td>Variation 2: (4,5-Dihydrooxazol-2-yl)ferrocenes</td>
</tr>
<tr>
<td>908</td>
<td>7.3</td>
<td>Variation 3: Chiral Ferrocenyl Acetals</td>
</tr>
<tr>
<td>909</td>
<td>7.4</td>
<td>Variation 4: Chiral Ferrocenyl Sulfoxides</td>
</tr>
<tr>
<td>910</td>
<td>7.8</td>
<td>Method 8: Chiral 1,2-Disubstituted Ferrocenes via Enantioselective Sparteine-Mediated Lithiation</td>
</tr>
<tr>
<td>911</td>
<td>7.9</td>
<td>Method 9: 1,1′,2-Trisubstituted Ferrocenes (BPPFA Ligand Type)</td>
</tr>
<tr>
<td>913</td>
<td>7.10</td>
<td>Method 10: Tetra- to Decasubstituted Ferrocenes</td>
</tr>
<tr>
<td>913</td>
<td>7.10.1</td>
<td>Variation 1: 1,1′-Bis(1-aminooalkyl)ferrocenes</td>
</tr>
<tr>
<td>915</td>
<td>7.10.2</td>
<td>Variation 2: 1,1′-Bis(4,5-dihydrooxazol-2-yl)ferrocenes</td>
</tr>
<tr>
<td>916</td>
<td>7.10.3</td>
<td>Variation 3: Via Enantioselective Sparteine-Mediated Lithiation</td>
</tr>
<tr>
<td>916</td>
<td>7.10.4</td>
<td>Variation 4: Synthesis of 4-(Dimethylamino)pyridine Analogues via Racemate Resolution</td>
</tr>
<tr>
<td>917</td>
<td>7.10.5</td>
<td>Variation 5: From Chiral Fulvene Derivatives</td>
</tr>
<tr>
<td>919</td>
<td>7.10.6</td>
<td>Variation 6: From Fully Substituted Cyclopentadienyl Salts</td>
</tr>
<tr>
<td>921</td>
<td>7.11</td>
<td>Method 11: Chiral Biferrocenes</td>
</tr>
<tr>
<td>923</td>
<td>7.12</td>
<td>Method 12: Catalytic Enantioselective Hydrogenation</td>
</tr>
<tr>
<td>923</td>
<td>7.13</td>
<td>Method 13: Catalytic Enantioselective Hydroboration</td>
</tr>
<tr>
<td>924</td>
<td>7.14</td>
<td>Method 14: Catalytic Enantioselective Hydrosilylation</td>
</tr>
<tr>
<td>924</td>
<td>7.15</td>
<td>Method 15: Catalytic Enantioselective Allylic Substitution</td>
</tr>
<tr>
<td>924</td>
<td>7.16</td>
<td>Method 16: Catalytic Enantioselective Aldol Reactions</td>
</tr>
</tbody>
</table>

1.8

Product Class 8: Organometallic Complexes of Ruthenium

N. Chatani

<table>
<thead>
<tr>
<th>Page</th>
<th>Subclass</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>931</td>
<td>8</td>
<td>Product Class 8: Organometallic Complexes of Ruthenium</td>
</tr>
<tr>
<td>931</td>
<td>8.1</td>
<td>Product Subclass 1: Ruthenium–Arene Complexes</td>
</tr>
<tr>
<td>932</td>
<td>8.1.1</td>
<td>Synthesis of Product Subclass 1</td>
</tr>
<tr>
<td>932</td>
<td>8.1.1.1</td>
<td>Method 1: Preparation of Ruthenium(II)–Arene Complexes</td>
</tr>
<tr>
<td>933</td>
<td>8.1.1.2</td>
<td>Variation 1: From Dienes</td>
</tr>
<tr>
<td>934</td>
<td>8.1.2</td>
<td>Method 2: By Ligand Exchange</td>
</tr>
<tr>
<td>934</td>
<td>8.1.2.1</td>
<td>Variation 1: From Ruthenium(II) Complexes</td>
</tr>
<tr>
<td>936</td>
<td>8.1.2.2</td>
<td>Variation 2: By Ligand Exchange</td>
</tr>
<tr>
<td>937</td>
<td>8.1.3</td>
<td>Method 3: Reactions Involving Ruthenium–Arene Complexes</td>
</tr>
<tr>
<td>939</td>
<td>8.2</td>
<td>Product Subclass 2: Ruthenium–Cyclopentadienyl and Ruthenium–Pentadienyl Complexes</td>
</tr>
<tr>
<td>941</td>
<td>8.2.1</td>
<td>Synthesis of Product Subclass 2</td>
</tr>
<tr>
<td>941</td>
<td>8.2.1.1</td>
<td>Method 1: Preparation of Ruthenium–Cyclopentadienyl Complexes</td>
</tr>
</tbody>
</table>
Table of Contents

1.8.2.1 Variation 1: From Cyclopentadienes (CpH)
1.8.2.1.2 Variation 2: From Organometallic Cyclopentadienyl Reagents (MCP)
1.8.2.1.3 Variation 3: By Ligand Exchange
1.8.2.1.4 Variation 4: By Ligand Substitution
1.8.2.2 Method 2: Preparation of Cationic Ruthenium–Cyclopentadienyl Complexes
1.8.2.3 Method 3: Applications of Product Subclass 2 in Organic Synthesis
1.8.2.4 Method 4: Reactions with Alkylithium Reagents
1.8.2.5 Method 5: Electrophilic Substitution (Friedel–Crafts-type Reaction)
1.8.2.5 Method 5: Preparation of Ruthenium–Vinylidene–Cyclopentadienyl Complexes
1.8.3 Synthesis of Product Subclass 3
1.8.3.1 Method 1: Preparation of Ruthenium–Diene Complexes by Ligand Exchange
1.8.3.2 Method 2: Applications of Product Subclass 3 in Organic Synthesis
1.8.4 Synthesis of Product Subclass 4
1.8.4.1 Method 1: Preparation of Ruthenium–Allyl Complexes
1.8.4.2 Method 2: Applications of Product Subclass 4 in Organic Synthesis
1.8.5 Synthesis of Product Subclass 5
1.8.5.1 Method 1: Preparation of Ruthenium–Alkyne Complexes by Irradiation
1.8.5.2 Method 2: Applications of Product Subclass 5 in Organic Synthesis
1.8.6 Synthesis of Product Subclass 6
1.8.6.1 Method 1: Preparation of Ruthenium(II)–Alkene Complexes
1.8.6.2 Method 2: Preparation of Ruthenium(0)–Alkene Complexes
1.8.6.3 Method 3: Applications of Product Subclass 6 in Organic Synthesis

<table>
<thead>
<tr>
<th>Variation/Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8.2.1.1</td>
<td>Variation 1: From Cyclopentadienes (CpH)</td>
<td>942</td>
</tr>
<tr>
<td>1.8.2.1.2</td>
<td>Variation 2: From Organometallic Cyclopentadienyl Reagents (MCP)</td>
<td>944</td>
</tr>
<tr>
<td>1.8.2.1.3</td>
<td>Variation 3: By Ligand Exchange</td>
<td>945</td>
</tr>
<tr>
<td>1.8.2.1.4</td>
<td>Variation 4: By Ligand Substitution</td>
<td>946</td>
</tr>
<tr>
<td>1.8.2.2</td>
<td>Method 2: Preparation of Cationic Ruthenium–Cyclopentadienyl Complexes</td>
<td>946</td>
</tr>
<tr>
<td>1.8.2.3</td>
<td>Method 3: Applications of Product Subclass 2 in Organic Synthesis</td>
<td>947</td>
</tr>
<tr>
<td>1.8.2.4</td>
<td>Method 4: Reactions with Alkylithium Reagents</td>
<td>947</td>
</tr>
<tr>
<td>1.8.2.5</td>
<td>Method 5: Electrophilic Substitution (Friedel–Crafts-type Reaction)</td>
<td>947</td>
</tr>
<tr>
<td>1.8.2.5</td>
<td>Method 5: Preparation of Ruthenium–Vinylidene–Cyclopentadienyl Complexes</td>
<td>948</td>
</tr>
<tr>
<td>1.8.3</td>
<td>Synthesis of Product Subclass 3</td>
<td>951</td>
</tr>
<tr>
<td>1.8.3.1</td>
<td>Method 1: Preparation of Ruthenium–Diene Complexes by Ligand Exchange</td>
<td>951</td>
</tr>
<tr>
<td>1.8.3.2</td>
<td>Method 2: Applications of Product Subclass 3 in Organic Synthesis</td>
<td>951</td>
</tr>
<tr>
<td>1.8.4</td>
<td>Synthesis of Product Subclass 4</td>
<td>953</td>
</tr>
<tr>
<td>1.8.4.1</td>
<td>Method 1: Preparation of Ruthenium–Allyl Complexes</td>
<td>953</td>
</tr>
<tr>
<td>1.8.4.2</td>
<td>Method 2: Applications of Product Subclass 4 in Organic Synthesis</td>
<td>954</td>
</tr>
<tr>
<td>1.8.5</td>
<td>Synthesis of Product Subclass 5</td>
<td>959</td>
</tr>
<tr>
<td>1.8.5.1</td>
<td>Method 1: Preparation of Ruthenium–Alkyne Complexes by Irradiation</td>
<td>959</td>
</tr>
<tr>
<td>1.8.5.2</td>
<td>Method 2: Applications of Product Subclass 5 in Organic Synthesis</td>
<td>959</td>
</tr>
<tr>
<td>1.8.6</td>
<td>Synthesis of Product Subclass 6</td>
<td>963</td>
</tr>
<tr>
<td>1.8.6.1</td>
<td>Method 1: Preparation of Ruthenium(II)–Alkene Complexes</td>
<td>965</td>
</tr>
<tr>
<td>1.8.6.2</td>
<td>Method 2: Preparation of Ruthenium(0)–Alkene Complexes</td>
<td>965</td>
</tr>
<tr>
<td>1.8.6.3</td>
<td>Method 3: Applications of Product Subclass 6 in Organic Synthesis</td>
<td>967</td>
</tr>
</tbody>
</table>

XXXVIII
Table of Contents

1.9 Product Class 9: Organometallic Complexes of Osmium

J. Gonzalez and W. D. Harman

<table>
<thead>
<tr>
<th>1.9.1 Product Subclass 1: Osmium–η²-Arene and −η²-Heteroarene Complexes</th>
<th>977</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesis of Product Subclass 1</td>
<td>981</td>
</tr>
<tr>
<td>1.9.1.1 Method 1: Exchange of a Trifluoromethanesulfonate Anion for an Organic Ligand</td>
<td>981</td>
</tr>
<tr>
<td>1.9.1.2 Method 2: Electrophilic Aromatic Substitution on the Ligand</td>
<td>983</td>
</tr>
<tr>
<td>Applications of Product Subclass 1 in Organic Synthesis</td>
<td>984</td>
</tr>
<tr>
<td>1.9.1.3 Method 3: Electrophilic Addition and Substitution</td>
<td>984</td>
</tr>
<tr>
<td>1.9.1.4 Method 4: Sequential Addition of Electrophiles and Nucleophiles</td>
<td>987</td>
</tr>
<tr>
<td>1.9.1.4.1 Variation 1: [4 + 2]-Cycloaddition Reactions</td>
<td>990</td>
</tr>
<tr>
<td>1.9.1.4.2 Variation 2: 1,3-Dipolar Cycloadditions</td>
<td>993</td>
</tr>
<tr>
<td>1.9.1.4.3 Variation 3: Michael–Michael Ring Closures and Related Annulation Reactions</td>
<td>997</td>
</tr>
<tr>
<td>1.9.1.5 Method 5: Addition of Nucleophiles to S-Alkylthiophenium Complexes</td>
<td>1002</td>
</tr>
<tr>
<td>1.9.2 Product Subclass 2: Osmium–Allyl Complexes</td>
<td>1003</td>
</tr>
<tr>
<td>Synthesis of Product Subclass 2</td>
<td>1003</td>
</tr>
<tr>
<td>1.9.2.1 Method 1: Elimination of Labile Allylic Substituents</td>
<td>1003</td>
</tr>
<tr>
<td>1.9.2.2 Method 2: Addition of Electrophiles to Diene and Arene Complexes</td>
<td>1004</td>
</tr>
<tr>
<td>Applications of Product Subclass 2 in Organic Synthesis</td>
<td>1005</td>
</tr>
<tr>
<td>1.9.2.3 Method 3: Addition of Carbon Nucleophiles and Tandem Difunctionalizations</td>
<td>1005</td>
</tr>
<tr>
<td>1.9.3 Product Subclass 3: Osmium–Carbonyl Complexes</td>
<td>1007</td>
</tr>
<tr>
<td>1.9.4 Product Subclass 4: Osmate Esters and Related Species</td>
<td>1008</td>
</tr>
</tbody>
</table>

Keyword Index

| 1017 |

Author Index

| 1055 |

Abbreviations

<p>| 1107 |</p>
<table>
<thead>
<tr>
<th>Table of Contents</th>
</tr>
</thead>
</table>

Science of Synthesis Original Edition Volume 1
© Georg Thieme Verlag KG
Volume 2: Compounds of Groups 7–3 (Mn⋯, Cr⋯, V⋯, Ti⋯, Sc⋯, La⋯, Ac⋯)

Preface

Volume Editor’s Preface ... VII
Table of Contents .. XI

Introduction

T. Imamoto .. 1

2.1 Product Class 1: Organometallic Complexes of Manganese

K. Oshima .. 13

2.2 Product Class 2: Organometallic Complexes of Technetium

I. D. Gridnev and T. Imamoto ... 91

2.3 Product Class 3: Organometallic Complexes of Rhenium

F. E. Kühn, C. C. Romão, and W. A. Herrmann 111

2.4 Product Class 4: Arene Organometallic Complexes of Chromium, Molybdenum, and Tungsten

E. P. Kündig and S. H. Pache ... 155

2.5 Product Class 5: Organometallic π-Complexes of Chromium, Molybdenum, and Tungsten Excluding Arenes

K. H. Theopold, A. Mommertz, and B. A. Salisbury 229

2.6 Product Class 6: Organometallic Complexes of Chromium, Molybdenum, and Tungsten without Carbonyl Ligands

R. Poli and K. M. Smith .. 283

2.7 Product Class 7: Carbonyl Complexes of Chromium, Molybdenum, and Tungsten with σ-Bonded Ligands

T. Ito and M. Minato ... 333

2.8 Product Class 8: Organometallic Complexes of Vanadium

T. Imamoto and I. D. Gridnev ... 385

2.9 Product Class 9: Organometallic Complexes of Niobium and Tantalum

K. Mashima and A. Nakamura ... 415

2.10 Product Class 10: Organometallic Complexes of Titanium

K. Mikami, Y. Matsumoto, and T. Shiono 457

*Science of Synthesis Original Edition Volume 2
© Georg Thieme Verlag KG*
<table>
<thead>
<tr>
<th>Product Class</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.11</td>
<td>Product Class 11: Organometallic Complexes of Zirconium and Hafnium</td>
<td>E.-i. Negishi and T. Takahashi</td>
<td>681</td>
</tr>
<tr>
<td>2.12</td>
<td>Product Class 12: Organometallic Complexes of Scandium, Yttrium and the Lanthanides</td>
<td>Z. Hou and Y. Wakatsuki</td>
<td>849</td>
</tr>
<tr>
<td>2.13</td>
<td>Product Class 13: Organometallic Complexes of the Actinides</td>
<td>A. Dormond and D. Barbier-Baudry</td>
<td>943</td>
</tr>
</tbody>
</table>

Keyword Index | 975
Author Index | 1011
Abbreviations | 1065
Table of Contents

Introduction
T. Imamoto

Introduction .. 1

2.1 Product Class 1: Organometallic Complexes of Manganese
K. Oshima

2.1 Product Class 1: Organometallic Complexes of Manganese 13
2.1.1 Product Subclass 1: Manganese–Cyclopentadienyl Complexes 13
 Synthesis of Product Subclass 1 .. 13
 2.1.1.1 Method 1: By Reaction between Cyclopentadienyl Anions and Manganese Halides .. 13
 2.1.1.1 Variation 1: From Lithium Cyclopentadienide Salts and Manganese(II) Chloride ... 14
 2.1.1.2 Variation 2: From Cyclopentadienyl Salts and Carbonyl(halo)manganese Complexes .. 15
 2.1.1.2 Method 2: By Reaction between 5-Acetyl-1,2,3,4,5-pentamethylcyclopentadiene and Decacarbonyldimanganese(0) 17
 2.1.1.3 Method 3: By Substitution Reactions on the Manganese-Coordinated Cyclopentadienyl Ring ... 18
 2.1.1.4 Method 4: By Insertion of 5-Diazocyclopenta-1,3-diene into a Manganese—Halogen Bond .. 18

2.1.2 Product Subclass 2: Manganese–Dienyl and –Diene Complexes 19
 Synthesis of Product Subclass 2 .. 19
 2.1.2.1 Method 1: (η⁵-Pentadienyl)manganese Complexes from Pentadienyl Anions .. 19
 2.1.2.1 Variation 1: A Tetrakis(pentadienyl)trimanganese Complex from Manganese(II) Chloride and 3-Methylpentadienyl Anion 21
 2.1.2.2 Method 2: (η⁴-Butadiene)manganese Complexes from the Butadiene–magnesium–Bis(tetrahydrofuran) Complex and Manganese(II) Chloride .. 22
 2.1.2.3 Method 3: (η⁵-Pentadienyl)manganese Complexes from Potassium Pentadienide Salts .. 22
 2.1.2.4 Method 4: (η⁵-Cyclohexadienyl)manganese Complexes by Reaction between Decacarbonyldimanganese(0) and Cyclohexa-1,3-dienes or by Reduction of Manganese–Arene Complexes 23
2.1.3 **Product Subclass 3: Manganese–η³-Allyl Complexes** 24
 Synthesis of Product Subclass 3 ... 24
 2.1.3.1 Method 1: From Carbonyl(halo)manganese Complexes and Allyl Bromide 24
 2.1.3.2 Method 2: From (η²-Alkene)- or (η²,1,3-Diene)manganese Complexes 24
 2.1.3.3 Method 3: From (η¹-Allyl)manganese Complexes by η¹ to η³ Isomerization 25

 Applications of Product Subclass 3 in Organic Synthesis 26
 2.1.3.4 Method 4: Reaction of (η³-Allyl)manganese Complexes with Nucleophiles 26

2.1.4 **Product Subclass 4: Manganese–Alkyne Complexes** 27
 Synthesis of Product Subclass 4 ... 27
 2.1.4.1 Method 1: By Ligand Substitution ... 27

2.1.5 **Product Subclass 5: Manganese–Alkene Complexes** 29
 Synthesis of Product Subclass 5 ... 29
 2.1.5.1 Method 1: By Ligand Substitution ... 29
 2.1.5.2 Method 2: By Ligand Transformation .. 30

2.1.6 **Product Subclass 6: Manganese–Carbene Complexes** 30
 Synthesis of Product Subclass 6 ... 30
 2.1.6.1 Method 1: By Reaction between Alkylmetals and Carbonylmanganese Complexes .. 30
 2.1.6.2 Method 2: Exocyclic Fischer Carbene Complexes by Reaction of Dibromoalkanes, Aziridines, or Oxiranes with Carbonylmanganese Complexes .. 33
 2.1.6.3 Method 3: Manganese–Ethenylidene Complexes from Ethenylidyne Complexes .. 34
 2.1.6.4 Method 4: From Manganese–Acetylene Complexes 35

 Applications of Product Subclass 6 in Organic Synthesis 36
 2.1.6.5 Method 5: Reaction with Enynes, α,β-Unsaturated Esters, or Alkynes 36

2.1.7 **Product Subclass 7: Manganese–Carbyne Complexes** 38
 Synthesis of Product Subclass 7 ... 38
 2.1.7.1 Method 1: From Manganese–Carbene Complexes 38

2.1.8 **Product Subclass 8: Manganese–α-Alkyl Complexes** 39
 Synthesis of Product Subclass 8 ... 39
 2.1.8.1 Method 1: From Alkyl Halides and Sodium Pentacarbonylmanganate(I) - 39
 2.1.8.2 Method 2: From Alkylmetals and Manganese(II) Halides 40
 2.1.8.2.1 Variation 1: Preparation of Tetraalkylmanganate(II) Complexes 40
 2.1.8.2.2 Variation 2: Preparation of Mono-, Di-, and Trialkylmanganese(II) Complexes .. 41

 Applications of Product Subclass 8 in Organic Synthesis 43
 2.1.8.3 Method 3: Use of Organomanganese Reagents 43
 2.1.8.4 Method 4: Use of Alkylpentacarbonylmanganate(I) Complexes 44
2.1.9 **Product Subclass 9: Manganese–\(\eta^1\)-Allyl Complexes**
Synthesis of Product Subclass 9
- Method 1: From Allyl Halides and Metallic Manganese or Low-Valent Manganese Generated by the Reduction of Manganese(II) Halides
- Method 2: From Allylmagnesium Halides and Manganese(II) Halides
- Method 3: From Allylic Halides and Tetrabutylmanganate(II)
- Method 4: From 1,3-Dienes and Pentacarbonylhydridomanganese(I)
Applications of Product Subclass 9 in Organic Synthesis
- Method 5: Allylation of Carbonyl and Other Unsaturated Compounds

2.1.10 **Product Subclass 10: Manganese–Aryl, –Alkenyl, and –Alkynyl Complexes**
Synthesis of Product Subclass 10
- Method 1: Arylmanganese Complexes from Arylmetals and Manganese(II) Halides
- Method 2: Arylmanganese Complexes from Acetophenones and Carbonylmanganese Complexes
- Method 3: Arylmanganese Complexes by Acylation–Decarbonylation
- Method 4: Alkenylmanganese Complexes from Alkynes and Alkyl(carbonyl)manganese Complexes by Alkyne Insertion
- Method 5: Alkynyl(carbonyl)manganese Complexes from Alkynes and Carbonyl(halo)manganese Complexes
Applications of Product Subclass 10 in Organic Synthesis
- Method 6: Reaction of Alkenyl-, Aryl-, and Alkynylmanganese Halides with Acid Chlorides
- Method 7: Demetalation of Aryl- and Alkenylmanganese Complexes

2.1.11 **Product Subclass 11: Manganese–Hydrido Complexes**
Synthesis of Product Subclass 11
- Method 1: Preparation of Pentacarbonylhydridomanganese(I)
- Method 2: Preparation of Substituted Carbonylhydridomanganese(I) Complexes
- Method 3: Preparation of Tetracarbonylmanganate(−III) and Tris[tetracarbonylhydridomanganese(I)] Complexes
- Method 4: Preparation of (\(\eta^5\)-Arene)dicarbonylhydridomanganese(I) Complexes
- Method 5: Preparation of (\(\eta^5\)-Cyclopentadienyl)dihydridomanganese(III) Complexes
- Method 6: Preparation of Hydrido(iodo)manganese(II)
Applications of Product Subclass 11 in Organic Synthesis
- Method 7: Reduction of Activated C=C Bonds

2.1.12 **Product Subclass 12: Neutral Dimanganese–Carbonyl Complexes**
Synthesis of Product Subclass 12
- Method 1: Homoleptic Dimanganese–Carbonyl Complexes by Reduction under Carbon Monoxide
2.1.2 Method 2: Dimanganese–Carbonyl Complexes Substituted with Group 15 Ligands .. 62

2.1.3 Method 3: Nonacarbonyldimanganese(0)–Aldehyde Complexes 62

2.1.13 **Product Subclass 13: Anionic Manganese–Carbonyl Complexes** 63

Synthesis of Product Subclass 13 .. 63

2.1.13.1 Method 1: By Reduction .. 63

2.1.13.1.1 Variation 1: With Sodium/Mercury Amalgam 63

2.1.13.1.2 Variation 2: With Trialkyborohydride or Potassium Hydride 66

2.1.13.1.3 Variation 3: With Sodium Bis(2-methoxyethoxy)aluminum Hydride 67

2.1.13.1.4 Variation 4: With Lithium/Naphthalene 68

2.1.13.1.5 Variation 5: With Lithium/Borohydride 70

2.1.13.1.6 Variation 6: With Sodium Hydride 70

2.1.13.1.7 Variation 7: With Trialkyborohydride 71

2.1.13.2 Method 2: Nonacarbonyldimanganese(0)–Aldehyde Complexes 62

2.1.14 **Product Subclass 14: Cationic Manganese–Carbonyl Complexes** 69

Synthesis of Product Subclass 14 .. 71

2.1.14.1 Method 1: From Carbonyl(halo)manganese(I) Complexes by Substitution of a Halide for a Neutral Monohapto Ligand in the Presence of a Halide Acceptor .. 71

2.1.14.2 Method 2: From Carbonyl(halo)manganese(I) Complexes by Substitution of a Halide for a Neutral Monohapto Ligand in the Absence of a Halide Acceptor .. 71

2.1.14.3 Method 3: From (Alkoxycarbonyl)manganese Complexes by Treatment with Acid .. 72

2.1.14.4 Method 4: By Oxidation of Decacarbonyldimanganese(0) by Nitrosium Hexafluorophosphate in the Presence of a Neutral Ligand 73

2.1.14.5 Method 5: From Carbonyl(halo)manganese(I) Complexes by Substitution of a Halo for an Arene Ligand To Form Cationic (Arene)tricarbonylmanganese(I) Complexes .. 74

2.1.14.6 Method 6: From Carbonylhydridomanganese(I) Complexes by Substitution of the Hydrido for a Neutral Ligand .. 75

2.1.15 **Product Subclass 15: Miscellaneous Complexes** 77

Synthesis of Product Subclass 15 .. 77

2.1.15.1 Method 1: Preparation of Carbonylmanganese–Halo Complexes 77

2.1.15.1.1 Variation 1: Pentacarbonylhalomanganese(I) Complexes from Decacarbonyl- dimanganese(0) .. 77

2.1.15.1.2 Variation 2: Bis[tetracarbonyl(halo)manganese] Complexes from Bromo- pentacarbonylmanganese(I) .. 77

2.1.15.1.3 Variation 3: Tricarbonyl(halo)bis(triphenyl phosphite)manganese from Tri- carbonylhidridobis(triphenyl phosphite)manganese 78

2.1.15.2 Method 2: Preparation of Carbonylmanganese–Pseudohalo Complexes 80

2.1.15.3 Method 3: Preparation of Nitrosylmanganese Complexes 80

2.1.15.4 Method 4: Preparation of Isocyanidemanganese Complexes 82

2.1.15.5 Method 5: Preparation of Acyl(carbonyl)manganese Complexes 82

2.1.15.6 Method 6: Preparation of Silylmanganese Complexes 83

Science of Synthesis Original Edition Volume 2
© Georg Thieme Verlag KG

Method 7: Preparation of (1-Hydroxyalkyl)manganese Complexes 84
Method 8: Preparation of Tetracarbonyl{octahydrotriborato(1−)}manganese ... 84

Product Class 2: Organometallic Complexes of Technetium
I. D. Gridnev and T. Imamoto

Product Subclass 1: Technetium–Arene Complexes 92
Synthesis of Product Subclass 1 .. 92
Method 1: By Interelement Synthesis ... 92
Method 2: From Technetium(IV) Chloride or Sodium Pertechnetate 92
Method 3: Synthesis of Mixed Arene–Diene Complexes by Reduction of Bis(arene) Complexes 93
Method 4: Synthesis of (h^6-Benzene)tricarbonyltechnetium Chloride from Sodium Nonacarbonylheptamethoxytritechnetate(1−) 93

Product Subclass 2: Technetium–Cyclopentadienyl and Substituted Cyclopentadienyl Complexes ... 94
Synthesis of Product Subclass 2 .. 94
Method 1: By the Reactions of Technetium Halides with Metal Cyclopentadienides .. 94
Method 2: From Decacarbonylditechnetium 95
Method 3: From Pentacarbonyltechnetium Iodide 96
Method 4: From Sodium Nonacarbonylheptamethoxytritechnetate(1−) 96

Product Subclass 3: Technetium–Carbene Complexes 96
Synthesis of Product Subclass 3 .. 96
Method 1: From Technetium–Carbonyls and Organolithium Compounds ... 97
Method 2: By the Reactions of Chlorobis[1,2-bis(diphenylphosphino)ethane]technetium with Terminal Alkynes 97
Method 3: Reaction of a Benzoylcarbonyltechnetium Complex with Triethylxonium Tetrafluoroborate 98
Method 4: From Carbyne Complexes ... 98

Product Subclass 4: Technetium–Carbyne Complexes 99
Synthesis of Product Subclass 4 .. 99
Method 1: By Protonation of Carbene Complexes 99
Method 2: By Reaction of Carbene Complexes with Boron Trichloride 100

Product Subclass 5: Technetium–$σ$-Alkyl Complexes 100
Synthesis of Product Subclass 5 .. 100
Method 1: Reaction of Technetium(VII) Oxide with Tetramethylstannane ... 100
Method 2: Reaction of Technetium–Imido Complexes with Grignard Reagents ... 101
2.2.6 Product Subclass 6: Technetium–Carbonyl Complexes .. 102
Synthesis of Product Subclass 6 ... 102
2.2.6.1 Method 1: Synthesis of Decacarbonylditechnetium 102
2.2.6.2 Method 2: Synthesis of Pentacarbonyltechnetium Halides and Related Complexes ... 102
2.2.6.3 Method 3: Synthesis of Technetium–Carbonyl Complexes Containing Triphenylphosphine and Other Ligands ... 104
2.2.6.4 Method 4: Synthesis of Technetium–Aquacarbonyl Complexes 104
2.2.7 Product Subclass 7: Technetium–Isocyanide Complexes 105
Synthesis of Product Subclass 7 ... 105
2.2.7.1 Method 1: Reduction of Pertechnetate Ion in the Presence of Isocyanide Ligands ... 105
2.2.7.2 Method 2: By Substitution Reactions .. 106
2.2.8 Product Subclass 8: Miscellaneous Technetium Complexes 107
Synthesis of Product Subclass 8 ... 107
2.2.8.1 Method 1: Synthesis of Hydridotechnetium Complexes 107
2.2.8.2 Method 2: Synthesis of Technetium Dinitrogen Complexes 107

2.3 Product Class 3: Organometallic Complexes of Rhenium
F. E. Kühn, C. C. Romão, and W. A. Herrmann

2.3.1 Product Subclass 1: Rhenium–Arene Complexes 111
Synthesis of Product Subclass 1 ... 112
2.3.1.1 Method 1: Reductive Synthesis from Rhenium Halides 112
2.3.1.2 Method 2: Synthesis from Low-Oxidation-State Rhenium Precursors 113
2.3.1.2.1 Variation 1: By Metal-Vapor Synthesis ... 113
2.3.1.2.2 Variation 2: By Ligand Substitution from Rhenium–Carbonyl Complexes . 114
2.3.2 Product Subclass 2: Rhenium–Dienyl Complexes 114
Synthesis of Product Subclass 2 ... 116
2.3.2.1 Method 1: Ligand Substitutions ... 116
2.3.2.1.1 Variation 1: Synthesis from Trioxo(η5-pentamethylcyclopentadienyl)rhenium(VII) and Tetrachloro(η5-pentamethylcyclopentadienyl)rhenium(V) ... 117
2.3.2.1.2 Variation 2: Synthesis from Rhenium(VII) Oxide 119
2.3.2.2 Method 2: Oxidation Reactions ... 119
2.3.2.2.1 Variation 1: Synthesis from Tricarbonyl(η5-pentamethylcyclopentadienyl)rhenium(I) ... 120
2.3.2.2.2 Variation 2: Synthesis from Bis(η5-cyclopentadienyl)hydridorhenium(III) . 121
Table of Contents

2.3.3 Product Subclass 3: Rhenium–Alkyne Complexes 121
 - Synthesis of Product Subclass 3 .. 121
 - Method 1: Reduction of Rhenium(VII) Precursors 121

2.3.4 Product Subclass 4: Rhenium–Alkene Complexes 122
 - Synthesis of Product Subclass 4 .. 122
 - Method 1: Nucleophilic Additions .. 122
 - Variation 1: Nucleophilic Addition to \(\eta^5\)-Cyclopentadienyl(nitrosyl)(triphenylphosphine)rhenium(1+) 122
 - Variation 2: Nucleophilic Addition to Pentacarbonylrhenium(1+) 123

2.3.5 Product Subclass 5: Rhenium–Carbene Complexes 124
 - Synthesis of Product Subclass 5 .. 124
 - Method 1: Photolysis of an Organorhenium(VII) Oxide 124

2.3.6 Product Subclass 6: Rhenium–Carbyne Complexes 125
 - Synthesis of Product Subclass 6 .. 125
 - Method 1: Ligand Substitution ... 125
 - Applications of Product Subclass 6 in Organic Synthesis 126
 - Method 2: Alkene Metathesis ... 126

2.3.7 Product Subclass 7: Rhenium–Alkyl Complexes 127
 - Synthesis of Product Subclass 7 .. 127
 - Method 1: By Nucleophilic Reactions of Pentacarbonylrhenate(1–) 127
 - Method 2: Ligand Substitutions .. 128
 - Variation 1: From Rhenium(VII) Oxide 128
 - Variation 2: From Silver(I) Perrhenate 129
 - Variation 3: Synthesis of Alkyl(peroxo)rhenium(VII) Complexes ... 130
 - Applications of Product Subclass 7 in Organic Synthesis 130
 - Method 3: Oxidation Catalysis .. 131
 - Variation 1: Alkene Epoxidation 131
 - Variation 2: Arene Oxidation .. 134
 - Method 4: Alkene Metathesis ... 136
 - Method 5: Alkenation of Aldehydes 137

2.3.8 Product Subclass 8: Rhenium–Hydride Complexes 139
 - Synthesis of Product Subclass 8 .. 140
 - Method 1: Substitution Reactions from Other Rhenium Hydrides 140

2.3.9 Product Subclass 9: Rhenium–Carbonyl Complexes 142
 - Synthesis of Product Subclass 9 .. 142
 - Method 1: From Decacarbonyldirhenium 142
 - Variation 1: Substitution Reactions 143
 - Variation 2: Redox Reactions ... 143
 - Variation 3: Nucleophilic Attack 144
Table of Contents

- **2.3.9.1** Variation 4: Homolytic Cleavage ... 144
- **2.3.9.2** Method 2: Nucleophilic Reactions of Pentacarbonylrhenate(1−) 145
- **2.3.9.3** Method 3: Cationic Carbonylrhenium Complexes 146
- **2.3.9.4** Method 4: Carbonyl(halo)rhenium Complexes Prepared by Oxidative Addition .. 146
- **2.3.9.5** Method 5: Carbonyl(halo)- and Carbonyl(pseudohalo)rhenium Complexes Prepared from Pentacarbonylrhenium(I) Tetrafluoroborate .. 147

2.4

Product Class 4: Arene Organometallic Complexes of Chromium, Molybdenum, and Tungsten

E. P. Kündig and S. H. Pache

- **2.4** Synthesis of Product Class 4 .. 155
- **2.4.1** Method 1: Direct Synthesis of Metal–Bis(arene) Complexes via Metal Evaporation ... 155
- **2.4.2** Method 2: Synthesis of Metal–Bis(arene) Complexes by Reductive Methods ... 157
- **2.4.3** Method 3: Synthesis of Metal–Bis(arene) Complexes by Arene Exchange, by Arene Transformation Reactions, and by Cyclic Condensation Reactions ... 158
- **2.4.4** Method 4: Synthesis of Tricarbonylmetal–Arene Complexes from Metal– Carbonyls ... 159
- **2.4.4.1** Variation 1: From Hexacarbonylmetal Complexes 159
- **2.4.4.2** Variation 2: From [M(CO)_3L_3] Complexes 162
- **2.4.4.3** Variation 3: By Arene and Heteroarene Exchange 163
- **2.4.4.4** Variation 4: From (Carbene)pentacarbonylmetal Complexes 164
- **2.4.5** Method 5: Synthesis of Tricarbonylmetal–Arene Complexes by Arene Modification ... 165
- **2.4.5.1** Variation 1: Via Lithiation and Reaction with Electrophiles 166
- **2.4.5.2** Variation 2: Via Nucleophilic Substitution 168
- **2.4.5.3** Variation 3: Via Palladium-Catalyzed Reactions 170
- **2.4.6** Method 6: Synthesis of Tricarbonylmetal–Arene Complexes by Side-Chain Modification ... 172
- **2.4.6.1** Variation 1: Via Nucleophile Addition 172
- **2.4.6.2** Variation 2: Via Benzyl Cations .. 176
- **2.4.6.3** Variation 3: Via Benzyl Anions .. 180
- **2.4.6.4** Variation 4: Via Cycloaddition Reactions 182
- **2.4.6.5** Variation 5: Via Radical Coupling Reactions 186
- **2.4.6.6** Variation 6: Via Ring Expansion Rearrangements 187
- **2.4.7** Method 7: Synthesis of Optically Active Arene Complexes 188
- **2.4.7.1** Variation 1: Resolution of Racemates 188
- **2.4.7.2** Variation 2: Diastereoselective Complexation 189
2.4.7.3 Variation 3: Diastereo- and Enantioselective Lithiation–Electrophilic Addition Reactions ... 191
2.4.7.4 Variation 4: Diastereo- or Enantioselective Nucleophile Addition Followed by endo-Hydride Abstraction .. 195
2.4.7.5 Variation 5: Palladium-Catalyzed Reactions .. 196
2.4.7.6 Variation 6: Diastereoselective Benzannulation Reactions 198
2.4.8 Method 8: Synthesis of \([\text{M(arene)(CO)}_x(L)_{3-x}]\) Complexes .. 199
2.4.9 Method 9: Synthesis of Heteroarene Complexes ... 203

Applications of Product Class 4 in Organic Synthesis .. 207

2.4.10 Method 10: \([\text{Arene}]\text{tricarbonylchromium(0)}\) Complexes as Catalysts 207
2.4.11 Method 11: \([\text{Arene}]\text{tricarbonylchromium(0)}\) Complexes as Auxiliaries and Building Blocks ... 209
2.4.11.1 Variation 1: \([\text{Arene}]\text{tricarbonylchromium(0)}\) Complexes as Chiral Ligands 209
2.4.11.2 Variation 2: Arene Decomplexation .. 210
2.4.11.3 Variation 3: Aromatic Substitution via Nucleophile Addition–Oxidation of \([\text{Arene}]\text{tricarbonylchromium(0)}\) Complexes 214
2.4.11.4 Variation 4: Dearomatization Reactions .. 216

2.5 Product Class 5: Organometallic \(\pi\)-Complexes of Chromium, Molybdenum, and Tungsten Excluding Arenes
K. H. Theopold, A. Mommertz, and B. A. Salisbury

2.5.1 Product Subclass 1: Metal–Triene and –Trienyl Complexes .. 229
Synthesis of Product Subclass 1 ... 229
2.5.1.1 Method 1: Ligand Substitution Reactions of Hexacarbonylchromium(0) or Hexacarbonylmolybdenum(0) with Trienes 229
2.5.1.1.1 Variation 1: Substitution of Nitriles with Trienes .. 231
2.5.1.2 Method 2: Synthesis of \(\eta^6\)-Fulvene Complexes by Photochemical Substitution of Arenes in \(\eta^6\)-Arene\text{tricarbonylchromium(0)} 231
2.5.1.3 Method 3: Synthesis of \(\eta^2\)-Cycloheptatrienyl Complexes by Abstraction of Hydride from Coordinated Cycloheptatriene 232
2.5.1.3.1 Variation 1: Hydride Abstraction with Oxonium Salt 233
2.5.1.4 Method 4: Reduction of Metal Halides in the Presence of Cycloheptatriene .. 233
2.5.1.5 Method 5: Metal-Vapor Synthesis .. 234
Applications of Product Subclass 1 in Organic Synthesis 235
2.5.1.6 Method 6: Allylic Alkylation Catalyzed by a Tungsten–Cycloheptatriene Complex 235

2.5.2 Product Subclass 2: Metal–Dienyl Complexes .. 235
Synthesis of Product Subclass 2 ... 236
2.5.2.1 Method 1: Ligand Substitution with Alkali Metal–Dienyl Complexes 236
2.5.2	Method 2: Ligand Substitution with Dienes	237
2.5.2.1	Variation 1: Ligand Substitution of Metal Oxychlorides with Dienes	238
2.5.2.3	Method 3: Intramolecular Reactions with Allylic Halides	238
2.5.2.4	Method 4: Synthesis of Metal–Cycloadienyl Complexes from Metal–Arene or –Cycloheptatriene Complexes by Nucleophilic Addition	239
2.5.2.5	Method 5: Protonation of Metal–Triene Complexes	241
2.5.2.6	Method 6: Carbonyl Reduction with Molybdenum–Cyclopentadienyl Complexes	241
2.5.2.7	Method 7: Hydrodehalogenation with Molybdenum–Cyclopentadienyl Complexes	242
2.5.2.8	Method 8: Hydrogenation with Molybdenum–Cyclopentadienyl Complexes	243
2.5.3	**Product Subclass 2: Metal–Diene Complexes**	244
2.5.3.1	Method 1: Ligand Metathesis with Dienes	244
2.5.3.1.1	Variation 1: Substitution of Electron-Deficient \(\eta^1 \)-Acetylenes	245
2.5.3.1.2	Variation 2: Substitution of Nitriles	247
2.5.3.2	Method 2: Photolysis in the Presence of Dienes	247
2.5.3.3	Method 3: Nucleophilic Addition to Metal–Cyclopentadienyl Complexes	249
2.5.3.4	Method 4: Addition of Radicals to Metal–Cyclopentadienyl Complexes	250
2.5.3.5	Method 5: Reduction of Metal Halides in the Presence of Dienes	251
2.5.3.6	Method 6: Coupling of Metal-Bound Allyl Groups	252
2.5.3.7	Method 7: [2 + 2] Cycloaddition of Metal-Bound Alkynes	253
2.5.3.8	Method 8: Metal-Vapor Synthesis	254
2.5.4	**Product Subclass 3: Metal–Allyl Complexes**	255
2.5.4.1	Method 1: Substitution by Photolysis in the Presence of Alkynes	255
2.5.4.2	Method 2: Deprotonation of Metal-Bound Dienes	256
2.5.4.3	Method 3: Oxidative Addition of Allylic Compounds	257
2.5.4.4	Method 4: Addition of Allylic Anions to Metal Complexes	258
2.5.4.5	Method 5: Nucleophilic Substitution of Anionic Metal Complexes	259
2.5.4.6	Method 6: Addition of Nucleophiles to Metal-Bound Dienes	260
2.5.4.7	Method 7: Functionalization of Metal-Bound Allyls	260
2.5.4.8	Method 8: Trimerization of Alkynes with Chromium–π-Allyl Compounds	261
2.5.5	**Product Subclass 4: Metal–Alkyne Complexes**	262
2.5.5.1	Method 1: Substitution by Photolysis of a Heteroleptic Metal–Carbonyl Complex in the Presence of Alkynes	262
2.5.5.2	Method 2: Substitution Reactions	264
2.5.5.3	Method 3: Reduction of Metal Halides in the Presence of Alkynes	265
2.5.5.3.1	Variation 1: Reduction with Magnesium	266
Table of Contents

2.5.5.4 Method 4: Coupling of Two Isocyanide Ligands .. 267
2.5.5.5 Method 5: Cycloaddition of Metal-Bound Alkynes with Cyclo-octatetraene ... 268

2.5.6 Product Subclass 5: Metal–Alkene Complexes ... 269

2.5.6.1 Method 1: Photosubstitutions of Carbonyl Complexes 270
2.5.6.2 Method 2: Thermal Ligand Substitutions .. 271
2.5.6.2.1 Variation 1: Shifting the Equilibrium in Favor of the Alkene Complexes 273
2.5.6.3 Method 3: β-Hydride Elimination/Abstraction from Metal–Alkyl Complexes ... 274
2.5.6.4 Method 4: Nucleophilic Attack on Metal–Allyl Complexes 276
2.5.6.5 Method 5: Reduction of Metal Halides in the Presence of Alkene 276

2.6 Product Class 6: Organometallic Complexes of Chromium, Molybdenum, and
Tungsten without Carbonyl Ligands
R. Poli and K. M. Smith

2.6.1 Product Subclass 1: Metal–Carbene Complexes ... 283

2.6.1.1 Method 1: By α,α'-Hydrogen Elimination from Alkyl Complexes 284
2.6.1.1.1 Variation 1: Alkylation of Chloride Precursors 284
2.6.1.1.2 Variation 2: Ligand Addition .. 285
2.6.1.1.3 Variation 3: Replacement of an Oxo or Imido Ligand 286
2.6.1.1.4 Variation 4: Deprotonation with an External Base 287
2.6.1.2 Method 2: By Stoichiometric Alkene Metathesis 287
2.6.1.3 Method 3: By Carbene Transfer ... 288
2.6.1.4 Method 4: From Carbene Complexes ... 289

2.6.1.5 Method 5: Alkene Metathesis .. 290
2.6.1.5.1 Variation 1: Ring-Opening Metathesis Polymerization (ROMP) 291
2.6.1.5.2 Variation 2: Alkyne Polymerization ... 291
2.6.1.5.3 Variation 3: Ring-Closing Metathesis .. 292
2.6.1.5.4 Variation 4: Other Selective Metathesis Processes 294
2.6.1.6 Method 6: Carbonylmethylenation ... 295

2.6.2 Product Subclass 2: Metal–Carbyne Complexes ... 296

2.6.2.1 Method 1: By α,α'-Hydrogen Elimination from Alkyl Complexes 297
2.6.2.2 Method 2: By Addition of Alkynes to Compounds with Metal–Metal Triple Bonds ... 298
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6.2.3 Method 3:</td>
<td>By Stoichiometric Alkyne Metathesis</td>
</tr>
<tr>
<td>2.6.2.4 Method 4:</td>
<td>By Oxidation of Fischer-Type Carbyne Complexes</td>
</tr>
<tr>
<td>2.6.2.5 Method 5:</td>
<td>By Rearrangement of Vinyl Complexes</td>
</tr>
<tr>
<td>2.6.2.6 Method 6:</td>
<td>By Other Rearrangement Processes</td>
</tr>
<tr>
<td>Applications of Product Subclass 2 in Organic Synthesis</td>
<td></td>
</tr>
<tr>
<td>2.6.2.7 Method 7:</td>
<td>Alkyne Metathesis</td>
</tr>
<tr>
<td>2.6.3 Product Subclass 3: Metal–σ-Alkyl and –σ-Aryl Homoleptic Complexes</td>
<td></td>
</tr>
<tr>
<td>Synthesis of Product Subclass 3</td>
<td></td>
</tr>
<tr>
<td>2.6.3.1 Method 1:</td>
<td>By Transmetalation</td>
</tr>
<tr>
<td>2.6.4 Product Subclass 4: Metal–σ-Alkyl and –σ-Aryl Non-homoleptic Complexes</td>
<td></td>
</tr>
<tr>
<td>Synthesis of Product Subclass 4</td>
<td></td>
</tr>
<tr>
<td>2.6.4.1 Method 1:</td>
<td>By Transmetalation</td>
</tr>
<tr>
<td>2.6.4.2 Method 2:</td>
<td>By Oxidative Addition of Alkyl Halides</td>
</tr>
<tr>
<td>2.6.4.2.1 Variation 1:</td>
<td>One-Electron Oxidative Additions</td>
</tr>
<tr>
<td>2.6.4.2.2 Variation 2:</td>
<td>Two-Electron Oxidative Additions</td>
</tr>
<tr>
<td>2.6.4.3 Method 3:</td>
<td>By Oxidative Addition of Alkanes and Arenes</td>
</tr>
<tr>
<td>2.6.4.4 Method 4:</td>
<td>By Protonation of Carbene and Carbyne Ligands</td>
</tr>
<tr>
<td>Applications of Product Subclass 4 in Organic Synthesis</td>
<td></td>
</tr>
<tr>
<td>2.6.4.5 Method 5:</td>
<td>Addition of Organochromium(III) Compounds to Carbonyl Compounds</td>
</tr>
<tr>
<td>2.6.4.5.1 Variation 1:</td>
<td>Reaction of Organochromium(III) Compounds Prepared from Organochromium(III) Chloride by Transmetalation</td>
</tr>
<tr>
<td>2.6.4.5.2 Variation 2:</td>
<td>Reaction of Organochromium(III) Compounds Prepared from Chromium(II) Chloride by Oxidative Addition (The Nozaki–Hiyama–Kishi Procedure)</td>
</tr>
<tr>
<td>2.6.4.5.3 Variation 3:</td>
<td>Catalytic Nozaki–Hiyama–Kishi Reaction (The Fürnster Procedure)</td>
</tr>
<tr>
<td>2.6.4.6 Method 6:</td>
<td>Additive–Reductive Carbonyl Dimerization</td>
</tr>
<tr>
<td>2.6.5 Product Subclass 5: Metallacyclic Complexes</td>
<td></td>
</tr>
<tr>
<td>Synthesis of Product Subclass 5</td>
<td></td>
</tr>
<tr>
<td>2.6.5.1 Method 1:</td>
<td>By Transmetalation</td>
</tr>
<tr>
<td>2.6.5.2 Method 2:</td>
<td>By Reductive Coupling of Alkenes</td>
</tr>
<tr>
<td>2.6.5.3 Method 3:</td>
<td>By Addition of Alkenes to Carbene Complexes</td>
</tr>
<tr>
<td>2.6.6 Product Subclass 6: Complexes with Triply Bonded Heteroelement Ligands</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2.6.7 Product Subclass 7: Complexes with Doubly Bonded Heteroelement Ligands</td>
<td></td>
</tr>
<tr>
<td>Synthesis of Product Subclass 7</td>
<td></td>
</tr>
<tr>
<td>2.6.7.1 Method 1:</td>
<td>From Complexes Containing Singly Bonded Heteroelement Ligands</td>
</tr>
<tr>
<td>2.6.7.2 Method 2:</td>
<td>From Other Complexes Containing Doubly Bonded Heteroelement Ligands</td>
</tr>
</tbody>
</table>
Table of Contents

2.6.7.3 Method 3: From Complexes Containing Triply Bonded Heteroelement Ligands 320
2.6.7.4 Method 4: By Oxidative Processes 321
Applications of Product Subclass 7 in Organic Synthesis 322
2.6.7.5 Method 5: Catalytic Epoxidation of Alkenes 322
2.6.8 Product Subclass 8: Complexes with Singly Bonded Heteroelement Ligands
Synthesis of Product Subclass 8 323
2.6.8.1 Method 1: By Oxidative Addition of Compounds with Single Bonds between Heteroelements 323
2.6.8.2 Method 2: By Transmetalation 324
2.6.8.3 Method 3: From \(\sigma \)-Alkyl Complexes 324
2.6.8.4 Method 4: From Carbene or Carbyne Complexes 325
2.6.8.5 Method 5: From Complexes Containing Doubly Bonded Heteroelement Ligands 326
2.6.9 Product Subclass 9: Miscellaneous Complexes
Synthesis of Product Subclass 9 326
2.6.9.1 Method 1: Allylidene Complexes from Cyclopropanes 326

2.7 Product Class 7: Carbonyl Complexes of Chromium, Molybdenum, and Tungsten with \(\sigma \)-Bonded Ligands
T. Ito and M. Minato

2.7 Product Class 7: Carbonyl Complexes of Chromium, Molybdenum, and Tungsten with \(\sigma \)-Bonded Ligands 333
2.7.1 Product Subclass 1: Metal–Carbene Complexes 333
Synthesis of Product Subclass 1 333
2.7.1.1 Method 1: Fischer Method 334
2.7.1.1.1 Variation 1: From Anionic Carbene Complexes 336
2.7.1.1.2 Variation 2: From Dianionic Complexes 337
2.7.1.1.3 Variation 3: From Acyloxy carbene Complexes 339
2.7.1.1.4 Variation 4: Synthesis of Miscellaneous Carbene Complexes 340
Application of Product Subclass 1 in Organic Synthesis 341
2.7.1.2 Method 2: Cyclohexadiene and Cyclohexadienone Annulation 341
2.7.2 Product Subclass 2: Metal–Carbyne Complexes 343
Synthesis of Product Subclass 2 343
2.7.2.1 Method 1: From Fischer-Type Carbene Complexes 343
2.7.2.1.1 Variation 1: By Formal Oxygen Abstraction from Acyl Ligands 344
2.7.2.1.2 Variation 2: From Acetylides 345
2.7.2.1.3 Variation 3: Synthesis of Miscellaneous Carbyne Complexes 345
Applications of Product Subclass 2 in Organic Synthesis .. 348

2.7.2 Method 2: Synthesis of Phenol Derivatives ... 348

2.7.3 Product Subclass 3: Metal–Isocyanide Complexes ... 349

Synthesis of Product Subclass 3 ... 349

2.7.3.1 Method 1: By Substitution of Carbonyl Complexes 350
2.7.3.1.1 Variation 1: By Catalytic Substitution Using Palladium(II) Oxide 350
2.7.3.1.2 Variation 2: From Cyano Anionic Complexes 351
2.7.3.1.3 Variation 3: Synthesis of Miscellaneous Isocyanide Complexes 352

Applications of Product Subclass 3 in Organic Synthesis 353

2.7.3.2 Method 2: Synthesis of Functionalized Isocyanides 353

2.7.4 Product Subclass 4: Metal–Nitrile Complexes and –Cyanide Complexes 354

Synthesis of Product Subclass 4 ... 354

2.7.4.1 Method 1: Synthesis of Nitrile Complexes .. 354
2.7.4.1.1 Variation 1: Synthesis of Acrylonitrile–Carbonyl Complexes 355
2.7.4.2 Method 2: Synthesis of Cyanide Complexes .. 355
2.7.4.2.1 Variation 1: By Reaction of Hexacarbonyl Complexes with Sodium Bis(trimethylsilyl)amide ... 356

2.7.5 Product Subclass 5: Metal–Carbonyl Complexes with Ligands Containing Group 15 Elements ... 357

Synthesis of Product Subclass 5 ... 357

2.7.5.1 Method 1: Synthesis of Carbonyl Complexes of Phosphine, Arsine, or Stibine ... 357
2.7.5.1.1 Variation 1: Synthesis of Phosphine Complexes 358
2.7.5.1.2 Variation 2: Synthesis of Complexes with Chelating Ligands 358
2.7.5.2 Method 2: Synthesis of Amino Acid Complexes 359

Applications of Product Subclass 5 in Organic Synthesis 360

2.7.5.3 Method 3: Ring-Opening Polymerization ... 360

2.7.6 Product Subclass 6: Metal–Carbonyl Complexes with Ligands Containing Group 16 Elements ... 360

Synthesis of Product Subclass 6 ... 360

2.7.6.1 Method 1: Synthesis of Pentacarbonyl(dialkyl sulfide) Complexes 361
2.7.6.2 Method 2: Synthesis of Alkoxide Complexes ... 361
2.7.6.2.1 Variation 1: Synthesis of Hydroxide Complexes 362
2.7.6.2.2 Variation 2: Synthesis of Aryloxo Complexes 363
2.7.6.2.3 Variation 3: Synthesis of Catecholato Complexes 364
2.7.6.2.4 Variation 4: Synthesis of Miscellaneous Complexes 365

2.7.7 Product Subclass 7: Carbonyl Halides ... 366

Synthesis of Product Subclass 7 ... 366

2.7.7.1 Method 1: By Reaction of Metal–Hexacarbonyl Complexes with Chlorine or Bromine ... 366
2.7.7.1.1 Variation 1: From Metal–Hexacarbonyl Complexes 367
2.7.1.2 Variation 2: Using a Phase-Transfer Agent 368
2.7.1.3 Variation 3: By Photoreaction in the Presence of Crown Ethers 369
2.7.1.4 Variation 4: Synthesis of Miscellaneous Complexes 370

2.7.8 **Product Subclass 8: Carbonyl Hydrides** 370

- 2.7.8.1 Method 1: By Reduction of Hexacarbonyl Complexes with Sodium Borohydride 370
- 2.7.8.1.1 Variation 1: By Ion-Pair Extraction 371
- 2.7.8.1.2 Variation 2: By Reaction of Hyridochromium Pentacarbonyl Anion with Metal Pentacarbonyl(piperidine) Complexes 372
- 2.7.8.2 Method 2: From Carbonylmctalate Tetraanions 372
- 2.7.8.3 Method 3: Utilizing a Phase-Transfer Agent 373

2.7.9 **Product Subclass 8 in Organic Synthesis** 373

2.7.9.1 Method 1: By Reduction of Hexacarbonyl Complexes with Sodium in Liquid Ammonia 375
- 2.7.9.1.1 Variation 1: By Reduction with Alkali Metal Amalgam 376
- 2.7.9.2 Method 2: By Reduction of Hexacarbonylchromium(0) with Potassium-Graphite 376
- 2.7.9.3 Method 3: From Carbonyl Derivatives 377

2.8 **Product Class 8: Organometallic Complexes of Vanadium**
T. Imamoto and I. D. Gridnev

2.8.1 **Product Subclass 1: Vanadium–Arene Complexes** 385

- 2.8.1.1 Method 1: Reduction of Vanadium Chlorides 386
- 2.8.1.2 Method 2: By Metal-Vapor Deposition 387
- 2.8.1.3 Method 3: By Ring Substitution 388
- 2.8.1.4 Method 4: From Vanadocene 388

2.8.2 **Product Subclass 2: Vanadium–Cyclopentadienyl and Substituted Cyclopentadienyl Complexes** 389

- 2.8.2.1 Method 1: Synthesis of Bis(η^5^-cyclopentadienyl)vanadium(II) (Vanadocene) and Ring-Substituted Derivatives 389
- 2.8.2.2 Method 2: Synthesis of Vanadocene Halides and Ring-Substituted Derivatives 390
- 2.8.2.3 Method 3: Synthesis of Ring-Bridged Vanadocene Dichlorides 390
- 2.8.2.4 Method 4: Synthesis of Tetracarbonyl(η^5^-cyclopentadienyl)vanadium and Ring-Substituted Derivatives 391
2.8.5 Method 5: By the Reaction of Pentafulvenes with Alkylstanny1(carbonyl)-
vanadium Complexes ... 392
2.8.6 Method 6: Synthesis of Mono(η⁵-cyclopentadienyl)vanadium Halides 393
2.8.7 Method 7: Synthesis of Tripledecker (η⁵-Cyclopentadienyl)vanadium
Complexes .. 394

Applications of Product Subclass 2 in Organic Synthesis 395

2.8.3 Product Subclass 3: Vanadium–Alkyne Complexes 395
Synthesis of Product Subclass 3 ... 395
2.8.3.1 Method 1: From Vanadocene .. 395
2.8.3.2 Method 2: Synthesis of Mono(η⁵-cyclopentadienyl)vanadium(I)–Alkyne
Complexes ... 396

2.8.4 Product Subclass 4: Vanadium–Alkene Complexes 396
Synthesis of Product Subclass 4 ... 396
2.8.4.1 Method 1: Reaction of Vanadocene with Electron-Deficient Alkenes 396
2.8.4.2 Method 2: Synthesis of η⁶-Ethene Complexes from a 1,4-Di-Grignard
Species ... 397

2.8.5 Product Subclass 5: Vanadium–Carbene Complexes 398
Synthesis of Product Subclass 5 ... 398
2.8.5.1 Method 1: Synthesis of Fischer-Type Vanadium–Carbene Complexes 398
2.8.5.2 Method 2: Synthesis of Schrock-Type Vanadium–Carbene Complexes 399

2.8.6 Product Subclass 6: Vanadium–σ-Alkyl and –σ-Aryl Complexes 400
Synthesis of Product Subclass 6 ... 400
2.8.6.1 Method 1: Synthesis of Homoleptic Complexes 400
2.8.6.2 Method 2: Synthesis of Non-homoleptic Complexes 401
2.8.6.2.1 Variation 1: Photochemical Insertion of Alkenes into a V—H Bond 402
2.8.6.2.2 Variation 2: By the Reaction of Vanadocene with Iodomethane or
Bromomethane ... 402

Applications of Product Subclass 6 in Organic Synthesis 403
2.8.6.3 Method 3: Reaction of Organovanadium Complexes with Aldehydes 403
2.8.6.4 Method 4: Synthesis of 1H-1,2-Azaphospholes from Imidovanadium(V)
Complexes and Phosphaalkynes .. 403

2.8.7 Product Subclass 7: Vanadium–Carbonyl Complexes without
Cyclopentadienyl and Related Groups ... 404
Synthesis of Product Subclass 7 ... 404
2.8.7.1 Method 1: Synthesis of Hexacarbonylvanadium 404
2.8.7.2 Method 2: Synthesis of Hexacarbonylvanadate(1–) Complexes 405

2.8.8 Product Subclass 8: Vanadium–Isocyanide Complexes 406
Synthesis of Product Subclass 8 ... 406
2.8.8.1 Method 1: By Ligand Substitution ... 406
2.8.2 Method 2: Complex Formation Accompanying Oxidation or Reduction of the Central Vanadium Atom

2.8.9 Product Subclass 9: Hydridovanadium Complexes

Synthesis of Product Subclass 9

2.8.9.1 Method 1: Synthesis of Carbonylhydridovanadium Complexes Stabilized by Oligotertiary Phosphines

2.8.9.2 Method 2: Synthesis of Bis(η⁵-pentamethylcyclopentadienyl)hydrido-

2.8.9.3 Method 3: Synthesis of Anionic Hydridovanadium(1−) Complexes

Applications of Product Subclass 9 in Organic Synthesis

2.9 Product Class 9: Organometallic Complexes of Niobium and Tantalum

K. Mashima and A. Nakamura

2.9.1 Product Subclass 1: Metal–Arene Complexes

Synthesis of Product Subclass 1

2.9.1.1 Method 1: By Reduction of Metal Halides

2.9.1.2 Method 2: Via Alkyne Cyclotrimerization

2.9.2 Product Subclass 2: Metal–Triene and Metal–Tetraene Complexes

Synthesis of Product Subclass 2

2.9.2.1 Method 1: Reductive Synthesis from Metal(V) Halides

2.9.2.2 Method 2: Using Dipotassium Cyclooctatetraene

2.9.2.3 Method 3: From Tetrachloro(η⁵-cyclopentadienyl)niobium

2.9.2.4 Method 4: From Niobium Hydride Derivatives

2.9.3 Product Subclass 3: Metal–Cyclopentadienyl and Metal–Tris(pyrazolyl)borate Complexes

Synthesis of Product Subclass 3

2.9.3.1 Method 1: From Metal(V) Halides

2.9.3.2 Method 2: Via Halide–Ligand Exchange

2.9.3.3 Method 3: By Sodium Reduction

2.9.3.4 Method 4: Tris(pyrazolyl)borate Complexes

2.9.4 Product Subclass 4: Metal–Diene Complexes

Synthesis of Product Subclass 4

2.9.4.1 Method 1: By Reaction of Magnesium Butadiene

2.9.4.2 Method 2: Via Halide–Ligand Exchange
2.9.5 **Product Subclass 5: Metal–Allyl Complexes** 428
Synthesis of Product Subclass 5 ... 429
2.9.5.1 Method 1: From Allyl Grignard Reagents 429
2.9.5.2 Method 2: From Butadiene ... 429
2.9.6 **Product Subclass 6: Metal–Alkyne Complexes** 430
Synthesis of Product Subclass 6 ... 430
2.9.6.1 Method 1: Via Ligand Exchange ... 430
2.9.6.2 Method 2: By Reduction .. 433
Applications of Product Subclass 6 in Organic Synthesis 434
2.9.7 **Product Subclass 7: Metal–Alkene Complexes** 434
Synthesis of Product Subclass 7 ... 434
2.9.7.1 Method 1: By Alkylation Reactions 434
2.9.7.2 Method 2: By Reaction of Ethene and an Alkylidene Complex 436
Applications of Product Subclass 7 in Organic Synthesis 436
2.9.8 **Product Subclass 8: Metal–Alkylidene Complexes** 436
Synthesis of Product Subclass 8 ... 437
2.9.8.1 Method 1: Via α-Hydrogen Elimination 437
2.9.8.2 Method 2: By Addition of a Chelating Ligand 437
2.9.8.3 Method 3: By Proton Abstraction .. 438
2.9.8.4 Method 4: By Alkylation of Tetrachloro(η5-pentamethylcyclopentadienyl)‐tantalum 438
2.9.8.5 Method 5: By Ligand Exchange .. 439
2.9.8.6 Method 6: By Sodium Reduction .. 440
2.9.8.7 Method 7: Dialkylation Followed by Alkane Elimination 440
Applications of Product Subclass 8 in Organic Synthesis 440
2.9.9 **Product Subclass 9: Metal–Alkylidyne Complexes** 441
Synthesis of Product Subclass 9 ... 441
2.9.9.1 Method 1: From Carbene Complex by Addition of Trimethylaluminum 441
2.9.9.1.1 Variation 1: By Addition of Trimethylphosphine 442
Applications of Product Subclass 9 in Organic Synthesis 442
2.9.10 **Product Subclass 10: Metal–α-Alkyl Homoleptic Complexes** 442
Synthesis of Product Subclass 10 ... 443
2.9.10.1 Method 1: By Alkylation .. 443
2.9.11 **Product Subclass 11: Metal–α-Alkyl Non-homoleptic Complexes** 444
Synthesis of Product Subclass 11 ... 445
2.9.11.1 Method 1: By Alkylation .. 445
2.9.11.2 Method 2: By Addition of Cyclopentadienyl Ligands 446
Applications of Product Subclass 11 in Organic Synthesis 447
Table of Contents

2.9.12 Product Subclass 12: Metal–Hydride Complexes

Synthesis of Product Subclass 12 447

Method 1: From Niobium(V) Chloride 448

Applications of Product Subclass 12 in Organic Synthesis 448

2.9.13 Product Subclass 13: Metal–Carbonyl Complexes

Synthesis of Product Subclass 13 449

Method 1: By Reductive Carbonylation 449

2.9.14 Product Subclass 14: Metal–Alkoxy Complexes

Synthesis of Product Subclass 14 451

Method 1: Via Halide–Ligand Exchange 451

Method 2: By Sodium Reduction 452

2.10 Product Class 10: Organometallic Complexes of Titanium

K. Mikami, Y. Matsumoto, and T. Shiono

2.10.1 Product Subclass 1: Titanium–Arene Complexes

Synthesis of Product Subclass 1 457

Method 1: Titanium(0)–Arene Complexes 458

Method 2: Titanium(II)–Arene Complexes 458

Variation 1: Titanium(II)–Arene Complexes by the Fischer–Hafner Method 459

Variation 2: Titanium(II)–Arene Complexes by Ligand Exchange of Aluminum–Titanium(II) Halide Complexes with Arenes 459

Variation 3: Titanium(II)–Arene Complexes by Ligand Exchange with Aluminum Reagents 460

Method 3: Titanium(IV)–Arene Complexes by Cationic Complex Formation 460

2.10.2 Product Subclass 2: Titanium–Triene, –Trienyl, and –Tetraene Complexes

Synthesis of Product Subclass 2 461

Method 1: Titanium–Tetraene Complexes by Reaction of Tetrabutoxytitanium(IV) with Cyclooctatetraene 461

Method 2: Titanium–Tetraene Complexes by Reaction of Trichloro(pentamethylcyclopentadienyl)titanium(IV) with Dipotassium Cyclooctatetraene 461

Method 3: Titanium–Tetraene and –Triene Complexes by Reaction of Trichloro(η²-cyclopentadienyl)titanium(IV) Complexes with Cyclooctatetraene or Cycloheptatriene in the Presence of Magnesium 462
2.10.3 Product Subclass 3: Bis(η^5-cyclopentadienyl)titanium Complexes without Allyl Functionalities or Titanacycles

Synthesis of Product Subclass 3

2.10.3.1 Method 1: Salt Elimination Reactions between Cyclopentadienyllithium Compounds and Titanium(IV) Chloride

2.10.3.1.1 Variation 1: Salt Elimination Reactions between Sodium Cyclopentadienide Compounds and Titanium(III) Chloride

2.10.3.1.2 Variation 2: Salt Elimination Reactions between Titanium(IV)–Chloro Complexes, Potassium, and Cyclopentadienes

2.10.3.1.3 Variation 3: Salt Elimination Reactions between Thallium Cyclopentadienide Compounds and Trichloro(η^5-cyclopentadienyl)titanium(IV) Complexes

2.10.3.1.4 Variation 4: Transmetalation between Tin Cyclopentadienide Complexes and Titanium Complexes

2.10.3.2 Method 2: Transmetalation between Metal Cyclopentadienide Complexes and Titanium(III) Chloride, Followed by Oxidation

2.10.3.2.1 Variation 1: Transmetalation between Magnesium Cyclopentadienide Salts and Titanium(III) Chloride

2.10.3.3 Method 3: Hydrogenation of the Indenyl Ligand in Titanium(IV) Complexes

2.10.3.4 Method 4: Titanium(IV) Complexes by Oxidation of Alkylbis(η^5-cyclopentadienyl)titanium(III) Complexes by Lead(II) Chloride

2.10.3.5 Method 5: Halide Exchange between Titanium(IV)–Halo Complexes and Alkali Metal Halides

2.10.3.5.1 Variation 1: Halide Exchange with Hydrogen Halides

2.10.3.5.2 Variation 2: Halide Exchange with Boron Halides

Applications of Product Subclass 3 in Organic Synthesis

2.10.3.6 Method 6: Bis(η^5-cyclopentadienyl)titanium Complexes as Alkene Polymerization Catalysts

2.10.4 Product Subclass 4: Mono(η^5-cyclopentadienyl)titanium Complexes

Synthesis of Product Subclass 4

2.10.4.1 Method 1: Reaction between Titanium(IV) Chloride and Metal Cyclopentadienide Compounds

2.10.4.1.1 Variation 1: Reaction between Titanium(IV) Chloride and Silyl-Substituted Cyclopentadienyl Reagents

2.10.4.1.2 Variation 2: Reaction between Titanium(III) Chloride and Lithium Cyclopentadienide Compounds, Followed by Oxidation

2.10.4.2 Method 2: Reaction between Titanium(IV) Chloride and Unsaturated Hydrocarbons
2.10.3 Method 3: Trichloro(η^5-cyclopentadienyl)titanium(IV) Complexes by Redistribution Reactions .. 492

2.10.4 Method 4: Trihalo(η^5-cyclopentadienyl)titanium(IV) Complexes by Halogenation of Mono- and Bis(η^5-cyclopentadienyl)titanium(IV) Complexes .. 493

2.10.5 Method 5: Replacement of Alkoxy Ligands in Alkoxy(η^5-cyclopentadienyl)titanium Complexes by Halides .. 494

2.10.6 Method 6: Reaction between Tetraalkoxytitanium(IV) or Tetraamidotitanium(IV) Complexes and Cyclopentadienes 494

2.10.7 Method 7: Halide Exchange between Cyclopentadienyl(halo)titanium Complexes and Trimethyltin Fluoride or Arsenic Trifluoride .. 494

Applications of Product Subclass 4 in Organic Synthesis ... 495

2.10.8 Method 8: Mono(η^5-cyclopentadienyl)titanium Complexes as Styrene Polymerization Catalysts ... 495

2.10.9 Method 9: Mono(η^5-cyclopentadienyl)titanium Complexes as Buta-1,3-diene Polymerization Catalysts .. 498

2.10.10 Method 10: Mono(η^5-cyclopentadienyl)titanium Complexes as Alkene Polymerization Catalysts ... 499

2.10.5 Product Subclass 5: Trivalent Titanium(III) Complexes Including Bis- and Mono(η^5-cyclopentadienyl)titanium–Hydrido Complexes 499

Synthesis of Product Subclass 5 ... 500

2.10.5.1 Method 1: Titanium–Hydrido Complexes by Reduction of Titanium(IV)–Methyl Complexes by Hydrogen .. 500

2.10.5.1.1 Variation 1: Hydridotitanium Complexes by Reduction of Alkyltitanium(IV) Complexes by Silanes ... 501

2.10.5.1.2 Variation 2: Hydridotitanium Complexes by Reduction of Chlorotitanium(IV) Complexes by Potassium or Sodium 501

2.10.5.2 Method 2: Titanium(III) Complexes by Reduction of Titanium(IV) Complexes by Lithium Nitride .. 502

2.10.5.2.1 Variation 1: Titanium(III) Complexes by Reduction by Zinc and Magnesium .. 503

2.10.5.2.2 Variation 2: Titanium(III) Complexes by Reduction by Cobalt(II) Complexes .. 503

Applications of Product Subclass 5 in Organic Synthesis ... 503

2.10.5.3 Method 3: Preparation of Alkene Hydrogenation Catalysts by Reduction with Aluminum Hydrides .. 503

2.10.5.3.1 Variation 1: Preparation of Alkene Hydrogenation Catalysts by Reduction with Alkylolithium Compounds 505

2.10.5.3.2 Variation 2: Preparation of Alkene Hydrogenation Catalysts by Reduction with Grignard Reagents .. 505

2.10.6 Product Subclass 6: Bis- or Mono(η^5-cyclopentadienyl)titanium(II) Complexes ... 505

Synthesis of Product Subclass 6 ... 506

2.10.6.1 Method 1: Titanocenes by Reduction of Titanium(IV) Complexes ... 506
2.10.2 Method 2: Titanocene by Photochemical Reaction of Bis(η^5-cyclopentadienyl)dimethyltitanium(IV) .. 508
2.10.3 Method 3: Dicarbonylbis(η^5-cyclopentadienyl)titanium(II) Complexes from Titanium–Alkyl and –Aryl Complexes .. 509
2.10.4 Method 4: Dicarbonylbis(η^5-cyclopentadienyl)titanium(II) Complexes by Photolysis of Titanium–Alkyl and –Aryl Complexes 510
2.10.5 Method 5: Titanium(II)–Carbonyl Complexes by Reduction of Chlorotitanium(IV) Complexes with Aluminum under Carbon Monoxide .. 511
2.10.5.1 Variation 1: Reduction with Sodium–Naphthalene .. 513
2.10.5.2 Variation 2: Reduction with Cobaltocene .. 513
2.10.6 Method 6: Dicarbonylbis(η^5-cyclopentadienyl)titanium(II) Complexes by Photolysis of Titanium–Alkyl and –Aryl Complexes 514
2.10.7 Method 7: Titanium(II)–Phosphine Complexes by Photolysis of Dicarbonylbis(η^5-cyclopentadienyl)titanium(II) .. 514

Applications of Product Subclass 6 in Organic Synthesis .. 516
2.10.8 Method 8: Titanium(II)–Carbonyl Complexes as Catalysts in the Pauson–Khand Reaction .. 516
2.10.7 Product Subclass 7: Titanium–Allyl, –Allenyl, and –Propargyl Complexes 518
Synthesis of Product Subclass 7 .. 520
2.10.7.1 Method 1: (η^1-Allyl)titanium(III) Complexes by Reaction between Chlorotitanium(III) Complexes and Allyl Grignard Reagents .. 520
2.10.7.2 Method 2: (η^3-Allyl)titanium(III) Complexes by Reaction between Chlorotitanium(IV) Complexes and Allyl Grignard Reagents 520
2.10.7.2.1 Variation 1: (η^3-Allyl)bis(η^5-cyclopentadienyl)titanium(III) Complexes by Reaction of Dichlorobis(η^5-cyclopentadienyl)titanium(IV) with a Grignard Reagent and a Diene .. 522
2.10.7.2.2 Variation 2: (η^3-Allyl)bis(η^5-cyclopentadienyl)titanium(III) by Rearrangement of Bis(η^5-cyclopentadienyl)(η^2-ethene)(η^2-vinyl)titanium(III) 523
2.10.7.3 Method 3: (η^1-Allyl)bis(η^5-cyclopentadienyl)halotitanium(IV) Complexes by Reaction of (η^3-Allyl)bis(η^5-cyclopentadienyl)titanium(III) Complexes with 1-Halobut-2-enes .. 524
2.10.7.4 Method 4: (η^1-Allyl)bis(η^5-cyclopentadienyl)titanium(IV) Complexes by Reaction of Vinyl Halides, Vinyl Esters, or Carboxylic Esters with the Dichlorobis(η^5-cyclopentadienyl)titanium(IV)–Trimethylaluminum Complex .. 524
2.10.7.5 Method 5: (η^1-Allyl)bis(isopropoxy)titanium(IV) Complexes by Reaction of Low-Valent Titanium Complexes with Allylic Halides, Acetates, Carbonates, Phosphates, Sulfonates, or Aryl Ethers .. 525
2.10.7.6 Method 6: Bis(isopropoxy)titanium(IV)–Propargyl or –Allenyl Complexes by Transmetalation of Titanium(IV) Complexes with Propargyl- or Allenyllithium Compounds ... 526
2.10.7 Method 7: Bis(isopropoxy)titanium(IV)–Propargyl or –Allenyl Complexes by Reaction of Low-Valent Titanium Complexes with Propargyl Halides, Acetates, Carbonates, Phosphates, or Sulfonates
Application of Product Subclass 7 in Organic Synthesis

2.10.8 Method 8: Allylation of Carbonyl Compounds by Allyltri(amide)titanium(IV) Complexes

2.10.9 Method 9: Reactions of Bis(isopropoxy)titanium(IV)–Propargyl or –Allenyl Complexes with Electrophiles

2.10.10 Product Subclass 8: Titanium–Diene and Titanacyclopentene Complexes
Synthesis of Product Subclass 8

2.10.11 Method 1: [Bis(dimethylphosphino)ethane]bis(butadiene)titanium(0) by Reduction of [Bis(dimethylphosphino)ethane]tetrachlorotitanium(IV) by Sodium Amalgam in the Presence of Butadiene

2.10.12 Method 2: Chloro(\(\eta^5\)-pentamethylcyclopentadienyl)titanium(II)–Diene Complexes by Reaction of Trichloro(\(\eta^5\)-pentamethylcyclopentadienyl)titanium(IV) with the Magnesium–Diene Complex

2.10.13 Method 3: Titanium–Buta-1,3-diene Complexes from Titanium–\(\eta^1\)-Methallyl Complexes

2.10.14 Method 4: Titanium–Cyclobutadiene Complexes by Reaction between Titanium–Arene Complexes and Alkynes

2.10.15 Product Subclass 9: Titanacycles
Synthesis of Product Subclass 9

2.10.16 Method 1: Reaction of Bis(\(\eta^5\)-cyclopentadienyl)titanium(II)–Phosphine Complexes with Alkynes or Allenes

2.10.17 Method 2: Reduction of Dichlorobis(\(\eta^5\)-cyclopentadienyl)titanium(IV) Complexes by Grignard Reagents in the Presence of Alkenes or Alkynes

2.10.18 Variation 1: Reactions of Bis(arylxy)dichlorotitanium(IV) Complexes with Butyllithium in the Presence of Dienes

2.10.19 Variation 2: Reduction of Titanium(IV)–Chloro Complexes by Sodium Amalgam in the Presence of Alkenes or Alkynes

2.10.20 Variation 3: Reaction of Dichlorobis(\(\eta^5\)-cyclopentadienyl)titanium(IV) with Lithium Naphthalene in the Presence of an Alkene

2.10.21 Variation 4: Reduction of Dichlorobis(\(\eta^5\)-cyclopentadienyl)titanium(IV) by Magnesium in the Presence of Alkynes

2.10.22 Method 3: Photolysis of Bis(\(\eta^5\)-cyclopentadienyl)dimethyltitanium(IV) in the Presence of an Alkyne

2.10.23 Method 4: Substitution Reaction of Dichlorobis(\(\eta^5\)-cyclopentadienyl)titanium(IV) with an Alkanediylidilithium Reagent

2.10.24 Method 5: Insertion Reactions of Alkenes with Alkyne- or Alkenetitanium(II) Complexes
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Variation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.10.5.1</td>
<td></td>
<td>1</td>
<td>Reactions of Alkynes, Dialkynes, or Carbonyl Compounds with Alkyne- or Alkenetitanium Complexes</td>
</tr>
<tr>
<td>2.10.6</td>
<td></td>
<td>6</td>
<td>Titanacycles from Ligand Exchange Reactions of Titanaclopentanes</td>
</tr>
<tr>
<td>2.10.6.1</td>
<td></td>
<td>1</td>
<td>Large Metallacycles by Insertion Reactions of Smaller Titanacycles</td>
</tr>
<tr>
<td>2.10.7</td>
<td></td>
<td>7</td>
<td>Titanacyclobutanes from Tebbe’s Reagent</td>
</tr>
<tr>
<td>2.10.7.1</td>
<td></td>
<td>1</td>
<td>Titanacyclobutanes via Vinylaluminum Complexes</td>
</tr>
<tr>
<td>2.10.7.2</td>
<td></td>
<td>2</td>
<td>Titanacyclobutanes by Reaction of Dichlorobis(η⁵-cyclopentadienyl)titanium(IV) with a Dimagnesium Reagent</td>
</tr>
<tr>
<td>2.10.7.3</td>
<td></td>
<td>3</td>
<td>Ligand Exchange of Titanacyclobutanes with Alkenes, Alkynes, or Allenes To Form Other Titanacyclobutanes or Titanacyclobutenes</td>
</tr>
<tr>
<td>2.10.8</td>
<td></td>
<td>8</td>
<td>Ring-Opening Metathesis Polymerization</td>
</tr>
<tr>
<td>2.10.9</td>
<td></td>
<td>9</td>
<td>Product Subclass 9 in Organic Synthesis</td>
</tr>
<tr>
<td>2.10.10</td>
<td></td>
<td>10</td>
<td>Product Subclass 10: Titanium–Alkyne Complexes</td>
</tr>
<tr>
<td>2.10.10.1</td>
<td></td>
<td>1</td>
<td>Reaction of an Alkyne with a Titanium(II)–Phosphine Complex</td>
</tr>
<tr>
<td>2.10.10.1.1</td>
<td></td>
<td>1</td>
<td>Reaction of an Alkyne with a Titanium(II)–Phosphine Complex</td>
</tr>
<tr>
<td>2.10.10.2</td>
<td></td>
<td>2</td>
<td>Reduction of Dichlorobis(η⁵-cyclopentadienyl)titanium(IV) by Magnesium in the Presence of an Alkyne</td>
</tr>
<tr>
<td>2.10.10.2.1</td>
<td></td>
<td>1</td>
<td>Reaction of Titanium(II) Complexes with Diynes or Polyynes</td>
</tr>
<tr>
<td>2.10.10.3</td>
<td></td>
<td>3</td>
<td>Reaction of an Alkyne with Bis(isopropoxy)(η²-propene)titanium(II)</td>
</tr>
<tr>
<td>2.10.10.4</td>
<td></td>
<td>4</td>
<td>Benzynetitanium Complexes by Thermolysis of Aryltitanium Complexes</td>
</tr>
<tr>
<td>2.10.10.4.1</td>
<td></td>
<td>1</td>
<td>Benzynetitanium Complexes by Thermolysis of Aryl(methyl)titanium Complexes</td>
</tr>
<tr>
<td>2.10.10.4.2</td>
<td></td>
<td>2</td>
<td>A Benzynetitanium Complex from 1-Bromo-2-fluorobenzene and Dichlorobis(η⁵-cyclopentadienyl)titanium(IV)</td>
</tr>
<tr>
<td>2.10.11</td>
<td></td>
<td>11</td>
<td>Product Subclass 11: Titanium–Alkene Complexes</td>
</tr>
<tr>
<td>2.10.11.1</td>
<td></td>
<td>1</td>
<td>(η²-Alkene)bis(η⁵-cyclopentadienyl)titanium(II) Complexes by Substitution of Bis(η⁵-cyclopentadienyl)bis(trimethylphosphine)titanium(II) by Alkenes</td>
</tr>
<tr>
<td>2.10.11.1.1</td>
<td></td>
<td>1</td>
<td>(η²-Ethene)bis(η⁵-pentamethylcyclopentadienyl)titanium(II) by Reaction of (-Dinitrogen)bis [bis(η⁵-pentamethylcyclopentadienyl)titanium(II)] with Ethene</td>
</tr>
</tbody>
</table>
| 2.10.11.2 | | 2 | (η²-Alkene)bis(η⁵-pentamethylcyclopentadienyl)titanium(II) Complexes by Reduction of
2.10.11.2.1 Variation 1: \((\eta^2\text{-Alkene})\text{bis}(\eta^5\text{-pentamethylcyclopentadienyl})\text{titanium(II)}\) Complexes by Reduction of Dichlorobis(\(\eta^5\text{-pentamethylcyclopentadienyl}\))\text{titanium(IV)} by Sodium Amalgam in the Presence of an Alkene

565

2.10.11.2.2 Variation 2: \((\eta^2\text{-Alkene})\text{titanium(II)}\) Complexes by Reduction of Titanium(IV) Complexes by Grignard Reagents in the Presence of an Alkene

565

2.10.11.3 Method 3: \((\eta^2\text{-Alkene})\text{titanium(II)}\) Complexes by Ligand-Exchange Reactions

566

Applications of Product Subclass 11 in Organic Synthesis

566

2.10.11.4 Method 4: Titanium-Mediated Cyclization of Enynes

566

2.10.11.5 Method 5: Preparation of Cyclopropanols from Dialkoxotitanacyclopropanes

567

2.10.12 Product Subclass 12: Titanium–Carbene Complexes

567

Synthesis of Product Subclass 12

567

2.10.12.1 Method 1: Preparation of Tebbe’s Reagent

567

Applications of Product Subclass 12 in Organic Synthesis

568

2.10.12.2 Method 2: Methylenation of Amides, Esters, Ketones, and Aldehydes by Tebbe’s Reagent

568

2.10.12.2.1 Variation 1: Alkenylation of Carbonyl Compounds by the Lead(II) Chloride/Dihaloalkane/Titanium(IV) Chloride/Zinc Reagent

569

2.10.12.2.2 Variation 2: Alkylidenation with Magnesium Analogues of Tebbe’s Reagent

570

2.10.12.2.3 Variation 3: Other Applications of Titanium–Carbene Complexes

570

2.10.13 Product Subclass 13: Titanium–Alkenyl, –Alkynyl, and –Aryl Complexes

572

Synthesis of Product Subclass 13

572

2.10.13.1 Method 1: Alkenyltitanium Complexes by Reaction of Chlorotitanium Complexes with Vinyllithium Reagents

572

2.10.13.2 Method 2: Alkenyltitanium Complexes by Hydrotitanation

573

2.10.13.2.1 Variation 1: Alkenyltitanium Complexes by Carbottitanation

574

2.10.13.2.2 Variation 2: Alkenyltitanium Complexes by Silyltitanation

575

2.10.13.2.3 Variation 3: Alkenyltitanium Complexes by Partial Hydrolysis of Titanium–Silylalkyne and–Stannylalkyne Complexes

576

2.10.13.3 Method 3: Alkenyltitanium Heterotitanacycles by [2 + 2] Cycloadditions of Titanium(IV) Complexes with Alkynes

577

2.10.13.4 Method 4: Alkynyltitanium Complexes by Reaction of Titanium(IV) Complexes with Alkynes

577

2.10.13.5 Method 5: Aryltitanium Complexes by Reaction of Titanium Complexes with Arylmetal Reagents

578

2.10.13.5.1 Variation 1: Tetraaryltitanium(IV) Complexes by Reaction of Titanium(IV) Complexes with Grignard Reagents

579
2.10.14 **Product Subclass 14: Titanium–α-Alkyl Complexes** 579

Synthesis of Product Subclass 14 ... 585

2.10.14.1 Method 1: Alkyltitanium Complexes by Transmetalation of
Chlorotitanium Complexes with Grignard Reagents ... 585

2.10.14.1.1 Variation 1: Alkylation of Alkoxy(halo)titanium Complexes by
Grignard Reagents ... 587

2.10.14.1.2 Variation 2: Alkyltitanium Complexes by Reaction of Titanium Complexes
with Alkyl锂ium Reagents .. 587

2.10.14.1.3 Variation 3: Alkytris(alkoxy)titanium(IV) Complexes by Reaction of
Alkoxytitanium Complexes with Alkyl lithium Reagents 589

2.10.14.1.4 Variation 4: Alkyltitanium Complexes by Reaction of Titanium Complexes
with Alkylaluminum Reagents ... 589

2.10.14.1.5 Variation 5: Alkyltitanium Complexes by Alkylation of Titanium Halides
with Dialkylzinc Reagents ... 590

2.10.14.1.6 Variation 6: Alkyl- or Aryltitanium Complexes by Reaction of
Tetramethyltitanium(IV) with Alkyl- or Arylboranes ... 591

2.10.14.1.7 Variation 7: Alkyltitanium Complexes by Alkylation and Oxidation of
Titanium Complexes by Dimethylcadmium(II) ... 591

2.10.14.2 Method 2: Acyltitanium Complexes by Oxidative Addition of Alkyl- or
Acyl Halides to Dicarbonylbis(η⁵-cyclopentadienyl)titanium(II) 592

2.10.14.3 Method 3: Alkyltitanium Complexes by Hydrotitanation of Alkenyl
Sulfides .. 592

2.10.14.4 Method 4: Alkyltitanium Complexes by Redistribution 593

2.10.14.5 Method 5: Alkyltitanium Complexes by Insertion 594

2.10.14.6 Method 6: Cationic Alkyltitanium Complexes .. 595

2.10.14.7 Method 7: Benzyl(halo)titanium Complexes from Tetrabenzyltitanium(IV)
and a Halide Source ... 595

Applications of Product Subclass 14 in Polymerization .. 596

2.10.14.8 Method 8: Alkyltitanium Complexes as Catalysts for Alkene
Polymerization ... 596

2.10.14.9 Method 9: Alkyltitanium Complexes as Catalysts for Styrene
Polymerization ... 598

2.10.14.10 Method 10: Alkyltitanium Complexes as Cocatalysts in Alkene
Polymerization .. 599

2.10.15 **Product Subclass 15: Titanium–Alkoxy Complexes** 600

Synthesis of Product Subclass 15 ... 601

2.10.15.1 Method 1: Titanium–Phenoxy Complexes from Alkyltitanium Complexes
by Ligand Exchange with Phenols ... 601

2.10.15.2 Method 2: Titanium–Alkoxy and –Phenoxy Complexes from
Chlorotitanium Complexes by Ligand Exchange with Alcohols
or Phenols in the Presence of Amines ... 602

2.10.15.2.1 Variation 1: Titanium–Alkoxy and –Phenoxy Complexes from
Chlorotitanium Complexes by Ligand Exchange with Alcohols
or Phenols .. 602
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.10.15.2.2</td>
<td>Variation 2: Cyclopentadienyltitanium–Alkoxy Complexes for Enantio- and Diastereomeric Reactions by Hydrolysis of Chlorotitanium Complexes with Alcohols</td>
<td>603</td>
</tr>
<tr>
<td>2.10.15.2.3</td>
<td>Variation 3: Titanium–Alkoxy and –Phenoxy Complexes from Chlorotitanium Complexes by Ligand Exchange with Lithium Alkoxides or Phenoxydes</td>
<td>604</td>
</tr>
<tr>
<td>2.10.15.2.4</td>
<td>Variation 4: Titanium–Alkoxy and –Phenoxy Complexes from Chlorotitanium Complexes by Ligand Exchange with Sodium Alkoxides or Phenoxydes</td>
<td>607</td>
</tr>
<tr>
<td>2.10.15.2.5</td>
<td>Variation 5: Titanium–Phenoxy Complexes from Chlorotitanium Complexes by Ligand Exchange with Aryl Silyl Ethers</td>
<td>607</td>
</tr>
<tr>
<td>2.10.15.2.6</td>
<td>Variation 6: Titanium–Phenoxy Complexes from Titanium–Alkoxy Complexes by Ligand Replacement with Esters</td>
<td>608</td>
</tr>
<tr>
<td>2.10.15.3</td>
<td>Method 3: Chiral Titanium–Phenoxy Complexes from Achiral Titanium–Alkoxy Complexes by Ligand Replacement</td>
<td>608</td>
</tr>
<tr>
<td>2.10.15.4</td>
<td>Method 4: Titanium–Alkoxy and –Phenoxy Complexes from Amidotitanium Complexes by Ligand Replacement with Alcohols or Phenols</td>
<td>609</td>
</tr>
<tr>
<td>2.10.15.4.1</td>
<td>Variation 1: By Ligand Exchange with β-Diketonates</td>
<td>610</td>
</tr>
<tr>
<td>2.10.15.4.2</td>
<td>Variation 2: From Chlorotitanium Complexes by Ligand Exchange with Carboxylates</td>
<td>611</td>
</tr>
<tr>
<td>2.10.15.4.3</td>
<td>Variation 3: From Chlorotitanium Complexes by Ligand Exchange with Silanols or Diphosphines</td>
<td>611</td>
</tr>
<tr>
<td>2.10.15.5</td>
<td>Method 5: Titanium–Sulfanyl Complexes by Ligand Exchange</td>
<td>612</td>
</tr>
<tr>
<td>2.10.15.5.1</td>
<td>Method 6: Catalytic Asymmetric Alkylation of Aldehydes</td>
<td>612</td>
</tr>
<tr>
<td>2.10.15.5.7</td>
<td>Method 7: Catalytic Asymmetric Allylation</td>
<td>616</td>
</tr>
<tr>
<td>2.10.15.5.8</td>
<td>Method 8: Catalytic Asymmetric Ene Reaction</td>
<td>617</td>
</tr>
<tr>
<td>2.10.15.5.9</td>
<td>Method 9: Catalytic Asymmetric Mukaiyama Aldol Reaction</td>
<td>620</td>
</tr>
<tr>
<td>2.10.15.5.10</td>
<td>Method 10: Catalytic Asymmetric Diels–Alder and Hetero-Diels–Alder Reactions</td>
<td>621</td>
</tr>
<tr>
<td>2.10.15.5.11</td>
<td>Method 11: Catalytic Asymmetric [2 + 2]- and [2 + 3] Cycloaditions</td>
<td>624</td>
</tr>
<tr>
<td>2.10.15.5.12</td>
<td>Method 12: Catalytic Asymmetric Cyanization</td>
<td>625</td>
</tr>
<tr>
<td>2.10.15.5.13</td>
<td>Method 13: Other Catalytic Asymmetric Reactions</td>
<td>628</td>
</tr>
<tr>
<td>2.10.15.5.13.1</td>
<td>Variation 1: Sharpless Epoxidation</td>
<td>628</td>
</tr>
<tr>
<td>2.10.15.5.14</td>
<td>Method 14: Cyclopentadienyl(phenoxyl)titanium Complexes as Catalysts for Alkene Polymerization</td>
<td>631</td>
</tr>
<tr>
<td>2.10.15.5.15</td>
<td>Method 15: Alkoxytitanium Complexes as Catalysts for Living Polymerization of Polar Monomers</td>
<td>632</td>
</tr>
<tr>
<td>2.10.15.5.16</td>
<td>Method 16: Chelating Bis(phenoxyl)titanium Complexes as Catalysts for Alkene Polymerization</td>
<td>634</td>
</tr>
<tr>
<td>2.10.16</td>
<td>Product Subclass 16: Titanium–Amido Complexes</td>
<td>637</td>
</tr>
<tr>
<td>2.10.16</td>
<td>Synthesis of Product Subclass 16</td>
<td>638</td>
</tr>
</tbody>
</table>
Table of Contents

2.10.16 Method 1: Amidotitanium Complexes from Chlorotitanium Complexes by Transmetalation with Lithium or Magnesium Amides ... 638
2.10.16.1 Variation 1: Amidotitanium Complexes from Halotitanium Complexes and Silylamines .. 639
2.10.16.2 Variation 2: Titanium Complexes with Chelating Cyclopentadienyl–Amido Ligands from Titanium(III) or Titanium(IV) Halides by Transmetalation with Metal Amides .. 640
Applications of Product Subclass 16 in Organic Synthesis 644
2.10.16.2 Method 2: Stereoselective Organic Reactions Promoted by Amidotitanium Complexes ... 644
2.10.16.3 Method 3: Fixation of Atmospheric Nitrogen by Titanium Complexes .. 646
Applications of Product Subclass 16 in Polymerization 650
2.10.16.4 Method 4: Diamidotitanium Complexes as Alkene Polymerization Catalysts .. 650
2.10.16.5 Method 5: Titanium Complexes with Monocyclopentadienyl–Amido Ligands Bridged by Silylene Groups as Alkene Polymerization Catalysts .. 652

2.10.17 Product Subclass 17: Miscellaneous Titanium Complexes 654
Applications of Product Subclass 17 in Organic Synthesis 654
2.10.17.1 Method 1: McMurry Coupling .. 654
2.10.17.2 Method 2: Pinacol Coupling .. 656
2.10.17.3 Method 3: Carbonyl Coupling of Carbamoyl(oxo) Compounds Promoted by Low-Valent Titanium .. 657
2.10.17.4 Method 4: Dimerization of Imines and Iminium Salts Promoted by Low-Valent Titanium Species .. 659
2.10.17.5 Method 5: Reactions of Epoxides Promoted by Titanium Complexes ... 659
2.10.17.6 Method 6: Addition of Alkyl Halides to Alkenes Promoted by Titanium Complexes .. 660

2.11 Product Class 11: Organometallic Complexes of Zirconium and Hafnium
E.-i. Negishi and T. Takahashi

2.11 Product Class 11: Organometallic Complexes of Zirconium and Hafnium .. 681
2.11.1 Product Subclass 1: Metal–η⁸-Arene and –η²-Arene Complexes 683
Synthesis of Product Subclass 1 ... 683
2.11.1.1 Method 1: By π-Complexation .. 683
2.11.1.2 Method 2: By Transmetalation .. 683
2.11.1.3 Method 3: Miscellaneous Transformations 685
Applications of Product Subclass 1 in Organic Synthesis 686
2.11.1.4 Method 4: Reactions of (η⁸-Cyclooctatetraene)zirconium Derivatives .. 686
2.11 Product Subclass 2: Metal–\(\eta^6\)-Arene Complexes ... 687
Synthesis of Product Subclass 2 .. 687
2.11.1 Method 1: By \(\pi\)-Complexation .. 687
2.11.1.1 Variation 1: Co-condensation of Metal Vapors with Arenes 687
2.11.1.2 Variation 2: Reduction of Zirconium(IV) and Hafnium(IV) Compounds 688
2.11.1.3 Variation 3: Complexation with Activated Zirconium(IV) and Hafnium(IV) Compounds of Low Electron Count 689
2.11.2 Method 2: By Transmetalation ... 689
2.11.3 Method 3: Other Methods .. 690
Applications of Product Subclass 2 in Organic Synthesis 691

2.11.2 Product Subclass 3: Metal–Triene Complexes .. 692

2.11.3 Product Subclass 4: Metal–Bis(\(\eta^5\)-cyclopentadienyl) Complexes and Related Derivatives of Oxidation State Four ... 692
Synthesis of Product Subclass 4 .. 693
2.11.3.1 Bis(\(\eta^5\)-cyclopentadienyl)metal(IV) Complexes Containing Two Electronegative Heteroatom Groups .. 693
2.11.3.1.1 Method 1: Synthesis of Bis(\(\eta^5\)-cyclopentadienyl)dihalometal(IV) Complexes .. 693
2.11.3.1.2 Method 2: Synthesis of Bis(\(\eta^5\)-cyclopentadienyl)dihalometal(IV) Complexes and Their Derivatives with Modified Cyclopentadienyl Ligands ... 695
2.11.3.1.3 Method 3: Synthesis of Bis(\(\eta^5\)-cyclopentadienyl)metal(IV) Complexes Containing Monohalo and/or Group 16 or 15 Atom Ligands and Their Derivatives with Modified Cyclopentadienyl Ligands 699
2.11.3.2 Bis(\(\eta^5\)-cyclopentadienyl)hydridometal(IV) Complexes 701
2.11.3.2.1 Method 1: By Transmetalation .. 703
2.11.3.3 Bis(\(\eta^5\)-cyclopentadienyl)monometallo- and Bis(\(\eta^5\)-cyclopentadienyl)dimetallo-
Zirconium Complexes (Excluding Hydrido Derivatives) ... 703
2.11.3.4 Bis(\(\eta^5\)-cyclopentadienyl)monooorganometal Complexes 704
2.11.3.4.1 Method 1: By Transmetalation .. 704
2.11.3.4.2 Method 2: By Hydrometalation .. 707
2.11.3.4.3 Method 3: By Carbometalation .. 707
2.11.3.4.4 Method 4: By Oxidative Addition .. 707
2.11.3.4.5 Method 5: Miscellaneous Methods ... 709
2.11.3.5 Bis(\(\eta^5\)-cyclopentadienyl)dioorganometal Complexes 710
2.11.3.5.1 Method 1: Synthesis of Bis(\(\eta^5\)-cyclopentadienyl)dioorganometal Complexes and Their Derivatives ... 710
2.11.3.6 Applications of Product Subclass 4 in Organic Synthesis 712
2.11.3.6.1 Bis(\(\eta^5\)-cyclopentadienyl)hydridometal(IV) Complexes 712
2.11.4.6.1 Method 1: Stoichiometric Reactions of Bis(η⁵-cyclopentadienyl)hydridozirconium(IV) and Bis(η⁵-cyclopentadienyl)dihydridozirconium(IV) Complexes and Related Reagents 712

2.11.4.6.1.1 Variation 1: Hydrozirconation and Hydrogen-Transfer Hydrozirconation 712

2.11.4.6.1.2 Variation 2: Other Stoichiometric Reactions 715

2.11.4.6.1.3 Variation 3: Catalytic Reactions Involving Bis(η⁵-cyclopentadienyl)hydridozirconium Derivatives 716

2.11.4.7 Bis(η⁵-cyclopentadienyl)monoorganometal Complexes 718

2.11.4.7.1 Method 1: Protonolysis, Halogenolysis, Oxidation, and Related Heteroatom—Carbon Bond Formation 719

2.11.4.7.1.1 Variation 1: Protonolysis and Deuterolysis 719

2.11.4.7.1.2 Variation 2: Halogenolysis 720

2.11.4.7.1.3 Variation 3: Oxidation 720

2.11.4.7.2 Method 2: C—C Bond Formation via Polar Reactions of Chlorobis(η⁵-cyclopentadienyl)monoorganozirconium Complexes with Carbon Electrophiles 721

2.11.4.7.2.1 Variation 1: Reactions of Allylbis(η⁵-cyclopentadienyl)zirconium Derivatives with Aldehydes 721

2.11.4.7.3 Method 3: C—C Bond Formation via Carbylation and Other Migratory Insertion Reactions of Bis(η⁵-cyclopentadienyl)monoorganozirconium Complexes 722

2.11.4.7.3.1 Variation 1: Carbylation 723

2.11.4.7.3.2 Variation 2: Isocyanide Insertion 723

2.11.4.7.3.3 Variation 3: Other Migratory Insertion Reactions 725

2.11.4.7.4 Method 4: C—C Bond Formation via Stoichiometric Transmetalation 726

2.11.4.7.5 Method 5: C—C Bond Formation via Metal-Catalyzed Reactions of Bis(η⁵-cyclopentadienyl)monoorganozirconium Complexes with Organic Electrophiles 727

2.11.4.7.5.1 Variation 1: Nickel- or Palladium-Catalyzed Cross Coupling of Alkenylchlorobis(η⁵-cyclopentadienyl)zirconium Complexes 728

2.11.4.7.5.2 Variation 2: Nickel-Catalyzed Conjugate Addition of Alkenylchlorobis(η⁵-cyclopentadienyl)zirconium Complexes 729

2.11.4.7.5.3 Variation 3: Copper-Catalyzed Conjugate Addition of Chlorobis(η⁵-cyclopenta)dienyl)monoorganozirconium Complexes 730

2.11.4.7.6 Method 6: C—C Bond Formation Reactions of Organometals Catalyzed by Bis(η⁵-cyclopentadienyl)monoorganozirconium Complexes 732

2.11.4.7.6.1 Variation 1: Zirconium-Catalyzed Carboalumination of Alkynes 732

2.11.4.7.6.2 Variation 2: Zirconium-Catalyzed Enantioselective Carboalumination of Alkenes 734

2.11.4.7.6.3 Variation 3: Other Zirconium-Catalyzed Carbometalation Reactions of Alkynes and Alkenes 736

2.11.4.8 Bis(η⁵-cyclopentadienyl)diorganometal Complexes 736

2.11.4.8.1 Method 1: By β-Hydrogen Abstraction 736
2.11.5 Product Subclass 5: Five-Membered Metallocycle–Bis(η^5-cyclopentadienyl) Derivatives of Oxidation State Four .. 739

Synthesis of Product Subclass 5 .. 740

2.11.5.1 Method 1: By Transmetalation .. 740

2.11.5.2 Method 2: Carbometalative Ring-Expansion Reactions of Three- Membered Zirconocene and Hafnocene Derivatives 741

2.11.5.2.1 Variation 1: The Erker–Buchwald Protocol 747

2.11.5.2.2 Variation 2: The Negishi–Takahashi Protocol 750

2.11.5.2.3 Variation 3: Other Protocols for the Synthesis of Five-Membered Zirconacycles and Hafnacycles 753

Applications of Product Subclass 5 in Organic Synthesis 754

2.11.5.3 Method 3: Reactions of Five-Membered Zirconacycles Leading to the Formation of C—H(D) and C—X Bonds 755

2.11.5.3.1 Variation 1: Protonolysis, Deuterolysis, and Halogenolysis 755

2.11.5.3.2 Variation 2: Synthesis of Five-Membered Heterocycles 759

2.11.5.3.3 Variation 3: Reactions with Organometals Containing Electropositive Metals .. 759

2.11.5.4 Method 4: C—C Bond Formation via Polar Reactions of Five-Membered Zirconacycles with Carbon Electrophiles and Related π-Compounds .. 761

2.11.5.4.1 Variation 1: Reactions of Zirconocene–Conjugated Diene Complexes with π-Compounds 761

2.11.5.4.2 Variation 2: Ring Expansion of Zirconacyclopentenes and Zirconacyclo- pentanes with Aldehydes ... 763

2.11.5.4.3 Variation 3: Reactions of Zirconacyclopentenes with Allyl and Alkenyl Ethers and Halides .. 764

2.11.5.5 Method 5: C—C Bond Formation by the Reactions of Five-Membered Zirconacycles with Carbon Monoxide, Isocyanides, and Related Carbon Nucleophiles 765

2.11.5.5.1 Variation 1: Migratory Insertion Reactions of Zirconacycles with Carbon Monoxide and Isocyanides 765

2.11.5.6 Method 6: C—C Bond Formation by the Transition-Metal-Catalyzed Reaction of Five-Membered Zirconacycles 769

2.11.5.6.1 Variation 1: Copper-Catalyzed Allylation of Zirconacyclopentadienes .. 769

2.11.5.6.2 Variation 2: Copper-Catalyzed Allylation of Zirconacypentenes .. 770

2.11.5.6.3 Variation 3: Copper-Catalyzed Acylation of Zirconacycles .. 771

2.11.5.6.4 Variation 4: Synthesis of Arenes from Three Different Alkynes by Copper- or Nickel-Mediated Reactions of Alkynes with Zirconacypentadienes .. 772

2.11.5.6.5 Variation 5: Coupling Reaction of Diodobenzene with Zirconacypentadienes .. 773

2.11.5.7 Method 7: Organometallic Reactions Catalyzed by Five-Membered Zirconacycles .. 774
2.11.6 Product Subclass 6: Metal–Bis(η5-cyclopentadienyl) Derivatives Containing Carbene, Nitrene, and Other Doubly Bonded Ligands

Synthesis of Product Subclass 6 .. 774
2.11.6.1 Method 1: By α-Hydrogen Elimination 774
2.11.6.1.1 Variation 1: Formation of Imido- or Hydrazidozirconium Complexes 775
2.11.6.1.2 Variation 2: Formation of Oxo-, Thioxo-, or Phosphinidenezirconium Complexes .. 776
2.11.6.1.3 Variation 3: Formation of Zirconium–Carbene Complexes 777
2.11.6.2 Method 2: Zirconium–Nitrene Complexes by Cleavage of Metallacycles 778
2.11.6.3 Method 3: Oxo-, Thioxo-, Selenium-, or Telluroxozirconium Complexes by the Oxidative Reaction of a Zirconium(II) Complex 778
2.11.6.4 Method 4: Miscellaneous Reactions 779
Applications of Product Subclass 6 in Organic Synthesis 779
2.11.6.5 Method 5: Hydroamination of Internal Alkynes Catalyzed by Zirconium–Nitrene Complexes 779
2.11.6.6 Method 6: Formation of 1-Phenyl-1H-indole from a Hydrazidozirconium Complex .. 779

2.11.7 Product Subclass 7: Cationic Metal–Bis(η5-cyclopentadienyl) Derivatives of Oxidation State Four .. 780

Synthesis of Product Subclass 7 .. 780
2.11.7.1 Method 1: By Halogen or Alkyl Abstraction from Bis(η5-cyclopentadienyl)-organozirconium Complexes 780
2.11.7.1.1 Variation 1: Cationic Alkylbis(η5-cyclopentadienyl)zirconium Complexes by Halogen Abstraction from Bis(η5-cyclopentadienyl)halo-(methyl)zirconium .. 780
2.11.7.1.2 Variation 2: One-Electron Oxidation of Bis(η5-cyclopentadienyl)diorgano-zirconium .. 781
2.11.7.1.3 Variation 3: Cationic Alkylbis(η5-cyclopentadienyl)zirconium Complexes by Alkyl Abstraction Using a Lewis Acid 782
2.11.7.2 Method 2: By Ligand Exchange of Cationic Alkylbis(η5-cyclopentadienyl)-zirconium Complexes .. 783
2.11.7.3 Method 3: By Insertion Reactions of Cationic Alkylbis(η5-cyclopenta-dienyl)zirconium Complexes .. 783
Applications of Product Subclass 7 in Organic Synthesis 783
2.11.7.4 Method 4: Coupling of Propene and 2-Methylpyridine Catalyzed by Cationic Bis(η5-cyclopentadienyl)zirconium Complexes 783
2.11.7.5 Method 5: Catalytic Oligomerization of Terminal Alkynes 784
2.11.7.6 Method 6: Addition of Alkyl(chloro)bis(η5-cyclopentadienyl)zirconium Complexes to Aldehydes .. 784

2.11.8 Product Subclass 8: Metal–Bis(η5-cyclopentadienyl) Derivatives of Oxidation States Two and Three .. 785

Synthesis of Product Subclass 8 .. 785
2.11.8.1 Method 1: By Reduction with Metals 785
2.11.8.2 Method 2: By β-Hydrogen Abstraction ... 786
2.11.8.2.1 Variation 1: Formation of Bis(η⁵-cyclopentadienyl)zirconium Complexes with Allenes, Silenes, Imines, and Diphenyldiazene Derivatives ... 786
2.11.8.2.2 Variation 2: Formation of Bis(η⁵-cyclopentadienyl)zirconium–Benzyne Complexes ... 787
2.11.8.2.3 Variation 3: Formation of Bis(η⁵-cyclopentadienyl)zirconium–Alkyne Complexes ... 788
2.11.8.2.4 Variation 4: Formation of Bis(η⁵-cyclopentadienyl)zirconium–Alkene Complexes ... 789
2.11.8.3 Method 3: By π-Complexation ... 790
2.11.8.4 Method 4: By Transmetalation ... 791
2.11.8.5 Method 5: By Reductive Elimination or Migration 792
2.11.8.6 Method 6: By β,γ-C—C Bond Cleavage ... 792
2.11.8.7 Method 7: Formation of Bis(η⁵-cyclopentadienyl)zirconium(III) Complexes ... 793

Applications of Product Subclass 8 in Organic Synthesis ... 794

2.11.8.8 Method 8: Bis(η⁵-cyclopentadienyl)zirconium(II)-Catalyzed C—C Bond Formation ... 794
2.11.8.8.1 Variation 1: Using Grignard or Other Magnesium Reagents 795
2.11.8.8.2 Variation 2: Using Organoaluminum Reagents ... 801
2.11.8.8.3 Variation 3: Using Organozinc Reagents ... 805
2.11.8.8.9 Method 9: Bis(η⁵-cyclopentadienyl)zirconium(II)-Catalyzed Hydrosilylation of Alkenes ... 806

2.11.9 Product Subclass 9: Metal–Mono(η⁵-cyclopentadienyl) and –Tris(η⁵-cyclopentadienyl) Complexes and Related Derivatives ... 807

Synthesis of Product Subclass 9 ... 807

2.11.9.1 Method 1: By Transmetalation ... 807
2.11.9.1.1 Variation 1: Formation of Trichloromono(η⁵-cyclopentadienyl)metal Derivatives from Metal(IV) Tetrachloride–Bis(dimethyl sulfide) Complexes ... 808
2.11.9.1.2 Variation 2: Formation of Trichloro(η⁵-cyclopentadienyl)zirconium from Thallium(I) Methylcyclopentadienide and Zirconium(IV) Chloride–Bis(tetrahydrofuran) Complex ... 809
2.11.9.1.3 Variation 3: Formation of Zirconium Complexes Containing an Amido-Linked Cyclopentadienyl Ligand ... 809
2.11.9.1.4 Variation 4: Formation of Tris(η⁵-cyclopentadienyl)metal Complexes ... 809
2.11.9.2 Method 2: By Radical Chlorination of Dichlorobis(η⁵-cyclopentadienyl)zirconium ... 810
2.11.9.3 Method 3: By Amine Elimination ... 811

Applications of Product Subclass 9 in Organic Synthesis ... 811

2.11.9.4 Method 4: Aldol-Type Reactions of 1-Naphthol Catalyzed by Trichloro(η⁵-cyclopentadienyl)zirconium Derivatives ... 811
Product Subclass 10: “Ate” Complexes of Metal–Bis(η^5-cyclopentadienyl) and Other Derivatives ... 812

Synthesis of Product Subclass 10 ... 813

2.11.10.1 Method 1: Synthesis of Bis(η^5-cyclopentadienyl)metal(IV) “Ate” Complexes ... 813

2.11.10.1.1 Variation 1: Reactions of Bis(η^5-cyclopentadienyl)zirconium(IV) Derivatives with Alkyl- and Arylmetals Containing Lithium or Magnesium, or with Metal Hydrides 813

Applications of Product Subclass 10 in Organic Synthesis 815

2.11.10.2 Method 2: “Ate” Complexes of Bis(η^5-cyclopentadienyl)metal(IV) Derivatives ... 815

2.11.10.2.1 Variation 1: Reactions of Bis(η^5-cyclopentadienyl)zirconium(IV) Derivatives with Alkynylmetals Containing Lithium and Magnesium 815

2.11.10.2.2 Variation 2: Reactions of Bis(η^5-cyclopentadienyl)metal(IV) Derivatives with α- and γ-Hetero-Substituted Alkyl- and Alkenyllithiums .. 819

2.11.10.2.3 Variation 3: Zwitterionic Bis(η^5-cyclopentadienyl)zirconium(IV) Derivatives ... 822

2.11.10.3 Method 3: Zirconate Complexes of Bis(η^5-cyclopentadienyl)zirconium(II) Derivatives ... 823

Product Subclass 11: Metal π-Complexes Containing η^5-Ligands Other than η^5-Cyclopentadienyl .. 825

Synthesis of Product Subclass 11 ... 825

2.11.11.1 Method 1: By Transmetalation 825

2.11.11.2 Method 2: By Protonation with Carborane 827

Product Subclass 12: Metal π-Complexes Containing η^4-, η^3-, and η^2-Ligands .. 827

Synthesis of Product Subclass 12 ... 828

2.11.12.1 Method 1: By π-Complexation 828

2.11.12.2 Method 2: By Transmetalation 828

Product Subclass 13: Metal σ-Complexes without π-Ligands of Oxidation State Four .. 829

Synthesis of Product Subclass 13 ... 830

2.11.13.1 Method 1: By Transmetalation 830

2.11.13.2 Method 2: Miscellaneous Methods 832

Applications of Product Subclass 13 in Organic Synthesis 833

2.11.13.3 Method 3: Carbonyl Addition and Related Addition Reactions of σ-Organozirconium Complexes 833

2.11.13.4 Method 4: Migratory Insertion of Isocyanides and Carbon Monoxide .. 834

Product Subclass 14: Metal σ-Complexes of Oxidation States below Four .. 835

2.11.14.1 Method 1: By Reduction ... 835

2.11.14.2 Method 2: By Reductive Carbonylation 836
2.12 Product Class 12: Organometallic Complexes of Scandium, Yttrium, and the Lanthanides
Z. Hou and Y. Wakatsuki

2.12.1 Product Subclass 1: Complexes in the Zero Oxidation State
Synthesis of Product Subclass 1
Method 1: By Co-condensation of Metal Vapor with a Ligand Compound
Method 2: By Reduction of Lanthanide(II) Species
Applications of Product Subclass 1 in Organic Synthesis
Method 3: Catalytic Conversion of Carbon Dioxide and Epoxides into Dioxolan-2-ones

2.12.2 Product Subclass 2: Lanthanide(II) Complexes with σ-Organo Ligands
Synthesis of Product Subclass 2
Method 1: By Reduction of Appropriate Organic Compounds with Lanthanide Metals
Variation 1: By Reduction of Organic Iodides
Variation 2: By Reduction of Aromatic Ketones, Thioketones, and Imines
Method 2: By Transmetalation
Variation 1: From Lanthanide(II) Iodides
Variation 2: From Lanthanide Metals
Applications of Product Subclass 2 in Organic Synthesis
Method 3: Cross-Coupling Reactions with Organic Electrophiles

2.12.3 Product Subclass 3: Mono- and Bis(cyclopentadienyl)lanthanide(II) Complexes
Synthesis of Product Subclass 3
Method 1: By Transmetalation
Applications of Product Subclass 3 in Organic Synthesis
Method 2: Formation of Nucleophilic Allyl- and Benzylsamarium(III) Species

2.12.4 Product Subclass 4: Mono- and Bis(pentamethylcyclopentadienyl)lanthanide(II) Complexes
Synthesis of Product Subclass 4
Method 1: By Transmetalation
Applications of Product Subclass 4 in Organic Synthesis
Method 2: Reductive Coupling Reactions
Variation 1: Homocoupling Reactions
Variation 2: Cross-Coupling Reactions
Method 3: Acylation of Alcohols and Amines
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.12.4.4</td>
<td>Method 4: Polymerization</td>
<td>866</td>
</tr>
<tr>
<td>2.12.4.4.1</td>
<td>Variation 1: Synthesis of (Meth)acrylate Triblock Copolymers</td>
<td>866</td>
</tr>
<tr>
<td>2.12.4.4.2</td>
<td>Variation 2: Block Copolymerization of Ethene and Styrene</td>
<td>867</td>
</tr>
<tr>
<td>2.12.5</td>
<td>Product Subclass 5: Lanthanide(II) Complexes with Other Modified Cyclopentadienyl Ligands</td>
<td>868</td>
</tr>
<tr>
<td>2.12.5.1</td>
<td>Method 1: By Transmetalation</td>
<td>868</td>
</tr>
<tr>
<td>2.12.5.2</td>
<td>Method 2: Alkene Polymerization</td>
<td>870</td>
</tr>
<tr>
<td>2.12.6</td>
<td>Product Subclass 6: Miscellaneous Lanthanide(II) Complexes</td>
<td>871</td>
</tr>
<tr>
<td>2.12.6.1</td>
<td>Method 1: By Oxidation of Lanthanide Metals</td>
<td>871</td>
</tr>
<tr>
<td>2.12.6.2</td>
<td>Method 2: By Transmetalation</td>
<td>872</td>
</tr>
<tr>
<td>2.12.6.3</td>
<td>Method 3: Reversible Pinacol-Coupling Reactions</td>
<td>874</td>
</tr>
<tr>
<td>2.12.6.4</td>
<td>Method 4: Ring-Opening Polymerization and Copolymerization of Lactones</td>
<td>875</td>
</tr>
<tr>
<td>2.12.7</td>
<td>Product Subclass 7: Scandium(III)–, Yttrium(III)–, and Lanthanide(III)– α-Organo Complexes without Anionic π-Ligands</td>
<td>876</td>
</tr>
<tr>
<td>2.12.7.1</td>
<td>Method 1: By Transmetalation</td>
<td>876</td>
</tr>
<tr>
<td>2.12.7.2</td>
<td>Method 2: By Deprotonation of Terminal Alkynes</td>
<td>880</td>
</tr>
<tr>
<td>2.12.7.3</td>
<td>Method 3: Nucleophilic Addition</td>
<td>881</td>
</tr>
<tr>
<td>2.12.7.4</td>
<td>Method 4: Catalytic Dimerization of Alk-1-ynes and Polymerization of Ethene</td>
<td>882</td>
</tr>
<tr>
<td>2.12.8</td>
<td>Product Subclass 8: Mono- and Bis(cyclopentadienyl) Complexes of Scandium(III), Yttrium(III), and Lanthanides(III) Bearing α-Organo or Other Anionic Ligands</td>
<td>883</td>
</tr>
<tr>
<td>2.12.8.1</td>
<td>Method 1: By Transmetalation</td>
<td>883</td>
</tr>
<tr>
<td>2.12.8.1.1</td>
<td>Variation 1: From Rare Earth Triflates</td>
<td>883</td>
</tr>
<tr>
<td>2.12.8.1.2</td>
<td>Variation 2: From Cyclopentadienyl Rare Earth Chlorides</td>
<td>885</td>
</tr>
<tr>
<td>2.12.8.2</td>
<td>Method 2: By Hydrogenolysis or Protonation of Rare Earth Metal–Carbon Bonds</td>
<td>887</td>
</tr>
<tr>
<td>2.12.8.3</td>
<td>Method 3: Addition of Ln—X (X = H, Alkyl, Silyl, or Germyl) to Unsaturated C—C, C—N, or C—O Bonds</td>
<td>889</td>
</tr>
</tbody>
</table>

Science of Synthesis Original Edition Volume 2
© Georg Thieme Verlag KG

2.12.9 Product Subclass 9: Tris(substituted or unsubstituted cyclopentadienyl) Complexes
Synthesis of Product Subclass 9 .. 891
Method 1: By Transmetalation ... 891
Applications of Product Subclass 9 in Organic Synthesis 893
Method 2: Coupling Reactions between Pentamethylcyclopentadienide Anion and Electrophilic Substrates 893

2.12.10 Product Subclass 10: Mono- and Bis(pentamethylcyclopentadienyl) Complexes of Scandium(III), Yttrium(III), and the Lanthanides(III) Bearing α-Organo or Other Anionic Ligands .. 895
Synthesis of Product Subclass 10 .. 895
Method 1: By Transmetalation .. 895
Variation 1: From Rare Earth Trihalides or Tris(aryloxides) 895
Variation 2: From Pentamethylcyclopentadienyl Rare Earth Halides or Aryloxides ... 897
Method 2: By Hydrogenolysis or Protonation of Rare Earth Metal—Organo or Metal—Amide Bonds .. 898
Method 3: By Oxidation of Bis(pentamethylcyclopentadienyl)lanthanide(II) Complexes ... 900
Applications of Product Subclass 10 in Organic Synthesis 901
Method 4: Catalytic Dimerization of Alk-1- or Alk-2-yynes 901
Method 5: Catalytic Hydrogenation, Hydrosilylation, and Hydroboration of Alkenes or Alkynes ... 903
Method 6: Catalytic Cyclization Reactions .. 904
Method 7: Polymerization Reactions .. 906

2.12.11 Product Subclass 11: Other Modified Cyclopentadienyl Complexes in Oxidation State Three ... 907
Synthesis of Product Subclass 11 .. 907
Method 1: By Transmetalation .. 907
Method 2: By Deprotonation .. 915
Applications of Product Subclass 11 in Organic Synthesis 916
Method 3: Catalytic Cyclization—Silylation of Hindered Dienes and Trienes ... 917
Method 4: Asymmetric Catalysis ... 917
Method 5: Dimerization and Polymerization of Alk-1-enes 918

2.12.12 Product Subclass 12: Cyclooctatetraenyl Complexes in Oxidation States Two and Three ... 919
Synthesis of Product Subclass 12 .. 919
Method 1: By Transmetalation .. 919
Method 2: By Oxidation of Low-Valent Lanthanides 921
2.12.13 Product Subclass 13: Miscellaneous Complexes in Oxidation State Three

Synthesis of Product Subclass 13 .. 922

2.12.13.1 Method 1: By Transmetalation .. 923

2.12.13.2 Method 2: By Oxidation of Low-Valent Lanthanides 925

Applications of Product Subclass 13 in Organic Synthesis 927

2.12.13.3 Method 3: Polymerization of Buta-1,3-diene, Methyl Methacrylate, and Lactones .. 927

2.12.14 Product Subclass 14: Complexes in Oxidation State Four

Synthesis of Product Subclass 14 .. 929

2.12.14.1 Method 1: By Transmetalation .. 929

2.12.14.2 Method 2: By Oxidation of Cerium(III) Compounds 931

2.13 Product Class 13: Organometallic Complexes of the Actinides A. Dormond and D. Barbier-Baudry

2.13.1 Product Subclass 1: Actinide–Cyclooctatetraenyl Complexes

Synthesis of Product Subclass 1 .. 943

2.13.1.1 Method 1: Preparation of Actinide–Cyclooctatetraenyl Complexes by Ligand Substitution 944

2.13.2 Product Subclass 2: Actinide–Cycloheptatrienyl Complexes

Synthesis of Product Subclass 2 .. 946

2.13.2.1 Method 1: Preparation of Uranium–Cycloheptatrienyl Complexes by Ligand Substitution 947

2.13.3 Product Subclass 3: Actinide–Arene Complexes

Synthesis of Product Subclass 3 .. 947

2.13.3.1 Method 1: Preparation of Uranium(III) Arene Complexes by Reduction of Uranium(IV) Complexes 947

2.13.4 Product Subclass 4: Actinide–Cyclopentadienyl and Substituted Cyclopentadienyl Complexes

Synthesis of Product Subclass 4 .. 948

2.13.4.1 Method 1: Preparation of Actinide Cyclopentadienyl Halide and Amide Complexes by Ligand Substitution 948

2.13.4.2 Method 2: Preparation of Actinide Cyclopentadienyl Alkyl Complexes by Ligand Substitution 950

2.13.4.3 Method 3: Preparation of Other Actinide Cyclopentadienyl Complexes by Ligand Substitution 952

2.13.4.4 Method 4: Preparation of (Cyclopentadienyl)actinide(III) Complexes by Reduction 953
2.13.5 **Product Subclass 5: Actinide–Pentamethylcyclopentadienyl Complexes**

Synthesis of Product Subclass 5 .. 954

2.13.5.1 Method 1: Preparation of (Pentamethylcyclopentadienyl)actinide(IV) Halide and Alkyl Complexes by Ligand Substitution ... 954

2.13.5.2 Method 2: Preparation of (Pentamethylcyclopentadienyl)uranium(III) Complexes by Reduction ... 958

2.13.5.3 Method 3: Preparation of (Tetramethylcyclopentadienyl)actinide Adduct Complexes by Ligand Addition .. 959

Applications of Product Subclass 5 in Organic Synthesis 959

2.13.5.4 Method 4: Catalytic Synthesis of Imines by Addition 959

2.13.6 **Product Subclass 6: Actinide–Tetramethylphosphoryl Complexes**

Synthesis of Product Subclass 6 ... 960

2.13.6.1 Method 1: Preparation of (Tetramethylphosphoryl)uranium Complexes by Ligand Substitution ... 960

2.13.7 **Product Subclass 7: Actinide–Hexadienyl and –Pentadienyl Complexes**

Synthesis of Product Subclass 7 ... 961

2.13.7.1 Method 1: Preparation of (Hexadienyl)- and (Pentadienyl)actinide Complexes by Ligand Substitution .. 961

2.13.8 **Product Subclass 8: Actinide–Allyl Complexes** 962

Synthesis of Product Subclass 8 ... 962

2.13.8.1 Method 1: Preparation of Actinide–Allyl Complexes by Ligand Substitution ... 962

2.13.9 **Product Subclass 9: Actinide–π-Organo Complexes without Anionic π-Ligands** ... 963

Synthesis of Product Subclass 9 ... 964

2.13.9.1 Method 1: Preparation of Actinide Alkyl Pyrazolylborate Complexes by Ligand Substitution ... 964

2.13.9.2 Method 2: Preparation of Actinide Alkyl Aryloxy Complexes by Ligand Substitution ... 964

2.13.9.3 Method 3: Preparation of Actinide Alkyl Silylamido Complexes by Ligand Substitution ... 965

2.13.9.4 Method 4: Preparation of Actinide Metallacycles by Elimination Reactions ... 966

Applications of Product Subclass 9 in Organic Synthesis 967

2.13.9.5 Method 5: Selective Nucleophilic Addition to Carbonyl Compounds 967

2.13.9.6 Method 6: Nucleophilic Addition to Unsaturated Compounds 967

2.13.10 **Product Subclass 10: Miscellaneous Complexes** 969

Synthesis of Product Subclass 10 ... 969

2.13.10.1 Method 1: Preparation of Uranium(IV) Borohydride by Ligand Substitution ... 969
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyword Index</td>
<td>975</td>
</tr>
<tr>
<td>Author Index</td>
<td>1011</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>1065</td>
</tr>
</tbody>
</table>
Volume 3:
Compounds of Groups 12 and 11
(Zn, Cd, Hg, Cu, Ag, Au)

Preface .. V
Table of Contents ... IX

Introduction
I. A. O’Neil .. 1

3.1 Product Class 1: Organometallic Complexes of Zinc
P. Knochel ... 5

3.2 Product Class 2: Organometallic Complexes of Cadmium
P. O’Brien and M. A. Malik 91

3.3 Product Class 3: Organometallic Complexes of Mercury
W. Kitching and M. Glenn 133

3.4 Product Class 4: Organometallic Complexes of Copper
H. Heaney and S. Christie 305

3.5 Product Class 5: Organometallic Complexes of Silver
J. P. Fackler and C. W. Liu 663

3.6 Product Class 6: Organometallic Complexes of Gold
H. Schmidbaur and A. Schier 691

Keyword Index ... 763
Author Index .. 797
Abbreviations ... 841
Volume 3: Compounds of Groups 12 and 11 (Zn, Cd, Hg, Cu, Ag, Au)

Introduction
I. A. O’Neill

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Product Class 1: Organometallic Complexes of Zinc</td>
<td>5</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Product Subclass 1: Zinc–Aryl Complexes</td>
<td>7</td>
</tr>
<tr>
<td>3.1.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td>7</td>
</tr>
<tr>
<td>3.1.1.1.1</td>
<td>Method 1: Diarylzincs by Transmetalation of an Organometallic Reagent with a Zinc Halide</td>
<td>7</td>
</tr>
<tr>
<td>3.1.1.1.1</td>
<td>Variation 1: From an Arylmagnesium Reagent</td>
<td>8</td>
</tr>
<tr>
<td>3.1.1.1.1</td>
<td>Variation 2: From a Preformed Aryllithium Reagent</td>
<td>8</td>
</tr>
<tr>
<td>3.1.1.1.1</td>
<td>Variation 3: From an In Situ Generated Aryllithium Reagent</td>
<td>9</td>
</tr>
<tr>
<td>3.1.1.2</td>
<td>Method 2: Diarylzincs by Transmetalation of a Triarylboration with a Dialkylzinc</td>
<td>10</td>
</tr>
<tr>
<td>3.1.1.3</td>
<td>Method 3: Diarylzincs by Transmetalation of a Diarylmmercury with Zinc</td>
<td>10</td>
</tr>
<tr>
<td>3.1.1.4</td>
<td>Method 4: Arylzinc Halides by Transmetalation of an Organometallic Reagent with a Zinc Halide</td>
<td>11</td>
</tr>
<tr>
<td>3.1.1.4.1</td>
<td>Variation 1: From an In Situ Generated Arylnickel Reagent</td>
<td>11</td>
</tr>
<tr>
<td>3.1.1.4.2</td>
<td>Variation 2: From an Arylmagnesium Reagent</td>
<td>12</td>
</tr>
<tr>
<td>3.1.1.4.3</td>
<td>Variation 3: From an Aryllithium Reagent</td>
<td>12</td>
</tr>
<tr>
<td>3.1.1.5</td>
<td>Method 5: Arylzinc Halides from an Aryl Halide and Zinc</td>
<td>13</td>
</tr>
<tr>
<td>3.1.1.5.1</td>
<td>Variation 1: Using Zinc Dust</td>
<td>13</td>
</tr>
<tr>
<td>3.1.1.5.2</td>
<td>Variation 2: Using Activated Zinc</td>
<td>14</td>
</tr>
<tr>
<td>3.1.1.5.3</td>
<td>Variation 3: Using a Zinc Anode</td>
<td>14</td>
</tr>
<tr>
<td>3.1.1.6</td>
<td>Methods 6: Additional Methods</td>
<td>15</td>
</tr>
<tr>
<td>3.1.1.7</td>
<td>Applications of Product Subclass 1 in Organic Synthesis</td>
<td>15</td>
</tr>
<tr>
<td>3.1.1.8</td>
<td>Method 7: Palladium-Catalyzed Aryl–Aryl Coupling</td>
<td>15</td>
</tr>
<tr>
<td>3.1.1.8</td>
<td>Method 8: Coupling with Acid Chlorides</td>
<td>16</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Product Subclass 2: Zinc–Hetaryl Complexes</td>
<td>17</td>
</tr>
<tr>
<td>3.1.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>17</td>
</tr>
<tr>
<td>3.1.2.1.1</td>
<td>Method 1: Hetarylzinc Halides by Transmetalation of an Organometallic Reagent with a Zinc Halide</td>
<td>17</td>
</tr>
<tr>
<td>3.1.2.1.2</td>
<td>Method 2: Hetarylzinc Halides from a Hetaryl Halide and Zinc</td>
<td>18</td>
</tr>
<tr>
<td>3.1.2.1.3</td>
<td>Variation 1: Using Zinc Dust</td>
<td>18</td>
</tr>
<tr>
<td>3.1.2.1.4</td>
<td>Variation 2: Using Activated Zinc</td>
<td>19</td>
</tr>
</tbody>
</table>
Table of Contents

3.1.3 Methods 3: Additional Methods .. 20
Applications of Product Subclass 2 in Organic Synthesis 20
3.1.4 Method 4: Palladium-Catalyzed Cross-Coupling Reactions 20
3.1.3 Product Subclass 3: Zinc–(Het)arylmethyl Complexes 21
Synthesis of Product Subclass 3 ... 21
3.1.3.1 Method 1: Dibenzylzincs by Transmetalation of an Organometallic Reagent with a Zinc Halide 22
3.1.3.2 Method 2: Dibenzylzincs by Transmetalation of a Tribenzylborane with a Dialkylzinc ... 22
3.1.3.3 Method 3: (Het)arylmethylzinc Halides from a (Het)arylmethyl Halide and Zinc ... 23
3.1.3.3.1 Variation 1: Using Zinc Dust ... 23
3.1.3.3.2 Variation 2: Using Activated Zinc 24
3.1.3.3.3 Variation 3: From an In Situ Generated Benzylic Halide and Zinc Dust ... 25
3.1.3.4 Method 4: (Het)arylmethylzinc Halides by the Methylene Homologation of a (Het)arylcopper 25
3.1.3.5 Methods 5: Additional Methods 26
Applications of Product Subclass 3 in Organic Synthesis 27
3.1.3.6 Method 6: 1,4-Addition to Michael Acceptors 27
3.1.4 Product Subclass 4: Zinc–Allenyl Complexes 28
Synthesis of Product Subclass 4 ... 28
3.1.4.1 Method 1: Diallenylzincs by Transmetalation of an Organometallic Reagent with a Zinc Halide 28
3.1.4.2 Method 2: Propargylic Zinc Halides from a Propargylic Halide and Zinc .. 29
3.1.4.3 Method 3: Allenylzinc Halides by the Methylene Homologation of an Alkynyl Organometallic Reagent 29
3.1.4.4 Methods 4: Additional Methods 30
Applications of Product Subclass 4 in Organic Synthesis 31
3.1.4.5 Method 5: 1,2-Addition to Aldehydes, Ketones, or Imines 31
3.1.5 Product Subclass 5: Zinc–Allyl Complexes 31
Synthesis of Product Subclass 5 ... 31
3.1.5.1 Method 1: Diallylzincs by Transmetalation of an Organometallic Reagent with a Zinc Halide 32
3.1.5.2 Method 2: Diallylzincs by Transmetalation of an Organometallic Reagent with a Dialkylzinc .. 33
3.1.5.3 Method 3: Allylzinc Halides by Transmetalation of an Organometallic Reagent with a Zinc Halide 33
3.1.5.4 Method 4: Allylzinc Halides from an Allylic Halide or Phosphate and Zinc .. 34
3.1.5.4.1 Variation 1: From an Allylic Halide and Zinc Dust 35
3.1.5.4.2 Variation 2: From an Allylic Halide and Activated Zinc 35
3.1.5.4.3 Variation 3: From an Allylic Phosphate and Zinc Dust 36
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.5.5</td>
<td>5</td>
<td>Allylzinc Halides by the Methylene Homologation of an Alkenylcopper</td>
</tr>
<tr>
<td>3.1.5.6</td>
<td>6</td>
<td>Additional Methods</td>
</tr>
<tr>
<td>3.1.5.7</td>
<td>7</td>
<td>1,2-Addition to Carbonyl Compounds</td>
</tr>
<tr>
<td>3.1.5.8</td>
<td>8</td>
<td>Allylzincation of Alkynes</td>
</tr>
<tr>
<td>3.1.6</td>
<td>5</td>
<td>Product Subclass 6: Zinc–Alkynyl Complexes</td>
</tr>
<tr>
<td>3.1.6.1</td>
<td>1</td>
<td>Dialkynylnzincs by Deprotonation of an Alkyne with a Dialkylzinc</td>
</tr>
<tr>
<td>3.1.6.2</td>
<td>2</td>
<td>Allylzinc Halides by Transmetalation of an Organometallic Reagent with a Zinc Halide</td>
</tr>
<tr>
<td>3.1.6.3</td>
<td>3</td>
<td>Additional Methods</td>
</tr>
<tr>
<td>3.1.6.4</td>
<td>4</td>
<td>Nickel- or Palladium-Catalyzed Cross Couplings</td>
</tr>
<tr>
<td>3.1.6.5</td>
<td>5</td>
<td>Catalytic Asymmetric 1,2-Addition to Aldehydes</td>
</tr>
<tr>
<td>3.1.6.6</td>
<td>6</td>
<td>1,4-Additions to Enones</td>
</tr>
<tr>
<td>3.1.7</td>
<td>5</td>
<td>Product Subclass 7: Zinc–Alkenyl Complexes</td>
</tr>
<tr>
<td>3.1.7.1</td>
<td>1</td>
<td>Dialkynylnzincs and Alkenyl(alkyl)zincs by Transmetalation of an Organometallic Reagent with a Zinc Halide</td>
</tr>
<tr>
<td>3.1.7.2</td>
<td>2</td>
<td>Dialkynylnzincs and Alkenyl(alkyl)zincs by Transmetalation of an Organometallic Reagent with a Dialkylzinc</td>
</tr>
</tbody>
</table>
| 3.1.7.2.1 | Variation 1: &nbs...
| 3.1.8.2.2 | Variation 2: From an Organomagnesium Reagent | 55 |
| 3.1.8.2.3 | Variation 3: From an Organolithium Reagent | 56 |
| 3.1.8.3 Method 3: Dialkylzincs by Transmetalation of an Organometallic Reagent with a Dialkylzinc | 56 |
| 3.1.8.3.1 Variation 1: From an Organoborane | 57 |
| 3.1.8.3.2 Variation 2: From an Organoaluminum Reagent | 58 |
| 3.1.8.4 Method 4: Dialkylzincs by Transmetalation of an Organometallic Reagent with Zinc | 58 |
| 3.1.8.5 Method 5: Dialkylzincs from an Alkyl Halide and Zinc | 59 |
| 3.1.8.6 Method 6: Alkylzinc Halides by Transmetalation of an Organometallic Reagent with a Zinc Halide | 59 |
| 3.1.8.7 Method 7: Alkylzinc Halides from an Alkyl Halide and a Dialkylzinc | 60 |
| 3.1.8.7.1 Variation 1: Using a Palladium Catalyst | 60 |
| 3.1.8.7.2 Variation 2: Using a Nickel Catalyst | 61 |
| 3.1.8.7.3 Variation 3: Using a Mixed-Metal System (Manganese/Copper) | 62 |
| 3.1.8.8 Method 8: Alkylzinc Halides from an Alkyl Halide and Zinc | 63 |
| 3.1.8.8.1 Variation 1: Using Zinc Dust | 63 |
| 3.1.8.8.2 Variation 2: Using Activated Zinc | 64 |
| 3.1.8.8.3 Variation 3: Using a Zinc Anode | 65 |
| 3.1.8.9 Methods 9: Additional Methods | 66 |
| Applications of Product Subclass 8 in Organic Synthesis | 67 |
| 3.1.8.10 Method 10: Uncatalyzed Reactions | 67 |
| 3.1.8.11 Method 11: Copper-Catalyzed Reactions | 68 |
| 3.1.8.12 Method 12: Palladium- and Nickel-Catalyzed Reactions | 69 |
| 3.1.8.13 Method 13: Cobalt-, Iron-, and Manganese-Catalyzed Reactions | 71 |
| 3.1.8.14 Method 14: Asymmetric Reactions Mediated by Zinc Organometallics | 72 |
| 3.1.9 Product Subclass 9: Zinc–Carbenoid Complexes | 74 |
| Synthesis of Product Subclass 9 | 74 |
| 3.1.9.1 Method 1: Bis(\(\alpha\)-halomethyl)zincs or Other Zinc Carbenoids from a Dihalomethane and a Diorganozinc | 75 |
| 3.1.9.2 Method 2: Bis(\(\alpha\)-halomethyl)zincs or Other Zinc Carbenoids by Transmetalation of an Organometallic Reagent with a Zinc Halide | 75 |
| 3.1.9.3 Method 3: \(\alpha\)-Halogenated Alkylzinc Halides from a Dihalomethane and an Organozinc Reagent | 76 |
| 3.1.9.4 Method 4: \(\alpha\)-Halogenated Alkylzinc Halides from a Dihalomethane and Zinc Dust | 76 |
| 3.1.9.5 Methods 5: Additional Methods | 77 |
| Applications of Product Subclass 9 in Organic Synthesis | 77 |
| 3.1.9.6 Method 6: Cyclopropanation of Alkenes | 77 |
| 3.1.9.7 Method 7: Homologation of an Organometallic with Iodomethylzinc(II) Iodide | 78 |
| 3.1.10 Product Subclass 10: Triorganozincates | 79 |
| Synthesis of Product Subclass 10 | 79 |
3.1 Method 1: Lithium Triorganozincates from an Organolithium Reagent and a Zinc Halide ... 79
3.1.10 Method 2: Lithium Triorganozincates from a Triorganozincate and an Alkyne .. 80
3.1.10.1 Variation 1: From a 1,1-Dihalide .. 80
3.1.10.2 Variation 2: From an Aryl Iodide .. 81
Applications of Product Subclass 10 in Organic Synthesis 81
3.1.10.3 Method 3: 1,4-Addition of Triorganozincates to \(\alpha,\beta \)-Unsaturated Ketones ... 81

3.2 Product Class 2: Organometallic Complexes of Cadmium
P. O’Brien and M. A. Malik

3.2 Product Class 2: Organometallic Complexes of Cadmium 91
3.2.1 Product Subclass 1: Organocadmium Halides 92
Synthesis of Product Subclass 1 ... 92
3.2.1.1 Method 1: From Organolithium Compounds 92
3.2.1.2 Method 2: By Direct Electrochemical Synthesis 94
3.2.1.3 Method 3: From the Reaction of Active Cadmium Slurries and Alkyl Iodides .. 95
3.2.1.4 Method 4: From the Reaction of Pentafluorohalobenzenes and Cadmium(II) Halides ... 96
Applications of Product Subclass 1 in Organic Synthesis 96
3.2.1.5 Method 5: Ketones from Acid Halides or Ketene 96
3.2.2 Product Subclass 2: Cadmium Compounds of the Type \(\text{R}^1 \text{CdX} \) (\(\text{X} = \text{Heteroatom} \)) 97
Synthesis of Product Subclass 2 ... 97
3.2.2.1 Method 1: Bis[bis(trimethylsilyl)amino][pentamethylcyclopentadienyl]-cadmium(II) ... 97
3.2.2.2 Method 2: Methylcadmium Alkoxides and Alkyl Methylcadmium Sulfides 97
3.2.2.3 Method 3: Methyl(trimethylsilyloxy)cadmium ... 99
3.2.2.4 Method 4: (tert-Butylperoxy)methylcadmium 99
3.2.2.5 Method 5: Alkylcadmium Thiocyanates 100
3.2.2.6 Method 6: Cadmium–Tris(dimethylamino)methylene phosphorane Complex ... 100
3.2.2.7 Method 7: Cadmium–\(\pi \)-Arene Complexes 101
3.2.2.8 Method 8: Methyl(selanyl)cadmium(II) Compounds 101
3.2.2.9 Method 9: Alkyl\([N,N\text{-diethylthio(or diseleno)carbamato}]\text{cadmium(II) Compounds} ... 102
3.2.2.9.1 Variation 1: From the Reaction of Dimethylcadmium and Diethylamine, Followed by Insertion of Carbon Disulfide or Carbon Diselenide 102
<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Details</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.3</td>
<td>3.2.3.1</td>
<td>Method 1: From Organomagnesium Compounds</td>
<td>105</td>
</tr>
<tr>
<td>3.2.3.2</td>
<td>Method 2:</td>
<td>From Bis[bis(trimethylsilyl)amino]cadmium</td>
<td>106</td>
</tr>
<tr>
<td>3.2.3.3</td>
<td>Method 3:</td>
<td>From Organolithium Compounds</td>
<td>107</td>
</tr>
<tr>
<td>3.2.3.3.1</td>
<td>Variation 1:</td>
<td>With Bis(acetylacetonato)cadmium</td>
<td>107</td>
</tr>
<tr>
<td>3.2.3.3.2</td>
<td>Variation 2:</td>
<td>With Cadmium(II) Halides</td>
<td>107</td>
</tr>
<tr>
<td>3.2.3.4</td>
<td>Method 4:</td>
<td>From a Dialkylcadmium and an Alkyne</td>
<td>108</td>
</tr>
<tr>
<td>3.2.3.5</td>
<td>Method 5:</td>
<td>From Transmetalation Reactions of Organothallium Compounds</td>
<td>108</td>
</tr>
<tr>
<td>3.2.3.6</td>
<td>Method 6:</td>
<td>From the Pyrolysis of Cadmium(II) Pentafluorobenzoate</td>
<td>109</td>
</tr>
<tr>
<td>3.2.3.7</td>
<td>Method 7:</td>
<td>Ketones from Acid Halides or Acid Anhydrides</td>
<td>109</td>
</tr>
<tr>
<td>3.2.3.8</td>
<td>Methods 8:</td>
<td>Additional Methods</td>
<td>110</td>
</tr>
<tr>
<td>3.2.4</td>
<td>3.2.4.1</td>
<td>Method 1: From Grignard Reagents</td>
<td>110</td>
</tr>
<tr>
<td>3.2.4.1.1</td>
<td>Variation 1:</td>
<td>Alkylmagnesium Bromides with Cadmium(II) Bromide</td>
<td>111</td>
</tr>
<tr>
<td>3.2.4.1.2</td>
<td>Variation 2:</td>
<td>Methylmagnesium Iodide with Cadmium(II) Chloride</td>
<td>111</td>
</tr>
<tr>
<td>3.2.4.1.3</td>
<td>Variation 3:</td>
<td>2,2-Dimethylpropylmagnesium Bromide with Cadmium(II) Iodide</td>
<td>112</td>
</tr>
<tr>
<td>3.2.4.1.4</td>
<td>Variation 4:</td>
<td>Butylmagnesium Bromide with Cadmium(II) Chloride</td>
<td>113</td>
</tr>
<tr>
<td>3.2.4.1.5</td>
<td>Variation 5:</td>
<td>[(Trimethylsilyl)methyl]magnesium Chloride with Cadmium(II) Iodide</td>
<td>113</td>
</tr>
<tr>
<td>3.2.4.1.6</td>
<td>Variation 6:</td>
<td>(+)-(S)-(2-Methylbutyl)magnesium Chloride with Cadmium(II) Chloride</td>
<td>114</td>
</tr>
<tr>
<td>3.2.4.1.7</td>
<td>Variation 7:</td>
<td>(3-Methoxypropyl)magnesium Chloride with Cadmium(II) Chloride</td>
<td>114</td>
</tr>
<tr>
<td>3.2.4.1.8</td>
<td>Variation 8:</td>
<td>Grignard Reagents with Organocadmium Compounds (Synthesis of Unsymmetrical Dialkylcadmiums)</td>
<td>115</td>
</tr>
<tr>
<td>3.2.4.2</td>
<td>Method 2:</td>
<td>From Metal Vapors</td>
<td>115</td>
</tr>
<tr>
<td>3.2.4.3</td>
<td>Method 3:</td>
<td>From an Aminocadmium Derivative</td>
<td>116</td>
</tr>
<tr>
<td>3.2.4.4</td>
<td>Method 4:</td>
<td>From Organolithium Compounds</td>
<td>117</td>
</tr>
<tr>
<td>3.2.4.4.1</td>
<td>Variation 1:</td>
<td>Bis- and Tris(trimethylsilyl)methylithium with Cadmium(II) Chloride</td>
<td>117</td>
</tr>
<tr>
<td>3.2.4.4.2</td>
<td>Variation 2:</td>
<td>[(Dimethylsilyl)bis(trimethylsilyl)methyl]lithium and Derivatives with Cadmium(II) Chloride</td>
<td>117</td>
</tr>
</tbody>
</table>

Applications of Product Subclass 3 in Organic Synthesis

Applications of Product Subclass 4 in Organic Synthesis
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.4.5</td>
<td>Method 5: Ketones from Acid Halides or Acid Anhydrides</td>
</tr>
<tr>
<td>3.2.4.6</td>
<td>Method 6: Open-Chain α,α’-Dihydroxy Ketones from Butane-2,3-dione</td>
</tr>
<tr>
<td>3.2.4.7</td>
<td>Method 7: Preparation of Tetramethylgermane of High Purity</td>
</tr>
<tr>
<td>3.2.4.8</td>
<td>Method 8: Cross Coupling and Homocoupling of Aryl Halides</td>
</tr>
<tr>
<td>3.2.4.9</td>
<td>Method 9: Synthesis of 2-Acylbenzoic Acids</td>
</tr>
<tr>
<td>3.2.4.10</td>
<td>Methods 10: Additional Methods</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Product Subclass 5: Bis(perfluoroalkyl)cadmiums</td>
</tr>
<tr>
<td>3.2.5.1</td>
<td>Method 1: From Metal Vapor and Trifluoromethyl Radicals</td>
</tr>
<tr>
<td>3.2.5.2</td>
<td>Method 2: By Ligand-Exchange Reactions</td>
</tr>
<tr>
<td>3.2.5.3</td>
<td>Method 3: From Perfluoroalkyl Iodides and Dialkycadmiums</td>
</tr>
<tr>
<td>3.2.5.4</td>
<td>Method 4: Reaction of Bis(trifluoromethyl)cadmium–Base Complexes with Inorganic Salts</td>
</tr>
<tr>
<td>3.2.5.5</td>
<td>Method 5: Reaction of Bis(trifluoromethyl)cadmium–1,2-Dimethoxyethane Complex with Acyl Halides</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Product Subclass 6: Dialkycadmium Adducts</td>
</tr>
<tr>
<td>3.2.6.1</td>
<td>Method 1: By Mixing in an Organic Solvent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>Product Class 3: Organometallic Complexes of Mercury</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Product Subclass 1: Organomercury(II) Hydrides</td>
</tr>
<tr>
<td>3.3.1.1</td>
<td>Method 1: From Organomercury(II) Halides and Sodium Borohydride in a Mixed Aqueous Solvent</td>
</tr>
<tr>
<td>3.3.1.2</td>
<td>Method 2: From Organomercury(II) Halides and Hydride Reducing Agents</td>
</tr>
<tr>
<td>3.3.1.3</td>
<td>Method 3: Applications of Organomercury(II) Hydrides</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Product Subclass 2: Arylmercury(II) Compounds</td>
</tr>
<tr>
<td>3.3.2.1</td>
<td>Method 1: Electrophilic Substitution by Mercury(II) Salts</td>
</tr>
<tr>
<td>3.3.2.2</td>
<td>Method 2: Mercury Substitution of Arenediazonium Salts</td>
</tr>
<tr>
<td>3.3.2.3</td>
<td>Method 3: Elimination of Sulfinates</td>
</tr>
<tr>
<td>3.3.2.4</td>
<td>Method 4: Decarboxylation of Arenecarboxylates</td>
</tr>
<tr>
<td>3.3.2.5</td>
<td>Method 5: Trihalomethyl Anion Addition to Arylmercury(II) Compounds</td>
</tr>
</tbody>
</table>
Applications of Product Subclass 2 in Organic Synthesis

3.3.6 Method 6: Synthesis of Cyclopropanes

3.3 Product Subclass 3: Alk-1-ynyl- and Vinylmercury(II) Compounds

Synthesis of Product Subclass 3

3.3.3.1 Method 1: From Alk-1-ynes and Mercury(II) Halides with Base

3.3.3.2 Method 2: From Vinyl and Alk-1-ynyl Halides and Mercury(II) Cyanide

3.3.3.3 Method 3: From Alkynes and Alkenes with Mercury(II) Halides and Carboxylates under Nonbasic Conditions

Applications of Product Subclass 3 in Organic Synthesis

3.3.3.4 Method 4: Alkylation

3.3.3.5 Method 5: Carbonylation

3.3.3.6 Method 6: Aryl, Alk-1-ynyl, or Vinyl Coupling

3.3.3.7 Method 7: Heck-Type Addition

3.3.3.8 Method 8: Products from Formal Electrophilic Substitution Reactions

3.3.4 Product Subclass 4: Allylmercury(II) Compounds

Synthesis of Product Subclass 4

3.3.4.1 Method 1: Reaction of Allylic Halides with Mercury(0)

3.3.4.2 Method 2: Reaction of η²-Allylmetal Complexes with Mercury(0)

Applications of Product Subclass 4 in Organic Synthesis

3.3.4.3 Method 3: Synthesis of β,γ-Unsaturated Ketones

3.3.4.4 Method 4: Synthesis of Allylic Acetates

3.3.5 Product Subclass 5: β- and γ-Heterosubstituted Alkylmercury(II) Compounds; Oxymercuration

Synthesis of Product Subclass 5

3.3.5.1 Method 1: β-Heteroalkylmercury(II) Compounds from Oxymercuration of Alkynes

3.3.5.2 Method 2: β-Heteroalkylmercury(II) Compounds from Oxymercuration of Allenes

3.3.5.3 Method 3: β-Heteroalkylmercury(II) Compounds from Oxymercuration of 1,3-Dienes

3.3.5.4 Method 4: β-Heteroalkylmercury(II) Compounds from Oxymercuration of Alkenes

3.3.5.5 Method 5: Biomimetic-Type Cyclizations: Oxymercuration of Polyenes

3.3.5.6 Method 6: γ-Heteroalkylmercury(II) Compounds: Oxymercuration of Cyclopropanes

Applications of Product Subclass 5 in Organic Synthesis

3.3.6 Product Subclass 6: Alkylmercury(II) Compounds

Synthesis of Product Subclass 6

3.3.6.1 Method 1: Transmetalation with Organoboron

3.3.6.2 Method 2: Transmetalation with Organomagnesium and Organolithium Reagents
3.3.6.1 Variation 1: Transmetalation with Organomagnesium Reagents 262
3.3.6.2 Variation 2: Transmetalation with Organolithium 263
3.3.6.3 Method 3: Decarboxylation of Mercury(II) Carboxylates 264
3.3.6.4 Method 4: Symmetrization of an Organomercury(II) Salt to the Corresponding Diorganomercury(II) Compound 267
3.3.6.4.1 Variation 1: Symmetrization ... 268
3.3.6.4.2 Variation 2: Reductive Disproportionation ... 270
3.3.6.5 Method 5: Formation of Organomercury(II) Salts 271
3.3.6.5.1 Variation 1: Anion-Exchange Reactions ... 272
3.3.6.5.2 Variation 2: Desymmetrization and Redistribution 274
3.3.6.5.3 Applications of Product Subclass 6 in Organic Synthesis 275
3.3.6.6 Method 6: Organomercury(II) Compounds as Radical Sources 277
3.3.6.6.1 Variation 1: Reductive Demercuration .. 279
3.3.6.6.2 Variation 2: Radical Trapping by Oxygen ... 280
3.3.6.6.3 Variation 3: Additions to Alkenes and Alkynes 283
3.3.6.7 Method 7: Acylation of Organomercury(II) Derivatives 285
3.3.6.8 Method 8: Halogenation of Organomercury(II) Derivatives 286

3.4 Product Class 4: Organometallic Complexes of Copper
H. Heaney and S. Christie

3.4 Product Class 4: Organometallic Complexes of Copper 305
3.4.1 Product Subclass 1: Monoarylcopper(I) Compounds 317
3.4.1.1 From Arylmagnesium Halides ... 317
3.4.1.1 Method 1: From Arylmagnesium Halides Using Catalytic Amounts of Copper Salts ... 318
3.4.1.1.1 Variation 1: Substitution Reactions ... 318
3.4.1.1.2 Variation 2: Conjugate Addition Reactions .. 325
3.4.1.2 Method 2: From Arylmagnesium Halides Using Stoichiometric Amounts of Copper Salts ... 328
3.4.1.2.1 Variation 1: Substitution Reactions ... 328
3.4.1.2.2 Variation 2: Conjugate Addition Reactions .. 334
3.4.1.3 Method 3: From Arylmagnesium Halides in the Presence of Copper Salts and Chlorotrimethylsilane ... 335
3.4.1.3.1 Variation 1: Conjugate Addition Reactions .. 335
3.4.1.4 Method 4: From Arylmagnesium Halides in the Presence of Boron Trifluoride and Other Lewis Acids ... 337
3.4.1.4.1 Variation 1: Use of Boron Trifluoride in Substitution Reactions 337
3.4.1.4.2 Variation 2: Use of Boron Trifluoride in Conjugate Addition Reactions ... 338
3.4.1.4.3 Variation 3: Use of Aluminum Trichloride and Diethylaluminum Chloride in Conjugate Addition Reactions ... 339
3.4.1.4.4 Variation 4: Use of Ytterbium Chloride .. 339
3.4.1.2 From Aryllithium Reagents ... 340
3.4.1.2.1 Method 1: From Aryllithium Reagents Formed by Metalation Reactions 340
3.4.1.2.1 Variation 1: Using an Alkyllithium Reagent .. 340
3.4.1.2.2 Method 2: From Aryllithium Reagents Formed by Halogen–Metal
 Interconversion Reactions Using an Alkyllithium Reagent 344
3.4.1.2.2.1 Variation 1: Reactions of Arylcopper Reagents with Carbonyl Compounds 344
3.4.1.2.2.2 Variation 2: Biaryl Formation Involving Coupling of sp²-Hybridized
 Carbon Centers .. 345
3.4.1.2.2.3 Variation 3: Substitution Reactions Involving a Leaving Group at
 an sp³-Hybridized Carbon .. 348
3.4.1.2.2.4 Variation 4: Conjugate Addition Reactions .. 350
3.4.1.3 From Aryl Halides and Copper(0), Including Rieke Copper 352
3.4.1.3.1 Method 1: Ullmann Biaryl Syntheses from Aryl Halides and Copper(0) 352
3.4.1.3.2 Method 2: Diastereoselective Ullmann Biaryl Syntheses from
 Aryl Halides and Copper(0) .. 356
3.4.1.3.3 Method 3: Mechanistic Studies Concerning the Ullmann Reaction 359
3.4.1.3.4 Method 4: Biaryl Syntheses from Aryl Halides and Copper(I) Salts 361
3.4.1.3.5 Method 5: Reactions of Aryl Halides with Active Copper(0)
 (Rieke Copper) ... 364
3.4.1.4 From Arylzinc Reagents Together with a Copper(I) Salt 370
3.4.1.4.1 Method 1: Substitution Reactions .. 371
3.4.1.4.1.1 Variation 1: Reactions with Allylic Substrates 371
3.4.1.4.1.2 Variation 2: Reactions with Propargylic Substrates 373
3.4.1.4.1.3 Variation 3: Substitution of Haloalkenes by
 Addition–Elimination Reactions .. 374
3.4.1.4.1.4 Variation 4: Formation of Ketones by Addition–Elimination 374
3.4.1.4.2 Method 2: Conjugate Addition Reactions .. 375
3.4.1.5 From Arylmercury Salts Together with Copper(0) 376
3.4.1.6 From Aryllead(IV) Acetates and Copper(I) Salts 377
3.4.1.7 From Arylsilanes and Copper(I) Salts .. 377
3.4.2 Product Subclass 2: Monoalkynylcopper(I) Compounds 378
3.4.2.1 Method 1: From Alkynes and Water-Soluble Copper(I) Salts 378
3.4.2.2 Method 2: Coupling Reactions of Haloaromatic Compounds Leading to
 Disubstituted Alkynes ... 380
3.4.2.3 Method 3: Coupling Reactions of Haloaromatic Compounds Leading to
 Heterocyclic Ring Formation .. 384
3.4.2.3.1 Variation 1: The Synthesis of Benzo[b]furan and Pyridofuran Derivatives . 384
3.4.2.3.2 Variation 2: Synthesis of Indole Derivatives 386
3.4.2.3.3 Variation 3: Synthesis of Benzo[b]thiophenes 388
3.4.2.3.4 Variation 4: Cyclization Reactions of Aromatic Vicinally Related
 Halocarboxylic Acids ... 389
3.4.2.3.5 Variation 5: Cyclization Reactions of 2-Iodobenzyl Alcohol and
 2-Iodophenylacetic Acid .. 390
3.4.2.4 Method 4: From Alkynes and Copper(I) Salts and Complexes 390
3.4.2.5 Method 5: Oxidative Coupling Reactions of Alkynes Involving Copper(II)
 and Copper(I) Salts and Complexes ... 393
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.2.6</td>
<td>Method 6</td>
<td>Copper/Palladium-Catalyzed Coupling Reactions of Terminal Alkynes with Organic Halides</td>
</tr>
<tr>
<td>3.4.2.6.1</td>
<td>Variation 1</td>
<td>Coupling Reactions of Alkynes with Aryl Halides</td>
</tr>
<tr>
<td>3.4.2.6.2</td>
<td>Variation 2</td>
<td>Coupling Reactions of Alkynes as Double Electrophile Components in Ring Syntheses</td>
</tr>
<tr>
<td>3.4.2.6.3</td>
<td>Variation 3</td>
<td>Coupling Reactions of Alkynes with Aryl Trifluoromethanesulfonates</td>
</tr>
<tr>
<td>3.4.2.6.4</td>
<td>Variation 4</td>
<td>Sonogashira–Hagihara Coupling Reactions in Oligomer and Polymer Synthesis</td>
</tr>
<tr>
<td>3.4.2.6.5</td>
<td>Variation 5</td>
<td>Coupling Reactions of Alkynes with Substituted Alkenes</td>
</tr>
<tr>
<td>3.4.2.6.6</td>
<td>Variation 6</td>
<td>Coupling Reactions of Alkynes with Alkenyl Halides</td>
</tr>
<tr>
<td>3.4.2.6.7</td>
<td>Variation 7</td>
<td>Coupling Reactions of Alkynes with Dihaloalkanes</td>
</tr>
<tr>
<td>3.4.2.6.8</td>
<td>Variation 8</td>
<td>Coupling Reactions with Alkenyl Trifluoromethanesulfonates</td>
</tr>
<tr>
<td>3.4.2.6.9</td>
<td>Variation 9</td>
<td>Coupling Reactions of Alkynyl Halides</td>
</tr>
</tbody>
</table>

Product Subclass 3: Monoalkenylcopper(I) Compounds

<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.3.1</td>
<td>Method 1</td>
<td>From Alkynes by Carbocupration</td>
</tr>
<tr>
<td>3.4.3.2</td>
<td>Method 2</td>
<td>From Alkenylmagnesium Halides</td>
</tr>
<tr>
<td>3.4.3.2.1</td>
<td>Variation 1</td>
<td>Substitution Reactions Using Catalytic Amounts of Copper(I)</td>
</tr>
<tr>
<td>3.4.3.2.2</td>
<td>Variation 2</td>
<td>Conjugate Additions Reactions Using Catalytic Amounts of Copper(I)</td>
</tr>
<tr>
<td>3.4.3.2.3</td>
<td>Variation 3</td>
<td>Substitution Reactions Using Stoichiometric Amounts of Copper(I)</td>
</tr>
<tr>
<td>3.4.3.2.4</td>
<td>Variation 4</td>
<td>Conjugate Addition Reactions Using Stoichiometric Amounts of Copper(I)</td>
</tr>
<tr>
<td>3.4.3.3</td>
<td>Method 3</td>
<td>From Alkenyllithium Reagents and Stoichiometric Amounts of Copper(I)</td>
</tr>
<tr>
<td>3.4.3.4</td>
<td>Method 4</td>
<td>From Alkenylzinc Reagents and Copper(I) Salts</td>
</tr>
<tr>
<td>3.4.3.5</td>
<td>Method 5</td>
<td>From Alkenyl Halides Using Activated Rieke Copper</td>
</tr>
</tbody>
</table>

Product Subclass 4: Monoalkylcopper(I) Compounds

<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.4.1</td>
<td>Method 1</td>
<td>From Alkylmagnesium Halides and Copper(I) Halides</td>
</tr>
<tr>
<td>3.4.4.1.1</td>
<td>Variation 1</td>
<td>Substitution Reactions Using a Catalytic Amount of Copper Salt</td>
</tr>
<tr>
<td>3.4.4.1.2</td>
<td>Variation 2</td>
<td>Conjugate Addition Reactions Using a Catalytic Amount of Copper Salt</td>
</tr>
<tr>
<td>3.4.4.1.3</td>
<td>Variation 3</td>
<td>Substitution Reactions Using a Stoichiometric Amount of Copper Salt</td>
</tr>
<tr>
<td>3.4.4.1.4</td>
<td>Variation 4</td>
<td>Conjugate Addition Reactions Using a Stoichiometric Amount of Copper Salt</td>
</tr>
<tr>
<td>3.4.4.2</td>
<td>Method 2</td>
<td>From Alkylithium Reagents</td>
</tr>
<tr>
<td>3.4.4.2.1</td>
<td>Variation 1</td>
<td>Substitution Reactions</td>
</tr>
<tr>
<td>3.4.4.2.2</td>
<td>Variation 2</td>
<td>Conjugate Addition Reactions</td>
</tr>
<tr>
<td>3.4.4.2.3</td>
<td>Variation 3</td>
<td>Substitution Reactions in the Presence of Boron Trifluoride</td>
</tr>
<tr>
<td>3.4.4.2.4</td>
<td>Variation 4</td>
<td>Conjugate Addition Reactions in the Presence of Boron Trifluoride</td>
</tr>
<tr>
<td>3.4.4.2.5</td>
<td>Variation 5</td>
<td>Conjugate Addition in the Presence of Halotrimethylsilanes</td>
</tr>
<tr>
<td>3.4.4.3</td>
<td>Method 3</td>
<td>From Alkylzinc Reagents</td>
</tr>
</tbody>
</table>

Science of Synthesis Original Edition Volume 3
© Georg Thieme Verlag KG
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Method</th>
<th>Reaction Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.3.1</td>
<td>Variation 1</td>
<td>Substitution</td>
<td>Reactions with a Catalytic Amount of Copper</td>
<td>554</td>
</tr>
<tr>
<td>3.4.3.2</td>
<td>Variation 2</td>
<td>Conjugate Addition</td>
<td>Reactions with a Catalytic Amount of Copper</td>
<td>556</td>
</tr>
<tr>
<td>3.4.3.3</td>
<td>Variation 3</td>
<td>Substitution</td>
<td>Reactions with a Stoichiometric Amount of Copper</td>
<td>557</td>
</tr>
<tr>
<td>3.4.3.4</td>
<td>Variation 4</td>
<td>Addition</td>
<td>Reactions with a Stoichiometric Amount of Copper</td>
<td>559</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Method 4</td>
<td>From Alkyl Halides Using Activated Rieke Copper</td>
<td>562</td>
<td></td>
</tr>
<tr>
<td>3.4.4.3</td>
<td>Variation 1</td>
<td>Substitution</td>
<td>Reactions</td>
<td>565</td>
</tr>
<tr>
<td>3.4.4.2</td>
<td>Variation 2</td>
<td>Conjugate Addition</td>
<td>Reactions</td>
<td>566</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Method 5</td>
<td>From Alkylzirconocene Complexes</td>
<td>565</td>
<td></td>
</tr>
<tr>
<td>3.4.5.1</td>
<td>Variation 1</td>
<td>Substitution</td>
<td>Reactions</td>
<td>566</td>
</tr>
<tr>
<td>3.4.5.2</td>
<td>Variation 2</td>
<td>Conjugate Addition</td>
<td>Reactions</td>
<td>567</td>
</tr>
<tr>
<td>3.4.5.3</td>
<td>Method 1</td>
<td>Diarylcyanocuprates from Aryllithium Reagents</td>
<td>568</td>
<td></td>
</tr>
<tr>
<td>3.4.5.4</td>
<td>Variation 1</td>
<td>Substitution</td>
<td>Reactions</td>
<td>569</td>
</tr>
<tr>
<td>3.4.5.5</td>
<td>Variation 2</td>
<td>Conjugate Addition</td>
<td>Reactions</td>
<td>573</td>
</tr>
<tr>
<td>3.4.5.6</td>
<td>Method 2</td>
<td>Dialkenylcyanocuprates from Alkenyllithium Reagents</td>
<td>576</td>
<td></td>
</tr>
<tr>
<td>3.4.5.7</td>
<td>Variation 1</td>
<td>Substitution</td>
<td>Reactions</td>
<td>576</td>
</tr>
<tr>
<td>3.4.5.8</td>
<td>Variation 2</td>
<td>Conjugate Addition</td>
<td>Reactions</td>
<td>579</td>
</tr>
<tr>
<td>3.4.5.9</td>
<td>Method 3</td>
<td>Dialklycyanocuprates from Alkylithium Reagents</td>
<td>581</td>
<td></td>
</tr>
<tr>
<td>3.4.5.10</td>
<td>Variation 1</td>
<td>Substitution</td>
<td>Reactions</td>
<td>581</td>
</tr>
<tr>
<td>3.4.5.11</td>
<td>Variation 2</td>
<td>Conjugate Addition</td>
<td>Reactions</td>
<td>586</td>
</tr>
<tr>
<td>3.4.5.12</td>
<td>Method 1</td>
<td>Diarylcyanocuprates from Aryllithium Reagents</td>
<td>588</td>
<td></td>
</tr>
<tr>
<td>3.4.5.13</td>
<td>Variation 1</td>
<td>Substitution</td>
<td>Reactions</td>
<td>590</td>
</tr>
<tr>
<td>3.4.5.14</td>
<td>Variation 2</td>
<td>Conjugate Addition</td>
<td>Reactions</td>
<td>591</td>
</tr>
<tr>
<td>3.4.5.15</td>
<td>Method 2</td>
<td>Dialkenylcyanocuprates from Alkenyllithium Reagents</td>
<td>594</td>
<td></td>
</tr>
<tr>
<td>3.4.5.16</td>
<td>Variation 1</td>
<td>Substitution</td>
<td>Reactions</td>
<td>594</td>
</tr>
<tr>
<td>3.4.5.17</td>
<td>Variation 2</td>
<td>Conjugate Addition</td>
<td>Reactions</td>
<td>597</td>
</tr>
<tr>
<td>3.4.5.18</td>
<td>Method 3</td>
<td>Dialklycyanocuprates from Alkylithium Reagents</td>
<td>599</td>
<td></td>
</tr>
<tr>
<td>3.4.5.19</td>
<td>Variation 1</td>
<td>Substitution</td>
<td>Reactions</td>
<td>599</td>
</tr>
<tr>
<td>3.4.5.20</td>
<td>Variation 2</td>
<td>Conjugate Addition</td>
<td>Reactions</td>
<td>600</td>
</tr>
<tr>
<td>3.4.6.1</td>
<td>Method 1</td>
<td>From 2-Thienyllithium</td>
<td>601</td>
<td></td>
</tr>
<tr>
<td>3.4.6.2</td>
<td>Variation 1</td>
<td>Substitution</td>
<td>Reactions</td>
<td>601</td>
</tr>
<tr>
<td>3.4.6.3</td>
<td>Variation 2</td>
<td>Conjugate Addition</td>
<td>Reactions</td>
<td>602</td>
</tr>
<tr>
<td>3.4.6.4</td>
<td>Method 2</td>
<td>From 1H-Imidazol-1-ylithium and 1H-Pyrrol-1-ylithium</td>
<td>604</td>
<td></td>
</tr>
<tr>
<td>3.4.6.5</td>
<td>Method 3</td>
<td>From Rieke Copper</td>
<td>607</td>
<td></td>
</tr>
<tr>
<td>3.4.6.6</td>
<td>Method 4</td>
<td>From Alkenyllithium Reagents</td>
<td>609</td>
<td></td>
</tr>
<tr>
<td>3.4.6.7</td>
<td>Method 5</td>
<td>From Alkenyllithium Reagents</td>
<td>609</td>
<td></td>
</tr>
<tr>
<td>3.4.6.8</td>
<td>Method 6</td>
<td>From Alkenyllithium Reagents</td>
<td>611</td>
<td></td>
</tr>
<tr>
<td>3.4.6.9</td>
<td>Method 7</td>
<td>From Alkenyllithium Reagents</td>
<td>613</td>
<td></td>
</tr>
<tr>
<td>3.4.6.10</td>
<td>Method 8</td>
<td>From Alkenyllithium Reagents</td>
<td>613</td>
<td></td>
</tr>
<tr>
<td>3.4.6.11</td>
<td>Method 9</td>
<td>From Alkenyllithium Reagents</td>
<td>615</td>
<td></td>
</tr>
<tr>
<td>3.4.6.12</td>
<td>Method 10</td>
<td>From Alkenyllithium Reagents</td>
<td>617</td>
<td></td>
</tr>
<tr>
<td>3.4.6.13</td>
<td>Method 11</td>
<td>From Alkenyllithium Reagents</td>
<td>619</td>
<td></td>
</tr>
<tr>
<td>3.4.6.14</td>
<td>Method 12</td>
<td>From Alkenyllithium Reagents</td>
<td>620</td>
<td></td>
</tr>
<tr>
<td>3.4.6.15</td>
<td>Method 13</td>
<td>From Alkenyllithium Reagents</td>
<td>621</td>
<td></td>
</tr>
</tbody>
</table>
3.5 Product Class 5: Organometallic Complexes of Silver

J. P. Fackler and C. W. Liu

3.5.1 Product Subclass 1: Silver–Tetraene Complexes

Synthesis of Product Subclass 1

<table>
<thead>
<tr>
<th>Method 1</th>
<th>From Silver Trifluoromethanesulfonate and a Tetraene</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>663</td>
</tr>
</tbody>
</table>

3.5.2 Product Subclass 2: Silver–Triene Complexes

Synthesis of Product Subclass 2

<table>
<thead>
<tr>
<th>Method 1</th>
<th>From Silver Trifluoromethanesulfonate and a Cyclophane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 2</td>
<td>From Silver Nitrate and a Triene</td>
</tr>
<tr>
<td></td>
<td>664</td>
</tr>
<tr>
<td></td>
<td>665</td>
</tr>
</tbody>
</table>

3.5.3 Product Subclass 3: Silver–Dienyl Complexes

Synthesis of Product Subclass 3

<table>
<thead>
<tr>
<th>Method 1</th>
<th>From Silver Trifluoromethanesulfonate and Cyclopentadienylsodium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>665</td>
</tr>
</tbody>
</table>

3.5.4 Product Subclass 4: Silver–Alkyne Complexes

Synthesis of Product Subclass 4

<table>
<thead>
<tr>
<th>Method 1</th>
<th>Silver–Bis(alkyne) Complexes from Organosilver Compounds and Bis(alkynyl)titanium Complexes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 2</td>
<td>(Hexafluoroacetylacetonato)silver–Alkyne Complexes from Silver(l) Oxide and Alkynes</td>
</tr>
<tr>
<td></td>
<td>667</td>
</tr>
<tr>
<td></td>
<td>668</td>
</tr>
</tbody>
</table>

3.5.5 Product Subclass 5: Silver–Alkene Complexes

Synthesis of Product Subclass 5

<table>
<thead>
<tr>
<th>Method 1</th>
<th>(Hexafluoroacetylacetonato)silver–Alkene Complexes from Silver(l) Oxide and Alkenes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 2</td>
<td>Silver–η²-Arene Complexes from Silver Perchlorate or Trifluoromethanesulfonate and Arenes</td>
</tr>
<tr>
<td></td>
<td>669</td>
</tr>
<tr>
<td></td>
<td>669</td>
</tr>
</tbody>
</table>

3.5.6 Product Subclass 6: Silver–Carbene Complexes

Synthesis of Product Subclass 6

<table>
<thead>
<tr>
<th>Method 1</th>
<th>Silver–Carbene Homoleptic Complexes from Imidazol-2-ylidene Derivatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variation 1</td>
<td>By Direct Reaction with the Carbene</td>
</tr>
<tr>
<td>Variation 2</td>
<td>By Reaction under Basic Phase-Transfer-Catalysis Conditions</td>
</tr>
<tr>
<td></td>
<td>671</td>
</tr>
<tr>
<td></td>
<td>671</td>
</tr>
</tbody>
</table>

3.5.7 Product Subclass 7: Silver–Aryl Complexes

Synthesis of Product Subclass 7

<table>
<thead>
<tr>
<th>Method 1</th>
<th>Silver–Aryl Complexes from Metalated Reagents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variation 1</td>
<td>From (Trialkylyphenyl)magnesium Halides</td>
</tr>
<tr>
<td>Variation 2</td>
<td>From Lithiated Reagents</td>
</tr>
<tr>
<td></td>
<td>673</td>
</tr>
<tr>
<td></td>
<td>673</td>
</tr>
<tr>
<td></td>
<td>674</td>
</tr>
</tbody>
</table>
3.5.8 **Product Subclass 8: Silver–α-Alkynyl Complexes** .. 674

Synthesis of Product Subclass 8 .. 675

3.5.8.1 Method 1: Polymeric Silver Acetyldides from a Silver Salt and an Acetylene 675

3.5.8.2 Method 2: Silver–Alkynyl Complexes from Phosphinesilver Complexes and Alkynes .. 675

Applications of Product Subclass 8 in Organic Synthesis 676

3.5.8.3 Method 3: Perchlorophenylacetylene Using a Silver Acetylide 676

3.5.8.4 Method 4: Aryl(phenylethynyl)diazones from Silver Acetylides and Diazonium Salts .. 677

3.5.9 **Product Subclass 9: Silver–α-Alkenyl Complexes** .. 678

Synthesis of Product Subclass 9 .. 679

3.5.9.1 Method 1: From Silver(I) Fluoride and Perfluoroalkynes 679

3.5.10 **Product Subclass 10: Silver–α-Alkyl Homoleptic Complexes** 679

Synthesis of Product Subclass 10 .. 679

3.5.10.1 Method 1: Synthesis of Dialkylsilver Complexes 679

3.5.10.1.1 Variation 1: Via Transmetalation 680

3.5.10.2 Method 2: Synthesis of Perfluoroalkylsilver Compounds 680

3.5.10.3 Method 3: Synthesis of Silver–Ylide Complexes 681

3.5.10.3.1 Variation 1: From Ylides ... 681

3.5.10.3.2 Variation 2: Via Transyldiation 682

3.5.10.3.3 Variation 3: From Phosphonium Salts 683

3.5.11 **Product Subclass 11: Silver–α-Alkyl Non-homoleptic Complexes** 683

Synthesis of Product Subclass 11 .. 683

3.5.11.1 Method 1: Synthesis of Fluoroalkylsilver Compounds 683

3.5.11.2 Method 2: Synthesis of Silver–Ylide Complexes 684

3.5.11.3 Method 3: Dinuclear Silver Complexes from Lithiated Reagents 686

3.5.12 **Product Subclass 12: Miscellaneous Complexes** 686

Synthesis of Product Subclass 12 .. 686

3.5.12.1 Method 1: Synthesis of Silver–Carbonyl Complexes 686

3.6 **Product Class 6: Organometallic Complexes of Gold**

H. Schmidbaur and A. Schier

3.6 **Product Class 6: Organometallic Complexes of Gold** 691

3.6.1 **Product Subclass 1: Unsubstituted Alkylgold(I) and Alkylgold(III) Compounds** 691

Synthesis of Product Subclass 1 .. 692

3.6.1.1 Method 1: Synthesis of Alkylgold(I) Complexes from Organolithium or Grignard Reagents 692

3.6.1.1.1 Variation 1: Via Gold(I) Oxonium Salts 694
3.6.1.2 Method 2: Synthesis of Dialkylgold(I) Complexes from Organolithium Compounds .. 694
3.6.1.3 Method 3: Synthesis of Dialkyl(halo)gold(III) and Related Compounds from Organometallic Reagents 695
3.6.1.3.1 Variation 1: Via Organotin Compounds ... 696
3.6.1.3.2 Variation 2: Via Organolithium Compounds .. 696
3.6.1.3.3 Variation 3: Via \([\text{Au}_2R_14X_2]\) as Starting Materials .. 696
3.6.1.4 Method 4: Synthesis of Trialkylgold(III) Complexes 699
3.6.1.5 Method 5: Synthesis of Tetraalkylaurates(III) 700
3.6.2 Product Subclass 2: Organogold Compounds with Substituted Alkyl Ligands .. 701
3.6.2.1 Method 1: Mononuclear Gold(I) Complexes With Haloalkyl and Pseudohaloalkyl Ligands 701
3.6.2.1.1 Variation 1: From Alkylgold(I) Complexes and Fluoroalkyl Iodides 702
3.6.2.1.2 Variation 2: Insertion of Perfluoroalkenes .. 703
3.6.2.1.3 Variation 3: With Bis(trifluoromethyl)cadmium 703
3.6.2.1.4 Variation 4: With Diazomethane .. 703
3.6.2.2 Method 2: Mononuclear Gold(I) Complexes With Oxo, Ester, Sulfone, Phosphino, Silyl, and Other Functions in the Alkyl Substituent 704
3.6.2.2.1 Variation 1: Auration of Ketones Using Halo(phosphine)gold(I) or Oxonium Salts ... 705
3.6.2.2.2 Variation 2: Auration of Ketones From Cyclopropyl Silyl Ethers 706
3.6.2.2.3 Variation 3: Auration of Acetylacetone .. 706
3.6.2.2.4 Variation 4: Auration of Esters ... 706
3.6.2.2.5 Variation 5: Silylalkylgold(I) Compounds from Organometallic Reagents . 706
3.6.2.3 Method 3: Mononuclear Gold(III) Complexes With Substituted Organic Groups .. 707
3.6.2.3.1 Variation 1: Via Oxidative Addition of Halogen 707
3.6.2.3.2 Variation 2: Via Oxidative Addition of Trifluoroiodomethane 707
3.6.2.4 Method 4: Dinuclear Gold(I) Complexes With Substituted Organic Groups ... 708
3.6.2.4.1 Variation 1: Auration of Malononitrile ... 709
3.6.2.4.2 Variation 2: Auration of Barbituric Acid ... 709
3.6.3 Product Subclass 3: Organogold Compounds with Ylide Ligands ... 710
3.6.3.1 Method 1: Mononuclear Complexes of Gold(I) With One Ylide and One Halogen Ligand .. 710
3.6.3.2 Method 2: Mononuclear Complexes of Gold(I) With Two Ylide Ligands ... 713
3.6.3.3 Method 3: Mononuclear Gold(I) Complexes With One Ylide and One Organic Group .. 713
3.6.3.4 Method 4: Mononuclear Gold(III) Complexes With One Ylide Ligand 714
3.6.3.5 Method 5: Mononuclear Gold(III) Complexes With Two Ylide Ligands ... 715
3.6.3.6 Method 6: Monocyclic Dinuclear Gold(I) Complexes With Bridging Ylide Ligands .. 715
3.6.3.7 Method 7: Monocyclic Dinuclear Gold(II) Complexes With Bridging Ylide Ligands

3.6.3.7.1 Variation 1: Via Oxidative Addition

3.6.3.7.2 Variation 2: Via Substitution Reactions

3.6.3.8 Method 8: Monocyclic Dinuclear Gold(III) Complexes With Bridging Ylide Ligands

3.6.3.9 Method 9: Bicyclic Dinuclear Gold(III) Complexes With Bridging Ylide Ligands

3.6.3.9.1 Variation 1: Via Oxidative Addition

3.6.3.9.2 Variation 2: Via Substitution Reactions

3.6.4 Product Subclass 4: Organogold Compounds With Alkenyl Ligands

Synthesis of Product Subclass 4

3.6.4.1 Method 1: Mononuclear Gold(I) Complexes With Alkenyl Ligands

3.6.4.2 Method 2: Mononuclear Gold(I) Complexes With Cyclopentadienyl Ligands

3.6.4.3 Method 3: Mononuclear Gold(I) Complexes With Ferrocenyl and Cymantrenyl Ligands

3.6.4.4 Method 4: 1,2-Digoldalkenes

3.6.4.5 Method 5: 1,1-Digold(I)alkenium and 1,1-Digold(I)ferrocenium Salts

3.6.4.6 Method 6: 1,6-Digoldferrocene Complexes

3.6.4.7 Method 7: Auracyclopentadiene Compounds

3.6.5 Product Subclass 5: Organogold Compounds with Alkynyl Ligands

Synthesis of Product Subclass 5

3.6.5.1 Method 1: Ligand-Free Gold(I) Acetylides

3.6.5.2 Method 2: Complexation of Gold(I) Acetylides

3.6.5.3 Method 3: Complex Gold(I) Acetylides by Nucleophilic Substitution

3.6.6 Product Subclass 6: Arylgold Compounds

Synthesis of Product Subclass 6

3.6.6.1 Method 1: Arylgold(I) Compounds

3.6.6.1.1 Variation 1: Donor-Free Arylgold(I) Oligomers

3.6.6.1.2 Variation 2: Complexes via the Organometallic Route

3.6.6.1.3 Variation 3: By Decarboxylation

3.6.6.1.4 Variation 4: Using Tetraphenylborates

3.6.6.1.5 Variation 5: Anionic Species via Double Arylation

3.6.6.2 Method 2: Arylgold(III) Compounds

3.6.6.2.1 Variation 1: Auration of Arenes

3.6.6.2.2 Variation 2: Oxidative Addition of Halogen

3.6.6.2.3 Variation 3: Chlorination Using Thallium(III) Chloride

3.6.6.3 Method 3: Diarylgold(III) Compounds

3.6.6.3.1 Variation 1: Diarylthallium Halides as Reagents

3.6.6.3.2 Variation 2: Oxidative Addition of Halogen

3.6.6.3.3 Variation 3: With Arylmercury Reagents

3.6.6.3.4 Variation 4: The Grignard Method
3.6.4 Method 4: Triarylgold(III) Complexes .. 743
3.6.5 Method 5: Tetraarylarurate(III) Complexes 743
3.6.6.1 Variation 1: With Aryllithium Reagents 743
3.6.6.2 Variation 2: With Arylsilver Reagents 744

3.6.7 Product Subclass 7: Heterocycles as Ligands for Gold(I) and Gold(III) Complexes ... 744
Synthesis of Product Subclass 7 .. 744
3.6.7.1 Method 1: With Organolithium and Organosilyl Reagents 744
3.6.7.2 Method 2: Auration of Heterocycles by Tetrachlorauric Acid 745

3.6.8 Product Subclass 8: Carbene Complexes of Gold 745
Synthesis of Product Subclass 8 .. 746
3.6.8.1 Method 1: (Carbene)gold(I) Complexes 746
3.6.8.1.1 Variation 1: Via Addition of Alcohols or Amines to Isonitrile Complexes 746
3.6.8.2 Method 2: (Carbene)gold(III) Complexes 746
3.6.8.2.1 Variation 1: Via Oxidative Addition of Halogen to Gold(I) Complexes 746
3.6.8.2.2 Variation 2: Via Addition of Isonitriles to Azido Complexes 747

3.6.9 Product Subclass 9: Alkene and Alkyne π-Complexes of Gold(I) ... 747
Synthesis of Product Subclass 9 .. 747
3.6.9.1 Method 1: Addition of Alkenes and Alkynes to Gold(I) 747
3.6.9.2 Method 2: Reduction of Tetrachlorauric Acid by Alkenes and Alkynes ... 748

3.6.10 Product Subclass 10: Carbon in Gold Clusters ... 748
Synthesis of Product Subclass 10 .. 749
3.6.10.1 Method 1: Synthesis Based on Phosphorus Ylides 749
3.6.10.2 Method 2: Synthesis Based on Polyborylmethanes 750
3.6.10.3 Method 3: Synthesis Based on Trimethylsilyldiazomethane 752

Keyword Index ... 763
Author Index ... 797
Abbreviations ... 841
Volume 4: Compounds of Group 15 (As, Sb, Bi) and Silicon Compounds

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Table of Contents</td>
<td></td>
<td></td>
<td>IX</td>
</tr>
<tr>
<td>Introduction</td>
<td></td>
<td>Ian Fleming</td>
<td>1</td>
</tr>
<tr>
<td>Product Class 1: Arsenic Compounds</td>
<td></td>
<td>M. D. Smith</td>
<td>13</td>
</tr>
<tr>
<td>Product Class 2: Antimony Compounds</td>
<td></td>
<td>J. W. Burton</td>
<td>53</td>
</tr>
<tr>
<td>Product Class 3: Bismuth Compounds</td>
<td></td>
<td>H. Suzuki and T. Ikegami</td>
<td>77</td>
</tr>
<tr>
<td>Product Class 4: Silicon Compounds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Subclass 1: Disilenes</td>
<td></td>
<td>K. M. Baines and M. S. Samuel</td>
<td>117</td>
</tr>
<tr>
<td>Product Subclass 2: Silenes</td>
<td></td>
<td>K. M. Baines and M. S. Samuel</td>
<td>125</td>
</tr>
<tr>
<td>Product Subclass 3: Silylenes</td>
<td></td>
<td>P. P. Gaspar and D. Zhou</td>
<td>135</td>
</tr>
<tr>
<td>Product Subclass 4: Silyl Hydrides</td>
<td></td>
<td>J. Pietrusza</td>
<td>159</td>
</tr>
<tr>
<td>Product Subclass 5: Disilanes</td>
<td></td>
<td>J. R. Hwu and K. S. Ethiraj</td>
<td>187</td>
</tr>
<tr>
<td>Product Subclass 6: Silyltin Reagents</td>
<td></td>
<td>I. Hemeon and R. D. Singer</td>
<td>205</td>
</tr>
<tr>
<td>Product Subclass 7: Silylboron Reagents</td>
<td></td>
<td>I. Hemeon and R. D. Singer</td>
<td>211</td>
</tr>
<tr>
<td>Product Subclass 8: Silylaluminum Reagents</td>
<td></td>
<td>I. Hemeon and R. D. Singer</td>
<td>219</td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th>4.4.9</th>
<th>Product Subclass 9: Silylzinc Reagents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I. Hemeon and R. D. Singer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.4.10</th>
<th>Product Subclass 10: Silylcopper Reagents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R. D. Singer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.4.11</th>
<th>Product Subclass 11: Silyllithium Reagents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R. D. Singer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.4.12</th>
<th>Product Subclass 12: Haloorganosilanes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M. Nilsson</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.4.13</th>
<th>Product Subclass 13: Silyl Diethers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T. Skrydstrup</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.4.14</th>
<th>Product Subclass 14: Silyl Esters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M. Jaspars</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.4.15</th>
<th>Product Subclass 15: Silyl Imidic Esters (Silylimino Ethers)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E. Lukevics and O. Pudova</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.4.16</th>
<th>Product Subclass 16: Silyl Enol Ethers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. Kobayashi, K. Manabe, H. Ishitani, and J.-I. Matsuo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.4.17</th>
<th>Product Subclass 17: Silyl Ethers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J. D. White and R. G. Carter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.4.18</th>
<th>Product Subclass 18: Silyl Peroxides</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K. Tamao, J.-I. Yoshida and K. Itami</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.4.19</th>
<th>Product Subclass 19: Silyl Sulfides and Selenides</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A. Ricci and M. Comes-Franchini</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.4.20</th>
<th>Product Subclass 20: Silyl Azides</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C. Moberg and H. Adolfsson</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.4.21</th>
<th>Product Subclass 21: Silylamines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K. Tamao and A. Kawachi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.4.22</th>
<th>Product Subclass 22: Silyl Phosphines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J. Pietruszka</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.4.23</th>
<th>Product Subclass 23: Silylmethyl Anions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D. Wang and T. H. Chan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.4.24</th>
<th>Product Subclass 24: Silyl Cyanides</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M. North</td>
</tr>
</tbody>
</table>

225
231
237
247
269
293
305
317
371
413
427
435
451
473
481
499
Table of Contents

4.4.25 Product Subclass 25: Acysilanes
P. C. B. Page and M. J. McKenzie .. 513

4.4.26 Product Subclass 26: 1-Diazo-1-silylalkanes
T. Aoyama and T. Shioiri ... 569

4.4.27 Product Subclass 27: α-Haloalkysilanes
N. J. Lawrence ... 579

4.4.28 Product Subclass 28: α-Silyl Alcohols, Ethers, and Amines
J. M. Aizpurua and C. Palomo .. 595

4.4.29 Product Subclass 29: α,β-Epoxysilanes
G. H. Whitham ... 633

4.4.30 Product Subclass 30: Alkynyl[Ethynyl]silanes
T. Hiyama and A. Mori ... 647

4.4.31 Product Subclass 31: Silyketenes
J.-M. Pons and P. J. Kocienski .. 657

4.4.32 Product Subclass 32: Allenysilanes
J. Pernet ... 669

4.4.33 Product Subclass 33: Arylsilanes
B. A. Keay ... 685

4.4.34 Product Subclass 34: Vinysilanes
K. Oshima ... 713

4.4.35 Product Subclass 35: α-Silyl Carbonyl Compounds
Y. Landais ... 757

4.4.36 Product Subclass 36: β-Silyl Alkyl Halides
W. E. Billups and R. K. Saini .. 773

4.4.37 Product Subclass 37: β-Silyl Alcohols and the Peterson Reaction
D. J. Ager ... 789

4.4.38 Product Subclass 38: Propargylsilanes
J. Pernet ... 811

4.4.39 Product Subclass 39: Benzysilanes
B. Bennetau ... 825

4.4.40 Product Subclass 40: Allylysilanes
T. K. Sarkar ... 837
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.41</td>
<td>Product Subclass 41: β-Silyl Carbonyl Compounds</td>
<td>Ian Fleming</td>
<td>927</td>
</tr>
<tr>
<td>4.4.42</td>
<td>Product Subclass 42: γ-Silyl Alkyl Halides, Alcohols, and Esters Thereof</td>
<td>J. P. Michael and C. B. de Koning</td>
<td>947</td>
</tr>
</tbody>
</table>

Keyword Index
973

Author Index
1003

Abbreviations
1055
Table of Contents

Introduction
Ian Fleming

Introduction .. 1

4.1 Product Class 1: Arsenic Compounds
M. D. Smith

4.1 Product Class 1: Arsenic Compounds .. 13
4.1.1 Product Subclass 1: Triorganooarsenic(III) and Related Compounds 13
 Synthesis of Product Subclass 1 ... 13
 4.1.1.1 Method 1: Alkylation of Metallic Arsenides 13
 4.1.1.2 Method 2: Transmetalation from Other Organometallic Reagents 14
 4.1.1.2.1 Variation 1: From Grignard Reagents and Arsenic(III) Halides 14
 4.1.1.2.2 Variation 2: From Organolithium Reagents and Arsenic(III) Halides 15
 4.1.1.3 Method 3: Direct Synthesis from Metallic Arsenic 16
 4.1.1.4 Method 4: Reduction of Arsenic(V) Oxides 16
 4.1.1.5 Method 5: Addition of Arsine to Multiple Bonds 17
 4.1.1.6 Method 6: Cleavage of Tetraorganooarsenic Derivatives 18
 Applications of Product Subclass 1 in Organic Synthesis 18
 4.1.1.7 Method 7: Triorganooarsenic(III) Derivatives as Halogen Equivalents 18
 4.1.1.7.1 Variation 1: Nucleophilic Halovinylolation 19
 4.1.1.7.2 Variation 2: Carbonyl Haloalkenylation 19
 4.1.2 Product Subclass 2: Diorganooarsenic(III) and Related Compounds 19
 Synthesis of Product Subclass 2 .. 20
 4.1.2.1 Method 1: Transmetalation from Other Organometallic Reagents 20
 4.1.2.1.1 Variation 1: From Grignard Reagents and Arsenic(III) Halides 20
 4.1.2.2 Method 2: Synthesis from Elemental Arsenic 21
 4.1.2.3 Method 3: Thermolysis of Arsenic(V) Derivatives 21
 4.1.2.4 Method 4: Redistribution Reactions 22
 4.1.3 Product Subclass 3: Monoorganooarsenic(III) and Related Compounds 22
 Synthesis of Product Subclass 3 .. 23
 4.1.3.1 Method 1: Transmetalation from Other Organometallic Reagents 23
 4.1.3.1.1 Variation 1: From Grignard Reagents and Arsenic(III) Derivatives 23
 4.1.3.1.2 Variation 2: From Organolithium Reagents and Arsenic(III) Derivatives 23
 4.1.3.2 Method 2: Reduction of Arsonic Acids 24
 4.1.3.3 Method 3: Redistribution Reactions 24
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.4</td>
<td>Product Subclass 4: Pentaorganoaarsenic(V) and Related Compounds</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 4</td>
<td>25</td>
</tr>
<tr>
<td>4.1.4.1</td>
<td>Method 1: Transmetallation from Other Organometallic Reagents</td>
<td>25</td>
</tr>
<tr>
<td>4.1.4.2</td>
<td>Method 2: Reaction Of Arsinimines with Organolithium Reagents</td>
<td>26</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Product Subclass 5: Arsonium Ylides and Related Compounds</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 5</td>
<td>26</td>
</tr>
<tr>
<td>4.1.5.1</td>
<td>Method 1: From Arsonium Salts by the “Salt Method”</td>
<td>27</td>
</tr>
<tr>
<td>4.1.5.2</td>
<td>Method 2: From Reaction with Arsenic(V) Dihalides</td>
<td>27</td>
</tr>
<tr>
<td>4.1.5.3</td>
<td>Method 3: From Arsine Oxides</td>
<td>28</td>
</tr>
<tr>
<td>4.1.5.4</td>
<td>Method 4: From Diazonium Salts</td>
<td>28</td>
</tr>
<tr>
<td>4.1.5.5</td>
<td>Method 5: From Other Ylides by “Transylidation”</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Applications of Product Subclass 5 in Organic Synthesis</td>
<td>30</td>
</tr>
<tr>
<td>4.1.5.6</td>
<td>Method 6: Reactions of Stabilized Arsonium Ylides with Nonconjugated Carbonyl Compounds</td>
<td>30</td>
</tr>
<tr>
<td>4.1.5.6.1</td>
<td>Variation 1: Reactions of Stabilized Arsonium Ylides with α,β-Unsaturated Carbonyl Compounds</td>
<td>32</td>
</tr>
<tr>
<td>4.1.5.7</td>
<td>Method 7: Reactions of Semistabilized Arsonium Ylides with Carbonyl Compounds</td>
<td>32</td>
</tr>
<tr>
<td>4.1.5.8</td>
<td>Method 8: Reactions of Reactive Arsonium Ylides with Carbonyl Compounds</td>
<td>36</td>
</tr>
<tr>
<td>4.1.6</td>
<td>Product Subclass 6: Tetraorganoaarsenic(V) and Related Compounds</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 6</td>
<td>37</td>
</tr>
<tr>
<td>4.1.6.1</td>
<td>Method 1: By Alkylation of Organoaarsenic(III) Derivatives</td>
<td>37</td>
</tr>
<tr>
<td>4.1.6.2</td>
<td>Method 2: Reaction of Arsine Oxides with Grignard Reagents</td>
<td>38</td>
</tr>
<tr>
<td>4.1.7</td>
<td>Product Subclass 7: Triorganoaarsenic(V) and Related Compounds</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 7</td>
<td>38</td>
</tr>
<tr>
<td>4.1.7.1</td>
<td>Method 1: Oxidation of Triorganoaarsenic(III) Compounds</td>
<td>38</td>
</tr>
<tr>
<td>4.1.7.1.1</td>
<td>Variation 1: Reaction With Halogens</td>
<td>39</td>
</tr>
<tr>
<td>4.1.7.1.2</td>
<td>Variation 2: Reaction with “Halogen Substitute” Compounds</td>
<td>39</td>
</tr>
<tr>
<td>4.1.7.1.3</td>
<td>Variation 3: Reaction with Active Oxygen Compounds</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Applications of Product Subclass 7 in Organic Synthesis</td>
<td>41</td>
</tr>
<tr>
<td>4.1.7.2</td>
<td>Method 2: Triorganoaarsenic(V) Derivatives as Halogen Equivalents</td>
<td>41</td>
</tr>
<tr>
<td>4.1.8</td>
<td>Product Subclass 8: Diorganoaarsenic(V) and Related Compounds</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 8</td>
<td>42</td>
</tr>
<tr>
<td>4.1.8.1</td>
<td>Method 1: From Diazonium Salts: The Bart Reaction</td>
<td>42</td>
</tr>
<tr>
<td>4.1.8.2</td>
<td>Method 2: From Alkaline Alkyl Arsonate Salts: The Meyer Reaction</td>
<td>42</td>
</tr>
<tr>
<td>4.1.9</td>
<td>Product Subclass 9: Monoorganoaarsenic(V) and Related Compounds</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 9</td>
<td>43</td>
</tr>
<tr>
<td>4.1.9.1</td>
<td>Method 1: The Bart Reaction</td>
<td>43</td>
</tr>
<tr>
<td>4.1.9.1.1</td>
<td>Variation 1: The Scheller Modification of the Bart Reaction</td>
<td>44</td>
</tr>
</tbody>
</table>
4.1.9.2 Method 2: The Béchamp Reaction ... 45
4.1.9.3 Method 3: The Meyer Reaction .. 45
4.1.9.3.1 Variation 1: The Rosenmund Reaction 46
4.1.9.4 Method 4: Oxidative Hydrolysis .. 46

4.2 Product Class 2: Antimony Compounds
J. W. Burton

4.2 Product Class 2: Antimony Compounds .. 53
4.2.1 Product Subclass 1: Tertiary Stibines 53
4.2.1.1 Synthesis of Product Subclass 1 .. 53
4.2.1.2 Method 1: From Alkali Metal Antimonides 53
4.2.1.2.1 Variation 1: Cleavage of an Aryl—Antimony Bond 54
4.2.1.2.2 Variation 2: Cleavage of an Alkyl—Antimony Bond 54
4.2.1.2.3 Variation 3: Cleavage of a Halo—Antimony Bond 55
4.2.1.2.4 Method 2: By Transmetalation 55
4.2.1.2.4.1 Variation 1: Formation of Symmetrical Tertiary Stibines
Using Grignard Reagents ... 55
4.2.1.2.4.2 Variation 2: Formation of Nonsymmetrical Tertiary Stibines
Using Organolithiums ... 56
4.2.1.3 Applications of Product Subclass 1 in Organic Synthesis 57
4.2.1.3.1 Method 3: Alkenation Reactions 57
4.2.1.3.1.1 Variation 1: Wittig-type Alkenation of Aldehydes Mediated
by Tributylstibine .. 57
4.2.1.3.2 Variation 2: Alkenation of Aldehydes with Dibromomalonates 57
4.2.1.4 Method 4: Palladium-Catalyzed Processes 58
4.2.2 Product Subclass 2: Di- and Monoorganostibines 58
4.2.2.1 Synthesis of Product Subclass 2 .. 58
4.2.2.1.1 Method 1: By Cleavage of Distibines 59
4.2.2.1.2 Method 2: By Redistribution Reactions 59
4.2.2.1.2.1 Variation 1: Reaction of Antimony(III) Halides with Triarylstibines 59
4.2.2.1.2.2 Variation 2: Reaction of Antimony(III) Halides with Halostibines 60
4.2.2.1.3 Method 3: By Transmetalation 60
4.2.2.1.3.1 Variation 1: From Tetraalkyllead 60
4.2.2.1.3.2 Variation 2: From Organostannanes 61
4.2.2.1.4 Method 4: From λ^5-Stibanes 61
4.2.2.1.4.1 Variation 1: Thermolysis of Dihalotriorgan-λ^5-stibanes 61
4.2.2.1.4.2 Variation 2: Thermolysis of Trihalodiorgan-λ^5-stibanes 62
4.2.2.1.4.3 Variation 3: Reduction of λ^5-Stibanes 62
4.2.2.2 Product Subclass 3: Pentaorgan-λ^5-stibanes 62
4.2.2.2.1 Synthesis of Product Subclass 3 62
4.2.2.2.1.1 Method 1: Synthesis of Symmetrical Pentaorgan-λ^5-stibanes ... 63
4.2.2.2.1.2 Method 2: Synthesis of Unsymmetrical Pentaorgan-λ^5-stibanes 63
Applications of Product Subclass 3 in Organic Synthesis 63

4.2.3.3 Method 3: Reaction of \(\lambda^3 \)-Stibanes with Electrophiles 63

4.2.4 Product Subclass 4: Stibonium Ylides and Stibimines 64

Synthesis of Product Subclass 4 ... 64

4.2.4.1 Method 1: Use of Diazocompounds ... 64

4.2.4.2 Method 2: From Sulfonyl Azides ... 65

Applications of Product Subclass 4 in Organic Synthesis 65

4.2.4.3 Method 3: Wittig-type Reactions of Stibonium Ylides 65

4.2.5 Product Subclass 5: Tetraorganom-\(\lambda^3 \)-stibanes 66

Synthesis of Product Subclass 5 ... 66

4.2.5.1 Method 1: By Cleavage of Pentaorganom-\(\lambda^3 \)-stibanes 66

4.2.5.2 Method 2: From Tertiary Stibines .. 66

4.2.5.2.1 Variation 1: By Alkylation of Trialkylstibines 66

4.2.5.2.2 Variation 2: By Arylation of Triarylstibines 67

Applications of Product Subclass 5 in Organic Synthesis 67

4.2.5.3 Method 3: Allylation of Aldehydes by \(\lambda^3 \)-Stibanes 67

4.2.6 Product Subclass 6: Triorganom-\(\lambda^3 \)-stibanes 68

Synthesis of Product Subclass 6 ... 68

4.2.6.1 Method 1: Oxidation of Tertiary Stibines with Bromine 68

Applications of Product Subclass 6 in Organic Synthesis 68

4.2.6.2 Method 2: Formation of Diketones ... 68

4.2.7 Product Subclass 7: Di- and Monoorganom-\(\lambda^3 \)-stibanes 69

Synthesis of Product Subclass 7 ... 69

4.2.7.1 Method 1: By Transmetalation .. 69

4.2.7.2 Method 2: From Tertiary Stibines .. 70

4.2.7.2.1 Variation 1: Cleavage of Triphenylstibine 70

4.2.7.2.2 Variation 2: Halogenation of Halodihorganostibines 70

4.2.7.3 Method 3: From Diazonium Salts .. 70

4.2.7.3.1 Variation 1: Preparation of Unsymmetrical Hydroxybistibine Oxides 70

4.2.7.3.2 Variation 2: Preparation of Dihydroxybistibine Oxides by the Scheller Reaction 71

4.3 Product Class 3: Bismuth Compounds

H. Suzuki and T. Ikekami

4.3 Product Class 3: Bismuth Compounds ... 77

Synthesis of Product Class 3 ... 77

4.3.1 Product Subclass 1: Alkyl- and Arylbismuthines 77

4.3.1.1 Method 1: From Grignard and Organolithium Reagents 78

4.3.1.2 Method 2: From Alkali Bismuthides .. 81
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.3</td>
<td>Method 3: By Transmetalation</td>
<td>81</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Additional Methods</td>
<td>82</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Product Subclass 2: Alkyl- and Arylhalobismuthines</td>
<td>83</td>
</tr>
<tr>
<td>4.3.2.1</td>
<td>Method 1: By Bi—C Bond Cleavage and Redistribution Reactions</td>
<td>84</td>
</tr>
<tr>
<td>4.3.2.2</td>
<td>Method 2: From Organometallic Reagents</td>
<td>86</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Product Subclass 3: Alkyl- and Arylbismuthines Containing Bonds</td>
<td>87</td>
</tr>
<tr>
<td>4.3.3.1</td>
<td>Method 1: From Halobismuthines</td>
<td>88</td>
</tr>
<tr>
<td>4.3.3.2</td>
<td>Method 2: From Alkxybismuthines</td>
<td>89</td>
</tr>
<tr>
<td>4.3.3.3</td>
<td>Method 3: By Cleavage of Bi—C Bond(s) by Acidic Compounds</td>
<td>89</td>
</tr>
<tr>
<td>4.3.3.4</td>
<td>Additional Methods</td>
<td>90</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Product Subclass 4: Dibismuthines and Dibismuthenes</td>
<td>91</td>
</tr>
<tr>
<td>4.3.4.1</td>
<td>Method 1: From Tertiary Bismuthines</td>
<td>93</td>
</tr>
<tr>
<td>4.3.4.2</td>
<td>Method 2: From Halodiorganobismuthines</td>
<td>93</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Product Subclass 5: Organobismuth Compounds with</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>Bismuth–Transition Metal Bonds</td>
<td></td>
</tr>
<tr>
<td>4.3.6</td>
<td>Product Subclass 6: Alkoxy- and Hydroxybismuthine Oxides</td>
<td>94</td>
</tr>
<tr>
<td>4.3.7</td>
<td>**Product Subclass 7: Dihalotriorganobismuth(V) and Related Compounds</td>
<td>95</td>
</tr>
<tr>
<td>4.3.7.1</td>
<td>Method 1: Oxidative Addition of Halogen or Halogen Equivalent to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Triorganobismuthines</td>
<td>96</td>
</tr>
<tr>
<td>4.3.7.2</td>
<td>Method 2: Oxidation of Bismuthines with Ozone, Peroxy Acids,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Other Oxygen Equivalents</td>
<td>97</td>
</tr>
<tr>
<td>4.3.7.3</td>
<td>Method 3: By Metathetical Reactions</td>
<td>97</td>
</tr>
<tr>
<td>4.3.8</td>
<td>**Product Subclass 8: Oxybis(triarylhalobismuth(V)) and Related</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Compounds</td>
<td></td>
</tr>
<tr>
<td>4.3.9</td>
<td>Product Subclass 9: Bismuthine Imides</td>
<td>99</td>
</tr>
<tr>
<td>4.3.9.1</td>
<td>Method 1: From Tertiary Bismuthines</td>
<td>99</td>
</tr>
<tr>
<td>4.3.9.2</td>
<td>Method 2: From Triaryldihalobismuth(V)</td>
<td>100</td>
</tr>
<tr>
<td>4.3.10</td>
<td>Product Subclass 10: Bismuthine Oxides</td>
<td>100</td>
</tr>
<tr>
<td>4.3.11</td>
<td>Product Subclass 11: Bismuthonium Salts</td>
<td>102</td>
</tr>
<tr>
<td>4.3.11.1</td>
<td>Method 1: From Pentaarylbum(V) Compounds</td>
<td>103</td>
</tr>
<tr>
<td>4.3.11.2</td>
<td>Method 2: From Triaryldifluorobismuth(V)</td>
<td>104</td>
</tr>
<tr>
<td>4.3.11.3</td>
<td>Method 3: From Tertiary Bismuthines</td>
<td>105</td>
</tr>
<tr>
<td>4.3.12</td>
<td>Product Subclass 12: Bismuthonium Ylides</td>
<td>105</td>
</tr>
<tr>
<td>4.3.12.1</td>
<td>Method 1: From Tertiary Bismuthines</td>
<td>105</td>
</tr>
<tr>
<td>4.3.12.2</td>
<td>Method 2: From Triarylbum(V) Compounds</td>
<td>106</td>
</tr>
<tr>
<td>4.3.12.3</td>
<td>Method 3: From Bismuthonium Salts</td>
<td>107</td>
</tr>
<tr>
<td>4.3.13</td>
<td>Product Subclass 13: Pentaorganobismuth(V) Compounds</td>
<td>107</td>
</tr>
<tr>
<td>4.3.14</td>
<td>Product Subclass 14: Hexaorganobismuthates</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>Applications of Product Class 3 in Organic Synthesis</td>
<td>108</td>
</tr>
</tbody>
</table>
4.4 Product Class 4: Silicon Compounds

4.4.1 Product Subclass 1: Disilenes
K. M. Baines and M. S. Samuel

4.4.1 Product Subclass 1: Disilenes

4.4.1.1 Method 1: Photolysis of Linear Trisilanes
4.4.1.2 Method 2: Photolysis of Cyclosilanes
4.4.1.3 Method 3: Reductive Coupling of Dihalosilanes
4.4.1.4 Method 4: Reduction of 1,2-Dihalodisilanes
4.4.1.5 Method 5: Photolysis of 2,3-Disilabicyclo[2.2.2]octa-5,7-dienes
4.4.1.6 Additional Methods

4.4.2 Product Subclass 2: Silenes
K. M. Baines and M. S. Samuel

4.4.2 Product Subclass 2: Silenes

4.4.2.1 Method 1: By Photolysis or Thermolysis of Acylsilanes
4.4.2.2 Method 2: By 1,2-Salt Elimination from α-Lithiated Silanes
4.4.2.3 Method 3: Sila-Peterson Reactions
4.4.2.4 Additional Methods

4.4.3 Product Subclass 3: Silynes
P. P. Gaspar and D. Zhou

4.4.3 Product Subclass 3: Silynes

4.4.3.1 Method 1: Reduction of Dihalosilanes
4.4.3.2 Method 2: Insertion Reactions

Synthesis of Product Subclass 3

Applications of Product Subclass 3 in Organic Synthesis
Table of Contents

4.4.3

Method 3: Addition Reactions ... 147

Variation 1: To Dienes ... 147

Variation 2: To Aldehydes, Ketones, and Imines 148

Variation 3: To Alkynes and Nitriles 152

Variation 4: To Isocyanides and Azides 152

Variation 5: To Transition Metals 153

4.4.4

Product Subclass 4: Silyl Hydrides

J. Pietruszka

Synthesis of Product Subclass 4 .. 159

Method 1: From Inorganic Silanes 160

Method 2: From Aryl- and Alkylsilyl Hydrides 163

Method 3: From Silyl Halides .. 168

Method 4: From Silyl Ethers .. 170

Methods 5: Additional Methods 171

Applications of Product Subclass 4 in Organic Synthesis 172

Method 6: Hydrosilylation of Alkenes, Alkynes, and Related Compounds .. 172

Method 7: Silyl Hydrides as Reducing Reagents 176

4.4.5

Product Subclass 5: Disilanes

J. R. Hwu and K. S. Ethiraj

Synthesis of Product Subclass 5 .. 187

Method 1: Via Coupling of Hydrodisilanes 188

Variation 1: By Use of Transition Metal Catalysts 188

Variation 2: By Photolysis of Alkylhydrodisilanes in the Presence of Mercury .. 189

Method 2: Via Photolysis of Organopolysilanes in the Presence of Hydrodisilanes ... 190

Method 3: Via Coupling of (Organosilyl)alkali Metal Salts with Halosilanes .. 190

Method 4: Via Coupling of Halosilanes Using Metals or Metal Salts .. 191

Variation 1: By Use of Alkali Metals 192

Variation 2: By Use of Magnesium Metal 192

Variation 3: By Use of Lithium Naphthalenide 193

Variation 4: By Use of Samarium(II) Iodide 194

Variation 5: By Use of Potassium–Graphite Laminate (C₆K) 194

Method 5: Via Electrochemical Reduction of Halosilanes 195

Method 6: Via Photolysis of Organopolysilanes in the Presence of Trapping Agents ... 196

Variation 1: In the Presence of Ketones 196

Variation 2: In the Presence of Functionalized Alkenes 197
Table of Contents

4.4.5.7 Method 7: From Halodisilanes and Organometallic Reagents 198
4.4.5.8 Additional Methods .. 198
Applications of Product Subclass 5 in Organic Synthesis 199

4.4.6 Product Subclass 6: Silyltin Reagents
I. Hemeon and R. D. Singer

4.4.6 Product Subclass 6: Silyltin Reagents 205
Synthesis of Product Subclass 6 .. 205
4.4.6.1 Method 1: Synthesis of Silyltin Reagents 205
Applications of Product Subclass 6 in Organic Synthesis 207

4.4.7 Product Subclass 7: Silylboron Reagents
I. Hemeon and R. D. Singer

4.4.7 Product Subclass 7: Silylboron Reagents 211
Synthesis of Product Subclass 7 ... 211
4.4.7.1 Method 1: Synthesis of Silylboron Reagents 211
4.4.7.1.1 Variation 1: Synthesis of (Dimethylphenylsilyl)(pinacol)borane from Dimethylphenylsilyllithium and Pinacolborane 213
4.4.7.1.2 Variation 2: Synthesis of (Dimethylphenylsilyl)(pinacol)borane from Dimethylphenylsilyllithium and Isopropoxy(pinacol)borane 214
4.4.7.1.3 Variation 3: Synthesis of Lithium Triethyl(dimethylphenylsilyl)borate .. 214
Applications of Product Subclass 7 in Organic Synthesis 215

4.4.8 Product Subclass 8: Silylaluminum Reagents
I. Hemeon and R. D. Singer

4.4.8 Product Subclass 8: Silylaluminum Reagents 219
Synthesis of Product Subclass 8 ... 219
4.4.8.1 Method 1: Tris(trimethylsilyl)aluminum from Bis(trimethylsilyl)mercury(II) ... 219
4.4.8.1.1 Variation 1: Tris(trimethylsilyl)aluminum from Chlorotrimethylsilane and Aluminum, Lithium, and Mercury Metals 220
4.4.8.2 Additional Methods ... 221
Applications of Product Subclass 8 in Organic Synthesis 221
4.4.9 Product Subclass 9: Silylzinc Reagents

I. Hemeon and R. D. Singer

<table>
<thead>
<tr>
<th>Subclass</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.9</td>
<td>Synthesis of Product Subclass 9</td>
<td>225</td>
</tr>
<tr>
<td>4.4.9.1 Method 1: From a Triorganosilyl Anion Source and Zinc(II) Reagents</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>4.4.9.1.1 Variation 1: Dialkyl(triorganosilyl)zincate Reagents from an Alkylmetal, Triorganosilylmetal Reagents, and Zinc(II) Salts</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applications of Product Subclass 9 in Organic Synthesis</td>
<td>227</td>
</tr>
</tbody>
</table>

4.4.10 Product Subclass 10: Silylcopper Reagents

R. D. Singer

<table>
<thead>
<tr>
<th>Subclass</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.10</td>
<td>Synthesis of Product Subclass 10</td>
<td>231</td>
</tr>
<tr>
<td>4.4.10.1 Method 1: Synthesis of Triorganosilylcopper(I) Reagents</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td>4.4.10.2 Method 2: Synthesis of Mixed Alkyl(triorganosilylcopper(I) Reagents</td>
<td>232</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applications of Product Subclass 10 in Organic Synthesis</td>
<td>233</td>
</tr>
</tbody>
</table>

4.4.11 Product Subclass 11: Silyllithium Reagents

R. D. Singer

<table>
<thead>
<tr>
<th>Subclass</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.11</td>
<td>Synthesis of Product Subclass 11</td>
<td>237</td>
</tr>
<tr>
<td>4.4.11.1 Method 1: By Lithiation of Halotriorganosilanes</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>4.4.11.1.1 Variation 1: Using Lithium Metal</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>4.4.11.1.2 Variation 2: Using an Alkyllithium Reagent</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>4.4.11.2 Method 2: Via Si—Si Bond Cleavage</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>4.4.11.2.1 Variation 1: Reductive Cleavage Using Lithium Metal</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>4.4.11.2.2 Variation 2: Nucleophilic Cleavage Using an Alkyl lithium Reagent</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>4.4.11.3 Method 3: Via Si—Sn Bond Cleavage</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>4.4.11.4 Method 4: From Bis(triorganosilyl)mercury(II) Compounds</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applications of Product Subclass 11 in Organic Synthesis</td>
<td>242</td>
</tr>
</tbody>
</table>

4.4.12 Product Subclass 12: Haloorganosilanes

M. Nilsson†

<table>
<thead>
<tr>
<th>Subclass</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.12</td>
<td>Synthesis of Product Subclass 12</td>
<td>247</td>
</tr>
<tr>
<td>4.4.12.1 Method 1: Conversion of Hydridoorganosilanes into Haloorganosilanes</td>
<td>249</td>
<td></td>
</tr>
<tr>
<td>4.4.12.1.1 Variation 1: By Reaction with Copper(II) Halides</td>
<td>249</td>
<td></td>
</tr>
</tbody>
</table>
4.4.12.2 Variation 2: By Reaction with Hydrogen Halides, Haloalkanes, or Haloarenes .. 250
4.4.12.3 Variation 3: By Reaction with Reactive Organic Halides in the Presence of Tertiary Amines ... 251
4.4.12.4 Variation 4: By Reaction with Dihalogens .. 252
4.4.12.2 Method 2: Halogenolysis of Disilanes ... 252
4.4.12.3 Method 3: Halogenolysis of Si—C Bonds ... 252
4.4.12.4 Method 4: Halogen Exchange .. 254
4.4.12.4.1 Variation 1: Generation In Situ .. 255
4.4.12.5 Method 5: Conversion of Disiloxanes into Haloorganosilanes ... 255
4.4.12.6 Method 6: Direct Synthesis from Silicon and Organic Halides ... 256
4.4.12.7 Method 7: Hydrosilylation of Unsaturated Bonds with Halohydridosilanes .. 257
4.4.12.8 Method 8: Organometallic Exchange of Halogen in a Halosilane To Give a New Halosilane .. 258

Applications of Product Subclass 12 in Organic Synthesis ... 260
4.4.12.9 Fluoroorganosilanes ... 260
4.4.12.10 Chloroorganosilanes ... 261
4.4.12.11 Bromoorganosilanes ... 262
4.4.12.12 Iodoorganosilanes ... 263

4.4.13 Product Subclass 13: Silyl Diethers
T. Skrydstrup

4.4.13 Product Subclass 13: Silyl Diethers ... 269

Synthesis of Product Subclass 13 .. 269
4.4.13.1 Method 1: Synthesis of Symmetrical Acyclic Silyl Diethers ... 269
4.4.13.1.1 Variation 1: From Silanes .. 270
4.4.13.1.2 Variation 2: From Dichlorosilanes .. 271
4.4.13.2 Method 2: Synthesis of Unsymmetrical Acyclic Silyl Diethers ... 273
4.4.13.2.1 Variation 1: From Alkoxy(halo)silanes ... 273
4.4.13.2.2 Variation 2: From Chlorosilyl Pent-4-enyl Ethers ... 276
4.4.13.3 Method 3: Synthesis of Cyclic Silyl Diethers ... 277
4.4.13.3.1 Variation 1: From Silanes .. 277
4.4.13.3.2 Variation 2: From Dichlorosilanes or Silyl Trifluoromethanesulfonates ... 278
4.4.13.3.3 Variation 3: From Hexamethyldichlorosilazane ... 280

Applications of Product Subclass 13 in Organic Synthesis ... 281
4.4.13.4 Method 4: Intramolecular Reactions Using Silicon-Tethered Reactants .. 281
4.4.13.5 Method 5: Standard Protection of Alcohols ... 288
Table of Contents

4.4.14 Product Subclass 14: Silyl Esters
M. Jaspars

4.4.14 Product Subclass 14: Silyl Esters .. 293
Synthesis of Product Subclass 14 .. 295
4.4.14.1 Silyl Sulfates and Trifluoromethanesulfonates 295
4.4.14.1.1 Method 1: Polymer-Supported Silyl Trifluoromethanesulfonates 295
4.4.14.1.2 Method 2: Reaction of Tetrasubstituted Silanes with
Trifluoromethanesulfonic Acid ... 295
4.4.14.1.2.1 Variation 1: Using Trisubstituted Allylsilanes 296
4.4.14.1.3 Method 3: Reaction of Trialkylchlorosilanes with
Trifluoromethanesulfonic Acid ... 296
4.4.14.1.4 Method 4: Reaction of Trialkylchlorosilanes with Sulfuric Acid 297
4.4.14.2 Silyl Phosphates ... 297
4.4.14.2.1 Method 1: Reaction of Bis(trimethylsilyl) Ether with
Phosphorus Pentoxide .. 297
4.4.14.3 Silyl Carboxylates ... 298
4.4.14.3.1 Method 1: Reaction of Hydroxilanes with Carboxylic Acids 298
4.4.14.3.2 Method 2: Reaction of Trialkylchlorosilanes with Carboxylic Acids ... 299
4.4.14.3.2.1 Variation 1: With Sterically Hindered Trialkylchlorosilanes 300
4.4.14.3.3 Method 3: Reaction of Carboxylic Acids with
Trialkylsilyl Trifluoromethanesulfonates 300
4.4.14.3.3.1 Variation 1: With Trialkylsilyl Trifluoromethanesulfonates Formed In Situ . 301
4.4.14.3.4 Method 4: Reaction of Carboxylic Acids with N,N'-Bis(trimethylsilyl)urea ... 302
4.4.14.4 Additional Methods .. 302

4.4.15 Product Subclass 15: Silyl Imidic Esters (Silylimino Ethers)
E. Lukevics and O. Pudova

4.4.15 Product Subclass 15: Silyl Imidic Esters (Silylimino Ethers) 305
Synthesis of Product Subclass 15 .. 306
4.4.15.1 Method 1: Silylation of Amide Derivatives 306
4.4.15.1.1 Variation 1: With Chlorosilanes ... 306
4.4.15.1.2 Variation 2: With Silyl Triflates ... 307
4.4.15.1.3 Variation 3: With Tris(trimethylsilyl)methylamine 308
4.4.15.1.4 Variation 4: With Hexamethyldisilazane 308
4.4.15.1.5 Variation 5: Silylamide-Based Silylation 309
4.4.15.2 Method 2: Catalytic Silylation with Trimethyl(pentafluorophenyl)silane . 310
4.4.15.3 Method 3: Coupling of Alkali Metal Hexamethyldisilazanides with
Acid Derivatives ... 311
4.4.15.3.1 Variation 1: With Acyl Chlorides .. 311
4.4.15.3.2 Variation 2: With Esters .. 312
Product Subclass 16: Silyl Enol Ethers
S. Kobayashi, K. Manabe, H. Ishitani, and J.-I. Matsuo

Method 1: From Carbonyl Compounds, Bases, and Electrophilic Silylating Agents

Variation 1: Synthesis of Silyl Enol Ethers of Aldehydes and Ketones

Variation 2: Synthesis of Silyl Ketene Acetals and Related Compounds

Variation 3: Synthesis of Siloxybutadienes

Variation 4: Chemoselective Synthesis of Silyl Enol Ethers

Variation 5: Enantioselective Synthesis of Silyl Enol Ethers

Variation 6: Synthesis of Polymer-Supported Silyl Enol Ethers

Method 2: From α,β-Unsaturated Carbonyl Compounds by Reductive Silylation

Variation 1: By Metal Reduction and Subsequent Enolate Trapping

Variation 2: By Conjugate Addition of Nucleophiles and Subsequent Enolate Trapping

Variation 3: By Hydrosilylation

Method 3: From Diesters in the Acyloan Condensation

Method 4: From α-Halo Carbonyl Compounds by Reductive Silylation

Method 5: From Alkenes by Hydrosilylation in the Presence of Carbon Monoxide

Method 6: From Acylsilanes by Nucleophilic Addition and Brook Rearrangement

Variation 1: With Alkenyl- or Alkynylmetals

Variation 2: With Nucleophilic Reagents Having an α-Leaving Group

Method 7: From Silyl Esters by Alkylidenation

Method 8: Rearrangements of Silyl Ethers

Variation 1: Via Rearrangement of β-Silyloxy Carbeneoids

Variation 2: Via Isomerization of Allyl and Propargyl Silyl Ethers

Variation 3: Via Rearrangement of Silyl Cyclopropyl Ethers

Method 9: By Oxidation of Vinyllithiums

Method 10: From Ketones by Haloalkylsilyl Trapping of Lithium Enolates

Method 11: Interconversion of Silyl Enol Ethers

Variation 1: Introduction of Nitrogen-Based Functional Groups at the α-Position
4.4.16.11.2 Variation 2: Introduction of Nitrogen-Based Functional Groups at the β-Position 358
4.4.16.11.3 Variation 3: Ene-like Reactions of Silyl Enol Ethers with Aldehydes 359
4.4.16.11.4 Variation 4: Alkylation and Aroylation of 2-Siloxyallyl Halides 360
4.4.16.11.5 Variation 5: Isomerization of Silyl Enol Ethers 360
4.4.16.11.6 Variation 6: Conversion of Tritylsilyl Enol Ethers into Trichlorosilyl Enol Ethers 361
4.4.16.12 Additional Methods .. 361

4.4.17 Product Subclass 17: Silyl Ethers
J. D. White and R. G. Carter

4.4.17.1 Trimethylsilyl Ethers .. 371
4.4.17.1.1 Formation .. 372
4.4.17.1.2 Method 1: Silylation of Alcohols with Chlorotrimethylsilane 372
4.4.17.1.2 Method 2: Silylation of Alcohols with Trimethylsilyl Trifluoromethanesulfonate 373
4.4.17.1.3 Method 3: Silylation of Alcohols with Trimethylsilyl Cyanide 373
4.4.17.1.4 Method 4: Silylation of Alcohols with N,O-Bis(trimethylsilyl)acetamide 374
4.4.17.1.5 Cleavage .. 375
4.4.17.1.6 Method 5: Cleavage of Trimethylsilyl Ethers with Acidic Reagents 375
4.4.17.1.6 Method 6: Cleavage of Trimethylsilyl Ethers under Basic Conditions 376
4.4.17.2 Triethylsilyl Ethers .. 377
4.4.17.2.1 Formation .. 377
4.4.17.2.1 Method 1: Silylation of Alcohols with Chlorotriethylsilane 377
4.4.17.2.1 Method 2: Silylation of Alcohols with Triethylsilyl Trifluoromethanesulfonate 378
4.4.17.2.2 Cleavage .. 379
4.4.17.2.2 Method 1: Silylation of Alcohols with 4-(Dimethylamino)pyridine 379
4.4.17.2.2 Method 2: Silylation of Alcohols with Triethylsilyl Trifluoromethanesulfonate 380
4.4.17.2.3 Cleavage .. 380
4.4.17.2.3 Method 1: Cleavage of Triethylsilyl Ethers under Acidic Conditions 380
4.4.17.2.4 Variation 1: In the Presence of 4-Toluensulfonic Acid 381
4.4.17.2.4 Method 2: Cleavage of Triethylsilyl Ethers with Tetrabutylammonium Fluoride 382
4.4.17.3 tert-Butyldimethylsilyl Ethers ... 383
4.4.17.3.1 Formation .. 383
4.4.17.3.1 Method 1: Silylation of Alcohols with tert-Butyldimethylsilyl Chloride 383
4.4.17.3.1 Variation 1: In the Presence of 4-(Dimethylamino)pyridine 384
4.4.17.3.1 Variation 2: In Dichloromethane .. 384
4.4.17.3.2 Method 2: Silylation of Alcohols with tert-Butyldimethylsilyl Trifluoromethanesulfonate 385
4.4.17.3.2.1 Variation 1: Selective Silylation of Phenols .. 386
4.4.17.3.2.2 Variation 2: Selective Silylation of Alcohols .. 386
4.4.17.3.3 Method 3: Migration of a tert-Butyldimethylsilyl Group from a tert-Butyldimethylsilyl Ether to an Alcohol 387
 Cleavage ... 388
4.4.17.3.4 Method 4: Cleavage of tert-Butyldimethylsilyl Ethers with Tetrabutylammonium Fluoride .. 388
4.4.17.3.5 Method 5: Cleavage of tert-Butyldimethylsilyl Ethers with Tris(dimethylamino)sulfur (Trimethylsilyl)difluoride 390
4.4.17.3.6 Method 6: Cleavage of tert-Butyldimethylsilyl Ethers under Acidic Conditions ... 391
4.4.17.3.6.1 Variation 1: With Hydrogen Fluoride–Pyridine Complex ... 391
4.4.17.3.6.2 Variation 2: With Mineral Acid .. 392
4.4.17.3.6.3 Variation 3: With Organic Acids .. 393
4.4.17.3.6.4 Variation 4: With Lewis Acids .. 395
4.4.17.4 Triisopropylsilyl Ethers ... 396
 Formation .. 396
4.4.17.4.1 Method 1: Silylation of Alcohols with Triisopropylsilyl Trifluoromethanesulfonate and 2,6-Lutidine 396
4.4.17.4.1.1 Variation 1: With Triisopropylsilyl Trifluoromethanesulfonate in the Presence of 4-(Dimethylamino)pyridine 397
 Cleavage .. 397
4.4.17.4.2 Method 2: Cleavage of Triisopropylsilyl Ethers with Tetrabutylammonium Fluoride .. 397
4.4.17.4.3 Method 3: Cleavage of Triisopropylsilyl Ethers with Tris(dimethylamino)sulfur (Trimethylsilyl)difluoride 398
4.4.17.4.4 Method 4: Cleavage of Triisopropylsilyl Ethers with Hydrogen Fluoride–Pyridine Complex ... 399
4.4.17.4.5 Method 5: Cleavage of Triisopropylsilyl Ethers under Acidic Conditions ... 400
4.4.17.5 tert-Butyldiphenylsilyl Ethers ... 401
 Formation .. 401
4.4.17.5.1 Method 1: Silylation of Alcohols with tert-Butyldiphenylsilyl Chloride .. 401
4.4.17.5.1.1 Variation 1: In the Presence of 4-(Dimethylamino)pyridine 402
4.4.17.5.1.2 Variation 2: Using Butyllithium .. 402
4.4.17.5.2 Method 2: Silylation of Alcohols with tert-Butyldiphenylsilyl Trifluoromethanesulfonate .. 403
4.4.17.5.3 Method 3: Migration of a tert-Butyldiphenylsilyl Group to an Alcohol .. 403
 Cleavage .. 404
4.4.17.5.4 Method 4: Cleavage of tert-Butyldiphenylsilyl Ethers with Tetrabutylammonium Fluoride .. 404
Table of Contents

4.4.17.5.5 Method 5: Cleavage of tert-Butyldiphenylsilyl Ethers with Tetrabutylammonium Fluoride in Acetic Acid 406
4.4.17.5.6 Method 6: Cleavage of tert-Butyldiphenylsilyl Ethers with Tris(dimethylamino)sulfur (Trimethylsilyl)difluoride 406
4.4.17.5.7 Method 7: Cleavage of tert-Butyldiphenylsilyl Ethers with Hydrogen Fluoride–Pyridine Complex 407
4.4.17.5.7.1 Variation 1: Cleavage with Hydrogen Fluoride–Triethylamine Complex ... 408
4.4.17.6 Other Silyl Ethers ... 409

4.4.18 **Product Subclass 18: Silyl Peroxides**
K. Tamao, J.-I. Yoshida and K. Itami

4.4.18 **Product Subclass 18: Silyl Peroxides** ... 413
Synthesis of Product Subclass 18 ... 413

4.4.18.1 Method 1: Synthesis of Silyl Peroxides ... 413
Applications of Product Subclass 18 in Organic Synthesis 414

4.4.18.2 Method 2: Various Oxidations Using Silyl Peroxides 414
4.4.18.3 Method 3: Synthesis of Alcohols via Silyl Peroxides 416
4.4.18.3.1 Variation 1: Oxidation of Heteroatom-Substituted Organosilicon Compounds ... 416
4.4.18.3.2 Variation 2: Oxidation of Phenyl-Substituted Organosilicon Compounds ... 418
4.4.18.3.3 Variation 3: Oxidation of Heteroaromatic-Substituted Organosilicon Compounds ... 421
4.4.18.3.4 Variation 4: Oxidation of Allyl-Substituted Organosilicon Compounds ... 422
4.4.18.3.5 Variation 5: Oxidation of Allyl-Substituted Organosilicon Compounds ... 422

4.4.19 **Product Subclass 19: Silyl Sulfides and Selenides**
A. Ricci and M. Comes-Franchini

4.4.19 **Product Subclass 19: Silyl Sulfides and Selenides** ... 427
Synthesis of Product Subclass 19 ... 429

4.4.19.1 Method 1: From Hydrogen Sulfide and Aminosilanes 429
4.4.19.2 Method 2: From Thiolates and Halosilanes ... 430
4.4.19.2.1 Variation 1: From Enethiolates and Halosilanes 431
4.4.19.3 Method 3: From In Situ Generated Selenolates and Halosilanes 432
4.4.19.3.1 Variation 1: From Lithium, Powdered Selenium, and Chlorotrimethylsilane ... 432
Product Subclass 20: Silyl Azides
C. Moberg and H. Adolffson

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.20</td>
<td>Product Subclass 20: Silyl Azides</td>
<td>435</td>
</tr>
<tr>
<td>4.4.20</td>
<td>Synthesis of Product Subclass 20</td>
<td></td>
</tr>
<tr>
<td>4.4.20.1</td>
<td>Method 1: Synthesis of Silyl Azides by Substitution</td>
<td>435</td>
</tr>
<tr>
<td>4.4.20.1</td>
<td>Variation 1: From Silyl Halides</td>
<td>435</td>
</tr>
<tr>
<td>4.4.20.1</td>
<td>Variation 2: From N-Butyltrialkylsilanamines</td>
<td>436</td>
</tr>
<tr>
<td>4.4.20.2</td>
<td>Method 2: Synthesis of Silyl Azides by Trans-silylations</td>
<td>436</td>
</tr>
<tr>
<td>4.4.20.3</td>
<td>Applications of Product Subclass 20 in Organic Synthesis</td>
<td>437</td>
</tr>
<tr>
<td>4.4.20.3</td>
<td>Method 3: Synthesis of Heterocyclic Compounds Using Silyl Azides</td>
<td></td>
</tr>
<tr>
<td>4.4.20.3</td>
<td>Variation 1: Triazoles</td>
<td>437</td>
</tr>
<tr>
<td>4.4.20.3</td>
<td>Variation 2: Tetrazoles</td>
<td>438</td>
</tr>
<tr>
<td>4.4.20.3</td>
<td>Variation 3: Other Heterocycles</td>
<td>438</td>
</tr>
<tr>
<td>4.4.20.4</td>
<td>Method 4: Synthesis of Acyl Azides Using Silyl Azides</td>
<td>439</td>
</tr>
<tr>
<td>4.4.20.4</td>
<td>Variation 1: From Carboxylic Acid Derivatives</td>
<td>439</td>
</tr>
<tr>
<td>4.4.20.4</td>
<td>Variation 2: From Aldehydes</td>
<td>439</td>
</tr>
<tr>
<td>4.4.20.5</td>
<td>Method 5: Synthesis of (\alpha)-Azido Alcohols Using Silyl Azides</td>
<td>440</td>
</tr>
<tr>
<td>4.4.20.6</td>
<td>Method 6: Synthesis of (\beta)-Azido Alcohols Using Silyl Azides</td>
<td>440</td>
</tr>
<tr>
<td>4.4.20.6</td>
<td>Variation 1: From Epoxides</td>
<td>440</td>
</tr>
<tr>
<td>4.4.20.6</td>
<td>Variation 2: From 1,2-Diols</td>
<td>443</td>
</tr>
<tr>
<td>4.4.20.7</td>
<td>Method 7: Synthesis of (\beta)-Azido Amines Using Silyl Azides</td>
<td>443</td>
</tr>
<tr>
<td>4.4.20.8</td>
<td>Method 8: Synthesis of Alkyl Azides Using Silyl Azides</td>
<td>444</td>
</tr>
<tr>
<td>4.4.20.8</td>
<td>Variation 1: Alkyl Azides</td>
<td>444</td>
</tr>
<tr>
<td>4.4.20.8</td>
<td>Variation 2: (\beta)-Azido Ketones</td>
<td>445</td>
</tr>
<tr>
<td>4.4.20.8</td>
<td>Variation 3: Aryl Azides</td>
<td>445</td>
</tr>
<tr>
<td>4.4.20.8</td>
<td>Variation 4: Miscellaneous</td>
<td>445</td>
</tr>
<tr>
<td>4.4.20.9</td>
<td>Method 9: Applications of Silyl Azides in Rearrangement and in Oxidation Reactions</td>
<td>446</td>
</tr>
</tbody>
</table>

Product Subclass 21: Silylamines
K. Tamao and A. Kawachi

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.21</td>
<td>Product Subclass 21: Silylamines</td>
<td>451</td>
</tr>
<tr>
<td>4.4.21</td>
<td>Synthesis of Product Subclass 21</td>
<td></td>
</tr>
<tr>
<td>4.4.21.1</td>
<td>Method 1: Reaction of Chlorosilanes with Amines</td>
<td>451</td>
</tr>
<tr>
<td>4.4.21.1</td>
<td>Variation 1: Preparation of Diethylamino- and Diisopropylamino-Substituted Silane Derivatives</td>
<td>452</td>
</tr>
<tr>
<td>4.4.21.2</td>
<td>Variation 2: Preparation and ortho-Lithiation of (N,N)'-Bis[2-(dimethylamino)ethyl]-(N,N)-dimethyldiphenylsilanediame</td>
<td>453</td>
</tr>
<tr>
<td>4.4.21.3</td>
<td>Variation 3: Reaction of Chloro[2-[chloro(dimethyl)silyl]ethyl]-dimethylsilane with Primary Amines</td>
<td>454</td>
</tr>
<tr>
<td>4.4.21.4</td>
<td>Variation 4: Reaction of Bis(dimethylsilyl)benzene with Primary Amines</td>
<td>455</td>
</tr>
</tbody>
</table>
Table of Contents

4.4 Method 2: Reaction of Silyl Trichloroacetates with Amines
- Reaction of Tris(2-aminoethyl)amines with Tris- and Tetrakis(dimethylamino)sihlanes
- Reaction of Silyllithiums with Amines
- Reaction of Hexamethyldisilazane

4.4.1 Method 4: Preparation and Reaction of N,O-Bis(trimethylsilyl)hydroxylamine

4.4.1.5 Method 5: Preparation of N,O-Bis(trimethylsilyl) Sulfamate

4.4.1.5 Method 6: Preparation of Monosilylation of Anilines

4.4.1.5 Method 7: Preparation of N,S-Bis(trimethylsilyl)(aminomethyl) acetylide

4.4.1.5 Method 8: Preparation of Aminosilyl Anions

4.4.1.5 Method 9: Reaction of 1-(Trimethylsilyl)-1H-1,2,3-benzotriazole

4.4.1.5 Method 10: Reaction of 2-Aza-1,3-dienes with Trimethylsilyl Trifluoromethanesulfonate

4.4.1.5 Method 11: Synthesis of N,N'-Disilylated Enediamines

4.4.1.5 Method 12: Preparation of Diazaslicycloalkanes

4.4.1.5 Method 13: Reductive Silylation of Nitriles

4.4.1.5 Method 14: Hydrosilylation of Imines

4.4.1.5 Method 15: Hydrosilylation of Carbodiimides

4.4.1.5 Method 16: Hydrosilylation of Nitriles

4.4.1.5 Method 17: Preparation of Stable Silanimes

4.4.1.5 Method 18: Preparation of a Lithium Silaamidine

4.4.1.5 Method 19: Preparation and Reaction of Stable Cyclic Bis(amin)silylenes

Product Subclass 22: Silyl Phosphines

J. Pietruszka

4.4.22 Product Subclass 22: Silyl Phosphines

4.4.22.1 Method 1: From Silyl Hydrides

4.4.22.2 Method 2: From Silyl Halides

4.4.22.3 Method 3: From Other Silyl Phosphines

4.4.22.4 Additional Methods
Table of Contents

4.4.23 Product Subclass 23: Silylmethyl Anions
D. Wang and T. H. Chan

4.4.23 Product Subclass 23: Silylmethyl Anions .. 481
4.4.23.1 Method 1: Metalation of Alkysilanes and Their Derivatives 485
4.4.23.1.1 Variation 1: With Alkylolithiums .. 486
4.4.23.1.2 Variation 2: With Schlosser’s Base .. 487
4.4.23.1.3 Variation 3: With Lithium Diisopropylamide and Similar Amide Bases 487
4.4.23.1.4 Variation 4: With Other Bases ... 488
4.4.23.2 Method 2: Metal–Halogen Exchange of α-Haloalkylsilanes 488
4.4.23.2.1 Variation 1: With Magnesium .. 489
4.4.23.2.2 Variation 2: With Lithium ... 490
4.4.23.3 Method 3: Transmetalation Reactions of α-Silylalkylmetals 491
4.4.23.3.1 Variation 1: Of α-Silylalkyllithium Compounds 491
4.4.23.3.2 Variation 2: Of α-Silylalkylmagnesium 492
4.4.23.3.3 Variation 3: Of α-Silylalkylstannane 492
4.4.23.4 Method 4: Reductive Lithiation of α-Sulfanyl- and α-Selanylalkylsilanes 493
4.4.23.5 Method 5: Addition of Organometallic Reagents to Vinylsilanes and Their Analogues 494
4.4.23.5.1 Variation 1: Of Organolithium Reagents to Vinylsilanes 494
4.4.23.5.2 Variation 2: Of Organomagnesium Reagents to Vinylsilanes 495
4.4.23.6 Additional Methods ... 495

4.4.24 Product Subclass 24: Silyl Cyanides
M. North

4.4.24 Product Subclass 24: Silyl Cyanides ... 499
4.4.24.1 Tetracoordinate Silyl Cyanides .. 499
4.4.24.1.1 Method 1: From Silyl Chlorides .. 500
4.4.24.1.1.1 Variation 1: Using Silver(I) or Mercury(II) Cyanide 501
4.4.24.1.1.2 Variation 2: Using Lithium Cyanide 501
4.4.24.1.1.3 Variation 3: Using Sodium or Potassium Cyanide 502
4.4.24.1.1.4 Variation 4: Using Tetraethylammonium Cyanide 502
4.4.24.1.1.5 Variation 5: Using Hydrogen Cyanide and Triethylamine 503
4.4.24.1.1.6 Variation 6: By Transcyanation .. 503
4.4.24.1.1.7 Variation 7: Using Acetonitrile .. 503
4.4.24.1.2 Method 2: From Other Silyl Halides 504
4.4.24.1.3 Method 3: By Cleavage of a Si–O Bond 505
4.4.24.1.4 Method 4: By Cleavage of a Si–S Bond 506
4.4.24.1.5 Method 5: By Cleavage of a Si–N Bond 507
4.4.24.1.6 Method 6: By Cleavage of a Si–C Bond 507
4.4.24.1.7 Method 7: By Cleavage of a Si–Si Bond 507
4.4.24.1.8 Method 8: By Cleavage of a Si–H Bond 508
4.4.24.1.9 Method 9: By Cleavage of a Si–Hg Bond 509
4.4.24.2 Pentacoordinate Silyl Cyanides .. 509
Product Subclass 25: Acysilanes
P. C. B. Page and M. J. McKenzie

4.4.25

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Subclass 25: Acysilanes</td>
<td>513</td>
</tr>
<tr>
<td>Synthesis of Product Subclass 25</td>
<td>514</td>
</tr>
<tr>
<td>4.4.25.1 Simple Acysilanes</td>
<td>514</td>
</tr>
<tr>
<td>4.4.25.1.1 Method 1: Hydroboration–Oxidation of Alkynylsilanes</td>
<td>515</td>
</tr>
<tr>
<td>4.4.25.1.2 Method 2: Hydrolysis of Acetals</td>
<td>515</td>
</tr>
<tr>
<td>4.4.25.1.3 Method 3: From Silylmetal Intermediates</td>
<td>518</td>
</tr>
<tr>
<td>4.4.25.1.4 Method 4: Preparation from Enol Ethers</td>
<td>521</td>
</tr>
<tr>
<td>4.4.25.1.5 Method 5: Palladium-Catalyzed Coupling</td>
<td>524</td>
</tr>
<tr>
<td>4.4.25.1.6 Method 6: Oxidation of α-Hydroxysilanes</td>
<td>524</td>
</tr>
<tr>
<td>4.4.25.1.7 Method 7: Silylation of Acylmetal Species</td>
<td>525</td>
</tr>
<tr>
<td>4.4.25.1.8 Method 8: Other Oxidative Methods</td>
<td>527</td>
</tr>
<tr>
<td>4.4.25.1.9 Additional Methods</td>
<td>528</td>
</tr>
<tr>
<td>4.4.25.2 α-Haloacysilanes</td>
<td>529</td>
</tr>
<tr>
<td>4.4.25.2.1 Method 1: Halogenation of Trialk-1-enyl Borates</td>
<td>529</td>
</tr>
<tr>
<td>4.4.25.2.2 Method 2: Halogenation of the Enol Ethers of Acysilanes</td>
<td>530</td>
</tr>
<tr>
<td>4.4.25.2.3 Method 3: Bromination–Rearrangement of Epoxyacils</td>
<td>530</td>
</tr>
<tr>
<td>4.4.25.2.4 Additional Methods</td>
<td>531</td>
</tr>
<tr>
<td>4.4.25.3 α-Oxoacysilanes</td>
<td>531</td>
</tr>
<tr>
<td>4.4.25.3.1 Method 1: Oxidation of Diols</td>
<td>531</td>
</tr>
<tr>
<td>4.4.25.3.2 Method 2: From Allenyl Ethers</td>
<td>532</td>
</tr>
<tr>
<td>4.4.25.3.3 Method 3: From Silyldiazoeosters</td>
<td>532</td>
</tr>
<tr>
<td>4.4.25.4 α,β-Unsaturated Acysilanes</td>
<td>532</td>
</tr>
<tr>
<td>4.4.25.4.1 Method 1: From Allenyl Ethers</td>
<td>533</td>
</tr>
<tr>
<td>4.4.25.4.2 Method 2: Other Enol Ether Methods</td>
<td>535</td>
</tr>
<tr>
<td>4.4.25.4.3 Method 3: Hydroboration–Oxidation of Epoxyacils and (Arylalkynyl)silanes</td>
<td>537</td>
</tr>
<tr>
<td>4.4.25.5 α-Cyclopropylacysilanes</td>
<td>540</td>
</tr>
<tr>
<td>4.4.25.5.1 Method 1: From Silylmetal Species</td>
<td>541</td>
</tr>
<tr>
<td>4.4.25.5.2 Method 2: From α-Haloacysilanes</td>
<td>541</td>
</tr>
<tr>
<td>4.4.25.5.3 Additional Methods</td>
<td>542</td>
</tr>
<tr>
<td>4.4.25.6 α-Epoxyacysilanes</td>
<td>543</td>
</tr>
<tr>
<td>4.4.25.6.1 Method 1: Epoxidation of α,β-Unsaturated Acysilanes</td>
<td>543</td>
</tr>
<tr>
<td>Applications of Product Subclass 25 in Organic Synthesis</td>
<td>543</td>
</tr>
<tr>
<td>4.4.25.7 Simple Acysilanes</td>
<td>543</td>
</tr>
<tr>
<td>4.4.25.7.1 Method 1: Nucleophilic Addition</td>
<td>543</td>
</tr>
<tr>
<td>4.4.25.7.2 Method 2: Acysilanes as Acyl Anion Precursors</td>
<td>550</td>
</tr>
</tbody>
</table>
XXXII

Table of Contents

<table>
<thead>
<tr>
<th>4.4.25.7.3</th>
<th>Method 3: Enolate and Enol Ether Reactions</th>
<th>551</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.25.7.4</td>
<td>Method 4: Photochemistry</td>
<td>552</td>
</tr>
<tr>
<td>4.4.25.7.5</td>
<td>Method 5: Biotransformations</td>
<td>554</td>
</tr>
<tr>
<td>4.4.25.7.6</td>
<td>Method 6: Miscellaneous</td>
<td>555</td>
</tr>
<tr>
<td>4.4.25.8</td>
<td>α-Haloacysilanes</td>
<td>555</td>
</tr>
<tr>
<td>4.4.25.9</td>
<td>α-Oxacylsilanes</td>
<td>557</td>
</tr>
<tr>
<td>4.4.25.10</td>
<td>α,β-Unsaturated Acysilanes</td>
<td>558</td>
</tr>
</tbody>
</table>

4.4.26

Product Subclass 26: 1-Diazo-1-silylalkanes
T. Aoyama and T. Shioiri

<table>
<thead>
<tr>
<th>4.4.26</th>
<th>Product Subclass 26: 1-Diazo-1-silylalkanes</th>
<th>569</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.26.1</td>
<td>Synthesis of Product Subclass 26</td>
<td>571</td>
</tr>
<tr>
<td>4.4.26.2</td>
<td>Method 1: From Trialkyl(chloromethyl)silanes by</td>
<td></td>
</tr>
<tr>
<td>4.4.26.3</td>
<td>Diazotransfer Reactions</td>
<td>571</td>
</tr>
<tr>
<td>4.4.26.4</td>
<td>Method 2: From Acysilanes</td>
<td>573</td>
</tr>
<tr>
<td>4.4.26.5</td>
<td>Method 3: Silylation of α-Diazoacetates, α-Diazophosphonates, and α-Diazo Ketones</td>
<td>573</td>
</tr>
<tr>
<td>4.4.26.6</td>
<td>Method 4: Alkylation of Diazotrimethylsilylmethane</td>
<td>574</td>
</tr>
<tr>
<td>4.4.26.6</td>
<td>Method 5: Acylation of Diazopentamethyldisilanylmethane</td>
<td>574</td>
</tr>
<tr>
<td>4.4.26.6</td>
<td>Method 6: Silylation of Diazotrimethylsilylmethane</td>
<td>575</td>
</tr>
</tbody>
</table>

4.4.27

Product Subclass 27: α-Haloacysilanes
N. J. Lawrence

<table>
<thead>
<tr>
<th>4.4.27</th>
<th>Product Subclass 27: α-Haloacysilanes</th>
<th>579</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.27.1</td>
<td>Synthesis of Product Subclass 27</td>
<td>580</td>
</tr>
<tr>
<td>4.4.27.1.1</td>
<td>Method 1: Direct Halogenation of Alkysilanes</td>
<td>580</td>
</tr>
<tr>
<td>4.4.27.1.2</td>
<td>Variation 1: Chlorination of Alkysilanes</td>
<td>581</td>
</tr>
<tr>
<td>4.4.27.1.2</td>
<td>Variation 2: Bromination of Alkysilanes</td>
<td>581</td>
</tr>
<tr>
<td>4.4.27.2</td>
<td>Method 2: Substitution of α-Hydroxalkysilanes</td>
<td>582</td>
</tr>
<tr>
<td>4.4.27.2.1</td>
<td>Variation 1: Substitution with Chloride Using Thionyl Chloride</td>
<td>583</td>
</tr>
<tr>
<td>4.4.27.2.2</td>
<td>Variation 2: Chlorination of α-Hydroxalkysilanes with Triphenylphosphine and Carbon Tetrachloride</td>
<td>584</td>
</tr>
<tr>
<td>4.4.27.2.3</td>
<td>Variation 3: Iodination of α-Hydroxalkysilanes with Methyl(triphenox y)phosphonium Iodide</td>
<td>584</td>
</tr>
<tr>
<td>4.4.27.3</td>
<td>Method 3: Haloalkylation of Halosilanes</td>
<td>585</td>
</tr>
<tr>
<td>4.4.27.4</td>
<td>Method 4: Reaction of Halosilanes with Diazomethane</td>
<td>586</td>
</tr>
<tr>
<td>4.4.27.5</td>
<td>Method 5: Nucleophilic Substitution of Halo(haloalkyl)silanes</td>
<td>587</td>
</tr>
<tr>
<td>4.4.27.6</td>
<td>Method 6: Alkylation of α-Haloacysilanes</td>
<td>588</td>
</tr>
</tbody>
</table>

Applications of Product Subclass 27 in Organic Synthesis | 588 |
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.28</td>
<td>Product Subclass 28: α-Silyl Alcohols, Ethers, and Amines</td>
<td>595</td>
</tr>
<tr>
<td></td>
<td>J. M. Aizpurua and C. Palomo</td>
<td></td>
</tr>
<tr>
<td>4.4.28</td>
<td>Synthesis of Product Subclass 28</td>
<td>597</td>
</tr>
<tr>
<td>4.4.28.1</td>
<td>Method 1: From Silyl Hydrides and Fischer Alkoxy carbene Complexes</td>
<td>597</td>
</tr>
<tr>
<td>4.4.28.2</td>
<td>Method 2: From Silyl Hydrides and N-Vinylamides or N-Vinyleurases</td>
<td>597</td>
</tr>
<tr>
<td>4.4.28.3</td>
<td>Method 3: From Silyl Halides and Ethers or Amines</td>
<td>598</td>
</tr>
<tr>
<td>4.4.28.3.1</td>
<td>Variation 1: Deprotonative α-Silylation of Aliphatic Ethers with Lithium-free Butylpotassium and Chlorosilanes</td>
<td>598</td>
</tr>
<tr>
<td>4.4.28.3.2</td>
<td>Variation 2: Deprotonative α-Silylation of Alkyl Arylmethyl Ethers with tert-Butyl lithium/N,N,N',N'-Tetramethylethylenediamine and Chlorosilanes</td>
<td>599</td>
</tr>
<tr>
<td>4.4.28.3.3</td>
<td>Variation 3: Deprotonative α-Silylation of Cyclic Secondary N-tert-Butoxy carbonyl Amines with sec-Butyl lithium/ N,N,N',N'-Tetramethylethylenediamine or sec-Butyl lithium/(−)-Sparteine and Chlorosilanes</td>
<td>600</td>
</tr>
<tr>
<td>4.4.28.3.4</td>
<td>Variation 4: Dehalogenative Silylation of Chloromethyl Ethers with Lithium and Chlorosilanes</td>
<td>601</td>
</tr>
<tr>
<td>4.4.28.3.5</td>
<td>Variation 5: Desulfuratative Silylation of α-Phenyl sulfonyl Ethers with Lithium 1,-(Dimethylamino)naphthalenide and Chlorosilanes</td>
<td>601</td>
</tr>
<tr>
<td>4.4.28.4</td>
<td>Method 4: From Silyl Halides and Aldehydes or Ketones by Reductive Silylation with Magnesium</td>
<td>602</td>
</tr>
<tr>
<td>4.4.28.5</td>
<td>Method 5: From Silyl Halides and Esters by Reductive Silylation with Magnesium or Sodium</td>
<td>603</td>
</tr>
<tr>
<td>4.4.28.5.1</td>
<td>Variation 1: Reductive Silylation of tert-Butyl or Trimethylsilyl Benzoates with the Chlorotrimethylsilane/Magnesium/Hexamethyl phosphor Triamide System</td>
<td>604</td>
</tr>
<tr>
<td>4.4.28.5.2</td>
<td>Variation 2: Reductive Silylation of Trimethylsilyl Alkanoates with the Chlorotrimethylsilane/Sodium/Tetrahydrofuran System</td>
<td>604</td>
</tr>
<tr>
<td>4.4.28.6</td>
<td>Method 6: From Silyl Halides and Cyanides or O-Trimethylsilyl Cyanohydrins by Reductive Silylation with Lithium</td>
<td>605</td>
</tr>
<tr>
<td>4.4.28.7</td>
<td>Method 7: From O-Silyl Ethers</td>
<td>606</td>
</tr>
<tr>
<td>4.4.28.7.1</td>
<td>Variation 1: Retro-[1,2]-Brook Rearrangement of Allyl and Benzyl O-Silyl Ethers</td>
<td>606</td>
</tr>
<tr>
<td>4.4.28.7.2</td>
<td>Variation 2: Retro-[1,2]-Brook Rearrangement of α-Stannyl Silyl Ethers</td>
<td>607</td>
</tr>
<tr>
<td>4.4.28.8</td>
<td>Method 8: From Silyl Anions and Aldehydes or Ketones</td>
<td>608</td>
</tr>
<tr>
<td>4.4.28.8.1</td>
<td>Variation 1: With Trimethylsilyllithium</td>
<td>609</td>
</tr>
<tr>
<td>4.4.28.8.2</td>
<td>Variation 2: With Tris(trimethylsilyl)aluminum–Diethyl Ether Complex</td>
<td>610</td>
</tr>
<tr>
<td>4.4.28.8.3</td>
<td>Variation 3: With Disilanes by Fluoride-Induced Catalysis</td>
<td>610</td>
</tr>
<tr>
<td>4.4.28.8.4</td>
<td>Variation 4: With Dimethylphenylsilyllithium</td>
<td>611</td>
</tr>
<tr>
<td>4.4.28.9</td>
<td>Method 9: From Silyl Anions and Esters</td>
<td>612</td>
</tr>
<tr>
<td>4.4.28.10</td>
<td>Method 10: From (α-Haloalkyl)silanes and Nitrogen or Oxygen Nucleophiles</td>
<td>613</td>
</tr>
<tr>
<td>4.4.28.10.1</td>
<td>Variation 1: N-Alkylation of Primary or Secondary Amines</td>
<td>613</td>
</tr>
<tr>
<td>4.4.28.10.2</td>
<td>Variation 2: O- and N-Alkylation of Masked Hydroxy or Amino Groups</td>
<td>614</td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.28.11</td>
<td>Method 11: From α-Metallosilanes</td>
<td>615</td>
</tr>
<tr>
<td>4.4.28.12</td>
<td>Method 12: From Acylsilanes</td>
<td>616</td>
</tr>
</tbody>
</table>
| 4.4.28.12.1 | Variation 1: Via Asymmetric Reduction with
B-Chlorodisopinocampheylborane | 616 |
| 4.4.28.12.2 | Variation 2: Via Samarium(II) Iodide Promoted Reductions and Alkylation | 617 |
| 4.4.28.12.3 | Variation 3: Via Addition of Organolithium or
Organomagnesium Reagents | 618 |
| 4.4.28.12.4 | Variation 4: Via Barbier-type Addition of Organoinodium Reagents | 619 |
| 4.4.28.13 | Method 13: From Vinylsilanes | 620 |
| 4.4.28.13.1 | Variation 1: Via Hydroboration | 620 |
| 4.4.28.13.2 | Variation 2: Via Catalytic Dihydroxylation with Osmium Tetroxide | 621 |
| 4.4.28.14 | Method 14: Modification of Existing α-Silyl Alcohols or Ethers | 622 |
| 4.4.28.14.1 | Variation 1: Via syn-Dihydroxylation of α-Silyl-α-vinyl Alcohols
(α-Hydroxyallylsilanes) with Osmium Tetroxide | 622 |
| 4.4.28.14.2 | Variation 2: Via O-Alkylation of α-Silyl Alcohols with Allyl and
Benzyl Trichloroacetimidoates Catalyzed by Lewis Acids | 623 |
| 4.4.28.14.3 | Variation 3: Via Addition of α-Lithio-α-silyl Ethers to Aldehydes or Ketones | 623 |
| 4.4.28.15 | Method 15: Modification of Existing α-Silyl Amines: α-Alkylation or
α-Arylation of α-Silylamines with Grignard Reagents | 624 |
| 4.4.28.16 | Additional Methods | 625 |
| | Applications of Product Subclass 28 in Organic Synthesis | 626 |

4.4.29

Product Subclass 29: α,β-Epoxydilsilanes
G. H. Whitham

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.29</td>
<td>Product Subclass 29: α,β-Epoxydilsilanes</td>
<td>633</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 29</td>
<td>633</td>
</tr>
</tbody>
</table>
| 4.4.29.1 | Method 1: By Reaction of Lithiated α-Halosilanes with
Aldehydes or Ketones | 633 |
| 4.4.29.2 | Method 2: By Epoxidation of a Vinylsilane | 635 |
| 4.4.29.2.1 | Variation 1: Reaction with a Peroxy Acid | 635 |
| 4.4.29.2.2 | Variation 2: Sharpless Epoxidation of a Silylated Allylic Alcohol | 636 |
| 4.4.29.3 | Method 3: By Reaction of an α-Metalated Epoxide | 636 |
| | Applications of Product Subclass 29 in Organic Synthesis | 637 |
| 4.4.29.4 | Method 4: Reduction by Complex Hydrides | 637 |
| 4.4.29.5 | Method 5: Reaction with Organometallic Reagents | 638 |
| 4.4.29.6 | Method 6: Reaction with Heteroatom Nucleophiles | 639 |
| 4.4.29.7 | Method 7: Ring Opening/Desilylation to Aldehydes or Ketones | 640 |
| 4.4.29.8 | Method 8: Protodesilylation to Epoxides | 641 |
| 4.4.29.9 | Method 9: Formation of α-Alkoxy Ketones via Allene Epoxides | 641 |
| 4.4.29.10 | Method 10: Rearrangement to α-Silylaldehydes or α-Silyl Ketones | 642 |
| 4.4.29.11 | Method 11: Rearrangement to Silyl Enol Ethers | 643 |
| 4.4.29.12 | Method 12: Rearrangement to C-Silylated Allylic Alcohols | 643 |
| 4.4.29.13 | Method 13: Rearrangement to Allylic Silanols | 644 |
| 4.4.29.14 | Method 14: α-Metalation | 645 |
Table of Contents

4.4.30 Product Subclass 30: Alkyny[Ethynyl]silanes
T. Hiyama and A. Mori

<table>
<thead>
<tr>
<th>4.4.30</th>
<th>Product Subclass 30: Alkyny[Ethynyl]silanes</th>
<th>647</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Synthesis of Product Subclass 30</td>
<td>647</td>
</tr>
<tr>
<td>4.4.30.1</td>
<td>Method 1: Reaction of Alkynes with Hydrosilanes via Dehydrogenative Coupling</td>
<td>647</td>
</tr>
<tr>
<td>4.4.30.2</td>
<td>Method 2: Reactions of Alkynylmetals with Silyl Halides</td>
<td>647</td>
</tr>
<tr>
<td>4.4.30.2.1</td>
<td>Variation 1: Of Chlorosilanes with Ethynylmagnesium Reagents</td>
<td>648</td>
</tr>
<tr>
<td>4.4.30.2.2</td>
<td>Variation 2: Of Chlorosilanes with Ethynyllithium Reagents</td>
<td>648</td>
</tr>
<tr>
<td>4.4.30.2.3</td>
<td>Variation 3: Of Chlorosilanes with Ethynylzinc Reagents</td>
<td>649</td>
</tr>
<tr>
<td>4.4.30.3</td>
<td>Method 3: Reactions of Ethynyl(trimethyl)silane or Bis(trimethyl)silylalane</td>
<td>649</td>
</tr>
<tr>
<td>4.4.30.3.1</td>
<td>Variation 1: The Sonogashira–Hagihara Reaction of Ethynyl(trimethyl)silane</td>
<td>649</td>
</tr>
<tr>
<td>4.4.30.3.2</td>
<td>Variation 2: Reactions of Bis(trimethyl)silylalane with Various Organic Electrophiles</td>
<td>650</td>
</tr>
<tr>
<td>4.4.30.4</td>
<td>Methods 4: Additional Methods</td>
<td>650</td>
</tr>
<tr>
<td>4.4.30.5</td>
<td>Applications of Product Subclass 30 in Organic Synthesis</td>
<td>651</td>
</tr>
<tr>
<td>4.4.30.6</td>
<td>Method 5: Reactions of Ethynylsilanes with Carbonyl Compounds</td>
<td>651</td>
</tr>
<tr>
<td>4.4.30.7</td>
<td>Method 6: Asymmetric Alkynylation of Chiral Acetals</td>
<td>652</td>
</tr>
<tr>
<td>4.4.30.8</td>
<td>Method 7: Alkynylation of Acid Chlorides in the Presence of a Copper(I) Salt</td>
<td>653</td>
</tr>
<tr>
<td>4.4.30.8</td>
<td>Method 8: Coupling Reactions of Ethynylsilanes in the Presence of Transition Metals</td>
<td>653</td>
</tr>
</tbody>
</table>

4.4.31 Product Subclass 31: Silyketenes
J.-M. Pons and P. J. Kocienski

<table>
<thead>
<tr>
<th>4.4.31</th>
<th>Product Subclass 31: Silyketenes</th>
<th>657</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Synthesis of Product Subclass 31</td>
<td>658</td>
</tr>
<tr>
<td>4.4.31.1</td>
<td>Method 1: Elimination Reactions</td>
<td>658</td>
</tr>
<tr>
<td>4.4.31.2</td>
<td>Method 2: Thermolysis of (Alkoxylethynyl)silanes (1,5-Hydrogen Transfer)</td>
<td>659</td>
</tr>
<tr>
<td>4.4.31.3</td>
<td>Method 3: Rearrangement by 1,3-Silyl Shift</td>
<td>660</td>
</tr>
<tr>
<td>4.4.31.3.1</td>
<td>Variation 1: From Alkoxalkynes</td>
<td>660</td>
</tr>
<tr>
<td>4.4.31.3.2</td>
<td>Variation 2: From 2-Phenyl-2,3-dihydrofuran or 3-Phenylisoxazole</td>
<td>661</td>
</tr>
<tr>
<td>4.4.31.4</td>
<td>Method 4: From Diazoc Compounds via Wolff Rearrangement</td>
<td>662</td>
</tr>
<tr>
<td>4.4.31.4.1</td>
<td>Variation 1: Photolysis</td>
<td>662</td>
</tr>
<tr>
<td>4.4.31.4.2</td>
<td>Variation 2: Metal (Copper or Rhodium) Catalysis</td>
<td>662</td>
</tr>
<tr>
<td>4.4.31.5</td>
<td>Method 5: Thermolysis or Photolysis of Cyclobutenediones or Cyclobutenones</td>
<td>663</td>
</tr>
<tr>
<td></td>
<td>Applications of Product Subclass 31 in Organic Synthesis</td>
<td>663</td>
</tr>
</tbody>
</table>
Table of Contents

4.4.31.6 Method 6: Formation of β-Lactones via Lewis Acid Promoted [2 + 2]-Cycloaddition Reaction

<table>
<thead>
<tr>
<th>Method 7: Formation of Aza-Allenic Derivatives and Their Further Electrocyclization</th>
<th>664</th>
</tr>
</thead>
</table>

4.4.32 Product Subclass 32: Allenylsilanes

J. Pernet

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.32 Method 1: From Lithiated Allenes and Trialkylhalosilanes</td>
<td>670</td>
<td></td>
</tr>
<tr>
<td>4.4.32 Method 2: From Allenyl Ethers</td>
<td>671</td>
<td></td>
</tr>
<tr>
<td>4.4.32 Method 3: From C-Silylated Propargylic Alcohols</td>
<td>671</td>
<td></td>
</tr>
<tr>
<td>4.4.32.1 Variation 1: Via Organocuprates</td>
<td>672</td>
<td></td>
</tr>
<tr>
<td>4.4.32.3.2 Variation 2: Via Grignard Reagents</td>
<td>672</td>
<td></td>
</tr>
<tr>
<td>4.4.32.3.3 Variation 3: Via Arylsulfonylhydrazides</td>
<td>673</td>
<td></td>
</tr>
<tr>
<td>4.4.32.4 Method 4: From C-Silylated Propargylic Esters and Organoheterocuprates</td>
<td>673</td>
<td></td>
</tr>
<tr>
<td>4.4.32.4.1 Variation 1: From Silyl-Substituted Propargylic Sulfinates</td>
<td>673</td>
<td></td>
</tr>
<tr>
<td>4.4.32.4.2 Variation 2: From Silyl-Substituted Propargylic Sulfonates</td>
<td>674</td>
<td></td>
</tr>
<tr>
<td>4.4.32.5 Method 5: Silylcupration of Propargylic Esters</td>
<td>675</td>
<td></td>
</tr>
<tr>
<td>4.4.32.5.1 Variation 1: Silylcupration of Propargylic Acetates</td>
<td>675</td>
<td></td>
</tr>
<tr>
<td>4.4.32.5.2 Variation 2: Silylcupration of Propargylic Carbamates</td>
<td>676</td>
<td></td>
</tr>
<tr>
<td>4.4.32.6 Method 6: From Propargylsilanes</td>
<td>677</td>
<td></td>
</tr>
<tr>
<td>4.4.32.7 Method 7: From Silyl-Substituted Ynones</td>
<td>678</td>
<td></td>
</tr>
<tr>
<td>4.4.32.8 Method 8: From Silyl-Substituted Propargyloboranes</td>
<td>678</td>
<td></td>
</tr>
<tr>
<td>4.4.32.9 Method 9: From Chloroeynes</td>
<td>679</td>
<td></td>
</tr>
<tr>
<td>4.4.32.10 Method 10: From Bromoeynes</td>
<td>679</td>
<td></td>
</tr>
<tr>
<td>4.4.32.11 Method 11: Via Amide Acetal Claisen Rearrangement of Propargylic Alcohols</td>
<td>680</td>
<td></td>
</tr>
<tr>
<td>4.4.32.12 Method 12: Chain Elongation of Allenylsilanes</td>
<td>680</td>
<td></td>
</tr>
<tr>
<td>4.4.32.13 Additional Methods</td>
<td>681</td>
<td></td>
</tr>
</tbody>
</table>

4.4.33 Product Subclass 33: Arylsilanes

B. A. Keay

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.33 Method 1: Via the Würzt–Fittig Reaction</td>
<td>685</td>
<td></td>
</tr>
<tr>
<td>4.4.33 Method 2: Silylation of Aryl-Substituted Metals</td>
<td>686</td>
<td></td>
</tr>
<tr>
<td>4.4.33.2.1 Variation 1: Via Grignard Reagents</td>
<td>687</td>
<td></td>
</tr>
<tr>
<td>4.4.33 Method 2: Via Organolithium Reagents</td>
<td>688</td>
<td></td>
</tr>
<tr>
<td>4.4.33.2.3 Variation 3: Via Reductive Silylation Followed by Oxidation</td>
<td>689</td>
<td></td>
</tr>
<tr>
<td>4.4.33.2.4 Variation 4: Via Halogen–Metal Exchange</td>
<td>689</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

4.4.33.3 Method 3: Electrophilic Aromatic Substitutions 690
4.4.33.4 Method 4: From Transition-Metal-Catalyzed Reactions 691
4.4.33.4.1 Variation 1: From Palladium Reagents .. 691
4.4.33.4.2 Variation 2: From Nickel and Rhodium Reagents 693
4.4.33.5 Method 5: From Cycloaddition Reactions ... 694
4.4.33.5.1 Variation 1: Via [2 + 3]-Dipolar Cycloadditions 694
4.4.33.5.2 Variation 2: Via [4 + 2] Cycloadditions .. 695
4.4.33.5.3 Variation 3: Via [2 + 2 + 2] Cycloadditions 696
4.4.33.6 Method 6: Via Silyl Migrations ... 697
4.4.33.6.1 Variation 1: Via [1,3] Oxygen-to-Carbon Silyl Migrations 697
4.4.33.6.2 Variation 2: Via [1,4] Oxygen-to-Carbon Silyl Migrations 698
4.4.33.7 Method 7: Via Photochemical Reactions .. 699
4.4.33.8 Method 8: Via Electrochemical Reactions ... 700
4.4.33.9 Methods 9: Additional Methods ... 701

Applications of Product Subclass 33 in Organic Synthesis 701

4.4.33.10 Method 10: Ipso-Substitution Reactions ... 701
4.4.33.11 Method 11: Oxidation of the C—Si Bond 702
4.4.33.12 Method 12: Cross-Coupling Reactions .. 703
4.4.33.13 Method 13: Protection of Hydroxy Groups .. 705
4.4.33.14 Method 14: Use as a Blocking Group ... 706
4.4.33.15 Method 15: Use as Traceless Linkers in Solid-Phase Synthesis 707
4.4.33.16 Method 16: Use as Fluoros Labes for Fluorosynthesis 708

4.4.34 **Product Subclass 34: Vinylsilanes**

K. Oshima

4.4.34 **Product Subclass 34: Vinylsilanes** .. 713

Synthesis of Product Subclass 34 ... 713

4.4.34.1 Method 1: Vinylsilanes from Vinylmetal Compounds and Halosilanes 713
4.4.34.1.1 Variation 1: From Vinylcopper and Trialkylhalosilanes 713
4.4.34.1.2 Variation 2: From Vinylmagnesium Halides and Trialkyl- and Triarylhalosilanes .. 714
4.4.34.1.3 Variation 3: From Vinylsodium and Trialkylhalosilanes 715
4.4.34.1.4 Variation 4: From Vinyl lithium and Trialkylhalosilanes 715
4.4.34.1.5 Variation 5: Using Metalated Vinylsilanes 717
4.4.34.2 Method 2: Coupling Reaction of Vinyl Halides with Silylmethyl Species 719
4.4.34.3 Method 3: Addition—Elimination of Disilane to Vinyl Halides 720
4.4.34.4 Method 4: Coupling Reaction of (α- or β-Halovinyl)silanes with Silylmethyl Species ... 721
4.4.34.5 Method 5: Stille Coupling of Vinyl Halides with \[\text{Trimethyl}(\text{E})-2-(\text{trimethylstanny})\text{vinyl}silane \] ... 723
4.4.34.6 Method 6: Reaction of Carbonyl Compounds with (Trimethylsilyl)methylmetal Species ... 724
4.4.34.6.1 Variation 1: Reaction of Aldehydes with Bis(trimethylsilyl)methyl lithium 724
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.34.6.2</td>
<td>Variation 2: Reaction of Aldehydes with Bromobis(trimethylsilyl)methylthium: Preparation of (α-Bromovinyl)silanes</td>
<td>725</td>
</tr>
<tr>
<td>4.4.34.6.3</td>
<td>Variation 3: Reaction of Carbonyl Compounds with Dimal Species Derived from (Dibromomethyl)(trimethyl)silane</td>
<td>727</td>
</tr>
<tr>
<td>4.4.34.7</td>
<td>Method 7: By Wittig Reaction</td>
<td>728</td>
</tr>
<tr>
<td>4.4.34.8</td>
<td>Method 8: From Allylsilane Lithium Salt</td>
<td>729</td>
</tr>
<tr>
<td>4.4.34.9</td>
<td>Method 9: Dehydrogenative Silylation of Alkenes</td>
<td>729</td>
</tr>
<tr>
<td>4.4.34.10</td>
<td>Method 10: Heck-type Reaction</td>
<td>730</td>
</tr>
<tr>
<td>4.4.34.11</td>
<td>Method 11: Hydrogenation of Alkynylsilanes</td>
<td>731</td>
</tr>
<tr>
<td>4.4.34.12</td>
<td>Method 12: Hydrometalation of Alkynylsilanes</td>
<td>732</td>
</tr>
<tr>
<td>4.4.34.12.1</td>
<td>Variation 1: Hydrostannylation of Alkynylsilanes</td>
<td>732</td>
</tr>
<tr>
<td>4.4.34.12.2</td>
<td>Variation 2: Hydroalumination of Alkynylsilanes</td>
<td>732</td>
</tr>
<tr>
<td>4.4.34.12.3</td>
<td>Variation 3: Hydromagnesiation of Alkynylsilanes</td>
<td>734</td>
</tr>
<tr>
<td>4.4.34.13</td>
<td>Method 13: Carbocorporation of Alkynylsilanes</td>
<td>735</td>
</tr>
<tr>
<td>4.4.34.14</td>
<td>Method 14: From Low-Valent Titanium Alkoxide–Alkynylsilane Complexes</td>
<td>735</td>
</tr>
<tr>
<td>4.4.34.15</td>
<td>Method 15: Radical Addition of Iodoalkanes to Alkynylsilanes</td>
<td>736</td>
</tr>
<tr>
<td>4.4.34.16</td>
<td>Method 16: [2 + 4] or [2 + 2] Cycloadditions of Alkynylsilanes</td>
<td>737</td>
</tr>
<tr>
<td>4.4.34.17</td>
<td>Method 17: Cyclization of Alk-ω-en-α-ylsilanes</td>
<td>737</td>
</tr>
<tr>
<td>4.4.34.18</td>
<td>Method 18: Silymetalation of Terminal Alkynes</td>
<td>738</td>
</tr>
<tr>
<td>4.4.34.19</td>
<td>Method 19: Hydrosilylation</td>
<td>740</td>
</tr>
<tr>
<td>4.4.34.19.1</td>
<td>Variation 1: Hydrosilylation of Alkynes</td>
<td>740</td>
</tr>
<tr>
<td>4.4.34.19.2</td>
<td>Variation 2: Transition-Metal-Catalyzed Hydrosilylative Cyclization of Dialkynes</td>
<td>742</td>
</tr>
<tr>
<td>4.4.34.20</td>
<td>Method 20: Birch Reduction of Arylsilanes</td>
<td>743</td>
</tr>
<tr>
<td>4.4.34.21</td>
<td>Method 21: Proto- and Deuterodesilylation</td>
<td>744</td>
</tr>
<tr>
<td>4.4.34.22</td>
<td>Method 22: Cleavage of the Vinyl C–Si Bond with Tetrabutylammonium Fluoride</td>
<td>744</td>
</tr>
<tr>
<td>4.4.34.23</td>
<td>Method 23: Electrophilic Substitution with Halogens</td>
<td>745</td>
</tr>
<tr>
<td>4.4.34.24</td>
<td>Method 24: Friedel–Crafts Acylation</td>
<td>746</td>
</tr>
<tr>
<td>4.4.34.25</td>
<td>Method 25: Formylation of Vinyilsilanes</td>
<td>747</td>
</tr>
<tr>
<td>4.4.34.26</td>
<td>Method 26: Nazarov Cyclization</td>
<td>747</td>
</tr>
<tr>
<td>4.4.34.27</td>
<td>Method 27: Diels–Alder Reaction of (1E-Buta-1,3-dienyl)trimethylsilanes</td>
<td>748</td>
</tr>
<tr>
<td>4.4.34.28</td>
<td>Method 28: Annulation Reaction of 3-(Trimethylsilyl)but-3-en-2-one</td>
<td>749</td>
</tr>
<tr>
<td>4.4.34.29</td>
<td>Method 29: Preparation of Allenes</td>
<td>751</td>
</tr>
<tr>
<td>4.4.34.30</td>
<td>Method 30: Preparation of Carboxylic Acids from Terminal Alkynes</td>
<td>752</td>
</tr>
<tr>
<td>4.4.34.31</td>
<td>Method 31: Use as a Masked Carbonyl Group</td>
<td>752</td>
</tr>
<tr>
<td>4.4.34.32</td>
<td>Method 32: Vinyl Heck Reaction</td>
<td>753</td>
</tr>
<tr>
<td>4.4.34.33</td>
<td>Method 33: Palladium-Catalyzed Coupling</td>
<td>753</td>
</tr>
<tr>
<td>4.4.34.34</td>
<td>Method 34: Generation of Vinylidene Carbene</td>
<td>754</td>
</tr>
</tbody>
</table>
Table of Contents

4.4.35 Product Subclass 35: α-Silyl Carboxyl Compounds
Y. Landais

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.35</td>
<td>Synthesis of Product Subclass 35</td>
<td>761</td>
</tr>
<tr>
<td>4.4.35.1</td>
<td>Method 1: C-Silylation of Enolates and Derivatives</td>
<td>761</td>
</tr>
<tr>
<td>4.4.35.1.1</td>
<td>Variation 1: Of Chiral Hydrazones</td>
<td>762</td>
</tr>
<tr>
<td>4.4.35.2</td>
<td>Method 2: Oxidation of β-Hydroxysilanes</td>
<td>763</td>
</tr>
<tr>
<td>4.4.35.3</td>
<td>Method 3: Metal–Carbenoid Insertion into the Si–H Bond</td>
<td>763</td>
</tr>
<tr>
<td>4.4.35.4</td>
<td>Method 4: Addition of Nucleophiles to α-Silyl Ketenes</td>
<td>764</td>
</tr>
<tr>
<td>4.4.35.5</td>
<td>Method 5: Addition of α-Silyl Organometallic Reagents to Carboxyl Precursors</td>
<td>766</td>
</tr>
<tr>
<td>4.4.35.6</td>
<td>Method 6: Rearrangements</td>
<td>766</td>
</tr>
<tr>
<td>4.4.35.6.1</td>
<td>Variation 1: Isomerization of α,β-Epoxydilanes</td>
<td>767</td>
</tr>
<tr>
<td>4.4.35.6.2</td>
<td>Variation 2: [1,3]-Oxygen-to-Carbon Migration of a Silicon Group</td>
<td>768</td>
</tr>
<tr>
<td>4.4.35.7</td>
<td>Additional Methods</td>
<td>769</td>
</tr>
</tbody>
</table>

4.4.36 Product Subclass 36: β-Silyl Alkyl Halides
W. E. Billups and R. K. Saini

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.36</td>
<td>Synthesis of Product Subclass 36</td>
<td>773</td>
</tr>
<tr>
<td>4.4.36.1</td>
<td>Method 1: Addition of Hydrogen Halides to Allylsilane and Vinylsilanes</td>
<td>774</td>
</tr>
<tr>
<td>4.4.36.2</td>
<td>Method 2: Addition of Halogens to Allylsilane and Vinylsilanes</td>
<td>775</td>
</tr>
<tr>
<td>4.4.36.3</td>
<td>Method 3: Addition of Sulfur and Selenium Halides to Vinylsilanes and Allylsilanes</td>
<td>776</td>
</tr>
<tr>
<td>4.4.36.4</td>
<td>Method 4: Addition of Radicals</td>
<td>777</td>
</tr>
<tr>
<td>4.4.36.5</td>
<td>Method 5: Formation of (2-Haloclopropyl)silanes by Addition of Halocarbenes to Alkenylsilanes and Allenylsilanes</td>
<td>778</td>
</tr>
<tr>
<td>4.4.36.6</td>
<td>Method 6: From Allylic Substitution of 1,2-Dihaloallyl Groups Using Trimethylsilyllithium and Copper(I) Iodide Reagent</td>
<td>780</td>
</tr>
<tr>
<td>4.4.36.7</td>
<td>Method 7: From Halogenation of (2-Hydroxyalkyl)silanes</td>
<td>780</td>
</tr>
<tr>
<td>4.4.36.8</td>
<td>Method 8: From Halogenation of β-Silyl Carboxyl Compounds, α-Silylenol Ethers, or α-Silylenolates</td>
<td>781</td>
</tr>
<tr>
<td>4.4.36.8.1</td>
<td>Variation 1: From β-Silyl Carboxyl Compounds</td>
<td>782</td>
</tr>
<tr>
<td>4.4.36.8.2</td>
<td>Variation 2: From α-Silylenol Ethers or α-Silylenolates of Acyilsilanes</td>
<td>782</td>
</tr>
<tr>
<td>4.4.36.9</td>
<td>Additional Methods</td>
<td>783</td>
</tr>
<tr>
<td>4.4.36.9</td>
<td>Applications of Product Subclass 36 in Organic Synthesis</td>
<td>784</td>
</tr>
</tbody>
</table>
Table of Contents

4.4.37 Product Subclass 37: β-Silyl Alcohols and the Peterson Reaction
D. J. Ager

4.4.37 Product Subclass 37: β-Silyl Alcohols and the Peterson Reaction
Synthesis of Product Subclass 37 791

4.4.37.1 Method 1: Direct Deprotonation of a Silane and Addition to
a Carbonyl Compound ... 791

4.4.37.2 Method 2: From Silylmethylmagnesium Halides and
Carbonyl Compounds ... 792

4.4.37.2.1 Variation 1: Grignard and Organolithium Reagents 792

4.4.37.2.2 Variation 2: Use of Organocerium Reagents 793

4.4.37.2.3 Variation 3: Formation of Vinylithium Reagents 794

4.4.37.3 Method 3: Generation of the α-Silyl Carbonion by Transmetalation 794

4.4.37.3.1 Variation 1: Displacement of a Phenylsulfanyl Group by
Lithium Naphthalenide ... 795

4.4.37.3.2 Variation 2: Displacement of a Phenylsulfanyl Group by
Lithium 1-(Dimethylamino)naphthalenide 795

4.4.37.3.3 Variation 3: Displacement of a Tin Group 796

4.4.37.4 Method 4: Preparation of Vinyl Ethers and Other
Heteroatom-Substituted Alkenes 796

4.4.37.4.1 Variation 1: Preparation of Enol Ethers 797

4.4.37.4.2 Variation 2: Preparation of Vinyl Sulfides 797

4.4.37.4.3 Variation 3: Preparation of Vinyl Sulfones 798

4.4.37.4.4 Variation 4: Preparation of Vinylv phosphonates 798

4.4.37.4.5 Variation 5: Preparation of Vinylstannanes 798

4.4.37.4.6 Variation 6: Preparation of Difunctional Alkenes 799

4.4.37.5 Method 5: Preparation of α,β-Unsaturated Carbonyl Compounds 799

4.4.37.5.1 Variation 1: Formation of α,β-Unsaturated Esters 800

4.4.37.5.2 Variation 2: Formation of α,β-Unsaturated Esters with
Lithium Dicyclohexylamide as Base 800

4.4.37.6 Method 6: Preparation of α,β-Unsaturated Nitriles 800

4.4.37.7 Method 7: Preparation of Enals Through Imines 801

4.4.37.8 Method 8: Reduction of α-Silyl Carbonyl Compounds 801

4.4.37.9 Method 9: Additions of Organometallic Reagents to
α-Silyl Carbonyl Compounds 802

4.4.37.9.1 Variation 1: Addition of an Organometallic Reagent to an α-Silyl Ketone 802

4.4.37.9.2 Variation 2: Addition of an Organometallic Reagent to an α-Silyl Ester 803

4.4.37.10 Method 10: Addition of a Silymetal to an Epoxide 804

4.4.37.11 Method 11: Vinysilanes and Alkylolithiums with Carbonyl Compounds 804
Table of Contents

4.4.38 Product Subclass 38: Propargylsilanes
J. Pornet

4.4.38.1 Method 1:
From Propargyl Magnesium Halides and
Trialkyl- and Triaryl Silicon Halides

- Variation 1: Generation of the Grignard Reagent In Situ
 (Barbier Procedure)

- Variation 2: Silylation of a Preformed Grignard Reagent

- Method 2: Coupling with Halomethyltrimethylsilane

- Variation 2: Coupling with Trimethylsilylmethyl
 Trifluoromethanesulfonate

4.4.38.2 Method 3:
From Alk-2-yne

4.4.38.3 Method 4:
From 1,3-Dilithiated Alk-1-yne

4.4.38.4 Method 5:
From 1-(Trimethylsilyl)alk-1-yne

4.4.38.5 Method 6:
From 1,3-Bis(trimethylsilyl)alk-1-yne

4.4.38.6 Method 7:
From 1-Bromoalk-1-yne

4.4.38.7 Method 8:
From Benzyl Propargyl Ethers

4.4.38.8 Method 9:
From α-Silylated Aldehydes

4.4.38.9 Method 10:
From β-Silylated Esters

4.4.38.11 Method 11:
Chain Elongation from the Propargylic Carbon
 of Trimethyl(propargyl)silanes

4.4.38.12 Method 12:
Chain Elongation from the Acetylenic Carbon of
 Trimethyl(propargyl)silanes

4.4.38.13 Additional Methods

4.4.39 Product Subclass 39: Benzylsilanes
B. Bennetau

4.4.39.1 Method 1:
From Benzylic Hydrides

4.4.39.2 Method 2:
From Benzylic Halogens

4.4.39.21 Variation 1:
Via Benzyllithium Reagents

4.4.39.22 Variation 2:
Via Benzyllithium Reagents

4.4.39.3 Method 3:
By Substitution of Aromatic Hydrides

4.4.39.4 Method 4:
By Substitution of Aromatic Halogens

4.4.39.5 Method 5:
Hydroxylation of Styrene Derivatives

4.4.39.6 Method 6:
By Addition of Silylmethyl Reagents

4.4.39.7 Methods 7:
Additional Methods
Applications of Product Subclass 39 in Organic Synthesis 832

4.4.39.8 Method 8: Benzylsilanes in Organic Synthesis 832

4.4.40 Product Subclass 40: Allylsilanes
T. K. Sarkar

4.4.40 Product Subclass 40: Allylsilanes .. 837

Synthesis of Product Subclass 40 .. 839

4.4.40.1 Method 1: From Allylmagnesium Halides and Trialkylhalosilanes 839

4.4.40.1.1 Variation 1: Silylation of a Preformed Grignard Reagent 840

4.4.40.1.2 Variation 2: Silylation of an In Situ Generated Grignard Reagent 841

4.4.40.2 Method 2: From Allylmagnesium Halides by Transition-Metal-Catalyzed Coupling with Hydrosilanes ... 841

4.4.40.3 Method 3: From Allyl Chlorides by Zinc-Mediated Silylation 842

4.4.40.4 Method 4: From Allyl Halides by Electroreductive Synthesis 842

4.4.40.5 Method 5: By Silylation of Metalated Alkenes 843

4.4.40.5.1 Variation 1: From Lithiated Alkenes .. 843

4.4.40.5.2 Variation 2: From Alkenylpotassium Compounds 844

4.4.40.6 Method 6: From Metalated Allyl Halides and Chlorotrimethylsilane 846

4.4.40.7 Method 7: From α-Heteroalkenes by Transition-Metal-Catalyzed Cross Coupling ... 846

4.4.40.7.1 Variation 1: From Vinyl Halides With [(Trimethylsilyl)methyl]magnesium Halides and Related Species .. 846

4.4.40.7.2 Variation 2: From Enol Phosphates with [(Trialkysilyl)methyl]magnesium Halides ... 848

4.4.40.7.3 Variation 3: From Vinyl Trifluoromethanesulfonates with Tris[(trimethylsilyl)methyl]aluminum .. 848

4.4.40.8 Method 8: From α-Silyl Aldehydes and Alkylidinitriphenylphosphoranes by a Wittig Reaction ... 849

4.4.40.9 Method 9: From Carbonyl Compounds and Trialkyl[2-(trimethylsilyl)ethylidene]phosphoranes by a Wittig Reaction 850

4.4.40.9.1 Variation 1: Via a Preformed β-Silylated Phosphonium Salt 850

4.4.40.9.2 Variation 2: Via an In Situ Generated β-Silylated Phosphonium Salt 851

4.4.40.10 Method 10: From Carbonyl Compounds and Ethyl 2-(Diethoxophosphoryl)-3-(trimethylsilyl)propanoate by Horner–Wadsworth–Emmons Reaction ... 851

4.4.40.11 Method 11: From Carbonyl Compounds and β-Silyl Thioacetals by Titanium(II)-Promoted Reductive Alkenation 852

4.4.40.12 Method 12: From Carbonyl Compounds and Trimethyl[2-(phenylsulfonyl)ethyl]silane by the Julia Reaction 853

4.4.40.13 Method 13: Formation of Exocyclic Allylsilanes by the Ramberg–Bäcklund Reaction ... 854
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.40.14</td>
<td>Method 14</td>
<td>From 1,3-Dienes by Hydrosilylation</td>
<td>855</td>
</tr>
<tr>
<td>4.4.40.15</td>
<td>Method 15</td>
<td>From 1,3-Dienes by Carbosilylation</td>
<td>856</td>
</tr>
<tr>
<td>4.4.40.16</td>
<td>Method 16</td>
<td>From Allyl Halides by Copper(I)-Catalyzed Silylation with</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trichlorosilane</td>
<td>857</td>
</tr>
<tr>
<td>4.4.40.17</td>
<td>Method 17</td>
<td>From Allenes by Palladium(0)-Catalyzed Carbosilylation</td>
<td>857</td>
</tr>
<tr>
<td>4.4.40.18</td>
<td>Method 18</td>
<td>From Lithium Allyl Alcoholates and Hexamethyldisilane</td>
<td>858</td>
</tr>
<tr>
<td>4.4.40.19</td>
<td>Method 19</td>
<td>From Allyl Esters via Allylpalladium(0) Complexes</td>
<td>859</td>
</tr>
<tr>
<td>4.4.40.19.1</td>
<td>Variation 1</td>
<td>Using Disilanes</td>
<td>859</td>
</tr>
<tr>
<td>4.4.40.19.2</td>
<td>Variation 2</td>
<td>Using Samarium(II) Iodide and Chlorotrimethylsilane</td>
<td>860</td>
</tr>
<tr>
<td>4.4.40.20</td>
<td>Method 20</td>
<td>From Allyl Alcohols by Palladium(0)-Catalyzed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intramolecular Silylsilylation</td>
<td>861</td>
</tr>
<tr>
<td>4.4.40.21</td>
<td>Method 21</td>
<td>Formation of Bis(allylsilanes) from 1,3-Dienes</td>
<td>862</td>
</tr>
<tr>
<td>4.4.40.22</td>
<td>Method 22</td>
<td>From Allyl Esters or Allyl Carbamates and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>a Silicocuprate Reagent</td>
<td>863</td>
</tr>
<tr>
<td>4.4.40.22.1</td>
<td>Variation 1</td>
<td>From Allyl Esters</td>
<td>863</td>
</tr>
<tr>
<td>4.4.40.22.2</td>
<td>Variation 2</td>
<td>From Allyl Carbamates</td>
<td>864</td>
</tr>
<tr>
<td>4.4.40.23</td>
<td>Method 23</td>
<td>From Allyl Halides and a Silicopper Reagent</td>
<td>865</td>
</tr>
<tr>
<td>4.4.40.24</td>
<td>Method 24</td>
<td>Formation of 2-Substituted Allylsilanes by</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silylcupration of Allene</td>
<td>866</td>
</tr>
<tr>
<td>4.4.40.25</td>
<td>Method 25</td>
<td>From Allyl Halides or Allyl Phosphates and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>a Silyllithium Reagent</td>
<td>867</td>
</tr>
<tr>
<td>4.4.40.25.1</td>
<td>Variation 1</td>
<td>From Allyl Halides</td>
<td>867</td>
</tr>
<tr>
<td>4.4.40.25.2</td>
<td>Variation 2</td>
<td>From Allyl Phosphates</td>
<td>868</td>
</tr>
<tr>
<td>4.4.40.26</td>
<td>Method 26</td>
<td>Formation of 1,3-Disubstituted Allylsilanes by</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decarboxylative Elimination</td>
<td>869</td>
</tr>
<tr>
<td>4.4.40.27</td>
<td>Method 27</td>
<td>Formation of 1-Substituted Allylsilanes by Grieco Dehydration</td>
<td>871</td>
</tr>
<tr>
<td>4.4.40.28</td>
<td>Method 28</td>
<td>From Alkynes and α-Silyl Organocupper Reagents</td>
<td>872</td>
</tr>
<tr>
<td>4.4.40.28.1</td>
<td>Variation 1</td>
<td>Stoichiometric Carbocupration with a Copper(I) Salt</td>
<td>872</td>
</tr>
<tr>
<td>4.4.40.28.2</td>
<td>Variation 2</td>
<td>Copper-Catalyzed Carbometalation of Alk-2-yn-1-ols</td>
<td>873</td>
</tr>
<tr>
<td>4.4.40.29</td>
<td>Method 29</td>
<td>From Mixed Vinylcuprates and (Iodomethyl)trimethylsilane or Related Reagents</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Related Reagents</td>
<td>874</td>
</tr>
<tr>
<td>4.4.40.30</td>
<td>Method 30</td>
<td>From Carboxylic Acid Derivatives and an Organocerium Reagent by a Peterson-type Reaction</td>
<td>874</td>
</tr>
<tr>
<td>4.4.40.31</td>
<td>Method 31</td>
<td>From γ-Silylated Allylic Alcohols by a Claisen Rearrangement</td>
<td>876</td>
</tr>
<tr>
<td>4.4.40.31.1</td>
<td>Variation 1</td>
<td>By a Johnson Ortho Ester Claisen Rearrangement</td>
<td>876</td>
</tr>
<tr>
<td>4.4.40.31.2</td>
<td>Variation 2</td>
<td>By an Ireland–Claisen Rearrangement</td>
<td>877</td>
</tr>
<tr>
<td>4.4.40.31.3</td>
<td>Variation 3</td>
<td>By the Eschenmoser Variant of the Claisen Rearrangement</td>
<td>878</td>
</tr>
<tr>
<td>4.4.40.32</td>
<td>Method 32</td>
<td>From 1-Trimethylsilyl-1,3-dienes by a Diels–Alder Reaction</td>
<td>879</td>
</tr>
<tr>
<td>4.4.40.33</td>
<td>Method 33</td>
<td>Formation of Cyclopentanoid Allylsilanes by</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>an Intramolecular Ene Reaction</td>
<td>879</td>
</tr>
<tr>
<td>4.4.40.34</td>
<td>Method 34</td>
<td>From Alkyl Fischer Carbene Complexes by</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>a [2 + 1]-Insertion Reaction with Triorganosilanes</td>
<td>880</td>
</tr>
<tr>
<td>4.4.40.35</td>
<td>Method 35</td>
<td>From Vinyldiazocarbonyl Compounds by</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>a Rhodium-Catalyzed [2 + 1]-Insertion Reaction with Triorganosilanes</td>
<td>881</td>
</tr>
<tr>
<td>4.4.40.36</td>
<td>Method 36</td>
<td>Formation of Formyl-Substituted Alk-2-ensylsilanes by</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Photolysis</td>
<td>882</td>
</tr>
<tr>
<td>4.4.04.37</td>
<td>Method 37: From Allyl Sulfides by Reductive Silylation</td>
<td>883</td>
<td></td>
</tr>
<tr>
<td>4.4.04.37.1</td>
<td>Variation 1: By Retro-[1,4]-Brook Rearrangement</td>
<td>883</td>
<td></td>
</tr>
<tr>
<td>4.4.04.37.2</td>
<td>Variation 2: By Silylation of Oxyanion–Carbanionic Species</td>
<td>883</td>
<td></td>
</tr>
<tr>
<td>4.4.04.38</td>
<td>Method 38: From Allyl Sulfides and Tris(trimethylsilyl)isilane by a Radical Reaction</td>
<td>884</td>
<td></td>
</tr>
<tr>
<td>4.4.04.39</td>
<td>Method 39: From Allyl Sulfones</td>
<td>885</td>
<td></td>
</tr>
<tr>
<td>4.4.04.40</td>
<td>Method 40: Formation of 3-Substituted Allylsilanes by a Peterson-type Elimination</td>
<td>886</td>
<td></td>
</tr>
<tr>
<td>4.4.04.41</td>
<td>Method 41: Formation of 3-Substituted Allylsilanes by Silicon-Directed Bamber–Stevens Reaction</td>
<td>886</td>
<td></td>
</tr>
<tr>
<td>4.4.04.42</td>
<td>Method 42: From γ-Silylated Allylic Esters or Allyl Carbonates by a Palladium(0)-Catalyzed Reduction</td>
<td>887</td>
<td></td>
</tr>
<tr>
<td>4.4.04.42.1</td>
<td>Variation 1: From Allylic Esters</td>
<td>887</td>
<td></td>
</tr>
<tr>
<td>4.4.04.42.2</td>
<td>Variation 2: From Allylic Carbonates</td>
<td>888</td>
<td></td>
</tr>
<tr>
<td>4.4.04.43</td>
<td>Method 43: From Alk-2-ynylsilanes by Hydroalumination</td>
<td>889</td>
<td></td>
</tr>
<tr>
<td>4.4.04.44</td>
<td>Method 44: From Prop-2-ynylsilanes by Hydroboration</td>
<td>890</td>
<td></td>
</tr>
<tr>
<td>4.4.04.45</td>
<td>Method 45: From Alk-2-ynylsilanes by Catalytic Hydrogenation</td>
<td>890</td>
<td></td>
</tr>
<tr>
<td>4.4.04.46</td>
<td>Method 46: Formation of Exocyclic Allylsilanes by Intramolecular Reductive Heck Cyclization of Alk-2-ynylosilanes</td>
<td>891</td>
<td></td>
</tr>
<tr>
<td>4.4.04.47</td>
<td>Method 47: Formation of 3-Substituted Allylsilanes by Cross Metathesis</td>
<td>892</td>
<td></td>
</tr>
<tr>
<td>4.4.04.47.1</td>
<td>Variation 1: By Molybdenum-Catalyzed Cross Metathesis</td>
<td>892</td>
<td></td>
</tr>
<tr>
<td>4.4.04.47.2</td>
<td>Variation 2: By Ruthenium-Catalyzed Cross Metathesis</td>
<td>893</td>
<td></td>
</tr>
<tr>
<td>4.4.04.47.3</td>
<td>Variation 3: By Titanium(II)-Induced Cross Metathesis</td>
<td>893</td>
<td></td>
</tr>
<tr>
<td>4.4.04.48</td>
<td>Method 48: Formation of 2-Substituted Allylsilanes by the Heck Reaction</td>
<td>894</td>
<td></td>
</tr>
<tr>
<td>4.4.04.49</td>
<td>Method 49: From [2-(Iodomethyl)allyl]trimethylsilane by Indium-Mediated Allylsilylation of Aldehydes or Ketones</td>
<td>896</td>
<td></td>
</tr>
<tr>
<td>4.4.04.50</td>
<td>Method 50: From [2-(Silylmethyl)allyl]lithium by a Condensation Reaction</td>
<td>896</td>
<td></td>
</tr>
<tr>
<td>4.4.04.51</td>
<td>Method 51: From (2-Stannylallyl)silanes by Palladium(0)-Catalyzed Cross Coupling with Acid Chlorides or Aryl Bromides</td>
<td>897</td>
<td></td>
</tr>
<tr>
<td>4.4.04.52</td>
<td>Method 52: From [2-(Stannylmethyl)allyl]silanes by Radical Allylsilylation with Alkyl Halides</td>
<td>898</td>
<td></td>
</tr>
<tr>
<td>4.4.04.53</td>
<td>Method 53: From [2-(Stannylmethyl)allyl]silanes by Thermal Allylsilylation with Acid Chlorides or Aldehydes</td>
<td>899</td>
<td></td>
</tr>
<tr>
<td>4.4.04.54</td>
<td>Methods 54: Additional Methods</td>
<td>899</td>
<td></td>
</tr>
<tr>
<td>4.4.04.55</td>
<td>Method 55: Protodesilylation of Allylsilanes</td>
<td>901</td>
<td></td>
</tr>
<tr>
<td>4.4.04.56</td>
<td>Method 56: Allylation of Reactive Alkyl Halides</td>
<td>902</td>
<td></td>
</tr>
<tr>
<td>4.4.04.57</td>
<td>Method 57: Radical Allylation of Alkyl Halides</td>
<td>903</td>
<td></td>
</tr>
<tr>
<td>4.4.04.58</td>
<td>Method 58: Addition to Epoxides and Oxetanes</td>
<td>903</td>
<td></td>
</tr>
<tr>
<td>4.4.04.59</td>
<td>Method 59: Allylation of Aldehydes and Ketones</td>
<td>905</td>
<td></td>
</tr>
<tr>
<td>4.4.04.59.1</td>
<td>Variation 1: By Lewis Acid Catalyzed Allylation</td>
<td>905</td>
<td></td>
</tr>
<tr>
<td>4.4.04.59.2</td>
<td>Variation 2: By Lewis Base Promoted Allylation</td>
<td>907</td>
<td></td>
</tr>
<tr>
<td>4.4.04.60</td>
<td>Method 60: Allylation of Acetals and Ketals</td>
<td>908</td>
<td></td>
</tr>
<tr>
<td>4.4.04.61</td>
<td>Method 61: Acylation with Acid Chloride</td>
<td>909</td>
<td></td>
</tr>
<tr>
<td>4.4.04.62</td>
<td>Method 62: Reaction with Iminium Ions</td>
<td>910</td>
<td></td>
</tr>
<tr>
<td>4.4.04.63</td>
<td>Method 63: Epoxidation and Ring Opening</td>
<td>910</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

4.4.40.64 Method 64: Aziridination and Ring Opening 911
4.4.40.65 Method 65: Dihydroxylation of Allysilanes 912
4.4.40.66 Method 66: Conjugate Addition to α,β-Unsaturated Carbonyl Compounds 913
4.4.40.67 Method 67: Palladium(0)-Catalyzed [3 + 2] Cycloaddition 915
4.4.40.69 Method 69: Hydroxycyclopentanes from [3 + 2] Annulation with α-Enones 917
4.4.40.70 Method 70: Tetrahydrofurans by [3 + 2] Annulation with Aldehydes and Ketones 918
4.4.40.71 Method 71: α-Methylene cyclohexanones from Silicon-Directed Nazarov Cyclization 918

4.4.41 Product Subclass 41: β-Silyl Carbonyl Compounds
Ian Fleming

4.4.41 Product Subclass 41: β-Silyl Carbonyl Compounds 927
4.4.41.1 Method 1: Hydroboration of Alkenes and Alkenes 929
4.4.41.1.1 Variation 1: Hydroboration of Propargyl Alcohols, and Oxidation or Isomerization 930
4.4.41.1.2 Variation 2: Hydroboration and Dehydrogenation 930
4.4.41.1.3 Variation 3: Hydroboration—Carbonylation 931
4.4.41.2 Method 2: Silylation of Alkenes and Alkenes 932
4.4.41.2.1 Variation 1: Silylation of α,β-Unsaturated Carbonyl Compounds 932
4.4.41.2.2 Variation 2: Silylation and Acylation of Alkenes 934
4.4.41.3 Method 3: Electrophilic Silylation of Functionalized Three-Carbon Reagents 935
4.4.41.3.1 Variation 1: Electrophilic Silylation of Allyllithium Reagents 935
4.4.41.3.2 Variation 2: Electrophilic Silylation at C3 of Masked α,β-Unsaturated Aldehydes and Ketones 936
4.4.41.3.3 Variation 3: Reductive Silylation of Anisole and Hydrolysis 938
4.4.41.4 Method 4: Carbonylation or Carboxylation of Vinyllsilanes 939
4.4.41.5 Method 5: Trimethylsilylmethylation of Enolates and Enolate Equivalents 941
4.4.41.6 Method 6: Claisen Rearrangement of Esters of 3-Silylallyl Alcohols 942
4.4.41.7 Additional Methods .. 943

4.4.42 Product Subclass 42: γ-Silyl Alkyl Halides, Alcohols, and Esters Thereof
J. P. Michael and C. B. de Koning

4.4.42 Product Subclass 42: γ-Silyl Alkyl Halides, Alcohols, and Esters Thereof 947
4.4.42.1 Method 1: From Silyl Anions and Functionalized Three-Carbon Electrophiles 949
4.4.42.2 Method 2: From Silicon Electrophiles and Functionalized Three-Carbon Nucleophiles 950
4.4.42.2.1 Variation 1: Intermolecular Silylation of C, O-Di anions Derived from Functionalized Alcohols 950
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.2.2</td>
<td>Variation 2: Silicon Transfer in 3-Siloxy Carbanions:</td>
<td>951</td>
</tr>
<tr>
<td></td>
<td>The Retro-[1,4]-Brook Rearrangement</td>
<td></td>
</tr>
<tr>
<td>4.4.2.3</td>
<td>Method 3: From α-Silylated Carbanions and Epoxides</td>
<td>953</td>
</tr>
<tr>
<td>4.4.2.4</td>
<td>Method 4: Hydrosilylation of Allylic Compounds</td>
<td>955</td>
</tr>
<tr>
<td>4.4.2.4.1</td>
<td>Variation 1: Hydrosilylation of Allylic Halides, Alcohols, and Esters</td>
<td>955</td>
</tr>
<tr>
<td>4.4.2.4.2</td>
<td>Variation 2: Intramolecular Hydrosilylation of Allyloxysilanes</td>
<td>956</td>
</tr>
<tr>
<td>4.4.2.5</td>
<td>Method 5: Coupling between Vinlysilanes and Aldehydes or Ketones</td>
<td>958</td>
</tr>
<tr>
<td>4.4.2.5.1</td>
<td>Variation 1: Carbozirconation of Vinlysilanes</td>
<td>958</td>
</tr>
<tr>
<td>4.4.2.5.2</td>
<td>Variation 2: Coupling Initiated by Electron Transfer</td>
<td>959</td>
</tr>
<tr>
<td>4.4.2.6</td>
<td>Method 6: Additions to Allylsilanes</td>
<td>960</td>
</tr>
<tr>
<td>4.4.2.6.1</td>
<td>Variation 1: Hydrometalation–Oxidation of Allylsilanes</td>
<td>960</td>
</tr>
<tr>
<td>4.4.2.6.2</td>
<td>Variation 2: Carbometalation of Allylsilanes</td>
<td>961</td>
</tr>
<tr>
<td>4.4.2.6.3</td>
<td>Variation 3: Free-Radical Addition to Allylsilanes</td>
<td>962</td>
</tr>
<tr>
<td>4.4.2.7</td>
<td>Method 7: Addition of β-Silylated Carbanions to Aldehydes and Ketones</td>
<td>963</td>
</tr>
<tr>
<td>4.4.2.7.1</td>
<td>Variation 1: Addition of β-Silyl Organometallic Reagents to Aldehydes and Ketones</td>
<td>963</td>
</tr>
<tr>
<td>4.4.2.7.2</td>
<td>Variation 2: Condensation of β-Silyl Enolates with Carbonyl Compounds</td>
<td>964</td>
</tr>
<tr>
<td>4.4.2.8</td>
<td>Additional Methods</td>
<td>966</td>
</tr>
</tbody>
</table>

Keyword Index | 973 |
Author Index | 1003 |
Abbreviations | 1055 |
Volume 5: Compounds of Group 14 (Ge, Sn, Pb)

Preface .. V

Table of Contents ... VII

Introduction
E. J. Thomas and M. G. Moloney .. 1

5.1 Product Class 1: Germanium Compounds
E. J. Thomas .. 3

5.1.1 Product Subclass 1: Germanium Hydrides
K. Oshima .. 9

5.1.2 Product Subclass 2: Digermenes and Digermanes
N. Takeda, N. Tokitoh, and R. Okazaki 27

5.1.3 Product Subclass 3: Metalated Germanium Compounds
N. Takeda, N. Tokitoh, and R. Okazaki 33

5.1.4 Product Subclass 4: Germanium Oxides, Sulfides, Selenides, and Tellurides (Double Bonded)
N. Takeda, N. Tokitoh, and R. Okazaki 39

5.1.5 Product Subclass 5: Iminogermanes
N. Takeda, N. Tokitoh, and R. Okazaki 43

5.1.6 Product Subclass 6: Germenes
N. Takeda, N. Tokitoh, and R. Okazaki 47

5.1.7 Product Subclass 7: Germynes
N. Takeda, N. Tokitoh, and R. Okazaki 51

5.1.8 Product Subclass 8: Organogermanium Halides
P. Thornton .. 55

5.1.9 Product Subclass 9: Germanium Oxides
P. Thornton .. 75

5.1.10 Product Subclass 10: Germanium Carboxylates, Phosphates, and Related Compounds
P. Thornton .. 85

5.1.11 Product Subclass 11: Germanium Sulfides, Sulfoxides, and Related Compounds
P. Thornton .. 89
5.1.12 Product Subclass 12: Germanium Selenides, Tellurides, and Related Compounds
P. Thornton ... 93

5.1.13 Product Subclass 13: Germylamines
P. Thornton ... 97

5.1.14 Product Subclass 14: Germanium Phosphines, Arsines, and Stibines
P. Thornton ... 101

5.1.15 Product Subclass 15: Germanium Cyanides
A. C. Spivey and C. M. Diaper .. 105

5.1.16 Product Subclass 16: Acylermanes
A. C. Spivey and C. M. Diaper .. 109

5.1.17 Product Subclass 17: Imidoylgermanes (α-Iminoalkylgermanes) and α-Diazoalkylermanes
A. C. Spivey and C. M. Diaper .. 115

5.1.18 Product Subclass 18: α-Halo- and α-Alkoxyvinylgermanes
A. C. Spivey and C. M. Diaper .. 121

5.1.19 Product Subclass 19: α-Halo-, α-Hydroxy-, α-Alkoxy-, and α-Aminoalkylermanes
A. C. Spivey and C. M. Diaper .. 127

5.1.20 Product Subclass 20: Alkynylermanes
A. C. Spivey and C. M. Diaper .. 137

5.1.21 Product Subclass 21: Germylketenes and Germylketenimines
A. C. Spivey and C. M. Diaper .. 143

5.1.22 Product Subclass 22: Aryl- and Heteroarylgermanes
A. C. Spivey and C. M. Diaper .. 149

5.1.23 Product Subclass 23: Vinylgermanes
A. C. Spivey and C. M. Diaper .. 159

5.1.24 Product Subclass 24: Propargyl- and Allenylgermanes
A. C. Spivey and C. M. Diaper .. 171

5.1.25 Product Subclass 25: Benzylermanes
A. C. Spivey and C. M. Diaper .. 177

5.1.26 Product Subclass 26: Allylgermanes
A. C. Spivey and C. M. Diaper .. 181

5.1.27 Product Subclass 27: Alkylgermanes
A. C. Spivey and C. M. Diaper .. 189
<table>
<thead>
<tr>
<th>5.2</th>
<th>Product Class 2: Tin Compounds</th>
<th>E. J. Thomas</th>
<th>195</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.1</td>
<td>Product Subclass 1: Tin Hydrides</td>
<td>A. J. Clark</td>
<td>205</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Product Subclass 2: Distannenes and Distannanes</td>
<td>J. Podlech</td>
<td>273</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Product Subclass 3: Metalated Tin Compounds</td>
<td>J. Podlech</td>
<td>285</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Product Subclass 4: Tin Oxides, Sulfides, Selenides, and Tellurides (Double Bonded)</td>
<td>N. Takeda, N. Tokitoh, and R. Okazaki</td>
<td>299</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Product Subclass 5: Iminostannanes</td>
<td>N. Takeda, N. Tokitoh, and R. Okazaki</td>
<td>303</td>
</tr>
<tr>
<td>5.2.6</td>
<td>Product Subclass 6: Stannenes</td>
<td>N. Takeda, N. Tokitoh, and R. Okazaki</td>
<td>307</td>
</tr>
<tr>
<td>5.2.7</td>
<td>Product Subclass 7: Stannylenes</td>
<td>N. Takeda, N. Tokitoh, and R. Okazaki</td>
<td>311</td>
</tr>
<tr>
<td>5.2.8</td>
<td>Product Subclass 8: Tin Halides and Organotin Halides</td>
<td>M. E. Wood</td>
<td>315</td>
</tr>
<tr>
<td>5.2.9</td>
<td>Product Subclass 9: Tin Oxides</td>
<td>B. Jousseaume</td>
<td>353</td>
</tr>
<tr>
<td>5.2.10</td>
<td>Product Subclass 10: Tin Carboxylates and Phosphates</td>
<td>B. Jousseaume</td>
<td>363</td>
</tr>
<tr>
<td>5.2.11</td>
<td>Product Subclass 11: Tin Enol Ethers</td>
<td>B. Jousseaume</td>
<td>369</td>
</tr>
<tr>
<td>5.2.12</td>
<td>Product Subclass 12: Tin Sulfides, Thioalkoxides, and Related Compounds</td>
<td>B. Jousseaume</td>
<td>383</td>
</tr>
<tr>
<td>5.2.13</td>
<td>Product Subclass 13: Tin Selenides and Tellurides</td>
<td>B. Jousseaume</td>
<td>393</td>
</tr>
<tr>
<td>5.2.14</td>
<td>Product Subclass 14: Organostannylamines and Related Compounds</td>
<td>B. Jousseaume</td>
<td>401</td>
</tr>
<tr>
<td>5.2.15</td>
<td>Product Subclass 15: Organostannylphosphines</td>
<td>B. Jousseaume</td>
<td>409</td>
</tr>
<tr>
<td>5.2.16</td>
<td>Product Subclass 16: Tin Cyanides and Fulminates</td>
<td>P. B. Wyatt</td>
<td>413</td>
</tr>
<tr>
<td>5.2.17</td>
<td>Product Subclass 17: Acylstannanes (Including S, Se, and Te Analogues)</td>
<td>P. B. Wyatt</td>
<td>423</td>
</tr>
<tr>
<td>5.2.18</td>
<td>Product Subclass 18: Imidoystannanes, Diazalkylstannanes, Tin Isocyanates, and Tin Isothiocyanates</td>
<td>P. B. Wyatt</td>
<td>433</td>
</tr>
<tr>
<td>5.2.19</td>
<td>Product Subclass 19: 1-Halo-, 1-Alkoxy-, and 1-Aminovinylstannanes</td>
<td>I. Coldham and G. P. Vennall</td>
<td>441</td>
</tr>
<tr>
<td>5.2.21</td>
<td>Product Subclass 21: Alkynylstannanes</td>
<td>G. T. Crisp</td>
<td>463</td>
</tr>
<tr>
<td>5.2.22</td>
<td>Product Subclass 22: Ketenylstannanes and Derivatives</td>
<td>G. T. Crisp</td>
<td>479</td>
</tr>
<tr>
<td>5.2.23</td>
<td>Product Subclass 23: Allenylstannanes</td>
<td>G. T. Crisp</td>
<td>485</td>
</tr>
<tr>
<td>5.2.24</td>
<td>Product Subclass 24: Arylstannanes</td>
<td>G. T. Crisp</td>
<td>499</td>
</tr>
<tr>
<td>5.2.25</td>
<td>Product Subclass 25: Alk-1-enylstannanes</td>
<td>G. T. Crisp</td>
<td>521</td>
</tr>
<tr>
<td>5.2.26</td>
<td>Product Subclass 26: Propargylstannanes</td>
<td>D. Young</td>
<td>549</td>
</tr>
<tr>
<td>5.2.27</td>
<td>Product Subclass 27: Benzylstannanes</td>
<td>R. L. Marshall</td>
<td>559</td>
</tr>
<tr>
<td>5.2.28</td>
<td>Product Subclass 28: Allylstannanes</td>
<td>R. L. Marshall</td>
<td>573</td>
</tr>
<tr>
<td>5.2.29</td>
<td>Product Subclass 29: Alkylstannanes</td>
<td>D. Young</td>
<td>607</td>
</tr>
<tr>
<td>5.3</td>
<td>Product Class 3: Lead Compounds</td>
<td>M. G. Moloney</td>
<td>619</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Product Subclass 1: Lead Hydrides</td>
<td>M. G. Moloney</td>
<td>627</td>
</tr>
<tr>
<td>Product Subclass</td>
<td>Title</td>
<td>Authors</td>
<td>Page</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Product Subclass 2: Diplumbenes and Diplumbanes</td>
<td>N. Takeda, N. Tokitoh, and R. Okazaki</td>
<td>637</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Product Subclass 3: Metalated Lead Compounds</td>
<td>N. Takeda, N. Tokitoh, and R. Okazaki</td>
<td>641</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Product Subclass 4: Organoplumbyl Oxides, Sulfides, Selenides, and Tellurides (Double Bonded)</td>
<td>N. Takeda, N. Tokitoh, and R. Okazaki</td>
<td>645</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Product Subclass 5: Plumbylenes</td>
<td>N. Takeda, N. Tokitoh, and R. Okazaki</td>
<td>649</td>
</tr>
<tr>
<td>5.3.6</td>
<td>Product Subclass 6: Halo(organo)plumbanes</td>
<td>P. J. Guiry and P. J. McCormack</td>
<td>653</td>
</tr>
<tr>
<td>5.3.7</td>
<td>Product Subclass 7: Organoplumboxanes and Related Compounds</td>
<td>P. J. Guiry and P. J. McCormack</td>
<td>665</td>
</tr>
<tr>
<td>5.3.8</td>
<td>Product Subclass 8: Acyloxy(organo)plumbanes</td>
<td>P. J. Guiry and P. J. McCormack</td>
<td>673</td>
</tr>
<tr>
<td>5.3.9</td>
<td>Product Subclass 9: Plumbyl Enol Ethers</td>
<td>P. J. Guiry and P. J. McCormack</td>
<td>693</td>
</tr>
<tr>
<td>5.3.10</td>
<td>Product Subclass 10: Organoplumbane Sulfur Compounds</td>
<td>P. J. Guiry and P. J. McCormack</td>
<td>697</td>
</tr>
<tr>
<td>5.3.11</td>
<td>Product Subclass 11: Organoplumbyl Selenides, Tellurides, and Related Compounds</td>
<td>P. J. Guiry and P. J. McCormack</td>
<td>703</td>
</tr>
<tr>
<td>5.3.12</td>
<td>Product Subclass 12: Organoplumbanamines and Related Compounds</td>
<td>P. J. Guiry and P. J. McCormack</td>
<td>707</td>
</tr>
<tr>
<td>5.3.13</td>
<td>Product Subclass 13: Organoplumbyl Phosphines and Phosphine Oxides</td>
<td>P. J. Guiry and P. J. McCormack</td>
<td>711</td>
</tr>
<tr>
<td>5.3.14</td>
<td>Product Subclass 14: Triorganolead Cyanides and Triorganolead Cyanates</td>
<td>P. A. C. Eagle</td>
<td>713</td>
</tr>
<tr>
<td>5.3.15</td>
<td>Product Subclass 15: Acylplumbanes</td>
<td>P. A. C. Eagle</td>
<td>717</td>
</tr>
<tr>
<td>5.3.16</td>
<td>Product Subclass 16: Lead Isocyanates, Isothiocyanates, Diazoplumbanes, and Iminoplumbanes</td>
<td>P. A. C. Eagle</td>
<td>721</td>
</tr>
<tr>
<td>Subclass</td>
<td>Description</td>
<td>Author(s)</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>-------------------</td>
<td>------</td>
</tr>
<tr>
<td>5.3.17</td>
<td>Product Subclass 17: 1- or 2-Alkoxy- and 1- or 2-(Alkylsulfanyl) and 1- or 2-Aminoalkenyl(triorgano)plumbanes</td>
<td>P. A. C. Eagle</td>
<td>727</td>
</tr>
<tr>
<td>5.3.18</td>
<td>Product Subclass 18: 1-Halo-, 1-Alkoxy-, 1-Hydroxy-, and 1-Aminoalkylplumbanes</td>
<td>P. A. C. Eagle</td>
<td>731</td>
</tr>
<tr>
<td>5.3.19</td>
<td>Product Subclass 19: Alkynylplumbanes</td>
<td>P. A. C. Eagle</td>
<td>745</td>
</tr>
<tr>
<td>5.3.20</td>
<td>Product Subclass 20: Allenylplumbanes</td>
<td>P. A. C. Eagle</td>
<td>751</td>
</tr>
<tr>
<td>5.3.21</td>
<td>Product Subclass 21: Aryplumbanes</td>
<td>P. A. C. Eagle</td>
<td>755</td>
</tr>
<tr>
<td>5.3.22</td>
<td>Product Subclass 22: Vinylplumbanes</td>
<td>P. A. C. Eagle</td>
<td>763</td>
</tr>
<tr>
<td>5.3.23</td>
<td>Product Subclass 23: Benzylplumbanes</td>
<td>P. A. C. Eagle</td>
<td>769</td>
</tr>
<tr>
<td>5.3.24</td>
<td>Product Subclass 24: Allyplumbanes</td>
<td>P. A. C. Eagle</td>
<td>773</td>
</tr>
<tr>
<td>5.3.25</td>
<td>Product Subclass 25: Alkylplumbanes</td>
<td>P. A. C. Eagle</td>
<td>779</td>
</tr>
</tbody>
</table>

Keyword Index .. 793
Author Index .. 823
Abbreviations .. 859
Table of Contents

Introduction
E. J. Thomas and M. G. Moloney

Introduction ... 1

5.1 Product Class 1: Germanium Compounds
E. J. Thomas

5.1 Product Class 1: Germanium Compounds 3

5.1.1 Product Subclass 1: Germanium Hydrides
K. Oshima

5.1.1 Product Subclass 1: Germanium Hydrides 9

Synthesis of Product Subclass 1 9

5.1.1.1 Method 1: By Reactions of (Organogermyl)alkali Metal Compounds 9

5.1.1.2 Variation 1: From Tetraarylgermanes 9

5.1.1.2 Variation 2: From Digermanium Compounds 10

5.1.1.3 Variation 3: From Trialkyl- and Triarylgermanium Halides 12

5.1.1.2 Method 2: Reduction of Germanium Halides 13

5.1.1.2 Method 1: Reduction with Lithium Aluminum Hydride 13

5.1.1.2 Method 2: Reduction with Group 14 Hydrides 16

5.1.1.2 Method 3: Substitution of Halogen with a Carbanion 16

5.1.1.3 Method 3: Substitution of Halo(organo)germanium Hydrides 17

5.1.1.3 Variation 1: Halogenation of Alkyl- and Arylgermanium Hydrides (Substitution of Hydrogen by Halogen) 18

5.1.1.3 Variation 2: Substitution of Halogen in Halo(organo)germanium Hydrides 19

Applications of Product Subclass 1 in Organic Synthesis 20

5.1.1.4 Method 4: Reduction of Organic Halides 21

5.1.1.5 Method 5: Hydrogermylation of Carbon—Carbon Multiple Bonds 22

5.1.1.6 Method 6: Reduction of Carbonyl Compounds 23

5.1.1.7 Method 7: Action of Acids and Bases 24

5.1.2 Product Subclass 2: Digermenes and Digermanes
N. Takeda, N. Tokitoh, and R. Okazaki

5.1.2 Product Subclass 2: Digermenes and Digermanes 27

Synthesis of Product Subclass 2 28

5.1.2.1 Method 1: Digermenes from Germanium(II) Complexes 28

5.1.2.2 Method 2: Digermenes by Photolysis of Trigerminanes or Bis(silyl)germanes 29

5.1.2.3 Method 3: Digermenes by Reductive Coupling of Dihalogermanes 30
<table>
<thead>
<tr>
<th>Section</th>
<th>Subclass</th>
<th>Method</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.3</td>
<td>Product Subclass 3: Metalated Germanium Compounds</td>
<td>Method 4: Digermanes from Halogermanes</td>
<td>30</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Product Subclass 3: Metalated Germanium Compounds</td>
<td>Synthesis of Product Subclass 3</td>
<td>33</td>
</tr>
<tr>
<td>5.1.3.1</td>
<td>Method 1:</td>
<td>Reactions of Tetravalent Germanium Compounds with Metals</td>
<td>34</td>
</tr>
<tr>
<td>5.1.3.2</td>
<td>Method 2:</td>
<td>Metathesis</td>
<td>34</td>
</tr>
<tr>
<td>5.1.3.3</td>
<td>Method 3:</td>
<td>Oxidative Addition</td>
<td>35</td>
</tr>
<tr>
<td>5.1.3.4</td>
<td>Method 4:</td>
<td>From Germynes</td>
<td>35</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Product Subclass 4: Germanium Oxides, Sulfides, Selenides, and Tellurides (Double Bonded)</td>
<td>Method 1: Chalcogenation of Germynes</td>
<td>39</td>
</tr>
<tr>
<td>5.1.4.1</td>
<td>Method 1:</td>
<td>Chalcogenation of Germynes</td>
<td>40</td>
</tr>
<tr>
<td>5.1.4.2</td>
<td>Method 2:</td>
<td>Dechalcogenation of Tetrachalcogenagermolanes</td>
<td>40</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Product Subclass 5: Iminogermanes</td>
<td>Method 1: From Germynes</td>
<td>43</td>
</tr>
<tr>
<td>5.1.5.1</td>
<td>Method 1:</td>
<td>From Germynes</td>
<td>43</td>
</tr>
<tr>
<td>5.1.5.2</td>
<td>Method 2:</td>
<td>Dehydrohalogenation of (Amino)(halo)germanes</td>
<td>44</td>
</tr>
<tr>
<td>5.1.6</td>
<td>Product Subclass 6: Germenes</td>
<td>Method 1: From Germynes</td>
<td>47</td>
</tr>
<tr>
<td>5.1.6.1</td>
<td>Method 1:</td>
<td>From Germynes</td>
<td>47</td>
</tr>
<tr>
<td>5.1.6.2</td>
<td>Method 2:</td>
<td>From Halogermanes</td>
<td>48</td>
</tr>
<tr>
<td>5.1.7</td>
<td>Product Subclass 7: Germynes</td>
<td>Method 1: From Germynes</td>
<td>51</td>
</tr>
<tr>
<td>5.1.7.1</td>
<td>Method 1:</td>
<td>From Germynes</td>
<td>51</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.1</td>
<td>Method 1: From Divalent Germanium Compounds with Organolithiums or Grignard Reagents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.2</td>
<td>Method 2: Reductive Dehalogenation of Dihalogermanes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.8</td>
<td>Product Subclass 8: Organogermanium Halides</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. Thornton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.8.1</td>
<td>Method 1: From Germanium Halides by Substitution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.8.2</td>
<td>Method 2: Methylene Insertion into the Germanium—Halogen Bond</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.8.3</td>
<td>Method 3: By Halogenation of Germanium Compounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.8.3.1</td>
<td>Variation 1: From Alkyl- or Arylgermanes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.8.3.2</td>
<td>Variation 2: From Germyl Ethers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.8.3.3</td>
<td>Variation 3: From Metallic Germanium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.8.3.4</td>
<td>Variation 4: From Germanium Hydrides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.8.4</td>
<td>Method 4: Comproportionation of Organogermanium Compounds and Germanium Halides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.8.5</td>
<td>Method 5: Addition Reactions of Germanium Compounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.8.5.1</td>
<td>Variation 1: Addition of Germanium Hydrides to Unsaturated Compounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.8.5.2</td>
<td>Variation 2: Reactions of Germynes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applications of Product Subclass 8 in Organic Synthesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.9</td>
<td>Product Subclass 9: Germanium Oxides</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. Thornton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.9.1</td>
<td>Method 1: By Substitution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.9.1.1</td>
<td>Variation 1: From Organogermanium Halides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.9.1.2</td>
<td>Variation 2: From Organogermanium Oxy Compounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.9.2</td>
<td>Method 2: Insertion of Oxo Fragments into Germanium—Heteroatom Bonds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.9.3</td>
<td>Method 3: Reactions of Metallogermanium Compounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.9.4</td>
<td>Method 4: Reactions of Germynes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.9.5</td>
<td>Method 5: Thermolyses</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applications of Product Subclass 9 in Organic Synthesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.10</td>
<td>Product Subclass 10: Germanium Carboxylates, Phosphates, and Related Compounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. Thornton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1.10</td>
<td>Product Subclass 10: Germanium Carboxylates, Phosphates, and Related Compounds</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Synthesis of Product Subclass 10 ... 85

5.1.10.1 Method 1: From Organogermanium Halides by Substitution 85
5.1.10.2 Method 2: Substitutions in Other Organogermanium Compounds 86

5.11 Product Subclass 11: Germanium Sulfides, Sulfoxides, and Related Compounds
P. Thornton

5.1.11 Product Subclass 11: Germanium Sulfides, Sulfoxides, and Related Compounds ... 89
Synthesis of Product Subclass 11 ... 89

5.1.11.1 Method 1: From Germanium Halides by Substitution 89
5.1.11.2 Method 2: Substitutions in Other Organogermanium Compounds 90

5.12 Product Subclass 12: Germanium Selenides, Tellurides, and Related Compounds
P. Thornton

5.1.12 Product Subclass 12: Germanium Selenides, Tellurides, and Related Compounds ... 93
Synthesis of Product Subclass 12 ... 93

5.1.12.1 Method 1: From Germanium Compounds by Substitution 93

5.13 Product Subclass 13: Germylamines
P. Thornton

5.1.13 Product Subclass 13: Germylamines 97
Synthesis of Product Subclass 13 ... 97

5.1.13.1 Method 1: Synthesis by Substitution 97
5.1.13.1.1 Variation 1: From Organogermanium Halides 97
5.1.13.1.2 Variation 2: Substitutions in Other Organogermanium Compounds 98
5.1.13.2 Method 2: From Germanium(II) Compounds by Oxidative Addition 99
Applications of Product Subclass 13 in Organic Synthesis 99

5.1.14 Product Subclass 14: Germanium Phosphines, Arsines, and Stibines
P. Thornton

5.1.14 Product Subclass 14: Germanium Phosphines, Arsines, and Stibines 101
Synthesis of Product Subclass 14 ... 101

5.1.14.1 Method 1: From Organogermanium Halides by Substitution 101
5.1.14.2 Method 2: Substitutions in Other Organogermanium Compounds 102
Applications of Product Subclass 14 in Organic Synthesis 102
5.1.15 Product Subclass 15: Germanium Cyanides
A. C. Spivey and C. M. Diaper

5.1.15 Synthesis of Product Subclass 15 105
5.1.15.1 Method 1: From Halogermanes by Substitution with Cyanide Salts 106

5.1.16 Product Subclass 16: Acylgermanes
A. C. Spivey and C. M. Diaper

5.1.16 Synthesis of Product Subclass 16 .. 109
5.1.16.1 Method 1: From Carboxylic Acid Derivatives by Substitution Using Metallogermanes ... 109
5.1.16.2 Method 2: From α-Hydroxyalkylgermanes by Oxidation 110
5.1.16.3 Method 3: From Germyl Enol Ethers by Hydrolysis 111
5.1.16.4 Method 4: From α,α-Diheterosubstituted Germanes by Hydrolysis 112

5.1.16.5 Applications of Product Subclass 16 in Organic Synthesis 112

5.1.17 Product Subclass 17: Imidoylgermanes (α-Iminoalkylgermanes) and α-Diazoalkylgermanes
A. C. Spivey and C. M. Diaper

5.1.17 Synthesis of Product Subclass 17 .. 115
5.1.17.1 Method 1: Imidoylgermanes from Imidoyl Chlorides by Substitution 116
5.1.17.2 Method 2: α-Hydrazonoalkylgermanes from Acylgermanes by Condensation 117
5.1.17.3 Method 3: α-Diazoalkylgermanes by Substitution Using Diazalkane Derivatives 117
5.1.17.4 Method 4: α-Diazoalkylgermanes from α-Metalated Organogeramnes and Tosyl Azide (Diazot Transfer) .. 118
5.1.17.5 Method 5: α-Diazoalkylgermanes by Radical Exchange and Demercurization 119

5.1.18 Product Subclass 18: α-Halo- and α-Alkoxyvinylgermanes
A. C. Spivey and C. M. Diaper

5.1.18 Synthesis of Product Subclass 18 .. 121
5.1.18.1 Method 1: α-Alkoxyvinylgermanes from α-Metallovinyl Ethers by Substitution 123

Table of Contents
XVII

Science of Synthesis Original Edition Volume 5
© Georg Thieme Verlag KG

5.1.18.2 Method 2: \(\alpha \)-Halovinylgermanes from \(\alpha,\beta \)-Dihaloalkylgermanes by Elimination .. 123

5.1.18.3 Method 3: \(\alpha \)-Halovinylgermanes from Alk-1-ynylgermanes by Hydro/Carbometalation–Halogenation 124

5.1.19 **Product Subclass 19: \(\alpha \)-Halo-, \(\alpha \)-Hydroxy-, \(\alpha \)-Alkoxy-, and \(\alpha \)-Aminoalkylgermanes**
A. C. Spivey and C. M. Diaper

5.1.19 **Product Subclass 19: \(\alpha \)-Halo-, \(\alpha \)-Hydroxy-, \(\alpha \)-Alkoxy-, and \(\alpha \)-Aminoalkylgermanes** ... 127

Synthesis of Product Subclass 19 .. 128

5.1.19.1 Method 1: \(\alpha \)-Hetero and \(\alpha \)-Haloalkylgermanes from Halogermanes by Substitution .. 128

5.1.19.1.1 Variation 1: Using Group 1 Organometallics 129

5.1.19.1.2 Variation 2: Using Group 12 Organometallics 129

5.1.19.2 Method 2: \(\alpha \)-Haloalkylgermanes by Direct Halogenation 130

5.1.19.3 Method 3: \(\alpha \)-Halo and \(\alpha \)-Alkoxyalkylgermanes by Insertion 131

5.1.19.3.1 Variation 1: By Germylene Insertion 131

5.1.19.3.2 Variation 2: By Methyleneation ... 131

5.1.19.4 Method 4: \(\alpha \)-Hydroxalkylgermanes from Aldehydes/Ketones by Addition of Metallogermanes ... 132

5.1.19.5 Method 5: \(\alpha \)-Hydroxalkylgermanes from Acylgermanes by Addition 133

5.1.19.6 Method 6: Interconversion of \(\alpha \)-Hetero- and \(\alpha \)-Haloalkylgermanes by Substitution .. 134

5.1.20 **Product Subclass 20: Alkynylgermanes**
A. C. Spivey and C. M. Diaper

5.1.20 **Product Subclass 20: Alkynylgermanes** .. 137

Synthesis of Product Subclass 20 .. 139

5.1.20.1 Method 1: From Halogermanes by Substitution 139

5.1.20.2 Method 2: From Group 14 Metalloalkynyls by Metathesis with Halogermanes ... 139

Applications of Product Subclass 20 in Organic Synthesis 140

5.1.20.3 Method 3: Alkynylgermanes as Protecting Groups 140

5.1.21 **Product Subclass 21: Germyleketenes and Germyleketenimines**
A. C. Spivey and C. M. Diaper

5.1.21 **Product Subclass 21: Germyleketenes and Germyleketenimines** ... 143

Synthesis of Product Subclass 21 .. 144

5.1.21.1 Method 1: Germyleketenes from Halogermanes by Substitution with Ynolates ... 144
5.1.21 Method 2: Germylketenes from (Alkoxyalkynyl)germanes by Thermal Decomposition ... 145
5.1.21.3 Method 3: Germylketenes from α-Diazo-β-oxoalkylgermanes by Wolff Rearrangement ... 145
5.1.21.4 Method 4: Germylketenimines from α-Cyanoalkylgermanes 146

5.1.22 Product Subclass 22: Aryl- and Heteroarylgermanes
A. C. Spivey and C. M. Diaper

5.1.22.1 Method 1: From Halogermanes by Substitution with Arylmetals 150
5.1.22.1.1 Variation 1: Using Preformed Arylmetals 151
5.1.22.1.2 Variation 2: Using Barbier-Type Reactions 152
5.1.22.2 Method 2: From Aryl Halides by Palladium(0)-Mediated Coupling with Digermanes ... 152
5.1.22.3 Method 3: From Aryl Halides by Insertion of Dichlorogermylene 153
5.1.22.4 Method 4: Heteroarylgermanes by Cycloaddition 154

5.1.22.5 Method 5: Arylgermanes as Linkers for Solid-Phase Synthesis 154

5.1.23 Product Subclass 23: Vinylgermanes
A. C. Spivey and C. M. Diaper

5.1.23.1 Method 1: From Vinylolithium and Vinyl Grignard Reagents by Transmetalation with Halogermanes 160
5.1.23.2 Method 2: From β-Heterogermanes by Elimination 161
5.1.23.2.1 Variation 1: By Addition of α-Metalated Organogermanes to Aldehydes/Ketones ... 161
5.1.23.2.2 Variation 2: By Wittig-Based Methods 162
5.1.23.3 Method 3: From Alkynes by Germylene Insertion 163
5.1.23.4 Method 4: From Alkynes by Hydro-, Hetero-, and Metallogermylation 163
5.1.23.4.1 Variation 1: By Hydrogermylation .. 164
5.1.23.4.2 Variation 2: By Palladium(0)-Mediated Germylation 165
5.1.23.4.3 Variation 3: By Metallogermylation 166

5.1.23.5 Method 5: d^2,d^4-Propene and a^2,d^4-Butene Synthons for Ring Annulations in Natural Product Synthesis 167

Applications of Product Subclass 22 in Organic Synthesis 154
Applications of Product Subclass 23 in Organic Synthesis 167
Table of Contents

5.1.24 Product Subclass 24: Propargyl- and Allenylgermanes
A. C. Spivey and C. M. Diaper

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesis of Product Subclass 24</td>
<td>171</td>
</tr>
<tr>
<td>Method 1: Propargyl- or Allenylgermanes by Substitution</td>
<td>172</td>
</tr>
<tr>
<td>Method 2: Propargyl- and Allenylgermanes from Propargyl and Allenyl Halides by Germylene Insertion</td>
<td>173</td>
</tr>
<tr>
<td>Method 3: Germacumulenes from Germyl Hydrides by Insertion of Alkadienylidenercarbene</td>
<td>174</td>
</tr>
</tbody>
</table>

5.1.25 Product Subclass 25: Benzylgermanes
A. C. Spivey and C. M. Diaper

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesis of Product Subclass 25</td>
<td>177</td>
</tr>
<tr>
<td>Method 1: From Halogermanes by Substitution with Benzylmetals</td>
<td>178</td>
</tr>
<tr>
<td>Method 2: From Benzyl Halides by Germylene Insertion</td>
<td>178</td>
</tr>
</tbody>
</table>

5.1.26 Product Subclass 26: Allylgermanes
A. C. Spivey and C. M. Diaper

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesis of Product Subclass 26</td>
<td>181</td>
</tr>
<tr>
<td>Method 1: From Allyl Acetates by Substitution with Metallogermanes</td>
<td>182</td>
</tr>
<tr>
<td>Method 2: From Halogermanes by Substitution with Allylmetals</td>
<td>183</td>
</tr>
<tr>
<td>Method 3: From Allyl Halides or Dienes by Germylene Insertion</td>
<td>183</td>
</tr>
<tr>
<td>Method 4: From Allyl Halides by Palladium(0)-Mediated Coupling with Metallogermanes</td>
<td>184</td>
</tr>
<tr>
<td>Applications of Product Subclass 26 in Organic Synthesis</td>
<td>185</td>
</tr>
<tr>
<td>Method 5: Selective χ-Alkylation of Germanium-Masked Dienolates</td>
<td>185</td>
</tr>
</tbody>
</table>

5.1.27 Product Subclass 27: Alkylgermanes
A. C. Spivey and C. M. Diaper

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesis of Product Subclass 27</td>
<td>189</td>
</tr>
<tr>
<td>Method 1: From Alkyl Halides by Substitution with Metallogermanes</td>
<td>190</td>
</tr>
<tr>
<td>Method 2: From Halogermanes by Substitution with Alkylmetals</td>
<td>190</td>
</tr>
<tr>
<td>Method 3: From Alkenes by Hydrogermylation</td>
<td>191</td>
</tr>
</tbody>
</table>
5.2 Product Class 2: Tin Compounds
E. J. Thomas

5.2 Product Subclass 1: Tin Hydrides
A. J. Clark

5.2.1 Synthesis of Product Subclass 1

5.2.1.1 Method 1: From Tin Halides by Reduction

5.2.1.2 Variation 1: Reduction of Tin Halides with Lithium Aluminum Hydride

5.2.1.3 Variation 2: Reduction of Tin Halides with Sodium Borohydride

5.2.1.4 Variation 3: Reduction of Tin Halides with Dialkylaluminum Hydrides

5.2.1.5 Method 2: From Organotin Oxides, Alkoxides, and Amides by Reduction

5.2.1.6 Method 3: From Organostannylolithium, Sodium, Potassium, and Magnesium Compounds by Reactions with Electrophiles

5.2.1.7 Method 4: By Reduction of Sn—Sn Bonds

5.2.1.8 Method 5: By Exchange Reactions

Applications of Product Subclass 1 in Organic Synthesis

5.2.1.9 Method 6: Reduction of Carbon—Halogen, C—O, C—N, C—S, C—Se, and C—Te Bonds without Rearrangement

5.2.1.10 Variation 1: Reduction of Carbon—Halogen Bonds

5.2.1.11 Variation 2: Reduction of C—O Bonds

5.2.1.12 Variation 3: Reduction of C—N Bonds

5.2.1.13 Variation 4: Reduction of C—S, C—Se, and C—Te Bonds

5.2.1.14 Method 7: Elimination Reactions

5.2.1.15 Method 8: Addition of Triorganostannanes to C—C, C—O, C—N, and C—S Multiple Bonds

5.2.1.16 Variation 1: Addition to C—C Multiple Bonds

5.2.1.17 Variation 2: Addition to C—O Multiple Bonds

5.2.1.18 Variation 3: Addition to C—N and C—S Multiple Bonds

5.2.1.19 Method 9: Mediation of Intermolecular Radical Addition Reactions

5.2.1.20 Method 10: Mediation of Intramolecular Radical Addition Reactions

5.2.1.21 Variation 1: Radicals Generated by Homolysis of C—I, C—Br, C—Cl, C—SR, and C—SeR Bonds

5.2.1.22 Variation 2: Radicals Generated by Homolysis of N—Cl, N—O(CO)Ph, N—SPh, and N—NMe(CS)SMe Bonds

5.2.1.23 Variation 3: Intramolecular Reactions of Radicals Generated by Addition of Tin Hydrides to Unsaturated Groups

5.2.1.24 Method 11: Miscellaneous Radical Reactions
5.2.2 Product Subclass 2: Distannenes and Distannanes

J. Podlech

<table>
<thead>
<tr>
<th>Method</th>
<th>Synthesis Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Distannenes by Coupling of Two Stannylenes</td>
</tr>
<tr>
<td>2</td>
<td>Distannanes by Dehydrogenation of Tin Hydrides</td>
</tr>
<tr>
<td>2.1</td>
<td>Variation 1: Catalytic or Thermal Decomposition of Tin Hydrides</td>
</tr>
<tr>
<td>2.2</td>
<td>Variation 2: Homolytic Abstraction of Hydrogen from Tin Hydrides</td>
</tr>
<tr>
<td>2.3</td>
<td>Method 3: Distannanes by Hydrostannolysis of Organotin Amides, Oxides, or Alkoxides</td>
</tr>
<tr>
<td>2.4</td>
<td>Method 4: Distannanes by Reaction of Organotin Halides with Metalated Organotin Compounds</td>
</tr>
<tr>
<td>2.5</td>
<td>Method 5: Distannanes by Reduction of Tin Halides, Tin Oxides, or Tin Sulfides with Reducing Agents</td>
</tr>
</tbody>
</table>

5.2.3 Product Subclass 3: Metalated Tin Compounds

J. Podlech

<table>
<thead>
<tr>
<th>Method</th>
<th>Synthesis Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Synthesis by Deprotonation of Tin Hydrides</td>
</tr>
<tr>
<td>1.1</td>
<td>Variation 1: Deprotonation with Organometallic Compounds or Metal Hydrides</td>
</tr>
<tr>
<td>1.2</td>
<td>Variation 2: Deprotonation with Metal Amides or Metal Alkoxides</td>
</tr>
<tr>
<td>2</td>
<td>Method 2: Synthesis by Reductive Metalation of Distannanes</td>
</tr>
<tr>
<td>3</td>
<td>Method 3: Synthesis by Reaction of Distannanes with Organometallic Compounds or Metal Hydrides</td>
</tr>
<tr>
<td>4</td>
<td>Method 4: Synthesis by Reaction of Tin Halides with Metals</td>
</tr>
<tr>
<td>5</td>
<td>Method 5: Synthesis by Transmetalation</td>
</tr>
<tr>
<td>6</td>
<td>Method 6: Synthesis by Reaction of Stannous Chloride with Organolithium Compounds</td>
</tr>
</tbody>
</table>

5.2.4 Product Subclass 4: Tin Oxides, Sulfides, Selenides, and Tellurides (Double Bonded)

N. Takeda, N. Tokito, and R. Okazaki

<table>
<thead>
<tr>
<th>Method</th>
<th>Synthesis Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chalcogenation of Stannylenes</td>
</tr>
<tr>
<td>2</td>
<td>Dechalcogenation of Tetrachalcogenastannolanes</td>
</tr>
<tr>
<td>Section</td>
<td>Subclass</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Product Subclass 5: Iminostannanes</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 5</td>
</tr>
<tr>
<td>5.2.5.1</td>
<td>Method 1: Reaction between Stannylenes and Azides</td>
</tr>
<tr>
<td>5.2.6</td>
<td>Product Subclass 6: Stannenes</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 6</td>
</tr>
<tr>
<td>5.2.6.1</td>
<td>Method 1: From Stannylenes</td>
</tr>
<tr>
<td>5.2.7</td>
<td>Product Subclass 7: Stannylenes</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 7</td>
</tr>
<tr>
<td>5.2.7.1</td>
<td>Method 1: From Divalent Tin Compounds</td>
</tr>
<tr>
<td>5.2.7.2</td>
<td>Method 2: Reduction of Dihalostannanes</td>
</tr>
<tr>
<td>5.2.7.3</td>
<td>Method 3: Exhaustive Desulfurization of Tetrathiastannolanes</td>
</tr>
<tr>
<td>5.2.8</td>
<td>Product Subclass 8: Tin Halides and Organotin Halides</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 8</td>
</tr>
<tr>
<td>5.2.8.1</td>
<td>Tin(IV) Halides by Direct Combination of Elements</td>
</tr>
<tr>
<td>5.2.8.1.1</td>
<td>Method 1: Chlorine, Bromine, and Iodine as the Halogen</td>
</tr>
<tr>
<td>5.2.8.2</td>
<td>Tin(IV) Halides by Halide Exchange</td>
</tr>
<tr>
<td>5.2.8.2.1</td>
<td>Method 1: Fluoride/Chloride Exchange</td>
</tr>
<tr>
<td>5.2.8.3</td>
<td>Organotin Halides by Direct Synthesis with Metallic Tin</td>
</tr>
<tr>
<td>5.2.8.3.1</td>
<td>Method 1: Reaction of Alkyl Halides with Metallic Tin</td>
</tr>
<tr>
<td>5.2.8.3.2</td>
<td>Method 2: Metal-Catalyzed Reaction of Alkyl Halides with Metallic Tin</td>
</tr>
<tr>
<td>5.2.8.3.3</td>
<td>Method 3: Metal-Catalyzed Reaction of Alkyl Halides with Metallic Tin in the Presence of Alcohols</td>
</tr>
<tr>
<td>5.2.8.3.4</td>
<td>Method 4: Metal–Salt-Catalyzed Reaction of Alkyl Halides with Metallic Tin</td>
</tr>
<tr>
<td>5.2.8.3.4.1</td>
<td>Variation 1: Catalysis with Copper(I) Iodide in the Presence of Hexamethylphosphoric Triamide</td>
</tr>
<tr>
<td>5.2.8.3.4.2</td>
<td>Variation 2: Catalysis with Antimony and Arsenic Halides</td>
</tr>
<tr>
<td>Section</td>
<td>Method/Reaction</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td>5.2.8.3.4.3</td>
<td>Variation 3: Catalysis with Mercury(II) Chloride in the Presence of Triethyamine</td>
</tr>
<tr>
<td>5.2.8.3.5</td>
<td>Method 5: Triethylamine/Iodine-Catalyzed Reaction of Alkyl Halides with Metallic Tin</td>
</tr>
<tr>
<td>5.2.8.3.6</td>
<td>Method 6: Phosphonium Salt Catalyzed Reaction of Alkyl Halides with Metallic Tin</td>
</tr>
<tr>
<td>5.2.8.4</td>
<td>Organotin Halides by Reactions Involving Tin(II) Halides</td>
</tr>
<tr>
<td>5.2.8.4.1</td>
<td>Method 1: Phosphonium Salt Catalyzed Reaction of Alkyl Halides with Tin(II) Halides</td>
</tr>
<tr>
<td>5.2.8.4.2</td>
<td>Method 2: Reaction of Alkyl Halides with Tin(II) Chloride in a Salt Melt</td>
</tr>
<tr>
<td>5.2.8.4.3</td>
<td>Method 3: Reaction of Tin(II) Halides with Organomercury, Organothallium, and Organolead Compounds</td>
</tr>
<tr>
<td>5.2.8.5</td>
<td>Organotin Halides by Partial Alkylation of Tin(IV) Halides</td>
</tr>
<tr>
<td>5.2.8.5.1</td>
<td>Method 1: Organotin Halides by Partial Alkylation of Tin(IV) Halides with Main Group Organometallic Reagents</td>
</tr>
<tr>
<td>5.2.8.5.1.1</td>
<td>Variation 1: Using Grignard Reagents</td>
</tr>
<tr>
<td>5.2.8.5.1.2</td>
<td>Variation 2: Using Trialkylaluminum Reagents</td>
</tr>
<tr>
<td>5.2.8.5.1.3</td>
<td>Variation 3: Using Dialkylmercury(II) Reagents</td>
</tr>
<tr>
<td>5.2.8.5.2</td>
<td>Method 2: Organotin Halides by Comproportionation</td>
</tr>
<tr>
<td>5.2.8.5.2.1</td>
<td>Variation 1: Using Tetraorganotin Reagents and Tin(IV) Halides</td>
</tr>
<tr>
<td>5.2.8.5.2.2</td>
<td>Variation 2: Using Tetraorganotin Reagents and Tin(IV) Halides in the Presence of a Catalyst</td>
</tr>
<tr>
<td>5.2.8.5.2.3</td>
<td>Variation 3: Using Tetraorganotin Reagents and Tin(IV) Halides in a Polar Medium</td>
</tr>
<tr>
<td>5.2.8.5.2.4</td>
<td>Variation 4: Using Diorganotin Dihalides and Tin(IV) Halides</td>
</tr>
<tr>
<td>5.2.8.5.2.5</td>
<td>Variation 5: Using Polymeric “Diorganostannane” Reagents and Tin(IV) Halides</td>
</tr>
<tr>
<td>5.2.8.5.3</td>
<td>Method 3: Organotin Halides by Partial Alkylation of Tin(IV) Halides with Diazoalkanes</td>
</tr>
<tr>
<td>5.2.8.6</td>
<td>Organotin Halides by Cleavage of C—Sn Bonds</td>
</tr>
<tr>
<td>5.2.8.6.1</td>
<td>Method 1: Organotin Halides by Cleavage of C—Sn Bonds with Halogens</td>
</tr>
<tr>
<td>5.2.8.6.2</td>
<td>Method 2: Organotin Halides by Cleavage of C—Sn Bonds with Hydrogen Halides</td>
</tr>
<tr>
<td>5.2.8.6.3</td>
<td>Method 3: Organotin Halides by Cleavage of C—Sn Bonds with Organotin Halides</td>
</tr>
<tr>
<td>5.2.8.7</td>
<td>Organotin Halides by Cleavage of Sn—Sn Bonds</td>
</tr>
<tr>
<td>5.2.8.7.1</td>
<td>Method 1: Cleavage of Hexaorganodistannane Reagents with Halogens</td>
</tr>
<tr>
<td>5.2.8.7.2</td>
<td>Method 2: Cleavage of Polymeric “Diorganostannane” Reagents with Halogens</td>
</tr>
<tr>
<td>5.2.8.7.3</td>
<td>Method 3: Disproportionation Between Polymeric “Diorganostannane” Reagents and Diorganotin Dihalides</td>
</tr>
<tr>
<td>5.2.8.8</td>
<td>Organotin Halides from Organotin–Oxygen Compounds</td>
</tr>
<tr>
<td>5.2.8.8.1</td>
<td>Method 1: Organotin Halides from Organo(oxo)stannols and Hydrogen Halides</td>
</tr>
<tr>
<td>5.2.8.8.2</td>
<td>Method 2: Organotin Halides from Organotin Oxides and Hydrogen Halides</td>
</tr>
<tr>
<td>5.2.8.8.3</td>
<td>Method 3: Organotin Halides from Organotin Oxides and Ammonium Halides</td>
</tr>
<tr>
<td>5.2.8.9</td>
<td>Additional Methods</td>
</tr>
<tr>
<td>5.2.8.9.1</td>
<td>Method 1: Organotin Halides by Halide Exchange</td>
</tr>
<tr>
<td>5.2.8.9.2</td>
<td>Method 2: Tin(II) Halides from Metallic Tin</td>
</tr>
<tr>
<td>5.2.8.9.3</td>
<td>Method 3: Tin(II) Halides from Tin(II) Oxide</td>
</tr>
<tr>
<td>5.2.8.9.4</td>
<td>Method 4: Tin(II) Halides by Halide Exchange</td>
</tr>
</tbody>
</table>

Applications of Product Subclass 8 in Organic Chemistry 344

| 5.2.9 | Product Subclass 9: Tin Oxides |
| 5.2.9 | B. Jousseaume |

5.2.9	Product Subclass 9: Tin Oxides	353
5.2.9	Synthesis of Product Subclass 9	356
5.2.9.1	Method 1: From Organotin Oxides	356
5.2.9.1.1	Variation 1: Hexaorganodistannoxanes with Dialkyl Carbonates	356
5.2.9.1.2	Variation 2: Hexaorganodistannoxanes with Hydroxy Compounds	356
5.2.9.1.3	Variation 3: Triorganotin Alkoxides with Hydroxy Compounds	357
5.2.9.1.4	Variation 4: Dibutyltin Oxide with Hydroxy Compounds	357
5.2.9.1.5	Variation 5: Diorganotin Oxides with Diorganotin Compounds	358

Applications of Product Subclass 9 in Organic Synthesis 358

5.2.9.2	Method 2: Selective Benzylation of Carbohydrates via Organotin Alkoxides	358
5.2.9.3	Method 3: Selective Oxidation of Diols via Organotin Alkoxides	359
5.2.9.4	Method 4: Selective Acylation of Diols by Organodistannoxanes under Catalytic Conditions	360

| 5.2.10 | Product Subclass 10: Tin Carboxylates and Phosphates |
| 5.2.10 | B. Jousseaume |

5.2.10	Product Subclass 10: Tin Carboxylates and Phosphates	363
5.2.10	Synthesis of Product Subclass 10	365
5.2.10.1	Method 1: From Organotin Halides	365
5.2.10.2	Method 2: From Organotin Oxides	365

Applications of Product Subclass 10 in Organic Synthesis 366

| 5.2.10.3 | Method 3: Trisubstituted Tetrahydrofurans from Allylsilanes and Aldehydes under Organotin Carboxylate Catalysis | 366 |
5.2.11 **Product Subclass 11: Tin Enol Ethers**
B. Jousseaume

5.2.11 **Product Subclass 11: Tin Enol Ethers** ... 369

5.2.11.1 Method 1: From Organotin Hydrides ... 373

5.2.11.2 Method 2: From Organotin Halides ... 374

5.2.11.3 Method 3: From Organotin Alkoxides ... 375

5.2.11.4 Method 4: From Organotin Oxides ... 375

Applications of Product Subclass 11 in Organic Synthesis ... 376

5.2.11.5 Method 5: 1,4-Dicarbonyl Compounds from Organotin Enolates and α-Halo Ketones ... 376

5.2.11.6 Method 6: 1,5-Dicarbonyl Compounds by Michael Addition of Organotin Enolates to α,β-Unsaturated Carbonyl Compounds ... 376

5.2.11.7 Method 7: α-Aryl Ketones from Organotin Enolates and Aromatic Halides under Palladium Catalysis ... 377

5.2.11.8 Method 8: Synthesis of Substituted Pent-4-enones from Organotin Enolates and Allylic Acetates under Palladium Catalysis ... 378

5.2.11.9 Method 9: α-Alkyl-β-hydroxy Ketones from Organotin Enolates and Aldehydes ... 378

5.2.11.9.1 Variation 1: Under Diastereoselective Conditions ... 379

5.2.11.9.2 Variation 2: Under Enantioselective Conditions ... 379

5.2.12 **Product Subclass 12: Tin Sulfides, Thioalkoxides, and Related Compounds**
B. Jousseaume

5.2.12 **Product Subclass 12: Tin Sulfides, Thioalkoxides, and Related Compounds** ... 383

5.2.12.1 Method 1: From Organotin Hydrides ... 387

5.2.12.2 Method 2: From Organotin Halides ... 387

5.2.12.2.1 Variation 1: With Thiols ... 387

5.2.12.2.2 Variation 2: With Sodium Sulfide ... 388

5.2.12.2.3 Variation 3: With Sodium Thiolates ... 388

5.2.12.3 Method 3: From Organotin Oxides ... 389

Applications of Product Subclass 12 in Organic Synthesis ... 389

5.2.12.4 Method 4: Sulfenyl Halides from Organotin Thiocarboxylates ... 389

5.2.12.5 Method 5: Unsymmetrical Sulfides from Organotin Thiolates and Organic Halides ... 390

5.2.12.6 Method 6: Vinylic Sulfides from Organotin Thiolates and Vinylic Organic Halides ... 390
5.2.13 **Product Subclass 13: Tin Selenides and Tellurides**
B. Jousseaume

5.2.13 **Product Subclass 13: Tin Selenides and Tellurides**

Synthesis of Product Subclass 13
393

5.2.13.1 Method 1: From Hexaorganodistannanes
395
5.2.13.2 Method 2: From Organotin Halides
395
5.2.13.2.1 Variation 1: Using Lithium Selenide
395
5.2.13.2.2 Variation 2: Using Sodium Organoselenides
396

Applications of Product Subclass 13 in Organic Synthesis
397

5.2.13.3 Method 3: Diorganoselenides from Bis(triphenylstannyl) Selenide
397
5.2.13.4 Method 4: Telluropyrans from Bis(tributylstannyl) Telluride via Tellurocarbonyl Compounds
397

5.2.14 **Product Subclass 14: Organostannylamines and Related Compounds**
B. Jousseaume

5.2.14 **Product Subclass 14: Organostannylamines and Related Compounds**

Synthesis of Product Subclass 14
401

5.2.14.1 Method 1: From Organotin Halides Using Lithium Amides
404
5.2.14.2 Method 2: From Hexaorganodistannoxanes Using Lithium Amides
405
5.2.14.3 Method 3: From Organotin Alkoxides Using Nitrogen Heterocycles
405
5.2.14.4 Method 4: From Organostannylamines
406
5.2.14.5 Method 5: From Organotin Azides by Cycloaddition
406

Applications of Product Subclass 14 in Organic Synthesis
407

5.2.14.6 Method 6: Aromatic Amines by Amination of Aryl Bromides with Organostannylamines
407

5.2.15 **Product Subclass 15: Organostannylphosphines**
B. Jousseaume

5.2.15 **Product Subclass 15: Organostannylphosphines**

Synthesis of Product Subclass 15
409

5.2.15.1 Method 1: From Organotin Halides and Phospholylmetals
410

Applications of Product Subclass 15 in Organic Synthesis
411

5.2.15.2 Method 2: Phospholylphosphinines from Stannylphospholes and Phosphininyl Halides
411

5.2.16 **Product Subclass 16: Tin Cyanides and Fulminates**
P. B. Wyatt

5.2.16 **Product Subclass 16: Tin Cyanides and Fulminates**

Synthesis of Product Subclass 16
413
Method 1: Tin Cyanides from Organotin Hydrides and Isocyanides

Method 2: Tin Cyanides from Tetraorganotin Compounds and Cyanogen Halides

Method 3: Tin Cyanides by Substitution of Tin Halides

Variation 1: Using Trimethylsilyl Cyanide

Variation 2: Using Silver Cyanide

Variation 3: Using Group 1 Metal Cyanides

Method 4: Tin Cyanides from Tin Hydroxides Using Hydrogen Cyanide

Method 5: Tin Cyanides from Tin Alkoxides Using Acyl Cyanides

Method 6: Tin Cyanides from Stannylamines Using Hydrogen Cyanide

Method 7: Tin Fulminates by Substitution of Tin Halides

Applications of Product Subclass 16 in Organic Synthesis

Method 8: Cyanation of Carbonyl Compounds

Method 9: Cyanation of Imines

Method 10: Cyanation of Acyl, Alkenyl, and Aryl Halides

Product Subclass 17: Acylstannanes (Including S, Se, and Te Analogues)
P. B. Wyatt

Synthesis of Product Subclass 17

Method 1: From Organostannyllithium Species and Carbon Dioxide or Carbon Disulfide

Method 2: From Organostannyllithium Species and Isocyanates

Method 3: Acylstannanes and Stannanecarboxamides by Acylation of Organostannyllithium Species

Variation 1: Acylation Using Halocarboxamides

Variation 2: Acylation Using Acyl Halides, Esters, and Thioesters

Method 4: By Reaction of Organostannylnmetal Species and Aldehydes with In Situ Oxidation

Method 5: By Reaction of Organotin Halides with Lithium Carboxamide Species

Applications of Product Subclass 17 in Organic Synthesis

Method 6: Amides by Palladium-Mediated Cross Coupling of Stannanecarboxamides with Aryl and Alkenyl Halides

Method 7: 1,2-Dicarbonyl Compounds by Acylation of Acylstannanes

Method 8: 1-Alkoxyalkylstannanes by Reduction of Acylstannanes Followed by Alkylation

Product Subclass 18: Imidoylstannanes, Diazoalkylstannanes, Tin Isocyanates, and Tin Isothiocyanates
P. B. Wyatt

Product Subclass 18: Imidoylstannanes, Diazoalkylstannanes, Tin Isocyanates, and Tin Isothiocyanates
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.18</td>
<td>Synthesis of Product Subclass 18</td>
<td>433</td>
</tr>
<tr>
<td>5.2.18.1</td>
<td>Method 1: Imidoylstannanes by the Reactions of Organostannylithiums with Imidoyl Chlorides</td>
<td>433</td>
</tr>
<tr>
<td>5.2.18.2</td>
<td>Method 2: Imidoylstannanes by the Reactions of Organotin Halides with Lithiated Imines</td>
<td>434</td>
</tr>
<tr>
<td>5.2.18.3</td>
<td>Method 3: Imidoylstannanes by the Reactions of Acylstannanes with Amines</td>
<td>435</td>
</tr>
<tr>
<td>5.2.18.4</td>
<td>Method 4: Stannylated Diazoalkanes by the Reactions of Tin Halides with Lithiated Diazoalkanes</td>
<td>435</td>
</tr>
<tr>
<td>5.2.18.5</td>
<td>Method 5: Stannylated Diazoalkanes by the Reactions of Stannylamines with Diazoalkanes</td>
<td>436</td>
</tr>
<tr>
<td>5.2.18.6</td>
<td>Method 6: Tin Isocyanates and Isothiocyanates by the Substitution of Tin Halides</td>
<td>437</td>
</tr>
<tr>
<td>5.2.18.7</td>
<td>Applications of Product Subclass 18 in Organic Synthesis</td>
<td>438</td>
</tr>
<tr>
<td>5.2.18.7.1</td>
<td>Variation 1: Oxo Imines by the Acylation of Imidoylstannanes</td>
<td>438</td>
</tr>
<tr>
<td>5.2.18.7.2</td>
<td>Variation 2: Imines by the Transmetalation of Imidoylstannanes Followed by Alkylation</td>
<td>438</td>
</tr>
<tr>
<td>5.2.19</td>
<td>Product Subclass 19: 1-Halo-, 1-Alkoxy-, and 1-Aminovinylstannanes</td>
<td>441</td>
</tr>
<tr>
<td>5.2.19</td>
<td>Synthesis of Product Subclass 19</td>
<td>441</td>
</tr>
<tr>
<td>5.2.19.1</td>
<td>Method 1: From 1-Halo-, 1-Alkoxy-, or 1-Amino Carbanions and Trialkylhalostannanes</td>
<td>441</td>
</tr>
<tr>
<td>5.2.19.1.1</td>
<td>Variation 1: Using 1-Halo-, 1-Alkoxy-, or 1-Aminovinyl Anions</td>
<td>442</td>
</tr>
<tr>
<td>5.2.19.1.2</td>
<td>Variation 2: Using 1-Halo or 1-Alkoxy Saturated Carbanions Followed by Elimination</td>
<td>443</td>
</tr>
<tr>
<td>5.2.19.2</td>
<td>Method 2: 1-Halovinylstannanes by Substitution Using Trialkylstannane Reagents</td>
<td>444</td>
</tr>
<tr>
<td>5.2.19.3</td>
<td>Method 3: 1-Halo- or 1-Alkoxyvinylstannanes by Stannylation of a 1-Halo- or 1-Alkoxyalk-1-yne</td>
<td>444</td>
</tr>
<tr>
<td>5.2.19.4</td>
<td>Method 4: 1-Alkoxyvinylstannanes from Acyl Derivatives</td>
<td>445</td>
</tr>
<tr>
<td>5.2.19.4.1</td>
<td>Variation 1: Using Enolization Followed by Palladium(0) Coupling</td>
<td>446</td>
</tr>
<tr>
<td>5.2.19.4.2</td>
<td>Variation 2: Using Enolization of an Acylstannane</td>
<td>447</td>
</tr>
<tr>
<td>5.2.19.4.3</td>
<td>Variation 3: Using Stannylation Followed by Elimination</td>
<td>447</td>
</tr>
<tr>
<td>5.2.19.5</td>
<td>Applications of Product Subclass 19 in Organic Synthesis</td>
<td>448</td>
</tr>
<tr>
<td>5.2.19.5</td>
<td>Method 5: Transmetalation of 1-Heterovinylstannanes To Give 1-Heterovinylolithiums</td>
<td>448</td>
</tr>
<tr>
<td>5.2.19.6</td>
<td>Method 6: Palladium(0)-Catalyzed Cross-Coupling Reactions of 1-Heterovinylstannanes</td>
<td>448</td>
</tr>
<tr>
<td>5.2.19.7</td>
<td>Additional Methods</td>
<td>449</td>
</tr>
</tbody>
</table>
Product Subclass 20: 1-Halo-, 1-Hydroxy-, 1-Alkoxy-, and 1-Aminoalkylstannanes
I. Coldham and G. P. Vennall

Synthesis of Product Subclass 20

Method 1: From 1-Halo-, 1-Alkoxy-, or 1-Amino Carbanions and Trialkyl(halo)stannanes

Method 2: Substitution of Alkylstannanes with a Leaving Group in the α-Position

Method 3: Functional Group Interconversion of 1-Hydroxy- and 1-Aminoalkylstannanes

Method 4: 1-Hydroxyalkylstannanes by Reduction of Acylstannanes

Method 5: Addition to Trialkylstannane Reagents

Variation 1: Using Carbonyls or Acetals

Variation 2: Using Iminium Ions

Applications of Product Subclass 20 in Organic Synthesis

Method 6: Transmetalation of 1-Heteroalkylstannanes To Give 1-Heteroalkyllithiums

Method 7: Metal-Catalyzed Coupling with Activated Halides and Acyl Derivatives

Product Subclass 21: Alkynylstannanes
G. T. Crisp

Synthesis of Product Subclass 21

Method 1: From Alkynyl Anions by Reaction with Trialkyl- or Triaryl Tin Halides

Variation 1: Using Grignard Reagents

Variation 2: Using Organolithium Reagents

Variation 3: Using Organolithium Reagents Derived from Elimination Reactions

Method 2: From Terminal Alkynes by Reaction with Tin Amides and Oxides

Variation 1: Using Trialkyltin Amides

Variation 2: Using Trialkyltin Oxides or Bis(trialkyltin) Oxides

Method 3: From Silylalkynes by Reaction with Bis(trialkyltin) Oxides and Fluoride Anion

Methods 4: Additional Methods

Applications of Product Subclass 21 in Organic Synthesis

Method 5: Metal–Tin Exchange of Alkynylstannanes

Method 6: Electrophilic Substitution of Alkynylstannanes
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.21.7</td>
<td>Method 7: Metal-Catalyzed Couplings of Alkynylstannanes</td>
<td>473</td>
</tr>
<tr>
<td>5.2.21.8</td>
<td>Method 8: Conversion into Other Stannanes</td>
<td>475</td>
</tr>
<tr>
<td>5.2.22</td>
<td>Product Subclass 22: Ketenylstannanes and Derivatives</td>
<td></td>
</tr>
<tr>
<td>5.2.22.1</td>
<td>Method 1: From Alkynolates and Trialkyltin Halides</td>
<td>480</td>
</tr>
<tr>
<td>5.2.22.2</td>
<td>Method 2: From the Thermal Decomposition of Alkoxyethynylstannanes</td>
<td>481</td>
</tr>
<tr>
<td>5.2.22.3</td>
<td>Method 3: Additional Methods</td>
<td>481</td>
</tr>
<tr>
<td>5.2.22.4</td>
<td>Method 4: Reaction with Nucleophiles</td>
<td>482</td>
</tr>
<tr>
<td>5.2.22.5</td>
<td>Method 5: Reaction with Phosphorus Ylides</td>
<td>482</td>
</tr>
<tr>
<td>5.2.23</td>
<td>Product Subclass 23: Allenylstannanes</td>
<td></td>
</tr>
<tr>
<td>5.2.23.1</td>
<td>Method 1: From Allenyl Anions by Reaction with Trialkyl- or Triaryl-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tin Halides</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variation 1: Using Propargyl Bromide and Zinc</td>
<td>486</td>
</tr>
<tr>
<td>5.2.23.2</td>
<td>Method 2: From Propargyl Compounds by S_N^2 Displacement</td>
<td>488</td>
</tr>
<tr>
<td>5.2.23.3</td>
<td>Method 3: From Chromium Carbenes by Hydrostannylation</td>
<td>491</td>
</tr>
<tr>
<td>5.2.23.4</td>
<td>Method 4: From the Rearrangement of Propargylstannanes</td>
<td>491</td>
</tr>
<tr>
<td>5.2.23.5</td>
<td>Methods 5: Additional Methods</td>
<td>492</td>
</tr>
<tr>
<td></td>
<td>Applications of Product Subclass 23 in Organic Synthesis</td>
<td>492</td>
</tr>
<tr>
<td>5.2.23.6</td>
<td>Method 6: Substitution with Electrophiles</td>
<td>492</td>
</tr>
<tr>
<td>5.2.23.7</td>
<td>Method 7: Lewis Acid Catalyzed Additions to Electrophiles</td>
<td>493</td>
</tr>
<tr>
<td>5.2.23.8</td>
<td>Method 8: Transmetation with Organolithium Reagents</td>
<td>495</td>
</tr>
<tr>
<td>5.2.23.9</td>
<td>Method 9: Palladium-Catalyzed Coupling with Electrophiles</td>
<td>495</td>
</tr>
<tr>
<td>5.2.24</td>
<td>Product Subclass 24: Arylstannanes</td>
<td></td>
</tr>
<tr>
<td>5.2.24.1</td>
<td>Method 1: From Aryl Anions by Reaction with Trialkyl- or Triaryl-</td>
<td>499</td>
</tr>
<tr>
<td></td>
<td>tin Halides</td>
<td>499</td>
</tr>
</tbody>
</table>
5.2.24.1.1 Variation 1: Using a Preformed Grignard Reagent .. 500
5.2.24.1.2 Variation 2: Using a Grignard Reagent Formed In Situ (Barbier Conditions) 500
5.2.24.1.3 Variation 3: Using Anions of Aryllithiums Formed by Directed Lithiations 501
5.2.24.1.4 Variation 4: Using Anions of Aryllithiums Formed from Aryl Halides 503
5.2.24.2 Method 2: From Aryl Sulfones by Reaction with Trialkyltin Hydrides 503
5.2.24.3 Method 3: From Palladium-Catalyzed Coupling of an Aryl Halide or Trifluoromethanesulfonate with a Hexaalkyldistannane 504
5.2.24.4 Method 4: From an Aryl Halide by Nucleophilic Aromatic Substitution with Trialkyl- or Triaryltin Anions .. 505
5.2.24.5 Method 5: From Cycloaddition Reactions of Alkynylstannanes 506
5.2.24.5.1 Variation 1: Using [4 + 2] Cycloadditions of Alkynylstannanes 507
5.2.24.5.2 Variation 2: Using Metal-Mediated Cycloadditions of Alkynylstannanes 509
5.2.24.5.3 Variation 3: Using 1,3-Cycloadditions of Alkynylstannanes 510
5.2.24.6 Methods 6: Additional Methods ... 510

Applications of Product Subclass 24 in Organic Synthesis .. 511
5.2.24.7 Method 7: Metal–Tin Exchange of Aryl- and Heteroarylstannanes 511
5.2.24.8 Method 8: Electrophilic Substitution of Aryl- and Heteroarylstannanes 513
5.2.24.8.1 Variation 1: Protiodestannylation ... 513
5.2.24.8.2 Variation 2: Halodestannylation .. 514
5.2.24.8.3 Variation 3: Using Other Electrophiles .. 515
5.2.24.9 Method 9: Metal-Catalyzed Couplings of Aryl- and Heteroarylstannanes 515

5.2.25 Product Subclass 25: Alk-1-enylstannanes
G. T. Crisp

5.2.25 Product Subclass 25: Alk-1-enylstannanes ... 521
5.2.25 Synthesis of Product Subclass 25 ... 521
5.2.25.1 Method 1: From Alkenyl Anions by Reaction with Trialkyl- or Triaryltin Halides ... 521
5.2.25.1.1 Variation 1: Using Preformed Grignard Reagents 522
5.2.25.1.2 Variation 2: Using Anions of Alkenyllithiums Formed from Directed Lithiation .. 523
5.2.25.1.3 Variation 3: Using Anions of Alkenyllithiums Formed from Alkenyl Halides ... 524
5.2.25.1.4 Variation 4: Using Other Alkenyl Anions ... 524
5.2.25.2 Method 2: From the Palladium-Catalyzed Coupling of Alkenyl Electrophiles with Distannanes ... 526
5.2.25.3 Method 3: From Alkenyl Sulfones by Reaction with Trialkyltin Hydrides 527
5.2.25.4 Method 4: From Alkenylsilanes and Fluoride Ion 527
5.2.25.5 Method 5: From the Hydrostannylation of an Alkyn 528
5.2.25.5.1 Variation 1: By Radical Addition of a Trialkyltin Hydride 529
5.2.25.5.2 Variation 2: By Metal-Catalyzed Addition of a Trialkyltin Hydride 529
5.2.25.6 Method 6: From the Addition of Trialkyltin Metals Across an Alkyn 531
5.2.25.6.1 Variation 1: Using Stannylcuprates .. 531
5.2.25.6.2 Variation 2: Using Distannanes .. 532
5.2.25.6.3 Variation 3: Using Borylstannanes .. 533
5.2.5 Method 7: From Aldehydes using Chromium(II) Halides 534
5.2.6 Method 8: From the Hydrostannylation of an Allene 535
5.2.7 Method 9: From the [4+2] Cycloaddition of Alkynylstannanes to Dienes 536
5.2.8 Method 10: From Other Stannanes ... 536
5.2.9 Methods 11: Additional Methods .. 539
5.2.10 Applications of Product Subclass 25 in Organic Synthesis 539
5.2.11 Method 12: Metal–Tin Exchange of Alkenylstannanes 540
5.2.12 Method 13: Electrophilic Substitution of Alkenylstannanes 541
5.2.13 Variation 1: Protiodestannylation ... 541
5.2.14 Variation 2: Halodestannylation ... 542
5.2.15 Variation 3: Using Other Electrophiles 544
5.2.16 Method 14: Metal-Catalyzed Couplings of Alkenylstannanes 545

5.2.26 Product Subclass 26: Propargylstannanes
D. Young

5.2.27 Product Subclass 27: Benzylstannanes
R. L. Marshall

5.2.27.4.1 Variation 1: From Cresols, by Formation of the Dianion Followed by Stannylation .. 564
5.2.27.4.2 Variation 2: By Stannylation of Methylquinolines .. 564
5.2.27.4.3 Variation 3: Stannylation of Terpenes 565
5.2.27.5 Method 5: Synthesis From Tetraalkylammonium Salts 566
5.2.27.6 Method 6: Via Silicon–Tin Transmetalation .. 567
5.2.27.7 Method 7: Palladium-Catalyzed Hydrostannylation of Alkenes 568

Applications of Product Subclass 27 in Synthesis .. 568

5.2.27.8 Method 8: Preparation of 1-Benzyl-1,2-dihydroisoquinolines 568
5.2.27.9 Method 9: Synthesis of New Non-opioid Analgesics 569
5.2.27.10 Method 10: Tin–Lithium Exchange Reactions 569

5.2.28 Product Subclass 28: Allylstannanes
R. L. Marshall

5.2.28 Product Subclass 28: Allylstannanes ... 573

Synthesis of Product Subclass 28 .. 573

5.2.28.1 Method 1: Synthesis via Grignards: Reaction of Organomagnesium Reagents with Trialkylhalostannanes 574

5.2.28.1.3 Variation 1: Direct Formation of the Allyl Grignard 574
5.2.28.1.2 Variation 2: Via Barbier Reaction .. 575
5.2.28.1.3 Variation 3: Sonication-Promoted Barbier Reactions 576
5.2.28.1.4 Variation 4: Sonication-Promoted Barbier Reactions with Hexabutyldistannoxane [Bis(tributyltin) Oxide] 576

5.2.28.2 Method 2: Allylstannanes via Trialkylstannyllithium Reagents 577
5.2.28.3 Method 3: Synthesis via Deprotonation of Alkenes 578

5.2.28.3.1 Variation 1: Allylstannanes by Deprotonation/Stannylation of Alkenes 578
5.2.28.3.2 Variation 2: Stannylation of Terpenes .. 579

5.2.28.4 Method 4: From Allylic Sulfur Derivatives (Sulfides, Sulfones, and Thiols) 579

5.2.28.4.1 Variation 1: From Allylic Sulfides Using Tributylstannane 579
5.2.28.4.2 Variation 2: From Allylic Sulfides Using Tributylstannyllithium 580
5.2.28.4.3 Variation 3: From Allylic Sulfones .. 581
5.2.28.4.4 Variation 4: From Allylic S-Substituted S-Methyl Dithiocarbonates 582
5.2.28.5 Method 5: From Allylic Acetates and Phosphates 583

5.2.28.5.1 Variation 1: Via Palladium(0) Complexes with Diethyl(tributylstannyl)aluminum ... 583

5.2.28.5.2 Variation 2: Via Palladium(0) Complexes, Samarium(II) Iodide, and Trialkylhalostannanes .. 584

5.2.28.6 Method 6: From the Hydrolysis of Boronylallylic Stannanes 585
5.2.28.7 Method 7: α-Substituted Allylstannanes by Selenoxide Elimination 586
5.2.28.8 Method 8: Synthesis via Wittig Reactions .. 586
5.2.28.9 Method 9: Substituted Allylic Stannanes From β-Stannyl Enolate Esters ... 588

5.2.28.10 Method 10: Via Silicon–Tin Transmetalation 589
5.2.28.11 Method 11: Palladium-Catalyzed Hydrostannylation of Allenes 590
5.2.28.12 Method 12: From Allylic Alcohols .. 591
5.2.28.13 Methods 13: Additional Methods ... 592
Applications of Product Subclass 28 in Synthesis 592
5.2.28.14 Method 14: Radical Reactions ... 592
5.2.28.15 Method 15: Transmetalations .. 594
5.2.28.16 Method 16: Cross-Coupling Reactions with Alkyl and Allyl Halides 596
5.2.28.17 Method 17: Reactions with Aldehydes, Ketones, and Their Derivatives 598
5.2.29 Product Subclass 29: Alkylstannanes
D. Young

5.2.29.1 Method 1: From Trialkylstannyl Anions with Haloalkanes or Tosylates ... 608
5.2.29.2 Method 2: From Tin Metal and Haloalkanes 610
5.2.29.3 Method 3: From Alkyl Grignard Reagents and Bis(trialkyltin) Oxides 611
5.2.29.4 Method 4: From Alkylmetal Reagents and Alkylchlorostannanes 612
5.2.29.4.1 Variation 1: Using Alkysodium Reagents and Alkylchlorostannanes 612
5.2.29.4.2 Variation 2: Using Alkylithium Reagents and Alkylchlorostannanes 613
5.2.29.4.3 Variation 3: Using Alkylzinc Reagents and Alkylchlorostannanes 613
5.2.29.5 Method 5: From Hydrostannylation of Alkenes 614
5.2.29.5.1 Variation 1: At Atmospheric Pressure 614
5.2.29.5.2 Variation 2: Using Elevated Pressures 614
5.2.29.6 Methods 6: Additional Methods .. 615
Applications of Product Subclass 29 in Synthesis 615
5.2.29.7 Method 7: Transmetalation .. 615
5.2.29.7.1 Variation 1: With Palladium ... 615
5.2.29.7.2 Variation 2: Tin–Lithium Exchange .. 616
5.3 Product Class 3: Lead Compounds ... 619
M. G. Moloney

5.3.1 Product Subclass 1: Lead Hydrides
M. G. Moloney

5.3.1.1 Method 1: From Organolead Halides by Reduction 628
5.3.1.1.1 Variation 1: Using Potassium Borohydride 628
5.3.1.1.2 Variation 2: Using Diborane .. 629
5.3.1.1.3 Variation 3: Using Lithium Aluminum Hydride 629
5.3.1.1.4 Variation 4: Using Diisobutylaluminum Hydride 630
5.3.1.1.5 Variation 5: Using Tributylstannane 630
5.3.1.2 Method 2: From Lead Alkoxides and Acetates by Reduction 630
5.3.1.2.1 Variation 1: Using Diborane .. 631
5.3.2 Product Subclass 2: Diplumenes and Diplumbanes

N. Takeda, N. Tokitoh, and R. Okazaki

5.3.2.1 Method 1: Diplumenes from Grignard Reagents

5.3.2.2 Method 2: Diplumbanes from Grignard Reagents

5.3.3 Product Subclass 3: Metalated Lead Compounds

N. Takeda, N. Tokitoh, and R. Okazaki

5.3.3.1 Method 1: Reactions between Tetravalent Lead Compounds and Metals

5.3.3.2 Method 2: Metathesis

5.3.3.3 Method 3: Oxidative Addition

5.3.3.4 Method 4: From Plumbylenes

5.3.4 Product Subclass 4: Organoplumbyl, Sulfides, Selenides, and Tellurides (Double Bonded)

N. Takeda, N. Tokitoh, and R. Okazaki

5.3.4.1 Method 1: From Divalent Lead Compounds

5.3.4.2 Method 2: From Tetravalent Lead Compounds

5.3.5 Product Subclass 5: Plumbylenes

N. Takeda, N. Tokitoh, and R. Okazaki

5.3.5.1 Method 1: From Divalent Lead Compounds

5.3.5.2 Method 2: From Tetravalent Lead Compounds
5.3.6 **Product Subclass 6: Halo(organo)plumbanes**
P. J. Guiry and P. J. McCormack

5.3.6 **Product Subclass 6: Halo(organo)plumbanes**
Synthesis of Product Subclass 6

5.3.6.1 Method 1: Reaction of Hexaorganodiplumbanes with Halide Sources
5.3.6.1.1 Variation 1: Reaction with Halogens
5.3.6.1.2 Variation 2: Reaction with Other Halide Sources

5.3.6.2 Method 2: Metathesis Reactions of Organoplumbanes with Halides
5.3.6.2.1 Variation 1: Reaction of Hexaaryldiplumboxanes with Hydrogen Halides
5.3.6.2.2 Variation 2: Reaction of Bis(acetoxy)diorganoplumbanes with Hydrogen Halides

5.3.6.3 Method 3: Reaction of Tetraorganoplumbanes with Halogens
5.3.6.3.1 Variation 1: Reaction with Free Halogen To Form Halotriorganoplumbanes
5.3.6.3.2 Variation 2: Reaction with Free Halogen To Form Dihalodiorganoplumbanes

5.3.6.4 Method 4: Reaction of Tetraorganoplumbanes with Hydrogen Halides
5.3.6.4.1 Variation 1: Reaction with Hydrogen Halides To Form Halotriorganoplumbanes
5.3.6.4.2 Variation 2: Reaction with Hydrogen Halides To Form Dihalodiorganoplumbanes

5.3.6.5 Method 5: Reaction of Tetraorganoplumbanes with Other Halide Sources
5.3.6.6 Method 6: Other Synthetic Methods

5.3.6.7 Method 7: Chemoselective Carbonyl Allylation of α,β-Epoxy Ketones with Allylic Stannanes

5.3.7 **Product Subclass 7: Organoplumboxanes and Related Compounds**
P. J. Guiry and P. J. McCormack

5.3.7 **Product Subclass 7: Organoplumboxanes and Related Compounds**
Synthesis of Product Subclass 7

5.3.7.1 Method 1: Preparation of Organoplumbanols by the Oxidation of Hexaorganodiplumbanes
5.3.7.2 Method 2: Organoplumbanols, Alkoxy(organo)plumbanes, and Alkylperoxy(organo)plumbanes from Halo(organo)plumbanes

5.3.7.2.1 Variation 1: Reaction of Halo(organo)plumbanes with Wet Silver(I) Oxide
5.3.7.2.2 Variation 2: Reaction of Halo(organo)plumbanes with Alkal Metal Alkoxides

5.3.7.3 Method 3: Preparation of Alkoxyplumbanes by Transalcoholysis and Dehydration Reactions
5.3.7.3.1 Variation 1: Reaction of Organoplumbanols with Alcohols or Phenols
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.7.3.2</td>
<td>Variation 2: Reaction of Alkoxy(organo)plumbanes with Alcohols or Phenols</td>
<td>669</td>
</tr>
<tr>
<td>5.3.7.3.3</td>
<td>Variation 3: Reaction of Alkoxy(organo)plumbanes with Hydrogen Peroxide</td>
<td>669</td>
</tr>
<tr>
<td>5.3.7.4</td>
<td>Method 4: Preparation of Alkoxyplumbanes from Tetraorganoplumbanes</td>
<td>669</td>
</tr>
<tr>
<td>5.3.7.5</td>
<td>Method 5: Alkoxy(organo)plumbane-Catalyzed Addition Reactions</td>
<td>670</td>
</tr>
<tr>
<td>5.3.8</td>
<td>Product Subclass 8: Acyloxy(organo)plumbanes</td>
<td>673</td>
</tr>
<tr>
<td>5.3.8.1</td>
<td>Method 1: Direct Plumbation of Arenes To Form Tris(acyloxy)arylplumbanes</td>
<td>673</td>
</tr>
<tr>
<td>5.3.8.1.1</td>
<td>Variation 1: Plumbation of Arenes To Form Tri(acyloxy)arylplumbanes</td>
<td>673</td>
</tr>
<tr>
<td>5.3.8.1.2</td>
<td>Variation 2: Plumbation of Arenes in the Presence of Monohaloacetic Acids Followed by Metathesis To Form Tris(acetoxy)arylplumbanes</td>
<td>674</td>
</tr>
<tr>
<td>5.3.8.1.3</td>
<td>Variation 3: Plumbation of Arenes in the Presence of Dihaloacetic Acids Followed by Metathesis To Form Tris(acetoxy)arylplumbanes</td>
<td>675</td>
</tr>
<tr>
<td>5.3.8.1.4</td>
<td>Variation 4: Plumbation of Arenes in the Presence of Trihaloacetic Acids Followed by Metathesis To Form Tris(acetoxy)arylplumbanes</td>
<td>675</td>
</tr>
<tr>
<td>5.3.8.2</td>
<td>Method 2: Tin–Lead Transmetalations To Form Tris(acetoxy)organo-plumbanes</td>
<td>676</td>
</tr>
<tr>
<td>5.3.8.3</td>
<td>Method 3: Boron–Lead Transmetalations To Form Tris(acetoxy)organo-plumbanes</td>
<td>677</td>
</tr>
<tr>
<td>5.3.8.3.1</td>
<td>Variation 1: Boron–Lead Transmetalations To Form Bis(acetoxy)diorgano-plumbanes</td>
<td>678</td>
</tr>
<tr>
<td>5.3.8.4</td>
<td>Method 4: Mercury–Lead Transmetalations To Form Tris(acetoxy)organo-plumbanes</td>
<td>678</td>
</tr>
<tr>
<td>5.3.8.5</td>
<td>Method 5: Arylation of Phenols Using Tris(acetoxy)organoplumbanes</td>
<td>679</td>
</tr>
<tr>
<td>5.3.8.6</td>
<td>Method 6: Arylation of Dicarboxyls and Derivatives with Tris(acetoxy)-organoplumbanes</td>
<td>680</td>
</tr>
<tr>
<td>5.3.8.6.1</td>
<td>Variation 1: Reaction of β-Diketones and Derivatives with Tris(acetoxy)-organoplumbanes</td>
<td>681</td>
</tr>
<tr>
<td>5.3.8.6.2</td>
<td>Variation 2: Reaction of β-Oxo Esters with Tris(acetoxy)organoplumbanes</td>
<td>681</td>
</tr>
<tr>
<td>5.3.8.6.3</td>
<td>Variation 3: Reaction of β-Dicarbonyl Vinylogues with Tris(acetoxy)-organoplumbanes</td>
<td>682</td>
</tr>
<tr>
<td>5.3.8.6.4</td>
<td>Variation 4: Arylation of Malonic Acid Derivatives with Tris(acetoxy)-organoplumbanes</td>
<td>683</td>
</tr>
<tr>
<td>5.3.8.6.5</td>
<td>Variation 5: Arylation of α-Cyano Esters and Malononitriles with Tris(acetoxy)organoplumbanes</td>
<td>684</td>
</tr>
<tr>
<td>Section</td>
<td>Method</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5.3.8.7</td>
<td>Method 7</td>
<td>Arylation of Ketones and Derivatives with Tris(acetoxy)-organoplumbanes</td>
</tr>
<tr>
<td></td>
<td>Variation 1</td>
<td>Arylation of Ketones with Tris(acetoxy)organoplumbanes</td>
</tr>
<tr>
<td></td>
<td>Variation 2</td>
<td>Arylation of Enamines with Tris(acetoxy)organoplumbanes</td>
</tr>
<tr>
<td>5.3.8.8</td>
<td>Method 8</td>
<td>Arylation of Nitroalkanes and Nitroacetic Acid Derivatives with Tris(acetoxy)organoplumbanes</td>
</tr>
<tr>
<td>5.3.8.9</td>
<td>Method 9</td>
<td>Copper-Catalyzed N-Arylation with Tris(acetoxy)organoplumbanes</td>
</tr>
<tr>
<td></td>
<td>Variation 1</td>
<td>Arylation of Azoles with Tris(acetoxy)organoplumbanes</td>
</tr>
<tr>
<td></td>
<td>Variation 2</td>
<td>Arylation of Amides with Tris(acetoxy)organoplumbanes</td>
</tr>
<tr>
<td>5.3.9</td>
<td>Product Subclass 9: Plumbyl Enol Ethers</td>
<td>P. J. Guiry and P. J. McCormack</td>
</tr>
<tr>
<td>5.3.9.1</td>
<td>Method 1</td>
<td>Reaction of Trimethylsilyl Enol Ethers with Tris(acetoxy)arylplumbanes</td>
</tr>
<tr>
<td>5.3.9.2</td>
<td>Method 2</td>
<td>Reaction of Organoplumbanes with Ketene</td>
</tr>
<tr>
<td></td>
<td>Applications of Product Subclass 9 in Organic Synthesis</td>
<td></td>
</tr>
<tr>
<td>5.3.10</td>
<td>Product Subclass 10: Organoplumbane Sulfur Compounds</td>
<td>P. J. Guiry and P. J. McCormack</td>
</tr>
<tr>
<td>5.3.10.1</td>
<td>Method 1</td>
<td>Preparation of (Organosulfanyl)plumbanes by Reaction of Hexaorganodiplumbanes with Organic Disulfides</td>
</tr>
<tr>
<td>5.3.10.2</td>
<td>Method 2</td>
<td>Organo(organosulfanyl)plumbanes from Halo(organo)-plumbanes</td>
</tr>
<tr>
<td></td>
<td>Variation 1</td>
<td>Reaction of Halotriorganoplumbanes with Lead(II) Thiolates</td>
</tr>
<tr>
<td></td>
<td>Variation 2</td>
<td>Reaction of Halotriorganoplumbanes with Thiols</td>
</tr>
<tr>
<td>5.3.11</td>
<td>Method 3</td>
<td>Preparation of Organo(organosulfanyl)plumbanes from Alkoxo(organo)plumbanes</td>
</tr>
<tr>
<td>5.3.11</td>
<td>Product Subclass 11: Organoplumbyl Selenides, Tellurides, and Related Compounds</td>
<td>P. J. Guiry and P. J. McCormack</td>
</tr>
<tr>
<td>5.3.11.1</td>
<td>Method 1</td>
<td>Organoplumbyl Selenides or Tellurides from [[Triorganoplumbyl]selenenyl]lithium or</td>
</tr>
</tbody>
</table>

Science of Synthesis Original Edition Volume 5
© Georg Thieme Verlag KG

[(Triorganoplyl)tellanyl]lithium and Halotriorganoplumbanes .. 704

5.3.11.1 Variation 1: Reaction of Lithium Triorganoplumbyl Selenides or Tellurides with Halotriorganoplumbanes ... 704

5.3.11.1 Variation 2: Organoplumbyl Tellurides from [(Triorganogermyl)tellanyl]-lithium and Halotriorganoplumbanes 704

5.3.12 Method 2: Organoplumbyl Selenides from Dihalodiphenylplumbanes and Sodium Selenide 705

5.3.12 Product Subclass 12: Organoplumbyl Selenides and Related Compounds

P. J. Guiry and P. J. McCormack

5.3.12 Product Subclass 12: Organoplumbyl Selenides and Related Compounds 707

Synthesis of Product Subclass 12 ... 707

5.3.12.1 Method 1: Organoplumbyl Selenides from Halo(organo)plumbanes 707

5.3.12.2 Method 2: Organoplumbyl Selenides from Organoplumbyl Selenides 708

5.3.12.3 Method 3: Organoplumbyl Selenides from Tetraorganoplumbyls and N-Halogenated Organic Compounds 709

5.3.12.4 Additional Methods ... 709

5.3.13 Product Subclass 13: Organoplumbyl Phosphines and Phosphine Oxides

P. J. Guiry and P. J. McCormack

5.3.13 Product Subclass 13: Organoplumbyl Phosphines and Phosphine Oxides 711

Synthesis of Product Subclass 13 ... 711

5.3.13.1 Method 1: Organoplumbyl Phosphines from Halo(organo)plumbanes 711

5.3.14 Product Subclass 14: Triorganolead Cyanides and Triorganolead Cyanates

P. A. C. Eagle

5.3.14 Product Subclass 14: Triorganolead Cyanides and Triorganolead Cyanates 713

Synthesis of Product Subclass 14 ... 713

5.3.14.1 Method 1: Triorganolead Cyanides from Hexaaryldiphenylplumbyl by Disproportionation with Cyanogen Halides 713

5.3.14.2 Method 2: Triorganolead Cyanides from Triorganolead Derivatives and Potassium Cyanide or Fulminates 714

5.3.15 Product Subclass 15: Acylplumbyl Phosphines and Phosphine Oxides

P. A. C. Eagle

5.3.15 Product Subclass 15: Acylplumbyl Phosphines and Phosphine Oxides 717

Synthesis of Product Subclass 15 ... 718
5.3.15 Method 1: Acylplumbanes from (Triarylplumbyl)lithiums by Substitution with Acyl Halides or Chloroformates 718

5.3.15 Method 2: Acylplumbane Thioacetals from Triorganoplumbanes by Reactions with 1,3-Dithian-2-yllithiums or 1,3-Oxathian-2-yllithiums .. 718

5.3.16 Product Subclass 16: Lead Isocyanates, Isothiocyanates, Diazoplumbanes, and Iminoplumbanes

5.3.16 Method 1: Isocyanates and Isothiocyanates from Triorganolead Derivatives by Substitution ... 721

5.3.16 Method 2: Diazomethyl(trimethyl)plumbanes from N-(Trimethylplumbyl)-N,N-bis(trimethylsilyl)amine by Reactions with Diazomethanes .. 722

5.3.16 Method 3: Plumbylimines from Triarylplumbyllithiums by Reactions with Chloroimines ... 722

5.3.16 Method 4: Iminoplumbanes from Triorganoplumbanes by Reactions with Phenyl Isocyanide .. 723

5.3.16 Method 5: Pyrazolylplumbanes from Alkynylplumbanes by 1,3-Dipolar Cycloaddition Reactions with Diazomethane 723

5.3.16 Method 6: 5-(Trimethylplumbyl)pyrazoles from Ethyl Diazo(trimethyl)plumbylacetate by 1,3-Dipolar Cycloaddition Reactions with Alkynes and Alkenes .. 724

5.3.17 Product Subclass 17: 1- or 2-Alkoxy- and 1- or 2-(Alkylsulfanyl) and 1- or 2-Aminoalkenyl(triorgano)plumbanes

5.3.17 Method 1: 1-Alkoxy- and 1-(Alkylsulfanyl)alkenyl(triorgano)plumbanes from (Triethylplumbyl)metals by Addition to Alkynyl Ethers and Alkylsulfanylethynes .. 727

5.3.17 Method 2: 1-Alkoxyethyl-1-vinylplumbanes from Trimethyl[1-(tri-methylplumbyl)vinyl]plumbanes .. 727

5.3.17 Method 3: 2-Aminovinylplumbanes from Isocyanates and Alkynyl(trialkyl)plumbanes .. 728
Product Subclass 18: 1-Halo-, 1-Alkoxy-, 1-Hydroxy-, and 1-Aminoalkylplumbanes

P. A. C. Eagle

5.3.18

Synthesis of Product Subclass 18

5.3.18.1 Method 1: Perfluoroalkyltriorganoplumbanes from Triaryl- or Trialkylplumbyl Derivatives by Reactions with Bis(perfluoroalkyl)cadmium Adducts

5.3.18.2 Method 2: Triaryl(trihalomethyl)plumbanes from Triarylplumbyl Derivatives by Reactions with Trihaloacetyl Compounds

5.3.18.3 Method 3: Alkyl(perfluoroalkyl)plumbanes from Tetraalkylplumbanes by Radical Substitutions with Perfluoroalkyl Halides

5.3.18.4 Method 4: Perfluoroalkylplumbanes from Tetraaryl- and Tetraalkylplumbanes by Radical Exchange with Perfluoroalkylmetal Derivatives

5.3.18.4.1 Variation 1: From Tetraalkylplumbanes by Reactions with Perfluoroalkylmercury Compounds

5.3.18.4.2 Variation 2: From Tetraarylplumbanes by Reactions with Perfluoroalkylstannanes

5.3.18.5 Method 5: Triaryl(trihalomethyl)- or Triaryl(halomethyl)plumbanes from Triorganolead Alkoxides and Haloforms

5.3.18.6 Method 6: Triaryl(trichloromethyl)plumbanes and Triaryl(dichloromethyl)plumbanes from (Triarylplumbyl)metals by Reactions with Halomethanes

5.3.18.7 Method 7: Triaryl(1,1-dichloroalkyl)plumbanes from [(Triaryl)(dichloro)plumbyl]methyl]lithiums by Reactions with Electrophiles

5.3.18.8 Method 8: Bromomethyl(triphenyl)plumbane from [[(Triphenylplumbyl)methyl]lithium and 1,2-Dibromoethane

5.3.18.9 Method 9: (1-Haloalkyl)triorganoplumbanes from Triorganolead Halides by Reactions with (1-Haloalkyl)lithiums or the Simmons-Smith Reagent

5.3.18.10 Method 10: (1-Haloalkyl)plumbanes by Miscellaneous Procedures

5.3.18.11 Method 11: (1-Alkoxyalkyl)(trialkyl)plumbanes from (Trialkylplumbyl)lithiums and 1-Chloroalkyl Ethers

5.3.18.12 Method 12: (1-Alkoxyalkyl)triorganoplumbanes from Triorganolead Halides and Phenyl (Triphenylplumbyl)methyl Sulfide from Chlorotriphenylplumbane

5.3.18.13 Method 13: Applications of 1-Alkoxyalkyl(trialkyl)plumbanes in the Diastereoselective Synthesis of 1,2-Diols and Cyclic Ethers

Applications of Product Subclass 18 in Organic Synthesis
Table of Contents

5.3.19 **Product Subclass 19: Alkynylplumbanes**
P. A. C. Eagle

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.19.1</td>
<td>Alkynylplumbanes from (Trialkylplumbyl)sodiums and 1-Haloalkynes</td>
<td>745</td>
</tr>
<tr>
<td>5.3.19.2</td>
<td>Alkynylplumbanes and Alkynylidiplumbanes from Trialkyl- and Triarylhalolplumbanes and Alkynylmetals</td>
<td>746</td>
</tr>
<tr>
<td>5.3.19.3</td>
<td>Alkynylplumbanes or Alkynylidiplumbanes from Triaryl- or Triarylhalolplumbanes and Alkynylsodiums</td>
<td>746</td>
</tr>
<tr>
<td>5.3.19.4</td>
<td>Tetraalkynylplumbanes from Lead(IV) Salts and Alkynylmetals</td>
<td>748</td>
</tr>
<tr>
<td>5.3.19.5</td>
<td>Alkynylplumbanes from Trialkyllead or Triaryllead Hydroxides, Silazides, or Alkoxides by Condensation with Alkynes</td>
<td>748</td>
</tr>
<tr>
<td>5.3.19.6</td>
<td>Alkynylplumbanes or Alkynylidiplumbanes from Triaryllead Alkyanoates by Decarboxylation</td>
<td>749</td>
</tr>
</tbody>
</table>

5.3.20 **Product Subclass 20: Allenylplumbanes**
P. A. C. Eagle

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.20.1</td>
<td>Allenylplumbanes from (Triarylplumbyl)magnesium Bromide and 3-Haloalk-1ynes</td>
<td>751</td>
</tr>
<tr>
<td>5.3.20.2</td>
<td>Allenylplumbanes from Trialkylhalolplumbanes and Triarylhalolplumbanes and Propargylmagnesium Halides</td>
<td>752</td>
</tr>
</tbody>
</table>

5.3.21 **Product Subclass 21: Arylplumbanes**
P. A. C. Eagle

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.21.1</td>
<td>Trialkyl(perfluoroaryl)plumbanes from Trialkylplumbyl Halides by Reactions with Bromo(fluoro)arenes and Triaminophosphines</td>
<td>755</td>
</tr>
<tr>
<td>5.3.21.2</td>
<td>Triaryl(perfluoroaryl)plumbanes from Triaryllead (Perfluoroaryl)carboxylates by Decarboxylation</td>
<td>756</td>
</tr>
<tr>
<td>5.3.21.3</td>
<td>Tetraarylplumbanes from Hexaarylidiplumbanes by Disproportionation</td>
<td>756</td>
</tr>
<tr>
<td>5.3.21.4</td>
<td>Trialkyl(aryl)plumbanes from (Trialkylplumbyl)sodiums by Reaction with Aryl Halides</td>
<td>757</td>
</tr>
<tr>
<td>5.3.21.5</td>
<td>Nonsymmetrical Tetraarylplumbanes from Triaryllead Halides by Reactions with Arylmetals</td>
<td>757</td>
</tr>
<tr>
<td>5.3.21.6</td>
<td>Alkyl(aryl)plumbanes from Alkyllead Halides by Reactions with Arylmetals</td>
<td>758</td>
</tr>
</tbody>
</table>
5.3.21.7 Method 7: Arylalkylplumbanes from Lead Salts by Reactions with Arylmetals and Alkyl Halides ... 759
5.3.21.8 Method 8: Symmetrical Tetraarylplumbanes from Lead Salts by Reactions with Aryltrifluorosilanes .. 760
5.3.21.9 Method 9: Symmetrical Tetraarylplumbanes from Lead Salts by Reactions with Arylmetals and Aryl Halides 760
5.3.21.10 Method 10: Tetra(nitroaryl)plumbanes from Di(nitroaryl)plumbyl Halides and Hydrazine ... 761

5.3.22 Product Subclass 22: Vinylplumbanes
P. A. C. Eagle

5.3.22 Product Subclass 22: Vinylplumbanes ... 763
Synthesis of Product Subclass 22 ... 763
5.3.22.1 Method 1: Tetravinylplumbanes from Lead Chlorides or Metal Hexachloroplumbates by Reactions with Vinylmagnesium Halides 763
5.3.22.2 Method 2: Vinylplumbanes from Trialkyl- or Triarylpumbylmetals by Reactions with Haloalkenes ... 764
5.3.22.3 Method 3: Vinylplumbanes from Alkyl- or Aryllead Halides and Vinylmetals ... 765
5.3.22.4 Method 4: Alkyl(trivinyl)plumbanes from Lead(II) Chloride by Reactions with Vinylmagnesium Halides and Haloalkanes 765
5.3.22.5 Method 5: Vinylplumbanes from Trialkylllead Salts and Alkynes 766
5.3.22.6 Method 6: [(1-Hydroxyalkyl)vinyl]plumbanes from [1-(Triorgano-plumbyl)ethenyl]lithiums and Carbonyl Compounds 767
5.3.22.7 Additional Methods .. 767

5.3.23 Product Subclass 23: Benzylplumbanes
P. A. C. Eagle

5.3.23 Product Subclass 23: Benzylplumbanes ... 769
Synthesis of Product Subclass 23 ... 769
5.3.23.1 Method 1: Benzylplumbanes from (Triorganoplumbyl)metals and Benzyl Halides .. 769
5.3.23.2 Method 2: Benzylplumbanes from Halotriorganoplumbanes and Benzylmetals .. 770
5.3.23.3 Method 3: Tetrabenzyplumbanes from Lead(II) Chloride and Benzylmagnesium Halides ... 771
5.3.23.4 Method 4: Benzylplumbanes from Lead(II) Chloride, Arylmagnesium Bromides, and Benzyl Halides 771
5.3.24 Product Subclass 24: Allylplumbanes

P. A. C. Eagle

- Synthesis of Product Subclass 24 .. 773

5.3.24.1 Method 1: Allyl(triorganoplumbyl)metals and Electrophiles

- Variation 1: From (Triorganoplumbyl)metals and Allyl Halides 773
- Variation 2: From Triorganolead Halides or Hydroxides by Reactions with Allylmagnesium Halides .. 774
- Variation 3: From Lead(II) Chloride, Grignard Reagents, and Allyl Halides 775

5.3.24.2 Additional Methods .. 776

5.3.25 Product Subclass 25: Alkylplumbanes

P. A. C. Eagle

- Synthesis of Product Subclass 25 .. 779

5.3.25.1 Method 1: Nonsymmetrical Tetraalkylplumbanes and Alkyl(aryl)-plumbanes from (Triorganoplumbyl)metals and Electrophiles 779

5.3.25.2 Method 2: Nonsymmetrical Tetraalkylplumbanes and Alkyl(aryl)-plumbanes from Organolead Halides and Metal Alkyls 780

5.3.25.3 Method 3: Alkyl(triarylplumbyl)metals and Electrophiles 781

5.3.25.4 Method 4: Alkylplumbanes from Lead Salts and Metal Alkyls 781

5.3.25.5 Method 5: Tetraalkylplumbanes from Lead, Alkyl Halides, and Reducing Agents ... 783

5.3.25.6 Method 6: Synthesis of Tetraalkylplumbanes by Electrolysis 784

5.3.25.6.1 Variation 1: From Metal Tetraalkylborates or Tetraalkylaluminates 784

5.3.25.6.2 Variation 2: Electrolysis of Alkylmagnesium Halides 785

5.3.25.6.3 Variation 3: Electrolysis of Alkyl Halides at a Zinc Cathode and a Lead Anode ... 786

5.3.25.6.4 Variation 4: Electrolysis of Alkyl Halides at a Lead Cathode 787

5.3.25.6.5 Method 7: Tetraalkylplumbanes from Hexaalkyldiplumbanes 787

5.3.25.6.6 Method 8: Nonsymmetrical Tetraalkylplumbanes from Symmetrical Tetraalkylplumbanes by Radical Redistribution 788

5.3.25.6.7 Method 9: Tetraalkylplumbanes by Miscellaneous Routes 788

5.3.25.6.8 Applications of Product Subclass 25 in Organic Synthesis 789

5.3.25.6.9 Method 10: Application of Tetraalkylplumbanes in the Alkylation of Aldehydes .. 789
Table of Contents

Keyword Index .. 793

Author Index .. 823

Abbreviations ... 859
Volume 6: Boron Compounds

Preface .. V

Volume Editor's Preface ... VII

Table of Contents .. XIII

Introduction
D. E. Kaufmann ... 1

6.1 Product Class 1: Boron Compounds

6.1.1 Product Subclass 1: Hydroboranes
D. S. Matteson .. 5

6.1.2 Product Subclass 2: Borohydrides
G. Chen .. 81

6.1.3 Product Subclass 3: Diborane(4) Compounds
T. B. Marder ... 117

6.1.4 Product Subclass 4: Metalloboranes
H. Nöth .. 139

6.1.5 Product Subclass 5: Haloboranes
D. S. Matteson .. 179

6.1.6 Product Subclass 6: Haloborates
B. Schilling and D. E. Kaufmann .. 247

6.1.7 Product Subclass 7: Hydroxyboranes
N. Miyaura ... 257

6.1.8 Product Subclass 8: Boroxanes
M. Periasamy, M. Seenivasaperumal, and S. Sivakumar 301

6.1.9 Product Subclass 9: Acyloxyboranes
M. Periasamy, M. N. Reddy, and N. S. Kumar .. 321

6.1.10 Product Subclass 10: Vinyloxyboranes
C. Gennari, S. Ceccarelli, and U. Piarulli .. 337

6.1.11 Product Subclass 11: Aryloxy- and Alkoxyboranes
(Including Protecting Groups)
K. Ishihara and H. Yamamoto ... 403
6.1.12 Product Subclass 12: Aryloxy- and Alkoxyborates
K. Ishihara and H. Yamamoto ... 423

6.1.13 Product Subclass 13: Peroxyboranes
K. Ishihara and H. Yamamoto ... 437

6.1.14 Product Subclass 14: Sulfanyl- and Selanylboranes
C. Habben and D. E. Kaufmann .. 443

6.1.15 Product Subclass 15: Aminoboranes and Borane–Amine Complexes
B. Carboni and F. Carreaux .. 455

6.1.16 Product Subclass 16: Phosphinoboranes and Borane–Phosphine Complexes
A. C. Gaumont and B. Carboni .. 485

6.1.17 Product Subclass 17: a-Metalloalkylboranes
Bakthan Singaram .. 513

6.1.18 Product Subclass 18: Cyanoboranes
D. Gabel and M. B. El-Zaria ... 541

6.1.19 Product Subclass 19: Carboxyboranes and Related Derivatives
D. Gabel and M. B. El-Zaria ... 563

6.1.20 Product Subclass 20: a-Haloalkylboronates
D. S. Matteson .. 585

6.1.21 Product Subclass 21: a-Alkoxalkyl-, a-Sulfanylalkyl-, and a-Aminoalkylboronates
D. S. Matteson .. 607

6.1.22 Product Subclass 22: a-Phosphinoalkylboranes
D. S. Matteson .. 623

6.1.23 Product Subclass 23: Alk-1-ynylboranes and Alkyn-1-ylboronates
D. E. Kaufmann and N. Öcal .. 635

6.1.24 Product Subclass 24: Borylketenes
D. Gabel ... 659

6.1.25 Product Subclass 25: Allenylboranes
D. E. Kaufmann and C. Burmester 667

6.1.26 Product Subclass 26: Aryl- and Hetarylboranoses
N. Miyaura ... 677

6.1.27 Product Subclass 27: Dienyloboranes
K. Albrecht and D. E. Kaufmann 697
<table>
<thead>
<tr>
<th>Product Subclass</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>Vinylboranes</td>
<td>M. Vaultier and G. Alcaraz</td>
</tr>
<tr>
<td>29</td>
<td>(\alpha)-Boryl Carbonyl Compounds</td>
<td>H. Abu Ali, V. M. Dembitsky, and M. Srebnik</td>
</tr>
<tr>
<td>30</td>
<td>(\beta)-Haloalkylboranes</td>
<td>H. Abu Ali, V. M. Dembitsky, and M. Srebnik</td>
</tr>
<tr>
<td>31</td>
<td>(\beta)-Alkoxyalkyl-, (\beta)-Sulfanylalkyl-, and (\beta)-Aminoalkylboranes</td>
<td>H. Abu Ali, V. M. Dembitsky, and M. Srebnik</td>
</tr>
<tr>
<td>32</td>
<td>(\beta)-Silylalkyl- and (\beta)-Stannylalkylboranes</td>
<td>P. J. Murphy</td>
</tr>
<tr>
<td>33</td>
<td>Propargylboranes</td>
<td>D. E. Kaufmann and C. Burmester</td>
</tr>
<tr>
<td>34</td>
<td>Benzylboranes and Benzylboronates</td>
<td>M. Zaidlewicz and J. Meller</td>
</tr>
<tr>
<td>35</td>
<td>Allylboranes</td>
<td>Y. Bubnov</td>
</tr>
<tr>
<td>36</td>
<td>(\beta)-Boryl Carbonyl Compounds</td>
<td>D. S. Matteson</td>
</tr>
<tr>
<td>37</td>
<td>(\gamma)-Haloalkylboranes</td>
<td>H. Abu Ali, V. M. Dembitsky, and M. Srebnik</td>
</tr>
<tr>
<td>38</td>
<td>Trialkylboranes</td>
<td>M. Zaidlewicz and M. Krzeminski</td>
</tr>
<tr>
<td>39</td>
<td>Tetraaryl- and Tetraalkylborates and Related Organometallic Compounds</td>
<td>D. E. Kaufmann and M. Köster</td>
</tr>
<tr>
<td>40</td>
<td>Carboranes and Metallacarboranes</td>
<td>F. Teixidor and C. Viñas</td>
</tr>
<tr>
<td>41</td>
<td>Boron-Containing Polymers</td>
<td>D. Gabel</td>
</tr>
</tbody>
</table>

Keyword Index: 1289
Author Index: 1351
Abbreviations: 1403
Table of Contents

Introduction
D. E. Kaufmann

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.1.1</td>
<td>Method 1: Diborane and Borane–Ether Complexes</td>
<td>6</td>
</tr>
<tr>
<td>6.1.1.1.1</td>
<td>Variation 1: From Tetrahydroborates with Lewis Acids</td>
<td>6</td>
</tr>
<tr>
<td>6.1.1.1.2</td>
<td>Variation 2: From Tetrahydroborates with Iodine</td>
<td>9</td>
</tr>
<tr>
<td>6.1.1.1.3</td>
<td>Variation 3: Introduction of Isotopic Labels via Labeled Boranes</td>
<td>10</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Substituted Tricoordinate Boranes</td>
<td>11</td>
</tr>
<tr>
<td>6.1.2.1</td>
<td>Method 1: Halohydroboranes from Boron Trichloride and Trialkysilanes</td>
<td>12</td>
</tr>
<tr>
<td>6.1.2.2</td>
<td>Method 2: Oxyhydroboranes from Diborane and Hydroxy Compounds</td>
<td>16</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Asymmetric Acyloxyboranes</td>
<td>18</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Sulfanylhydroboranes</td>
<td>18</td>
</tr>
<tr>
<td>6.1.5</td>
<td>Aminohydroboranes</td>
<td>19</td>
</tr>
<tr>
<td>6.1.6</td>
<td>Borazines</td>
<td>19</td>
</tr>
<tr>
<td>6.1.7</td>
<td>Alkylhydroboranes by Hydroboration</td>
<td>21</td>
</tr>
<tr>
<td>6.1.7.1</td>
<td>Method 1: Synthesis by Hydroboration</td>
<td>21</td>
</tr>
<tr>
<td>6.1.7.2</td>
<td>Method 2: Asymmetric Alkylhydroboranes</td>
<td>23</td>
</tr>
<tr>
<td>6.1.8</td>
<td>Alkylhydroboranes by Other Routes</td>
<td>29</td>
</tr>
<tr>
<td>6.1.8.1</td>
<td>Method 1: Alkylboranes</td>
<td>29</td>
</tr>
<tr>
<td>6.1.8.1.1</td>
<td>Variation 1: Synthesis from Alkylborohydrides</td>
<td>30</td>
</tr>
<tr>
<td>6.1.8.1.2</td>
<td>Variation 2: Synthesis from Alkylheteroboranes</td>
<td>33</td>
</tr>
<tr>
<td>6.1.8.1.3</td>
<td>Variation 3: Synthesis from Alkylchloroboranes</td>
<td>34</td>
</tr>
<tr>
<td>6.1.9</td>
<td>Hydroborane–Lewis Base Complexes</td>
<td>35</td>
</tr>
<tr>
<td>6.1.9.1</td>
<td>Method 1: Borane–Dialkyl Sulides</td>
<td>35</td>
</tr>
<tr>
<td>6.1.9.2</td>
<td>Method 2: Borane–Amines</td>
<td>35</td>
</tr>
<tr>
<td>6.1.9.2.1</td>
<td>Variation 1: Hydroboration with Borane–Amines</td>
<td>37</td>
</tr>
<tr>
<td>6.1.9.2.2</td>
<td>Variation 2: Reductions with Borane–Amines</td>
<td>40</td>
</tr>
<tr>
<td>6.1.9.2.3</td>
<td>Variation 3: Group Substitution within Borane–Amines</td>
<td>43</td>
</tr>
</tbody>
</table>
6.1.10 Diaminoboronium Cations .. 44
6.1.11 Borane–Phosphines .. 45
6.1.12 Borane–Carbonyl ... 46
Applications of Product Subclass 1 in Organic Synthesis 46
6.1.13 Diborane .. 46
6.1.14 Halohydroboranes ... 47
6.1.15 Oxyhydroboranes .. 50
6.1.15.1 Method 1: Hydroboration .. 50
6.1.15.2 Method 2: Reductions with Dioxyboranes 51
6.1.16 Catalytic Reactions of Oxyhydroboranes 52
6.1.16.1 Method 1: Replacement of Hydrogen or Halogen Atoms by Boron 52
6.1.16.1.1 Variation 1: Replacement of Hydrogen 52
6.1.16.1.2 Variation 2: Replacement of Halogen 56
6.1.16.2 Method 2: Catalytic Reductions with Asymmetric Oxazaborolidines 58
6.1.16.3 Method 3: Catalytic Reductions with Transition-Metal Catalysts 64
6.1.16.4 Method 4: Catalytic Asymmetric Hydroborations 64
6.1.16.4.1 Variation 1: By Rhodium and Iridium Catalysts 65
6.1.16.4.2 Variation 2: By Palladium, Cobalt, and Nickel Catalysts 68
6.1.16.4.3 Variation 3: By Lanthanide and Early Transition Metal Catalysts 69
6.1.16.5 Method 5: Catalytic Hydroboration of Alkynes 70
6.1.16.6 Method 6: Hydroboration of Vinylarenes 71

6.1.2 Product Subclass 2: Borohydrides

6.1.2.1 Method 1: Preparation of Unsubstituted Borohydrides
(Tetrahydroborates) .. 82
6.1.2.2 Method 2: Preparation of Cyanoborohydrides 83
6.1.2.3 Method 3: Preparation of Alkylborohydrides 83
6.1.2.4 Method 4: Preparation of Alkylalkoxy-, Trialkoxy-, and Acyloxyborohydrides .. 86
6.1.2.5 Method 5: Preparation of Alkylaminoborohydrides 89
6.1.2.5.1 Variation 1: Preparation of Monoalkylaminoborohydrides 89
6.1.2.5.2 Variation 2: Preparation of Bis- and Tris(pyrazolyl)borohydrides 90
Applications of Product Subclass 2 in Organic Synthesis 90
6.1.2.6 Method 6: Reductive Cleavage of Carbon—Heteroatom Bonds 91
6.1.2.6.1 Variation 1: Reductive Cleavage of C—O Bonds 91
6.1.2.6.2 Variation 2: Reductive Cleavage of C—S Bonds 93
6.1.2.6.3 Variation 3: Reductive Cleavage of C—N Bonds 93
6.1.2.6.4 Variation 4: Reduction of Halides to Hydrocarbons 94
6.1.2.7 Method 7: Reductions of C=O Bonds 96
6.1.2.7.1 Variation 1: Reduction of Aldehydes and Ketones to Hydrocarbons 96
6.1.2.7.2 Variation 2: Reduction of Aldehydes and Ketones to Alcohols 97
6.1.2.7.3 Variation 3: Diastereoselective Reduction of Ketones to Alcohols 98
6.1.2.7.4 Variation 4: Enantioselective Reduction of Prochiral Ketones to Chiral Alcohols 100
6.1.2.7.5 Variation 5: Reductions of Carboxylic Acids and Derivatives 101
6.1.2.8 Method 8: Reductions of C=N Bonds 103
6.1.2.8.1 Variation 1: Reduction of Imines and Derivatives 103
6.1.2.8.2 Variation 2: Reductive Amination in Solution Phase 105
6.1.2.8.3 Variation 3: Solid-Phase Reductive Amination 106
6.1.2.9 Method 9: Reduction of Nitriles 107
6.1.2.10 Method 10: Reduction of Azides 108
6.1.2.11 Method 11: Reduction of Nitro Compounds 109

6.1.3 Product Subclass 3: Diborane(4) Compounds

T. B. Marder

6.1.3 Product Subclass 3: Diborane(4) Compounds 117

Synthesis of Product Subclass 3 117
6.1.3.1 Method 1: Reductive Coupling of Bis(dimethylamino)(halo)boranes 117
6.1.3.2 Method 2: Reaction of Tetrakis(dimethylamino)diborane(4) with Alcohols and Thiols 118
6.1.3.2.1 Variation 1: Reaction with Chiral 1,2-Diols 120
6.1.3.2.2 Variation 2: Reaction with Thiols 120

Applications of Product Subclass 3 in Organic Synthesis 121
6.1.3.3 Method 3: Oxidative Addition of the B—B Bond to Metal Centers 121
6.1.3.4 Method 4: Catalyzed Diboration of α,β-Unsaturated Ketones 121
6.1.3.4.1 Variation 1: Using (η²-Ethene)bis(triphenylphosphine)platinum(0) 121
6.1.3.4.2 Variation 2: Using Tetrakis(triphenylphosphine)platinum(0) 122
6.1.3.4.3 Variation 3: Using Bis(phenylimino)acenaphthene(dimethylfumarate)-platinum(0) 123
6.1.3.4.4 Variation 4: Using Copper(I) Trifluoromethanesulfonate/Tributylphosphine 123
6.1.3.4.5 Variation 5: Using Stoichiometric Copper(I) Chloride/Lithium Chloride/Potassium Acetate 124
6.1.3.4.6 Variation 6: Using Chlorotris(triphenylphosphine)rhodium(1) 125
6.1.3.5 Method 5: Platinum-Catalyzed Diboration of Alkynes and Diynes 125
6.1.3.5.1 Variation 1: Diboration of Alkynes Using Tetrakis(triphenylphosphine)-platinum(0) 125
6.1.3.5.2 Variation 2: Diboration of Alkynes and Diynes Using (η²-Ethene)bis(triphenylphosphine)platinum(0) 126
6.1.3.5.3 Variation 3: Diboration of Alkynes Using Tris(norbornene)platinum/Diphenyl(2-tolyl)phosphine 128
6.1.3.6 Method 6: Platinum- or Palladium-catalyzed Diboration of Dienes 129
6.1.3.6.1 Variation 1: Tetrakis(triphenylphosphine)platinum(0)- and Bis(dibenzylideneacetone)platinum-Catalyzed Diboration of 1,3-Dienes 129
6.1.3.6.2 Variation 2: Tetrakis(triphenylphosphine)platinum(0)- and Bis(dibenzylideneacetone)platinum-Catalyzed Diboration of 1,2-Dienes 130
6.1.3.6.3 Variation 3: Catalyzed Diboration of 1,2-Dienes Using Bis(dibenzylideneacetone)palladium in the Presence of Organic Iodides 130
6.1.3.7 Method 7: Catalyzed Diboration of Alkenes 130
6.1.3.7.1 Variation 1: Using Phosphine-Free Platinum(0) 131
6.1.3.7.2 Variation 2: Using Phosphine-Free Platinum(0) and Chiral Diborane(4) 133
6.1.3.7.3 Variation 3: Using a Bis(diphenylphosphino)methane–Rhodium–\(\eta^6\)-Bis(catecholato)borate Catalyst 134
6.1.3.7.4 Variation 4: Rhodium-Catalyzed Asymmetric Diboration of Alkenes 135
6.1.3.7.5 Variation 5: Diboration of Methylene cyclopropanes Using Tetrakis(triphenylphosphine)platinum(0) or Bis(dibenzylideneacetone)platinum 135

6.1.4 Product Subclass 4: Metalloboranes
H. Nöth

6.1.4.1 Method 1: Synthesis of Silylboranes 140
6.1.4.1.1 Variation 1: Substitution Reactions 140
6.1.4.1.2 Variation 2: Insertion Reactions 144
6.1.4.1.3 Variation 3: Co-dehalogenation Reactions 146
6.1.4.1.4 Variation 4: Discharge Reactions 147
6.1.4.2 Method 2: Synthesis of Germylboranes 147
6.1.4.3 Method 3: Synthesis of Stannylboranes 149
6.1.4.4 Method 4: Synthesis of Plumbylboranes 152
6.1.4.5 Method 5: Synthesis of Silyl-, Germyl-, Stannyl-, and Plumbylborates and Related Compounds 152
6.1.4.5.1 Variation 1: By Addition of a Borane to Metal Silanides or Stannanides 153
6.1.4.5.2 Variation 2: Silyl-, Stannyl-, and Germylborates by Substitution Reactions 153
6.1.4.5.3 Variation 3: B–Si Bond Formation via a Li–B Intermediate 155

Applications of Product Subclass 4 in Organic Synthesis 155
6.1.4.6 Method 6: Sila- and Stannaboration with Silyl- and Stannylboranes 156
6.1.4.6.1 Variation 1: Alkenes 156
6.1.4.6.2 Variation 2: Allenes 159
6.1.4.6.3 Variation 3: 1,3-Dienes 161
6.1.4.6.4 Variation 4: Reaction of 1-Boryl-4-silylbut-2-enes with Aldehydes 163
6.1.4.6.5 Variation 5: Silylboration of Alkenes 166
6.1.4.6.6 Variation 6: Stannaboration of Alkynes 170
6.1.4.7 Method 7: Reaction of Alkynes with Silyl- and Stannylborates 171
6.1.4.8 Method 8: Transition Metal Borations 173
6.1.4.9 Method 9: Transition Metal Borides 174
6.1.5 Product Subclass 5: Haloboranes
D. S. Matteson

6.1.5 Product Subclass 5: Haloboranes .. 179
Synthesis of Product Subclass 5 ... 180

6.1.5.1 Boron Trihalides .. 180
6.1.5.1.1 Method 1: Synthesis of Boron Trifluoride 180
6.1.5.1.2 Method 2: Synthesis of Boron Trifluoride–Diethyl Ether Complex 182
6.1.5.1.3 Method 3: Synthesis of Boron Trichloride 182
6.1.5.1.4 Method 4: Synthesis of Boron Tribromide 182
6.1.5.1.5 Method 5: Synthesis of Boron Triiodide 183

6.1.5.2 Halo(oxy)boranes .. 183
6.1.5.2.1 Method 1: Synthesis of Halo(dioxy)- and Dihalo(oxy)boranes 183
6.1.5.2.1.1 Variation 1: Synthesis of Alkoxy(chloro)boranes 184
6.1.5.2.2 Method 2: Synthesis of Alkyl- and Aryl(halo)(oxy)boranes 184
6.1.5.2.2.1 Variation 1: From Alkoxy Metals 184
6.1.5.2.2.2 Variation 2: By Ligand Exchange between Two Boron Components 186

6.1.5.3 Amino(halo)boranes .. 186
6.1.5.3.1 Method 1: Synthesis of Amino(dihalo)boranes and Diamino(halo)boranes .. 186
6.1.5.3.1.1 Variation 1: Synthesis of Amino(dihalo)boranes 187
6.1.5.3.1.2 Variation 2: Synthesis of Diamino(halo)boranes 188
6.1.5.3.2 Method 2: Synthesis of Alkyl- and Aryl(amo)(halo)boranes and Related Compounds .. 190
6.1.5.3.2.1 Variation 1: Synthesis of Diamino(chloro)boronium Chlorides 191

6.1.5.4 Alkyl- and Aryl(halo)boranes .. 193
6.1.5.4.1 Method 1: Synthesis of Alkyl- and Aryl(fluoro)boranes 193
6.1.5.4.2 Method 2: Synthesis of Alkyl- and Aryl(chloro)boranes 194
6.1.5.4.2.1 Variation 1: Hydroboration of Alkenes 195
6.1.5.4.2.2 Variation 2: By Conversion of B—H Bonds into B—Cl Bonds 200
6.1.5.4.2.3 Variation 3: By Replacement of B—Cl Bonds by B—C Bonds 201
6.1.5.4.2.4 Variation 4: By Addition to Alkynes 201
6.1.5.4.2.5 Variation 5: By Metal Replacement 202
6.1.5.4.2.6 Variation 6: By Conversion of B—O Bonds into B—Cl Bonds 206
6.1.5.4.2.7 Variation 7: By Conversion of B—F Bonds into B—Cl Bonds 207
6.1.5.4.3 Method 3: Synthesis of Alkyl- and Aryl(bromo)boranes and Alkyl- and Aryl(iodo)boranes .. 207
6.1.5.4.3.1 Variation 1: From Alkenes ... 207
6.1.5.4.3.2 Variation 2: From Acetylenes 208
6.1.5.4.3.3 Variation 3: Using Organometallic Reagents 210

Applications of Product Subclass 5 in Organic Synthesis 211

6.1.5.5 Boron Trifluoride .. 211
6.1.5.5.1 Method 1: Aldol–Grob Reaction 212
6.1.5.5.2 Method 2: Friedel–Crafts Reactions 212
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.5.6</td>
<td>Boron Trifluoride–Diethyl Ether Complex and Its Derivatives</td>
<td>214</td>
</tr>
<tr>
<td>6.1.5.6.1</td>
<td>Method 1: Reductions of Epoxides</td>
<td>214</td>
</tr>
<tr>
<td>6.1.5.6.2</td>
<td>Method 2: Complexes with Organocupper Compounds</td>
<td>215</td>
</tr>
<tr>
<td>6.1.5.6.3</td>
<td>Method 3: Organolithium Compounds</td>
<td>217</td>
</tr>
<tr>
<td>6.1.5.6.4</td>
<td>Method 4: Boron Trifluoride–Acetic Acid Complex</td>
<td>218</td>
</tr>
<tr>
<td>6.1.5.6.5</td>
<td>Method 5: Difluoroboryl Methanesulfonate</td>
<td>218</td>
</tr>
<tr>
<td>6.1.5.7</td>
<td>Boron Trichloride</td>
<td>219</td>
</tr>
<tr>
<td>6.1.5.7.1</td>
<td>Method 1: Detritylation</td>
<td>219</td>
</tr>
<tr>
<td>6.1.5.7.2</td>
<td>Method 2: Condensation of a Ketone with a Silylated Eneediol</td>
<td>220</td>
</tr>
<tr>
<td>6.1.5.7.3</td>
<td>Method 3: Reactions Involving Aldehydes</td>
<td>220</td>
</tr>
<tr>
<td>6.1.5.7.3.1</td>
<td>Variation 1: Conversion of Aromatic Aldehydes into Aryl(dichloro)methanes</td>
<td>220</td>
</tr>
<tr>
<td>6.1.5.7.3.2</td>
<td>Variation 2: Condensation of Aromatic Aldehydes with Styrenes</td>
<td>221</td>
</tr>
<tr>
<td>6.1.5.7.3.3</td>
<td>Variation 3: Condensation of Aromatic Aldehydes with Arylacetylenes</td>
<td>221</td>
</tr>
<tr>
<td>6.1.5.7.4</td>
<td>Method 4: Diels–Alder Reactions</td>
<td>222</td>
</tr>
<tr>
<td>6.1.5.8</td>
<td>Boron Tribromide</td>
<td>222</td>
</tr>
<tr>
<td>6.1.5.8.1</td>
<td>Method 1: Cleavage of C—O Bonds</td>
<td>223</td>
</tr>
<tr>
<td>6.1.5.8.2</td>
<td>Method 2: Boron Demetalations</td>
<td>223</td>
</tr>
<tr>
<td>6.1.5.9</td>
<td>Boron Triiodide</td>
<td>224</td>
</tr>
<tr>
<td>6.1.5.10</td>
<td>Boron Triiodide–N,N-Diethylaniline Complex</td>
<td>224</td>
</tr>
<tr>
<td>6.1.5.11</td>
<td>Halo(oxy)boranes</td>
<td>225</td>
</tr>
<tr>
<td>6.1.5.11.1</td>
<td>Method 1: Reaction with Allyllithiums Followed by Alcohols or Aldehydes</td>
<td>225</td>
</tr>
<tr>
<td>6.1.5.11.2</td>
<td>Method 2: Alkenylation by Replacement of Zirconium</td>
<td>227</td>
</tr>
<tr>
<td>6.1.5.12</td>
<td>Amino(halo)boranes</td>
<td>227</td>
</tr>
<tr>
<td>6.1.5.12.1</td>
<td>Method 1: Preparation of Boron Heterocycles Using Amino(dihalo)boranes</td>
<td>227</td>
</tr>
<tr>
<td>6.1.5.12.2</td>
<td>Method 2: Using Diamino(halo)boranes</td>
<td>229</td>
</tr>
<tr>
<td>6.1.5.13</td>
<td>Alkyl- and Aryl(chloro)boranes</td>
<td>231</td>
</tr>
<tr>
<td>6.1.5.13.1</td>
<td>Method 1: Secondary Amine Formation Using Alkyl(chloro)boranes</td>
<td>232</td>
</tr>
<tr>
<td>6.1.5.13.2</td>
<td>Method 2: Reduction of Ketones to Alcohols</td>
<td>233</td>
</tr>
<tr>
<td>6.1.5.13.3</td>
<td>Method 3: Formation of Enolates from Ketones</td>
<td>238</td>
</tr>
<tr>
<td>6.1.5.13.4</td>
<td>Methods 4: Miscellaneous Applications</td>
<td>238</td>
</tr>
<tr>
<td>6.1.5.14</td>
<td>Alkyl- and Aryl(bromo)boranes and Alkyl- and Aryl(iodo)boranes</td>
<td>240</td>
</tr>
</tbody>
</table>

6.16 Product Subclass 6: Haloborates

B. Schilling and D. E. Kaufmann

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.6</td>
<td>Product Subclass 6: Haloborates</td>
<td>247</td>
</tr>
<tr>
<td>6.1.6.1</td>
<td>Method 1: Destannylation of Organostannanes</td>
<td>247</td>
</tr>
<tr>
<td>6.1.6.2</td>
<td>Method 2: Fluorination of Organoboronic Acids and Esters</td>
<td>247</td>
</tr>
<tr>
<td>6.1.6.3</td>
<td>Method 3: Fluorination of Intermediate Organoboronic Acids and Esters</td>
<td>248</td>
</tr>
</tbody>
</table>
6.1.6.3.1 Variation 1: From Organolithium and Grignard Reagents 248
6.1.6.3.2 Variation 2: From Alkynes 248

Applications of Product Subclass 6 in Organic Synthesis 249

6.1.6.4 Method 4: Cross-Coupling Reactions of Potassium Aryltrifluoroborates 249
6.1.6.4.1 Variation 1: Addition to Aldehydes and Enones 249
6.1.6.4.2 Variation 2: With Arenediazonium Tetrafluoroborates 250
6.1.6.4.3 Variation 3: With Diaryliodonium Salts 251
6.1.6.5 Method 5: Substitution Using Inorganic Tetrahaloborates 251
6.1.6.5.1 Variation 1: Nucleophilic Substitution Reactions 251
6.1.6.5.2 Variation 2: Regioselective Fluorination Using Selectfluor 252
6.1.6.6 Method 6: Release of Difluoro(organo)boranes from Potassium Trifluoro(organo)borates 253
6.1.6.7 Method 7: Addition of Potassium Allyltrifluoroborates to Aldehydes and Ketones 253
6.1.6.8 Method 8: Addition Reactions Using Inorganic Tetrahaloborates (The Balz–Schiemann Reaction) 254

6.1.7 Product Subclass 7: Hydroxyboranes
N. Miyaura

6.1.7.1 Method 1: Direct Borylation of Alkanes and Arenes 257
6.1.7.2 Method 2: Transmetalation 260
6.1.7.2.1 Variation 1: Via Magnesium and Lithium Reagents 263
6.1.7.2.2 Variation 2: Via Other Metal Reagents 266
6.1.7.3 Method 3: Borylation of Aryl, Vinyl, and Allyl Halides 267
6.1.7.3.1 Variation 1: By Palladium-Catalyzed Coupling of Diboranes 268
6.1.7.3.2 Variation 2: By Palladium-Catalyzed Coupling of 1,3,2-Dioxaborolanes 271
6.1.7.4 Method 4: Hydroboration of Alkenes and Alkynes 272
6.1.7.4.1 Variation 1: Uncatalyzed Hydroboration 273
6.1.7.4.2 Variation 2: Catalyzed Hydroboration 275
6.1.7.5 Method 5: Diboration of Alkenes and Alkynes 279
6.1.7.5.1 Variation 1: Uncatalyzed Diboration 279
6.1.7.5.2 Variation 2: Catalyzed Diboration 280
6.1.7.6 Methods 6: Additional Methods 281

Applications of Product Subclass 7 in Organic Synthesis 285

6.1.7.7 Method 7: Formation of Diol Esters 285
6.1.7.7.1 Variation 1: Protection, Chromatographic Separations, and Analysis of Diols 285
6.1.7.7.2 Variation 2: Recognition of Sugar Molecules 286
6.1.7.8 Method 8: Use as Catalysts 287
6.1.7.8.1 Variation 1: For Hydroxyalkylation of Phenols 287
6.1.7.8.2 Variation 2: For Hydroalumination 288
6.1.7.8.3 Variation 3: For the Substitution of Epoxides 289
6.1.7.8.4 Variation 4: For Amidation of Carboxylic Acids 290
6.1.7.9 Method 9: C—C Bond Formation via the Boron-Mannich Reaction 291
6.1.7.10 Method 10: Metal-Catalyzed C—C and Carbon—Heteroatom Bond Formation 292
6.1.7.10.1 Variation 1: Palladium- and Nickel-Catalyzed Cross-Coupling Reactions 292
6.1.7.10.2 Variation 2: Rhodium-Catalyzed Addition Reactions 294
6.1.7.10.3 Variation 3: Copper-Catalyzed C—O, C—S, and C—N Bond Formation 296

6.1.8 Product Subclass 8: Boroxanes
M. Periasamy, M. Seenivasaperumal, and S. Sivakumar

6.1.8.1 Method 1: Boroxin from Diborane 301
6.1.8.2 Method 2: Alkoxyboroxins from Boric Acids 301
6.1.8.3 Method 3: Alkylboroxin from the Corresponding Boron Acid 302
6.1.8.3.1 Variation 1: An Alkylboroxin by Carbonylation of Borane–Dimethyl Sulfide Complex 303
6.1.8.3.2 Variation 2: Alkylboroxins from Organoboranes and Boric Oxide 304
6.1.8.4 Method 4: Arylboroxins from Arylboronic Acids 304
6.1.8.5 Method 5: A Diboroxane from Boric Acid 306
6.1.8.6 Method 6: Diboroxanes from Hydroxyboranes or Derivatives 306
6.1.8.7 Method 7: A Diboroxane from a Borepin 307
6.1.8.8 Method 8: 2,4,6-Trivinylboroxin–Pyridine from Trimethyl Borate 307

Applications of Product Subclass 8 in Organic Synthesis 308
6.1.8.9 Method 9: Oxidation of Alkoxyboroxins 308
6.1.8.10 Method 10: Boroxins in a Suzuki-Type Cross-Coupling Reaction 310
6.1.8.10.1 Variation 1: Preparation of 3,4-Disubstituted Furans 310
6.1.8.10.2 Variation 2: Preparation of Oligomeric Furans 310
6.1.8.10.3 Variation 3: Preparation of Substituted Styrenes 311
6.1.8.11 Method 11: Arylboroxins as Catalysts for Aldol or Michael Reactions 312
6.1.8.12 Method 12: Rhodium-Catalyzed Hydroarylation of Alkenes and Alkynes by Triarylboroxins 313
6.1.8.13 Method 13: Preparation of Chiral Oxazaborolidine Catalysts 314
6.1.8.14 Method 14: Separation of Diols 315
6.1.8.15 Method 15: Boroxin-Containing Polymers 315
6.1.8.16 Method 16: High Performance Polymer Electrolytes 316
6.1.8.17 Method 17: Resolution of 1,1¢-Bi-2-naphthol 318

6.1.9 Product Subclass 9: Acyloxyboranes
M. Periasamy, M. N. Reddy, and N. S. Kumar

6.1.9.1 Method 1: Triacyloxyboranes and Oxybis(diacyloxy)boranes 322
6.1.9.2 Method 2: By the Reaction of 9-Borabicyclo[3.3.1]nonane with Carboxylic Acids .. 323
Applications of Product Subclass 9 in Organic Synthesis 323

6.1.9.3 Method 3: In Electrophilic Reactions 323
6.1.9.4 Method 4: Acyloxyborohydrides in Reduction Reactions 324
6.1.9.4.1 Variation 1: Reduction of Carboxylic Acids 324
6.1.9.4.2 Variation 2: Selective Reduction of the Carboxylic Acid Group in an Alkenic Acid .. 325
6.1.9.4.3 Variation 3: Hydroboration of Alkenes 326
6.1.9.4.4 Variation 4: Selective Hydroboration of Alkenic Acids 326
6.1.9.5 Method 5: Reduction of Carboxylic Acids to Aldehydes 327
6.1.9.6 Method 6: Asymmetric Reactions with Tartaric Acid Based Chiral Acyloxyboranes .. 328
6.1.9.6.1 Variation 1: Asymmetric Reduction 328
6.1.9.6.2 Variation 2: Diels–Alder Reactions 328
6.1.9.6.3 Variation 3: Aldol Reactions .. 330
6.1.9.6.4 Variation 4: Asymmetric Allylation 331
6.1.9.7 Method 7: Asymmetric Reactions with Amino Acid Based Chiral Acyloxyboranes .. 332
6.1.9.7.1 Variation 1: Diels–Alder Reactions 332
6.1.9.7.2 Variation 2: Aldol Reactions .. 333

6.1.10 Product Subclass 10: Vinyloxyboranes
C. Gennari, S. Ceccarelli, and U. Piarulli

6.1.10 Product Subclass 10: Vinyloxyboranes 337
Synthesis of Product Subclass 10 ... 339
6.1.10.1 Method 1: From Carbonyl Compounds by Direct Enolization 340
6.1.10.1.1 Variation 1: Synthesis of Z(O)-Vinyloxyboranes 348
6.1.10.1.2 Variation 2: Synthesis of E(O)-Vinyloxyboranes 348
6.1.10.1.3 Variation 3: Synthesis of Vinyloxyboranes by Enolization of Aldehydes 348
6.1.10.2 Method 2: From Silyl Enol Ethers or Lithium Enolates 349
6.1.10.2.1 Variation 1: From Silyl Enol Ethers 349
6.1.10.2.2 Variation 2: From Lithium Enolates 350
6.1.10.3 Method 3: By Addition of Trialkyl- and Dialkylboranes to Double Bonds .. 351
6.1.10.3.1 Variation 1: By Addition to α,β-Unsaturated Carbonyl Compounds .. 351
6.1.10.3.2 Variation 2: By Addition to Ketenes 352
6.1.10.4 Method 4: Synthesis of Dialkyl Vinyl Borates by Oxidation of Dialkyl Vinylboronates .. 353
6.1.10.4.1 Variation 1: From Vinylic Grignard Reagents 353
6.1.10.4.2 Variation 2: By Hydroboration of Alkynes 354
6.1.10.5 Method 5: By Rearrangement of Boron “Ate” Complexes 355
6.1.10.5.1 Variation 1: From α-Halo-Substituted Enolates 356
6.1.10.5.2 Variation 2: From α-Diazo Carbonyl Compounds 357
6.1.10.5.3 Variation 3: From Stabilized Sulfur Ylides 358
6.1.10.6 Methods 6: Additional Methods 358

Table of Contents XXI
Applications of Product Subclass 10 in Organic Synthesis 359

6.1.10.7 Method 7: Synthesis of α-Halo Carbonyl Compounds by
Halogenation of Vinyloxyboranes .. 359

6.1.10.8 Method 8: Synthesis of syn-α-Substituted β-Hydroxy Carbonyl
Compounds by the Aldol Reaction .. 360

6.1.10.8.1 Variation 1: From Imide-Derived Vinyloxyboranes 367
6.1.10.8.2 Variation 2: From Sultam-Derived Vinyloxyboranes 369
6.1.10.8.3 Variation 3: From Ester-Derived Vinyloxyboranes 370
6.1.10.8.4 Variation 4: From Diisopinocampheyl(vinyloxy)boranes 371
6.1.10.8.5 Variation 5: From Vinyloxydiazaborolidines 372
6.1.10.8.6 Variation 6: From Dialkyl Vinyl Borates 373
6.1.10.8.7 Variation 7: From Monohalo- and Dihalo(vinyloxy)boranes 374

6.1.10.9 Method 9: Synthesis of anti-α-Substituted β-Hydroxy Carbonyl
Compounds by the Aldol Reaction .. 375

6.1.10.9.1 Variation 1: From Imide-Derived Vinyloxyboranes with
Excess Dibutyl[[[trifluoromethyl)sulfonyl]oxy]borane 380
6.1.10.9.2 Variation 2: From Sultam-Derived Vinyloxyboranes in the Presence of
Lewis Acids .. 381
6.1.10.9.3 Variation 3: From Ester-Derived Vinyloxyboranes 382
6.1.10.9.4 Variation 4: From Vinyloxyboranes Bearing Menthone-Derived
Chiral Ligands .. 383
6.1.10.9.5 Variation 5: From Vinyloxydiazaborolidines 385
6.1.10.9.6 Variation 6: Miscellaneous Reactions 386

6.1.10.10 Method 10: Synthesis of α-Unsubstituted β-Hydroxy Carbonyl
Compounds by the Aldol Reaction .. 386

6.1.10.10.1 Variation 1: From 2,5-Dialkyl-1-(vinyloxy)borolanes 388
6.1.10.10.2 Variation 2: From Vinyloxyboranes Bearing Menthone-Derived
Chiral Ligands .. 389
6.1.10.10.3 Variation 3: Miscellaneous Reactions 390
6.1.10.11 Method 11: Synthesis of β-Amino Carbonyl Compounds by
Reaction with Imines .. 391

6.1.10.12 Method 12: Alkylation of Vinyloxyboranes
(The Nicholas–Schreiber Reaction) .. 393
6.1.10.13 Method 13: Pericyclic Reactions ... 395

6.1.10.13.1 Variation 1: [3,3]-Sigmatropic Rearrangements 395
6.1.10.13.2 Variation 2: [2,3]-Sigmatropic Rearrangements 396

6.1.11

Product Subclass 11: Aryloxy- and Alkoxyboranes
(Including Protecting Groups)
K. Ishihara and H. Yamamoto

6.1.11

Product Subclass 11: Aryloxy- and Alkoxyboranes
(Including Protecting Groups) .. 403

Synthesis of Product Subclass 11 ... 404

6.1.11.1 Method 1: Synthesis by Substitution 404

6.1.11.1.1 Variation 1: Of Boric Oxide or Hydroxyboranes with Alcohols 404
<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Method</th>
<th>Details</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.11.2</td>
<td>Variation 2:</td>
<td>Of Borohydrides with Alcohols</td>
<td>.. 405</td>
<td></td>
</tr>
<tr>
<td>6.1.11.3</td>
<td>Variation 3:</td>
<td>Of Alkylboranes with Alcohols or Alkoxyboranes</td>
<td>... 406</td>
<td></td>
</tr>
<tr>
<td>6.1.11.4</td>
<td>Variation 4:</td>
<td>Of Acyloxyboranes with Alcohols</td>
<td>... 406</td>
<td></td>
</tr>
<tr>
<td>6.1.11.5</td>
<td>Variation 5:</td>
<td>Of Haloboranes with Alcohols</td>
<td>.. 407</td>
<td></td>
</tr>
<tr>
<td>6.1.11.6</td>
<td>Variation 6:</td>
<td>Of Thioboranes with Alcohols</td>
<td>... 408</td>
<td></td>
</tr>
<tr>
<td>6.1.11.7</td>
<td>Variation 7:</td>
<td>Of Aminoboranes with Alcohols</td>
<td>... 408</td>
<td></td>
</tr>
<tr>
<td>6.1.11.2</td>
<td>Method 2:</td>
<td>Synthesis by Addition Reactions</td>
<td>.. 409</td>
<td></td>
</tr>
<tr>
<td>6.1.11.2.1</td>
<td>Variation 1:</td>
<td>Oxidation of Alkylboranes with Peroxy Acids</td>
<td>... 409</td>
<td></td>
</tr>
<tr>
<td>6.1.11.2.2</td>
<td>Variation 2:</td>
<td>Oxidation of Alkylboranes with Amine N-Oxides</td>
<td>... 409</td>
<td></td>
</tr>
<tr>
<td>6.1.11.2.3</td>
<td>Variation 3:</td>
<td>Oxidation of Alkylboranes with Molybdenum Peroxide–Pyridine–Hexamethylphosphoric Triamide</td>
<td>410</td>
<td></td>
</tr>
<tr>
<td>6.1.11.2.4</td>
<td>Variation 4:</td>
<td>Oxidation of Alkylboranes with Molecular Oxygen</td>
<td>... 411</td>
<td></td>
</tr>
<tr>
<td>6.1.11.2.5</td>
<td>Variation 5:</td>
<td>Reduction of Carbonyl Compounds with Hydroboranes</td>
<td>... 412</td>
<td></td>
</tr>
<tr>
<td>6.1.11.2.6</td>
<td>Variation 6:</td>
<td>Alkylation of Carbonyl Compounds with Allenylboronic Esters</td>
<td>......................... 413</td>
<td></td>
</tr>
<tr>
<td>6.1.11.2.7</td>
<td>Variation 7:</td>
<td>Alkylation of Carbonyl Compounds with Trialkylboranes</td>
<td>................................. 413</td>
<td></td>
</tr>
<tr>
<td>6.1.11.3</td>
<td>Method 3:</td>
<td>Transesterification of Alkoxyboranes with Alcohols</td>
<td>... 414</td>
<td></td>
</tr>
</tbody>
</table>

Applications of Product Subclass 11 in Organic Synthesis ... 414

<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Method</th>
<th>Details</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.11.4</td>
<td>Method 4:</td>
<td>Synthesis of Esters by Esterification of Carboxylic Acids with Alkoxyboranes</td>
<td>... 414</td>
<td></td>
</tr>
<tr>
<td>6.1.11.5</td>
<td>Method 5:</td>
<td>The Protection of Hydroxy Groups</td>
<td>... 415</td>
<td></td>
</tr>
<tr>
<td>6.1.11.6</td>
<td>Method 6:</td>
<td>Synthesis of Boronic Acids and Esters</td>
<td>... 415</td>
<td></td>
</tr>
<tr>
<td>6.1.11.6.1</td>
<td>Variation 1:</td>
<td>Reduction</td>
<td>... 416</td>
<td></td>
</tr>
<tr>
<td>6.1.11.6.2</td>
<td>Variation 2:</td>
<td>Electrophilic Reagent</td>
<td>... 416</td>
<td></td>
</tr>
<tr>
<td>6.1.11.6.3</td>
<td>Variation 3:</td>
<td>Synthesis of α,β-Unsaturated Nitriles</td>
<td>... 417</td>
<td></td>
</tr>
<tr>
<td>6.1.11.6.4</td>
<td>Variation 4:</td>
<td>Synthesis of Esters</td>
<td>... 417</td>
<td></td>
</tr>
<tr>
<td>6.1.11.6.5</td>
<td>Variation 5:</td>
<td>Preparation of Potassium Triisopropylborohydride</td>
<td>................................. 418</td>
<td></td>
</tr>
<tr>
<td>6.1.11.7</td>
<td>Method 7:</td>
<td>Use as a Lewis Acid Promoter or Catalyst</td>
<td>... 418</td>
<td></td>
</tr>
</tbody>
</table>

6.1.12 **Product Subclass 12: Aryloxy- and Alkoxyborates**
K. Ishihara and H. Yamamoto

<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Method</th>
<th>Details</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.12</td>
<td>Product Subclass 12: Aryloxy- and Alkoxyborates</td>
<td></td>
<td>.. 423</td>
<td></td>
</tr>
<tr>
<td>6.1.12</td>
<td>Synthesis of Product Subclass 12</td>
<td></td>
<td>.. 423</td>
<td></td>
</tr>
<tr>
<td>6.1.12.1</td>
<td>Method 1:</td>
<td>By Reduction of Aldehydes or Ketones with Sodium Borohydride</td>
<td>... 423</td>
<td></td>
</tr>
<tr>
<td>6.1.12.2</td>
<td>Method 2:</td>
<td>By Reaction of Alcohols with Sodium Borohydride</td>
<td>... 424</td>
<td></td>
</tr>
<tr>
<td>6.1.12.3</td>
<td>Method 3:</td>
<td>Synthesis of Ammonium Tetraalkoxyborates and Related Compounds</td>
<td>... 424</td>
<td></td>
</tr>
</tbody>
</table>

Applications of Product Subclass 12 in Organic Synthesis ... 425

<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Method</th>
<th>Details</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.12.4</td>
<td>Method 4:</td>
<td>Use as Brønsted Acid Assisted Chiral Lewis Acids</td>
<td>... 425</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Product Subclass</td>
<td>Subclass Details</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>6.1.13</td>
<td>13: Peroxyboranes</td>
<td>K. Ishihara and H. Yamamoto</td>
<td>437</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synthesis</td>
<td></td>
<td>437</td>
<td></td>
</tr>
<tr>
<td>6.1.13.1</td>
<td>Method 1:</td>
<td>Oxidation Reactions of Alkylboranes</td>
<td>437</td>
<td></td>
</tr>
<tr>
<td>6.1.13.2</td>
<td>Method 2:</td>
<td>Synthesis of Alcohols by the Redox Reaction of Alkyl(peroxy)boranes</td>
<td>439</td>
<td></td>
</tr>
<tr>
<td>6.1.14</td>
<td>14: Sulfanyl- and Selanylboranes</td>
<td>C. Habben and D. E. Kaufmann</td>
<td>443</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synthesis</td>
<td></td>
<td>443</td>
<td></td>
</tr>
<tr>
<td>6.1.14.1</td>
<td>Method 1:</td>
<td>Sulfanylboranes by Substitution Reactions of Haloboranes with Organosulfur Compounds</td>
<td>443</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applications of</td>
<td></td>
<td>448</td>
<td></td>
</tr>
<tr>
<td>6.1.15</td>
<td>15: Aminoboranes and Borane–Amine Complexes</td>
<td>B. Carboni and F. Carreaux</td>
<td>455</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synthesis</td>
<td></td>
<td>456</td>
<td></td>
</tr>
<tr>
<td>6.1.15.1</td>
<td>Method 1:</td>
<td>Aminoboranes by Amination of Organoboranes</td>
<td>456</td>
<td></td>
</tr>
<tr>
<td>6.1.15.2</td>
<td>Method 2:</td>
<td>Substitution Reactions of Sulfanylboranes</td>
<td>451</td>
<td></td>
</tr>
<tr>
<td>6.1.15.3</td>
<td>Method 3:</td>
<td>Reactions of Selanylboranes</td>
<td>451</td>
<td></td>
</tr>
</tbody>
</table>
6.1.15.4 Variation 4: By 1,2-Diamines ... 458
6.1.15.2 Method 2: Aminoboranes by Redistribution and Exchange Reactions ... 459
6.1.15.3 Method 3: Aminoboranes by Borylation of Organometallic Reagents ... 459
6.1.15.4 Method 4: Aminoboranes by Reductive Alkylation of Azides 460
6.1.15.5 Method 5: Additional Methods for the Synthesis of Aminoboranes 461
6.1.15.6 Method 6: Borane–Amine Complexes by Complexation of Organoboranes ... 461
6.1.15.6.1 Variation 1: By Borane or Its Complexes 461
6.1.15.6.2 Variation 2: By Borohydrides ... 462
6.1.15.6.3 Variation 3: By Substituted Boranes or Their Derivatives 463
6.1.15.7 Method 7: Borane–Amine Complexes by Halogenation of Borane Complexes ... 463
6.1.15.7.1 Variation 1: By Halogens ... 463
6.1.15.7.2 Variation 2: By Hydrogen Halides .. 464
6.1.15.7.3 Variation 3: By Redistribution Reactions 464
6.1.15.7.4 Variation 4: By N-Halosuccinimides 465
6.1.15.8 Method 8: Additional Methods for the Synthesis of Borane–Amine Complexes ... 466
Applications of Product Subclass 15 in Organic Synthesis 466
6.1.15.9 Method 9: In Hydroboration Reactions ... 466
6.1.15.9.1 Variation 1: Hydroboration with Borane–Amine Complexes 466
6.1.15.9.2 Variation 2: Catalytic Asymmetric Hydroboration with Oxazaborolidines 467
6.1.15.10 Method 10: Reduction of Carbonyl and Imine Groups 468
6.1.15.10.1 Variation 1: Using Oxazaborolidine Catalysts 468
6.1.15.10.2 Variation 2: Using Borane–Amine Complexes 469
6.1.15.10.3 Variation 3: Using Aminoborohydrides 470
6.1.15.11 Method 11: α-Alkylation of Tertiary Amines 471
6.1.15.12 Method 12: Oxazaborolidinones as Protecting Groups 472
6.1.15.13 Method 13: Dioxazaborocines as Chiral Auxiliaries 473
6.1.15.14 Method 14: Aldol Reactions .. 474
6.1.15.14.1 Variation 1: With Stilbenediamine Derivatives (Stien Reagents) as Chiral Catalysts ... 474
6.1.15.14.2 Variation 2: With Oxazaborolidinone Catalysts 475
6.1.15.15 Method 15: Other Asymmetric Boron-Catalyzed Reactions 476
6.1.15.15.1 Variation 1: Diels–Alder Reactions ... 477
6.1.15.15.2 Variation 2: Enantioselective Addition to Carbonyl Compounds 477
6.1.15.15.3 Variation 3: 1,3-Dipolar Cycloaddition Reactions of Nitrones 479
6.1.15.16 Methods 16: Miscellaneous Applications 479

6.1.16

Product Subclass 16: Phosphinoboranes and Borane–Phosphine Complexes
A. C. Gaumont and B. Carboni

6.1.16

Product Subclass 16: Phosphinoboranes and Borane–Phosphine Complexes ... 485
Synthesis of Product Subclass 16 ... 487
Method 1: Phosphinoboranes by Phosphination 487

Variation 1: From Halo(organo)boranes 487
Variation 2: From Amino(halo)boranes 488

Method 2: Phosphinoboranes by Elimination from Phosphine–Borane Complexes 489

Variation 1: By Dehydrohalogenation 490
Variation 2: By Thermal Dehydrogenation 490
Variation 3: By Elimination of Trimethylsilyl Groups 491
Method 3: By Catalytic Organometallic Dehydrocoupling 492

Method 4: Borane–Phosphine Complexes by Complexation of an Organoborane 493

Variation 1: From Phosphines and Uncomplexed Boranes 493
Variation 2: From Phosphines and Borane Complexes 494
Variation 3: From Chlorophosphines 495
Variation 4: From Borohydrides and Free Phosphines 496
Variation 5: From Phosphine Oxides 497

Method 5: Borane–Phosphine Complexes by Halogenation of Borane Complexes 497

Method 6: Additional Methods for the Synthesis of Borane–Phosphine Complexes 498

Applications of Product Subclass 16 in Organic Synthesis 498

Method 7: Borane as a Phosphorus Protecting Group 499
Method 8: Alkylation of Borane–Phosphine Complexes 500

Variation 1: C-Alkylation Reactions 500
Variation 2: P-Alkylation Reactions 501
Variation 3: Nucleophilic Substitution Reactions 503

Method 9: Hydrophosphination Reactions 504
Method 10: Coupling Reactions 505

Variation 1: Copper-Promoted Oxidative Coupling 505
Variation 2: Palladium-Promoted Cross Coupling 506

Methods 11: Miscellaneous Applications 507

Product Subclass 17: α-Metalloalkylboranes

Method 1: Preparation of α-Borylboranes and α-Borylboronates 514
Method 2: Metallation of Di-, Tri-, and Tetraborylmethanes by Deboronation 517

Variation 1: With Grignard Reagents 518
Variation 2: From gem-Tris- and Tetrakis(dialkoxyboryl) Compounds 519

Method 3: Deprotonation of α-Substituted Boranes and Boronates 519
6.1.17.3.1 Variation 1: Of Bis(dialkoxyboryl)methanes .. 520
6.1.17.3.2 Variation 2: Of α-(Phenylsulfanyl)methylboronates 521
6.1.17.3.3 Variation 3: Of α-(Trimethylsilyl)methylboronates 521
6.1.17.3.4 Variation 4: Of Dialkylvinylboranes .. 522
6.1.17.4 Method 4: Metal–Halogen Exchange Reactions of α-Haloalkylboranes and α-Haloalkylboronates ... 523
6.1.17.4.1 Variation 1: Preparation of α-(Trialkylstannyl)alkylboranes and α-(Trialkylstannyl)alkylboronates .. 523
6.1.17.4.2 Variation 2: Reaction of an α-Haloalkylboronate with tert-Butyllithium 523
6.1.17.4.3 Variation 3: Reaction of α-Haloalkylboronates with Zinc Metal and Subsequent Reaction with Copper(I) Cyanide 524
6.1.17.4.4 Variation 4: Reaction of α-Haloalkylboronates with Chromium(II) Chloride 524
6.1.17.5 Method 5: Deprotonation of Alkyl(dimesityl)boranes with Lithium Dialkylamides ... 525
6.1.17.6 Method 6: Deprotonation of Alkyl(dimesityl)boronates with Mesityllithium 525
6.1.17.7 Method 7: Generation of α-Metalloalkylboranes by Organometallic Addition to Alkenylboranes ... 526
6.1.17.8 Method 8: Generation of α-Metalloalkenylboranes 527

Applications of Product Subclass 17 in Organic Synthesis .. 528

6.1.17.9 Method 9: Alkylation of α-Metalloalkylboranes .. 528
6.1.17.10 Method 10: Synthesis of Alkenes .. 530
6.1.17.10.1 Variation 1: Synthesis of Allenes .. 532
6.1.17.10.2 Variation 2: Synthesis of Vinylboronates ... 532
6.1.17.11 Method 11: Preparation of Carbonyl Compounds 533
6.1.17.12 Method 12: Preparation of 1,2-Diols .. 534
6.1.17.13 Method 13: Preparation of 1,3-Diols .. 535
6.1.17.14 Method 14: Synthesis of Alcohols .. 537
6.1.17.15 Method 15: Preparation of Amino Alcohols ... 538

6.1.18 Product Subclass 18: Cyanoboranes

6.1.18.1 Method 1: Cyanoborane–Amine Complexes by Substitution of Hydrogen in Borane–Amine Complexes ... 542
6.1.18.2 Method 2: Dicyanoborane–Amine Complexes by Substitution of Hydrogen in Cyanoborane ... 543
6.1.18.3 Method 3: From Borohydrides and Mercury(II) Cyanide 544
6.1.18.4 Method 4: Cyanoboranes by Substitution of the Carboxamide Group in Carbamoylboranes ... 545
6.1.18.5 Method 5: Cyanoboranes by Substitution of Halides in Haloboranes 545
6.1.18.5.1 Variation 1: By Cyanogen Iodide .. 546
6.1.18.5.2 Variation 2: By Trimethylsilyl Cyanide .. 546
6.1.18.5.3 Variation 3: By Cyanide ... 546
6.1.18.5.4 Variation 4: By Isocyanoboranes .. 548
6.1.18.6 Method 6: Trialkylcyanoborates by Complexation of Trialkylboranes with Cyanide .. 549
6.1.18.8 Method 8: Monomeric Cyanoborane–Amine Complexes from Amines and Oligomeric Cyanoborane 552
6.1.18.9 Variation 1: By Reaction with Amine Hydrochlorides To Give Cyanoborane–Amine Complexes 553
6.1.18.10 Method 10: Exchange of the Donor Ligands of Cyanoborane–Amine, –Phosphine, –Phosphite, and –Dimethyl Sulfide Complexes . 556

Applications of Product Subclass 18 in Organic Synthesis 558

6.1.19.1 Method 1: From Cyanoboranes .. 564
6.1.19.1.3 Variation 3: Sulfur and Nitrogen Analogues of Carboxy- and Carbamoylboranes from Cyanoboranes 569
6.1.19.2 Method 2: Carbamoylboranes from Carboxyboranes 570
6.1.19.3 Variation 1: Acid-Catalyzed Esterification of Carboxyboranes ... 573
6.1.19.3.2 Variation 2: Esterification of Carboxyboranes in the Presence of Activating Agents ... 573
6.1.19.3.3 Variation 3: Esterification of Carboxyboranes under Basic Conditions ... 574
Applications of Product Subclass 19 in Organic Synthesis 580

6.1.19.9 Method 9: Alkylboranes by Reduction of Carboxyboranes 580
6.1.19.10 Method 10: Haloboranes from Carboxyboranes 581

6.1.20

Product Subclass 20: α-Haloalkylboronates
D. S. Matteson

6.1.20

Product Subclass 20: α-Haloalkylboronates 585
Synthesis of Product Subclass 20 ... 585

6.1.20.1 Method 1: Synthesis via (Dihalomethyl)borate Anions 585
6.1.20.1.1 Variation 1: Boronates with Preformed (Dichloromethyl)lithium 592
6.1.20.1.2 Variation 2: From (Dihalomethyl)lithiums Generated In Situ 593
6.1.20.1.3 Variation 3: From (Dihalomethyl)boronates and Organometallic Reagents 595
6.1.20.1.4 Variation 4: From Achiral Boronates with an Asymmetric Catalyst 596
6.1.20.2 Method 2: From Haloalkyllithiums and Trialkyl Borates 597
6.1.20.3 Method 3: α-Substitution Routes 599
6.1.20.3.1 Variation 1: Halogenation of Alkylboronates 599
6.1.20.3.2 Variation 2: From α-Metalloalkylboronates 600
6.1.20.3.3 Variation 3: Via Nucleophilic Displacements 601
6.1.20.4 Method 4: Addition of Halogen Compounds to Alkenylboranes 601
6.1.20.4.1 Variation 1: Addition of Hydrogen Halides 601
6.1.20.4.2 Variation 2: Radical Additions of Halocarbons 602
6.1.20.4.3 Variation 3: Halogenations .. 602
6.1.20.5 Methods 5: Additional Methods 602

6.1.21

Product Subclass 21: α-Alkoxyalkyl-, α-Sulfanylalkyl-, and α-Aminoalkylboronates
D. S. Matteson

6.1.21

Product Subclass 21: α-Alkoxyalkyl-, α-Sulfanylalkyl-, and α-Aminoalkylboronates 607
Synthesis of Product Subclass 21 ... 608

6.1.21.1 Method 1: Synthesis from α-Haloalkylboronates 608
6.1.21.1.1 Variation 1: Alkoxide Substitutions 609
6.1.21.1.2 Variation 2: Synthesis of α-Aminoalkyl- and α-Amidoalkylboronates 615
6.1.21.1.3 Variation 3: Azide Substitution ... 617
6.1.21.1.4 Variation 4: Thiolate Substitution .. 618
6.1.21.2 Method 2: Synthesis from α-Lithio Ethers and Sulfides 619
6.1.21.2.1 Variation 1: From (Diethoxyethyl)lithium and Boronates 619
6.1.21.2.2 Variation 2: From [(Phenylsulfanyl)methyl]lithium and Trimethyl Borate 620
6.1.21.2.3 Variation 3: Alkylation of Lithiated [α-(Phenylsulfanyl)alkyl]boronates 621
6.1.21.3 Methods 3: Additional Methods 621
6.1.22
Product Subclass 22: α-Phosphinoalkylboranes
D. S. Matteson

Synthesis of Product Subclass 22 .. 623

6.1.22.1 Method 1: Addition of Boranes to Alkylidene phosphoranes 623
6.1.22.1.1 Variation 1: Addition of Hydroboranes .. 623
6.1.22.1.2 Variation 2: Addition of Haloboranes .. 625
6.1.22.1.3 Variation 3: Addition of Triorganoboranes 628
6.1.22.2 Method 2: Reaction of α-Haloalkylboranes with Phosphines 629
6.1.22.3 Methods 3: Other Methods .. 631

6.1.23
Product Subclass 23: Alk-1-ynylboranes and Alkyn-1-ylboronates
D. E. Kaufmann and N. Öcal

Synthesis of Product Subclass 23 .. 635

6.1.23.1 Method 1: From Alk-1-ynylborane–Amine Adducts 637
6.1.23.2 Method 2: By Metal–Boron Exchange Reactions 638
6.1.23.2.1 Variation 1: From Alk-1-ynyllithium and Alkoxy(dialkyl)boranes or Diorganohaloboranes ... 639
6.1.23.2.2 Variation 2: From Alk-1-ynyllithium, Alk-1-ynylsodium, or Alk-1-ynylmagnesium Compounds and Dialkyl (Organob)oroboranes, Trialkyl Borates, Dialkoxyhaloboranes, and Dialkylamino- or Bis(dialkylamino)haloboranes ... 640
6.1.23.2.3 Variation 3: From Alk-1-ynyltin Compounds and Boron Halides 643
6.1.23.3 Methods 3: Additional Methods ... 643

Applications of Product Subclass 23 in Organic Synthesis 644

6.1.23.4 Method 4: Substitution of the Boryl Group .. 644
6.1.23.4.1 Variation 1: Synthesis of Propargylic Alcohols 644
6.1.23.4.2 Variation 2: Synthesis of Propargylic Amines, Allenes, and α-Alkynylazacycloalkanes ... 646
6.1.23.4.3 Variation 3: Synthesis of Homopropargylic Alcohols 648
6.1.23.4.4 Variation 4: Synthesis of α- and γ-Alkynyl Ketones 648
6.1.23.4.5 Variation 5: Synthesis of Alkynoylureas ... 651
6.1.23.5 Method 5: Addition Reactions to the Alkynyl Group 652
6.1.23.5.1 Variation 1: Hydrogenation and Hydrozirconation 652
6.1.23.5.2 Variation 2: Hydrostannation, Hydrophosphination, and Hydrothiolation 652
6.1.23.5.3 Variation 3: Cycloalkylation Reactions .. 654
6.1.23.6 Method 6: CycloadDITION Reactions .. 655
6.1.23.6.1 Variation 1: Diels–Alder Reactions ... 655
6.1.23.6.2 Variation 2: Catalyzed Cyclotrimerization Reactions 655
6.1.24 **Product Subclass 24: Borylketenes**
D. Gabel

6.1.24 **Product Subclass 24: Borylketenes** .. 659
Synthesis of Product Subclass 24 .. 659

6.1.24.1 Method 1: Boryl(silyl)ketenes from Ethoxyacetylenes, Halosilanes, and Bromoboranes .. 659
6.1.24.1.1 Variation 1: From Ethoxy(silyl)acetylenes and Bromoboranes 660
6.1.24.1.2 Variation 2: From Boryl(ethoxy)acetylenes and Halosilanes 661
6.1.24.2 Method 2: Modification of Boryl(silyl)ketenes by Replacement of the Substituents on Boron 662

Applications of Product Subclass 24 in Organic Synthesis 663

6.1.24.3 Method 3: Preparation of Substituted Carbonyl Compounds 663

6.1.25 **Product Subclass 25: Allenylboranes**
D. E. Kaufmann and C. Burmester

6.1.25 **Product Subclass 25: Allenylboranes** 667
Synthesis of Product Subclass 25 .. 668

6.1.25.1 Method 1: Borylation of Organometallic Compounds 668
6.1.25.2 Method 2: From Propargyl Chlorides or Acetates and Trialkylboranes ... 670
6.1.25.3 Method 3: Hydroboration of Enynes 670

Applications of Product Subclass 25 in Organic Synthesis 671

6.1.25.4 Method 4: Reaction with Carbonyl Compounds 671
6.1.25.5 Method 5: Reaction with Proti Acids 673
6.1.25.5.1 Variation 1: Reaction with Water 674
6.1.25.5.2 Variation 2: Deborylation by Acetic Acid 674

6.1.26 **Product Subclass 26: Aryl- and Hetarylboranes**
N. Miyaura

6.1.26 **Product Subclass 26: Aryl- and Hetarylboranes** 677
Synthesis of Product Subclass 26 .. 677

6.1.26.1 Method 1: Transmetalation Reactions 677
6.1.26.1.1 Variation 1: Via Magnesium and Lithium Reagents 677
6.1.26.1.2 Variation 2: Via Tin Reagents 684
6.1.26.2 Methods 2: Additional Methods 686

Applications of Product Subclass 26 in Organic Synthesis 688

6.1.26.3 Method 3: As Catalysts .. 688
6.1.26.3.1 Variation 1: For Aldol Reactions 688
6.1.26.3.2 Variation 2: For Diels–Alder Reactions 689
6.1.26.3.3 Variation 3: For the Rearrangement of Epoxides 690
6.1.26.3.4 Variation 4: For the Reduction of Carbonyl Compounds 690
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.26.3.5</td>
<td>Variation 5:</td>
<td>For Hydrostannation</td>
<td>691</td>
</tr>
<tr>
<td>6.1.26.5</td>
<td>Method 5:</td>
<td>Copper-Mediated C–C Bond Formation</td>
<td>693</td>
</tr>
<tr>
<td>6.1.27</td>
<td>Product Subclass 27: Dienylboranes</td>
<td>K. Albrecht and D. E. Kaufmann</td>
<td>697</td>
</tr>
<tr>
<td>6.1.27.1</td>
<td>Method 1:</td>
<td>Metal–Boron Exchange Reactions</td>
<td>697</td>
</tr>
<tr>
<td>6.1.27.1.1</td>
<td>Variation 1:</td>
<td>Borylation of Dienyllithium and Dienylsodium Compounds</td>
<td>697</td>
</tr>
<tr>
<td>6.1.27.1.2</td>
<td>Variation 2:</td>
<td>From Dienyl- and Trienylstannanes and Zirconium Metallacycles</td>
<td>698</td>
</tr>
<tr>
<td>6.1.27.2</td>
<td>Method 2:</td>
<td>Palladium-Catalyzed Coupling of Vinylboronates</td>
<td>700</td>
</tr>
<tr>
<td>6.1.27.2.1</td>
<td>Variation 1:</td>
<td>Heck and Suzuki–Miyaura Reactions</td>
<td>700</td>
</tr>
<tr>
<td>6.1.27.2.2</td>
<td>Variation 2:</td>
<td>Cross Coupling of Vinylzinc Compounds with (2-Halovinyl)boronates</td>
<td>700</td>
</tr>
<tr>
<td>6.1.27.3</td>
<td>Method 3:</td>
<td>Zirconium-Mediated Dimerization of Alkynylboronates</td>
<td>701</td>
</tr>
<tr>
<td>6.1.27.4</td>
<td>Method 4:</td>
<td>By Elimination Reactions of Functionalized Organoboronates</td>
<td>702</td>
</tr>
<tr>
<td>6.1.27.5</td>
<td>Method 5:</td>
<td>Addition Reactions to Enynes and Dienes</td>
<td>703</td>
</tr>
<tr>
<td>6.1.27.5.1</td>
<td>Variation 1:</td>
<td>Addition of Hydroboranes and Hydroboronates</td>
<td>703</td>
</tr>
<tr>
<td>6.1.27.5.2</td>
<td>Variation 2:</td>
<td>Addition of Haloboranes</td>
<td>704</td>
</tr>
<tr>
<td>6.1.27.5.3</td>
<td>Variation 3:</td>
<td>Addition of Organoboronanes</td>
<td>705</td>
</tr>
<tr>
<td>6.1.27.6</td>
<td>Method 6:</td>
<td>Migration of Alkenyl Groups from Boron to Carbon</td>
<td>706</td>
</tr>
<tr>
<td>6.1.27.6.1</td>
<td>Variation 1:</td>
<td>Migration of Alkenyl Groups from Boron to Carbon</td>
<td>707</td>
</tr>
<tr>
<td>6.1.27.7</td>
<td>Methods 7:</td>
<td>Additional Methods</td>
<td>708</td>
</tr>
<tr>
<td>6.1.27.8</td>
<td>Method 8:</td>
<td>Formation of Cyclohexenylboronates via the Diels–Alder Reaction</td>
<td>708</td>
</tr>
<tr>
<td>6.1.27.9</td>
<td>Method 9:</td>
<td>Oxidation to α,β-Unsaturated Ketones</td>
<td>709</td>
</tr>
<tr>
<td>6.1.27.10</td>
<td>Method 10:</td>
<td>1,4-Addition of Dienylboronates and Dienylboronic Acids to Unsaturated Carbonyl Compounds</td>
<td>710</td>
</tr>
<tr>
<td>6.1.27.11</td>
<td>Method 11:</td>
<td>Synthesis of Substituted Homoallylic Alcohols via 2,5-Dihydro-1H-boroles</td>
<td>711</td>
</tr>
<tr>
<td>6.1.27.12</td>
<td>Method 12:</td>
<td>Formation of Butatrienes by Elimination</td>
<td>712</td>
</tr>
<tr>
<td>6.1.27.13</td>
<td>Method 13:</td>
<td>Substitution of the Boron Group</td>
<td>713</td>
</tr>
<tr>
<td>6.1.27.13.1</td>
<td>Variation 1:</td>
<td>Synthesis of Substituted Dienes</td>
<td>713</td>
</tr>
<tr>
<td>6.1.27.13.2</td>
<td>Variation 2:</td>
<td>Stereoselective Synthesis of Iodinated Dienes</td>
<td>715</td>
</tr>
<tr>
<td>6.1.27.13.3</td>
<td>Variation 3:</td>
<td>Palladium-Catalyzed Synthesis of Polyene Carbon Frameworks (Suzuki–Miyaura Reaction)</td>
<td>715</td>
</tr>
</tbody>
</table>
6.1.28 Product Subclass 28: Vinylboranes
M. Vaultier and G. Alcaraz

6.1.28 Product Subclass 28: Vinylboranes 721
Synthesis of Product Subclass 28 .. 721
6.1.28.1 Method 1: Dehydrogenative Boration of Alkenes 721
6.1.28.2 Method 2: By Metal–Boron Exchange 722
6.1.28.2.1 Variation 1: From Vinysilanes 722
6.1.28.2.2 Variation 2: From Vinylstannanes 723
6.1.28.2.3 Variation 3: From Vinylated Transition Metals 726
6.1.28.3 Method 3: By Elimination Reactions 727
6.1.28.4 Method 4: Boron-Wittig Reaction of Di- or Tri(boryl)methides and Aldehydes .. 727
6.1.28.5 Method 5: By the Peterson Alkenation 729
6.1.28.6 Method 6: From Aldehydes and 1,1-Dimetalated Methylboronic Esters ... 730
6.1.28.7 Method 7: Hydroboration of Alkynes and Allenes 731
6.1.28.7.1 Variation 1: With Borane 731
6.1.28.7.2 Variation 2: With Monosubstituted Boranes 732
6.1.28.7.3 Variation 3: With Disubstituted Boranes 734
6.1.28.7.4 Variation 4: Catalyzed Hydroboration 745
6.1.28.8 Method 8: Hydrozirconation of Alkynylboranes 762
6.1.28.9 Method 9: Hydrogenation of Alkyn-1-ylboranes 762
6.1.28.10 Method 10: 1,1-Organoboration of Alkynes 763
6.1.28.11 Method 11: Allylboration of Alkynes 767
6.1.28.12 Method 12: Carbometalation of Alkynylboranes 769
6.1.28.13 Method 13: Haloboration of Alkynes 770
6.1.28.14 Method 14: Boracyclopropenation of Alkynes 771
6.1.28.15 Method 15: Catalyzed Dimetalation 772
6.1.28.15.1 Variation 1: Diboration of Alkynes, Allenes, and Methylidenecyclopropanes .. 772
6.1.28.15.2 Variation 2: Sulfanylboration of Alkynes 773
6.1.28.15.3 Variation 3: Silaboration of Alkynes, Allenes, and Alkylidenecyclopropanes .. 780
6.1.28.15.4 Variation 4: Stannaboration and Germaboration of Alkynes and Allenes ... 789
6.1.28.15.5 Variation 5: Boraruthenation of Alkynes 792
6.1.28.16 Method 16: By Rearrangement of Trialkyl(alkynyl)borates 793
6.1.28.17 Method 17: By Diels–Alder Reactions of Dienylboronates and Alkynylboranes .. 795
6.1.28.17.1 Variation 1: From Alkynylboronates and Dienes 795
6.1.28.17.2 Variation 2: From Dienylboronates and Dienophiles 796
6.1.28.18 Method 18: Radical Additions to Alkynylboranes 798
6.1.28.19 Method 19: Photolytic Rearrangement of Alkynylboronates 799
6.1.28.20 Method 20: By the Isomerization of Allylboranes 800
Applications of Product Subclass 28 in Organic Synthesis 801
6.1.28.21 Method 21: Formation of a Metal–Carbon Bond 801
6.1.28.22 Method 22: Formation of a Heteroatom–Carbon Bond 804
6.1.28.22.1 Variation 1: Halogen–Carbon Bonds 804
6.1.28.22.2 Variation 2: Chalcogen–Carbon Bonds 813
6.1.28.23 Variation 3: Nitrogen—Carbon and Oxygen—Carbon Bonds

6.1.28.24 Variation 4: Group 14 Metal—Carbon Bonds

6.1.28.23 Method 23: Formation of a C—C Bond

6.1.28.23.1 Variation 1: With α-Boron Substitution

6.1.28.23.2 Variation 2: Carbometalation Reactions

6.1.28.23.3 Variation 3: Radical Addition Reactions

6.1.28.23.4 Variation 4: Cyclopropanation Reactions

6.1.28.23.5 Variation 5: By Alkene Cross-Metathesis

6.1.28.23.6 Variation 6: Homologation Reactions

6.1.28.23.7 Variation 7: By Isomerization

6.1.28.23.8 Variation 8: Pericyclic Reactions

6.1.28.23.9 Variation 9: Cross-Coupling Reactions

6.1.28.23.10 Variation 10: 1,4-Addition Reactions

6.1.28.23.11 Variation 11: Multicomponent Reactions

6.1.28.23.12 Variation 12: Boron-Stabilized Alkenyl Carbanions

6.1.29 Product Subclass 29: α-Boryl Carbonyl Compounds

H. Abu Ali, V. M. Dembitsky, and M. Srebnik

6.1.29 Product Subclass 29: α-Boryl Carbonyl Compounds

6.1.29.1 Method 1: Synthesis of 5-Ethyl-2,3-dimethyl-2,3-dihydro-1,2,3-diaza-

6.1.29.2 Method 2: Synthesis of 5-(Dihydroxyboryl)uracil by

6.1.29.3 Method 3: Formation of α,N-Borylamides by Substitution

6.1.29.4 Method 4: Metal-Exchange Reactions of Diazo Compounds

6.1.29.5 Method 5: Reaction of Bis(methoxycarbonylmethyl)mercury with

6.1.29.6 Method 6: Hydroboration of Functionalized Alkenes

6.1.29.7 Method 7: Hydroboration of Methyl 2-(Acetamino)acrylate

6.1.29.8 Method 8: Hydroboration of Unsaturated Esters

6.1.29.9 Method 9: Hydroboration of Enehydrazones

6.1.29.10 Method 10: Aminoboration of Ketene

6.1.29.11 Method 11: Haloboration of Triple Bonds

6.1.29.12 Method 12: Ozonolysis of (Trifluoromethyl)(trifluorovinyl)boron

6.1.29.13 Method 13: Synthesis of Quinone Boronates

Applications of Product Subclass 29 in Organic Synthesis

6.1.29.14 Method 14: Synthesis of Novel Alkaloids

6.1.29.15 Method 15: α-Alkyl Ketones by the Reaction of Trialkylboranes with

α-Bromo Ketones
6.1.30 Product Subclass 30: β-Haloalkylboranes
H. Abu Ali, V. M. Dembitsky, and M. Srebnik

6.1.30 Product Subclass 30: β-Haloalkylboranes 867
Synthesis of Product Subclass 30 ... 867
6.1.30.1 Method 1: Hydroboration of Haloalkenes 867
6.1.30.1.1 Variation 1: (β-Fluoroalkyl)boranes from (Perfluoroalkyl)ethenes 867
6.1.30.1.2 Variation 2: Hydroboration of Vinylic Halides 868
6.1.30.1.3 Variation 3: Hydroboration of Allylic Chlorides 869
6.1.30.1.4 Variation 4: Hydroboration of Chloroalkynes 870
6.1.30.2 Method 2: Addition of Hydrogen Halides to Vinylboronates 871
6.1.30.3 Method 3: Haloboration of Unsaturated Compounds 872
6.1.30.3.1 Variation 1: Haloboration of Alkenes 872
6.1.30.3.2 Variation 2: Haloboration of Alkynes 872
6.1.30.4 Method 4: Cycloaddition to Alkenylboranes 874
6.1.30.4.1 Variation 1: Cyclopropanation of a Vinylboronate 874
6.1.30.4.2 Variation 2: Diels–Alder Reaction of Alkenylboranes and Alkenylboronates 874

Applications of Product Subclass 30 in Organic Synthesis 874
6.1.30.5 Method 5: Halogenation of Unsaturated Boranes 874
6.1.30.5.1 Variation 1: Addition of Halogens to Alkenylboranes and Alkenylboronates 875
6.1.30.5.2 Variation 2: Zweifel’s Stereocontrolled Alkene Synthesis 875
6.1.30.5.3 Variation 3: Zweifel’s Stereocontrolled Diene Synthesis 877

6.1.31 Product Subclass 31: β-Alkoxyalkyl-, β-Sulfanylalkyl-, and β-Aminoalkylboranes
H. Abu Ali, V. M. Dembitsky, and M. Srebnik

6.1.31 Product Subclass 31: β-Alkoxyalkyl-, β-Sulfanylalkyl-, and β-Aminoalkylboranes 881
Synthesis of Product Subclass 31 ... 881
6.1.31.1 β-Alkoxyalkylboranes ... 881
6.1.31.1.1 Method 1: Hydroboration of Enol Ethers 881
6.1.31.1.2 Method 2: Hydroboration of Allylic Ethers 883
6.1.31.1.3 Method 3: Catalytic Borylation .. 883
6.1.31.1.4 Method 4: Carbon Chain Extension 884
6.1.31.2 β-Sulfanylalkylboranes ... 885
6.1.31.2.1 Method 1: Hydroboration of Alkenyl Sulfides 885
6.1.31.2.2 Method 2: Addition of Thiols to Alkenylboranes 885
6.1.31.2.3 Method 3: Thioboration of Ethoxyacetylene 886
6.1.31.3 β-Aminoalkylboranes ... 887
6.1.31.3.1 Method 1: Hydroboration of Enamines and Allylic Amines 887
6.1.31.3.2 Method 2: Carbon Chain Extension 889
Product Subclass 32: β-Silylalkyl- and β-Stannylalkylboranes

P. J. Murphy

Synthesis of Product Subclass 32

Method 1: From Methoxyborinanes and Methoxyborolanes

Method 2: Hydroboration of Alkynes

Method 3: Hydroboration of Vinysilanes

Variation 1: Using Borane Complexes

Variation 2: Using Borane–Dimethyl Sulfide Complex

Variation 3: Using Triisobutylborane

Variation 4: Using Hindered Boranes

Variation 5: Using Bis(pentafluorophenyl)borane

Variation 6: Of Divinylsilanes

Variation 7: Using (−)-Diisopinocampheylborane

Method 4: Heterocycles by Hydroboration

Variation 1: Using tert-Butylborane–Trimethylamine Complex

Variation 2: Using Borane–Dimethyl Sulfide Complex

Variation 3: Using 1,1-Dimethyl-1,4-silaborinane

Method 5: Silylation of Vinylboranes

Method 6: From a Diborirane

Method 7: From Tetrahaldoboranes(4) and Vinysilanes

Method 8: From Tetrachlorodiboranes(4) and Vinylstannanes

Method 9: Addition to Z-2-Boryl-1-stannylalkenes with Rearrangement

Method 10: Alkyl and Aryl Migration

Applications of Product Subclass 32 in Organic Synthesis

Method 11: Synthesis of Methoxyborinanes

Method 12: Synthesis of Methoxyboranes and Methylboronates via Butylsulfanylboranes

Method 13: Synthesis of Methoxyboranes by Boron Exchange

Product Subclass 33: Propargylboranes

D. E. Kaufmann and C. Burmester

Synthesis of Product Subclass 33

Method 1: By Transmetalation Reactions

Variation 1: Borylation of Lithium or Magnesium Compounds

Variation 2: Borylation of Stannanes

Method 2: By Rearrangement of “Ate” Complexes

Variation 1: By One-Carbon Homologation of Boronates

Variation 2: From α-Haloalkylboronates

Applications of Product Subclass 33 in Organic Synthesis

Method 3: Reaction with Carbonyl Compounds

Method 4: Oxidation
6.1.34 Product Subclass 34: Benzylboranes and Benzylboronates
M. Zaidlewicz and J. Meller

6.1.34 Product Subclass 34: Benzylboranes and Benzylboronates
Synthesis of Product Subclass 34
.. 921

6.1.34.1 Method 1: Transmetalation
.. 921
6.1.34.1.1 Variation 1: From Haloboranes and Benzylic Organometallics
921
6.1.34.1.2 Variation 2: From Alkoxylboranes or Alkylboronates and
Benzylic Organometallics
.. 923
6.1.34.1.3 Variation 3: From Trialkyl- or Triarylboran
and Benzylic Organometallics
.. 924
6.1.34.2 Method 2: Redistribution
.. 924
6.1.34.3 Method 3: Hydroboration
.. 925
6.1.34.3.1 Variation 1: Hydroboration with Boranes and Hydroborates
.. 925
6.1.34.3.2 Variation 2: Catalytic Hydroboration
.. 928
6.1.34.4 Method 4: Homologation
.. 929
6.1.34.5 Method 5: From Benzylic Halides by a Cross-Coupling Reaction
.. 931
6.1.34.6 Method 6: Benzylic C—H Borination
.. 932
6.1.34.7 Method 7: From Borane and Ylides
.. 933
6.1.34.8 Method 8: From Benzylic Hydroborates
.. 933

Applications of Product Subclass 34 in Organic Synthesis
.. 934

6.1.34.9 Method 9: Protonolysis
.. 934
6.1.34.10 Method 10: Oxidation
.. 936
6.1.34.11 Method 11: Amination
.. 937
6.1.34.12 Method 12: Haloboration
.. 937
6.1.34.13 Method 13: Carbaboration
.. 938
6.1.34.14 Method 14: Dichloromethyl Methyl Ether Reaction
.. 938
6.1.34.15 Method 15: Cross-Coupling Reaction
.. 939
6.1.34.16 Method 16: Formation of Benzylborates
.. 940
6.1.34.16.1 Variation 1: Benzylborohydr
dates .. 940
6.1.34.16.2 Variation 2: Alkylarylborylborates and Benzylcyanoborates
.. 940
6.1.34.17 Method 17: Transmetalation
.. 941

6.1.35 Product Subclass 35: Allylboran
Y. Bubnov

6.1.35 Product Subclass 35: Allylboran
Synthesis of Product Subclass 35
.. 949

6.1.35.1 Method 1: Transmetalation
.. 949
6.1.35.1.1 Variation 1: From Allylic Tin Compounds and Boron Halides
.. 949
6.1.35.1.2 Variation 2: From Aluminum Sesquibromides
.. 955
6.1.35.1.3 Variation 3: From Allylmagnesium Halides
.. 956
6.1.35.1.4 Variation 4: From Alkenes via Lithium and Potassium Derivatives
.. 965
6.1.35.1.5 Variation 5: From Lithi
ation of Penta-1,3- and Penta-1,4-di
eines, Polynes,
and Aromatic Compounds
.. 972
6.1.35.1.6 Variation 6: From Lithiated Allylic Halides, Ethers, Sul
ides, and Selenides
.. 980
6.1.35.1.7 Variation 7: From Allylsilanes ... 989
6.1.35.2 Method 2: By Hydroboration ... 990
6.1.35.2.1 Variation 1: Via Hydroboration of Propargyl Compounds 990
6.1.35.2.2 Variation 2: Hydroboration of Allenes 994
6.1.35.2.3 Variation 3: Hydroboration of 1,3-Dienes 998
6.1.35.2.4 Variation 4: Hydroboration–Cyclization of 1-En-3-ynes 1000
6.1.35.3 Method 3: Haloboration of Allenes 1001
6.1.35.4 Method 4: Diboration, Silaboration, and Stannaboration of 1,3-Dienes and Allenes ... 1002
6.1.35.4.1 Variation 1: Diboration of 1,3-Dienes and Allenes 1002
6.1.35.4.2 Variation 2: 1,4-Silaboration of 1,3-Dienes 1006
6.1.35.4.3 Variation 3: 1,4-Stannaboration of 1,3-Dienes and Allenes 1007
6.1.35.5 Method 5: From 1,3-Dienylboranes via Diels–Alder Reaction 1008
6.1.35.6 Method 6: Cross-Coupling Reactions of Diborane Derivatives with Allylic Acetates ... 1011
6.1.35.7 Method 7: From Trialkyl(alkynyl)borates via a 1,2-Anionotropic Rearrangement ... 1012
6.1.35.8 Method 8: From Trialkylboranes and Alkynyl Derivatives of Tin and Silicon ... 1014
6.1.35.9 Method 9: Homologation of Vinlyc Boranes 1016
6.1.35.10 Method 10: Vinylation of Haloalkylboron Derivatives 1019
6.1.35.11 Method 11: From Triallylboranes 1025
6.1.35.11.1 Variation 1: Redistribution Reactions with Boric and Thioboric Esters 1025
6.1.35.11.2 Variation 2: Reactions with Protolytic Reagents 1026
6.1.35.11.3 Variation 3: Reactions with Carbonyl Compounds, Acids, and Esters 1030
6.1.35.11.4 Variation 4: Reactions with Nitriles and Imines 1031
6.1.35.11.5 Variation 5: Reaction with Cyclopropenes 1033
6.1.35.12 Method 12: From Triallylic Organoboranes and Alkynes or Allenes 1035
6.1.35.12.1 Variation 1: Diallyl(penta-1,4-dienyl)boranes 1036
6.1.35.12.2 Variation 2: 1-Allylbordin Derivatives 1039
6.1.35.12.3 Variation 3: 3-Allyl-3-borabicyclo[3.3.1]non-6-enes 1040
6.1.35.12.4 Variation 4: Reactions of Allylic Boranes with Allenes 1041
6.1.35.13 Method 13: From Aminoboranes via [2 + 4]-Cycloaddition and Ene Reactions ... 1042
6.1.35.14 Method 14: Via Ring Closure and Cross-Metathesis 1043
6.1.35.15 Methods 15: Miscellaneous Methods 1046

Applications of Product Subclass 35 in Organic Synthesis 1054
6.1.35.16 Method 16: Complexation ... 1054
6.1.35.17 Method 17: Allylboration of Organic Compounds Containing a Multiple Bond ... 1054
6.1.35.18 Method 18: Reductive Mono- and trans-α,β-Diallylation of Aromatic Nitrogen Heterocycles with Allylic Boranes 1055
6.1.35.19 Methods 19: Miscellaneous Applications 1056
6.1.36 Product Subclass 36: β-Boryl Carbonyl Compounds
D. S. Matteson

6.1.36 Synthesis of Product Subclass 36 1073
6.1.36.1 Method 1: From α-Haloalkylboronates 1073
6.1.36.1.1 Variation 1: From Ester Enolates 1073
6.1.36.1.2 Variation 2: From Oxazolidinone Enolates 1076
6.1.36.1.3 Variation 3: From α-Cyano Carbanions 1077
6.1.36.2 Method 2: Oxidation of γ-Hydroxy Boronates 1079
6.1.36.3 Methods 3: Additional Methods 1080

6.1.37 Product Subclass 37: γ-Haloalkylboranes
H. Abu Ali, V. M. Dembitsky, and M. Srebnik

6.1.37 Synthesis of Product Subclass 37 1083
6.1.37.1 Method 1: Formation of B-(γ-Fluoroalkyl)borazine Derivatives by Substitution 1083
6.1.37.2 Method 2: Hydroboration of Allylic Halides 1085
6.1.37.3 Method 3: Synthesis of 1-Boraadamantane Derivatives via Hydroboration 1087
6.1.37.4 Method 4: Synthesis of Chloronorbornane Derivatives by Hydroboration or Chloroboration 1088
6.1.37.5 Method 5: Diboration of Haloalkenes 1090
6.1.37.6 Method 6: Synthesis of Allyl(halo)borabicyclononanes by Cycloaddition 1090
6.1.37.7 Method 7: Diels–Alder Reactions of Allylboronates 1091
6.1.37.8 Method 8: Diels–Alder Reactions of Vinylboranes 1091
6.1.37.9 Method 9: α-Halo-γ,γ,γ-trichloropropylborane Derivatives by Additions to Vinylboranes and Vinylboronates 1092

Applications of Product Subclass 37 in Organic Synthesis 1093
6.1.37.10 Method 10: Cyclopropane Ring Formation via Hydroboration of Allylic Halides 1093

6.1.38 Product Subclass 38: Trialkylboranes
M. Zaidlewicz and M. Krzeminski

6.1.38 Synthesis of Product Subclass 38 1097
6.1.38.1 Method 1: Hydroboration of Alkenes 1098
6.1.38.1.1 Variation 1: With Borane Complexes 1104
6.1.38.1.2 Variation 2: With Monoalkylboranes 1106
6.1.38.1.3 Variation 3: With Dialkylboranes 1109
6.1.38.2 Method 2: Hydroboration of Dienes 1116
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.38.2.1</td>
<td>Variation 1: With Borane Complexes</td>
<td>1116</td>
</tr>
<tr>
<td>6.1.38.2.2</td>
<td>Variation 2: With Monoalkylboranes</td>
<td>1118</td>
</tr>
<tr>
<td>6.1.38.3</td>
<td>Method 3: Hydroboration of Functional Derivatives of Alkenes</td>
<td>1120</td>
</tr>
<tr>
<td>6.1.38.4</td>
<td>Method 4: Hydroboration of Alkynes</td>
<td>1123</td>
</tr>
<tr>
<td>6.1.38.5</td>
<td>Method 5: Transmetalation</td>
<td>1123</td>
</tr>
<tr>
<td>6.1.38.5.1</td>
<td>Variation 1: With Boron Halides and Tetrahaloborates</td>
<td>1125</td>
</tr>
<tr>
<td>6.1.38.5.2</td>
<td>Variation 2: With Boron Alkoxides</td>
<td>1126</td>
</tr>
<tr>
<td>6.1.38.6</td>
<td>Method 6: Isomerization</td>
<td>1128</td>
</tr>
<tr>
<td>6.1.38.7</td>
<td>Method 7: Displacement</td>
<td>1130</td>
</tr>
<tr>
<td>6.1.38.8</td>
<td>Method 8: Redistribution</td>
<td>1131</td>
</tr>
<tr>
<td>6.1.38.9</td>
<td>Method 9: Pyrolysis</td>
<td>1132</td>
</tr>
<tr>
<td>6.1.38.10</td>
<td>Method 10: Hydrogenation</td>
<td>1133</td>
</tr>
<tr>
<td>6.1.38.11</td>
<td>Method 11: Organoborate Rearrangements</td>
<td>1134</td>
</tr>
<tr>
<td>6.1.38.11.1</td>
<td>Variation 1: Homologation by Carbonylation</td>
<td>1135</td>
</tr>
<tr>
<td>6.1.38.11.2</td>
<td>Variation 2: Homologation by Substituted Methyl Carbanions</td>
<td>1136</td>
</tr>
<tr>
<td>6.1.38.11.3</td>
<td>Variation 3: Cyclization of α,α-Bis(dialkylboryl)-α-haloalkanes</td>
<td>1138</td>
</tr>
<tr>
<td>6.1.38.12</td>
<td>Method 12: The Diels–Alder Reactions of Vinylic Dialkylboranes</td>
<td>1139</td>
</tr>
<tr>
<td></td>
<td>Applications of Product Subclass 38</td>
<td>1140</td>
</tr>
<tr>
<td>6.1.38.13</td>
<td>Method 13: Protonolysis</td>
<td>1141</td>
</tr>
<tr>
<td>6.1.38.14</td>
<td>Method 14: Oxidation</td>
<td>1142</td>
</tr>
<tr>
<td>6.1.38.14.1</td>
<td>Variation 1: Oxidation to Alcohols</td>
<td>1142</td>
</tr>
<tr>
<td>6.1.38.14.2</td>
<td>Variation 2: Oxidation to Hydroperoxides</td>
<td>1144</td>
</tr>
<tr>
<td>6.1.38.14.3</td>
<td>Variation 3: Oxidation to Aldehydes and Ketones</td>
<td>1144</td>
</tr>
<tr>
<td>6.1.38.14.4</td>
<td>Variation 4: Oxidation to Acids</td>
<td>1145</td>
</tr>
<tr>
<td>6.1.38.15</td>
<td>Method 15: Amination</td>
<td>1146</td>
</tr>
<tr>
<td>6.1.38.15.1</td>
<td>Variation 1: Primary Amines</td>
<td>1146</td>
</tr>
<tr>
<td>6.1.38.15.2</td>
<td>Variation 2: Secondary and Tertiary Amines</td>
<td>1148</td>
</tr>
<tr>
<td>6.1.38.16</td>
<td>Method 16: Halogenolysis</td>
<td>1150</td>
</tr>
<tr>
<td>6.1.38.16.1</td>
<td>Variation 1: Chlorinolysis</td>
<td>1150</td>
</tr>
<tr>
<td>6.1.38.16.2</td>
<td>Variation 2: Brominolysis</td>
<td>1152</td>
</tr>
<tr>
<td>6.1.38.16.3</td>
<td>Variation 3: Iodinolysis</td>
<td>1154</td>
</tr>
<tr>
<td>6.1.38.17</td>
<td>Method 17: Sulfidation</td>
<td>1155</td>
</tr>
<tr>
<td>6.1.38.18</td>
<td>Method 18: Transmetalation</td>
<td>1156</td>
</tr>
<tr>
<td>6.1.38.18.1</td>
<td>Variation 1: Formation of Alkyl Selenides and Alkyl Tellurides</td>
<td>1156</td>
</tr>
<tr>
<td>6.1.38.18.2</td>
<td>Variation 2: Formation of Alkylmercurials</td>
<td>1157</td>
</tr>
<tr>
<td>6.1.38.18.3</td>
<td>Variation 3: Formation of Dialkylzincs from Trialkylboranes</td>
<td>1158</td>
</tr>
<tr>
<td>6.1.38.19</td>
<td>Method 19: α-Bromination–Transfer</td>
<td>1160</td>
</tr>
<tr>
<td>6.1.38.20</td>
<td>Method 20: Single-Carbon Insertion Reactions</td>
<td>1162</td>
</tr>
<tr>
<td>6.1.38.20.1</td>
<td>Variation 1: Carbyonlation of Trialkylboranes</td>
<td>1163</td>
</tr>
<tr>
<td>6.1.38.20.2</td>
<td>Variation 2: Cyanidation</td>
<td>1165</td>
</tr>
<tr>
<td>6.1.38.20.3</td>
<td>Variation 3: The α,α-Dichloromethyl Methyl Ether Reaction and</td>
<td>1166</td>
</tr>
<tr>
<td></td>
<td>Related Reactions</td>
<td></td>
</tr>
<tr>
<td>6.1.38.21</td>
<td>Method 21: α-Alkylation of Carbonyl Compounds, Nitriles,</td>
<td>1166</td>
</tr>
<tr>
<td></td>
<td>and α-Heterosubstituted Carbanions</td>
<td></td>
</tr>
<tr>
<td>6.1.38.21.1</td>
<td>Variation 1: Alkylation of α-Halogenated and α,α-Dihalogenated</td>
<td>1167</td>
</tr>
<tr>
<td></td>
<td>Carbonyl Compounds</td>
<td></td>
</tr>
</tbody>
</table>

Science of Synthesis Original Edition Volume 6
© Georg Thieme Verlag KG
6.1.38.21.2 Variation 2: Alkylation of α-Diazocarbonyl Compounds, and Other Diazo Compounds ... 1169
6.1.38.21.3 Variation 3: Alkylation of α-Halogenated and α,α-Dihalogenated Nitriles .. 1170
6.1.38.21.4 Variation 4: Alkylation of Other α-Heterosubstituted Carbanions ... 1171
6.1.38.22 Method 22: Reaction of Organoborates with Electrophiles ... 1173
6.1.38.22.1 Variation 1: Alkenyltrialkylborate Rearrangements 1175
6.1.38.22.2 Variation 2: Trialkyl(alkynyl)borate Rearrangements .. 1176
6.1.38.23 Method 23: Small Ring Formation .. 1182
6.1.38.24 Method 24: Coupling of Alkyl Groups Attached to Boron .. 1183
6.1.38.25 Method 25: The Cross-Coupling Reaction .. 1184
6.1.38.25.1 Variation 1: Cross Coupling of Trialkylboranes .. 1185
6.1.38.25.2 Variation 2: Carbonylative Cross Coupling of Trialkylboranes and Acyl–Alkyl Coupling 1187
6.1.38.26 Method 26: Free-Radical Reactions .. 1188
6.1.38.26.1 Variation 1: Conjugate Addition Reactions .. 1188
6.1.38.26.2 Variation 2: Alkylation of 1,4-Quinones .. 1190
6.1.38.26.3 Variation 3: Trialkylborane-Induced Reactions .. 1191
6.1.38.26.4 Variation 4: Other Free-Radical Reactions .. 1192
6.1.38.27 Method 27: 1,2-Addition to Carbonyl Compounds .. 1193
6.1.38.27.1 Variation 1: Reduction of Carbonyl Compounds .. 1193
6.1.38.27.2 Variation 2: The Boron-Wittig Reaction .. 1195
6.1.38.27.3 Variation 3: Alkylation of Aryl Aldehyde Tosylhydrazones .. 1197
6.1.38.28 Method 28: Formation of Di- and Trialkylborohydrides .. 1198
6.1.38.28.1 Variation 1: Dialkylborohydrides .. 1198
6.1.38.28.2 Variation 2: Trialkylborohydrides .. 1199

6.1.39 Product Subclass 39: Tetraaryl- and Tetraalkylborates and Related Organometallic Compounds
D. E. Kaufmann and M. Köster

6.1.39 Synthesis of Product Subclass 39 .. 1217
6.1.39.1 Method 1: Tetraarylborates and Mixed Alkarylborates from Aryl-lithiums, Grignard Reagents, or Related Compounds and Boranes .. 1217
6.1.39.2 Method 2: Trialkylvinylborates from Organolithium Compounds and Boranes .. 1219
6.1.39.2.1 Variation 1: Vinylation of Trialkylboranes .. 1219
6.1.39.2.2 Variation 2: Alkylation of Vinylboranes .. 1220
6.1.39.3 Method 3: Synthesis of Ethynyltrioorganoborates from Metalated Alkynes and Boranes .. 1220
6.1.39.3.1 Variation 1: From Alkali Acetylides or Acetylenic Grignard Compounds and Boranes .. 1220
6.1.39.3.2 Variation 2: From Hydrotrioorganoborates and Alkynes .. 1221
6.1.39.4 Method 4: Synthesis of Tetraorganoborates from Alkylolithiums and Organoboranes .. 1221

Table of Contents
XLI
6.1.39.5 Method 5: Formation of C—C Bonds 1222
6.1.39.5.1 Variation 1: Arylations and Alkylations of Halides, Pseudohalides, and Heterocycles .. 1222
6.1.39.5.2 Variation 2: Synthesis of Terminal Allenes 1224
6.1.39.5.3 Variation 3: Arylations and Alkylations of Acid Halides 1225
6.1.39.5.4 Variation 4: Synthesis of Biaryls 1225
6.1.39.5.5 Variation 5: Synthesis of Alkyl-Substituted Aromatic Heterocycles 1226
6.1.39.5.6 Variation 6: Addition/Rearrangement Reactions of Trialkyl(ethynyl)borates .. 1228

6.1.39.6 Methods 6: Other Applications 1230

6.1.40 Product Subclass 40: Carboranes and Metallacarboranes
F. Teixidor and C. Viñas

6.1.40 Synthesis of Product Subclass 40 1242
6.1.40.1 Method 1: Synthesis of Monocarboranes 1242
6.1.40.2 Method 2: Synthesis of Dicarboranes 1246
6.1.40.3 Method 3: Synthesis of Anionic closo-Metallacarboranes 1247
6.1.40.4 Method 4: Synthesis of Neutral closo-Metallacarboranes with Phosphine Ligands .. 1252
6.1.40.5 Method 5: Synthesis of Forced exo-nido-Metallacarboranes with Sulfanyl- and Phosphine Ligands .. 1254
6.1.40.6 Method 6: Synthesis of Neutral closo-Metallacarboranes with Allyl Ligands .. 1258
6.1.40.7 Method 7: Synthesis of Neutral Charge-Compensated Sulfonium closo-Metallacarboranes .. 1259

6.1.40.8 Method 8: Stabilization of Carbenium Ions 1260
6.1.40.8.1 Variation 1: Synthesis and Stabilization of the tert-Butyl Cation .. 1261
6.1.40.9 Method 9: Icosahedral Borane Anions for Cation Precipitation .. 1262
6.1.40.9.1 Variation 1: Precipitation of Speciality Cations 1262
6.1.40.9.2 Variation 2: Anionic Carborane Clusters as Supramolecular Chemistry Models for Convex Surfaces 1263
6.1.40.10 Method 10: Hydrogenation of Alkenes 1263
6.1.40.10.1 Variation 1: Terminal Alkene Hydrogenation Using closo- and exo-nido-Rhodacarborane Clusters 1263
6.1.40.10.2 Variation 2: Terminal Alkenes Hydrogenation Using Forced exo-nido-Monosulfanyl- and exo-nido-Monophosphinorhodacarbo- ranes .. 1264
6.1.40.10.3 Variation 3: Internal Alkenes by Hydrogenation Using closo- and exo-nido-MonosulfanylRhodacarboranes 1266
6.1.40.11 Method 11: Kharasch Addition to Alkenes 1267
6.1.41 **Product Subclass 41: Boron-Containing Polymers**
D. Gabel

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.41</td>
<td>Product Subclass 41: Boron-Containing Polymers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 41</td>
<td>1277</td>
</tr>
<tr>
<td>6.1.41.1</td>
<td>Method 1: Polymerization by a Dehydration Reaction between Polyols</td>
<td>1277</td>
</tr>
<tr>
<td></td>
<td>and Boronic Acids</td>
<td></td>
</tr>
<tr>
<td>6.1.41.2</td>
<td>Method 2: Polymerization by Hydroboration</td>
<td>1278</td>
</tr>
<tr>
<td>6.1.41.2.1</td>
<td>Variation 1: Of Dienes</td>
<td>1278</td>
</tr>
<tr>
<td>6.1.41.2.2</td>
<td>Variation 2: Of Diynes</td>
<td>1278</td>
</tr>
<tr>
<td>6.1.41.2.3</td>
<td>Variation 3: Of Dinitriles</td>
<td>1279</td>
</tr>
<tr>
<td>6.1.41.2.4</td>
<td>Variation 4: Of Alkenes by Bromoborane</td>
<td>1281</td>
</tr>
<tr>
<td>6.1.41.3</td>
<td>Method 3: Polymerization by Allylboration of Dinitriles</td>
<td>1281</td>
</tr>
<tr>
<td>6.1.41.4</td>
<td>Method 4: Polymerization by Chloroboration of Alkynes</td>
<td>1282</td>
</tr>
<tr>
<td>6.1.41.5</td>
<td>Method 5: Polymerization by Alkoxyboration of Diisocyanates</td>
<td>1282</td>
</tr>
<tr>
<td>6.1.41.6</td>
<td>Method 6: Ziegler–Natta Polymerization of Boron-Containing Alkenes</td>
<td>1283</td>
</tr>
<tr>
<td>6.1.41.7</td>
<td>Method 7: Polymerization by Complex Formation between Boranes and</td>
<td>1283</td>
</tr>
<tr>
<td></td>
<td>Amines</td>
<td></td>
</tr>
<tr>
<td>6.1.41.8</td>
<td>Method 8: Modification of Boron-Containing Polymers</td>
<td>1284</td>
</tr>
<tr>
<td></td>
<td>Applications of Product Subclass 41 in Organic Synthesis</td>
<td>1285</td>
</tr>
<tr>
<td>6.1.41.9</td>
<td>Method 9: Modification of Non-Boron-Containing Polymers by Hydroboration</td>
<td>1285</td>
</tr>
<tr>
<td>6.1.41.10</td>
<td>Method 10: Polymers by Electropolymerization of Boron-Containing</td>
<td>1285</td>
</tr>
<tr>
<td></td>
<td>Monomers</td>
<td></td>
</tr>
<tr>
<td>6.1.41.11</td>
<td>Method 11: Removal of Boron from Polymers</td>
<td>1286</td>
</tr>
</tbody>
</table>

Keyword Index
1289

Author Index
1351

Abbreviations
1403
Volume 7: Compounds of Groups 13 and 2 (Al, Ga, In, Tl, Be \cdots Ba)

Introduction
H. Yamamoto .. 1

7.1 Product Class 1: Aluminum Compounds

7.1.1 Product Subclass 1: Zerovalent Aluminum and Its Alloys
S. Saito ... 5

7.1.2 Product Subclass 2: Aluminum Hydrides
S. Saito ... 15

7.1.3 Product Subclass 3: Aluminum Halides
S. Saito ... 95

7.1.4 Product Subclass 4: Aluminum Alkoxides and Phenoxides
T. Ooi and K. Maruoka ... 131

7.1.5 Product Subclass 5: Aluminum Thiolates
T. Ooi and K. Maruoka ... 197

7.1.6 Product Subclass 6: Aluminum Selenolates
T. Ooi and K. Maruoka ... 215

7.1.7 Product Subclass 7: Aluminum Amides
T. Ooi and K. Maruoka ... 225

7.1.8 Product Subclass 8: Aluminum Oxide (Alumina)
S. Tsuboi ... 247

7.1.9 Product Subclass 9: Triorganooaluminum Compounds Involving Aluminum Alkyls, Alkenyls, Aryls, and Cyanides
M. Oishi ... 261

7.2 Product Class 2: Gallium Compounds
M. Yamaguchi ... 387

7.3 Product Class 3: Indium Compounds
T.-P. Loh ... 413

7.4 Product Class 4: Thallium Compounds
I. E. Markó .. 453

7.5 Product Class 5: Beryllium Compounds
H. Yasuda ... 487

7.6 Product Class 6: Magnesium Compounds
<p>| 7.6.1 | Product Subclass 1: Magnesium Metal | J.-H. Zhang, C. C. K. Keh, and C.-J. Li | 503 |
| 7.6.2 | Product Subclass 2: Magnesium Hydride | J.-H. Zhang, C. C. K. Keh, and C.-J. Li | 513 |
| 7.6.3 | Product Subclass 3: Magnesium–Metal Reagents | J.-H. Zhang, C. C. K. Keh, and C.-J. Li | 517 |
| 7.6.4 | Product Subclass 4: Alkynyl Grignard Reagents | A. Yanagisawa | 523 |
| 7.6.5 | Product Subclass 5: Aryl Grignard Reagents | A. Yanagisawa | 527 |
| 7.6.6 | Product Subclass 6: Alkenyl Grignard Reagents | A. Yanagisawa | 533 |
| 7.6.7 | Product Subclass 7: Propargylic Grignard Reagents | A. Yanagisawa | 541 |
| 7.6.8 | Product Subclass 8: Benzylic Grignard Reagents | A. Yanagisawa | 549 |
| 7.6.9 | Product Subclass 9: Allylic Grignard Reagents | A. Yanagisawa | 555 |
| 7.6.10 | Product Subclass 10: Alkyl Grignard Reagents | K. Oshima | 573 |
| 7.6.11 | Product Subclass 11: Grignard Reagents with Transition Metals | T. Takahashi and Y. Liu | 597 |
| 7.6.12 | Product Subclass 12: Magnesium Halides | M. Shimizu | 629 |
| 7.6.13 | Product Subclass 13: Magnesium Oxide, Alkoxides, and Carboxylates | M. Shimizu | 645 |
| 7.6.14 | Product Subclass 14: Magnesium Amides | M. Shimizu | 661 |
| 7.7 | Product Class 7: Calcium Compounds | K. Mochida | 677 |
| 7.8 | Product Class 8: Strontium Compounds | N. Miyoshi | 685 |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.9</td>
<td>Product Class 9: Barium Compounds</td>
<td>695</td>
</tr>
<tr>
<td></td>
<td>A. Yanagisawa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Keyword Index</td>
<td>735</td>
</tr>
<tr>
<td></td>
<td>Author Index</td>
<td>765</td>
</tr>
<tr>
<td></td>
<td>Abbreviations</td>
<td>797</td>
</tr>
</tbody>
</table>
Table of Contents

Introduction
H. Yamamoto

Introduction .. 1

7.1 Product Class 1: Aluminum Compounds

7.1.1 Product Subclass 1: Zerovalent Aluminum and Its Alloys
S. Saito

Product Subclass 1: Zerovalent Aluminum and Its Alloys 5
Synthesis of Product Subclass 1 ... 5

7.1.1.1 Method 1: Aluminum Treated with Mercury(II) Chloride 5
7.1.1.2 Method 2: Aluminum Treated with Potassium Hydroxide in Methanol 7
7.1.1.3 Method 3: Aluminum as Reductant for Titanium(IV) Chloride 7
7.1.1.4 Method 4: Aluminum–Lead System 8
7.1.1.5 Method 5: Aluminum–Vanadium–Chlorosilane Combination 9
7.1.1.6 Method 6: Aluminum–Nickel(II) Chloride System 10
7.1.1.7 Method 7: Aluminum Activated by an Aqueous Fluoride Salt 10
7.1.1.8 Method 8: Aluminum–Cobalt Alloy 11
7.1.1.9 Method 9: Aluminum–Nickel Alloy 12
7.1.1.10 Method 10: Activated Aluminum by Reduction of Aluminum Halides 12
7.1.1.11 Method 11: Aluminum–Tin(II) Chloride System 13

7.1.2 Product Subclass 2: Aluminum Hydrides
S. Saito

Product Subclass 2: Aluminum Hydrides 15
Synthesis of Product Subclass 2 .. 16

7.1.2.1 Method 1: Lithium Aluminum Hydride from Lithium Hydride and Aluminum Trichloride .. 16
7.1.2.2 Method 2: Magnesium and Calcium Aluminum Hydride from Lithium or Sodium Aluminum Hydride 17
7.1.2.3 Method 3: Lithium Aluminum Hydride with Copper Salts 18
7.1.2.3.1 Variation 1: Lithium Aluminum Hydride with Copper(II) Chloride for Reductive Fission of Sulfides 18
7.1.2.3.2 Variation 2: Lithium Aluminum Hydride with Copper(I) Iodide for Conjugate Reduction of \(\alpha,\beta \)-Unsaturated Carbonyl Compounds 18
7.1.2.3.3 Variation 3: Lithium Aluminum Hydride with Copper(I) Cyanide for 1,4- Reduction of an Oxaspirene 19
7.1.2.4 Method 4: Lithium Aluminum Hydride with Titanium Compounds 20
7.1.2.4.1 Variation 1: Lithium Aluminum Hydride with Titanium(III) Chloride for Reductive Self-Coupling of Carbonyl Compounds 20
7.1.2.4.2 Variation 2: Lithium Aluminum Hydride with Titanium(IV) Iodide for the Preparation of α,α'-Disubstituted Acetic Acids from Ketones 20
7.1.2.4.3 Variation 3: Lithium Aluminum Hydride with Dichlorobis(η⁵-cyclopentadienyl)Titanium(IV) for the Dehydroxylation of Allylic Alcohols 21
7.1.2.4.4 Variation 4: Lithium Aluminum Hydride with Titanium(IV) Chloride for the Deoxygenation of N-Oxides 22
7.1.2.4.5 Variation 5: Lithium Aluminum Hydride with Lithium Alkylaluminates from Alkenes 22
7.1.2.5 Method 5: Lithium Aluminum Hydride with Various Metal Chloride Salts for the Catalytic Reduction of Alkynes, Alkenes, and Aryl and Alkyl Chlorides ... 23
7.1.2.6 Method 6: Lithium Aluminum Hydride with Nickel Compounds for Desulfurization Reactions ... 25
7.1.2.7 Method 7: Lithium Aluminum Hydride with Zirconium Compounds 26
7.1.2.7.1 Variation 1: Lithium Aluminum Hydride with Zirconium(IV) Compounds for Hydroaluminations of Alkenes 26
7.1.2.7.2 Variation 2: Use of Lithium Aluminum Hydride for the Preparation of Bis(η⁵-cyclopentadienyl)(hydrido)zirconium(IV) Complexes 26
7.1.2.8 Method 8: Lithium Aluminum Hydride with Boron Trifluoride 27
7.1.2.9 Method 9: Lithium Aluminum Hydride with Iron Compounds 28
7.1.2.9.1 Variation 1: Lithium Aluminum Hydride and Dodecacarbonyltriiron(0) for the Reductive Dimerization of α,β-Unsaturated Ketones 28
7.1.2.9.2 Variation 2: Lithium Aluminum Hydride and Iron(II) or Iron(III) Chloride for Dehalogenation or Detosylation 29
7.1.2.10 Method 10: Lithium Aluminum Hydride with Manganese(II) Chloride for the Alkylation of Aldehydes or Ketones 29
7.1.2.11 Method 11: Lithium Aluminum Hydride with Silica Gel for the Reduction of Oxo Esters To Give Hydroxy Esters 30
7.1.2.12 Method 12: Lithium Aluminum Hydride with Selenium Reagents 31
7.1.2.12.1 Variation 1: Lithium Aluminum Hydride and Diphenyl Diselenide for Ring Cleavage of Oxetanes and Oxolanes 31
7.1.2.12.2 Variation 2: Lithium Aluminum Hydride and Elemental Selenium 31
7.1.2.13 Method 13: Lithium Aluminum Hydride with Vanadium(III) Chloride for Dehalogenative Homocoupling of Benzylic and Allylic Halides 32
7.1.2.14 Method 14: Lithium Aluminum Hydride with Lithium Iodide for Selective Reduction of β-Alk oxy Ketones 33
7.1.2.15 Method 15: Lithium Aluminum Hydride with Cerium(III) Chloride for Reductive Dehalogeneration and Reduction of Phosphine Oxides to Phosphines 33
7.1.2.16 Method 16: Lithium Aluminum Hydride with Chromium(III) Chloride 34
7.1.2.16.1 Variation 1: Lithium Aluminum Hydride with Chromium(III) Chloride for Dehalogenative Reductions 34
7.1.2.16.2 Variation 2: Lithium Aluminum Hydride with Chromium(III) Chloride in a Grignard-Type Reaction 34
7.1.2.17 Method 17: Lithium Aluminum Hydride with Alkoxides for the Reduction of Oximes to Amines 35
Method 18: Lithium Aluminum Hydride with Phosphorus Reagents

Variation 1: Lithium Aluminum Hydride with Diphosphorus Tetraiodide

Variation 2: Lithium Aluminum Hydride with Hexamethylphosphoric Triamide for the Hydrolysis of Oximes to Ketones

Method 19: Amine– and Amide–Aluminate Complexes Prepared from Lithium Aluminum Hydride and Amines

Variation 1: Preparation of 3-Substituted Pyridines via a Lithium Tetraaminoaluminate Complex Formed from Lithium Aluminum Hydride and Pyridine

Variation 2: Reduction of Carbonyl Compounds by Lithium Tris(diethylamino)hydroaluminate Prepared from Lithium Aluminum Hydride and Diethylamine

Variation 3: Ring-Opening Aminations by Lithium Tetraaminoaluminates Prepared from Lithium Aluminum Hydride and Excess Amine

Variation 4: Lithium Aluminum Hydride–Amine Complexes

Method 20: Partial Reduction of Carboxylic Acids and Acid Chlorides to Aldehydes by Sodium Diethyl(hydro)piperidinoaluminate Prepared from Sodium Diethyldihydroaluminate and Piperidine

Method 21: Lithium Alkoxyaluminum Hydrides Prepared from Lithium Aluminum Hydride and Alcohols

Method 22: Chiral Aluminum Hydrides Formed from Chiral Alcohols or Amines and Lithium or Sodium Aluminum Hydride

Method 23: Sodium Tri-tert-butoxy(hydro)aluminate

Method 24: Lithium Tri-tert-butoxy(hydro)aluminate

Variation 1: Asymmetric Reduction of Oxo Groups by Lithium Tri-tert-butoxy(hydro)aluminate

Variation 2: Use of Lithium Tri-tert-butoxy(hydro)aluminate for the Preparation of Zirconium Complexes

Method 25: Sodium Bis(2-methoxyethoxy)aluminum Hydride

Method 26: Asymmetric Reduction of Oxo Groups to Hydroxy Groups by Alkoxyaluminum Hydrides

Variation 1: Asymmetric Reduction of α-Oxo Esters to α-Hydroxy Esters by Lithium Trialkoxy(hydro)aluminates

Variation 2: Asymmetric Reduction of Ketones to Alcohols by Lithium Trialkoxy(hydro)aluminates

Variation 3: Asymmetric Reduction of Oxo Groups by Dialkoxyaluminum Hydrides

Method 27: Diisobutylaluminum Hydride with Hexamethylphosphoric Triamide

Method 28: Diisobutylaluminum Hydride with Phosphorylacetate

Method 29: Diisobutylaluminum Hydride with Triethylamine

Method 30: Diisobutylaluminum Hydride with Tin(II) Chloride

Method 31: Diisobutylaluminum Hydride with Magnesium(II) Bromide

Method 32: Diisobutylaluminum Hydride with Zinc(II) Chloride

Method 33: Diisobutylaluminum Hydride with Nickel Compounds

Method 34: Diisobutylaluminum Hydride with Boron Trifluoride

Method 35: Diisobutylaluminum Hydride with Titanium Compounds

Method 36: Diisobutylaluminum Hydride with Lithium Azide
Method 37: Diisobutylaluminum Hydride with Alkyllithiums .. 75
Method 38: Other Stereoselective Synthesis with Diisobutylaluminum Hydride ... 78
Method 39: Trivalent Aluminum Hydride–Amine and –Amide Complexes from Lithium Aluminum Hydride or Aluminum Trihydride and Amines ... 79
Method 41: Diaminoaluminum Hydride Complexes from Aluminum(0), Dihydrogen, and Amines ... 84
Method 42: Trivalent Aluminum Hydride Halides from Lithium Aluminum Hydride and Aluminum Trihalides ... 84
Method 43: Stereospecific Hydroaluminations of C=C and C=C Bonds by Various Aluminum Hydrides ... 86

Method 1: Aluminum Chloride–Titanium Reagents ... 96
Method 2: Aluminum Chloride–Zirconium Reagents ... 101
Method 3: Aminoaluminum Chlorides ... 105
Method 4: Aluminum Trichloride with Chloroamines ... 107
Method 5: Ethoxy- and Methoxyaluminum Chlorides ... 107
Method 6: Aluminum Chlorides with Chiral Alkoxide Ligands .. 110
Method 7: Aryloxyaluminum Chlorides ... 111
Method 8: Aluminum Chlorides with Chiral Bialkoxide or Biaryloxide Ligands 112
Method 9: Aluminum Halides with Thiols or Sulfides ... 116
Method 10: Aluminum Trichloride with Benzeneseleninyl Chloride ... 118
Method 11: Aluminum Chlorides with Alkylaluminums .. 118
Method 12: Aluminum Chlorides with Metal Salts .. 119
Method 13: Aluminum Chloride with an Azidoarene ... 122
Method 14: Aluminum Trichloride with a Resin ... 123
Method 15: Aluminum Trichloride without Additives ... 123
Method 16: Aluminum Fluorides ... 125
Method 17: Aluminum Triiodide ... 127

Method 1: Reaction of Aluminum with Alcohols .. 131

Table of Contents
7.1.4.2 Method 2: Treatment of Alkylaluminum Compounds with Alcohols or Phenols ... 132
7.1.4.2.1 Variation 1: Dialkylaluminum Carboxylates and Sulfonates 133
7.1.4.3 Method 3: Treatment of Alkylaluminum Hydrides with Alcohols or Phenols ... 133
7.1.4.4 Method 4: Treatment of Lithium Aluminum Hydride with Alcohols or Phenols ... 134

Applications of Product Subclass 4 in Organic Synthesis 135

7.1.4.5 Method 5: Aluminum Alkoxides in Organic Synthesis 135
7.1.4.5.1 Variation 1: Reduction Reactions 135
7.1.4.5.2 Variation 2: Oxidation Reactions 141
7.1.4.5.3 Variation 3: The Tishchenko Reaction 142
7.1.4.5.4 Variation 4: Alkylation 143
7.1.4.5.5 Variation 5: The aldol Reaction 145
7.1.4.5.6 Variation 6: Michael Addition 146
7.1.4.5.7 Variation 7: Transformation of Epoxides 146
7.1.4.6 Method 6: Aluminum Phenoxides in Organic Synthesis 147
7.1.4.6.1 Variation 1: Carbonyl Addition and Reduction 147
7.1.4.6.2 Variation 2: Conjugate Addition 156
7.1.4.6.3 Variation 3: The aldol Reaction 165
7.1.4.6.4 Variation 4: The Ene Reaction 168
7.1.4.6.5 Variation 5: The Pudovik Reaction 169
7.1.4.6.6 Variation 6: Oxidative Methylation 169
7.1.4.6.7 Variation 7: α-Alkylation of Carbonyl Compounds 170
7.1.4.6.8 Variation 8: The Hetero-Diels–Alder Reaction 171
7.1.4.6.9 Variation 9: The Diels–Alder Reaction 172
7.1.4.6.10 Variation 10: Cycloaddition 176
7.1.4.6.11 Variation 11: Discrimination of Ethers 180
7.1.4.6.12 Variation 12: The Claisen Rearrangement 180
7.1.4.6.13 Variation 13: Epoxide Rearrangement 183
7.1.4.6.14 Variation 14: Acetal Cleavage 185
7.1.4.6.15 Variation 15: Intramolecular Prenyl Transfer Reaction 185
7.1.4.6.16 Variation 16: Asymmetric Cyclization 186
7.1.4.6.17 Variation 17: Radical Reactions 187
7.1.4.6.18 Variation 18: Polymerization 190

7.1.5 Product Subclass 5: Aluminum Thiolates
T. Ooi and K. Maruoka

7.1.5 Product Subclass 5: Aluminum Thiolates 197

Synthesis of Product Subclass 5 .. 197
7.1.5.1 Method 1: Treatment of Alkylaluminum Compounds with Thiols 197
7.1.5.1.1 Variation 1: Bis(diylaluminum) Sulfides 199
7.1.5.1.2 Variation 2: Bis(diethylaluminum) Sulfate 199
7.1.5.2 Method 2: Treatment of Aluminum Hydrides with Thiols or Disulfides 200
Applications of Product Subclass 5 in Organic Synthesis 200

7.1.5.3 Method 3: Use of Dialkylaluminum Alkanethiolates 200
7.1.5.3.1 Variation 1: Transformation of Ethers 200
7.1.5.3.2 Variation 2: Transformation of Epoxides 201
7.1.5.3.3 Variation 3: Transformation of Acetals 202
7.1.5.3.4 Variation 4: Transformation of Aldehydes 203
7.1.5.3.5 Variation 5: Transformation of Esters 204
7.1.5.3.6 Variation 6: Transformation of α,β-Unsaturated Ketones 206
7.1.5.3.7 Variation 7: Transformation of α,β-Unsaturated Nitriles 207
7.1.5.3.8 Variation 8: Transformation of O-Sulfonyloximes 207
7.1.5.3.9 Variation 9: Transformation of Allyl Phosphate Esters 208
7.1.5.4 Method 4: Use of Bis(dialkylaluminum) Alkanedithiolates 208
7.1.5.5 Method 5: Use of Bis(diethylaluminum) Sulfide 211
7.1.5.6 Method 6: Use of Bis(diethylaluminum) Sulfate 211

7.1.6

Product Subclass 6: Aluminum Selenolates

T. Ooi and K. Maruoka

7.1.6.1 Method 1: Treatment of Alkylaluminum Compounds with Selenium Metal 215
7.1.6.2 Method 2: Treatment of Aluminum Hydrides with Selenols or Diselenides 215
7.1.6.3 Method 3: Treatment of Hexamethyldisilaselenane with Dimethylaluminum Chloride or Treatment of Hexabutyldistannaselenane with Trimethylaluminum .. 216

Applications of Product Subclass 6 in Organic Synthesis 217

7.1.6.4 Method 4: Use of Dimethylaluminum Methaneselenolate 217
7.1.6.5 Method 5: Use of Diisobutylaluminum Benzeneselenolate and Its Derivatives 218
7.1.6.6 Method 6: Use of Bis(dimethylaluminum) Selenide 221

7.1.7

Product Subclass 7: Aluminum Amides

T. Ooi and K. Maruoka

7.1.7.1 Method 1: Treatment of Alkylaluminum Compounds with Amines 225
7.1.7.1.1 Variation 1: Dialkylaluminum Hydrazides 226
7.1.7.2 Method 2: Treatment of Organoaluminum Hydrides with Amines 227
7.1.7.2.1 Variation 1: By Reduction of Nitriles 228
7.1.7.2.2 Variation 2: By Reduction of Azomethines 228
7.1.7.2.3 Variation 3: By Addition to Enamines 229
7.1.7.3 Method 3: Treatment of Aluminum Halides with Metal Amides 229
Applications of Product Subclass 7 in Organic Synthesis 230

7.1.7.4 Method 4: Transformation of Esters ... 230
7.1.7.5 Method 5: Transformation of Lactones ... 232
7.1.7.6 Method 6: Transformation of Nitriles .. 234
7.1.7.7 Method 7: Transformation of Ketones .. 235
7.1.7.8 Method 8: Epoxide Cleavage with Aluminum Reagents 236
7.1.7.9 Method 9: Isomerization of Epoxides to Allylic Alcohols 238
7.1.7.10 Method 10: 1,3-Diene Synthesis ... 240
7.1.7.11 Method 11: Transformation of Hydrazones .. 242
7.1.7.12 Method 12: N-Alkylation of Allylic Derivatives 243
7.1.7.13 Method 13: Hydrometalation ... 244
7.1.7.14 Method 14: Polymerization ... 245

7.1.8 Product Subclass 8: Aluminum Oxide (Alumina)
S. Tsuboi

7.1.8 Synthesis of Product Subclass 8 ... 247
7.1.8.1 Method 1: Preparation and Characterization of Aluminum Oxide 247
7.1.8.2 Method 2: Alumina-Promoted Reactions .. 248
7.1.8.2.1 Variation 1: Additions and Cyclizations ... 248
7.1.8.2.2 Variation 2: Oxidation and Reduction .. 248
7.1.8.2.3 Variation 3: Rearrangement and Isomerization 252
7.1.8.2.4 Variation 4: Elimination and Addition .. 254
7.1.8.2.5 Variation 5: Ring Closure and Ring Opening 254
7.1.8.3 Method 3: Reactions Using Alumina–Potassium Fluoride as a Catalyst 255
7.1.8.4 Method 4: Reactions Using Alumina–Potassium Hydroxide as a Catalyst 256
7.1.8.5 Method 5: Synthesis of Halides Using Alumina and a Halogen 256
7.1.8.6 Method 6: Synthesis of Organic Sulfides Using Alumina and Sodium Sulfide .. 257
7.1.8.7 Method 7: Oxidation Using Alumina and Barium or Potassium Manganate 258

7.1.9 Product Subclass 9: Triorganoaluminum Compounds
M. Oishi

7.1.9 Synthesis of Product Subclass 9 ... 261
7.1.9.1 Method 1: By Reactions of Aluminum Metal with Organic Compounds 262
7.1.9.1.1 Variation 1: From Alkenes and Hydrogen (Direct Synthesis) 262
7.1.9.1.2 Variation 2: From Alkyl Halides and Subsequent Disproportionation or Reduction ... 263
7.1.9.2 Method 2: By Reaction of Organoaluminum Compounds with Unsaturated Hydrocarbons .. 264
7.1.9.2.1 Variation 1: Displacement Reactions .. 264
7.1.9.2.2 Variation 2: Alumination of Carbon Brønsted Acids 265
7.1.9.3 Method 3: By Reaction with Organometallic Precursors 266
7.1.9.3.1 Variation 1: From Triorganoborane Compounds 266
7.1.9.3.2 Variation 2: From Organomercury Compounds 268
7.1.9.3.3 Variation 3: From Organotin Compounds 270
7.1.9.3.4 Variation 4: From Grignard and Organolithium Reagents 270
7.1.9.4 Method 4: From Tetraorganoaluminates 275
7.1.9.4.1 Variation 1: From Aluminum Halides 275
7.1.9.4.2 Variation 2: From Active Metals .. 276
7.1.9.5 Method 5: By Homologation with Diazooalkanes 276

Applications of Product Subclass 9 in Organic Synthesis 277
7.1.9.6 Method 6: Addition to C—C Multiple Bonds 277
7.1.9.6.1 Variation 1: Carboalumination of Alkenes and Alkynes 278
7.1.9.6.2 Variation 2: Hydroalumination of Alkenes and Alkynes 287
7.1.9.6.3 Variation 3: Cyclopropanation .. 292
7.1.9.6.4 Variation 4: Conjugate Addition .. 294
7.1.9.7 Method 7: Addition Reactions to Carbon—Heteroatom Multiple Bonds 303
7.1.9.7.1 Variation 1: Reactions with Carbonyl Substrates 303
7.1.9.7.2 Variation 2: Addition to Imines and Nitriles 314
7.1.9.8 Method 8: Cleavage and Substitution Reactions of Carbon—Heteroatom Bonds ... 318
7.1.9.8.1 Variation 1: Ring Opening of Epoxides and Aziridines 318
7.1.9.8.2 Variation 2: Cleavage of Acetals and Ketals 325
7.1.9.8.3 Variation 3: Noncatalyzed Coupling Reactions 328
7.1.9.8.4 Variation 4: Metal-Catalyzed Coupling Reactions 334
7.1.9.9 Method 9: Rearrangement Reactions 341
7.1.9.9.1 Variation 1: Claisen Rearrangement 341
7.1.9.9.2 Variation 2: 1,3-Rearrangement of Acetals 346
7.1.9.9.3 Variation 3: 3-Aza-Cope Rearrangement 348
7.1.9.9.4 Variation 4: Pinacol-Type Rearrangement 349
7.1.9.9.5 Variation 5: Beckmann-Type Rearrangement 352
7.1.9.10 Method 10: Polymerization Reactions 355
7.1.9.10.1 Variation 1: Alkene Polymerization: Chain Transfer, Catalytic, and Cocatalytic Behaviors 355
7.1.9.10.2 Variation 2: Ionic Polymerization of Polar Monomers 362
7.1.9.10.3 Variation 3: Radical Polymerization of Polar Monomers 364
7.1.9.10.4 Variation 4: Ring-Opening Polymerization 365

7.2

Product Class 2: Gallium Compounds
M. Yamaguchi

7.2

Product Class 2: Gallium Compounds .. 387
7.2.1

Product Subclass 1: Organogallium(III) Complexes Containing
Gallium—Gallium Bonds ... 387

Synthesis of Product Subclass 1 .. 387
7.2.1 Method 1: From Organometallic Compounds and Gallium Halides 387
7.2.2 Method 2: Reductive Coupling of Organogallium(III) Halides 388
7.2.2 Product Subclass 2: Organogallium(III) Complexes Containing a Bond between Gallium and a Transition Metal 389
Synthesis of Product Subclass 2 389
7.2.2.1 Method 1: From Transition Metal Hydrides and Triorganogallium Complexes 390
7.2.2.2 Method 2: From Transition Metal Anions and Organogallium(III) Halides 390
7.2.3 Product Subclass 3: Organogallium(III) Halides 391
Synthesis of Product Subclass 3 391
7.2.3.1 Method 1: From Organometallic Compounds and Gallium(III) Halides 392
7.2.3.2 Method 2: Redistribution Reaction between Triorganogallium Complexes and Gallium(III) Halides 393
7.2.3.3 Method 3: From Alkyl Halides and Gallium(I) Halides 394
Applications of Product Subclass 3 in Organic Synthesis 394
7.2.3.4 Method 4: Reactions Involving Organogallium(III) Halides 394
7.2.4 Product Subclass 4: Organogallium(III) Complexes Containing a Bond between Gallium and a Group 16 Element 395
Synthesis of Product Subclass 4 395
7.2.4.1 Method 1: From Triorganogallium Complexes and Chalcogen Elements 396
7.2.4.2 Method 2: From Organic Acids and Organogallium Complexes 396
7.2.4.3 Method 3: From Metalated Organic Acids and Gallium(III) Halides 397
Applications of Product Subclass 4 in Organic Synthesis 398
7.2.4.4 Method 4: Asymmetric Reactions Employing Gallium Catalysts 398
7.2.5 Product Subclass 5: Organogallium(III) Complexes Containing a Bond between Gallium and a Group 15 Element 399
Synthesis of Product Subclass 5 399
7.2.5.1 Method 1: From Organic Acids and Organogallium Complexes 399
7.2.5.2 Method 2: From Metalated Organic Acids and Gallium(III) Halides 400
7.2.6 Product Subclass 6: Triorganogallium(III) Complexes 402
Synthesis of Product Subclass 6 402
7.2.6.1 Method 1: From Organometallic Compounds and Gallium(III) Halides 402
7.2.6.2 Method 2: Redistribution Reaction between Cyclopentadienylgallium(III) Complexes and Trialkylgallium Complexes 403
Applications of Product Subclass 6 in Organic Synthesis 404
7.2.6.3 Method 3: Reactions Involving Triorganogallium Complexes 404
7.2.7 Product Subclass 7: Organogallium(I) Complexes 404
Synthesis of Product Subclass 7 404
7.2.7.1 Method 1: From Organometallic Reagents and Gallium(I) Halides 405
7.2.7.2 Method 2: From Arenes and Gallium(I) Halides 405
Applications of Product Subclass 7 in Organic Synthesis .. 406
7.2.7.3 Method 3: Reductive Coupling Using Gallium(II) Chloride 406

7.3 Product Class 3: Indium Compounds
T.-P. Loh

7.3 Product Class 3: Indium Compounds ... 413
7.3.1 Product Subclass 1: Allylic Indium Complexes ... 413
Synthesis of Product Subclass 1 .. 414
7.3.1.1 Method 1: Addition of Indium Metal to Allylic Halides 414
7.3.1.1.1 Variation 1: In Dimethylformamide ... 414
7.3.1.1.2 Variation 2: In Aqueous Media .. 415
7.3.1.1.3 Variation 3: Solvent-Free Conditions .. 415
7.3.1.2 Method 2: Insertion of Indium(I) Iodide into Allyl Iodide 416
7.3.1.3 Method 3: Transmetalation from Allylic Stannanes to Indium(III) Chloride .. 416
7.3.1.3.1 Variation 1: In Organic Donor Solvents ... 416
7.3.1.3.2 Variation 2: In Aqueous Media .. 417
7.3.1.4 Method 4: Diastereoselective Allylation of Carbonyl Compounds 418
7.3.1.5 Method 5: Enantioselective Allylation of Aldehydes 422
7.3.1.6 Method 6: Intramolecular Addition .. 423
7.3.1.7 Method 7: Carboindation of Alkynes ... 424
7.3.1.8 Method 8: Allylation of Enamines and Imines .. 426
7.3.1.9 Method 9: Formation of Vinylcyclopropanes from Ketones 427

7.3.2 Product Subclass 2: Propargylic/Allenylic Indium Complexes 427
Synthesis of Product Subclass 2 .. 428
7.3.2.1 Method 1: Addition of Indium Metal to Alkynyl Bromides 428
7.3.2.1.1 Variation 1: In Dimethylformamide ... 428
7.3.2.1.2 Variation 2: In Aqueous Media .. 428
7.3.2.1.3 Variation 3: Insertion of Indium into Chiral Allenyl Iodides 428
7.3.2.2 Method 2: Tetrakis(triphenylphosphine)palladium(0)-Catalyzed Insertion of Indium(I) Iodide into 2-Ethynylaziridines .. 429

7.3.3 Product Subclass 3: Reformatsky-Type Indium Complexes 430
Synthesis of Product Subclass 3 ... 430
7.3.3.1 Method 1: Insertion of Indium Metal into α-Halo Esters and α-Halo Ketones .. 430
7.3.3.1.1 Variation 1: In Organic Solvent .. 430
7.3.3.1.2 Variation 2: In Aqueous Media .. 431
7.3.3.2 Method 2: Insertion of Indium(I) Iodide into α-Iodo Esters 431
7.3.3.3 Method 3: Enantioselective Aldol-Type Addition 432

7.3.4 Product Subclass 4: Indium Carbenoids ... 433
Synthesis of Product Subclass 4 ... 433
7.3.4.1 Method 1: Addition of Indium Metal to Activated Dibromomethane 433
7.3.5 Product Subclass 5: Alkylindium(III) Complexes

Synthesis of Product Subclass 5

7.3.5.1 Method 1: Addition of Grignard Reagents to Indium(III) Chloride

7.3.5.2 Method 2: Insertion of Indium Metal into an Alkyl Iodide

Applications of Product Subclass 5 in Organic Synthesis

7.3.5.3 Method 3: Cross Coupling with 1-Haloalkenes

7.3.5.4 Method 4: Carboindation of Alkynes with Benzylindium Sesquiodide

7.3.6 Product Subclass 6: Tetraorganoindates

Synthesis of Product Subclass 6

7.3.6.1 Method 1: Reaction of Triorganoindium Complexes with Alkali Metals

7.3.6.2 Method 2: Reaction of Triorganoindium Complexes with Organolithium Complexes

7.3.6.3 Method 3: Reaction of Triorganoindium Complexes with Organoarsenic or Organoantimony Complexes

Applications of Product Subclass 6 in Organic Synthesis

7.3.6.4 Method 4: 1,4-Addition to α,β-Unsaturated Carbonyl Compounds

7.3.6.5 Method 5: Allylation of Allylic Bromides

7.3.6.6 Method 6: Addition to Nitriles

7.3.7 Product Subclass 7: Indium(III) Chloride

Synthesis of Product Subclass 7

7.3.7.1 Method 1: From Indium Metal

7.3.7.2 Method 2: From Indium(III) Oxide

Applications of Product Subclass 7 in Organic Synthesis

7.3.7.3 Method 3: Prins-Type Cyclization Reactions

7.3.7.4 Method 4: Michael Addition of Amines

7.3.7.5 Method 5: Direct Aldol Reaction of Glyoxylic Acid

7.3.7.6 Method 6: Mukaiyama Aldol Reaction

7.3.7.7 Method 7: Diels–Alder Reaction

7.3.7.8 Method 8: Imino-Diels–Alder Reaction

7.3.7.9 Method 9: Ionic Diels–Alder Reaction

7.3.7.10 Method 10: One-Pot Mannich-Type Reaction in Water

7.3.7.11 Method 11: Rearrangement of Epoxides

7.3.7.12 Method 12: Epoxide Ring Opening with Aromatic Amines

7.3.7.13 Method 13: Reductive Friedel–Crafts Alkylation

7.3.7.14 Method 14: Deoxygenative Allylation of Aryl Ketones

7.3.7.15 Method 15: Reactions of α-Diazocarbonyl Compounds

7.3.7.16 Method 16: Three-Component Reaction of Alkenes, Glyoxylates, and Amines

7.3.8 Product Subclass 8: Indium(III) Trifluoromethanesulfonate

Applications of Product Subclass 8 in Organic Synthesis

7.3.8.1 Method 1: 2-Oxonia [3,3]-Sigmatropic Rearrangement–Cyclization

7.3.8.2 Method 2: Acylation of Alcohols and Amines
7.3.8 Method 3: Hetero-Diels–Alder Reaction of Danishefsky’s Diene and Imines

447

7.3.8 Method 4: Reusable Catalyst for Intramolecular Diels–Alder Reactions

448

7.3.8 Method 5: [4 + 2] Cycloaddition of Benzopyranone Schiff Bases

448

7.4 Product Class 4: Thallium Compounds

I. E. Markó

7.4.1 Product Subclass 1: Triorganothallium(III) Complexes

Synthesis of Product Subclass 1

453

7.4.1.1 Method 1: Addition of Organometallic Complexes to Diorganothallium(III) Halides

454

7.4.1.1 Variation 1: Addition of Organolithium Complexes

454

7.4.1.2 Variation 2: Addition of Organomagnesium Compounds

455

7.4.1.2 Method 2: Addition of Organometallic Complexes to Thallium(III) Salts

456

7.4.1.3 Method 3: Disproportionation of Thallium(I) Salts

456

Applications of Product Subclass 1 in Organic Synthesis

457

7.4.1.4 Method 4: Ketone Synthesis

457

7.4.1.5 Method 5: Alkylation Reactions

458

7.4.1.5.1 Variation 1: Stoichiometric Alkylation Reactions

458

7.4.1.5.2 Variation 2: Catalytic Alkylation Reactions

459

7.4.2 Product Subclass 2: Tetraorganothallium(III) “Ate” Complexes

Synthesis of Product Subclass 2

460

7.4.2.1 Method 1: Addition of Organolithium Compounds to Triorganothallium(III) Complexes

460

7.4.2.2 Method 2: Addition of Organolithium Compounds to Diorganothallium(III) Complexes

460

Applications of Product Subclass 2 in Organic Synthesis

461

7.4.2.3 Method 3: Addition to Ketones

461

7.4.2.4 Method 4: [1,2] Addition to Enones

461

7.4.2.5 Method 5: [1,4] Addition to Enones

462

7.4.2.6 Method 6: Chemoselective Reactions with Enones

462

7.4.3 Product Subclass 3: Diorganothallium(III) Complexes

Synthesis of Product Subclass 3

464

7.4.3.1 Method 1: Addition of Organometallic Complexes to Thallium(III) Salts

464

7.4.3.2 Method 2: Hydrolysis of Triorganothallium(III) Derivatives

465

Applications of Product Subclass 3 in Organic Synthesis

465

7.4.3.3 Method 3: Synthesis of Triorganothallium(III) Derivatives and Their “Ate” Complexes

465

7.4.3.4 Method 4: Synthetic Utility of Diarylthallium(III) Carboxylates

465
7.4.4 **Product Subclass 4: Monoorganothallium(III) Derivatives**
Synthesis of Product Subclass 4 466
7.4.4.1 Method 1: Addition of Organometallic Complexes to Thallium(III) Salts 466
7.4.4.2 Method 2: Direct Thallation 466

Applications of Product Subclass 4 in Organic Synthesis 467
7.4.4.3 Method 3: Functionalization of Aromatic Complexes 467
7.4.4.3.1 Variation 1: By Direct Thallation–Iodination 467
7.4.4.3.2 Variation 2: By Direct Thallation–Thallium Replacement 469
7.4.4.4 Method 4: Functionalization of Alkenes 471
7.4.4.5 Method 5: Oxidative Rearrangements 471
7.4.4.6 Method 6: Oxidation of Alkynes 472
7.4.4.7 Method 7: α-Hydroxylation of Ketones 472
7.4.4.8 Method 8: Coupling of Arenes 474
7.4.4.9 Method 9: Palladium-Catalyzed Reactions 475

7.4.5 **Product Subclass 5: Organothallium(I) Complexes** 478
Synthesis of Product Subclass 5 478
7.4.5.1 Method 1: Synthesis of Cyclopentadienylthallium(I) by Meister’s Method 478

Applications of Product Subclass 5 in Organic Synthesis 479
7.4.5.2 Method 2: Addition to Aliphatic Halides 479
7.4.5.3 Method 3: Synthesis of Cyclopentadienyl-Containing Organometallic Complexes 480

7.4.6 **Product Subclass 6: Inorganic Thallium(I) Derivatives** 480
Synthesis of Product Subclass 6 480
7.4.6.1 Method 1: Ligand Exchange 480

Applications of Product Subclass 6 in Organic Synthesis 481
7.4.6.2 Method 2: Monoalkylation of β-Dicarbonyl Derivatives 481
7.4.6.3 Method 3: Additives in Palladium-Catalyzed Reactions 482

7.5 **Product Class 5: Beryllium Compounds**
H. Yasuda

7.5 **Product Class 5: Beryllium Compounds** 487
7.5.1 **Product Subclass 1: Beryllium Hydride Derivatives** 488
Synthesis of Product Subclass 1 488
7.5.1.1 Method 1: Synthesis of Organoberyllium Hydrides 488
7.5.1.2 Method 2: Synthesis of Amino- and Alkoxyberyllium Hydrides 490
7.5.1.3 Method 3: Synthesis of Methylberyllium Borohydride 491
7.5.2 **Product Subclass 2: Beryllium Halide Derivatives** 491
Synthesis of Product Subclass 2 491
7.5.2.1 Method 1: Reaction of an Alkylberyllium with Halides 491
7.5.2.2 Method 2: Reaction of Beryllium with Alkyl Halides 492
7.5.3 Product Subclass 3: Alkoxy(alkyl)beryllium Compounds 492
Synthesis of Product Subclass 3 ... 492
7.5.3.1 Method 1: Reaction of an Alkylberyllium Compound with an Alcohol 492
7.5.4 Product Subclass 4: Alkyl(alkylsulfanyl)beryllium Compounds 494
Synthesis of Product Subclass 4 ... 494
7.5.4.1 Method 1: Alkyl(alkylsulfanyl)beryllium Compounds from Thiols 494
7.5.5 Product Subclass 5: Alkyl(amine)beryllium Compounds 494
Synthesis of Product Subclass 5 ... 494
7.5.5.1 Method 1: Reaction of an Alkylberyllium Compound with an Amine 494
7.5.6 Product Subclasses 6: Diarylberyllium Compounds 496
Synthesis of Product Subclass 6 ... 496
7.5.6.1 Method 1: Reaction of Beryllium with Diarylmercury(II) Compounds 496
7.5.7 Product Subclass 7: Bis(η⁵-cyclopentadienyl)beryllium and Other Unsaturated Derivatives ... 496
Synthesis of Product Subclass 7 ... 496
7.5.7.1 Method 1: Reaction of Beryllium Halides with Sodium Cyclopentadienide 496
7.5.7.2 Method 2: Reaction of Beryllium Chloride with Potassium Pentadienide 497
7.5.8 Product Subclass 8: Dialkylberyllium Compounds 498
Synthesis of Product Subclass 8 ... 498
7.5.8.1 Method 1: Reaction of Alkylberyllium Compounds with Diarylmercury(II) Compounds ... 498
7.5.8.2 Method 2: Alkylation of Beryllium Halides .. 498
7.5.9 Product Subclass 9: Anionic Beryllium Complexes 499
Synthesis of Product Subclass 9 ... 499
7.5.9.1 Method 1: Preparation of Halide or Cyanide Complexes 499
7.5.9.2 Method 2: Preparation of Alkali Metal Alkyl- and Arylberyllate Compounds ... 500
7.5.9.3 Method 3: Preparation of a Hydride Complex 500

7.6 Product Class 6: Magnesium Compounds

7.6.1 Product Subclass 1: Magnesium Metal
J.-H. Zhang, C. C. K. Keh, and C.-J. Li

7.6.1 Product Subclass 1: Magnesium Metal .. 503
Synthesis of Product Subclass 1 ... 503
7.6.1.1 Method 1: Formation of Rieke Magnesium from Magnesium Halides 503
Applications of Product Subclass 1 in Organic Synthesis 504
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6.1.2</td>
<td>Method 2</td>
<td>Magnesium Amalgam for Pinacol Coupling of Carbonyl Compounds</td>
<td>504</td>
</tr>
<tr>
<td>7.6.1.3</td>
<td>Method 3</td>
<td>Magnesium with a Metal Halide as the Reducing Agent</td>
<td>505</td>
</tr>
<tr>
<td>7.6.1.4</td>
<td>Method 4</td>
<td>Magnesium in Methanol for Reduction Reactions</td>
<td>506</td>
</tr>
<tr>
<td>7.6.1.4.1</td>
<td>Variation 1</td>
<td>Selective Reduction of α,β-Unsaturated Compounds</td>
<td>506</td>
</tr>
<tr>
<td>7.6.1.4.2</td>
<td>Variation 2</td>
<td>Reductive Cleavage Reactions</td>
<td>508</td>
</tr>
<tr>
<td>7.6.1.4.3</td>
<td>Variation 3</td>
<td>Other Reductive Applications</td>
<td>509</td>
</tr>
<tr>
<td>7.6.1.5</td>
<td>Method 5</td>
<td>Low-Valent Titanium Reagents from Reduction by Magnesium</td>
<td>510</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Product Subclass 2</td>
<td>Magnesium Hydride</td>
<td>513</td>
</tr>
<tr>
<td>7.6.2.1</td>
<td>Method 1</td>
<td>Formation of Activated Magnesium Hydride</td>
<td>513</td>
</tr>
<tr>
<td>7.6.2.2</td>
<td>Method 2</td>
<td>Magnesium Hydride as a Reducing Agent</td>
<td>514</td>
</tr>
<tr>
<td>7.6.2.3</td>
<td>Method 3</td>
<td>Organomagnesium Hydrides as Reducing Agents</td>
<td>515</td>
</tr>
<tr>
<td>7.6.3</td>
<td>Product Subclass 3</td>
<td>Magnesium–Metal Reagents</td>
<td>517</td>
</tr>
<tr>
<td>7.6.3.1</td>
<td>Method 1</td>
<td>Reaction of Dimethyl(phenyl)silyllithium with Methylmagnesium Iodide</td>
<td>517</td>
</tr>
<tr>
<td>7.6.3.2</td>
<td>Method 2</td>
<td>Reaction of Tributylstannyllithium with Methylmagnesium Iodide</td>
<td>518</td>
</tr>
<tr>
<td>7.6.3.3</td>
<td>Method 3</td>
<td>Metallometalation of Alkyne Derivatives</td>
<td>518</td>
</tr>
<tr>
<td>7.6.4</td>
<td>Product Subclass 4</td>
<td>Alkynyl Grignard Reagents</td>
<td>523</td>
</tr>
<tr>
<td>7.6.4.1</td>
<td>Method 1</td>
<td>Alkynylmagnesium Halides from Alk-1-yynes and Alkylmagnesium Halides</td>
<td>523</td>
</tr>
<tr>
<td>7.6.4.2</td>
<td>Method 2</td>
<td>Displacement Reactions</td>
<td>524</td>
</tr>
<tr>
<td>7.6.4.3</td>
<td>Method 3</td>
<td>Additions to Carbonyl Compounds</td>
<td>524</td>
</tr>
<tr>
<td>Section</td>
<td>Method</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>7.6.4.4</td>
<td>4</td>
<td>Reactions with Carboxylic Acid Derivatives</td>
<td>524</td>
</tr>
<tr>
<td>7.6.4.5</td>
<td>5</td>
<td>Additions to Aza Aromatics</td>
<td>525</td>
</tr>
</tbody>
</table>

Product Subclass 5: Aryl Grignard Reagents
A. Yanagisawa

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6.5.1</td>
<td>1</td>
<td>Arylmagnesium Halides from Aryl Halides and Magnesium</td>
<td>527</td>
</tr>
<tr>
<td>7.6.5.1.1</td>
<td>Variation 1</td>
<td>From Aryl Halides and Activated Magnesium</td>
<td>528</td>
</tr>
</tbody>
</table>

Applications of Product Subclass 5 in Organic Synthesis | 529

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Transmetalations with Metal Halides</td>
<td>529</td>
</tr>
<tr>
<td>3</td>
<td>Nucleophilic Aromatic Substitutions</td>
<td>529</td>
</tr>
<tr>
<td>4</td>
<td>Additions to Carbonyl Compounds</td>
<td>530</td>
</tr>
<tr>
<td>5</td>
<td>Reactions with Carboxylic Acid Derivatives</td>
<td>530</td>
</tr>
</tbody>
</table>

Product Subclass 6: Alkenyl Grignard Reagents
A. Yanagisawa

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6.6.1</td>
<td>1</td>
<td>Alkenylmagnesium Halides from Alkenyl Halides and Magnesium</td>
<td>533</td>
</tr>
<tr>
<td>7.6.6.1.1</td>
<td>Variation 1</td>
<td>Buta-1,3-dien-2-ylmagnesium Chloride from 4-Chlorobuta-1,2-diene and Magnesium</td>
<td>534</td>
</tr>
</tbody>
</table>

Applications of Product Subclass 6 in Organic Synthesis | 537

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Hydromagnesiation of Alkynes</td>
<td>535</td>
</tr>
<tr>
<td>3</td>
<td>Carbomagnesiation of Alkynes</td>
<td>536</td>
</tr>
<tr>
<td>4</td>
<td>Displacement Reactions</td>
<td>537</td>
</tr>
<tr>
<td>5</td>
<td>Addition to Carbonyl Compounds</td>
<td>537</td>
</tr>
<tr>
<td>6</td>
<td>Ring Opening of Epoxides</td>
<td>538</td>
</tr>
</tbody>
</table>

Product Subclass 7: Propargylic Grignard Reagents
A. Yanagisawa

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6.7.1</td>
<td>1</td>
<td>Propargylmagnesium Halides or Allenylmagnesium Halides from Propargyl Halides, Magnesium, and Mercury(II) Chloride</td>
<td>541</td>
</tr>
</tbody>
</table>

Applications of Product Subclass 7 in Organic Synthesis | 542

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Displacement Reactions</td>
<td>542</td>
</tr>
</tbody>
</table>
7.6.7.3 Method 3: Addition to Carbonyl Compounds .. 543
7.6.7.3.1 Variation 1: Barbier-Type Propargylation of Aldehydes 544
7.6.7.4 Method 4: Ring Opening of Epoxides .. 545
7.6.7.5 Method 5: Additions to Aza Aromatics ... 545

7.6.8 Product Subclass 8: Benzylic Grignard Reagents
A. Yanagisawa

7.6.8 Product Subclass 8: Benzylic Grignard Reagents 549
Synthesis of Product Subclass 8 ... 549
7.6.8.1 Method 1: Benzylmagnesium Halides from Benzyl Halides and Magnesium .. 549
7.6.8.1.1 Variation 1: From Benzyl Halides and Activated Magnesium 550
Applications of Product Subclass 8 in Organic Synthesis 551
7.6.8.2 Method 2: Displacement Reactions with Alkyl Halides 551
7.6.8.3 Method 3: Ring Opening of Epoxides and Oxetane 551
7.6.8.4 Method 4: Additions to Imines .. 551
7.6.8.5 Method 5: Additions to Nitriles .. 552
7.6.8.6 Method 6: Additions to Nitro Compounds 552

7.6.9 Product Subclass 9: Allylic Grignard Reagents
A. Yanagisawa

7.6.9 Product Subclass 9: Allylic Grignard Reagents 555
Synthesis of Product Subclass 9 ... 555
7.6.9.1 Method 1: Allylic Magnesium Halides from Allylic Halides and Magnesium .. 555
7.6.9.1.1 Variation 1: From Allylic Halides and Activated Magnesium 556
7.6.9.2 Method 2: Hydromagnesiation of Conjugated Dienes 558
Applications of Product Subclass 9 in Organic Synthesis 558
7.6.9.3 Method 3: Displacement Reactions with Alkyl Halides 558
7.6.9.3.1 Variation 1: Displacement Reactions with Allylic Phosphates 559
7.6.9.3.2 Variation 2: Transmetalations with Metal Halides Including Chlorosilanes .. 560
7.6.9.4 Method 4: Addition to Carbonyl Compounds 561
7.6.9.4.1 Variation 1: Barbier-Type Allylation of Aldehydes 561
7.6.9.5 Method 5: Reactions with Carboxylic Acid Derivatives 562
7.6.9.6 Method 6: Addition to Imines .. 563
7.6.9.6.1 Variation 1: Addition to Nitriles .. 563
7.6.9.6.2 Variation 2: Addition to Aza Aromatics 564
7.6.9.7 Method 7: Addition to Nitro Compounds 564
7.6.9.8 Method 8: Addition to Alkenes .. 565
7.6.9.8.1 Variation 1: Addition to Conjugated Dienes 568
7.6.10 Product Subclass 10: Alkyl Grignard Reagents
K. Oshima

7.6.10 Product Subclass 10: Alkyl Grignard Reagents
Synthesis of Product Subclass 10
Method 1: Reaction of Simple Alkyl Halides with Magnesium
Method 2: Reaction of Dihaloalkanes with Magnesium
Method 3: Reaction of 1-Haloalk-3-enes, 1-Haloalk-4-enes, or Their Cyclopropyl Synthetic Equivalents with Magnesium
Method 4: Reaction of 1-Haloalk-3-ynes or Their Cyclopropyl Synthetic Equivalents with Magnesium
Method 5: Reaction of Alkoxyalkyl Halides or Their Analogues with Magnesium
Method 6: Reaction of (Trimethylsilyl)methyl Halides with Magnesium
Method 7: Reaction of Alkyllithium Compounds with Magnesium Halides
Applications of Product Subclass 10 in Organic Synthesis
Method 8: Addition to Carbonyl Compounds
Variation 1: Synthesis of Alcohols: Addition of Alkyl Groups to Carbonyl Moieties
Variation 2: Reduction of Hindered Ketones
Variation 3: Addition of [(Trimethylsilyl)methyl]magnesium Chloride or [(Isopropoxydimethylsilyl)methyl]magnesium Chloride

7.6.11 Product Subclass 11: Grignard Reagents with Transition Metals
T. Takahashi and Y. Liu

7.6.11 Product Subclass 11: Grignard Reagents with Transition Metals
Synthesis of Product Subclass 11
Method 1: Grignard Reagents with Catalytic Dichlorobis(phosphine)nickel(II)
Method 2: Coupling Reactions Using Nickel–Phosphine Catalysts
Variation 1: Nickel-Catalyzed Coupling of Grignard Reagents with Alkyl Compounds
Variation 2: Nickel-Catalyzed Enantioselective Coupling of Grignard Reagents with Allyl Compounds
Variation 3: Nickel-Catalyzed Enantioselective Coupling of Grignard Reagents with Allyl Compounds
Variation 4: Nickel-Catalyzed Coupling of Grignard Reagents with Vinyl or Aryl Compounds .. 600
Variation 5: Nickel-Catalyzed Enantioselective Coupling of Grignard Reagents with Aryl Compounds 602
Method 3: Coupling Reactions Using Catalytic Bis(acetyl-acetonato)nickel(II) or Nickel(II) Chloride 602
Method 4: Coupling Reactions Using Catalytic Nickel(II) Chloride and Buta-1,3-diene ... 603
Method 5: Grignard Reagents with Catalytic Dichlorobis(phenyl)palladium(II) .. 604
Method 6: Coupling Reactions Using Palladium Catalysts 604
Variation 1: Palladium-Catalyzed Coupling Reactions of Grignard Reagents with Allyl Compounds 604
Variation 2: Palladium-Catalyzed Coupling of Grignard Reagents with Vinyl or Aryl Compounds 604
Variation 3: Palladium-Catalyzed Enantioselective Coupling of Grignard Reagents .. 605
Method 7: Ethylmagnesium Bromide with Catalytic Titanium(IV) Isopropoxide ... 605
Variation 1: Reaction of Titanacyclopropane 606
Variation 2: Alkylmagnesium Bromide with Catalytic Titanium(IV) Isopropoxide ... 607
Method 8: Titanacyclopropane and Titanacyclopropene Formation by π-Ligand Exchange .. 608
Method 9: Isopropylmagnesium Bromide (or Isobutylmagnesium Bromide) with Catalytic Dichlorobis(η⁵-cyclopentadienyl)titanium(IV) ... 609
Method 10: Butylmagnesium Chloride with Catalytic Dichlorobis(η⁵-cyclopentadienyl)titanium(IV) ... 609
Method 11: Cyclopropanation .. 610
Variation 1: Enantioselective Formation of Cyclopropanol 610
Variation 2: Intramolecular Formation of a Cyclopropanol 611
Variation 3: Formation of Cyclopropylamine 611
Method 12: Reduction .. 612
Variation 1: Reduction of Carbon—Heteroatom Double Bonds 613
Variation 2: Reduction of Aryl and Vinyl Halides 613
Method 13: Hydromagnesiation of Unsaturated C—C Bonds 613
Method 14: Carbomagnesiation .. 614
Method 15: Ethylmagnesium Halide with Catalytic Dichlorobis(η⁵-cyclopentadienyl)zirconium(IV) ... 615
Variation 1: Formation of a Zirconium–Ethene Complex 615
Variation 2: Catalytic Reactions of the Zirconium–Ethene Complex 616
Method 16: Butylmagnesium Halides with Catalytic Dichlorobis(η⁵-cyclopentadienyl)zirconium(IV) ... 617
Method 17: Catalytic Reactions Using the Zirconium–Ethene Complex ... 617
Variation 1: Ethylmagnesiation of Alkenes (Dzhemilev Reaction) 617
Variation 2: Enantioselective Ethylmagnesiation of Alkenes 618
Variation 3: Ethylmagnesiation of Alkynes 618
7.6.11.17.4 Variation 4: Ethylation of Allylic Ethers .. 619
7.6.11.17.5 Variation 5: Enantioselective Ethylation of Allylic Ethers 620
7.6.11.17.6 Variation 6: Cyclobutene Formation .. 620
7.6.11.18 Method 18: Reaction of the Zirconium–Butene Complex 621
7.6.11.18.1 Variation 1: Cyclomagnesiation of Dienes 621
7.6.11.18.2 Variation 2: Enantioselective Cyclomagnesiation of Dienes 622
7.6.11.18.3 Variation 3: Cycloallylation .. 622
7.6.11.18.4 Variation 4: Alkylation of Styrene ... 622
7.6.11.19 Method 19: Grignard Reagents with Iron Compounds 623
7.6.11.20 Method 20: Grignard Reagents with Manganese Compounds 624

7.6.12 Product Subclass 12: Magnesium Halides
M. Shimizu

7.6.12 Synthesis of Product Subclass 12 ... 629
7.6.12.1 Method 1: Synthesis of Magnesium Fluoride 629
7.6.12.2 Method 2: Synthesis of Magnesium Chloride 630
7.6.12.3 Method 3: Synthesis of Magnesium Bromide–Diethyl Ether Complex 630
7.6.12.4 Method 4: Synthesis of Magnesium Bromide–Tetrahydrofuran Complex 631
7.6.12.5 Method 5: Synthesis of Magnesium Iodide–Diethyl Ether Complex and Magnesium Iodide ... 632

Applications of Product Subclass 12 in Organic Synthesis 633
7.6.12.6 Method 6: Reactions Involving Magnesium Fluoride 633
7.6.12.7 Method 7: Reactions Involving Magnesium Chloride 633
7.6.12.8 Method 8: Reactions Involving Magnesium Chloride–Sodium Iodide 634
7.6.12.9 Method 9: Reactions Involving Magnesium Bromide as a Lewis Acid ... 635
7.6.12.9.1 Variation 1: Magnesium Bromide Promoted Addition to Aldehydes 635
7.6.12.9.2 Variation 2: Rearrangement of Epoxides Using Magnesium Bromide 636
7.6.12.10 Method 10: Bromination Reactions Involving Magnesium Bromide 637
7.6.12.11 Method 11: Reactions Promoted by Magnesium Iodide 638
7.6.12.11.1 Variation 1: Rearrangement of Epoxides with Magnesium Iodide 638
7.6.12.11.2 Variation 2: Other Regioselective Reactions Promoted by Magnesium Iodide ... 639
7.6.12.12 Method 12: Iodination Reactions Involving Magnesium Iodide 640

7.6.13 Product Subclass 13: Magnesium Oxide, Alkoxides, and Carboxylates
M. Shimizu

7.6.13 Synthesis of Product Subclass 13 ... 645
7.6.13.1 Method 1: Synthesis of Magnesium Oxide 645
7.6.13.2 Method 2: Synthesis of Magnesium Methoxide 645
7.6.13.3 Method 3: Synthesis of Magnesium 2-Ethoxyethoxide 646
7.6.13.4 Method 4: Synthesis of Diethyl (Ethoxymagnesio)malonate 646
7.6.13.5 Method 5: Synthesis of Methylmagnesium Carbonate 647
7.6.13.6 Method 6: Synthesis of Magnesium Ethyl Malonate 647
7.6.13.7 Method 7: Synthesis of Magnesium Monoperoxypthalate Hexahydrate 648
7.6.13.8 Method 8: Synthesis of Other Magnesium Carboxylates 648

Applications of Product Subclass 13 in Organic Synthesis 649
7.6.13.9 Method 9: Reactions Involving Magnesium Oxide 649
7.6.13.10 Method 10: Reactions Involving Magnesium Methoxide 650
7.6.13.11 Method 11: Reactions Involving Magnesium 2-Ethoxyethoxide 651
7.6.13.12 Method 12: Reactions Involving Diethyl (Ethoxymagnesio)malonate 652
7.6.13.13 Method 13: Reactions Involving Methylmagnesium Carbonate 653
7.6.13.14 Method 14: Reactions Involving Magnesium Ethyl Malonate 655
7.6.13.15 Method 15: Oxidations by Magnesium Monoperoxypthalate Hexahydrate 656
7.6.13.16 Method 16: Reactions Involving Other Magnesium Carboxylates 656

7.6.14 Product Subclass 14: Magnesium Amides
M. Shimizu

7.6.14 Product Subclass 14: Magnesium Amides 661
Synthesis of Product Subclass 14 661
7.6.14.2 Method 2: Synthesis of Magnesium Bis(diisopropylamide) 661
7.6.14.3 Method 3: Synthesis of Magnesium Bis(2,2,6,6-tetramethylpiperidide) 662
7.6.14.4 Method 4: Synthesis of Other Magnesium Bis(dialkylamides) 662

Applications of Product Subclass 14 in Organic Synthesis 663
7.6.14.5 Method 5: Reactions Involving Methylmagnesium N-Cyclohexyl-N-iso-propylamide 663
7.6.14.6 Method 6: Reactions Involving Magnesium Bis(diisopropylamide) 664
7.6.14.7 Method 7: Reactions Involving Magnesium Bis(2,2,6,6-tetramethylpiperidide) 664
7.6.14.8 Method 8: Reactions Involving Magnesium Bis(dialkylamides) 666

7.6.15 Product Subclass 15: Dialkyl- and Diarylmagnesiums
J.-H. Zhang, C. C. K. Keh, and C.-J. Li

7.6.15 Product Subclass 15: Dialkyl- and Diarylmagnesiums 669
Synthesis of Product Subclass 15 669
7.6.15.1 Method 1: Preparation from Grignard Reagents 669
7.6.15.1.1 Variation 1: Reaction of Grignard Reagents with Organolithium Compounds 669
7.6.15.2 Method 2: Reaction of Diorganomercury(II) Compounds with Magnesium 670
<table>
<thead>
<tr>
<th>Section</th>
<th>Method/Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6.15.3</td>
<td>Method 3: Reaction of Hydrocarbons with Magnesium</td>
<td>671</td>
</tr>
<tr>
<td></td>
<td>Applications of Product Subclass 15 in Organic Synthesis</td>
<td>672</td>
</tr>
<tr>
<td>7.6.15.4</td>
<td>Method 4: Asymmetric Addition of DialkylMagnesium to Aldehydes</td>
<td>672</td>
</tr>
<tr>
<td>7.6.15.5</td>
<td>Method 5: Application of Magnesium–Diene Reagents in Organic Synthesis</td>
<td>673</td>
</tr>
<tr>
<td>7.7</td>
<td>Product Class 7: Calcium Compounds</td>
<td>677</td>
</tr>
<tr>
<td>7.7.1</td>
<td>Product Subclass 1: Organocalcium Hydrides</td>
<td>677</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 1</td>
<td>677</td>
</tr>
<tr>
<td>7.7.1.1</td>
<td>Method 1: By Direct Reaction</td>
<td>677</td>
</tr>
<tr>
<td>7.7.2</td>
<td>Product Subclass 2: Organocalcium Halides</td>
<td>678</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 2</td>
<td>678</td>
</tr>
<tr>
<td>7.7.2.1</td>
<td>Method 1: By Direct Reactions</td>
<td>678</td>
</tr>
<tr>
<td>7.7.2.2</td>
<td>Method 2: By Indirect Reactions</td>
<td>680</td>
</tr>
<tr>
<td>7.7.3</td>
<td>Product Subclass 3: Diorganocalcium Compounds</td>
<td>682</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 3</td>
<td>682</td>
</tr>
<tr>
<td>7.7.3.1</td>
<td>Method 1: By Transmetalation and Direct Reactions</td>
<td>682</td>
</tr>
<tr>
<td>7.8</td>
<td>Product Class 8: Strontium Compounds</td>
<td>685</td>
</tr>
<tr>
<td>7.8.1</td>
<td>Product Subclass 1: Alkylstrontium Halides</td>
<td>685</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 1</td>
<td>685</td>
</tr>
<tr>
<td>7.8.1.1</td>
<td>Method 1: From Alkyl Halides and Strontium Metal or Activated Strontium</td>
<td>685</td>
</tr>
<tr>
<td></td>
<td>Applications of Product Subclass 1 in Organic Synthesis</td>
<td>687</td>
</tr>
<tr>
<td>7.8.1.2</td>
<td>Method 2: Reaction of Carbonyl Compounds with Alkylstrontium Halides</td>
<td>687</td>
</tr>
<tr>
<td>7.8.1.3</td>
<td>Method 3: Reaction of Vinylacetylenes with Alkylstrontium Halides</td>
<td>688</td>
</tr>
<tr>
<td>7.8.1.4</td>
<td>Method 4: Reactions with Allylic Strontium Reagents</td>
<td>689</td>
</tr>
<tr>
<td>7.8.2</td>
<td>Product Subclass 2: Dialkylstrontium</td>
<td>690</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 2</td>
<td>690</td>
</tr>
<tr>
<td>7.8.2.1</td>
<td>Method 1: From Dialkylzinc and Strontium Metal</td>
<td>690</td>
</tr>
<tr>
<td></td>
<td>Applications of Product Subclass 2 in Organic Synthesis</td>
<td>690</td>
</tr>
<tr>
<td>7.8.2.2</td>
<td>Method 2: Reaction of Vinylacetylenes with Dialkylstrontium</td>
<td>690</td>
</tr>
</tbody>
</table>
7.8.3 **Product Subclass 3: Metallocyclic Compounds of Strontium** 691

Synthesis of Product Subclass 3 .. 691

7.8.3.1 Method 1: From 1,3-Dienes and Activated Strontium 691

Applications of Product Subclass 3 in Organic Synthesis 691

7.8.3.2 Method 2: Reaction of Dichloroalkanes with Metallocyclic Compounds of Strontium ... 691

7.8.4 **Product Subclass 4: Strontium Metallocenes and Related Compounds** 692

Synthesis of Product Subclass 4 .. 692

7.8.4.1 Method 1: From Cyclopentadiene and Strontium Metal or Strontium Halide ... 692

7.8.5 **Product Subclass 5: Miscellaneous Compounds of Strontium** 692

Synthesis of Product Subclass 5 .. 692

7.8.5.1 Method 1: Synthesis in Ammonia-Saturated Ethereal Solvents 692

7.9 **Product Class 9: Barium Compounds**

A. Yanagisawa

7.9 **Product Class 9: Barium Compounds** ... 695

7.9.1 **Product Subclass 1: Barium** .. 695

Synthesis of Product Subclass 1 .. 696

7.9.1.1 Method 1: Activated Barium from Barium Iodide and Lithium Biphenyldide ... 696

Applications of Product Subclass 1 in Organic Synthesis 696

7.9.1.2 Method 2: Homocoupling of Allylic Halides 696

7.9.1.2.1 Variation 1: Cross Coupling of Allylic Halides with Allylic Phosphates 698

7.9.1.3 Method 3: Reactions of Conjugated Dienes with Dichloroalkanes 698

7.9.2 **Product Subclass 2: Barium–Metal Reagents** 699

Synthesis of Product Subclass 2 .. 700

7.9.2.1 Method 1: Barium Ferrate(VI) Monohydrate from Sodium Ferrate and Barium Nitrate ... 700

7.9.2.2 Method 2: Barium Dihydroxytrioxoruthenate(VI) from Ruthenium(III) Chloride and Barium Nitrate ... 700

7.9.2.3 Method 3: Barium Manganate from Potassium Permanganate or Potassium Manganate and Barium Chloride ... 701

Applications of Product Subclass 2 in Organic Synthesis 701

7.9.2.4 Method 4: Oxidation of Alcohols to Aldehydes and Ketones 701

7.9.2.4.1 Variation 1: Oxidation of Aromatic Aldehydes to Aromatic Acids ... 702

7.9.2.5 Method 5: Oxidation of Diols to Lactones 703

7.9.2.6 Method 6: Oxidative Coupling of Thiols to Disulfides 704

7.9.2.7 Method 7: Azo Compounds by Oxidative Coupling of Aromatic Amines ... 705

7.9.2.8 Method 8: Oxidation of Alkanes to Carbonyl Compounds 705

7.9.2.9 Method 9: Dehydrogenation of 4,5-Dihydroimidazoles 706
7.9.3 Product Subclass 3: Barium Hydroxide .. 707

Applications of Product Subclass 3 in Organic Synthesis 707

7.9.3.1 Method 1: Partial Hydrolysis of Diesters 707
7.9.3.2 Method 2: Decarboxylations of Dicarboxylic Acid Derivatives ... 708
7.9.3.2.1 Variation 1: Deacylation of β-Oxo Carbonyl Compounds 709
7.9.3.3 Method 3: Favorskii-Type Ring Contraction of α-Chloro-δ-lactams 710
7.9.3.4 Method 4: Horner–Wadsworth–Emmons Reactions 711
7.9.3.5 Method 5: Suzuki Coupling of Sterically Hindered Arylboronic Acids with Aryl Halides ... 712

7.9.4 Product Subclass 4: Allylic Barium Reagents 713

Synthesis of Product Subclass 4 ... 714

7.9.4.1 Method 1: From Allyllithiums and Barium Iodide 714
7.9.4.2 Method 2: From Allylic Halides and Activated Barium 715

Applications of Product Subclass 4 in Organic Synthesis 716

7.9.4.3 Method 3: Cross-Coupling Reactions with Allylic Halides 716
7.9.4.3.1 Variation 1: With Allylic Phosphates 719
7.9.4.3.2 Variation 2: Silylation of Allylic Barium Reagents 720
7.9.4.3.3 Variation 3: Reactions of Siloxyallylbarium Reagents with Alkyl Halides ... 720
7.9.4.4 Method 4: Additions to Carbonyl Compounds 722
7.9.4.4.1 Variation 1: Additions to Carbonyl Compounds in the Presence of Crown Ethers .. 723
7.9.4.4.2 Variation 2: Addition to a Carbonyl Compound in the Presence of a Borane ... 724
7.9.4.4.3 Variation 3: Addition to Carbon Dioxide 725
7.9.4.4.4 Variation 4: Additions of Siloxyallylbarium Reagents to Carbonyl Compounds ... 726
7.9.4.5 Method 5: Conjugate Additions to Enones 727
7.9.4.6 Method 6: Ring Opening of Epoxides 728
7.9.4.7 Method 7: Additions to Imines ... 729

Keyword Index .. 735

Author Index ... 765

Abbreviations ... 797
Volume 8:
Compounds of Group 1 (Li—Cs)

Volume 8a

8.1 Lithium Compounds
Keyword Index
Author Index
Abbreviations

Volume 8b

8.2 Sodium Compounds
8.3 Potassium Compounds
8.4 Rubidium and Cesium Compounds
Keyword Index
Author Index
Abbreviations
Volume 8a:
Compounds of Group 1 (Li—Cs)

Preface ... V

Table of Contents ... XV

Introduction
M. Majewski and V. Snieckus .. 1

8.1 Product Class 1: Lithium Compounds
M. Majewski and V. Snieckus .. 5

8.1.1 Product Subclass 1: Lithium Metal
R. K. Dieter .. 43

8.1.2 Product Subclass 2: Lithium Hydride
U. Wietelmann .. 133

8.1.3 Product Subclass 3: Lithium Halides, Lithium Cyanide,
and Related Salts
U. Wietelmann .. 139

8.1.4 Product Subclass 4: Lithium–Oxygen Compounds
U. Wietelmann .. 165

8.1.5 Product Subclass 5: Lithium–Sulfur, –Selenium,
and –Tellurium Compounds
U. Wietelmann .. 171

8.1.6 Product Subclass 6: Lithium Amides
J. Eames ... 173

8.1.7 Product Subclass 7: Alkylithium and Cycloalkyllithium Compounds
L. Brandsma and J. W. Zwikker 243

8.1.8 Product Subclass 8: Alkenyllithium Compounds
L. Brandsma and J. W. Zwikker 253

8.1.9 Product Subclass 9: Allenyllithium Compounds
L. Brandsma and J. W. Zwikker 271

8.1.10 Product Subclass 10: Lithium Acetylides
L. Brandsma and J. W. Zwikker 285
8.1.11 Product Subclass 11: Lithium Alkynolates, Alkynethiolates, and Alkyneselenolates
L. Brandsma and J. W. Zwikker .. 305

8.1.12 Product Subclass 12: Allyllithium Compounds
L. Brandsma and J. W. Zwikker .. 313

8.1.13 Product Subclass 13: Benzyllithium Compounds and (Lithiomethyl)hetarenes
J. N. Reed .. 329

8.1.14 Product Subclass 14: Aryllithium and Hetaryllithium Compounds
G. W. Gribble .. 357

8.1.15 Product Subclass 15: α-Lithiocarboxylic Acids and Related Lithium Compounds (Including Enolates)
J. R. Green .. 427

8.1.16 Product Subclass 16: β-Lithiocarboxylic Acids and Related Lithium Compounds
D. Caine ... 487

8.1.17 Product Subclass 17: α-Lithio Aldehydes, α-Lithio Ketones, and Related Compounds
D. Caine ... 499

8.1.18 Product Subclass 18: β-Lithio Aldehydes, β-Lithio Ketones, and Related Compounds
D. Caine ... 619

8.1.19 Product Subclass 19: sp³-Hybridized α-Lithio Ethers and O-Carbamates
S. MacNeil .. 637

8.1.20 Product Subclass 20: α-Lithio Sulfoxides
T. Durst and M. Khodaei ... 661

8.1.21 Product Subclass 21: α-Lithioamines
R. E. Gawley, S. O’Connor, and R. Klein 677

8.1.22 Product Subclass 22: Lithium Nitronates
N. Ono ... 759

8.1.23 Product Subclass 23: γ-Lithio Ethers and Related Compounds
D. Caine ... 775

8.1.24 Product Subclass 24: Carbamoyllithium and Trihalomethylolithium Compounds
C. Metallinos .. 795
8.1.25 Product Subclass 25: Tris(organosulfanyl)- and Tris(organoselanyl)methyl lithium Compounds
C. Nájera and M. Yus ... 805

8.1.26 Product Subclass 26: Bis(organosulfanyl)- and Bis(organoselanyl)methyl lithium Compounds
C. Nájera and M. Yus ... 813

8.1.27 Product Subclass 27: α-Lithio Vinyl Ethers
R. W. Friesen and C. F. Sturino ... 841

Keyword Index .. i
Author Index .. xxxiii
Abbreviations .. lxxxv

Overview XIII
Table of Contents

Introduction
M. Majewski and V. Snieckus

8.1 Product Class 1: Lithium Compounds

M. Majewski and V. Snieckus

8.1.1 Product Subclass 1: Lithium Metal

R. K. Dieter

8.1.1.1 Method 1: Synthesis of C–Li or Si–Li Groups and Their Reactions with Carbon Electrophiles

- Variation 1: Reductive Halogen–Metal Exchange
 - 44
- Variation 2: Reductive Metalation of Carbon–Chalcogen and C–N Bonds
 - 55
 - 65

8.1.1.2 Method 2: Synthesis of the C–Li Bond Followed by Protonation, Coupling, or Elimination

- Variation 1: From Carbon–Heteroatom and Selected C–C Bonds
 - 67
- Variation 2: Birch Reductions
 - 83
- Variation 3: Heteroaromatic Birch Reductions
 - 96
- Variation 4: Styrenes, 1,3-Dienes, and Alkynes
 - 101

8.1.1.3 Method 3: Synthesis of X–Li Bonds (X = O, N, S, P)

- Variation 1: Reductive Metalation of Alcohols, Amines, Thiols, Phosphines, and X–X Bonds
 - 107
- Variation 2: Reduction of C=O and C=N Bonds
 - 109
- Variation 3: Reduction of π-, Strained C–C, or C–X Bonds α to a Carbonyl Group
 - 113
8.1.2 Product Subclass 2: Lithium Hydride
U. Wietelmann

Applications of Product Subclass 2 in Organic Synthesis

8.1.2.1 Method 1: Reactions as a Base
8.1.2.2 Method 2: Superactive Lithium Hydride
8.1.2.3 Method 3: Other Lithium Hydride Activation Methods

8.1.3 Product Subclass 3: Lithium Halides, Lithium Cyanide, and Related Salts
U. Wietelmann

Applications of Product Subclass 3 in Organic Synthesis

8.1.3.1 Method 1: Organic Salt Solutions as Reaction Media
8.1.3.2 Method 2: Effects on Main Group Organometallic Chemistry
8.1.3.2.1 Variation 1: Salt Effects in Enolate and Similar Chemistry
8.1.3.2.2 Variation 2: Protonation of Enolates
8.1.3.2.3 Variation 3: Lithium Salt Effects in Grignard Chemistry
8.1.3.3 Method 3: Effects on Transition-Metal Chemistry
8.1.3.3.1 Variation 1: Palladium-Catalyzed Reactions
8.1.3.3.2 Variation 2: Organocopper Reactions
8.1.3.3.3 Variation 3: Reactions of Other Transition Metals
8.1.3.4 Method 4: Addition Reactions
8.1.3.4.1 Variation 1: Cycloaddition Reactions
8.1.3.4.2 Variation 2: Addition to Carbonyl Compounds
8.1.3.4.3 Variation 3: Miscellaneous Additions
8.1.3.5 Method 5: Single-Bond Cleavage Reactions
8.1.3.6 Method 6: Condensation Reactions
8.1.3.7 Method 7: Elimination Reactions
8.1.3.8 Method 8: Hydride Reductions
8.1.3.9 Method 9: Lithium Salts as Sources for Halogens or Cyanide

8.1.4 Product Subclass 4: Lithium–Oxygen Compounds
U. Wietelmann

Applications of Product Subclass 4 in Organic Synthesis

8.1.4.1 Method 1: Reactions Using Lithium Hydroxide
8.1.4.2 Method 2: Reactions Using Lithium Carbonate
8.1.4.3 Method 3: Use of Lithium Hydroperoxide and Related Reagents
8.1.4.4 Method 4: Reactions Using Lithium Acetate
8.1.4.5 Method 5: Reactions Using Lithium Alkoxides
8.1.4.5.1 Variation 1: Elimination and Condensation Reactions
8.1.4.5.2 Variation 2: Oxidation Reactions with Copper(II) Bromide–Lithium tert-Butoxide
8.1.5 Product Subclass 5: Lithium–Sulfur, –Selenium, and –Tellurium Compounds
U. Wietelmann

8.1.5 Applications of Product Subclass 5 in Organic Synthesis

8.1.6 Product Subclass 6: Lithium Amides
J. Eames

8.1.6 Synthesis of Product Subclass 6

8.1.6.1 Method 1: Lithium Amide

8.1.6.2 Method 2: Lithium Ethylamide

8.1.6.3 Method 3: Lithium Pyrrolidine

8.1.6.4 Method 4: Lithium Diethylamide

8.1.6.5 Method 5: Lithium Dicyclohexylamide

8.1.6.6 Method 6: Lithium Diisopropylamide

8.1.6.6.1 Variation 1: By Deprotonation of Diisopropylamine by Butyllithium

8.1.6.6.2 Variation 2: By Reaction of Diisopropylamine with Lithium

8.1.6.7 Method 7: Lithium 2,2,6,6-Tetramethylpiperidide

8.1.6.8 Method 8: Lithium Isopropylcyclohexylamide

8.1.6.9 Method 9: Lithium 3-Aminopropylamide

8.1.6.10 Method 10: Lithium Hexamethyldisilazanide

8.1.6.11 Method 11: Lithium Benzyl(trimethylsilyl)amide

8.1.6.12 Method 12: Tetradentate Chiral Lithium Amides

8.1.6.13 Method 13: Lithium (R)-(1-Phenylethyl)(2,2,2-trifluoroethyl)amide

8.1.6.14 Method 14: Lithium [(3S)-3-(1-Piperidylmethyl)-1,2,3,4-tetrahydroisoquinolin-2-ide

8.1.6.15 Method 15: Lithium (S)-Benzyl(1-phenylethyl)amide

8.1.6.16 Method 16: The Dilithium Salt of 1-(Methylamino)-1-phenylpropan-2-ol

8.1.6.17 Method 17: Lithium [(1R,2S)-1-phenyl-2-pyrroloidin-1-ylpropyl]amide

8.1.6.18 Method 18: Lithium [(1S,2S)-1,2-Diphenyl-N,N'-bis[(1R)-1-phenylethyl]-ethane-1,2-diamide

8.1.6.19 Method 19: Lithium Bis[(S)-1-phenylethyl]amide

8.1.6.20 Method 20: Lithium (S)-2-(Pyrrolidin-1-ylmethyl)pyrrolidine

8.1.6.21 Method 21: Lithium [(2S,3aS,7aS)-2-(Pyrrolidin-1-ylmethyl)octahydro-1H-indol-1-ide

8.1.6.22 Method 22: Lithium (1R,2R)-N,N'-Bis(2-methoxyethyl)cyclohexane-1,2-diamide

8.1.6.23 Method 23: The Lithium Salt of (1S,3R,4R)-3-(Pyrrolidin-1-ylmethyl)-2-azabicyclo[2.2.1]heptane

8.1.6.24 Method 24: Lithium (S)-Benzyl[2-(4-methylpiperazin-1-yl)-1-phenylethyl]amide
8.1.6.25 Method 25: Lithium (S)-(Diphenylmethyl)(1-benzylpyrrolidin-3-yl)amide 203

Applications of Product Subclass 6 in Organic Synthesis 204

8.1.6.26 Method 26: Deprotonation of Carbonyl Compounds To Give Lithium Enolates 204

8.1.6.27 Method 27: Enantioselective Deprotonation of Ketones by Chiral Lithium Amides 208

8.1.6.28 Method 28: Deprotonation of Ketones by Lithium Hexamethyldisilazanide in the Synthesis of Diazot Ketones 214

8.1.6.29 Method 29: Deprotonation of Terminal Alkynes by Lithium Amide .. 215

8.1.6.30 Method 30: Deprotonation of an Epoxide by Lithium Diethylamide .. 216

8.1.6.31 Method 31: Desymmetrization of meso-Epoxides by Deprotonation by Lithium Amides 217

8.1.6.32 Method 32: Kinetic Resolution of Racemic Epoxides by Deprotonation by Lithium Amides 221

8.1.6.33 Method 33: Isomerization of an Epoxide to an Allylic Alcohol by Deprotonation by Lithium Diethylamide .. 221

8.1.6.34 Method 34: Deprotonation of a Nitrile by Lithium Diisopropylamide .. 222

8.1.6.35 Method 35: Carbene Formation by Deprotonation Reactions of Lithium Amides 223

8.1.6.36 Method 36: Desymmetrization of an Amide by Deprotonation Using Lithium Amides 224

8.1.6.37 Method 37: Desymmetrization of a meso-Phospholane Oxide by Deprotonation by a Lithium Amide .. 225

8.1.6.38 Method 38: Nucleophilic Addition Involving Lithium Amides .. 227

8.1.6.38.1 Variation 1: Nucleophilic Addition Involving Lithium Diisopropylamide 227

8.1.6.38.2 Variation 2: Diastereoselective Conjugate Addition with Lithium Benzyl(1-phenylethyl)amide 228

8.1.6.39 Method 39: Hydride Transfer Involving Lithium Amides .. 230

8.1.6.39.1 Variation 1: Hydride Transfer by Lithium Diisopropylamide .. 230

8.1.6.39.2 Variation 2: Hydride Transfer by Lithium (S)-Benzy1[2-(4-methyl-piperazin-1-yl)-1-phenylethyl]amide .. 231

8.1.6.40 Method 40: Additional Applications of Chiral Lithium Amides .. 231

8.1.6.40.1 Variation 1: Enantioselective Addition of Butyllithium Mediated by a Chiral Lithium Amide 231

8.1.6.40.2 Variation 2: Enantioselective Protonation of a Prostereogenic Enolate .. 232

8.1.7 Product Subclass 7: Alkyl lithium and Cycloalkyllithium Compounds

L. Brandsma and J. W. Zwikker

8.1.7 Product Subclass 7: Alkyl lithium and Cycloalkyllithium Compounds .. 243

Synthesis of Product Subclass 7 .. 244

8.1.7.1 Method 1: Reaction of Halogenides with Lithium .. 244

8.1.7.2 Method 2: Halogen–Lithium Exchange .. 246

8.1.7.3 Method 3: Deprotonation .. 246

8.1.7.4 Methods 4: Additional Methods .. 247
Applications of Product Subclass 7 in Organic Synthesis .. 247

8.1.7.5 Method 5: Replacement of Lithium by Other Metals 247
8.1.7.6 Method 6: Addition of Alkyllithium to Unsaturated Carbon Compounds
(Carbolithiation) .. 248
8.1.7.6.1 Variation 1: Cyclization of Unsaturated Lithium Compounds
(Cyclocarbolithiation) ... 249

8.1.8 Product Subclass 8: Alkenyllithium Compounds
L. Brandsma and J. W. Zwikker

8.1.8 Product Subclass 8: Alkenyllithium Compounds .. 253
Synthesis of Product Subclass 8 .. 253
8.1.8.1 Method 1: Deprotonation .. 253
8.1.8.1.1 Variation 1: Deprotonation with Alkyllithium Reagents 254
8.1.8.1.2 Variation 2: Deprotonation with Superbasic Reagents 256
8.1.8.1.3 Variation 3: Deprotonation with Lithium Dialkylamides 257
8.1.8.2 Method 2: Halogen–Metal Exchange Using Alkyllithium Reagents 259
8.1.8.3 Method 3: Reaction of Alkenyl Halides with Lithium 261
8.1.8.4 Method 4: Tin–Lithium Exchange .. 262
8.1.8.5 Method 5: Reaction of (Arylsulfonyl)hydrazone with Alkyllithium
Reagents (Shapiro Reaction) .. 263
8.1.8.6 Methods 6: Additional Methods .. 264
Applications of Product Subclass 8 in Organic Synthesis ... 265
8.1.8.7 Method 7: Replacement of Lithium by Other Metals 265
8.1.8.8 Method 8: Formation of C–C Bonds .. 266
8.1.8.8.1 Variation 1: Reaction with Heterocumulenes .. 266
8.1.8.8.2 Variation 2: Acylation Reactions ... 266
8.1.8.8.3 Variation 3: Alkylation and Related Reactions .. 267
8.1.8.8.4 Variations 4: Additional Reactions .. 268

8.1.9 Product Subclass 9: Allenyllithium Compounds
L. Brandsma and J. W. Zwikker

8.1.9 Product Subclass 9: Allenyllithium Compounds .. 271
Synthesis of Product Subclass 9 .. 272
8.1.9.1 Method 1: Deprotonation of Allenes with Butyllithium 272
8.1.9.1.1 Variation 1: Deprotonation of Allenes with Lithium Amides 273
8.1.9.2 Method 2: Metalation of Alkynes with Butyllithium 274
8.1.9.3 Method 3: Metalation of Alkynes with Butyllithium–N,N,N',N'–
Tetramethylethylendiamine .. 276
8.1.9.4 Method 4: Metalation of Alkynes with Butyllithium–Potassium tert-Butoxide
Followed by Addition of Lithium Bromide ... 277
8.1.9.5 Method 5: 1,4-Addition of Lithium Compounds to Enynes 278
Applications of Product Subclass 9 in Organic Synthesis ... 278

8.1.9.6 Method 6: Replacement of Lithium by Other Metals 278
8.1.9.7 Method 7: Formation of C—C Bonds .. 279
8.1.9.7.1 Variation 1: Reactions with Heterocumulenes 279
8.1.9.7.2 Variation 2: Reactions with Acylating Agents 279
8.1.9.7.3 Variation 3: Reactions with Aldehydes and Ketones 280
8.1.9.7.4 Variation 4: Reaction with Alkylating Agents 280
8.1.9.8 Methods 8: Additional Methods .. 281

8.1.10 Product Subclass 10: Lithium Acetylides
L. Brandsma and J. W. Zwikker

8.1.10 Synthesis of Product Subclass 10 .. 285
8.1.10.1 Method 1: Metalation with Lithium in Liquid Ammonia 287
8.1.10.2 Method 2: Metalation with Lithium Amide in Liquid Ammonia 287
8.1.10.2.1 Variation 1: Dehydrohalogenation with Lithium Amide 288
8.1.10.3 Method 3: Metalation with Lithium Dialkylamides 288
8.1.10.3.1 Variation 1: Elimination Reactions with Lithium Dialkylamides ... 289
8.1.10.4 Method 4: Metalation with Alkylithium Reagents 289
8.1.10.5 Method 5: Dehalogenation with Alkylithium Reagents 290
8.1.10.6 Method 6: Rearrangement of Terminally Lithiated Allenes 291
8.1.10.7 Methods 7: Additional Methods .. 291
8.1.10.8 Applications of Product Subclass 10 in Organic Synthesis 292
8.1.10.9 Method 8: Replacement of Lithium by Other Metals 292
8.1.10.10 Method 9: Formation of C—C Bonds 292
8.1.10.10.1 Variation 1: Reactions with Heterocumulenes 292
8.1.10.10.2 Variation 2: Acylation Reactions .. 294
8.1.10.10.3 Variation 3: Reactions with Aldehydes and Ketones 296
8.1.10.10.4 Variation 4: Reaction with Cyanogen Chloride 297
8.1.10.10.5 Variation 5: Reactions with Alkylating Agents 297
8.1.10.10.6 Method 10: Formation of Carbon—Heteroatom Bonds 299
8.1.10.10.7 Variation 1: Reaction with Halogenating Agents 299
8.1.10.10.8 Variation 2: Sulfonylation, Sulfinylation, and Related Reactions 301
8.1.10.10.9 Variation 3: Silylation and Stannylation 302

8.1.11 Product Subclass 11: Lithium Alkynolates, Alkynethiolates, and Alkyneselenolates
L. Brandsma and J. W. Zwikker

8.1.11 Synthesis of Product Subclass 11 .. 305
8.1.11.1 Method 1: Insertion of Elements ... 305
8.1.11.2 Method 2: Lithium Alkynolates by Cyclofragmentation of Heterocycles 306
8.1.11.3 Method 3: Lithium Alkynolates from 1,2,3-Thiadiazoles 307
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1.11.4</td>
<td>Method 4:</td>
<td>Lithium Alkynolates from α,α-Dibromo or α-Halo Ketones</td>
<td>307</td>
</tr>
<tr>
<td>8.1.11.5</td>
<td>Methods 5:</td>
<td>Additional Methods</td>
<td>307</td>
</tr>
<tr>
<td></td>
<td>Applications of Product Subclass 11 in Organic Synthesis</td>
<td>308</td>
<td></td>
</tr>
<tr>
<td>8.1.11.6</td>
<td>Method 6:</td>
<td>Functionalization of Lithium Alkynolates</td>
<td>308</td>
</tr>
<tr>
<td>8.1.11.7</td>
<td>Method 7:</td>
<td>Functionalization of Lithium Alkynethiolates and Alkyneselenolates</td>
<td>309</td>
</tr>
<tr>
<td>8.1.11.8</td>
<td>Method 8:</td>
<td>Protonation–Addition Reactions with Lithium Alkynolates</td>
<td>310</td>
</tr>
<tr>
<td>8.1.11.9</td>
<td>Method 9:</td>
<td>Protonation–Addition Reactions with Lithium Alkynethiolates</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>Method 12: Allyllithium Compounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L. Brandsma and J. W. Zwikker</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.1.12.1</td>
<td>Method 1:</td>
<td>Deprotonation</td>
<td>314</td>
</tr>
<tr>
<td>8.1.12.1.1</td>
<td>Variation 1:</td>
<td>Deprotonation with Allyllithium Reagents</td>
<td>315</td>
</tr>
<tr>
<td>8.1.12.1.2</td>
<td>Variation 2:</td>
<td>Deprotonation Using the Superbase Butyllithium–Potassium tert-Butoxide</td>
<td>317</td>
</tr>
<tr>
<td>8.1.12.1.3</td>
<td>Variation 3:</td>
<td>Lithiation with Lithium Dialkylamides</td>
<td>320</td>
</tr>
<tr>
<td>8.1.12.2</td>
<td>Methods 2:</td>
<td>Additional Methods</td>
<td>321</td>
</tr>
<tr>
<td></td>
<td>Applications of Product Subclass 12 in Organic Synthesis</td>
<td>321</td>
<td></td>
</tr>
<tr>
<td>8.1.12.3</td>
<td>Method 3:</td>
<td>Replacement of Lithium by Other Metals</td>
<td>321</td>
</tr>
<tr>
<td>8.1.12.4</td>
<td>Method 4:</td>
<td>Formation of C–C Bonds</td>
<td>322</td>
</tr>
<tr>
<td>8.1.12.4.1</td>
<td>Variation 1:</td>
<td>Reactions with Heterocumulenes</td>
<td>322</td>
</tr>
<tr>
<td>8.1.12.4.2</td>
<td>Variation 2:</td>
<td>Reactions with Alkylation Agents</td>
<td>323</td>
</tr>
<tr>
<td>8.1.12.4.3</td>
<td>Variation 3:</td>
<td>Reactions with Carbonyl Compounds</td>
<td>324</td>
</tr>
<tr>
<td>8.1.12.5</td>
<td>Method 5:</td>
<td>Formation of Carbon–Heteroatom Bonds</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>Method 13: Benzylithium Compounds and (Lithiomethyl)hetarenes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>J. N. Reed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.1.13.1</td>
<td>Method 1:</td>
<td>Deprotonation of Benzylic Carbons</td>
<td>329</td>
</tr>
<tr>
<td>8.1.13.1.1</td>
<td>Variation 1:</td>
<td>Of Unactivated Benzylic Carbons</td>
<td>330</td>
</tr>
<tr>
<td>8.1.13.1.2</td>
<td>Variation 2:</td>
<td>Of Benzylic Carbons Activated by an α-Substituent</td>
<td>331</td>
</tr>
<tr>
<td>8.1.13.1.3</td>
<td>Variation 3:</td>
<td>Heteroatom-Facilitated Lateral Lithiation</td>
<td>336</td>
</tr>
<tr>
<td>8.1.13.2</td>
<td>Method 2:</td>
<td>Heteroatom–Lithium Exchange</td>
<td>342</td>
</tr>
<tr>
<td>8.1.13.2.1</td>
<td>Variation 1:</td>
<td>Tin–Lithium Exchange</td>
<td>342</td>
</tr>
<tr>
<td>8.1.13.2.2</td>
<td>Variation 2:</td>
<td>Selenium–Lithium Exchange</td>
<td>345</td>
</tr>
<tr>
<td>8.1.13.3</td>
<td>Method 3:</td>
<td>Reductive Lithiation</td>
<td>347</td>
</tr>
<tr>
<td>8.1.13.3.1</td>
<td>Variation 1:</td>
<td>Using Lithium Metal and Naphthalene</td>
<td>347</td>
</tr>
<tr>
<td>8.1.13.3.2</td>
<td>Variation 2:</td>
<td>Using Lithium Metal and 4,4'-Di-tert-butyldiphenyl</td>
<td>348</td>
</tr>
</tbody>
</table>
XXII

Table of Contents

8.1.13.4 Method 4: Carbolithiation .. 350
8.1.13.4.1 Variation 1: Of Alkenes .. 350
8.1.13.4.2 Variation 2: Of Alkynes .. 353

8.1.14 Product Subclass 14: Aryllithium and Hetaryllithium Compounds
G. W. Gribble

8.1.14 Product Subclass 14: Aryllithium and Hetaryllithium Compounds 357

Synthesis of Product Subclass 14 .. 357
8.1.14.1 Method 1: Aryllithium Compounds by Halogen–Lithium Exchange 357
8.1.14.1.1 Variation 1: From Aryl Fluorides 358
8.1.14.1.2 Variation 2: From Aryl Chlorides 358
8.1.14.1.3 Variation 3: From Aryl Bromides 359
8.1.14.1.4 Variation 4: From Aryl Iodides .. 361
8.1.14.2 Method 2: Aryllithium Compounds by Directed ortho-Lithiation 361
8.1.14.2.1 Variation 1: Amine Directed ortho-Lithiation Groups 362
8.1.14.2.2 Variation 2: Amide Directed ortho-Lithiation Groups 364
8.1.14.2.3 Variation 3: Alkoxo Directed ortho-Lithiation Groups 365
8.1.14.2.4 Variation 4: Halogen Directed ortho-Lithiation Groups 367
8.1.14.2.5 Variation 5: Sulfur-Based Directed ortho-Lithiation Groups 369
8.1.14.2.6 Variation 6: Other Carbonyl Directed ortho-Lithiation Groups 370
8.1.14.2.7 Variation 7: Phosphorus Directed ortho-Lithiation Groups 371
8.1.14.2.8 Variation 8: Other Nitrogen Directed ortho-Lithiation Groups 372
8.1.14.2.9 Variation 9: Other Directed ortho-Lithiation Groups 373
8.1.14.3 Method 3: Furryllithium Compounds 374
8.1.14.3.1 Variation 1: By Direct Deprotonation 374
8.1.14.3.2 Variation 2: By Halogen–Lithium Exchange 375
8.1.14.3.3 Variation 3: By Directed Deprotonation 375
8.1.14.4 Method 4: Thiennyllithium Compounds 376
8.1.14.4.1 Variation 1: By Direct Deprotonation 376
8.1.14.4.2 Variation 2: By Halogen–Lithium Exchange 377
8.1.14.4.3 Variation 3: By Directed ortho-Lithiation 378
8.1.14.5 Method 5: Pyrrolyllithium Compounds 379
8.1.14.5.1 Variation 1: By Direct Deprotonation 379
8.1.14.5.2 Variation 2: By Halogen–Lithium Exchange 380
8.1.14.5.3 Variation 3: By Directed ortho-Lithiation 381
8.1.14.6 Method 6: Imidazolylithium Compounds 381
8.1.14.6.1 Variation 1: By Direct Deprotonation 381
8.1.14.6.2 Variation 2: By Halogen–Lithium Exchange 382
8.1.14.7 Method 7: Oxazolylithium and Isoxazolylithium Compounds 383
8.1.14.7.1 Variation 1: Lithiation of Oxazoles .. 383
8.1.14.7.2 Variation 2: Lithiation of Isoxazoles 384
8.1.14.8 Method 8: Pyrazolylithium Compounds 384
8.1.14.9 Method 9: Thiazolylithium Compounds 385
8.1.14.10 Method 10: Benzofurlyllithium Compounds 386
8.1.14.11 Method 11: Benzothienyllithium Compounds 386
8.1. Variation 1: By Direct Deprotonation .. 387
8.1.14.2. Variation 3: By Directed ortho-Lithiation 391
8.1.14.15. Method 15: Diazinylolithium, Benzodiazinylolithium, and Other Azinylolithium Compounds ...
8.1.14.15.1. Method 1: Pyrazinylolithium Compounds 399
8.1.14.15.2. Method 2: Pyrimidinylolithium Compounds 400
8.1.14.15.5. Method 5: Other Azinylolithium Compounds 402
8.1.14.15.6. Method 16: Other Azolylolithium Compounds 403
8.1.14.15.7. Method 17: Dibenzo-Fused Hetaryllithium Compounds 403

8.1.15. Product Subclass 15: α-Lithiocarboxylic Acids and Related Lithium Compounds (Including Enolates)

J. R. Green

8.1.15.1. Method 1: Enolate Generation by Direct Deprotonation of Alkanoic Acid Derivatives .. 427
8.1.15.2. Method 2: Enolate Generation by Nucleophilic Attack on Ketene Acetals .. 427
8.1.15.3. Method 3: Enolate Generation by Conjugate Addition or Reduction .. 427
8.1.15.4. Method 4: Enolate Generation by Reduction or Metal–Halogen Exchange of α-Substituted Derivatives 430

Applications of Product Subclass 15 in Organic Synthesis 434
8.1.5 Method 5: Electrophile Incorporation: Protonation (C–Li → C–H) 434
8.1.6 Method 6: Electrophile Incorporation: Alkylation (C–Li → C–C) 436
8.1.6.1 Variation 1: Arylation and Vinylation .. 441
8.1.7 Method 7: Electrophile Incorporation: Heteroatom Incorporation
(C–Li → C–X) ... 444
8.1.7.1 Variation 1: Silylation ... 444
8.1.7.2 Variation 2: Hydroxylation ... 446
8.1.7.3 Variation 3: Amination ... 448
8.1.7.4 Variation 4: Halogenation .. 450
8.1.8 Method 8: Electrophile Incorporation: Reaction with Carbonyl
Compounds and Imines (C–Li → C–C=X) .. 452
8.1.9 Method 9: Electrophile Incorporation: Epoxides and Aziridines
(C–Li → C–C–C=X) .. 458
8.1.10 Method 10: Electrophile Incorporation: Coupling Reactions;
Enolate Dimerization (C–Li → C–C–C=X) .. 461
8.1.11 Method 11: Electrophile Incorporation: Reaction with Carboxy
Compounds (C–Li → C–C=C=X) .. 463
8.1.12 Method 12: Electrophile Incorporation: Michael Addition
(C–Li → C–C–C=C=X) ... 468
8.1.13 Method 13: Enolate Rearrangements: Claisen and
Related Rearrangements .. 473
8.1.14 Method 14: Enolate Rearrangements: [2,3]-Wittig Rearrangements of
Dienolates ... 477
8.1.15 Method 15: Enolate Rearrangements: Reactions with Nucleophiles:
Formation of Ketones ... 477

8.1.16 Product Subclass 16: β-Lithiocarboxylic Acids and Related Lithium
Compounds
D. Caine

8.1.16 Product Subclass 16: β-Lithiocarboxylic Acids and Related Lithium
Compounds ... 487
Synthesis of Product Subclass 16 .. 487
8.1.16.1 Method 1: Arene-Catalyzed Reductive Lithiations of
β-Halogenated Carboxylates and 3-Arylpropenoates 487
8.1.16.2 Method 2: Tin–Lithium Exchange of β-Stannyl Carboxamides 490
8.1.16.3 Method 3: Hydrogen–Lithium Exchange of Carboxylates and
Carboxamides Containing Carbanion-Stabilizing Groups at
the β-Position .. 491
8.1.16.3.1 Variation 1: Hydrogen–Lithium Exchange of β-Phenylsulfonylated
Ortho Esters .. 495
8.1.16.4 Method 4: Addition of Alkyl lithium Reagents to Lithiated
Cinnamic Acids and Cinnamyl Amides ... 496
8.1.17 **Product Subclass 17: α-Lithio Aldehydes, α-Lithio Ketones, and Related Compounds**
D. Caine

8.1.17 **Product Subclass 17: α-Lithio Aldehydes, α-Lithio Ketones, and Related Compounds** .. 499
8.1.17.1 Synthesis of Product Subclass 17 .. 502
8.1.17.1.1 Preformed Lithium Enolates of Carbonyl Compounds 502
8.1.17.1.1 Method 1: Deprotonation of Carbonyl Compounds with Lithium Dialkylamides and Other Strong Bases 502
8.1.17.1.1.1 Variation 1: Regioselective Synthesis of Kinetic (Less Substituted) Enolates of α-Substituted Unsymmetrical Saturated Ketones 504
8.1.17.1.1.2 Variation 2: Regioselective Synthesis of Thermodynamic Enolates of α-Substituted Unsymmetrical Saturated Ketones 509
8.1.17.1.1.3 Variation 3: Kinetic and Thermodynamic Lithium Enolates of Unsymmetrical α- and α′-Dimethylene Ketones 510
8.1.17.1.1.4 Variation 4: Stereoselective Synthesis of E- or Z-Isomers of Acyclic Ketone Lithium Enolates .. 512
8.1.17.1.1.5 Variation 5: Enantioselective Synthesis of Lithium Enolates by Deprotonation of Prochiral Ketones with Chiral, Nonracemic Lithium Amide Bases 516
8.1.17.1.2 Variation 6: Kinetic Deprotonation of α,β-Unsaturated Ketones 519
8.1.17.1.2 Method 2: Regio- and Stereoselective Formation of Lithium Enolates by Indirect Methods .. 522
8.1.17.1.2.1 Variation 1: Lithium/Liquid Ammonia Reduction of α,β-Unsaturated Ketones .. 522
8.1.17.1.2.2 Variation 2: Lithium/Liquid Ammonia Reduction of Ketones with Leaving Groups at the α-Position .. 524
8.1.17.1.2.3 Variation 3: Conjugate Addition of Lithium Dialkylcuprate Reagents to α,β-Unsaturated Ketones .. 525
8.1.17.1.2.4 Variation 4: Generation of Lithium Enolates from Enol Derivatives of Carbonyl Compounds .. 526
8.1.17.1.2.5 Variation 5: Generation of Lithium Enolates by Miscellaneous Methods .. 527
8.1.17.1.3 Variation 6: Generation of Lithium Enolates by Miscellaneous Methods .. 527
8.1.17.1.3 Method 3: Alkylations of Preformed Lithium Enolates 527
8.1.17.1.3.1 Variation 1: Intermolecular Alkylations .. 529
8.1.17.1.3.2 Variation 2: Stereochemistry of Intermolecular Alkylation of Lithium Enolates .. 532
8.1.17.1.3.3 Variation 3: Intramolecular Alkylations .. 537
8.1.17.1.4 Variation 4: Directed Aldol Reactions of Preformed Lithium Enolates .. 538
8.1.17.1.4.1 Variation 1: Aldol Reactions of Lithium Z-Enolates 540
8.1.17.1.4.2 Variation 2: Diastereofacial Selectivity of Aldol Reactions of Chiral, Nonracemic Lithium Z-Enolates .. 541
8.1.17.1.4.3 Variation 3: Aldol Reactions of Lithium E-Enolates .. 542
8.1.17.1.4.4 Variation 4: Aldol Reactions of Lithium Enolates with Chiral Aldehydes .. 543
8.1.17.1.4.5 Variation 5: Asymmetric Aldol Reactions Using Chiral Lithium Amide Bases .. 546
8.1.17.1.4.6 Variation 6: Reactions of Preformed Lithium Enolates with Preformed Iminium Salts .. 548
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1.17.1.5</td>
<td>Method 5</td>
<td>Michael Reactions of Preformed Lithium Enolates</td>
<td>548</td>
</tr>
<tr>
<td>8.1.17.1.5.1</td>
<td>Variation 1</td>
<td>Michael Reactions of Preformed Lithium E- and Z-Enolates with α,β-Unsaturated Ketones and Esters</td>
<td>549</td>
</tr>
<tr>
<td>8.1.17.1.5.2</td>
<td>Variation 2</td>
<td>Intermolecular Reactions of Preformed Lithium Enolates with Various Michael Acceptors</td>
<td>551</td>
</tr>
<tr>
<td>8.1.17.1.5.3</td>
<td>Variation 3</td>
<td>Sequential Michael Reactions of Preformed Lithium Cross-Conjugated Dienolates</td>
<td>553</td>
</tr>
<tr>
<td>8.1.17.1.6</td>
<td>Method 6</td>
<td>C-Acylation Reactions of Preformed Lithium Enolates</td>
<td>555</td>
</tr>
<tr>
<td>8.1.17.1.7</td>
<td>Method 7</td>
<td>Reactions of Lithium Enolates at Carbon with Heteroatom Electrophiles</td>
<td>559</td>
</tr>
<tr>
<td>8.1.17.1.7.1</td>
<td>Variation 1</td>
<td>C-Hydroxylation Reactions</td>
<td>559</td>
</tr>
<tr>
<td>8.1.17.1.7.2</td>
<td>Variation 2</td>
<td>Sulfonylation, Selenenylation, and Halogenation Reactions</td>
<td>562</td>
</tr>
<tr>
<td>8.1.17.1.8</td>
<td>Method 8</td>
<td>Diastereo- and Enantioselective Kinetic Protonation of Lithium Enolates</td>
<td>567</td>
</tr>
<tr>
<td>8.1.17.1.8.1</td>
<td>Variation 1</td>
<td>Diastereoselective Protonation of Chiral Enolates</td>
<td>567</td>
</tr>
<tr>
<td>8.1.17.1.8.2</td>
<td>Variation 2</td>
<td>Enantioselective Protonation of Achiral Lithium Enolates</td>
<td>569</td>
</tr>
<tr>
<td>8.1.17.1.8.3</td>
<td>Variation 3</td>
<td>Catalytic Enantioselective Protonation of Achiral Lithium Enolates</td>
<td>571</td>
</tr>
<tr>
<td>8.1.17.1.9</td>
<td>Method 9</td>
<td>Transmetalation of Lithium Enolates</td>
<td>572</td>
</tr>
<tr>
<td>8.1.17.1.9.1</td>
<td>Variation 1</td>
<td>Lithium–Main Group Metal Exchange</td>
<td>573</td>
</tr>
<tr>
<td>8.1.17.1.9.2</td>
<td>Variation 2</td>
<td>Lithium–Transition Metal Exchange</td>
<td>574</td>
</tr>
<tr>
<td>8.1.17.2</td>
<td>Dilithium and Mixed Lithium/Sodium Dienolates of β-Dicarbonyl Compounds</td>
<td>574</td>
<td></td>
</tr>
<tr>
<td>8.1.17.2.1</td>
<td>Method 1</td>
<td>Preparation of Dilithium and Lithium/Sodium Dienolates of β-Dicarbonyl Compounds</td>
<td>575</td>
</tr>
<tr>
<td>8.1.17.2.2</td>
<td>Method 2</td>
<td>γ-Alkylation of Dilithium or Lithium/Sodium Dienolates of β-Dicarbonyl Compounds</td>
<td>577</td>
</tr>
<tr>
<td>8.1.17.2.3</td>
<td>Method 3</td>
<td>Aldol, Acylation, and Michael Reactions of Dilithium and Lithium/Sodium Dienolates of β-Dicarbonyl Compounds</td>
<td>580</td>
</tr>
<tr>
<td>8.1.17.3</td>
<td>Lithium Azaenolates</td>
<td>582</td>
<td></td>
</tr>
<tr>
<td>8.1.17.3.1</td>
<td>Method 1</td>
<td>Deprotonations of Aldimines and Ketimines with Lithium Bases</td>
<td>583</td>
</tr>
<tr>
<td>8.1.17.3.2</td>
<td>Method 2</td>
<td>Deprotonation of Hydrazones with Lithium Bases</td>
<td>586</td>
</tr>
<tr>
<td>8.1.17.3.3</td>
<td>Method 3</td>
<td>Deprotonation of Oximes and Oxime Ethers with Alkyllithium Reagents</td>
<td>588</td>
</tr>
<tr>
<td>8.1.17.3.4</td>
<td>Method 4</td>
<td>Special Methods for Synthesis of Lithium Azaenolates</td>
<td>589</td>
</tr>
<tr>
<td>8.1.17.3.5</td>
<td>Method 5</td>
<td>C-Alkylation of Lithium Azaenolates</td>
<td>590</td>
</tr>
<tr>
<td>8.1.17.3.5.1</td>
<td>Variation 1</td>
<td>Alkylation of Azaenolates of Imines</td>
<td>590</td>
</tr>
<tr>
<td>8.1.17.3.5.2</td>
<td>Variation 2</td>
<td>Stereoselective Alkylation of Azaenolates of Imines</td>
<td>591</td>
</tr>
<tr>
<td>8.1.17.3.5.3</td>
<td>Variation 3</td>
<td>Alkylation of Azaenolates of Hydrazones</td>
<td>594</td>
</tr>
<tr>
<td>8.1.17.3.6</td>
<td>Method 6</td>
<td>Aldol Reactions of Lithium Azaenolates</td>
<td>597</td>
</tr>
<tr>
<td>8.1.17.3.6.1</td>
<td>Variation 1</td>
<td>Aldol Reactions of Lithium Azaenolates of Imines</td>
<td>597</td>
</tr>
<tr>
<td>8.1.17.3.6.2</td>
<td>Variation 2</td>
<td>Aldol Reactions of Lithium Azaenolates of Hydrazones</td>
<td>598</td>
</tr>
<tr>
<td>8.1.17.3.7</td>
<td>Method 7</td>
<td>Acylation of Lithium Azaenolates</td>
<td>600</td>
</tr>
<tr>
<td>8.1.17.3.8</td>
<td>Method 8</td>
<td>Michael Additions of Lithium Azaenolates</td>
<td>601</td>
</tr>
<tr>
<td>8.1.17.3.9</td>
<td>Method 9</td>
<td>Reactions of Lithium Azaenolates with Selected Heteroatom Electrophiles</td>
<td>604</td>
</tr>
</tbody>
</table>
8.1.18 Product Subclass 18: β-Lithio Aldehydes, β-Lithio Ketones, and Related Compounds
D. Caine

8.1.18 Product Subclass 18: β-Lithio Aldehydes, β-Lithio Ketones, and Related Compounds

Synthesis of Product Subclass 18

8.1.18.1 Method 1: Halogen–Lithium Exchange

8.1.18.2 Method 2: Reductive Lithiation of Halides and Phenyl Sulfides with Lithium Arene Radical Anions

8.1.18.3 Method 3: Lithium Homoenolate Equivalents by Tellurium–Lithium Exchange

8.1.18.4 Method 4: α'- or α'-Enolate-Protected Lithium Homoenolates: Dianionic Reagents

8.1.18.4.1 Variation 1: Preparation of β-Lithio Lithium α'-Enolates

8.1.18.4.2 Variation 2: Preparation of β-Lithio Lithium α'-Enolates

8.1.18.5 Method 5: Carbolithiation of Protected α,β- Unsaturated Aldehydes

8.1.18.6 Method 6: Hydrogen–Lithium Exchange of Acetals and Ketals Containing Carbanion-Stabilizing Groups at the β-Position

8.1.19 Product Subclass 19: sp³-Hybridized α-Lithio Ethers and O-Carbamates
S. MacNeil

8.1.19 Product Subclass 19: sp³-Hybridized α-Lithio Ethers and O-Carbamates

Synthesis of Product Subclass 19

8.1.19.1 Method 1: Substitution of Hydrogen

8.1.19.1.1 Variation 1: Stereospecific Deprotonation at Chiral, Nonracemic Centers

8.1.19.1.2 Variation 2: Diastereoselective Deprotonation by Substrate Control

8.1.19.1.3 Variation 3: Enantioselective Deprotonation/Kinetic Resolution Induced by Chiral Ligands

8.1.19.1.4 Variation 4: Chiral Base Induced Deprotonation

8.1.19.2 Method 2: Substitution of Tin

8.1.19.3 Method 3: Reductive Lithiation

8.1.19.3.1 Variation 1: Reductive Lithiation of Cl—C Bonds

8.1.19.3.2 Variation 2: Reductive Lithiation of S—C Bonds

8.1.19.3.3 Variation 3: Reductive Lithiation of C—C Bonds

8.1.19.4 Method 4: Carbolithiation

8.1.19.5 Method 5: Electrophilic Quench of α-Lithio Oxygen Compounds

8.1.19.5.1 Variation 1: α-Lithio Oxygen Compounds as Homoenolate Equivalents

8.1.19.6 Method 6: Rearrangements of α-Lithio Oxygen Compounds

8.1.19.6.1 Variation 1: [1,2]-Wittig Rearrangements

8.1.19.6.2 Variation 2: [2,3]-Wittig Rearrangements

8.1.19.6.3 Variation 3: Rearrangements of α-Lithio Epoxides
8.1.20
Product Subclass 20: α-Lithio Sulfoxides
T. Durst and M. Khodaei

8.1.20
Product Subclass 20: α-Lithio Sulfoxides 661
Synthesis of Product Subclass 20 ... 661
8.1.20.1 Method 1: Lithiation of Sulfoxides 661
Applications of Product Subclass 20 in Organic Synthesis 663
8.1.20.2 Method 2: Alkylation of α-Lithio Sulfoxides 666
8.1.20.3 Method 3: Reaction with Aldehydes and Ketones 667
8.1.20.4 Method 4: Reaction with Imines 671
8.1.20.5 Method 5: Acylation of α-Lithio Sulfoxides 672
8.1.20.6 Method 6: Michael Addition ... 673

8.1.21
Product Subclass 21: α-Lithioamines
R. E. Gawley, S. O’Connor, and R. Klein

8.1.21
Product Subclass 21: α-Lithioamines 677
Synthesis and Applications of Product Subclass 21 682
8.1.21.1 Synthesis and Applications of Unstabilized α-Lithioamines 682
8.1.21.1.1 Method 1: Deprotonation and Electrophilic Substitution 683
8.1.21.1.2 Method 2: Transmetalation and Electrophilic Substitution 684
8.1.21.1.2.1 Variation 1: Synthesis of a Horner–Wittig Reagent 684
8.1.21.1.2.2 Variation 2: Addition of 2-Lithio-3-methyl-1-tritylaziridine to Benzaldehyde ... 685
8.1.21.1.2.3 Variation 3: Electrophilic Substitutions of 2-Lithio-1-methylpyrrolidine and 2-Lithio-1-methylpiperidine (Racemic) 685
8.1.21.1.2.4 Variation 4: Electrophilic Substitution of 2-Lithiopyrrolidine and 2-Lithiopiperidine (Scalemic) ... 687
8.1.21.1.2.5 Variation 5: Transmetalation and Electrophilic Substitution of a 1-Alllyl-2-lithiopyrrolidine ... 688
8.1.21.1.2.6 Variation 6: Transmetalation and Enantioselective Electrophilic Substitution by Dynamic Thermodynamic Resolution 689
8.1.21.1.3 Method 3: Transmetalation and Sigmatropic Rearrangement 690
8.1.21.1.4 Method 4: Transmetalation and Anionic Cyclization 692
8.1.21.1.4.1 Variation 1: Synthesis of Pyrrolidines and Bicyclic Amines 692
8.1.21.1.4.2 Variation 2: Synthesis of (+)-Pseudoheliotridane via a Scalemic Organolithium ... 693
8.1.21.1.4.3 Variation 3: Tandem Cyclization/Ring Opening 694
8.1.21.1.4.4 Variation 4: Cyclizations onto Naphthyl Dihydroxazoles 694
8.1.21.1.4.5 Variation 5: Intramolecular Michael Addition onto an Indole Ester 695
8.1.21.1.5 Method 5: Reductive Lithiation 696
8.1.21.1.5.1 Variation 1: Reduction and Electrophilic Substitution of α-Sulfanyl Aziridines ... 696
8.1.21.1.5.2 Variation 2: Sulfide Reduction and Anionic Cyclization 697
8.1.21.2 Synthesis and Applications of Dipole-Stabilized α-Lithioamines 697
8.1.21.2.1 Method 1: Deprotonation and Electrophilic Substitution 699

8.1.21.2.1.1 Variation 1: Deprotonation of a Piperidine tert-Butylformamidine, Transmetalation to Copper, and Electrophilic Substitution 699

8.1.21.2.1.2 Variation 2: Deprotonation of N-tert-Butoxycarbonylpyrrolidine and Electrophilic Substitution with Tributyltin Chloride ... 700

8.1.21.2.1.3 Variation 3: Deprotonation of N-tert-Butoxycarbonyl-N-methylisobutylamine and Addition to Benzaldehyde ... 701

8.1.21.2.1.4 Variation 4: Preferential Deprotonation of N-tert-Butoxycarbonyl-N-ethylcyclopropanamine at the Cyclopropyl Methine over the Ethyl Group ... 701

8.1.21.2.1.5 Variation 5: Ring Contraction of 1-tert-Butoxycarbonyl-4-chloro-2-lithiopiperidine to a Cyclopropyl Intermediate, Followed by Deprotonation and Electrophilic Substitution 702

8.1.21.2.1.6 Variation 6: Deprotonation and Palladium-Catalyzed Arylation .. 703

8.1.21.2.1.7 Variation 7: Asymmetric Deprotonation Using a Chiral Base, and Addition to Benzophenone ... 704

8.1.21.2.1.8 Variation 8: Asymmetric Deprotonation Using a Chiral Base: Transmetalation with Copper, and Vinlylation ... 705

8.1.21.2.1.9 Variation 9: Regio- and Stereoselective Deprotonation and Electrophilic Substitution of Imidazolidines ... 706

8.1.21.2.2 Method 2: Transmetalation and Electrophilic Substitution .. 706

8.1.21.2.2.1 Variation 1: Transmetalation from Tin to Lithium and then Copper, with 1,4-Addition ... 706

8.1.21.2.2.2 Variation 2: Transmetalation from Tin to Lithium: Lithiation at Sites Not Available by Deprotonation ... 707

8.1.21.2.2.3 Variation 3: Transmetalation of Organostannanes and Asymmetric Transformation of the First Kind: Synthesis of 11C-Enriched L-Amino Acids ... 708

8.1.21.2.2.4 Variation 4: Transmetalation of α-Stannylcarbamates and Addition to Aldehydes; Synthon of a Primary α-Lithioamine ... 710

8.1.21.2.3 Method 3: Transmetalation of Stannyl Ureas with 1,2-Acyl Migration 711

8.1.21.2.4 Method 4: Reductive Lithiation of Aminonitriles to Tertiary α-Lithioamines and Electrophilic Substitution ... 711

**8.1.21.3 Synthesis and Applications of Mesomerically Stabilized α-Lithioamines ... 712

8.1.21.3.1 Method 1: Deprotonation of a Chiral Allylic Amine Followed by Stereoselective Alkylation and Hydrolysis (Aldehyde Homoenolate Synthon) 713

8.1.21.3.2 Method 2: Transmetalation of a Chiral Allylic Amine Followed by Stereoselective Alkylation and Hydrolysis (Ketone Homoenolate Synthon) ... 714

8.1.21.3.3 Method 3: Transmetalation of N-(Tributylstannyl)methanimines Followed by Cycloaddition ... 715

**8.1.21.4 Synthesis and Applications of Dipole- and Mesomerically Stabilized α-Lithioamines ... 716

8.1.21.4.1 Method 1: Deprotonation of Achiral Substrates with an Achiral Base 717

8.1.21.4.1.1 Variation 1: Preferential Deprotonation of Benzylic Protons with Spontaneous Intramolecular Cyclization ... 717
8.1.21.4.1.2 Variation 2: Dilithiation of N-tert-Butoxycarbonylbenzylamine and 1,2-Addition to Acrolein .. 717
8.1.21.4.1.3 Variation 3: Dilithiation of tert-Butyl Allylcarbamate, Transmetalation to Zinc, and Addition to Aldehydes and Ketones 718
8.1.21.4.1.4 Variation 4: Deprotonation of Tetrahydroisoquinoline Pivalamides, Transmetalation to Magnesium, and Addition to Aldehyde .. 719
8.1.21.4.1.5 Variation 5: Deprotonation of N-Benzyl-N-(tert-butoxycarbonyl)-4-methoxylaniline, Addition to Imines and Spontaneous Cyclization to Imidazolidinones .. 720
8.1.21.4.1.6 Variation 6: Regioselective Deprotonation and Aza-[2,3]-Wittig Rearrangement ... 721
8.1.21.4.2 Method 2: Deprotonation of Chiral Substrates .. 721
8.1.21.4.2.1 Variation 1: Deprotonation and Alkylation of N-Benzylloxazolidinones 721
8.1.21.4.2.2 Variation 2: Deprotonation of Chiral Tetrahydroisoquinolinyl Formamidine: Asymmetric Synthesis of Isoquinoline Alkaloids 722
8.1.21.4.2.3 Variation 3: Deprotonation of Hexahydropyrrolo[3,4-b]indole Formamidines: Asymmetric Synthesis of Indole Alkaloids ⋯ ⋯ 724
8.1.21.4.2.4 Variation 4: Deprotonation of Dihydrooxazole-Substituted Tetrahydroisoquinolines: Asymmetric Synthesis of Isoquinolines and Morphinan .. 725
8.1.21.4.2.5 Variation 5: Deprotonation of Chiral Tetrahydroisoquinolines, Transmetalation to Magnesium, and Addition to Aldehydes: Asymmetric Synthesis of Phthalideisoquinoline Alkaloids ⋯ 727
8.1.21.4.2.6 Variation 6: α,α′-Dialkylation of Dihydroisoindole .. 728
8.1.21.4.2.7 Variation 7: C2-Symmetric Dialkylation of Chiral Formamidinyl Binaphthoazepines ... 729
8.1.21.4.3 Method 3: Deprotonation of Achiral Substrates with Chiral Base 729
8.1.21.4.3.1 Variation 1: Asymmetric Regioselective Deprotonation of Allylic and Benzyllic Positions over Alkyl Positions in tert-Butyl Carbamates .. 730
8.1.21.4.3.2 Variation 2: Asymmetric Deprotonation of N-Benzyl-N-tert-butoxycarbonyl-4-methoxyaniline ... 731
8.1.21.4.3.3 Variation 3: Asymmetric Deprotonation of N-Benzyl-N-tert-butoxycarbonyl-4-methoxyaniline and 1,4-Addition to Enones 732
8.1.21.4.3.4 Variation 4: Deprotonation of N-tert-Butyloxycarbonyl-4-methoxy-N-[2E]-3-phenylprop-2-enyl]aniline and Electrophilic Substitution: Synthesis of Either R- or S-Homoenolate Synthons 733
8.1.21.4.3.5 Variation 5: Electrophilic Substitution of Aldehyde Homoenolate Synthons ... 734
8.1.21.4.3.6 Variation 6: Asymmetric Deprotonation, Transmetalation to Aluminum or Titanium, and Addition to Aldehydes 735
8.1.21.4.3.7 Variation 7: Asymmetric Deprotonation and Reverse Aza-Brook Rearrangement ... 737
8.1.21.4.3.8 Variation 8: Asymmetric Deprotonation and Dearomatizing Cyclization of α-Lithio Amides .. 737
8.1.21.4.3.9 Variation 9: Asymmetric Deprotonation and Alkylation of a Tricarbonylchromium–Benzyl Imine Complex 738
8.1.21.5 Synthesis and Applications of Dipole- and Heteroatom-Stabilized α-Lithioamines ... 739
8.1.21.5.1 Method 1: Oxygen- and tert-Butoxycarbonyl-Stabilized α-Lithioamines 739
8.1.21.5.2 Method 2: Sulfur- and Dipole-Stabilized α-Lithioamines 740
8.1.21.5.2.1 Variation 1: Asymmetric Corey–Seebach Synthesis of α-Hydroxyaldehydes Using a Diphenylvalinol-Derived Oxazolidinone 740
8.1.21.5.2.2 Variation 2: Asymmetric Corey–Seebach Synthesis of α-Hydroxyaldehydes Using a Camphor-Derived Oxazolidinone 741
8.1.21.5.3 Method 3: Nitrogen- and tert-Butoxycarbonyl-Stabilized α-Lithioamines 742
8.1.21.6 Synthesis and Applications of Non-Enolate Nitrogen Ylides 743
8.1.21.6.1 Method 1: Lewis Acid Activation of an Amine 743
8.1.21.6.1.1 Variation 1: Activation of an α-Aminoorganostannane with Boron Trifluoride .. 744
8.1.21.6.1.2 Variation 2: Activation of a Cyclic Amine with Boron Trifluoride, Deprotonation, Double Transmetalation, and Alkylation 744
8.1.21.6.1.3 Variation 3: Activation of an Aziridine with Borane, Deprotonation and Alkylation 745
8.1.21.6.1.4 Variation 4: Activation of a Benzylc Amine or Tetrahydroisoquinoline with Borane, Deprotonation and Alkylation 746
8.1.21.6.1.5 Variation 5: Activation of Dihydrosindole with Borane: Group-Selective Deprotonation with a Chiral Base, and Electrophilic Substitution ... 748
8.1.21.6.2 Method 2: Sigmatropic Rearrangements 750
8.1.21.6.2.1 Variation 1: Transmetalation of a 2-Tributylstannylammonium Ion and [2,3]-Rearrangement 750
8.1.21.6.2.2 Variation 2: Activation and [2,3]-Rearrangement of N-Allyltetrahydroisoquinoline 751

8.1.22 Product Subclass 22: Lithium Nitronates
N. Ono

8.1.22 Product Subclass 22: Lithium Nitronates .. 759
Synthesis of Product Subclass 22 ... 759
8.1.22.1 Method 1: Deprotonation of Nitroalkanes 759
8.1.22.2 Method 2: Double Deprotonation of Nitroalkanes 760
8.1.22.3 Method 3: Addition of Nucleophiles to Nitroalkenes 760
Applications of Product Subclass 22 in Organic Synthesis 762
8.1.22.4 Method 4: Nitroaldol Reaction .. 762
8.1.22.4.1 Variation 1: Nitro-Mannich Reaction 762
8.1.22.4.2 Variation 2: Michael Addition .. 765
8.1.22.5 Method 5: Acylation of Nitroalkanes 765
8.1.22.6 Method 6: Alkylation of Nitroalkanes 766
8.1.22.6.1 Variation 1: Alkylation via Radicals 767
8.1.22.6.2 Variation 2: Transition-Metal-Catalyzed Alkylation of Nitroalkanes 769
8.1.22.6.3 Variation 3: Arylation of Nitro Compounds 770
8.1.22.7 Method 7: Introduction of Heteroatoms into Nitroalkanes 771
8.1.23 Product Subclass 23: \(\gamma\)-Lithio Ethers and Related Compounds
D. Caine

8.1.24 Product Subclass 24: Carbamoyllithium and Trihalomethylolithium Compounds
C. Metallinos

8.1.23 Synthesis of Product Subclass 23 .. 775
8.1.23.1 Method 1: Reductive Lithiation of Halide and Phenyl Sulfide Derivatives Containing Neutral (Uncharged) Alkoxy and Other Substituents at the \(\gamma\)-Position .. 776
8.1.23.1.1 Variation 1: Reductive Lithiation with Lithium Metal 776
8.1.23.1.2 Variation 2: Reductive Lithiations with Lithium Arene Radical Anions 777
8.1.23.2 Method 2: Reductive Lithiation of \(\gamma\)-Oxido and Related \(\gamma\)-Amido Halides and Phenyl Sulfides .. 779
8.1.23.2.1 Variation 1: Reductive Lithiation with Lithium Metal 780
8.1.23.2.2 Variation 2: Reductive Lithiation with Lithium Arene Radical Anions 781
8.1.23.3 Method 3: Halogen–Lithium Exchange 783
8.1.23.4 Method 4: Metal–Lithium Exchange 784
8.1.23.4.1 Variation 1: Selenium–Lithium Exchange 784
8.1.23.4.2 Variation 2: Tin–Lithium Exchange 785
8.1.23.5 Method 5: Hydrogen–Lithium Exchange 787
8.1.23.6 Method 6: Reductive Cleavage of Four-Membered Heterocycles by Lithium Arene Radical Anions .. 788
8.1.23.7 Method 7: Addition of Organolithium Reagents to Allylic Systems 790

8.1.24 Synthesis of Product Subclass 24 .. 795
8.1.24.1 Carbamoyllithium Compounds .. 795
8.1.24.1.1 Method 1: Deprotonation of Formyl Hydrogen in Formamides 796
8.1.24.1.1.1 Variation 1: Using Lithium Diisopropylamide 796
8.1.24.1.2 Variation 2: Using tert-Butyllithium 796
8.1.24.1.2.1 Method 2: Reaction of Lithium Amide Bases and Carbon Monoxide 797
8.1.24.1.2.2 Variation 1: Using Lithium Amide Bases and Carbon Monoxide 797
8.1.24.1.2.2 Variation 2: Using Lithium Bis(carbamoyl)cuprates and Carbon Monoxide 798
8.1.24.1.3 Method 3: Transmetalation of Carbamoylm mercury and Carbamo yltellurium Reagents ... 799
8.1.24.1.3.1 Variation 1: Using Bis(N,N-dialkylcarbamoyl)mercury Reagents 799
8.1.24.1.3.2 Variation 2: Using N,N-Dialkylcarbamoyltellurium Reagents 800
8.1.24.2 Trihalomethylolithium Compounds 800
8.1.24.2.1 Method 1: Deprotonation of Chloroform 801
8.1.25 Product Subclass 25: Tris(organosulfanyl)- and Tris(organoselanyl)-methyllithium Compounds
C. Nájera and M. Yus

8.1.25 Product Subclass 25: Tris(organosulfanyl)- and Tris(organoselanyl)-methyllithium Compounds .. 805
Synthesis and Applications of Product Subclass 25 805

8.1.25.1 Method 1: Alkylation Reactions of Tris(methylsulfanyl)- and Tris(phenylsulfanyl)methyllithium 805
8.1.25.1.1 Variation 1: Reaction with Carbonyl Compounds 807
8.1.25.1.2 Variation 2: Michael-Type Reactions 808
8.1.25.2 Method 2: Synthesis of Other Sulfur-Containing Triheterosubstituted Methyllithium Compounds 810
8.1.25.3 Method 3: Synthesis of Tris(methylselanyl)- and Tris(phenylselanyl)methyllithium ... 810

8.1.26 Product Subclass 26: Bis(organosulfanyl)- and Bis(organoselanyl)methyllithium Compounds
C. Nájera and M. Yus

8.1.26 Product Subclass 26: Bis(organosulfanyl)- and Bis(organoselanyl)methyllithium Compounds .. 813
Synthesis and Applications of Product Subclass 26 813

8.1.26.1 Method 1: Synthesis of Bis(methylsulfanyl)methyllithium ... 813
8.1.26.2 Method 2: Synthesis of 1,3-Dithian-2-yllithium and Reaction with Alkyl Halides ... 814
8.1.26.2.1 Variation 1: Reaction with Epoxides .. 815
8.1.26.2.2 Variation 2: Reaction with Carbonyl Compounds 817
8.1.26.2.3 Variation 3: Michael-Type Reactions 818
8.1.26.2.4 Variation 4: Acylation Reactions .. 819
8.1.26.3 Method 3: Synthesis and Alkylation Reactions of Bis(phenylsulfanyl)-methyllithium .. 819
8.1.26.3.1 Variation 1: Reaction with Carbonyl Compounds and Their \(\alpha,\beta \)-Unsaturated Derivatives 820
8.1.26.4 Method 4: Synthesis of Other Cyclic 2-Lithio Dithioacetals 821
8.1.26.5 Method 5: Synthesis of \(\alpha \)-Lithio \(\alpha \)-Organo sulfanyl Ethers 822
8.1.26.5.1 Variation 1: Methoxy(phenylsulfanyl)methyllithium 822
8.1.26.5.2 Variation 2: 1,3-Oxathian-2-yllithium 823
8.1.26.6 Method 6: Synthesis of \(\alpha \)-Lithio \(\alpha \)-Arylsulfonyl Ethers 825
8.1.26.6.1 Variation 1: 2-(Arylsulfonyl)oxiran-2-yllithium 826
8.1.26.6.2 Variation 2: 2-(Arylsulfonyl)tetrahydropyran-2-yllithium 827
8.1.26.7 Method 7: Synthesis and Alkylation Reactions of \(\alpha \)-Lithio \(\alpha \)-Organo sulfanyl and \(\alpha \)-Lithio \(\alpha \)-Organo sulfanyl Sulfoxides 828
8.1.26.7.1 Variation 1: Reaction with Carbonyl Compounds and Their \(\alpha,\beta \)-Unsaturated Derivatives 830
8.1.26.8 Method 8: Synthesis and Reactions of \(\alpha \)-Lithio \(\alpha \)-Organo sulfanyl Sulfoxides 831
8.1.26.9 Method 9: Synthesis and Reactions of \(\alpha \)-Lithio Selenoacetals 833
8.1.27 Product Subclass 27: α-Lithio Vinyl Ethers

R. W. Friesen and C. F. Sturino

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1.27</td>
<td>Synthesis of Product Subclass 27</td>
<td>841</td>
</tr>
<tr>
<td>8.1.27.1</td>
<td>Method 1: Deprotonation of Vinyl Ethers</td>
<td>842</td>
</tr>
<tr>
<td>8.1.27.1.1</td>
<td>Variation 1: Deprotonation of Acyclic and Cyclic Vinyl Ethers</td>
<td>842</td>
</tr>
<tr>
<td>8.1.27.1.2</td>
<td>Variation 2: Deprotonation of Allenyl Ethers</td>
<td>846</td>
</tr>
<tr>
<td>8.1.27.2</td>
<td>Method 2: Transmetalation of (α-Alkoxyvinyl)stannanes</td>
<td>847</td>
</tr>
<tr>
<td>8.1.27.3</td>
<td>Method 3: Lithium–Halogen Exchange</td>
<td>849</td>
</tr>
<tr>
<td>8.1.27</td>
<td>Applications of Product Subclass 27 in Organic Synthesis</td>
<td>850</td>
</tr>
<tr>
<td>8.1.27.4</td>
<td>Method 4: Synthesis of α-Alkoxyvinyl Organometallic Compounds</td>
<td>850</td>
</tr>
<tr>
<td>8.1.27.4.1</td>
<td>Variation 1: Vinylstannanes</td>
<td>850</td>
</tr>
<tr>
<td>8.1.27.4.2</td>
<td>Variation 2: Vinylsilanes</td>
<td>851</td>
</tr>
<tr>
<td>8.1.27.5</td>
<td>Method 5: Synthesis of 2-Aryldihydropyrrolohydrazines</td>
<td>853</td>
</tr>
<tr>
<td>8.1.27.6</td>
<td>Method 6: α-Difluoro Ketones</td>
<td>854</td>
</tr>
<tr>
<td>8.1.27.7</td>
<td>Method 7: Synthesis of γ-Oxo Esters</td>
<td>855</td>
</tr>
<tr>
<td>8.1.27.8</td>
<td>Method 8: Synthesis of α-Hydroxy Ketones</td>
<td>856</td>
</tr>
<tr>
<td>8.1.27.9</td>
<td>Method 9: Synthesis of Substituted 1,4-Dioxins</td>
<td>858</td>
</tr>
<tr>
<td>8.1.27.10</td>
<td>Method 10: Synthesis of β- and γ-Hydroxyalkenes</td>
<td>859</td>
</tr>
</tbody>
</table>

Keyword Index | i

Author Index | xxxiii

Abbreviations | lxxxv
Volume 8:
Compounds of Group 1 (Li···Cs)

Volume 8a

8.1 Lithium Compounds

Keyword Index

Author Index

Abbreviations

Volume 8b

8.2 Sodium Compounds

8.3 Potassium Compounds

8.4 Rubidium and Cesium Compounds

Keyword Index

Author Index

Abbreviations
Volume 8b: Compounds of Group 1 (Li—Cs)

Preface .. V

Table of Contents .. XV

Introduction
M. Majewski and V. Snieckus ... 863

8.2 Product Class 2: Sodium Compounds
A. Mordini and M. Valacchi ... 879

8.2.1 Product Subclass 1: Sodium Metal and Sodium–Potassium Alloy
P. Venturello and M. Barbero .. 881

8.2.2 Product Subclass 2: Sodium Hydride
P. Venturello and M. Barbero .. 895

8.2.3 Product Subclass 3: Sodium Halides and Sodium Cyanide
A. Paul Krapcho ... 925

8.2.4 Product Subclass 4: Sodium–Oxygen Compounds
A. Jończyk and A. Kowalkowska ... 1011

8.2.5 Product Subclass 5: Sodium–Nitrogen Compounds
A. Jończyk and A. Kowalkowska ... 1141

8.2.6 Product Subclass 6: Alkylsodium Compounds
A. Mordini and M. Valacchi ... 1197

8.2.7 Product Subclass 7: Alkenylsodium Compounds
A. Mordini and M. Valacchi ... 1205

8.2.8 Product Subclass 8: Sodium Acetylides
A. Mordini and M. Valacchi ... 1209

8.2.9 Product Subclass 9: Allylsodium Compounds
A. Mordini and M. Valacchi ... 1215

8.2.10 Product Subclass 10: Arylsodium Compounds and
Sodium Cyclopentadienide
A. Mordini and M. Valacchi ... 1221

8.2.11 Product Subclass 11: Benzylsodium Compounds
A. Mordini and M. Valacchi ... 1227
8.2.12 Product Subclass 12: 1,1-Disubstituted Organosodium Compounds
R. Łaźny ... 1231

8.2.13 Product Subclass 13: 1-Monosubstituted Organosodium Compounds
R. Łaźny ... 1241

8.2.14 Product Subclass 14: α-Sodiocarboxylic Acids and Related Sodium Compounds
E. Juaristi, O. Muñoz-Muñiz, and R. Melgar-Fernández ... 1259

8.2.15 Product Subclass 15: α-Sodio Aldehydes, α-Sodio Ketones, and Related Compounds
E. Juaristi and R. Melgar-Fernández ... 1285

8.3 Product Class 3: Potassium Compounds
M. J. White ... 1297

8.3.1 Product Subclass 1: Potassium Metal
P. Venturello and M. Barbero .. 1299

8.3.2 Product Subclass 2: Potassium Hydride
P. Venturello and M. Barbero .. 1315

8.3.3 Product Subclass 3: Potassium Halides, Potassium Cyanide, and Potassium Carbonate
J. V. Comasseto, R. L. O. R. Cunha, and C. C. Silveira ... 1345

8.3.4 Product Subclass 4: Potassium Hydroxide and Potassium Alkoxides
P. Venturello and M. Barbero .. 1361

8.3.5 Product Subclass 5: Potassium–Sulfur, –Selenium, and –Tellurium Compounds
J. V. Comasseto, R. L. O. R. Cunha, and C. C. Silveira ... 1387

8.3.6 Product Subclass 6: Potassium Amides and Phosphides
P. Venturello and M. Barbero .. 1399

8.3.7 Product Subclass 7: Organometallic Compounds of Potassium
A. Mordini and M. Valacchi ... 1437

8.4 Product Class 4: Rubidium and Cesium Compounds
A. Streitwieser .. 1475

8.4.1 Product Subclass 1: Rubidium and Cesium Metals
A. Streitwieser and F. Hasanayn .. 1477

8.4.2 Product Subclass 2: Rubidium and Cesium Halides
R. M. Kellogg .. 1485
<table>
<thead>
<tr>
<th>Section</th>
<th>Product Subclass</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4.3</td>
<td>Rubidium and Cesium Carbonates</td>
<td>R. M. Kellogg</td>
<td>1497</td>
</tr>
<tr>
<td>8.4.4</td>
<td>Organometallic Compounds of Rubidium and Cesium</td>
<td>A. Streitwieser and L. Xie</td>
<td>1517</td>
</tr>
</tbody>
</table>

Keyword Index 1529
Author Index 1567
Abbreviations 1611
Volume 9:
Fully Unsaturated Small-Ring Heterocycles and Monocyclic Five-Membered Hetarenes with One Heteroatom

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Table of Contents</td>
<td></td>
<td>XI</td>
</tr>
<tr>
<td>Introduction</td>
<td>G. Maas</td>
<td>1</td>
</tr>
<tr>
<td>9.1</td>
<td>Product Class 1: Oxirenes</td>
<td>K.-P. Zeller</td>
</tr>
<tr>
<td>9.2</td>
<td>Product Class 2: Thiirenes and Their Derivatives</td>
<td>N. Tokitoh and W. Ando</td>
</tr>
<tr>
<td>9.3</td>
<td>Product Class 3: Selenirenes</td>
<td>N. Tokitoh and W. Ando</td>
</tr>
<tr>
<td>9.4</td>
<td>Product Class 4: Tellurirenes</td>
<td>N. Tokitoh and W. Ando</td>
</tr>
<tr>
<td>9.5</td>
<td>Product Class 5: 1H-Azirines</td>
<td>K.-P. Zeller</td>
</tr>
<tr>
<td>9.6</td>
<td>Product Class 6: Phosphirenes</td>
<td>H. Heydt</td>
</tr>
<tr>
<td>9.7</td>
<td>Product Class 7: Three-Membered Rings with Phosphorus and One or More Heteroatoms</td>
<td>H. Heydt</td>
</tr>
<tr>
<td>9.8</td>
<td>Product Class 8: Four-Membered Rings with One or More Heteroatoms</td>
<td>M. Regitz and U. Bergsträßer</td>
</tr>
<tr>
<td>9.9</td>
<td>Product Class 9: Furans</td>
<td>B. König</td>
</tr>
<tr>
<td>9.10</td>
<td>Product Class 10: Thiophenes, Thiophene 1,1-Dioxides, and Thiophene 1-Oxides</td>
<td>J. Schatz</td>
</tr>
<tr>
<td>9.11</td>
<td>Product Class 11: Selenophenes</td>
<td>J. Schatz</td>
</tr>
<tr>
<td>9.12</td>
<td>Product Class 12: Tellurophenes</td>
<td>J. Schatz</td>
</tr>
<tr>
<td>9.13</td>
<td>Product Class 13: 1H-Pyrroles</td>
<td>D. StC. Black</td>
</tr>
<tr>
<td>9.14</td>
<td>Product Class 14: Phospholes</td>
<td>F. Mathey</td>
</tr>
<tr>
<td>Keyword Index</td>
<td></td>
<td>601</td>
</tr>
<tr>
<td>Author Index</td>
<td></td>
<td>613</td>
</tr>
<tr>
<td>Abbreviations</td>
<td></td>
<td>659</td>
</tr>
</tbody>
</table>
Table of Contents

Introduction
G. Maas

Introduction .. 1

9.1 Product Class 1: Oxirenes
K.-P. Zeller

9.1 Product Class 1: Oxirenes 19
9.1.1 Synthesis by Ring-Closure Reactions 21
9.1.1.1 By Formation of Two O—C Bonds 21
9.1.1.1.1 Fragments C—C and O 21
9.1.1.1.1.1 Method 1: Oxidation of Alkynes 21
9.1.1.1.1.1.1 Variation 1: With Peroxy Acids 21
9.1.1.1.1.1.2 Variation 2: With Dioxiranes 23
9.1.1.1.1.3 Variation 3: With Atomic and Molecular Oxygen .. 25
9.1.1.1.1.4 Variation 4: Enzymatic Oxidation 26
9.1.1.2 By Formation of One O—C Bond 27
9.1.1.2.1 Fragment O—C—C 27
9.1.1.2.1.1 Method 1: Isomerization of α-Oxo Carbenes 27
9.1.1.2.1.2 Method 2: Isomerization of Ketene 34
9.1.2 Synthesis by Ring Transformation 35
9.1.2.1 Method 1: From Larger Heterocycles by Extrusion Reactions 35
9.1.3 Aromatization .. 36
9.1.3.1 Method 1: Isomerization of Oxiranylidenes 36
9.1.3.2 Method 2: β-Elimination Reactions of Oxiranes 37
9.1.3.3 Method 3: Cycloreversion Reactions of Fused Oxiranes .. 38

9.2 Product Class 2: Thiirenes and Their Derivatives
N. Tokitoh and W. Ando

9.2 Product Class 2: Thiirenes and Their Derivatives 43
9.2.1 Product Subclass 1: Thiirenes 44
9.2.1.1 Synthesis by Ring Transformation 46
9.2.1.1.1 Method 1: From 1,2,3-Thiadiazoles 46
9.2.1.1.1.1 Variation 1: Photochemical Decomposition in Matrixes 46
9.2.1.1.1.2 Variation 2: Photochemical Decomposition in Solution 47
Product Subclass 2: Thiirene 1,1-Dioxides

Synthesis by Ring-Closure Reactions

Method 1: From α,α'-Dihalo-Substituted Sulfones

Aromatization

Method 1: Dehydrohalogenation of 2-Halothiiranes

Product Subclass 3: Thiirene 1-Oxides

Synthesis by Ring-Closure Reactions

Method 1: From α,α'-Dihalo-Substituted Sulfoxides

Aromatization

Method 1: Fused Thiirene 1-Oxides from Diels–Alder Reactions of 2,3-Bis(alkylidene)thiirane 1-Oxides

Product Subclass 4: Thiirenium Ions

Synthesis by Ring-Closure Reactions

Method 1: Addition of a Sulfonium Ion to Alkynes

Method 2: From 1-Halo-2-sulfanylethenes

Product Class 3: Selenirenes

N. Tokitoh and W. Ando

Synthesis by Ring Transformation

Method 1: From 1,2,3-Selenadiazoles

Variation 1: Photochemical Decomposition in a Matrix

Variation 2: Photochemical Decomposition in Solution

Product Class 4: Tellurirenes

N. Tokitoh and W. Ando

Product Class 5: 1H-Azirines

K.-P. Zeller

Synthesis by Ring-Closure Reactions

By Formation of Two N–C Bonds

Fragments C–C and N

Method 1: Reactions of Alkynes with Nitrenes or Nitrene Equivalents

Variation 1: Generation of Nitrene (NH) from Hydrazoic Acid

Variation 2: Generation of Nitrenes from Organic Azides

Variation 3: Oxidation of N-Aminophthalimides in the Presence of Alkynes
9.5.1.2 By Formation of One N—C Bond .. 70

9.5.1.2.1 Fragment N—C ... 70

9.5.1.2.1.1 Method 1: Cyclization of α-Imino Carbenes 70

9.5.1.2.1.1.1 Variation 1: Generation of α-Imino Carbenes from 1H-1,2,3-Triazoles 71

9.5.1.2.1.1.2 Variation 2: Generation of α-Imino Carbenes from α-Diazo Imines 74

9.5.1.2.1.1.3 Variation 3: Generation of Cyclic α-Imino Carbenes from 1H-1,2,3-
Benzotriazoles (Formation of 1H-Benzol[b]azirines) 75

9.5.1.2.1.1.4 Variation 4: Generation of Cyclic α-Imino Carbenes from Isatin and Its
Derivatives (Formation of 1H-Benzol[b]azirines) 75

9.5.1.2.1.2 Method 2: Cyclization of Vinylnitriles 77

9.5.1.3 By Formation of One C—C Bond ... 79

9.5.1.3.1 Fragment C—N—C ... 79

9.5.2 Aromatization ... 80

9.5.3 Method 1: Extrusion Reactions of Larger Heterocycles 79

9.5.3.1 Method 1: Isomerization of Cyclic Isomers 80

9.5.3.2 Method 2: β-Elimination from Aziridines 80

9.5.3.3 Method 3: Cycloreversion Reactions of Fused Aziridines 81

9.6 Product Class 6: Phosphirenes

H. Heydt

9.6.1 Product Class 6: Phosphirenes .. 85

9.6.1.1 Product Subclass 1: λ3-1H-Phosphirenes 85

9.6.1.1.1 Synthesis by Substituent Modification 86

9.6.1.1.1.1 Method 1: Reaction of λ3-1H-Phosphirenes with Benzo-1,2-quinones ... 86

9.6.1.1.1.2 Method 2: Reaction of λ3-1H-Phosphirenes with Azodicarboxylates 87

9.6.1.1.1.3 Method 3: Modification of an Existing λ5-1H-Phosphirene 87

9.6.1.2 Product Subclass 2: λ3-1H-Phosphirene Imides, Oxides, and Homologues

87

9.6.1.2.1 Synthesis by Ring-Closure Reactions 88

9.6.1.2.1.1 By Formation of Two P—C Bonds 88

9.6.1.2.1.1.1 Method 1: Cycloaddition of Iminophosphines to Alkynes 88

9.6.1.2.1.2 Synthesis by Substituent Modification 89

9.6.1.2.1.2.1 Method 1: Oxidative Addition to λ3-1H-Phosphirenes 89

9.6.1.3 Product Subclass 3: λ3-1H-Phosphirenium Salts 90

9.6.1.3.1 Synthesis by Ring-Closure Reactions 91

9.6.1.3.1.1 By Formation of Two P—C Bonds 91

9.6.1.3.1.1.1 Method 1: Cycloaddition of Electrophilic Phosphorus Compounds
to Alkynes .. 91

9.6.1.3.1.1.1.1 Variation 1: Cycloaddition with Phosphenium Cations 91

9.6.1.3.1.1.2 Variation 2: Cycloaddition with Halophosphines 92
<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Method/Reaction</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.6.3.1.1.3</td>
<td>Variation 3</td>
<td>Reaction with Dichlorophosphines</td>
<td>93</td>
</tr>
<tr>
<td>9.6.3.1.1.4</td>
<td>Reaction with Phosphiranium Cations</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>9.6.3.2</td>
<td>Synthesis by Substituent Modification</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>9.6.3.2.1</td>
<td>Method 1</td>
<td>Alkylation of λ^3-1H-Phosphirenes</td>
<td>94</td>
</tr>
<tr>
<td>9.6.3.2.1.1</td>
<td>Variation 1</td>
<td>Alkylation with Alkyl Triflates</td>
<td>94</td>
</tr>
<tr>
<td>9.6.3.2.1.2</td>
<td>Variation 2</td>
<td>Alkylation with Trimethyloxonium Tetrafluoroborate</td>
<td>95</td>
</tr>
<tr>
<td>9.6.3.2.2</td>
<td>Method 2</td>
<td>Protonation of λ^5-1H-Phosphirene Imides</td>
<td>95</td>
</tr>
<tr>
<td>9.6.4</td>
<td>Product Subclass 4: η^1-1H-Phosphirene–Metal Complexes</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>9.6.4.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>9.6.4.1.1</td>
<td>Method 1</td>
<td>Exchange Reactions with the Substituent at Phosphorus</td>
<td>96</td>
</tr>
<tr>
<td>9.6.4.1.1.1</td>
<td>Method 1</td>
<td>Cycloaddition of Phosphinidene Complexes to Alkynes</td>
<td>96</td>
</tr>
<tr>
<td>9.6.4.1.1.1.1</td>
<td>Variation 1</td>
<td>With Phosphinidene Complexes Generated from 7-Phosphabicyclo[2.2.1]hepta-2,5-diene Complexes</td>
<td>96</td>
</tr>
<tr>
<td>9.6.4.1.1.1.2</td>
<td>Variation 2</td>
<td>With Phosphinidene Complexes Generated from λ^3-1H-Phosphirane Complexes</td>
<td>99</td>
</tr>
<tr>
<td>9.6.4.1.1.1.3</td>
<td>Variation 3</td>
<td>With Phosphinidene Complexes Generated from λ^3-2H-1,2-Azaphosphirene Complexes</td>
<td>100</td>
</tr>
<tr>
<td>9.6.4.1.1.1.4</td>
<td>Variation 4</td>
<td>With Phosphinidene Complexes Generated from Secondary λ^3-Phosphine Complexes</td>
<td>101</td>
</tr>
<tr>
<td>9.6.4.1.1.1.5</td>
<td>Variation 5</td>
<td>With Phosphinidene Complexes Generated from Disodium Tetracarbonylferrate (Collman’s Reagent) and an Aminodichlorophosphine</td>
<td>102</td>
</tr>
<tr>
<td>9.6.4.2</td>
<td>Synthesis by Substituent Modification</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>9.6.4.2.1</td>
<td>Method 1</td>
<td>Exchange Reactions with the Substituent at Phosphorus</td>
<td>102</td>
</tr>
<tr>
<td>9.6.4.2.2</td>
<td>Method 2</td>
<td>Modification of the Metal Fragment</td>
<td>103</td>
</tr>
<tr>
<td>9.6.4.2.3</td>
<td>Method 3</td>
<td>Formation of η^1-1H-Phosphirene–Metal Complexes by Complexation of λ^3-1H-Phosphirenes</td>
<td>104</td>
</tr>
<tr>
<td>9.6.5</td>
<td>Product Subclass 5: λ^3-1H-Phosphirenes</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>9.6.5.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>9.6.5.1.1</td>
<td>Method 1</td>
<td>Cycloaddition of Phosphinidenes to Alkynes</td>
<td>106</td>
</tr>
<tr>
<td>9.6.5.1.1.2</td>
<td>Method 2</td>
<td>λ^3-1H-Phosphirenes from Metallacyclopropenes</td>
<td>107</td>
</tr>
<tr>
<td>9.6.5.1.1.3</td>
<td>Method 3</td>
<td>λ^3-1H-Phosphirenes from a Vinylcarbene–Cobalt Complex</td>
<td>107</td>
</tr>
<tr>
<td>9.6.5.1.2</td>
<td>By Formation of One P—C and One C—C Bond</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>9.6.5.1.2.1</td>
<td>Method 1</td>
<td>Cycloaddition of Carbenes to Phosphaalkynes</td>
<td>108</td>
</tr>
<tr>
<td>9.6.5.1.2.1.1</td>
<td>Variation 1</td>
<td>Cycloaddition with Halocarbenes</td>
<td>109</td>
</tr>
<tr>
<td>9.6.5.1.2.1.2</td>
<td>Variation 2</td>
<td>Cycloaddition with Chloro(vinyl)carbenes</td>
<td>110</td>
</tr>
<tr>
<td>9.6.5.1.2.1.3</td>
<td>Variation 3</td>
<td>Cycloaddition with a Stable Phosphino(silyl)carbene</td>
<td>111</td>
</tr>
<tr>
<td>9.6.5.2</td>
<td>Synthesis by “Aromatization”</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>9.6.5.2.1</td>
<td>Elimination Reactions with λ^3-Phosphiranes</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>9.6.5.2.1.1</td>
<td>Method 1</td>
<td>Cycloaddition of Halocarbenes to Phosphaalkenes Followed by HX Elimination</td>
<td>112</td>
</tr>
</tbody>
</table>
9.6.5.2.1.2 Method 2: Cyclization of Bis(methylene)phosphoranes Followed by 1,2-Elimination .. 112
9.6.5.3 Synthesis by Substituent Modification .. 113
9.6.5.3.1 Method 1: Decomplexation of η1\(^{-}\)1H-Phosphirene–Metal Complexes 113
9.6.5.3.1.1 Variation 1: Decomplexation with Iodine and 1-Methyl-1H-imidazole 113
9.6.5.3.1.2 Variation 2: Decomplexation with 1,2-Bis(diphenylphosphino)ethane 114
9.6.5.3.2 Method 2: Reduction of 1-Halo-\(\lambda^{1}\)-1H-phosphireni um Salts with Tertiary Phosphines .. 114
9.6.5.3.3 Method 3: Substitution of Hydrogen at the \(\lambda^{1}\)-1H-Phosphirene Double Bond .. 115
9.6.5.3.4 Method 4: Substitution of Chlorine in 1-Chloro-\(\lambda^{1}\)-1H-phosphirenes 116
9.6.5.3.4.1 Variation 1: Substitution by Hydrogen with Complex Hydrides 116
9.6.5.3.4.2 Variation 2: Substitution by Lithium and Grignard Nucleophiles 116
9.6.5.3.4.3 Variation 3: Substitution by Boron Functionalities with Lithium, Sodium, or Silver Borates .. 117
9.6.5.3.4.4 Variation 4: Substitution with Silylated and Stannylated Nucleophiles 118
9.6.5.4 Product Subclass 6: \(\lambda^{1}\)-1H-Phosphirenylium Salts .. 119

9.7 Product Class 7: Three-Membered Rings with Phosphorus and One or More Heteroatoms

H. Heydt

9.7.1 Product Subclass 1: 2\(\lambda^{2}\)-2H-1,2-Azaphosphirenes ... 125
9.7.1.1 Synthesis by Ring-Closure Reactions .. 126
9.7.1.1.1 Method 1: From Amino(aryl)carbene Complexes and a P\(_2\) Reagent 126
9.7.1.1.1.1 Variation 1: Reactions of Amino(aryl)carbene Complexes with Chlorophosphaalkenes .. 126
9.7.1.1.1.2 Variation 2: Reactions of Amino(aryl)carbene Complexes with Dichlorophosphines .. 127
9.7.2 Product Subclass 2: 1\(\lambda^{2}\),2\(\lambda^{2}\)-1H-Diphosphirenes .. 128
9.7.2.1 Synthesis by Ring-Closure Reactions .. 128
9.7.2.1.1 By Formation of One P–P and One P–C Bond .. 129
9.7.2.1.1.1 Method 1: CycloadDITION of Phosphinidenes or Phosphinidene Equivalents to Phosphaalkynes .. 129
9.7.2.1.1.1.1 Variation 1: CycloadDITION with Iminophosphines 129
9.7.2.1.1.1.2 Variation 2: CycloadDITION with Phosphinidene Complexes 129
9.7.2.1.1.1.3 Variation 3: CycloadDITION with Halo(silyl)phosphines 130
9.7.2.1.1.2 Method 2: Cyclooligomerization of Phosphaalkynes under the Influence of Lewis Acids 130
9.7.2.1.2 By Formation of One P–P Bond .. 131
9.7.2.1.2.1 Method 1: Cyclization of Aminophosphino-Substituted Phosphaalkynes 131
9.7.2.2 Synthesis by Substituent Modification .. 131
9.7.3 Product Subclass 3: 1H-Triphosphirenes .. 132

9.8 Product Class 8: Four-Membered Rings with One or More Heteroatoms
M. Regitz and U. Bergström

9.8.1 Product Subclass 1: Azetes ... 135
9.8.1.1 Synthesis by Ring Transformation .. 137
9.8.1.1.1 Method 1: Ring Enlargement of Azidocyclopropenes 137

9.8.2 Product Subclass 2: Λ³-Phosphetes .. 138
9.8.2.1 Synthesis by Ring-Closure Reactions ... 138
9.8.2.1.1 By Formation of One P—C Bond .. 138
9.8.2.1.1.1 Method 1: From (Arylmethylene)phosphoranes 138

9.8.3 Product Subclass 3: Λ³-Phosphetes .. 139
9.8.3.1 Synthesis by Ring-Closure Reactions ... 139
9.8.3.1.1 By Formation of One P—C and One C—C Bond 139
9.8.3.1.1.1 Method 1: From Phosphaalkynes and Alkynes in the Coordination Sphere of Transition Metals .. 139

9.8.4 Product Subclass 4: 1,2-Dithietes ... 140
9.8.4.1 Synthesis by Ring-Closure Reactions ... 141
9.8.4.1.1 By Formation of Two S—C Bonds ... 141
9.8.4.1.1.1 Method 1: From Alkynes and Sulfur 141
9.8.4.1.1.1.1 Variation 1: From Alkynes and Molten Sulfur 142
9.8.4.1.1.1.2 Variation 2: From Alkynes and Sulfur in Solution 142
9.8.4.1.2 By Formation of One S—S Bond .. 143
9.8.4.1.2.1 Method 1: From an α-Thioxo Ketone and Lawesson’s Reagent 143
9.8.4.2 Synthesis by Ring Transformation ... 143
9.8.4.2.1 Synthesis by Ring Contraction ... 143
9.8.4.2.1.1 Method 1: From 1,3-Dithiol-2-ones 143
9.8.4.2.1.2 Method 2: Dimethyl 1,2-Dithiete-3,4-dicarboxylate by Oxidative Ring Contraction of a 2-Titana-1,3-dithiole 144

9.8.5 Product Subclass 5: 1,2-Diselenetes ... 144
9.8.5.1 Synthesis by Ring Transformation ... 145
9.8.5.1.1 Synthesis by Ring Contraction ... 145
9.8.5.1.1.1 Method 1: From a 1,3,2-Diselenazolylium Salt 145

9.8.6 Product Subclass 6: 1,2,5-Azaphosphetes ... 145
9.8.6.1 Synthesis by Ring Transformation ... 146
9.8.6.1.1 Synthesis by Ring Contraction .. 146
9.8.6.1.1.1 Method 1: From 1,2,3,4,5-Triazaphosphinines 146
9.8.6.1.2 Synthesis by Ring Enlargement .. 147
9.8.6.1.2.1 Method 1: From 2-[Bis(dialkylamino)phosphino]-2H-azirines 147
9.8.7 Product Subclass 7: 1\(\lambda^2\),3\(\lambda^3\)-Diphosphetes 149
9.8.7.1 Synthesis by Ring-Closure Reactions 150
9.8.7.1.1 By Formation of Two P—C Bonds .. 150
9.8.7.1.1.1 Method 1: From Alkylidenephosphoranes 150
9.8.7.1.1.2 Variation 1: From [Chloro(phosphino)methylene]phosphoranes 150
9.8.7.1.1.2 Variation 2: From (Alkylidene)fluorophosphoranes 151
9.8.7.1.1.3 Method 2: From Diazo(phosphino)(phosphoryl)methanes 152
9.8.7.1.1.4 Method 3: From Diazo(phosphino)(trimethylsilyl)methanes 152
9.8.7.1.1.4 Method 4: From [Bis(trimethylsilyl)methyl]dichlorophosphine 153
9.8.7.2 Synthesis by Substituent Modification 154
9.8.7.2.1 Method 1: From 1,1,3,3-Tetrakis(dimethylamino)-1\(\lambda^2\),3\(\lambda^3\)-diphosphete by Substitution at Ring Carbon Atoms 154
9.8.7.3 Product Subclass 8: 1\(\lambda^3\),2\(\lambda^2\)-Diphosphetes 156
9.8.8 Product Subclass 9: 1\(\lambda^3\),2\(\lambda^2\)-Diphosphetes 157
9.8.8.1 Synthesis by Ring Transformation .. 157
9.8.8.1.1 Synthesis by Ring Enlargement .. 157
9.8.8.1.1.1 Method 1: From a 2-Phosphino-2\(\lambda\)-phosphirene 157
9.8.8.2 Aromatization ... 158
9.8.8.2.1 Method 1: From a 1,2-Dichloro-1,2-dihydro-1,2-diphosphete–Diiron Complex ... 159
9.8.9 Product Subclass 10: 1\(\lambda^3\),3\(\lambda^2\)-Diphosphetes 160
9.8.10 Product Subclass 11: 1,3,2\(\lambda^5\)-Diazaphosphetes 167
9.8.10.1 Synthesis by Ring-Closure Reactions 160
9.8.10.1.1 By Formation of Two P—C Bonds .. 160
9.8.10.1.1.1 Method 1: From Phosphaalkynes in the Coordination Sphere of Transition Metals .. 160
9.8.10.1.1.1 Variation 1: From Phosphaalkynes and Transition-Metal–Alkene Complexes .. 161
9.8.10.1.1.2 Variation 2: From Phosphaalkynes and Transition-Metal Carbonyls .. 163
9.8.10.1.1.3 Variation 3: From Phosphaalkynes and Transition-Metal–Arene Complexes .. 164
9.8.10.1.1.4 Variation 4: From Phosphaalkynes and Metal Vapor 165
9.8.10.1.1.5 Additional Variations ... 166
9.8.11 Product Subclass 11: 1,3,2\(\lambda^5\)-Diazaphosphetes 167
9.8.11.1 Synthesis by Ring-Closure Reactions 167
9.8.11.1 By Formation of Two N—P Bonds .. 167
9.8.11.1.1 Method 1: From 3-Bromo-3-phenyl-3H-diazirine and a Stannylphosphine 167

Product Subclass 12: 1\(^{1}\),2\(^{1}\),3\(^{1}\),3-Triphosphetes .. 168

9.8.12 Synthesis by Ring-Closure Reactions .. 168
9.8.12.1 By Formation of Two P—P Bonds .. 168
9.8.12.1.1 Method 1: From Lithium Bis(diphenylphosphino)(trimethylsilyl)methanide and Phosphorus Trichloride .. 168

Product Subclass 13: 1\(^{3}\),2\(^{3}\),3\(^{3}\)-Triphosphetes 169

9.8.13 Synthesis by Ring Transformation .. 169
9.8.13.1 By Ring Contraction .. 169
9.8.13.1.1 Method 1: From a (\(\eta^8\)-Cyclooctatetraene)(1,4-dihydro-1,2,4-triphosphinine-1,4-diyl)hafnium Complex .. 169

Product Subclass 14: 1,3,2\(^{5}\),4\(^{5}\)-Diazadiphosphetes 170

9.8.14 Synthesis by Ring-Closure Reactions .. 171
9.8.14.1 By Formation of Two N—P Bonds .. 171
9.8.14.1.1 Method 1: From Azidobis(diisopropylamino)phosphine 171
9.8.14.1.2 Method 2: From N-[Bis(diisopropylamino)phosphino]-C-
[bis(diisopropylamino)thiophosphoryl]nitrilimine .. 171

Product Subclass 15: 1\(^{1}\),3\(^{1}\),2\(^{1}\),4\(^{1}\)-Tetraphosphetes 172

9.8.15 Synthesis by Ring-Closure Reactions .. 172
9.8.15.1 By Formation of Four P—P Bonds .. 172
9.8.15.1.1 Method 1: From Cyclic Bis(amine)chlorophosphines 172

Product Subclass 16: 1,2,3,4-Tetraphosphetes .. 173

9.8.16 Synthesis by Ring-Closure Reactions .. 174
9.8.16.1 By Formation of Four P—P Bonds .. 174
9.8.16.1.1 Method 1: From White Phosphorus in the Coordination Sphere of Transition Metals .. 174

Product Class 9: Furans
B. König

9.9 Synthesis by Ring-Closure Reactions .. 183
9.9.1 By Formation of One O—C and One C—C Bond .. 187
9.9.1.1 Fragments O—C and C—C .. 187
9.9.1.1.1 From \(\alpha\)-Heterofunctionalized Ketones .. 187
9.9.1.1.1.1 Method 1: Transition-Metal-Catalyzed Reaction of \(\alpha\)-Diazoalkanones with Alkynes .. 187
Method 2: From \(\alpha \)-Halo Ketones and 3-Oxoalkanoates (Feist–Benary Reaction) .. 188

Method 3: From 1,1-Dialkoxy-2-bromoalkanes and Dicarbonyl Compounds or 1-(Trimethylsiloxy)alk-1-enes 189

Method 4: From \(\alpha \)-Hydroxy Ketones and Dialkyl But-2-yne-1,4-dioate .. 190

Method 5: From \(\alpha \)-Hydroxy Ketones and Dicarbonyl Compounds and Derivatives .. 191

Method 6: From \(\alpha \)-Haloalkanones and \(\alpha \)-Trimethylstannyl Ketones .. 192

Method 1: From 1,3-Dicarbonyl Compounds and 3-Bromoalkynes ... 192

Method 2: Palladium-Catalyzed Reaction of Alkyl 3-Oxoalkanoates with 2-(Alk-1-ynyl)oxiranes 193

Method 3: Manganese-Mediated Reaction of Alkyl 3-Oxoalkanoates with Enol Ethers 194

Method 4: Knoevenagel Condensation of 1,3-Dicarbonyl Compounds and Aldehydes Followed by Bromination and Cyclization .. 194

Method 5: From 1,3-Dicarbonyl Compounds and 1-Nitroalk-1-enes .. 195

Method 6: Palladium-Catalyzed Reaction of 1,3-Dicarbonyl Compounds with Prop-2-ynyl Carbonate 196

Method 1: From 1-Haloalk-1-enes and Methylene Ketones ... 196

Method 2: From Alk-2-ynylsulfonium Salts and Carbonyl Compounds .. 197

Method 3: From 1-Aminoalk-1-ynes and Sulfonylalk-1-ynes ... 197

Method 1: From 3-Bromopropenal Acetals and Alkanals .. 198

Method 2: From Silylallenes and Acid Chlorides .. 199

Method 1: From \(\alpha,\beta \)-Unsaturated Carbonyl Compounds and Sulfonium Ylides ... 200

Method 2: From 1-Aryl-3-chloroalkan-1-ones and Potassium Cyanide .. 200

Method 3: From Selectively Protected 1,3-Dicarbonyl Compounds ... 201

Method 4: 2,3-Disubstituted Furans from 1-(Benzyloxy)-3-tosylalkenes and Aldehydes ... 202

Method 1: From Dialkyl Oxalate and Bis(alkoxy carbonylmethyl) Ethers ... 203

Method 1: By Cyclization of 1,4-Diheterofunctional \(\mathrm{C}_4 \) Compounds .. 203

Method 1: Cyclization of 4-Oxobutanimides or 4-Oxobutanenitriles to Furan-2-amines 203

Method 2: Cyclization of 4-Hydroxybut-2-enenitriles ... 204

Method 3: Reductive Cyclization of Alkene-1,4-diones and Cyclization of 4-Hydroxyalk-2-en-1-ones 205
Method 4: Cyclization of 4-Diazooalk-2-en-1-ones

Method 5: Cyclization of 4,4-Dialkoxyalkan-1-ones

Method 6: Cyclization of Alkane-1,4-diones (The Paal–Knorr Synthesis)

Method 7: Cyclization of γ-Hydroxy Ketone or Their Derivatives

Method 8: Cyclization of 1,4-Dihydroxyalk-2-yynes

Method 9: Oxidative Cyclization of 1,4-Dihydroxyalk-2-enes

By Cyclization of Monofunctionalized C₄ Compounds

Method 1: Palladium-Catalyzed Cyclization of Alk-1(2)-yn-4-ones

Method 2: Cyclization of Alka-1,2-dien-4-ones

Method 3: Cyclization of α-Substituted β,γ-Unsaturated Ketones with Diphenyl Diselenide

Method 4: Cyclization of 5-Hydroxyalk-3-en-1-yynes

Method 5: Base-Assisted Cyclization of 1-(4-Hydroxyalk-2-ylnyl)benzotriazoles

Method 6: Cyclization of Alkynyloxiranes

Method 7: Cyclization of 4-Hydroxyalk-1-yynes and Substituted 4-Hydroxyalk-1-enes

By Formation of One C₄C Bond

Fragment C—O—C—C

Method 1: McMurry-type Cyclization of 1-Acyloxyalk-1-en-3-ones

Fragment C—O—C—C

Method 1: Cyclization of 1-(Alk-2-ynyloxy)-2-bromo-1-(organooxy)alkanes via a Radical Mechanism

Synthesis by Ring Transformation

Ring Enlargement

From Epoxides

From Five-Membered Heterocycles

Method 1: Cycloaddition of Alkynes to Furans Followed by Retro-Diels–Alder Reaction

Method 2: Cycloaddition of Alkynes to Oxazoles Followed by Retro-Diels–Alder Reaction

Method 3: Cycloaddition of Alkynes to Mesoionic Heterocycles Followed by Retro-Diels–Alder Reaction

Method 4: Decomposition of 4-(Benzoyloxy)-1,3-dioxolanes

Method 5: Reduction and Rearrangement of 4,5-Dihydroisoxazoles

Ring Contraction

Method 1: Synthesis from 2H-Pyrone

Method 2: Synthesis from 2H-Pyrans and Pyrylium Salts

Method 3: Synthesis from 3,6-Dihydro-1,2-dioxins

Method 4: Synthesis from Sugar Derivatives

Aromatization

Method 1: Reduction and Elimination of Water from Furan-2(5H)-ones
Method 2: Oxidation of Dihydro- and Tetrahydrofurans

Synthesis by Substituent Modification

Substitution of Hydrogen

Replacement by Deuterium

Metalation

Variation 1: Replacement of Hydrogen by Lithium

Variation 2: Replacement of a Halogen by Lithium

Introduction of Formyl Groups

Introduction of Acyl Groups

Introduction of Chloromethyl and Hydroxymethyl Groups

Introduction of Aminoalkyl Groups (Mannich Reaction)

Introduction of Allyl Groups

Introduction of Alk-1-enyl Groups

Introduction of Aryl Groups

Introduction of Alkyl Groups by Reaction with Alkyl Halides (Friedel-Crafts Reaction)

Introduction of Alkyl Groups by Reaction with Unsaturated Carbonyl Compounds

Introduction of Alkyl Groups by Reaction with α,β-Unsaturated Carboxyl Compounds

Introduction of Halogen Substituents

Replacement of Lithium by an Alkylsulfanyl or Arylsulfanyl Group

Substitution of Metals

Decarboxylation of Furoic Acids

Substitution of Heteroatoms

Substitution of a Halogen by Hydrogen

Reaction of Halo- or Nitrofurans with Carbon Nucleophiles
9.4.4.3 Method 3: Metal-Catalyzed Cross Coupling of Halofurans with Alkenes, Arenes, and Alkynes .. 265
9.4.4.4 Method 4: Reaction of Halo- or Nitrofurans with Hetero Nucleophiles .. 267
9.4.5 Modification of α-Substituents .. 269
9.4.5.1 Method 1: Enolization of Furan-2(5H)-ones and Dihydrofuran-2,5-diones .. 269
9.4.5.2 Method 2: Ene Reaction of 3-Methylene-2,3-dihydrofurans .. 269
9.4.5.3 Method 3: Wittig Rearrangement of Alkyl 3-Furylmethyl Ether .. 270
9.4.5.4 Method 4: Anionic Oxy-Cope Reaction of a 2-But-3-enylfuran .. 271

9.10 Product Class 10: Thiophenes, Thiophene 1,1-Dioxides, and Thiophene 1-Oxides
J. Schatz

9.10 Product Class 10: Thiophenes, Thiophene 1,1-Dioxides, and Thiophene 1-Oxides .. 287
9.10.1 Product Subclass 1: Thiophenes .. 287
9.10.1.1 Synthesis by Ring-Closure Reactions .. 291
9.10.1.1.1 By Formation of Two S—C Bonds and One C—C Bond .. 291
9.10.1.1.1.1 Fragment S and Two C—C Fragments .. 291
9.10.1.1.1.2 Method 1: Oxidative Coupling of Aryl Methyl and Related Ketones and a Source of Sulfur .. 291
9.10.1.1.1.2.1 Variation 1: Reaction of Alkenes or Alkynes with a Source of Sulfur .. 292
9.10.1.1.1.2.2 Variation 2: Reaction of Alkenes or Alkynes with a Source of Sulfur .. 293
9.10.1.1.1.3 Method 3: Thionation of N-(Phenylacetyl)thiobenzamides .. 293
9.10.1.1.1.2 By Formation of Two S—C Bonds .. 294
9.10.1.1.2 Fragments C—C—C and S .. 294
9.10.1.1.2.1 Method 1: Reaction of Buta-1,3-diynes with Sulfuration Reagents .. 294
9.10.1.1.2.1.1 Variation 1: Reaction of Buta-1,3-diynes with Sulfides .. 294
9.10.1.1.2.1.2 Variation 2: Reaction of Buta-1,3-diynes with Sulfur Dichloride .. 295
9.10.1.1.2.2 Method 2: Reaction of Buta-1,3-diienes with a Source of Sulfur .. 296
9.10.1.1.2.3 Method 3: Reaction of But-2-enes or Butanes with Sulfur .. 296
9.10.1.1.2.1.4 Method 4: Cyclization of Sulfinylalkenes .. 297
9.10.1.1.2.1.4.1 Variation 1: Reaction of Buta-1,2-diienes with Sulfur Dioxide .. 297
9.10.1.1.2.1.4.2 Variation 2: Reaction of 1-Siloxy-penta-1,4-diienes with Thionyl Chloride .. 298
9.10.1.1.2.1.5 Method 5: Reaction of 1,4-Diketones with Sulfur Reagents and Cyclization (The Paal Synthesis) .. 298
9.10.1.1.2.1.6 Method 6: Reaction of α,β-Unsaturated Nitriles with Sulfur (The Gewald Synthesis) .. 300
9.10.1.1.3 By Formation of One S—C and One C—C Bond .. 301
9.10.1.1.3.1 Fragments S—C—C and C .. 301
9.10.1.3.1.1 Method 1: S-Alkylation of β-Thioxo Carbonyl Compounds or β-Thioxonitriles Followed by Ring Closure .. 301
Variation 1: S-Alkylation of Enolizable β-Thioxo Carbonyl Compounds or β-Thiononitriles

Variation 2: Reaction of β-Oxo Dithioesters and β-Oxothioamides with a 4-Bromobut-2-enoate

Variation 3: Reaction of Active Methylene Compounds with Carbon Disulfide Followed by S-Alkylation and Ring Closure

Method 2: Carbene Addition to α-Oxoketene Dithioacetals and α-Oxoketene Monothioacetals

Variation 1: Reaction of α-Sulfanyl Ketones with 2-(Diethoxyphosphoryl)-Substituted Alk-2-enoates

Variation 2: From α-Sulfanyl Ketones and Cyanoacetates

Method 2: Reaction of α-Alkylsulfanyl Ketones with Grignard Reagents

Method 3: From Vinyl Sulfides and Alkynes

Method 4: From 1,2,3-Thiadiazoles and Alkynes

Variation 1: Reaction of Thioglycolates with β-Dihalo or α,β-Dihalo Carbonyl Compounds

Variation 2: Reaction of Thioglycolates with β-Chlorovinyl Carbonyl Compounds and Equivalents (The Fiessemann Synthesis)

Variation 3: Reaction of Thioglycolates with β-Chloro-Substituted Cinnamionitriles

Variation 4: Reaction of Thioglycolates with α-Oxoalkynes

Variation 5: Reaction of Thioglycolates or α-Sulfanyl Ketones with Acetylenic Esters

Variation 6: Reaction of Thioglycolic Acid or Esters with β-Oxo Esters

Method 4: Reaction of Benzyl Thiols with Butadiynes

Method 5: Reaction of Thioacryloyl Acids with a Cyclopropyl(triphenyl)phosphonium Salt

Method 6: Reaction of Dithiocarbonates or Equivalents and Cyclopropenylium Salts

By Formation of Two C—C Bonds

Fragments C—S—C and C

Method 1: S-Alkylation of Thioamides and Reaction with a Chloromethaniminium Salt

Fragments C—S—C and C

Method 1: Reaction of 3-Thia-1,5-dicarbonyl Compounds or Equivalents with 1,2-Dicarbonyl Compounds (The Hinsberg Synthesis)
Method 2: 1,3-Dipolar Cycloaddition of Thiocarbonyl Ylides with Alkynes 326

Variation 1: Reaction of 1,3-Dithiolylium-4-olates with Alkynes 326

Variation 2: Reaction of Bis[(trimethylsilyl)methyl] Sulfoxides with Alkynes 327

Method 3: From 1,3-Thiazoles and Alkynes 327

By Formation of One S—C Bond 329

Fragment S—C—C—C—C 329

Method 1: From α-Sulfanyl Carbonyl Compounds by Ring Closure 329

Variation 1: Cyclization of Aroylketene S,N-Acetals 330

Variation 2: Oxidative Cyclization of 2-Sulfanylpenta-2,4-dienoic Acids 330

Method 2: Cyclization of 3-Sulfanylprop-1-ynyl Ketones 331

Method 3: From γ,δ-Unsaturated Thioamides 332

By Formation of One C—C Bond 334

Fragment C—S—C—C—C 334

Method 1: Cyclization of Aroylketene S,N-Acetals 334

Method 1: From β,β'-Dioxo Sulfides by Reductive Coupling 334

Synthesis by Ring Transformation 336

From Five-Membered Heterocycles 336

Method 1: From Zirconocenes and Disulfur Dichloride 336

Method 2: From 1,2-Thiazolium Salts 336

Method 3: From 1,3-Oxathiolium Salts 338

Method 5: From Furans 340

Ring Contraction 340

Method 1: From 1,2- or 1,4-Dithiins 340

Variation 1: From 1,2-Dithiins by Thermal or Photochemical Ring Contraction, or by Use of Thiophilic Phosphorus Reagents 340

Variation 2: From 1,4-Dithiins by Thermal Ring Contraction 341

Variation 3: From 1,4-Dithiins via their S-Oxides 342

Method 2: From 4H-Thiopyrans and Thiopyrylium Salts 343

Ring Expansion 344

Method 1: From Thiiranes 344

Variation 1: From 2-(1-Hydroxyalk-2-ynyl)thiiranes by Electrophile-Induced Ring Expansion 344

Variation 2: From 2-(2-Oxoalkyl)thiiranes 345

Variation 3: From 2-(2-Oxoalkyl)oxiranes 346

Aromatization 347

Method 1: From Dihydro- and Tetrahydrothiophenes 347

Synthesis by Substituent Modification 349

Substitution of Hydrogen 349

Method 1: Hydrogen–Deuterium Exchange 349
9.10.1.4.1.2 Method 2: Metalation ... 349
9.10.1.4.1.2.1 Variation 1: Generation of Organometallic Compounds by Hydrogen–Lithium Exchange ... 349
9.10.1.4.1.3 Method 3: Introduction of Formyl Groups 351
9.10.1.4.1.4 Method 4: Introduction of Acyl Groups 352
9.10.1.4.1.5 Method 5: Introduction of Chloromethyl and Hydroxymethyl Groups ... 354
9.10.1.4.1.6 Method 6: Introduction of Alkylamino Groups (The Mannich Reaction) ... 355
9.10.1.4.1.7 Method 7: Introduction of Allyl, Alk-1-enyl, or Alk-1-ynyl Groups ... 356
9.10.1.4.1.8 Method 8: Halogenation .. 357
9.10.1.4.1.9 Method 9: Introduction of Alkyl Groups 360
9.10.1.4.1.10 Method 10: Halogenation ... 362
9.10.1.4.1.11 Method 11: Sulfonation .. 366
9.10.1.4.1.12 Method 12: Nitration ... 367
9.10.1.4.2 Substitution of Metals .. 369
9.10.1.4.2.1 Method 1: Substitution Reactions Involving Organostannanes (The Stille Reaction) ... 370
9.10.1.4.2.2 Method 2: Substitution Reactions Involving Organocopper or Organozinc Derivatives 371
9.10.1.4.2.3 Method 3: Substitution Reactions Involving Organoboron Derivatives (The Suzuki Reaction) ... 373
9.10.1.4.2.4 Method 4: Substitution Reactions Involving Organolithium Derivatives ... 374
9.10.1.4.2.4.1 Variation 1: Replacement of Lithium by Hydrogen or Deuterium ... 374
9.10.1.4.2.4.2 Variation 2: Replacement of Lithium by a Silyl Group 375
9.10.1.4.2.4.3 Variation 3: Replacement of Lithium by a Carboxy Group 376
9.10.1.4.2.4.4 Variation 4: Replacement of Lithium by a Formyl or Acyl Group ... 376
9.10.1.4.2.4.5 Variation 5: Replacement of Lithium by a Hydroxymethyl or an Aminomethyl Group 378
9.10.1.4.2.4.6 Variation 6: Replacement of Lithium by an Alkyl, Alkenyl, Alkynyl, or Aryl Group ... 380
9.10.1.4.2.4.7 Variation 7: Replacement of Lithium by a Halogen 381
9.10.1.4.2.4.8 Variation 8: Replacement of Lithium by a Sulfanyl or Sulfonyl Group ... 382
9.10.1.4.3 Substitution of Carbon Functionalities 383
9.10.1.4.3.1 Method 1: Decarboxylation ... 383
9.10.1.4.4 Substitution of Heteroatoms .. 384
9.10.1.4.4.1 Method 1: Substitution of Halogen by Hydrogen 384
9.10.1.4.4.2 Method 2: Substitution of Halogen by Lithium 385
9.10.1.4.4.3 Method 3: Substitution of Halogen by Alkoxo or Sulfanyl Groups ... 386
9.10.1.4.4.4 Method 4: Metal-Assisted Cross Coupling of Halothiophenes with Alkenes, Arenes, and Alkynes ... 387
9.10.1.4.4.4.1 Variation 1: Manganese-Assisted Coupling Reactions 387
9.10.1.4.4.4.2 Variation 2: Zinc-Assisted Coupling Reactions 388
9.10.1.4.4.4.3 Variation 3: Palladium-Assisted Coupling Reactions 388
9.10.1.4.5 Modification of α-Substituents .. 389
9.10.1.4.5.1 Method 1: Enolization of Dihydrothiophene-2,5-diones 390
9.10.1.4.5.2 Method 2: Aromatization of Dihydrothiophen-3(2H)-ones 391
Method 3: Side-Chain Bromination of Alkylthiophenes

Product Subclass 2: Thiophene 1,1-Dioxides

Synthesis by Ring Transformation

Oxidation of Thiophenes

Method 1: Oxidation of Thiophenes

Aromatization

Method 1: From Dihydro- or Tetrahydrothiophene 1,1-Dioxides by Elimination

Variation 1: From Dihydro- or Tetrahydrothiophene 1,1-Dioxides by Hydrogen Halide Elimination

Variation 2: From Dihydro- or Tetrahydrothiophene 1,1-Dioxides by Nitrous Acid Elimination

Product Subclass 3: Thiophene 1-Oxides

Synthesis by Ring Transformation

Formal Exchange of Ring Members

Method 1: From Zirconocenes

Product Class 11: Selenophenes

J. Schatz

Synthesis by Ring-Closure Reactions

By Formation of Two Se—C Bonds

Fragments C—C—C and Se

Method 1: Reaction of C$_4$ Building Blocks with Sources of Selenium

Variation 1: Reaction of 1,4-Dilithio- or 1,4-Diiodobutadienes with a Selenium Source

Variation 2: Reaction of Butadiynes with Selenides

Variation 3: Reaction of 1-Alkynyl-2-bromobenzenes with Elemental Selenium

Variation 4: Reaction of Chloroalkynols or Alkynyloxiranes with Selenides

By Formation of Two C—C Bonds

Fragments C—Se—C and C—C

Method 1: From 1,2-Diketones and a Selenodiacetate (Hinsberg Synthesis)

By Formation of One C—C Bond

Fragment C—C—Se—C—C

Method 1: Reductive Cyclization of Diphenacyl Selenides
9.11 Synthesis by Formal Exchange of Ring Members

9.11.2 Method 1: Exchange of Zirconium by Selenium

9.11.3 Synthesis by Substituent Modification

9.12 Product Class 12: Tellurophenes

J. Schatz

9.12.1 Synthesis by Ring-Closure Reactions

9.12.1.1 By Formation of Two Te—C Bonds

9.12.1.1.1 Method 1: Reaction of C₄ Building Blocks with Sources of Tellurium

9.12.1.1.2 Variation 1: Reaction of 1,4-Dilithio- or 1,4-Diodobutadienes with a Tellurium Source

9.12.1.1.3 Variation 2: Reaction of Butadiynes with Tellurides

9.12.1.1.4 Variation 3: Reaction of 1-Alkynyl-2-bromobenzenes or But-1-en-3-ynes with Elemental Tellurium

9.12.1.1.5 Variation 4: Reaction of Chloroalkynols with Tellurides

9.12.1.2 By Formation of One C—C Bond

9.12.1.2.1 Fragment C—Te—C—C

9.12.1.2.2 Method 1: Cyclization of 3-(Alkyltellanyl)propenals

9.12.1.2.3 Method 2: Reaction of Trimethylsilyl Cyanide with Alkynes, Catalyzed by Palladium(II) or Nickel(II) Chloride

9.12.1.2.4 Method 2: Reaction of Zirconium and Titanium Complexes with Alkynes and Carbonyl Compounds

9.13 Product Class 13: 1H-Pyrroles

D. St.C. Black

9.13.1 Synthesis by Ring-Closure Reactions

9.13.1.1 By Formation of Two N—C Bonds and One C—C Bond

9.13.1.1.1 Method 1: Condensation Reaction of β-Dicarbonyl Compounds, α-Halo Carbonyl Compounds and Amines (The Hantzsch Synthesis)

9.13.1.1.2 Method 2: Condensation Reaction of Benzyl Ketones, Benzoin, and Ammonia

9.13.1.1.3 Method 3: Condensation Reaction of Aliphatic Aldehydes or Ketones and Hydrazines (The Piloty Synthesis)

9.13.1.1.4 Method 4: Reaction of Trimethylsilyl Cyanide with Alkynes, Catalyzed by Palladium(II) or Nickel(II) Chloride

9.13.1.1.5 Method 5: Reaction of Zirconium and Titanium Complexes with Alkynes and Carbonyl Compounds

9.13.1.2 By Formation of One N—C Bond and Two C—C Bonds

9.13.1.2.1 Fragments N—C, C—C, and C

9.13.1.2.2 Method 1: Reaction of Trimethylsilyl Cyanide with Alkynes, Catalyzed by Palladium(II) or Nickel(II) Chloride

9.13.1.2.3 Method 2: Reaction of Zirconium and Titanium Complexes with Alkynes and Carbonyl Compounds
9.13.1.2.1 Variation 1: Reaction of Zirconocene Derivatives of Alkylamines with Alkynes and Carbon Monoxide .. 450
9.13.1.2.2 Variation 2: Reaction of Zirconocene Derivatives of C-Silyl Imine Compounds with Alkynes and Acyl Chlorides .. 451
9.13.1.2.3 Variation 3: Reaction of Titanium Alkyne Complexes with Imines and Carbon Monoxide ... 452
9.13.1.2.4 Method 3: Reaction of Terminal Alkynes with Imines and Tungsten±Carbene Complexes ... 452
9.13.1.3 Method 4: Reaction of Imines with α-Haloacetals and 1-Benzylbenzotriazoles ... 453
9.13.1.3 By Formation of Three C—C Bonds ... 454
9.13.1.3.1 Fragment C—N—C and Two C Fragments .. 454
9.13.1.3.1 Method 1: Reaction of Alkyl Isocyanoacetates with Aldehydes 454
9.13.1.4 By Formation of Two N—C Bonds ... 455
9.13.1.4.1 Fragments C—C—C and N ... 455
9.13.1.4.1 Method 1: Condensation Reactions of 1,4-Dicarbonyl Compounds or Equivalents with Amines (The Paal±Knorr Synthesis) 455
9.13.1.4.1.2 Method 2: Reaction of 4-Substituted Carbonyl Compounds or Equivalents with Amines ... 458
9.13.1.4.1.3 Method 3: Reaction of Alk-2-ethyl Carbonyl Compounds or Equivalents with Amines ... 459
9.13.1.4.1.4 Method 4: Reaction of Alk-3-ynyl Carbonyl Compounds with Amines 461
9.13.1.4.1.5 Method 5: Reaction of Buta-1,3-dienes and Related Compounds with Amines ... 461
9.13.1.4.1.6 Method 6: Reaction of Buta-1,3-diynes with Amines 462
9.13.1.4.1.7 Method 7: Pyrrol-2-amines from the Reaction of Functionalized Nitriles with Amines ... 463
9.13.1.4.1.8 Method 8: 2-(Benzotriazolylmethyl)pyrroles from the Reaction of Alkynylloxiranes with Amines ... 464
9.13.1.5 By Formation of One N—C and One C—C Bond .. 465
9.13.1.5.1 Fragments N—C—C and C ... 465
9.13.1.5.1 Method 1: Reaction of α,β-Unsaturated Imines with Esters and Niobium(III) Chloride ... 465
9.13.1.5.1.2 Method 2: Reaction of α,β-Unsaturated Imine Iron±Tricarbonyl Complexes with Methyllithium ... 466
9.13.1.5.1.3 Method 3: Hydroformylation and a Related Reaction of Propargylamines 466
9.13.1.5.1.4 Method 4: Reaction of β-Amino Ketones with Diazo(trimethylsilyl)methane ... 467
9.13.1.5.1.5 Method 5: 3-Aminopyrrole-2,4-dicarbonitriles from the Reaction of Alkylidenemalononitriles with Aminoacetonitriles ... 468
9.13.1.5.2 Fragments N—C and C—C ... 469
9.13.1.5.2.1 Method 1: Condensation Reaction of α-Amino Ketones with Methylene-Active Carbonyl Compounds (The Knorr Pyrrole Synthesis) 469
9.13.1.5.2.2 Method 2: Condensation Reaction of Enamino Esters with α-Electrophilic Carbonyl Compounds and their Synthetic Equivalents 472
Method 3: Reaction of Enamino Esters with α-Diazo Ketones 474
Method 4: Reaction of Oximes (and Hydrazones) with Alkynes 474
Method 5: Reaction of Azolalkenes with Methylene Ketones 475
Method 6: Combination of α-Amino Carbonyl Compounds and Enolates via Aldol Reactions .. 476
Method 7: Reaction of α-Metalated Imines with α-Halo Ketones or α-Diketones 478

Fragments N—C and C—C—C .. 481
Method 1: Reaction of α-Aminoacetyl or α-Iminoacyl Compounds with 1,3-Diketones or Equivalents .. 481
Method 2: Reaction of Benzotriazole Enamines with Imines 486
Method 3: Reaction of Allenes with Tosylimines ... 486

By Formation of Two C—C Bonds ... 487
Fragments C—N—C—C and C ... 487
Method 1: Reaction of 2-Arylvinyl Isocyanides with Carbon Nucleophiles 487
Method 2: Reaction of Benzotriazole Enamines with Imines 488
Method 3: Reaction of Allenes with Tosylimines ... 488

By Formation of One N—C Bond .. 498
Fragment N—C—C—C—C .. 498
Method 1: Cyclizative Condensations .. 498
Method 2: Cyclization of Alk-4-yn-1-amines ... 500
Method 3: Cyclization of Dienyl Azides .. 501

By Formation of One C—C Bond ... 502
Fragment C—N—C—C—C .. 502
Method 1: Reactions Involving Typical C—C Bond Construction 502
Fragment C—C—N—C—C .. 503
Method 1: Reactions Involving Typical C—C Bond Construction 503

Synthesis by Ring Transformation ... 504
By Ring Enlargement ... 504
Method 1: Rearrangement of an Azabicyclo[2.1.0]pent-2-ene 504
Method 2: Rearrangement of 2-Vinyl-2H-azirines ... 504
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.13.2.2</td>
<td>By Ring Contraction</td>
<td>505</td>
</tr>
<tr>
<td>9.13.2.2.1</td>
<td>Method 1: Rearrangement of Pyridine and 1,3-Oxazepine Derivatives</td>
<td>505</td>
</tr>
<tr>
<td>9.13.3</td>
<td>Synthesis by Aromatization</td>
<td>505</td>
</tr>
<tr>
<td>9.13.3.1</td>
<td>By Reduction</td>
<td>506</td>
</tr>
<tr>
<td>9.13.3.1.1</td>
<td>Method 1: Reduction−Dehydration of 1H-Pyrrol-2(5H)-ones and 1H-Pyrrol-2(3H)-one</td>
<td>506</td>
</tr>
<tr>
<td>9.13.3.2</td>
<td>By Elimination</td>
<td>506</td>
</tr>
<tr>
<td>9.13.3.2.1</td>
<td>Method 1: Elimination from Substituted 3,4-Dihydro-2H-pyrroles</td>
<td>506</td>
</tr>
<tr>
<td>9.13.3.3</td>
<td>By Isomerization</td>
<td>508</td>
</tr>
<tr>
<td>9.13.3.3.1</td>
<td>Method 1: Rearrangement of 2H-Pyrroles</td>
<td>508</td>
</tr>
<tr>
<td>9.13.3.4</td>
<td>By Dehydrogenation</td>
<td>508</td>
</tr>
<tr>
<td>9.13.3.4.1</td>
<td>Method 1: Dehydrogenation of Dihydro- and Tetrahydropyrroles</td>
<td>508</td>
</tr>
<tr>
<td>9.13.4</td>
<td>Synthesis by Substituent Modification</td>
<td>509</td>
</tr>
<tr>
<td>9.13.4.1</td>
<td>Substitution of Existing Substituents</td>
<td>509</td>
</tr>
<tr>
<td>9.13.4.1.1</td>
<td>Substitution of Hydrogen</td>
<td>509</td>
</tr>
<tr>
<td>9.13.4.1.1.1</td>
<td>Method 1: Metalation</td>
<td>509</td>
</tr>
<tr>
<td>9.13.4.1.1.2</td>
<td>Method 2: C-Acylation</td>
<td>509</td>
</tr>
<tr>
<td>9.13.4.1.1.3</td>
<td>Method 3: C-Alkylation</td>
<td>513</td>
</tr>
<tr>
<td>9.13.4.1.1.3.1</td>
<td>Variation 1: C-Alkylation by Typical Electrophiles</td>
<td>513</td>
</tr>
<tr>
<td>9.13.4.1.1.3.2</td>
<td>Variation 2: C-Alkylation (and Arylation) by Carbenes and Free Radicals</td>
<td>514</td>
</tr>
<tr>
<td>9.13.4.1.1.3.3</td>
<td>Variation 3: C-Alkylation by Various Electrophiles</td>
<td>516</td>
</tr>
<tr>
<td>9.13.4.1.1.4</td>
<td>Method 4: C-Halogenation</td>
<td>518</td>
</tr>
<tr>
<td>9.13.4.1.1.5</td>
<td>Method 5: C-Thiolation</td>
<td>520</td>
</tr>
<tr>
<td>9.13.4.1.1.6</td>
<td>Method 6: C-Nitration and Amination</td>
<td>520</td>
</tr>
<tr>
<td>9.13.4.1.1.7</td>
<td>Method 7: N-Substitution</td>
<td>521</td>
</tr>
<tr>
<td>9.13.4.1.2</td>
<td>Substitution of Metals</td>
<td>524</td>
</tr>
<tr>
<td>9.13.4.1.2.1</td>
<td>Method 1: Substitution Reactions Involving Mercury and Thallium Derivatives</td>
<td>525</td>
</tr>
<tr>
<td>9.13.4.1.2.2</td>
<td>Method 2: Substitution Reactions Involving Organocopper and Organozinc Derivatives</td>
<td>526</td>
</tr>
<tr>
<td>9.13.4.1.2.3</td>
<td>Method 3: Substitution Reactions Involving Organopalladium Derivatives</td>
<td>527</td>
</tr>
<tr>
<td>9.13.4.1.2.4</td>
<td>Method 4: Substitution Reactions Involving Organolithium Derivatives</td>
<td>530</td>
</tr>
<tr>
<td>9.13.4.1.3</td>
<td>Substitution of Carbon Functionalities</td>
<td>532</td>
</tr>
<tr>
<td>9.13.4.1.3.1</td>
<td>Method 1: Reactions Involving Decarboxylation from a Ring Carbon</td>
<td>532</td>
</tr>
<tr>
<td>9.13.4.1.3.2</td>
<td>Method 2: Reactions Involving Dealkylation from the Ring Nitrogen</td>
<td>532</td>
</tr>
<tr>
<td>9.13.4.1.3.3</td>
<td>Method 3: Reactions Involving Detritylation from the Ring Nitrogen</td>
<td>533</td>
</tr>
<tr>
<td>9.13.4.1.4</td>
<td>Substitution of Heteroatoms</td>
<td>534</td>
</tr>
<tr>
<td>9.13.4.1.4.1</td>
<td>Method 1: Replacement of Tosyl by Trialkylstannyl Groups on a Ring Carbon</td>
<td>534</td>
</tr>
<tr>
<td>9.13.4.1.4.2</td>
<td>Method 2: Replacement of Sulfur and Silyl Groups on the Ring Nitrogen</td>
<td>534</td>
</tr>
<tr>
<td>9.13.4.2</td>
<td>Modification of Substituents</td>
<td>535</td>
</tr>
</tbody>
</table>
9.13.4.2.1 Modification of Acyl Substituents

- **Method 1:** Reduction of Acyl Groups to Alkyls 535
- **Method 2:** Addition and Condensation Reactions of Acyl Groups 537
- **Method 3:** Rearrangement of Acyl Groups 539

9.13.4.2.2 Modification of Alkyl Substituents

- **Method 1:** Substitution Reactions of Mannich Bases 539
- **Method 2:** Alkylation of α-Methylene Substituents 541
- **Method 3:** Halogenation of α-Methylene Substituents 541
- **Method 4:** Oxidation of α-Methylene Substituents 542

9.14 Product Class 14: Phospholes

F. Mathey

- **Product Class 14:** Phospholes 553
- **Product Subclass 1:** \(\lambda^3-1H\)-Phospholes 555

9.14.1 Synthesis by Ring-Closure Reactions

- **Method 1:** Reaction of Dihalophosphines with Enamines 557
- **Method 2:** Reaction of Dilithiophosphines with 1,4-Dihalo-Substituted 1,3-Dienes 558
- **Method 3:** Reaction of Primary Phosphines with 1,3-Dienes 559
- **Method 4:** Thermal Reaction of Dihalophosphines with 1,3-Dienes 560

9.14.1.2 By Formation of Two P-C Bonds

- **Method 1:** Reaction of Dihalophosphines with 1,4-Dihalo-Substituted 1,3-Dienes 558
- **Method 2:** Reaction of Dilithiophosphines with 1,4-Dilithio-Substituted 1,3-Dienes 559
- **Method 3:** Reaction of Primary Phosphines with 1,3-Dienes 559
- **Method 4:** Thermal Reaction of Dihalophosphines with 1,3-Dienes 560

9.14.1.3 Aromatization

- **Method 1:** Dehalogenation of \(P\)-Halophospholium Salts Obtained from Dihalophosphines and Cyclobutadiene-Aluminum Trichloride Complexes 563
- **Method 2:** Dehydrohalogenation of 1-Halodihydrophospholium Halides 564
- **Variation 1:** P-Bromination of 2,5-Dihydro-\(\lambda^3-1H\)-phospholes Followed by Dehydrobromination 566
- **Variation 2:** Quaternization of 1-Bromo-2,5-dihydro-1\(H\)-phospholes Followed by Dehydrobromination 568
- **Method 3:** Dehydrohalogenation of \(C\)-Halophospholane 1-Oxides 568

9.14.1.4 Synthesis by Substituent Modification

- **Addition Reactions** 569
Method 1: Reaction of Electrophiles with Phospholide Ions 569
Method 2: α-Functionalization of 1H-Phosphol-2-ylithiums 573
Substitution of Existing Substituents .. 575
Method 1: Reaction of Nucleophiles with Phospholes 575
Method 2: Transformation of α-Substituents ... 576
Method 3: Reduction of λ3-Phospholes ... 577
Decomplexation and Thermolysis ... 578
Method 1: Decomplexation of Phosphole λ3-Complexes 578
Method 2: Thermolysis of λ3-Phospholes .. 579
Product Subclass 2: Phospholide Ions ... 581
Aromatization .. 582
Method 1: Cleavage of the Exocyclic P–R Bond of λ3,1H-Phospholes 582
Variation 1: By Alkali Metals ... 582
Variation 2: By Base .. 583
Method 2: Deprotonation of Transient 2H-Phospholes 584
Product Subclass 3: η5-Phospholyl Complexes ... 585
Synthesis by Ring-Closure Reactions ... 588
Method 1: Assembly of a Phospholyl Ring .. 588
Synthesis by Complexation ... 588
Method 1: From Phospholide Ions .. 588
Variation 1: Via Intermediate 1-Stannyl-1H-phospholes or 1,1'-Bi-1H-phospholes ... 590
Method 2: From λ3,1H-Phospholes .. 592
Method 3: From λ3,2H-Phospholes .. 593
Synthesis by Substituent Modification .. 594
Method 1: Electrophilic Modification ... 594
Method 2: Modificative of α-Substituents .. 595
Keyword Index ... 601
Author Index ... 613
Abbreviations ... 659
Volume 10:
Fused Five-Membered Hetarenes with One Heteroatom

Preface .. V

Table of Contents .. IX

Introduction
E. J. Thomas .. 1

10.1 Product Class 1: Benzo[b]furans
C. P. Dell .. 11

10.2 Product Class 2: Benzo[c]furans
P. G. Steel .. 87

10.3 Product Class 3: Dibenzofurans
K. Jones .. 131

10.4 Product Class 4: Benzo[b]thiophenes
C. M. Rayner and M. A. Graham 155

10.5 Product Class 5: Benzo[c]thiophenes
T. L. Gilchrist and S. J. Higgins 185

10.6 Product Class 6: Dibenzothiophenes
M. D. Andrews ... 211

10.7 Product Class 7: Benzo[b]selenophenes
P. J. Murphy .. 265

10.8 Product Class 8: Benzo[c]selenophenes
P. J. Murphy .. 301

10.9 Product Class 9: Dibenzo[selenophenes]
P. J. Murphy .. 307

10.10 Product Class 10: Benzo[b]tellurophenes
P. J. Murphy .. 325

10.11 Product Class 11: Benzo[c]tellurophenes
P. J. Murphy .. 343

10.12 Product Class 12: Dibenzo[tellurophenes]
P. J. Murphy .. 347

10.13 Product Class 13: Indole and Its Derivatives
J. A. Joule ... 361

10.14 Product Class 14: 1H- and 2H-Isoindoles
T. J. Donohoe .. 653

10.15 Product Class 15: Carbazoles
P. T. Gallagher ... 693

10.16 Product Class 16: Indolizines
M. Shipman .. 745
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.17</td>
<td>Product Class 17: Benzo[b]phospholes</td>
<td>R. A. Aitken</td>
<td>789</td>
</tr>
<tr>
<td>10.18</td>
<td>Product Class 18: Benzo[c]phospholes</td>
<td>R. A. Aitken</td>
<td>809</td>
</tr>
<tr>
<td>10.19</td>
<td>Product Class 19: Dibenzo(phospholes</td>
<td>R. A. Aitken</td>
<td>817</td>
</tr>
<tr>
<td>10.20</td>
<td>Product Class 20: Phosphorus Analogues of Indolizines</td>
<td>R. A. Aitken</td>
<td>839</td>
</tr>
</tbody>
</table>

Keyword Index 843

Author Index 861

Abbreviations 911
Table of Contents

Introduction
E. J. Thomas

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
</table>
| 10.1 | **Product Class 1: Benzo[b]furans**
C. P. Dell | 11 |
| 10.1.1 | Synthesis by Ring-Closure Reactions | 17 |
| 10.1.1.1| By Annulation to an Arene | 17 |
| 10.1.1.1| By Formation of One O—C and One C—C Bond | 17 |
| 10.1.1.1| Method 1: From 2-Halophenols and Alkyynes | 18 |
| 10.1.1.1.2| Variation 2: Using an Alkyne and Copper(I) Oxide | 18 |
| 10.1.1.1.3| Variation 3: Using an Alkyne and Copper Powder | 19 |
| 10.1.1.1.4| Variation 4: Using an Alkyne with Palladium(II) and Copper(I) Catalysis in the Presence of an Organic Base | 19 |
| 10.1.1.1.5| Variation 5: Using an Alkyne with Palladium(II) and Copper(I) Catalysis in the Presence of an Inorganic Base | 21 |
| 10.1.1.1.6| Variation 6: Using an Alkyne with Palladium(II) and Copper(I); Combinatorial Procedure | 21 |
| 10.1.1.1.7| Variation 7: Using an Alkyne with Palladium(II) | 22 |
| 10.1.1.1.8| Variation 8: By Photochemical Trapping of Zwitterions | 23 |
| 10.1.1.1.2| Method 2: From 1,4-Quinones | 23 |
| 10.1.1.1.3| Method 3: From 2-Hydroxybenzaldehydes and 2-Hydroxyphenyl Ketones | 24 |
| 10.1.1.1.3.1| Variation 1: Using Phenacyl Bromide | 25 |
| 10.1.1.1.3.2| Variation 2: Using Phenacyl Bromide Under Phase-Transfer Conditions | 25 |
| 10.1.1.1.3.3| Variation 3: Using Bromoacetaldehyde | 26 |
| 10.1.1.1.3.4| Variation 4: Using Chloroacetone | 26 |
| 10.1.1.1.3.5| Variation 5: Using Ethyl Bromoacetate | 27 |
| 10.1.1.1.3.6| Variation 6: Using Ethyl Chloroacetoxacetate | 28 |
| 10.1.1.1.3.7| Variation 7: Using Bromonitromethane | 28 |
| 10.1.1.1.3.8| Variation 8: Using Diethyl α-Bromomalonate | 29 |
| 10.1.1.1.3.9| Variation 9: Using Benzyl Halides | 29 |
| 10.1.1.1.4| Method 4: From Methyl 2-Hydroxybenzoates | 30 |
| 10.1.1.1.5| Method 5: From Phenols and α-Haloacyl Halides | 30 |
| 10.1.1.1.6| Method 6: By Intramolecular Wittig Reactions | 31 |
| 10.1.1.1.7| Method 7: From O-Arylketoximes | 31 |
| 10.1.1.1.8| Method 8: By Claisen Rearrangement of Phenyl Propargyl Ethers and Related Species | 32 |
Variation 1: By Claisen Rearrangement of Phenyl Propargyl Ethers

Variation 2: By Claisen Rearrangement of Phenyl Propargyl Ethers Using Cesium Fluoride

Variation 3: By Claisen Rearrangement of Aryl 2-Chloroprop-2-enyl Ethers

Variation 4: From 2-Ethynylphenols and Their Derivatives

Variation 5: From 2-(Triisopropylsiloxy)phenylalkynes

Variation 6: From 4-(2-Hydroxyaryl)-1,2,3-thiadiazoles

Variation 7: From Dealkylation of 2-Methoxyphenylalkynes

Variation 8: From Flash-Vacuum Pyrolysis of (2-Methoxybenzoyl)alkylidenetriphenylphosphoranes

Variation 9: Treatment of 2-Methoxyphenylalkynes with Mercury(II) Acetate

Method 1: By One-Pot, Acid-Catalyzed Cyclization of α-Aryloxy Ketones

Method 2: From 2-Alkenylphenols Using Palladium Reagents

Method 3: Benzofuran-3(2H)-ones and Benzofuran-3-ols from α-Halo-2-hydroxyacetophenones

Method 4: From Enol Radical Cations

Method 5: From an O-Allyl-2-halophenol with Palladium Catalysis

Method 6: From an O-Allyl-2-mercuriophenol with Stoichiometric Palladium

Method 7: From O-Propargyl- and O-Allenyl-2-iodophenols

Method 8: From a 3-(2-Halo1prop-2enylox)phenol with Palladium

Method 9: By Acid-Catalyzed Cyclization of α-Aryloxy Carbonyl Compounds and Their Derivatives
10.1.1.4.3.1 Variation 1: Cyclization of α-Aryloxy Ketones .. 53
10.1.1.4.3.2 Variation 2: Cyclization of α-Aryloxy carboxylic Acids 55
10.1.1.4.3.3 Variation 3: Cyclization of α-Aryloxy carboxamides 56
10.1.1.4.3.4 Variation 4: Cyclization of Protected α-Aryloxyaldehydes 56
10.1.1.4.4 Method 4: By Cyclization of O-Substituted 2-Hydroxybenzaldehydes and Related Species ... 57
10.1.1.4.5 Method 5: By Dieckmann Cyclization of (2-Alkoxy carbonylphenox)acetic Acids and Esters ... 58
10.1.1.4.6 Method 6: By Cyclization of 2-(Benzzyloxy) benzaldehydes and Related Species .. 59

10.1.1.4.7 By Annulation to the Heterocyclic Ring ... 60
10.1.1.4.8 By Formation of Three and Two C—C Bonds ... 60
10.1.1.4.9 Method 1: From 2-Vinylfurans .. 60
10.1.1.4.10 Variation 1: From 2-Vinylfurans (Intermolecular Cycloaddition) 61
10.1.1.4.11 Variation 2: From 2-Vinylfurans (Intramolecular Cycloaddition) 61
10.1.1.4.12 Method 2: From 3-Vinylfurans (Intermolecular Cycloaddition) 62
10.1.1.4.13 Method 3: From Furan Analogues of 1,2-Quinodimethane 63
10.1.1.4.14 Method 4: By Conjugate Addition–Cyclization ... 64
10.1.1.4.15 Method 5: From Cyclobutenones .. 64
10.1.1.4.16 Method 6: From Benzannulation of Furfuryl Chromium Carbene Complexes 65
10.1.1.4.17 Method 7: Using 2-(Benzotriazol-1-ylmethyl)furan 65
10.1.1.4.18 Method 8: By Carbonylation of Vinylfurans ... 66

10.1.1.4.19 By Formation of One C—C Bond ... 67
10.1.1.4.20 Method 1: By Stobbe and Related Condensations ... 67
10.1.1.4.21 Method 2: From Electrocyclic Reactions of 2,3-Disubstituted Furans 68

10.1.2 Synthesis by Ring Transformation .. 68
10.1.2.1 Method 1: By Ring Enlargement ... 68
10.1.2.2 Method 2: By Formal Exchange of Ring Members with Retention of Ring Size .. 69
10.1.2.3 Method 3: By Ring Contraction .. 70
10.1.2.4 Method 4: By Ring Contraction of 1-Benzopyrylium Salts 70
10.1.2.5 Method 5: By Ring Contraction of 4-(Halomethyl)coumarins 70

10.1.3 Aromatization .. 71

10.1.4 Synthesis by Substituent Modification ... 71
10.1.4.1 Addition Reactions .. 71
10.1.4.2 Substitution of Existing Substituents ... 71
10.1.4.3 Of Hydrogen ... 71
10.1.4.3.1 Method 1: Metalation .. 72
10.1.4.3.2 Method 2: Acylation ... 72
10.1.4.3.3 Method 3: Alkylation, Alkenylation, and Arylation 73
10.1.4.3.4 Method 4: Halogenation .. 73
10.1.4.3.5 Method 5: Nitration .. 74

Science of Synthesis Original Edition Volume 10
© Georg Thieme Verlag KG
10.1 Of Carbon Functionalities .. 75
10.1.4.2 Modification of Substituents ... 75
10.1.4.4 Rearrangement of Substituents .. 75

10.2 Product Class 2: Benzo[\textit{c}]furans
P. G. Steel

10.2.1 Synthesis by Ring-Closure Reactions 88
10.2.1.1 By Formation of both Benzene and Furan Rings 88
10.2.1.1.1 Method 1: By Cyclization–Dehydration of 1,2-Diaroylcyclohexenes .. 88
10.2.1.1.1 Variation 1: From 3-Substituted 1,2-Diaroylcyclohexenes 88
10.2.1.1.2 Variation 2: From 1,2-Diaroylcyclohexadienes 89
10.2.1.2 By Annulation to an Arene ... 90
10.2.1.2.1 By Formation of One Heteroatom—Carbon Bond 90
10.2.1.2.1.1 Method 1: From 1,2-Diacylbenzenes 90
10.2.1.2.1.1 Variation 1: Reduction with Hydride Reducing Agents 90
10.2.1.2.1.2 Variation 2: Reduction with Dissolving Metals 91
10.2.1.2.1.3 Variation 3: Nucleophilic Addition to 2-Acylbenzaldehydes 91
10.2.1.2.2 Method 2: From 2-Acylbenzyl Alcohols 92
10.2.1.2.2.1 Variation 1: Via 2-Acylbenzyl Alcohols from Monoacetals of Phthalaldehyde 93
10.2.1.2.2.2 Variation 2: Via 2-Acylbenzyl Alcohols from o-Metalation Strategies 94
10.2.1.2.2.3 Variation 3: Via 2-Acylbenzyl Alcohols from the Anionic Fries Rearrangement of 2-Iodobenzyl Esters 95
10.2.1.2.3 Method 3: Via Intramolecular Trapping of a Benzylid Carbene 96
10.2.1.2.3.1 Variation 1: Via Carbenes from Metal-Catalyzed Diazooalkane Decomposition 97
10.2.1.2.3.2 Variation 2: Via Carbenes from 1,1-Elimination of \(\circ \)-Halosilanes 98
10.2.1.2.3.3 Variation 3: Via Carbenes from Decomposition of Tosylhydrazones 99
10.2.1.2.4 Method 4: Via Displacement of Benzyl Halogen 99
10.2.1.2.4.1 Variation 1: From 2-Alkylbenzophenones 99
10.2.1.2.4.2 Variation 2: From 2-Alkylbenzamides via Imidate Salts 100
10.2.1.2.5 Method 5: From 2-Formylstyrenes 101
10.2.1.2.6 Method 6: 1-Sulfanylbenzo[\textit{c}]furans via Pummerer Reaction 102
10.2.1.2.6.1 Variation 1: 3-Aryl(alkyl)-1-sulfanylbenzo[\textit{c}]furans via Thermal Pummerer Reaction 102
10.2.1.2.6.2 Variation 2: Sulfanylbenzo[\textit{c}]furans via Low-Temperature Pummerer Reaction 103
10.2.1.2.6.3 Variation 3: 3-Amino-1-Sulfanylbenzo[\textit{c}]furans via Pummerer Reaction of \(\circ \)-Amido Sulfoxides 103
10.2.1.3 By Annulation to a Furan ... 104
10.2.1.3.1 Method 1: Via Condensations of 3,4-Diformylfurans 105

Science of Synthesis Original Edition Volume 10
© Georg Thieme Verlag KG
10.2. Synthesis by Ring Transformation

10.2.1 Method 1: Nucleophilic Additions to Phthalides

10.2.2 Method 2: Via 1,4-Elimination from 1-Alkoxyphthalans

10.2.3 Variation 1: Thermal Generation of Benzo[c]furan from Alkoxyphthalans

10.2.4 Variation 2: Via Acid-Catalyzed 1,4-Elimination of Alkoxyphthalans

10.2.5 Variation 3: Via Amide Base Promoted 1,4-Elimination of Alkoxyphthalans

10.2.6 Variation 4: Via Catalytic Amide Base Promoted 1,4-Elimination of Alkoxyphthalans

10.2.7 Variation 5: Via 1,4-Elimination of Alkoxyphthalans with in situ Silylation

10.2.8 Method 3: Via Elimination from Phthalan Hemiaminals

10.2.9 Method 4: Via Isomerization (Aromatization) of Alkylidenephthalans

10.2.10 Method 5: From Phthalide Anions (Aromatization via Deprotonation)

10.2.11 Method 6: Via Retro-Diels–Alder Reactions

10.2.12 Method 7: Via Aromatization of the Arene Ring

10.3 Product Class 3: Dibenzofurans

10.3.1 Synthesis by Ring-Closure Reactions

10.3.2 By Formation of the Furan Ring

10.3.3 By Formation of Two O–C Bonds

10.3.4 Method 1: From 2,2'-Dihalobiphenyls
10.3.1.2 By Formation of One O—C and One C—C Bond .. 135

10.3.1.2.1 Method 1: From Cyclohexa-1,3-diones and 2-Halocyclohexanones (Feist–Benary Synthesis) .. 135

10.3.1.2.2 Method 2: From Quinones and Cyclohexanone Enamines 136

10.3.1.2.3 Method 3: From Phenolate Ions and 2-Halocyclohexanones (Ebel’s Method) ... 136

10.3.1.2.4 Method 4: From Phenols via Oxidative Coupling 137

10.3.1.3 By Formation of One O—C Bond .. 138

10.3.1.3.1 Method 1: From 2,2′-Dihydroxybiphenyls ... 138

10.3.1.3.2 Method 2: From 2-Halo-2′-hydroxybiphenyls 139

10.3.1.3.3 Method 3: From 2-Amino-2′-methoxybiphenyls 139

10.3.1.4 By Formation of One C—C Bond .. 140

10.3.1.4.1 Method 1: From 2,2′-Diiododiphenyl Ethers 140

10.3.1.4.2 Method 2: From 2-Aminodiphenyl Ethers .. 141

10.3.1.4.2.1 Variation 1: From 2-Phenoxybenzenediazonium Salts under Acidic Conditions ... 141

10.3.1.4.2.2 Variation 2: From 2-Phenoxybenzenediazonium Salts on Treatment with Electron Donors .. 142

10.3.1.4.3 Method 3: Cyclization of Diphenyl Ethers .. 142

10.3.1.4.3.1 Variation 1: From Diphenyl Ethers Using Stoichiometric Palladium(II) Acetate ... 143

10.3.1.4.3.2 Variation 2: From Diphenyl Ethers Using Catalytic Palladium(II) Acetate .. 144

10.3.1.4.3.3 Variation 3: From Diphenyl Ethers by Photochemical Cyclization 145

10.3.1.2 By Annulation to Benzo[b]furans .. 146

10.3.1.2.1 Method 1: From 2-Methylbenzo[b]furan-3-carbaldehydes 146

10.3.1.2.1.1 Method 2: From 2-Vinylbenzo[b]furans ... 147

10.3.1.2.2 By Formation of One C—C Bond ... 147

10.3.1.2.2.1 Method 1: Via Intramolecular Claisen Condensation 148

10.3.1.2.2.2 Method 2: Via Intramolecular Friedel–Crafts Acylation 148

10.3.2 Synthesis by Ring Transformation ... 149

10.3.2.1 Method 1: From Quinone–Cyclohexadiene Cycloaddition Adducts 149

10.3.2.2 Method 2: From Spirobenzo[b]furanones .. 150

10.3.3 Additional Methods ... 150
10.4 Product Class 4: Benzo[b]thiophenes
C. M. Rayner and M. A. Graham

10.4.1 Synthesis by Ring-Closure Reactions .. 155
10.4.1.1 By Annulation to an Arene .. 156
10.4.1.1.1 By Formation of Two S—C Bonds and One C—C Bond 157
10.4.1.1.1 Method 1: Zirconium-Mediated Coupling of Aryllithium Reagents with Alkynes and Sulfur Dichloride 157
10.4.1.1.2 By Formation of Two S—C Bonds .. 158
10.4.1.1.2.1 Method 1: Condensation of Styrenes with Sulfur 158
10.4.1.1.3 By Formation of One S—C and One C—C Bond 158
10.4.1.1.3.1 Method 1: From Phosphonium Salts 158
10.4.1.1.3.2 Method 2: Perkin Condensation 159
10.4.1.1.4 By Formation of Two C—C Bonds 160
10.4.1.1.4.1 Method 1: By Lithiation of Thioanisole 160
10.4.1.1.5 By Formation of One S—C Bond 161
10.4.1.1.5.1 Method 1: Oxidative Cyclization of o-Sulfanylcinnamic Acids with Subsequent Decarboxylation 161
10.4.1.1.5.2 Method 2: Electrophilic Cyclization of 2-Sulfanylcinnamic Acids 162
10.4.1.1.5.3 Method 3: Cyclization of (E)-3-Chlorovinylsulfenamides to 2-Substituted 3-Chlorobenzo[b]thiophenes 163
10.4.1.1.5.4 Method 4: Cyclization of [2-(Benzylsulfanyl)phenyl]acetonitrile 163
10.4.1.1.6 By Formation of One C—C Bond 164
10.4.1.1.6.1 Method 1: Cyclization of 2-(Phenylsulfanyl)acetaldehyde Dialkyl Acetals and Related Compounds 164
10.4.1.1.6.2 Method 2: Dieckmann Condensation 166
10.4.1.1.6.3 Method 3: Intramolecular Heck Cyclization 166
10.4.1.1.7 By Annulation to the Heterocyclic Ring 167
10.4.1.2.1 By Formation of Two C—C Bonds 167
10.4.1.2.1.1 Method 1: By the Diels–Alder Reaction 167
10.4.1.2.1.2 Method 2: By Michael Addition of a Thiénylmethyl Anion 167
10.4.1.2.1.3 Method 3: By Metal-Mediated Cross Coupling of 2,3-Disubstituted 4-Chlorocyclobut-2-enones 168
10.4.1.2.1.4 Method 4: Cyclocarbonylation of 3-Thienylallyl Acetates 169
10.4.1.2.2 By Formation of One C—C Bond 169
10.4.1.2.2.1 Method 1: Photolysis of (Naphthylvinyl)thiophenes to Phenanthro[b]thiophenes .. 169
10.4.2 Synthesis by Substituent Modification 170
10.4.2.1 Substitution of Existing Substituents 170
10.4.2.1.1 Method 1: Metalation .. 170
10.4.2.1.2 Method 2: C-Acylation ... 171
10.4.2.1.3 Method 3: C-Alkylation ... 172
10.4.2.1.4 Method 4: Cerium(IV)-Mediated Addition of a Malonyl Radical to Benzo[b]thiophene .. 173
10.4.2.1.5 Method 5: C-Halogenation ... 173
10.4.2.1.6 Of Metals .. 174
10.4.2.1.6.1 Method 1: Reactions Involving Organopalladium Derivatives .. 174
10.4.2.1.6.2 Method 2: Reactions Involving Organolithium Intermediates .. 175
10.4.2.1.6.3 Of Carbon Functionalities .. 177
10.4.2.1.6.3.1 Method 1: Curtius Rearrangement of Carboxylic Acids .. 177
10.4.2.1.6.4 Of Heteroatoms .. 177
10.4.2.1.6.4.1 Method 1: Metal–Halogen Exchange .. 177
10.4.2.1.6.4.2 Method 2: Palladium-Mediated Coupling of Halobenzo[b]thiophenes .. 178
10.4.2.1.6.4.3 Method 3: Reactions of Diazonium Salts .. 179
10.4.2.2 Modification of Substituents .. 181
10.4.2.2.1 Method 1: Reduction of Nitro Derivatives .. 181

10.5 Product Class 5: Benzo[c]thiophenes
T. L. Gilchrist and S. J. Higgins

10.5 Product Class 5: Benzo[c]thiophenes .. 185
10.5.1 Synthesis by Ring-Closure Reactions .. 187
10.5.1.1 By Annulation to an Arene ... 187
10.5.1.1.1 By Formation of Two S—C Bonds .. 187
10.5.1.1.1.1 Method 1: From 1,2-Diacetylbenezens and Phosphorus Pentasulfide .. 188
10.5.1.1.1.1.1 Variation 1: Use of Lawesson’s Reagent .. 188
10.5.1.1.1.1.2 Variation 2: Reaction of 1,2-Dibenzylbenzenes with Sulfur .. 189
10.5.1.1.2 By Formation of One S—C and One C—C Bond .. 190
10.5.1.1.2.1 Method 1: Reaction of Thiobenzophenones with Bis(arenesulfonyl)diazomethanes .. 190
10.5.1.1.3 By Formation of Two C—C Bonds .. 190
10.5.1.1.3.1 Method 1: Use of the Hinsberg Thiophene Synthesis for c-Fused Thiophenes .. 191
10.5.1.1.4 By Formation of One C—C Bond .. 192
10.5.1.1.4.1 Method 1: Intramolecular Nucleophilic Substitution of Fluoroarenes .. 192
10.5.1.2 By Annulation to a Thiophene Ring .. 192
10.5.1.2.1 Method 1: Addition of (3-Thienyl)methyl 4-Tolyl Sulfoles to Conjugated Alkenes .. 194
10.5.2 Synthesis by Ring Transformation .. 195
 10.5.2.1 Method 1: From Isobenzofurans 195
 10.5.2.2 Method 2: Via Cyclic Rhodium Complexes Derived from
 Bis(phenylethynyl)arenes .. 196
 10.5.2.3 Method 3: Ring Contraction of 1,4-Dihydrobenzodithiins 197
 10.5.2.4 Method 4: Ring Contraction of Benzothiins 197
10.5.3 Aromatization .. 199
 10.5.3.1 Method 1: From 1,3-Dihydrobenzo[c]thiophene 2-Oxides 201
 10.5.3.1.1 Variation 1: Aromatization of 2-Methoxy-1,3-dihydro-
 benzo[c]thiophenyl Trifluoromethanesulfonates 202
 10.5.3.2 Method 2: Dechlorination of 1,1,3,3-Tetrachloro-1,3-dihydro-
 benzo[c]thiophene ... 203
10.5.4 Synthesis by Substituent Modification 203
 10.5.4.1 Method 1: Displacement Reactions Based on
 1,3-Dichlorobenzo[c]thiophene 204
10.5.5 Synthesis of Poly(benzo[c]thiophenes) 205

10.6 Product Class 6: Dibenzothiophenes
M. D. Andrews

10.6 Product Class 6: Dibenzothiophenes 211
 10.6.1 Synthesis by Ring-Closure Reactions 213
 10.6.1.1 By Annulation to an Arene 214
 10.6.1.1.1 By Formation of Two S—C Bonds 214
 10.6.1.1.1.1 Method 1: From Biphenyl Using Sulfur and Aluminum Trichloride 214
 10.6.1.1.1.2 Method 2: From Biaryls Using Hydrogen Sulfide and a Catalyst 215
 10.6.1.1.1.3 Method 3: From Biaryl-2,2'-diols and Phosphorus Pentasulfide 215
 10.6.1.1.1.4 Method 4: From Biaryls and Sulfur Dichloride 216
 10.6.1.1.1.5 Method 5: From Biaryls and Oleum or Chlorosulfonic Acid 217
 10.6.1.1.1.6 Method 6: From 3-Arylcyclohex-2-enones 218
 10.6.1.1.2 By Formation of One S—C and One C—C Bond 219
 10.6.1.1.2.1 Method 1: Via Cyclization of α-Arylsulfanyl Ketones 219
 10.6.1.1.2.1.1 Variation 1: The Tilak Annulation 219
 10.6.1.1.2.1.2 Variation 2: From an Epoxycyclohexanone 222
 10.6.1.1.2.2 Method 2: From Tetrafluorobenzene 223
 10.6.1.1.3 By Formation of One S—C Bond 223
 10.6.1.1.3.1 Method 1: From Arenesulfonyl or Arenesulfinyl Chlorides 223
 10.6.1.1.3.2 Method 2: By Oxidation of 2-[(Trifluoromethyl)sulfanyl]biphenyls ... 224
 10.6.1.1.4 By Formation of One C—C Bond 225
 10.6.1.1.4.1 Method 1: The Pschorr Cyclization 225
 10.6.1.1.4.2 Method 2: By Treatment of Diaryl Sulfoxides with Base 227
Method 3: Photocyclization of Diaryl Sulfides .. 227
Method 4: Vacuum Pyrolysis of Aryl Radical Precursors 228
Additional Methods ... 229
By Annulation to the Heterocyclic Ring ... 229
By Formation of Two C–C Bonds .. 229
Method 1: By Reaction of Dichloromethyl Ethers with Allylbenzo[b]thiophenes .. 229
Method 2: Diels–Alder Reactions of Benzo[b]thiophene 1,1-Dioxides ... 231
Method 3: Diels–Alder Reactions of Vinylbenzo[b]thiophenes 232
Method 4: Via Coupling of Cyclobutenones with Organostannanes 233
Method 5: Via Benzothieno[2,3-c]pyrylium Salts 234
Method 6: From 2-Benzoyl-3-chlorobenzo[b]thiophene 1,1-Dioxide 235
Method 7: By Double Friedel–Crafts Alkylation Reactions 236
By Formation of One C–C Bond ... 237
Method 1: Photocyclization of 1,2-Diarylalkenes 237
Method 2: By Cyclization of Aromatic Aldehydes or Ketones (The Bradsher Reaction) ... 239
Method 3: Intramolecular Friedel–Crafts Acylation Reactions 240
Method 4: By Pyrolysis of Aroylbenzo[b]thiophenes (The Elbs Reaction) ... 241
Method 5: By Thermolysis of (Arylhydroxymethyl)thiophenes 242
Additional Methods ... 243
Synthesis by Ring Transformation .. 243
Method 1: Diels–Alder Reactions of Benzothienopyranones 243
Method 2: Reduction of Dibenzo[c,e]dithiins 244
Method 3: Reaction of Thianthrene 5-Oxides with Organolithiums 244
Additional Methods ... 245
Aromatization .. 246
Method 1: By Dehydrogenation ... 246
Variation 1: Palladium on Carbon at High Temperature 246
Variation 2: Heating with Selenium or Sulfur 246
Variation 3: Oxidation with Quinone ... 247
Variation 4: Halogenation/Dehydrohalogenation 247
Method 2: By Elimination ... 248
Synthesis by Substituent Modification .. 248
Addition Reactions ... 248
Method 1: S-Alkylation ... 248
Method 2: S-Oxidation ... 249
Variation 1: Formation of Dibenzothiophene 5,5-Dioxides 249
Variation 2: Formation of Dibenzothiophene 5-Oxides 250
Substitution of Existing Substituents ... 250
Of Hydrogen ... 250
10.6.4.2.1.1 Method 1: Via Metalation ... 250
10.6.4.2.1.2 Method 2: Friedel–Crafts Acylation 252
10.6.4.2.1.3 Method 3: Halogenation .. 253
10.6.4.2.1.4 Method 4: Nitration .. 253
10.6.4.2.2 Of Metals .. 254
10.6.4.2.3 Of Carbon .. 255
10.6.4.2.3.1 Method 1: Decarboxylation .. 255
10.6.4.2.4 Of Heteroatoms ... 255
10.6.4.2.4.1 Method 1: Reduction of Dibenzothiophene 5-Oxides and 5,5-Dioxides .. 255
10.6.4.2.4.2 Method 2: Substitution of Halogens 256
10.6.4.2.4.3 Method 3: Substitution of Nitrogen 257
10.6.4.3 Rearrangement of Substituents .. 258
10.6.4.4 Modification of Substituents ... 258

10.7 Product Class 7: Benzo[b]selenophenes

P. J. Murphy

10.7.1 Synthesis by Ring-Closure Reactions 265
10.7.1.1 By Annulation to an Arene .. 265
10.7.1.1.1 By Formation of Two Se—C Bonds 265
10.7.1.1.1.1 Method 1: From 1-Arylalk-1-ynes and Selenium Tetrahalides .. 266
10.7.1.1.1.2 Method 2: From 1-Arylalk-1-ynes and Diselenium Dichloride .. 267
10.7.1.1.1.3 Method 3: From 1-Arylalk-1-ynes, Selenium Dioxide, and Hydrogen Halides .. 267
10.7.1.1.1.4 Method 4: From 1,5-Diphenylpenta-1,4-dien-3-one and Selenium Tetrabromide .. 268
10.7.1.1.1.5 Method 5: From 1,1-Diaryalkenes and Selenium Oxychloride .. 269
10.7.1.1.1.6 Method 6: From 1-(2-Chlorophenyl)ethanone and Lithium Diselenide .. 269
10.7.1.1.1.7 Method 7: From Cumulenes and Selenium .. 270
10.7.1.1.1.8 Method 8: From Metalated Intermediates 270
10.7.1.1.1.8.1 Variation 1: From 1-Arylalk-1-ynes 270
10.7.1.1.1.8.2 Variation 2: From 1-(2-Bromophenyl)alk-1-ynes 271
10.7.1.1.1.8.3 Variation 3: From 1-Bromo-2-phenyl- or 1-Bromo-2-(2-bromophenyl)-1-(trimethylsilyl)ethene .. 271
10.7.1.1.2 By Formation of One Se—C and One C—C Bond 272
10.7.1.1.2.1 Method 1: From Diphenyl Diselenide and Dimethyl Acetylenedicarboxylate .. 272
10.7.1.1.2.2 Method 2: From Diazodiphenylmethane and Benzoyl Isoselenocyanate .. 272
10.7.1.1.3 By Formation of One Se—C Bond ... 273
10.7.1.1.3.1 Method 1: By Free-Radical Homolytic Substitution at Selenium .. 273
10.7.1.3.2 Method 2: By Electrophilic Substitution of Styrenes 273
10.7.1.3.3 Method 3: By Cyclodehydration of Ketones ... 275
10.7.1.3.4 Method 4: Benzo[b]selenophen-2(3H)-one by Selenolactonization 276
10.7.1.3.5 Method 5: Benzo[b]selenophen-3(2H)-ones from 2-Acetylnapheneselenenyl Bromides ... 276
10.7.1.3.6 Method 6: Benzo[b]selenophen-3(2H)-one from 1-[2-(Butylselenyl)phenyl]-2-diazoethan-1-one .. 277
10.7.1.4 By Formation of One C–C Bond ... 278
10.7.1.4.1 Method 1: From Intramolecular Condensations with Aldehydes and Ketones .. 278
10.7.1.4.2 Method 2: From Intramolecular Condensations of Dicarboxylic Acids 280
10.7.1.4.3 Method 3: From Dieckmann Cyclizations ... 281
10.7.1.4.4 Method 4: From Cyclization of 2-(Benzylselenyl)arencarboxanilides 281
10.7.1.4.5 Method 5: Miscellaneous Preparations .. 282
10.7.1.2 By Annulation to the Heterocyclic Ring ... 282
10.7.1.2.1 Method 1: Acylation of Acetonylselenophenes ... 282
10.7.2 Synthesis by Ring Transformation .. 284
10.7.2.1 Method 1: By Oxidative Ring Contraction .. 284
10.7.3 Aromatization .. 285
10.7.3.1 Method 1: By Dehydrogenation ... 285
10.7.4 Synthesis by Substituent Modification .. 285
10.7.4.1 Addition Reactions .. 285
10.7.4.1.1 Method 1: Oxidation at Selenium ... 285
10.7.4.2 Substitution of Existing Substituents .. 286
10.7.4.2.1 Of Hydrogen .. 286
10.7.4.2.1.1 Method 1: Metallation .. 286
10.7.4.2.1.1.1 Variation 1: Lithiation ... 286
10.7.4.2.1.1.2 Variation 2: Mercuration ... 286
10.7.4.2.1.2 Method 2: Friedel–Crafts and Related Reactions 287
10.7.4.2.1.2.1 Variation 1: Intermolecular Acylation .. 287
10.7.4.2.1.2.2 Variation 2: Intramolecular Acylation .. 288
10.7.4.2.1.2.3 Variation 3: Arylations and Alkylations .. 288
10.7.4.2.1.3 Method 3: Halogenation and Nitration .. 289
10.7.4.2.2 Of Metals .. 290
10.7.4.2.2.1 Method 1: Substitution of Lithium .. 290
10.7.4.2.2.2 Method 2: Miscellaneous Substitution of Metals 291
10.7.4.2.3 Of Carbon Functionalities ... 291
10.7.4.2.3.1 Method 1: Decarboxylation ... 291
10.7.4.2.4 Of Heteroatoms .. 292
10.7.4.2.4.1 Method 1: Reduction of Benzo[b]selenophen-3(2H)-ones 292
10.7.4.2.2 Method 2: Reaction of Benzo[b]selenophen-3(2H)-ones with Carbon Nucleophiles .. 293
10.7.4.2.4.2 Variation 1: With Grignard Reagents 293
10.7.4.2.4.2.1 Variation 2: With Wittig Reagents 294
10.7.4.2.4.3 Method 3: Reaction of Benzo[b]selenophen-3(2H)-one with Secondary Amines .. 294
10.7.4.2.4.4 Method 4: Transmetalation of Halogenated Benzo[b]selenophenes 295
10.7.4.2.4.5 Method 5: Dehalogenation of Halogenated Benzo[b]selenophenes 295
10.7.4.2.4.6 Method 6: Nucleophilic Substitution of Halogenated Benzo[b]selenophenes ... 296
10.7.4.3 Modification of Substituents .. 296
10.7.4.4 Miscellaneous Reactions ... 296

10.8 Product Class 8: Benzo[c]selenophenes

10.8.1 Synthesis by Ring-Closure Reactions 301
10.8.1.1 By Annulation to an Arene .. 301
10.8.1.1.1 By Formation of Two Se—C Bonds 301
10.8.1.1.1.1 Method 1: From 2-(Bromomethyl)benzoyl Chloride 301
10.8.1.1.2 By Formation of One Se—C Bond 302
10.8.1.1.2.1 Method 1: From 2-(Selanylmethyl)benzoic Acid 302
10.8.2 Synthesis by Ring Transformation 302
10.8.2.1 Method 1: From Rhodacycles 302
10.8.3 Aromatization ... 303
10.8.3.1 Method 1: By Elimination .. 303
10.8.3.2 Method 2: By Dehydrogenation 303
10.8.4 Synthesis by Substituent Modification 304
10.8.4.1 Method 1: Benzo[c]selenophen-1(3H)-one by Hydrolysis of Benzo[c]selenophen-1(3H)-imine 304
10.8.4.2 Method 2: Benzo[c]selenophene-1(3H)-thione by Reaction of Benzo[c]selenophen-1(3H)-imine with Hydrogen Sulfide 304

10.9 Product Class 9: Dibenzoselenophenes

10.9.1 Synthesis by Ring-Closure Reactions 307
10.9.1.1 By Annulation to an Arene .. 307
10.9.1.1.1 By Formation of Two Se—C Bonds and One C—C Bond 307
10.9.1.1.1 Method 1: Miscellaneous Preparations .. 307
10.9.1.1.2 By Formation of Two Se—C Bonds ... 307
10.9.1.1.2.1 Method 1: From Biphenyls .. 308
10.9.1.1.2.2 Method 2: From Metalated Biphenyls 308
10.9.1.1.2.3 Method 3: From 2,2'-Diiodobiphenyls 309
10.9.1.1.3 By Formation of One Se—C and One C—C Bond 310
10.9.1.1.3.1 Method 1: By Photolirradiation .. 310
10.9.1.1.4 By Formation of One Se—C Bond ... 310
10.9.1.1.4.1 Method 1: By Intramolecular Electrophilic Aromatic Substitution of Selenenyl Halides ... 310
10.9.1.1.4.2 Method 2: By Intramolecular Electrophilic Aromatic Substitution of Selenides .. 311
10.9.1.1.4.3 Method 3: By Intramolecular Electrophilic Aromatic Substitution of Biphenyl-Z-yl Trifluoromethyl Selenides and Selenoxides 312
10.9.1.1.4.4 Method 4: Miscellaneous Preparations 312
10.9.1.1.5 By Formation of One C—C Bond .. 313
10.9.1.1.5.1 Method 1: From Dimetalated Diphenyl Selenides 313
10.9.1.1.5.2 Method 2: Miscellaneous Preparations 313
10.9.1.2 By Annulation to the Heterocyclic Ring ... 314
10.9.1.2.1 Method 1: By Annulation to Benzo[b]selenophenes 314
10.9.1.2.2 Method 2: By Formylation of a Benzo[b]selenophene and Cyclization 314
10.9.2 Synthesis by Ring Transformation ... 315
10.9.2.1 Method 1: Miscellaneous Preparations ... 315
10.9.3 Aromatization ... 316
10.9.3.1 Method 1: By the Fischer Indole Synthesis .. 316
10.9.4 Synthesis by Substituent Modification ... 316
10.9.4.1 Addition Reactions ... 316
10.9.4.1.1 Method 1: Oxidation at Selenium ... 316
10.9.4.1.2 Method 2: Imidation at Selenium .. 317
10.9.4.1.3 Method 3: Halogenation at Selenium .. 317
10.9.4.2 Substitution of Existing Substituents .. 318
10.9.4.2.1 Of Hydrogen ... 318
10.9.4.2.1.1 Method 1: Metalation .. 318
10.9.4.2.1.2 Method 2: Friedel–Crafts and Related Reactions 318
10.9.4.2.2 Of Metals ... 321
10.9.4.2.2.1 Method 1: Electrophilic Substitution of Lithium 321
10.9.4.2.3 Of Carbon Functionalities .. 321
10.9.4.2.3.1 Method 1: Substitution of Carbon Functionalities at Selenium 321
10.9.4.2.4 Of Heteroatoms .. 322
10.9.4.2.4.1 Method 1: Displacement of Heteroatoms at Selenium 322
10.9.4.3 Modification of Substituents .. 322

10.10 Product Class 10: Benzo[b]tellurophenes
P. J. Murphy

10.10 Product Class 10: Benzo[b]tellurophenes .. 325
10.10.1 Synthesis by Ring-Closure Reactions ... 325
10.10.1.1 By Annulation to an Arene .. 325
10.10.1.1.1 By Formation of Two Te—C Bonds .. 325
10.10.1.1.1.1 Method 1: From 1-Arylalk-1-yynes and Tellurium Dioxide 325
10.10.1.1.1.2 Method 2: From 1-Arylalk-1-yynes and Tellurium Tetrahalides 326
10.10.1.1.1.3 Method 3: From Metalated Intermediates 327
10.10.1.1.1.3.1 Variation 1: From 1-Arylalk-1-ynes 327
10.10.1.1.1.3.2 Variation 2: From 1-(2-Bromophenyl)alk-1-ynes 328
10.10.1.1.1.3.3 Variation 3: From 1-Bromo-2-phenyl- or
1-Bromo-2-(2-bromophenyl)-1-(trimethylsilyl)ethene 329
10.10.1.1.1.3.4 Variation 4: From Bis(2-bromophenyl)acetylene 330
10.10.1.1.2 By Formation of One Te—C Bond .. 330
10.10.1.1.2.1 Method 1: By Electrophilic Substitution of Styrenes 330
10.10.1.1.2.2 Method 2: Benzo[b]tellurophen-3(2H)-one from
2-Acetylbenzenetellurenyl Bromide .. 330
10.10.1.1.2.3 Method 3: Benzo[b]tellurophen-3(2H)-one from
1-[2-(Butyltellanyl)phenyl]-2-diazoethan-1-one 331
10.10.1.1.3 By Formation of One C—C Bond ... 331
10.10.1.1.3.1 Method 1: From Intramolecular Condensations with
Aldehydes and Ketones ... 331
10.10.1.1.3.2 Method 2: From Intramolecular Condensations of Dicarboxylic Acids ... 332
10.10.2 Synthesis by Ring Transformation .. 333
10.10.2.1 Method 1: By Oxidative Ring Contraction 333
10.10.3 Aromatization .. 333
10.10.3.1 Method 1: By Dehydrogenation .. 333
10.10.4 Synthesis by Substituent Modification ... 334
10.10.4.1 Addition Reactions ... 334
10.10.4.1.1 Method 1: Alkylation Reactions at Tellurium 334
10.10.4.1.2 Method 2: Halogenation Reactions at Tellurium 334
Substitution of Existing Substituents .. 335
 10.10.4.2.1 Of Hydrogen .. 335
 10.10.4.2.1.1 Method 1: Lithiation ... 335
 10.10.4.2.1.2 Method 2: Friedel–Crafts and Related Reactions 335
 10.10.4.2.1.3 Method 3: Halogenation ... 336
 10.10.4.2.2 Of Metals .. 336
 10.10.4.2.2.1 Method 1: Substitution of Lithium 336
 10.10.4.2.3 Of Carbon Functionalities .. 337
 10.10.4.2.3.1 Method 1: Decarboxylation 337
 10.10.4.2.4 Of Heteroatoms .. 338
 10.10.4.2.4.1 Method 1: Reduction of Benzo[b]tellurophen-3(2H)-one 338
 10.10.4.2.4.2 Method 2: Reaction of Benzo[b]tellurophen-3(2H)-one with Carbon Nucleophiles ... 338
 10.10.4.2.4.3 Method 3: Reaction of Benzo[b]tellurophen-3(2H)-one with Amine Derivatives .. 339
 10.10.4.2.4.4 Method 4: Reaction of Benzo[b]tellurophen-3(2H)-one with Halogenating Reagents ... 339
 10.10.4.2.4.5 Method 5: Nucleophilic Substitution of Halogenated Benzo[b]tellurophenes .. 339
 10.10.4.3 Modification of Substituents 340
 10.11 Product Class 11: Benzo[c]tellurophenes 343
 10.11.1 Synthesis by Ring-Closure Reactions 343
 10.11.1.1 By Annulation to an Arene .. 343
 10.11.1.1.1 Method 1: From 2-(Bromomethyl)benzoyl Halides 343
 10.11.1.1.2 By Formation of One Te—C Bond 344
 10.11.1.1.2.1 Method 1: From 2-(Bromocarbonyl)benzyltellurenyl Bromide 344
 10.11.2 Aromatization .. 344
 10.11.2.1 Method 1: By Elimination .. 344
 10.11.3 Synthesis by Substituent Modification 345
 10.11.3.1 Method 1: Benzo[c]tellurophene-1(3H)-thione by Sulfurization of Benzo[c]tellurophen-1(3H)-one 345
10.12 Product Class 12: Dibenzotellurophenes
P. J. Murphy

10.12 Product Class 12: Dibenzotellurophenes .. 347

10.12.1 Synthesis by Ring-Closure Reactions .. 347

10.12.1.1 By Annulation to an Arene .. 347

10.12.1.1.1 Method 1: From 1,2-Diiodobenzenes and Tellurium 347

10.12.1.1.2 Method 1: From Biphenyls and Inorganic Tellurium Reagents 348

10.12.1.1.2.1 Method 2: From Metalated Biphenyls 349

10.12.1.1.2.2 Method 3: From 2,2'-Diiodobiphenyls 350

10.12.1.1.3 Method 1: By Intramolecular Electrophilic Aromatic Substitution of
Biphenyl-2-yltellurium Trichloride .. 351

10.12.1.1.3.1 Method 2: By Intramolecular Electrophilic Aromatic Substitution of
Biphenyl-2-yl Trifluoromethyl Telluride ... 351

10.12.2 Synthesis by Ring Transformation ... 352

10.12.2.1 Method 1: Miscellaneous Preparations ... 352

10.12.3 Synthesis by Substituent Modification ... 352

10.12.3.1 Addition Reactions ... 352

10.12.3.1.1 Method 1: Oxidation at Tellurium ... 352

10.12.3.1.2 Method 2: Imidation at Tellurium .. 353

10.12.3.1.3 Method 3: Alkylation at Tellurium .. 353

10.12.3.1.4 Method 4: Halogenation at Tellurium .. 353

10.12.3.2 Substitution of Existing Substituents ... 354

10.12.3.2.1 Of Hydrogen ... 354

10.12.3.2.1.1 Method 1: Nitration and Sulfonation 354

10.12.3.2.2 Of Carbon Functionalities .. 355

10.12.3.2.2.1 Method 1: Cleavage of the Te—C Bond in
Bis(biphenyl-2,2'-diyl)-λ₄-tellanes .. 355

10.12.3.2.3 Of Heteroatoms ... 355

10.12.3.2.3.1 Method 1: Hydrolysis of N-Tosyldibenzotellurophene-5-imine 355

10.12.3.2.3.2 Method 2: Hydrolysis of 5,5-Dichlorodibenzotellurophenes 356

10.12.3.2.3.3 Method 3: Substitution of Halides and Alkoxides at Tellurium 356

10.12.3.2.3.4 Method 4: Bis(biphenyl-2,2'-diyl)-λ₄-tellane by
Substitution at Tellurium ... 357

10.12.3.3 Modification of Substituents ... 357

10.12.3.4 Miscellaneous Reactions .. 357
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.13</td>
<td>Product Class 13: Indole and Its Derivatives</td>
<td>J. A. Joule</td>
</tr>
<tr>
<td>10.13</td>
<td>Product Class 13: Indole and Its Derivatives</td>
<td>361</td>
</tr>
<tr>
<td>10.13.1</td>
<td>Product Subclass 1: Indoles</td>
<td>361</td>
</tr>
<tr>
<td>10.13.1.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>366</td>
</tr>
<tr>
<td>10.13.1.1.1</td>
<td>By Annulation to an Arene</td>
<td>366</td>
</tr>
<tr>
<td>10.13.1.1.1.1</td>
<td>By Formation of One N—C and One C—C Bond</td>
<td>366</td>
</tr>
<tr>
<td>10.13.1.1.1.1.1</td>
<td>With Formation of 1—2 and 3—3a Bonds</td>
<td>366</td>
</tr>
<tr>
<td>10.13.1.1.1.1.1.1</td>
<td>Method 1: From Arylhydrazones; Fischer Synthesis</td>
<td>366</td>
</tr>
<tr>
<td>10.13.1.1.1.1.1.1.1</td>
<td>Variation 1: From 4-Chlorobutanal and Arylhydrazines; Grandberg Tryptamine Synthesis</td>
<td>377</td>
</tr>
<tr>
<td>10.13.1.1.1.1.1.2</td>
<td>Variation 2: From β-Oxo Esters and Arenediazonium Ions; Japp–Klingemann Synthesis</td>
<td>378</td>
</tr>
<tr>
<td>10.13.1.1.1.1.2.2</td>
<td>Method 2: From O-Alkenyl N-Arylhydroxylamines</td>
<td>380</td>
</tr>
<tr>
<td>10.13.1.1.1.1.3.3</td>
<td>Method 3: From ortho-Substituted Nitroarenes; Bartoli Synthesis</td>
<td>384</td>
</tr>
<tr>
<td>10.13.1.1.1.1.4.4</td>
<td>Method 4: From Arylamines and AlkylsulfanylMethyl Ketones; Gassman Indole Synthesis</td>
<td>387</td>
</tr>
<tr>
<td>10.13.1.1.1.5.5</td>
<td>Method 5: From Arylamines and Ketones</td>
<td>389</td>
</tr>
<tr>
<td>10.13.1.1.1.6.6</td>
<td>Method 6: From Arylamines and 1,2-Diols</td>
<td>389</td>
</tr>
<tr>
<td>10.13.1.1.1.7.7</td>
<td>Method 7: From Arylamines and α-Halo Ketones; Bischler Synthesis</td>
<td>390</td>
</tr>
<tr>
<td>10.13.1.1.1.8.8</td>
<td>Method 8: From o-Iodoarylamines and Alkynes</td>
<td>391</td>
</tr>
<tr>
<td>10.13.1.1.1.9.9</td>
<td>Method 9: From N-Acyl-o-bromoarylamines and α-Halo Ketones</td>
<td>392</td>
</tr>
<tr>
<td>10.13.1.1.1.10.10</td>
<td>Method 10: From ortho-Thallated N-Acylarylaminones and 3-Chloroprop-1-ene</td>
<td>393</td>
</tr>
<tr>
<td>10.13.1.1.1.11.11</td>
<td>Method 11: From N-Alkyl-N-arylhydroxylaminones and Alkynes Carrying Electron-Withdrawing Groups</td>
<td>394</td>
</tr>
<tr>
<td>10.13.1.1.1.12.12</td>
<td>Method 12: From N-Sulfinylarylamines and Grignard Reagents</td>
<td>394</td>
</tr>
<tr>
<td>10.13.1.1.1.2.12.21</td>
<td>Method 1: From o-Alkylarylamines</td>
<td>395</td>
</tr>
<tr>
<td>10.13.1.1.1.2.22.22</td>
<td>Method 2: From o-Acarylamines</td>
<td>399</td>
</tr>
<tr>
<td>10.13.1.1.1.2.32.23</td>
<td>Method 3: From 1-(o-Aminoaryl)alkenes</td>
<td>400</td>
</tr>
<tr>
<td>10.13.1.1.1.32.31</td>
<td>With Formation of 1—7a and 3—3a Bonds</td>
<td>401</td>
</tr>
<tr>
<td>10.13.1.1.1.3.13.11</td>
<td>Method 1: From Benzo-1,4-quinones and Enamines; Nenitzescu Synthesis</td>
<td>401</td>
</tr>
<tr>
<td>10.13.1.1.1.42.41</td>
<td>With Formation of 1—7a and 1—2 Bonds</td>
<td>403</td>
</tr>
<tr>
<td>10.13.1.1.1.4.14.11</td>
<td>Method 1: From 1-(o-Hydroxyaryl)alkenes</td>
<td>403</td>
</tr>
<tr>
<td>10.13.1.1.22.22</td>
<td>By Formation of One N—C Bond</td>
<td>404</td>
</tr>
<tr>
<td>10.13.1.1.2.12.21</td>
<td>With Formation of the 1—2 Bond</td>
<td>404</td>
</tr>
</tbody>
</table>
Table of Contents

10.13.1.1.2.1.1 Method 1: From α-(o-Aminoaryl) Ketones, 2-(o-Aminoaryl)aldehydes, or Synthons Thereof 404

10.13.1.1.2.1.1 Variation 1: From (o-Aminoaryl)pyruvates
[3-(o-Aminoaryl)-2-oxopropanoates]; Reissert Synthesis 405

10.13.1.1.2.1.2 Variation 2: From α-(o-Aminoaryl) Ketones .. 407

10.13.1.1.2.1.3 Variation 3: From 2-(o-Aminoaryl)acetaldheydes ... 415

10.13.1.1.2.1.4 Variation 4: From 2-(o-Aminoaryl)acetdehyde Acetals or Hemiacetals 417

10.13.1.1.2.1.5 Variation 5: From 2-(o-Aminoaryl)enol Ethers and 2-(o-Nitroaryl)enol Ethers .. 420

10.13.1.1.2.1.6 Variation 6: From 2-(o-Nitroaryl)enamines; Leimgruber–Batcho Synthesis 421

10.13.1.1.2.1.7 Variation 7: From 1-Nitro-2-(o-nitroaryl)ethenes .. 426

10.13.1.1.2.1.2 Method 2: From o-Alkenylarylamines ... 428

10.13.1.1.2.1.3 Method 3: From o-AlkenylNitroarenes and o-Alkenaryl Azides 432

10.13.1.1.2.1.4 Method 4: From o-Alkenylarylamines and N-Acyl Derivatives Thereof 435

10.13.1.1.2.1.5 Method 5: From o-Acetamidoaryl Alkynyl Carbinols 437

10.13.1.1.2.1.6 Method 6: From (o-Nitroaryl)acetonitriles ... 437

10.13.1.1.2.1.7 Method 7: From o-(Chloroacetyl)arylamines; Sugasawa Synthesis 438

10.13.1.1.2.2 With Formation of the 1–7a Bond ... 439

10.13.1.1.2.2.1 Method 1: From 2-Arylalkenyl Azides; Hemetsberger–Knittel Synthesis 439

10.13.1.1.2.2.2 Method 2: From 2-(o-Haloaryl)-2-hydroxyethanamines 440

10.13.1.1.2.2.3 Method 3: From 1-(m-Hydroxyaryl)alkan-2-amines .. 441

10.13.1.1.2.3 By Formation of one C—C Bond ... 443

10.13.1.1.3.1 With Formation of the 2–3 Bond ... 443

10.13.1.1.3.1.1 Method 1: From N-(o-Methylaryl)amides; Madelung Synthesis 443

10.13.1.1.3.1.1.1 Variation 1: From N-[o-(Acylmethyl)-, N-[o-(Cyanomethyl)-, N-[o-(Alkoxycarbonylmethyl)-, or N-[o-(Phenylsulfonylmethyl)aryl]amides .. 445

10.13.1.1.3.1.1.2 Variation 2: From [(o-Acylaminomethyl)phosphonium Salts 446

10.13.1.1.3.1.1.3 Variation 3: From [(o-Acylaminomethyl)aryl]silanes 449

10.13.1.1.3.1.1.2 Method 2: From o-Acylarylamines ... 449

10.13.1.1.3.1.1.3 Method 3: From o-Alkylaryl Isocyanides ... 451

10.13.1.1.3.1.1.4 Method 4: From o-Alkenylaryl Isocyanides; Fukuyama Synthesis 455

10.13.1.1.3.1.1.5 Method 5: From N-(o-Acylaryl)amides; Fürstner Synthesis 456

10.13.1.1.3.1.1.6 Method 6: From N-(o-Alkylaryl)imidates and -imines 459

10.13.1.1.3.2 With Formation of the 3–3a Bond ... 461

10.13.1.1.3.2.1 Method 1: From 2-(Arylamino)aldehydes and α-(Arylamino) Ketones or Synthons Thereof .. 461

10.13.1.1.3.2.2 Method 2: From 3-Arylamino-1-(trialkylsilyl)prop-1-ynes 463

10.13.1.1.3.2.3 Method 3: From (o-Haloarylamino)alkenes ... 463

10.13.1.1.3.2.4 Method 4: From Arylaminoalkenes ... 465

10.13.1.1.3.2.5 Method 5: From N-(o-Haloaryl)prop-2-ynylamines .. 466

10.13.1.1.3.2.6 Method 6: From N-(o-Haloaryl)allylamines ... 467

10.13.1.1.3.2.7 Method 7: From N-(m-Haloaryl)limines ... 468

10.13.1.1.3.2.8 Method 8: From 1-Aryl-1,2,3-triazoles ... 469

10.13.1.1.3.2.9 Method 9: From N-Arylethanolamines .. 470

Science of Synthesis Original Edition Volume 10
© Georg Thieme Verlag KG
Method 10: From N-Aryl-2-chloroallylamines .. 471
Method 11: From N-(2-Aminoaryl)-2-bromo-N-mesyllallylamines 472

Method 1: From Pyrrole Carbene Chromium Complexes 472
Method 1: From 2-Alkenylpyrroles .. 474
Method 1: From 3-Alkenylpyrroles .. 475
Method 1: From Pyrroles and 1,4-Diones 477
Method 1: From 2-(3-Acyloxyprop-1-enyl)pyrroles and Carbon Monoxide .. 478
Method 1: From Pyrroles with a C4-Chain at C2 478
Method 1: From Pyrroles with a C4-Chain at C3 482
Method 1: From 2-Acyl-3-(2-haloaryl)pyrroles 485
Method 2: From Alk-2-enyl-1-methyl-4-nitro-3-styrylpyrroles 486

Method 1: By Annulation to a Pyrrole 472
Method 1: By Formation of Three C–C Bonds 472
Method 1: With Formation of 3a–4, 4–5, and 6–7 Bonds 472
Method 1: Method 1: From Pyrroles and 1,4-Diones 477
Method 1: With Formation of 3a–4 and 5–6 Bonds 474
Method 1: Method 1: With Formation of 3a–4 and 5–6 Bonds 474
Method 1: Method 1: With Formation of 5–6 and 7–7a Bonds 475
Method 1: Method 1: Method 1: With Formation of 3a–4 and 5–6 Bonds 478
Method 1: Method 1: Method 1: Method 1: Method 1: Method 1: With Formation of 3a–4 and 5–6 Bonds 478

Method 1: With Formation of the 3a–4 Bond 478
Method 1: Method 1: From Pyrroles with a C4-Chain at C2 478
Method 1: Method 1: From Pyrroles with a C4-Chain at C3 482
Method 1: Method 1: Method 1: By Formation of the 5–6 Bond 485
Method 1: By Formation of the 3a–4 Bond 478

Method 1: Synthesis by Ring Transformation 486
Method 1: Method 1: From Other Heterocyclic Systems 486

Method 1: Aromatization ... 489
Method 1: Method 1: Dehydrogenation of 2,3-Dihydro-1H-indoles 489
Method 1: Method 2: Dehydrogenation of Benzene Ring Reduced Indoles 492
Method 3: Method 3: Reduction and Other Transformations of 1H-Indole-2,3-diones (Isatins), 1,2-Dihydro-3H-indol-3-ones (Indoxyls), 1H-Indol-1-ols, and 1,3-Dihydro-2H-indol-2-ones (Oxindoles) 493
Method 1: Method 1: Synthesis by Substitution of Existing Substituents 494
Method 1: Method 1: Substitution of N-Hydrogen 494
Method 1: Method 1: Method 1: Giving N-Halogen Indoles 494
Method 1: Method 2: Giving N-Nitrogen Indoles 495
Method 1: Method 3: Giving N-Phosphorus Indoles 495
Method 4: Method 4: Giving N-Carbon Indoles 495
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.13.1.4.1.5</td>
<td>Method 5: Giving N-Metal Indoles</td>
<td>499</td>
</tr>
<tr>
<td>10.13.1.4.2</td>
<td>Substitution of C-Hydrogen</td>
<td>499</td>
</tr>
<tr>
<td>10.13.1.4.2.1</td>
<td>Electrophilic Substitution</td>
<td>499</td>
</tr>
<tr>
<td>10.13.1.4.2.1.1</td>
<td>On the Five-Membered Ring</td>
<td>499</td>
</tr>
<tr>
<td>10.13.1.4.2.1.1.1</td>
<td>Method 1: Giving C-Deuterium/Tritium Indoles</td>
<td>499</td>
</tr>
<tr>
<td>10.13.1.4.2.1.1.2</td>
<td>Method 2: Giving C-Halogen Indoles</td>
<td>500</td>
</tr>
<tr>
<td>10.13.1.4.2.1.1.3</td>
<td>Method 3: Giving C-Sulfur Indoles</td>
<td>502</td>
</tr>
<tr>
<td>10.13.1.4.2.1.1.4</td>
<td>Method 4: Giving C-Nitrogen Indoles</td>
<td>505</td>
</tr>
<tr>
<td>10.13.1.4.2.1.1.5</td>
<td>Method 5: Giving C-Carbon Indoles</td>
<td>506</td>
</tr>
<tr>
<td>10.13.1.4.2.1.1.5.1</td>
<td>Variation 1: Introduction of Carboxy and Cyano Groups</td>
<td>506</td>
</tr>
<tr>
<td>10.13.1.4.2.1.1.5.2</td>
<td>Variation 2: Introduction of Acyl Groups</td>
<td>507</td>
</tr>
<tr>
<td>10.13.1.4.2.1.1.5.3</td>
<td>Variation 3: Introduction of Hydroxyalkyl and Related Groups</td>
<td>513</td>
</tr>
<tr>
<td>10.13.1.4.2.1.1.5.4</td>
<td>Variation 4: Introduction of Aminoalkyl Groups</td>
<td>517</td>
</tr>
<tr>
<td>10.13.1.4.2.1.1.5.5</td>
<td>Variation 5: Introduction of Sulfanylalkyl Groups</td>
<td>523</td>
</tr>
<tr>
<td>10.13.1.4.2.1.1.5.6</td>
<td>Variation 6: Introduction of Alkyl Groups</td>
<td>523</td>
</tr>
<tr>
<td>10.13.1.4.2.1.1.6</td>
<td>Method 6: Giving C-Silicon Indoles</td>
<td>533</td>
</tr>
<tr>
<td>10.13.1.4.2.1.1.7</td>
<td>Method 7: Giving C-Mercury Indoles</td>
<td>533</td>
</tr>
<tr>
<td>10.13.1.4.2.1.1.8</td>
<td>Method 8: Giving C-Thallium Indoles</td>
<td>533</td>
</tr>
<tr>
<td>10.13.1.4.2.1.1.9</td>
<td>Method 9: Giving C-Palladium Indoles</td>
<td>533</td>
</tr>
<tr>
<td>10.13.1.4.2.1.2</td>
<td>On the Benzene Ring</td>
<td>534</td>
</tr>
<tr>
<td>10.13.1.4.2.1.2.1</td>
<td>Method 1: Substitution of Indoles</td>
<td>534</td>
</tr>
<tr>
<td>10.13.1.4.2.1.2.2</td>
<td>Method 2: Substitution of 2,3-Dihydro-1H-indoles (Indolines)</td>
<td>537</td>
</tr>
<tr>
<td>10.13.1.4.2.2</td>
<td>Nucleophilic Substitution</td>
<td>541</td>
</tr>
<tr>
<td>10.13.1.4.2.2.1</td>
<td>Method 1: Giving C-Oxygen Indoles</td>
<td>541</td>
</tr>
<tr>
<td>10.13.1.4.2.2.2</td>
<td>Method 2: Giving C-Nitrogen Indoles</td>
<td>543</td>
</tr>
<tr>
<td>10.13.1.4.2.2.3</td>
<td>Method 3: Giving C-Carbon Indoles</td>
<td>544</td>
</tr>
<tr>
<td>10.13.1.4.2.3</td>
<td>Radical Substitution</td>
<td>546</td>
</tr>
<tr>
<td>10.13.1.4.2.3.1</td>
<td>Method 1: Giving C-Carbon Indoles</td>
<td>546</td>
</tr>
<tr>
<td>10.13.1.4.2.3.2</td>
<td>Method 2: Giving C-Tin Indoles</td>
<td>548</td>
</tr>
<tr>
<td>10.13.1.4.2.4</td>
<td>Base Deprotonation</td>
<td>548</td>
</tr>
<tr>
<td>10.13.1.4.2.4.1</td>
<td>Method 1: Giving C-Lithium Indoles</td>
<td>548</td>
</tr>
<tr>
<td>10.13.1.4.3</td>
<td>Substitution of N-Metal</td>
<td>552</td>
</tr>
<tr>
<td>10.13.1.4.3.1</td>
<td>Giving N-Substituted Products</td>
<td>552</td>
</tr>
<tr>
<td>10.13.1.4.3.1.1</td>
<td>Method 1: Giving N-Halogen Indoles</td>
<td>552</td>
</tr>
<tr>
<td>10.13.1.4.3.1.2</td>
<td>Method 2: Giving N-Sulfur Indoles</td>
<td>552</td>
</tr>
<tr>
<td>10.13.1.4.3.1.3</td>
<td>Method 3: Giving N-Nitrogen Indoles</td>
<td>553</td>
</tr>
<tr>
<td>10.13.1.4.3.1.4</td>
<td>Method 4: Giving N-Carbon Indoles</td>
<td>554</td>
</tr>
<tr>
<td>10.13.1.4.3.1.4.1</td>
<td>Variation 1: Introduction of Carboxy, Cyano, and Related Groups</td>
<td>554</td>
</tr>
<tr>
<td>10.13.1.4.3.1.4.2</td>
<td>Variation 2: Introduction of Acyl Groups</td>
<td>554</td>
</tr>
<tr>
<td>10.13.1.4.3.1.4.3</td>
<td>Variation 3: Introduction of Alkenyl Groups</td>
<td>556</td>
</tr>
<tr>
<td>10.13.1.4.3.1.4.4</td>
<td>Variation 4: Introduction of Aroyl Groups</td>
<td>556</td>
</tr>
<tr>
<td>10.13.1.4.3.1.4.5</td>
<td>Variation 5: Introduction of Alkyl Groups</td>
<td>556</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>10.13.1.4.3.1.5</td>
<td>Method 5: Giving Other N-Metal Indoles</td>
<td>560</td>
</tr>
<tr>
<td>10.13.1.4.3.2</td>
<td>Giving C-Substituted Products</td>
<td>560</td>
</tr>
<tr>
<td>10.13.1.4.3.2.1</td>
<td>Method 1: Giving C-Halogen Indoles</td>
<td>560</td>
</tr>
<tr>
<td>10.13.1.4.3.2.2</td>
<td>Method 2: Giving C-Sulfur Indoles</td>
<td>561</td>
</tr>
<tr>
<td>10.13.1.4.3.2.3</td>
<td>Method 3: Giving C-Nitrogen Indoles</td>
<td>561</td>
</tr>
<tr>
<td>10.13.1.4.3.2.4</td>
<td>Method 4: Giving C-Carbon Indoles</td>
<td>562</td>
</tr>
<tr>
<td>10.13.1.4.4</td>
<td>Substitution of C-Metal</td>
<td>565</td>
</tr>
<tr>
<td>10.13.1.4.4.1</td>
<td>Method 1: Giving C-Halogen Indoles</td>
<td>565</td>
</tr>
<tr>
<td>10.13.1.4.4.2</td>
<td>Method 2: Giving C-Oxygen Indoles</td>
<td>566</td>
</tr>
<tr>
<td>10.13.1.4.4.3</td>
<td>Method 3: Giving C-Sulfur Indoles</td>
<td>566</td>
</tr>
<tr>
<td>10.13.1.4.4.4</td>
<td>Method 4: Giving C-Nitrogen Indoles</td>
<td>566</td>
</tr>
<tr>
<td>10.13.1.4.4.5</td>
<td>Method 5: Giving C-Carbon Indoles</td>
<td>567</td>
</tr>
<tr>
<td>10.13.1.4.4.5.1</td>
<td>Variation 1: Reactions with Carbon Electrophiles</td>
<td>567</td>
</tr>
<tr>
<td>10.13.1.4.4.5.2</td>
<td>Variation 2: Via Reactions with Boron Electrophiles</td>
<td>567</td>
</tr>
<tr>
<td>10.13.1.4.4.5.3</td>
<td>Variation 3: Via Ipso Displacement of Silicon</td>
<td>569</td>
</tr>
<tr>
<td>10.13.1.4.4.5.4</td>
<td>Variation 4: Via Organopalladium Intermediates Using Metalated Indoles</td>
<td>570</td>
</tr>
<tr>
<td>10.13.1.4.4.5.5</td>
<td>Variation 5: Organopalladium Intermediates Using Indole Halides and Triflates</td>
<td>575</td>
</tr>
<tr>
<td>10.13.1.4.4.5.6</td>
<td>Variation 6: Synthetic Applications of Hapto Metal Complexes of Indoles</td>
<td>577</td>
</tr>
<tr>
<td>10.13.1.4.4.6</td>
<td>Method 6: Giving Other C-Metal Indoles</td>
<td>578</td>
</tr>
<tr>
<td>10.13.1.5</td>
<td>Synthesis by Substituent Modification</td>
<td>579</td>
</tr>
<tr>
<td>10.13.1.5.1</td>
<td>Modification of N-Carbon Functionalities</td>
<td>579</td>
</tr>
<tr>
<td>10.13.1.5.1.1</td>
<td>Method 1: Giving N-Hydrogen Indoles</td>
<td>579</td>
</tr>
<tr>
<td>10.13.1.5.1.2</td>
<td>Method 2: Giving N-Carbon Indoles</td>
<td>579</td>
</tr>
<tr>
<td>10.13.1.5.2</td>
<td>Modification of C-Carbon Functionalities</td>
<td>581</td>
</tr>
<tr>
<td>10.13.1.5.2.1</td>
<td>Method 1: Giving C-Hydrogen Indoles</td>
<td>581</td>
</tr>
<tr>
<td>10.13.1.5.2.2</td>
<td>Method 2: Giving C-Oxygen Indoles</td>
<td>582</td>
</tr>
<tr>
<td>10.13.1.5.2.3</td>
<td>Method 3: Giving C-Nitrogen Indoles</td>
<td>582</td>
</tr>
<tr>
<td>10.13.1.5.2.4</td>
<td>Method 4: Giving C-Carbon Indoles</td>
<td>582</td>
</tr>
<tr>
<td>10.13.1.5.3</td>
<td>Modification of N-Heteroatom Functionality</td>
<td>591</td>
</tr>
<tr>
<td>10.13.1.5.3.1</td>
<td>Method 1: Modification of N-Sulfur Functionality</td>
<td>591</td>
</tr>
<tr>
<td>10.13.1.5.3.2</td>
<td>Method 2: Modification of N-Silicon Functionality</td>
<td>591</td>
</tr>
<tr>
<td>10.13.1.5.4</td>
<td>Modification of C-Heteroatom Functionality</td>
<td>591</td>
</tr>
<tr>
<td>10.13.1.5.4.1</td>
<td>Method 1: Of C-Halogen Indoles</td>
<td>591</td>
</tr>
<tr>
<td>10.13.1.5.4.2</td>
<td>Method 2: Of C-Oxygen Indoles</td>
<td>592</td>
</tr>
<tr>
<td>10.13.1.5.4.3</td>
<td>Method 3: Of C-Sulfur Indoles</td>
<td>592</td>
</tr>
<tr>
<td>10.13.1.5.4.4</td>
<td>Method 4: Of C-Nitrogen Indoles</td>
<td>592</td>
</tr>
<tr>
<td>10.13.1.5.4.5</td>
<td>Method 5: Of C-Silicon Indoles</td>
<td>592</td>
</tr>
<tr>
<td>10.13.1.5.5</td>
<td>Rearrangement of N-Substituents</td>
<td>593</td>
</tr>
<tr>
<td>10.13.1.5.5.1</td>
<td>Method 1: Giving C-Halogen Indoles</td>
<td>593</td>
</tr>
<tr>
<td>10.13.1.5.5.2</td>
<td>Method 2: Giving C-Carbon Indoles</td>
<td>593</td>
</tr>
</tbody>
</table>
Rearrangement of C-Substituents ... 593

10.13.1.5.6.1 Method 1: Giving C-Nitrogen Indoles 593
10.13.1.5.6.2 Method 2: Giving C-Carbon Indoles 593

10.13.2 Product Subclass 2: 1H-Indol-1-ols (1-Hydroxy-1H-indoles) 594

10.13.2.1 Synthesis by Ring-Closure Reactions .. 596
10.13.2.1.1 By Annulation to an Arene .. 596
10.13.2.1.1.1 By Formation of One N—C Bond 596
10.13.2.1.1.1.1 Method 1: From (Arylmethyl)(o-nitroaryl)acetonitriles 596
10.13.2.1.1.1.2 Method 2: From 2-(o-Nitroaryl)enamines 597
10.13.2.1.1.1.3 Method 3: From 2-(o-Nitroaryl)acetic Acids and Esters 598
10.13.2.1.1.2 Method 1: With Formation of the 1—2 Bond 596
10.13.2.1.1.2.1 Method 1: From 1-Aryl-2-nitroalkenes 598
10.13.2.2 Aromatization .. 599
10.13.2.2.1 Method 1: Oxidation of 2,3-Dihydro-1H-indoles (Indolines) 599
10.13.2.2.2 Method 2: Reduction of 1-Hydroxy-1,3-dihydro-2H-indol-2-ones 599

10.13.3 Product Subclass 3: 1,3-Dihydro-2H-indol-2-ones (1H-Indol-2-ols, 2-Hydroxy-1H-indoles, or Oxindoles) 600

10.13.3.1 Synthesis by Ring-Closure Reactions .. 603
10.13.3.1.1 By Annulation to an Arene .. 603
10.13.3.1.1.1 By Formation of One N—C and One C—C Bond 603
10.13.3.1.1.1.1 Method 1: From Arylamines and an α-(Alkylsulfanyl) Ester 603
10.13.3.1.1.1.1.1 Variation 1: From Arylamines and (Methylsulfinyl) Acetates 603
10.13.3.1.1.1.1.2 Method 2: From Arylhydrazides; Brunner Synthesis 604
10.13.3.1.1.1.1.3 Method 3: From Arylaminosulfanylalkynes 605
10.13.3.1.1.1.2 Method 1: With Formation of 1—2 and 2—3 Bonds 606
10.13.3.1.1.1.2.1 Method 1: From N-Protected o-Alkylanilines 606
10.13.3.1.1.1.2.2 Method 2: From o-Alkynylanilines 607
10.13.3.1.1.1.2.3 Method 2: By Formation of One N—C Bond 607
10.13.3.1.1.1.2.4 Method 1: With Formation of the 1—2 Bond 607
10.13.3.1.1.1.2.5 Method 1: From (o-Nitroaryl)acetic Acids and Esters 607
10.13.3.1.1.1.2.6 Method 2: From N,O-Diacylarylhydroxylamines 608
10.13.3.1.1.1.3 Method 3: From Nitroarenes .. 609
10.13.3.1.1.1.4 Method 4: From (o-Nitroaryl)pyruvates [3-(o-Nitroaryl)-2-oxopropanoates] .. 609
10.13.3.1.1.1.5 Method 5: From (o-Nitroaryl)acetonitriles 610
10.13.3.1.1.2 Method 1: With Formation of the 1—7a Bond 611
10.13.3.1.1.2.1 Method 1: From (o-Haloaryl)acetamides 611
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.13.1.1.2.2</td>
<td>Method 2: From N-Methoxyarylamacetamides</td>
<td>611</td>
</tr>
<tr>
<td>10.13.1.1.3</td>
<td>By Formation of One C—C Bond</td>
<td>612</td>
</tr>
<tr>
<td>10.13.1.1.3.1</td>
<td>With Formation of the 3—3a Bond</td>
<td>612</td>
</tr>
<tr>
<td>10.13.1.1.3.1.1</td>
<td>Method 1: From N-Arylchloroacetamides and Related Amides</td>
<td>612</td>
</tr>
<tr>
<td>10.13.1.1.3.1.2</td>
<td>Method 2: From 2-(Alkoxycarbonyl)- or 2-Acyl-N-aryl-2-diazoacetamides</td>
<td>614</td>
</tr>
<tr>
<td>10.13.1.1.3.1.3</td>
<td>Method 3: From N-Aryltrichloroacetamides</td>
<td>615</td>
</tr>
<tr>
<td>10.13.1.1.3.1.4</td>
<td>Method 4: From N-(o-Haloaryl)alkanamides</td>
<td>615</td>
</tr>
<tr>
<td>10.13.1.1.3.1.5</td>
<td>Method 5: From α,β-Unsaturated N-(o-Haloaryl)alkanamides</td>
<td>616</td>
</tr>
<tr>
<td>10.13.1.2.1</td>
<td>Synthesis by Substituent Modification</td>
<td>617</td>
</tr>
<tr>
<td>10.13.1.2.1.1</td>
<td>Method 1: Oxidation of Indoles</td>
<td>617</td>
</tr>
<tr>
<td>10.13.1.2.2</td>
<td>Method 2: Reduction of 1H-Indole-2,3-diones (Isatins)</td>
<td>619</td>
</tr>
<tr>
<td>10.13.4</td>
<td>Product Subclass 4: 1,2-Dihydro-3H-indol-3-ones (1H-Indol-3-ols, 3-Hydroxy-1H-indoles, or Indoxyls)</td>
<td>619</td>
</tr>
<tr>
<td>10.13.4.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>620</td>
</tr>
<tr>
<td>10.13.4.1.1</td>
<td>By Annulation to an Arene</td>
<td>620</td>
</tr>
<tr>
<td>10.13.4.1.1.1</td>
<td>By Formation of One N—C and One C—C Bond</td>
<td>620</td>
</tr>
<tr>
<td>10.13.4.1.1.1.1</td>
<td>With Formation of 1—2 and 3—3a Bonds</td>
<td>620</td>
</tr>
<tr>
<td>10.13.4.1.1.1.1.1</td>
<td>Method 1: From Arylamines and Glyoxal Derivatives</td>
<td>620</td>
</tr>
<tr>
<td>10.13.4.1.1.2</td>
<td>By Formation of One N—C Bond</td>
<td>621</td>
</tr>
<tr>
<td>10.13.4.1.1.2.1</td>
<td>With Formation of the 1—2 Bond</td>
<td>621</td>
</tr>
<tr>
<td>10.13.4.1.1.2.1.1</td>
<td>Method 1: From 1-(o-Aminoaryl)allyl Silyl Ethers</td>
<td>621</td>
</tr>
<tr>
<td>10.13.4.1.1.2.1.2</td>
<td>Method 2: From o-Aminoaryl Halomethyl Ketones; Sugasawa Indoxyl Synthesis</td>
<td>621</td>
</tr>
<tr>
<td>10.13.4.1.1.3</td>
<td>By Formation of One C—C Bond</td>
<td>622</td>
</tr>
<tr>
<td>10.13.4.1.1.3.1</td>
<td>With Formation of the 2—3 Bond</td>
<td>622</td>
</tr>
<tr>
<td>10.13.4.1.1.3.1.1</td>
<td>Method 1: From [(o-Carboxyaryl)amino]acetic Acids and [(o-(Alkoxycarbonyl)aryl)amino]acetic Acid Esters</td>
<td>622</td>
</tr>
<tr>
<td>10.13.4.1.1.3.2</td>
<td>With Formation of the 3—3a Bond</td>
<td>623</td>
</tr>
<tr>
<td>10.13.4.1.1.3.2.1</td>
<td>Method 1: From N-Arylglycines</td>
<td>623</td>
</tr>
<tr>
<td>10.13.4.2</td>
<td>Synthesis by Substituent Modification</td>
<td>624</td>
</tr>
<tr>
<td>10.13.4.2.1</td>
<td>Method 1: Oxidation of Indoles</td>
<td>624</td>
</tr>
</tbody>
</table>

10.14 | Product Class 14: 1H- and 2H-Isoindoles |
| T. J. Donohoe | 653 |

10.14 | Product Class 14: 1H- and 2H-Isoindoles | 653 |
10.14.1	Synthesis by Ring-Closure Reactions	657
10.14.1.1	By Annulation to an Arene	657
10.14.1.1.1	By Formation of Two N—C Bonds	657
Method 1: Synthesis from Dicarbonyl Compounds

Variation 1: By Condensation

Variation 2: Reductive Cyclization

By Formation of One N—C and One C—C Bond

Method 1: Cyclization onto Aryl Nitriles

By Formation of Two C—C Bonds

Method 1: Cycloaddition of Dicyanomethylide Dipoles with Benzyne

Method 2: Formation of Isoindole-1-carbonitrile From a Dipole

By Formation of One N—C Bond

Method 1: Reaction of 2-Substituted Benzonitriles

Method 2: Reaction of 2-Substituted Benzylamines

By Formation of One C—C Bond

Method 1: Cyclization onto Benzynes

By Annulation to the Pyrrole Ring

Method 1: Onto Formylpyrroles

Method 2: Onto C3 and C4 of Pyrrole

Synthesis by Ring Transformation

Retrocycloaddition

Method 1: Retro-Diels–Alder Reaction

Method 2: Extrusion Reactions

Ring Enlargement

Method 1: Ylides as Intermediates

Ring Contraction

Method 1: Of Isoquinolines

Method 2: Of Benzodiazepines

Method 3: Of Isoquinoline N-Oxide

Aromatization

Method 1: By Dehydrogenation

Variation 1: Of the Heterocyclic Ring

Variation 2: Of the Carbocyclic Ring

Method 2: By Retro-Ene Reaction

Method 3: By Elimination

Variation 1: From N-Oxides

Variation 2: From Sulfonamides

Variation 3: By Elimination from Isoindolinium Salts

Synthesis by Substituent Modification

Method 1: Reduction of Phthalimides

Substitution of Existing Substituents

Of Hydrogen
10.14.4.1.1 Method 1: Deuteriation .. 681
10.14.4.1.2 Method 2: Alkylation .. 681
10.14.4.1.3 Method 3: Acylation of Isoindoles 683
10.14.4.1.4 Method 4: Amination of Isoindoles 685
10.14.4.2.2 Of Carbon Functionalities .. 686
10.14.4.2.1 Method 1: Decarboxylation 686
10.14.4.3 Modification of Substituents .. 686
10.14.4.3.1 Method 1: Addition to Phthalimidines 686
10.14.4.3.2 Method 2: Condensation of Phthalimidines with Pyridines 687
10.14.4.3.3 Method 3: Alkylation of Phthalimidines 688
10.15 Product Class 15: Carbazoles ... 693
10.15.1 Synthesis By Ring-Closure Reactions 695
10.15.1.1 By Annulation to an Arene ... 695
10.15.1.1.1 Method 1: Intramolecular Tandem Alkyne
 Insertion–Carbene Annulation 695
10.15.1.1.2 By Formation of Two Heteroatom—Heteroatom Bonds .. 696
10.15.1.1.2.1 Method 1: Nucleophilic Displacement of
 Methoxybiaryls Using Ammonia 696
10.15.1.1.3 By Formation of One Heteroatom—Carbon and One C–C Bond 697
10.15.1.1.3.1 Method 1: Reaction between Benzyne and a Nitrosobenzene 697
10.15.1.1.3.2 Method 2: Iodine-Catalyzed Dimerization of Aniline 697
10.15.1.1.3.3 Method 3: Reaction between Anilines and Benzoquinone 698
10.15.1.1.3.4 Method 4: Reaction between 2-Naphthol and Phenylhydrazine 698
10.15.1.1.4 By Formation of Two C–C Bonds 699
10.15.1.1.4.1 With Formation of 1–2 and 3–4 Bonds 699
10.15.1.1.4.1.1 Method 1: Reaction of 1-Methylindole-2,3-dicarbaldehyde and
 Diketones .. 699
10.15.1.1.4.1.2 Method 2: Diels–Alder Reactions of Pyrano[3,4-b]indol-3(9H)-one 700
10.15.1.1.4.1.3 Method 3: Anionic [4+ 2] Cycloadditions of Indole-2,3-dienolate 700
10.15.1.1.4.1.4 Method 4: Diels–Alder Reactions of 2,4-Dihydropyrrolo[3,4-b]indoles 701
10.15.1.1.4.1.5 Method 5: Reaction between Indole-2,3-quinodimethane and
 Alkynes ... 702
10.15.1.1.4.2 With Formation of 1–2 and 4–4a Bonds 702
10.15.1.1.4.2.1 Method 1: Reaction of 2-Ethylindole with But-3-en-2-one 702
10.15.1.1.4.2.2 Method 2: Cyclization of 2-Methylindole with
 Hydroxymethylene Ketones 703
10.15.1.1.4.3 With Formation of 2–3 and 9a–1 Bonds .. 703
10.15.1.1.4.3.1 Method 1: Diels–Alder Reactions of Thieno[2,3-b]indoles 703
10.15.1.1.4.3.2 Method 2: Diels–Alder Reactions of 2-(1H-Indol-3-yl)ethene-1,1,2-tricarbonitrile .. 704
10.15.1.1.4.4 With Formation of 3–4 and 9a–1 Bonds .. 704
10.15.1.1.4.4.1 Method 1: Cyclization of Benzotriazol-1-ylmethylindole with Enones 704
10.15.1.1.4.4.2 Method 2: Cyclization of Indol-3-ylacetonitrile with Perchlorates 705
10.15.1.1.4.5 With Formation of 4–4a and 9a–1 Bonds 706
10.15.1.1.4.5.1 Method 1: Condensation of 1,4-Diketones with Indoles 706
10.15.1.1.4.5.2 Method 2: Synthesis of 2-(2-Aminoethyl)carbazoles 706
10.15.1.1.4.5.3 Method 3: Acid-Catalyzed Condensation of 1-Arylpyrroles with 2,5-Dimethoxytetrahydrofuran .. 707
10.15.1.1.5 By Formation of One Heteroatom—Carbon Bond 707
10.15.1.1.5.1 Method 1: Deoxygenation of Nitrobiphenyls 708
10.15.1.1.5.2 Method 2: Decomposition of Azidobiphenyls 708
10.15.1.1.5.2.1 Variation 1: Thermolysis of Azidobiphenyls 709
10.15.1.1.5.2.2 Variation 2: Photolysis of Azidobiphenyls 709
10.15.1.1.5.3 Method 3: Cyclization of 2,2′-Diaminobiphenyls 710
10.15.1.1.5.3.1 Variation 1: The Täuber Synthesis of Carbazoles 710
10.15.1.1.5.3.2 Variation 2: Diazoactivation of 2,2′-Diaminobiphenyls 711
10.15.1.1.5.4 Method 4: Intramolecular Displacement of Bromine with a Sulfonamide .. 711
10.15.1.1.5.5 Method 5: Oxidative Cyclization of Tricarbonyl(η4-1,3-cyclohexadienyl)iron Complexes 711
10.15.1.1.6 By Formation of One C–C Bond .. 712
10.15.1.1.6.1 With Formation of the 1–2 Bond ... 712
10.15.1.1.6.1.1 Method 1: Base-Catalyzed Cyclization of 3-Substituted 2-Alkylindoles 712
10.15.1.1.6.2 With Formation of the 2–3 Bond ... 712
10.15.1.1.6.2.1 Method 1: Rearrangement of Divinylindoles 713
10.15.1.1.6.3 With Formation of the 3–4 Bond ... 713
10.15.1.1.6.3.1 Method 1: Cyclization of Propenylindoles 713
10.15.1.1.6.4 With Formation of the 4–4a Bond ... 714
10.15.1.1.6.4.1 Method 1: Annulation of Chromium Carbene Complexes 714
10.15.1.1.6.4.2 Method 2: Acid-Catalyzed Cyclization of 1,4-Diketones 714
10.15.1.1.6.4.3 Method 3: Cycloaromatization of Hydroxyketene Dithioacetals 715
10.15.1.1.6.4.4 Method 4: Synthesis from Indolopyridinium Methiodide 715
10.15.1.1.6.5 With Formation of the 4a–4b Bond .. 716
10.15.1.1.6.5.1 Method 1: Palladium-Promoted Cyclization of Diphenylamines 716
10.15.1.1.6.5.2 Method 2: Photolytic Cyclization of Diarylamines 717
10.15.1.1.6.5.3 Method 3: The Graebe–Ullmann Synthesis 717
10.15.1.6.6 With Formation of the 9a—1 Bond ... 718

10.15.1.6.6.1 Method 1: Cyclization and Dehydrogenation of Indol-3-yldienes 718
10.15.1.6.6.2 Method 2: Cyclization and Elimination of Indol-3-yldienes 719
10.15.1.6.6.3 Method 3: Cyclization of Indolybutenoic Acids to Acetoxy carbazoles 719
10.15.1.6.6.4 Method 4: Cyclization of β-Oxo Sulfoxides 720
10.15.1.6.6.5 Method 5: Cyclization of Cyanoindolylpent-3-en-2-ones 720

10.15.2 Synthesis by Ring Transformation ... 721
10.15.2.1 Method 1: Desulfurization of Phenothiazines 721
10.15.3 Aromatization ... 721
10.15.3.1 Method 1: Elimination of Sulfite .. 721
10.15.3.2 Method 2: Reductive Acylation of Quinones 722
10.15.3.3 Method 3: Dehydrogenation of 1,2,3,4-Tetrahydrocarbazoles 722
10.15.3.3.1 Variation 1: With Palladium on Charcoal 723
10.15.3.3.2 Variation 2: With Chloranil .. 723

10.15.4 Synthesis by Substituent Modification .. 724
10.15.4.1 Addition Reactions ... 724
10.15.4.1.1 Method 1: Synthesis of (η²-Carbazole)(η²-cyclopentadienyl)iron(II) Hexafluorophosphate ... 724
10.15.4.1.2 Method 2: Synthesis of Carbazole(tricarbonyl)chromium(0) 725
10.15.4.1.3 Method 3: Protonation of Carbazoles 725

10.15.4.2 Substitution of Existing Substituents .. 725
10.15.4.2.1 Substitution of Hydrogen ... 725
10.15.4.2.1.1 Method 1: Metalation at Carbon .. 726
10.15.4.2.1.2 Method 2: Acylation on Carbon ... 726
10.15.4.2.1.3 Method 3: Formylation of Carbazoles 726
10.15.4.2.1.4 Method 4: Chlorination of 9-Alkylcarbazoles 727
10.15.4.2.1.5 Method 5: Bromination of 9H-Carbazole 727
10.15.4.2.1.6 Method 6: Iodination of 9H-Carbazole 728
10.15.4.2.1.7 Method 7: Sulfonation of 9H-Carbazole 728
10.15.4.2.1.8 Method 8: Nitration of 9H-Carbazole 729
10.15.4.2.1.9 Method 9: N-Metalation of 9H-Carbazole 729
10.15.4.2.1.10 Method 10: Substitution by Carbon Functionality at NH 729
10.15.4.2.1.10.1 Variation 1: Synthesis of 9-Acetylcarbazole 729
10.15.4.2.1.10.2 Variation 2: Microwave-Irradiation-Accelerated N-Alkylation 730
10.15.4.2.1.10.3 Variation 3: N-Alkylation with Dimethyl Sulfate 730
10.15.4.2.1.11 Method 11: N-Sulfonylation with Benzenesulfonyl Chloride 731
10.15.4.2.1.12 Method 12: N-Nitrosation of 9H-Carbazole 731
10.15.4.2.2 Substitution of Metals .. 732
10.15.4.2.2.1 Method 1: Silylation of (9-Ethylcarbazol-3-yl)lithium 732
10.15.4.2.3 Substitution of Carbon .. 732
10.15.4.2.3.1 Method 1: Decarboxylation with Copper and Quinoline 733
10.15.4.2.3.2 Method 2: Decarbonylation of Carbazolecarbaldehydes 733
10.15.4.2.3 Method 3: Dealkylation of tert-Butylcarbazoles 733
10.15.4.2.4 Substitution of Heteroatoms .. 734
10.15.4.2.4.1 Substitution by Hydrogen .. 734
10.15.4.2.4.1.1 Method 1: Reductive Removal of Sulfur 734
10.15.4.2.4.1.2 Method 2: Hydrolysis of 9-(Phenylsulfonyl)carbazoles 735
10.15.4.2.4.2 Substitution by Carbon Nucleophiles 735
10.15.4.2.4.2.1 Method 1: Suzuki Reaction of 1-Hydroxycarbazole Trifluoromethanesulfonate 735
10.15.4.2.4.2.2 Method 2: Displacement of Iodide with Copper(I) Cyanide 735
10.15.4.2.4.3 Substitution by Other Heteroatoms 736
10.15.4.2.4.3.1 Method 1: Replacement of a Diazonium Group by Chlorine (Sandmeyer Reaction) .. 736
10.15.4.2.4.3.2 Method 2: Nucleophilic Displacement of Bromine with Phenylhydrazine .. 736
10.15.4.3 Modification of Substituents ... 737
10.15.4.3.1 Method 1: Reduction of Aldehydes 737
10.15.4.3.2 Method 2: Reduction of Carbazolyl Ketones 738
10.15.4.3.3 Method 3: Trimethylsiloxy Cyanohydrin Formation from Ketones 738
10.15.4.3.4 Method 4: Reductive Hydrolysis of Trimethylsilyl Cyanohydrins 739
10.15.4.4 Rearrangement of Substituents ... 739
10.15.4.4.1 Method 1: Rearrangement of 9-(Phenylacetyl)carbazole 739
10.15.4.4.2 Method 2: Acetamidocarbazoles from Beckmann Rearrangement 740

10.16 Product Class 16: Indolizines
M. Shipman

10.16.1 Synthesis by Ring-Closure Reactions 745
10.16.1.1 By Formation of One N—C and One C—C Bond 747
10.16.1.1.1 With Formation of 1—2 and 3—4 Bonds 748
10.16.1.1.1.1 Method 1: From 2-Ethynylpyridines and Acetylenes 748
10.16.1.1.1.2 Method 2: From 2-Substituted Pyridines and Alkenes 748
10.16.1.1.1.3 Method 3: From 2-Methylpyridines and Acid Anhydrides (Scholtz Reaction) .. 749
10.16.1.1.2 With Formation of 1—8a and 3—4 Bonds 750
10.16.1.1.2.1 Method 1: Palladium-Catalyzed Coupling Reactions of 2-Bromopyridines .. 750
10.16.1.1.2.2 Method 2: From Pyridines and Acetylenes 751
10.16.1.1.2.3 Method 3: From Pyridines and Cyclopropene Derivatives 751
10.16.1.1.3 With Formation of 2—3 and 3—4 Bonds .. 752
10.16.1.1.3.1 Method 1: From 2-Vinylpyridines and Carbenes .. 752
10.16.1.1.4 With Formation of 4—5 and 8—8a Bonds .. 753
10.16.1.1.4.1 Method 1: Condensation of Pyrrole with Hexane-2,5-dione 753
10.16.1.2 By Formation of Two C—C Bonds ... 754
10.16.1.2.1 With Formation of 1—8a and 2—3 Bonds .. 754
10.16.1.2.1.1 Method 1: 1,3-Dipolar Cycloadditions of Pyridinium Methylides 754
10.16.1.2.1.1.1 Variation 1: Pyridinium Methylides by Deprotonation 754
10.16.1.2.1.2 Variation 2: Pyridinium Methylides from Pyridines and Tetracyanoethylene Oxide ... 755
10.16.1.2.1.3 Variation 3: 1,3-Dipoles from 1-[(Trimethylsilyl)methyl]pyridinium Salts 756
10.16.1.2.1.4 Variation 4: 1,3-Dipoles from Carbenes .. 757
10.16.1.2.2 Method 2: From 2-Halopyridinium Salts and /C226-Dicarbonyl Compounds ... 758
10.16.1.3 By Formation of One N—C Bond ... 759
10.16.1.3.1 With Formation of the 3—4 Bond ... 759
10.16.1.3.1.1 Method 1: Cyclizations of 2-(Functionalized propyl)pyridine Derivatives 759
10.16.1.3.1.1.1 Variation 1: Oxidative Cyclizations of 3-(2-Pyridyl)propan-1-ols 759
10.16.1.3.1.1.2 Variation 2: Cyclizations of 3-(2-Pyridyl)propanediols and Their Derivatives ... 760
10.16.1.3.1.1.3 Variation 3: Cyclizations of 1-(2-Pyridyl)prop-2-en-1-ols and Their Derivatives ... 760
10.16.1.3.1.1.4 Variation 4: Cyclizations of 3-(2-Pyridylmethylene)pentane-2,4-diones 762
10.16.1.3.1.1.5 Variation 5: Cyclizations of 3-(2-Pyridyl)propanals and Their Derivatives ... 762
10.16.1.3.1.2 Method 2: Thermal Rearrangement of 2-(Buten-3-ynyl)pyridine N-Oxides 763
10.16.1.3.2 With Formation of the 4—5 Bond ... 764
10.16.1.3.2.1 Method 1: Indolizine-8-carbonitriles by Ring-Closure Reactions of Pyrroles 764
10.16.1.3.2.2 Method 2: Indolizine-5,8-diones by Ring-Closure Reactions of Pyrroles 764
10.16.1.4 By Formation of One C—C Bond ... 765
10.16.1.4.1 With Formation of the 1—2 Bond ... 765
10.16.1.4.1.1 Method 1: Tschitschibabin Reaction .. 765
10.16.1.4.1.1.1 Variation 1: Base-Induced Cyclizations of Pyridinium Salts 766
10.16.1.4.1.1.2 Variation 2: One-Pot Tschitschibabin Reactions 767
10.16.1.4.1.2 Method 2: Synthesis of Indolizin-2(3H)-ones ... 768
10.16.1.4.1.3 Method 3: Indolizines from Pyrylium Salts ... 768
10.16.1.4.1.4 Method 4: 1,2-Disubstituted Indolizines from 2-Acyl-N-(acylmethyl)pyridinium Salts ... 769
10.16.1.4.2 With Formation of the 1—8a Bond ... 770
10.16.1.4.2.1 Method 1: 1,5-Dipolar Cyclizations of N-Allylpyridinium Salts 770
10.16.1.4.2.2 Method 2: Synthesis of 2,3-Benzindolizines ... 770
10.16.1.4.3 With Formation of the 2–3 Bond .. 771
10.16.1.4.3.1 Method 1: Cyclizations of 2-Ethynylpyridinium Salts 771
10.16.1.4.3.2 Method 2: Cyclization Reactions of 2-Methylene-1,2-dihydropyridines 772
10.16.1.4.3.2.1 Variation 1: Cyclizations of 2-Methylene- and 2-Allylidene-1,2-dihydropyridines .. 772
10.16.1.4.3.2.2 Variation 2: Metalation/Ring Closure of 2-(Benzoylmethylene)-1,2-dihydropyridines 773
10.16.1.4.4 With Formation of the 8–8a Bond .. 774
10.16.1.4.4.1 Method 1: Indolizine-5,8-diones from 4-(1H-Pyrrol-1-yl)cyclobutenones 774
10.16.2 Synthesis by Ring Transformation ... 775
10.16.2.1 Method 1: Ring Contraction of 4H-Quinolizines 775
10.16.2.2 Method 2: Ring Contraction of Dihydropyridothiazines 776
10.16.2.3 Method 3: Ring Expansion of 3H-Pyrrolizine 776
10.16.3 Synthesis by Substituent Modification 777
10.16.3.1 Substitution of Existing Substituents 777
10.16.3.1.1 Of Hydrogen .. 777
10.16.3.1.1.1 Method 1: Deuteration of Indolizines 777
10.16.3.1.1.2 Method 2: Lithiation of Indolizines 777
10.16.3.1.1.3 Method 3: Introduction of Carbon Substituents 778
10.16.3.1.1.4 Method 4: Introduction of Nitrogen Substituents 779
10.16.3.1.1.5 Method 5: Introduction of Sulfur Substituents 780
10.16.3.1.2 Of Metals .. 781
10.16.3.1.2.1 Method 1: Substitution Reactions of 5-Lithiindolizines 781
10.16.3.1.2.2 Method 2: Protodesilylation of Trimethylsilyl-Substituted Indolizines 781
10.16.3.1.3 Of Carbon Functionalities .. 782
10.16.3.1.3.1 Method 1: By Cleavage of C–C Bonds 782
10.16.3.2 Modification of α-Carbon Substituents 783
10.16.3.2.1 Method 1: By Manipulations at the α-Carbon Atom 783

10.17 Product Class 17: Benzo[b]phospholes
R. A. Aitken

10.17 Product Class 17: Benzo[b]phospholes 789
10.17.1 Synthesis by Ring-Closure Reactions 790
10.17.1.1 By Annulation to an Arene ... 790
10.17.1.1.1 By Formation of Two P–C Bonds 790
10.17.1.1.1.1 Method 1: Reaction of Lithiated Phenylalkyne Derivatives with Phosphorus Dihalides 790
10.17.1.1.1.2 Method 2: Reaction of a Zirconacycle with Phosphorus Dihalides 791
10.17.1.3 Method 3: Reaction of Phenylalkynes with Phosphorus Pentachloride 791
10.17.1.2 By Formation of One P–C Bond 792
10.17.1.2.1 Method 1: Base-Induced Cyclization of 2-Alkynylphenylphosphines 792
10.17.1.2.2 Method 2: Photochemical Cyclization of a 2-Alkynylphenylphosphine 793
10.17.1.2.3 Method 3: Thermal Cyclization of 2-(Phenylalkynyl)phenylchlorophosphines 794
10.17.1.2 By Annulation to a Phosphole 796
10.17.1.2.1 Method 1: Sulfurization of a Phosphole [2 + 2] Dimer 796
10.17.1.2.2 Method 2: Thermolysis of a Phosphole [4 + 2] Dimer 796
10.17.2 Synthesis by Ring Transformation 797
10.17.2.1 Method 1: Photochemical Rearrangement of a Phosphadiazole 797
10.17.3 Aromatization 798
10.17.3.1 By Aromatization of 2,3-Dihydrobenzo[b]phospholes 798
10.17.3.1.1 Method 1: Dehydrobromination 798
10.17.3.1.1 Variation 1: Using Triethylamine 798
10.17.3.1.2 Variation 2: Using 1,8-Diazabicyclo[5.4.0]undec-7-ene 799
10.17.3.1.2 Method 2: Gas-Phase Dehydrochlorination over a Solid Base 800
10.17.3.1.3 Method 3: Deprotonation of a Cyclic Phosphonium Salt 801
10.17.4 Synthesis by Substituent Modification 801
10.17.4.1 Modification at Phosphorus 802
10.17.4.1.1 Addition Reactions 802
10.17.4.1.1 Method 1: Oxidation 802
10.17.4.1.1 Method 2: Formation of an Ylide 802
10.17.4.1.2 Substitution Reactions 803
10.17.4.1.2.1 Method 1: Substitution of Halogen 803
10.17.4.1.2.2 Method 2: Substitution of Aryl Groups 804
10.17.4.1.3 Reduction 805
10.17.4.1.3.1 Method 1: Reduction of P-Oxides 805
10.17.4.2 Modification at Carbon 805
10.17.4.2.1 Substitution Reactions 805
10.17.4.2.1.1 Method 1: Removal of Silyl Groups 805
10.17.4.2.1.2 Method 2: Halogenation 805
10.17.4.3 Modification of Substituents 806
10.17.4.3.1 Method 1: Reaction of a 2,3-Dihydrobenzo[b]phosphol-3-one with Electrophiles 806
Product Class 18: Benzo[c]phospholes
R. A. Aitken

Synthesis by Ring-Closure Reactions

By Annulation to a Benzene Ring

By Formation of Two P—C Bonds

Method 1: From Phthaloyl Chloride

Method 2: From a Bis(phosphonium salt)

Aromatization

Of a 1,3-Dihydrobenzo[c]phosphole

Method 1: Formation of 1H-Benzophospholes

Method 2: Formation of 2H-Benzophospholes

Product Class 19: Dibenzophospholes
R. A. Aitken

Synthesis by Ring-Closure Reactions

By Annulation to an Arene

By Formation of Two P—C Bonds

Method 1: Reaction of 2,2¢-Dilithiobiaryls with Phosphorus Trihalides

Method 2: Reaction of 2,2¢-Dilithiobiaryls with Phosphinimines

Method 3: Reaction of 2,2¢-Dilithiobiphenyl with Phosphorus Pentachloride

Method 4: Reaction of 2,2¢-Biphenylenemercury with a Phosphinine

Method 5: Reaction of Biphenylene with Phenylphosphinidene

By Formation of One P—C Bond

Method 1: From Biphenyl-2-yldichlorophosphine

Method 2: From Biphenyl-2-ylmetaphosphonate

Method 3: From Biphenyl-2-yloxydichlorophosphine

Method 4: From Biphenyl-2-ylphosphinic Acids

Method 5: From Biphenyl-2,2¢-bis(phosphonium salts)

By Formation of One C—C Bond

Method 1: Palladium-Catalyzed Cyclization of Bis(2-haloaryl)phosphinic Acids

Method 2: Reaction of Triphenylphosphonium Salts and Other Triphenylphosphorus Compounds with Strong Bases

Aromatization

Method 1: Of Decahydrodibenzophospholes from the McCormack Reaction
10.19.3 Synthesis by Substituent Modification .. 828
10.19.3.1 Modification at Phosphorus ... 828
10.19.3.1.1 Addition Reactions .. 828
10.19.3.1.1.1 Method 1: Addition of Hydride and Carbanions to Phosphonium Salts ... 828
10.19.3.1.1.2 Method 2: P-Alkylation ... 829
10.19.3.1.1.3 Method 3: Formation of P-Oxides, -Sulfides, and -Selenides 830
10.19.3.1.1.4 Method 4: Formation of P—N Compounds 831
10.19.3.1.2 Substitution Reactions .. 831
10.19.3.1.2.1 Method 1: Replacement of P-Alkyl or -Phenyl Groups by Other Alkyls ... 831
10.19.3.1.2.2 Method 2: Replacement of P-Alkyl or -Phenyl Groups by Hydroxide 832
10.19.3.1.2.3 Method 3: Reduction of P-Chloro Compounds 833
10.19.3.1.2.4 Method 4: Reaction of P-Chloro Compounds with Grignard Reagents ... 833
10.19.3.1.2.5 Method 5: Use of P-Halo Compounds to Form Phosphoranes 834
10.19.3.1.2.6 Method 6: Reduction of P-Oxides 834
10.19.3.1.2.7 Method 7: Conversion of P-Selenides into P-Oxides 835
10.19.3.1.3 Reductive Elimination .. 835
10.19.3.1.3.1 Method 1: Reductive Elimination at Phosphorus 835

10.20 Product Class 20: Phosphorus Analogues of Indolizines
R. A. Aitken

10.20 Product Class 20: Phosphorus Analogues of Indolizines 839
10.20.1 Annulation to a Phosphole ... 839
10.20.1.1 Method 1: Cycloaddition of Phospholes with Dimethyl Acetylenedicarboxylate .. 839

Keyword Index .. 843
Author Index .. 861
Abbreviations .. 911
Volume 11:
Five-Membered Hetarenes with One Chalcogen and One Additional Heteroatom

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>V</td>
</tr>
<tr>
<td>Volume Editor's Preface</td>
<td>VII</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>XI</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>11.1 Product Class 1: 1,3-Dioxolium Salts and Annulated Analogues</td>
<td>13</td>
</tr>
<tr>
<td>11.2 Product Class 2: 1,2-Oxathiolium Salts</td>
<td>31</td>
</tr>
<tr>
<td>11.3 Product Class 3: 1,3-Oxathiolium Salts and Related Compounds</td>
<td>35</td>
</tr>
<tr>
<td>11.4 Product Class 4: 1,2-Oxaselenolium Salts</td>
<td>89</td>
</tr>
<tr>
<td>11.5 Product Class 5: 1,3-Oxaselenolium Salts</td>
<td>93</td>
</tr>
<tr>
<td>11.6 Product Class 6: 1,2-Oxatellurolium Compounds and Benzoannulated Analogues</td>
<td>97</td>
</tr>
<tr>
<td>11.7 Product Class 7: 1,2-Dithiolium Salts and Related Compounds</td>
<td>107</td>
</tr>
<tr>
<td>11.8 Product Class 8: 1,3-Dithiolium Salts, Se and Te Analogues, and Benzoannulated Analogues</td>
<td>191</td>
</tr>
<tr>
<td>11.9 Product Class 9: Isoxazoles</td>
<td>229</td>
</tr>
<tr>
<td>11.10 Product Class 10: 1,2-Benzisoxazoles and Related Compounds</td>
<td>289</td>
</tr>
<tr>
<td>11.11 Product Class 11: 2,1-Benzisoxazoles and Related Compounds</td>
<td>337</td>
</tr>
<tr>
<td>11.12 Product Class 12: Oxazoles</td>
<td>383</td>
</tr>
<tr>
<td>11.13 Product Class 13: Benzoazoles and Other Annulated Oxazoles</td>
<td>481</td>
</tr>
</tbody>
</table>
11.14
Product Class 14: 1,3-Oxaphospholes and Benzoannulated Analogues
D. Gudat ... 493

11.15
Product Class 15: Isothiazoles
D. W. Brown and M. Sainsbury 507

11.16
Product Class 16: Benzothiazoles
D. W. Brown and M. Sainsbury 573

11.17
Product Class 17: Thiazoles
D. Kikelj and U. Urleb ... 627

11.18
Product Class 18: Benzothiazoles and Related Compounds
H. Ulrich ... 835

11.19
Product Class 19: 1,2- and 1,3-Thiaphospholes and Benzoannulated Analogues
D. Gudat ... 913

11.20
Product Class 20: Isoselenazoles
W.-D. Pfeiffer .. 921

11.21
Product Class 21: Annulated Isoselenazole Compounds
W.-D. Pfeiffer .. 931

11.22
Product Class 22: Selenazoles
W.-D. Pfeiffer .. 941

11.23
Product Class 23: Annulated Selenazole Compounds
W.-D. Pfeiffer .. 991

11.24
Product Class 24: 1,3-Selenaphospholes
D. Gudat ... 1001

11.25
Product Class 25: Isotellurazoles, and Annulated Isotellurazole and Tellurazole Compounds
W.-D. Pfeiffer .. 1005

Keyword Index ... 1021

Author Index ... 1093

Abbreviations .. 1155
Table of Contents

Introduction
E. Schaumann

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1.1.1</td>
<td>Reaction of α-Diazo Ketones with N-Carbonylmethaniminium Salts</td>
<td>15</td>
</tr>
<tr>
<td>11.1.1.2</td>
<td>Reaction of α-Diazo Ketones with Acyl Trifluoromethanesulfonates</td>
<td>16</td>
</tr>
<tr>
<td>11.1.1.2</td>
<td>Addition Reactions</td>
<td>18</td>
</tr>
<tr>
<td>11.1.1.2.1</td>
<td>Addition of Electrophiles to 1,3-Dioxol-2-one</td>
<td>18</td>
</tr>
<tr>
<td>11.1.1.2.2</td>
<td>Substitution of Existing Substituents</td>
<td>19</td>
</tr>
<tr>
<td>11.1.1.2.2.1</td>
<td>Elimination of a Methoxy Group from a 2-Methoxy-1,3-dioxole</td>
<td>19</td>
</tr>
<tr>
<td>11.1.2.1</td>
<td>Product Subclass 2: Monocyclic Mesoionic 1,3-Dioxoli-4-olates</td>
<td>20</td>
</tr>
<tr>
<td>11.1.2.2</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>20</td>
</tr>
<tr>
<td>11.1.2.2.1</td>
<td>Catalytic Decomposition of Aryldiazoacetic Benzoic Anhydrides</td>
<td>20</td>
</tr>
<tr>
<td>11.1.2.2.2</td>
<td>Thermal Dehydration of O-Acetylmandelic Acid</td>
<td>22</td>
</tr>
<tr>
<td>11.1.2.3</td>
<td>Product Subclass 3: Annulated 1,3-Dioxolium Salts</td>
<td>23</td>
</tr>
<tr>
<td>11.1.2.3.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>24</td>
</tr>
<tr>
<td>11.1.2.3.1.1</td>
<td>From Catechol and Carbenium Salts</td>
<td>24</td>
</tr>
<tr>
<td>11.1.2.3.2</td>
<td>Addition Reactions</td>
<td>25</td>
</tr>
<tr>
<td>11.1.2.3.2.1</td>
<td>Addition of Electrophiles to 1,3-Benzodioxol-2-one</td>
<td>25</td>
</tr>
</tbody>
</table>
11.1.3.2.2 Substitution of Existing Substituents

11.1.3.2.2.1 Method 1: Elimination of Chloride from 2-Chloro-1,3-benzodioxoles

11.1.3.2.2.1.1 Variation 1: Ionization of 2,2-Dichloro-1,3-benzodioxole

11.1.3.2.2.1.2 Variation 2: Ionization of 2,2-Dichloro-1,3-benzodioxole in the Presence of Nucleophiles

11.1.3.2.2.2 Method 2: Elimination of a Methoxy Group from 2-Methoxy-1,3-benzodioxoles and Related Systems

11.2 Product Class 2: 1,2-Oxathiolium Salts

11.2.1 Synthesis by Ring-Closure Reactions

11.2.1.1 By Formation of One O—C Bond

11.2.1.1.1 Method 1: Oxidation of a Monothio-β-Diketone

11.2.1.2 Synthesis by Substituent Modification

11.2.2 Addition Reactions

11.2.2.1 Method 1: Protonation of 1,6-Dioxa-6a-thiapentalenes

11.3 Product Class 3: 1,3-Oxathiolium Salts and Related Compounds

11.3.1 Product Subclass 1: Monocyclic 1,3-Oxathiolium Salts

11.3.1.1 Synthesis by Ring-Closure Reactions

11.3.1.1.1 Method 1: From Ketones and N-Substituted S-Chloroisothiocarbamoyl Chlorides

11.3.1.1.2 Method 2: From α-Halo Ketones and Thiocarboxamide Derivatives

11.3.1.1.2.1 Variation 1: From α-Bromo Ketones and Tetramethylthiourea (or S-Alkyl Dithiocarbamates)

11.3.1.1.2.2 Variation 2: From α-Bromo Ketones and Arenethiocarboxamides

11.3.1.1.2.3 Variation 3: From α-Bromo Ketones and Alkanethiocarboxamides in the Presence of Aryl (or Cinnamyl) Aldehydes

11.3.1.1.3 Method 3: From α-Bromo Ketones and S-Alkyl Dithiocarboxylates

11.3.1.1.2 By Formation of One O—C Bond

11.3.1.1.2.1 Method 1: Acid-Catalyzed Cyclization of 2-Oxo-2-phenylethyl Thiocyanates

11.3.1.1.2.2 Method 2: Cyclocondensations of Thiocarbamate (or Dithiocarboxylate) Derivatives

11.3.1.1.2.1 Variation 1: Via Substitution of an Oxygen Substituent: From S-(2-Oxoalkyl) Thiocarbamates (or Thiocarboxylates)
Variation 2: Via Substitution of a Sulfur Substituent: From S-(2-Oxoalkyl) Dithiocarbamates 54
Variation 3: Via Substitution of an Amino Substituent: From S-(2-Oxoalkyl) Thio carbamimidium Salts in the Presence of Aldehydes 56

By Formation of One S—C Bond ... 57

Method 1: Cyclocondensation of \{[(Methylsulfanyl)carbonothioyl]oxy\}(phenyl)acetic Acid 57
Method 2: Cyclocondensation of a 2-Oxoalkyl Benzoate in the Presence of Hydrogen Sulfide 58

Synthesis by Substituent Modification 59
Substitution of Existing Substituents 59
Method 1: Elimination of a Methoxy Group from 2-Methoxy-1,3-oxathioles 59

Product Subclass 2: Monocyclic Mesoionic 1,3-Oxathiolium-4-olates and -5-olates ... 61

Synthesis by Ring-Closure Reactions 61
By Formation of One O—C Bond .. 61
1,3-Oxathiolium-5-olates .. 61
Method 1: Cyclocondensations of 2-(Aroylsulfanyl)acetic Acids .. 61

By Formation of One S—C Bond .. 62
1,3-Oxathiolium-4-olates .. 62
Method 1: Cyclocondensation of Substituted Acetic Acids .. 62

Synthesis by Substituent Modification 65
Substitution of Existing Substituents 65
Method 1: Substitution of a Methylsulfanyl Group in 2-(Methylsulfanyl)-1,3-oxathioli um-4-olate 66

Product Subclass 3: Annulated 1,3-Oxathiolium Salts ... 69
Synthesis by Ring-Closure Reactions 69
By Annulation to an Arene .. 70
By Formation of One O—C and One S—C Bond 71
Method 1: From 2-Sulfanylenphenol and Carboxylic Acid Derivatives or Equivalents 71
Variation 1: From 2-Sulfanylenphenol and Dichloro-N,N-dimethylmethaniminium Chloride 71
Variation 2: From 2-Sulfanylenphenol and Trihalomethyl- (or Triethoxymethyl)-Substituted Arenes 71
Variation 3: From 2-Sulfanylenphenol and Carboxylic Acids or Derivatives 72
11.3.1.1.2 Method 2: From 1,4-Quinones and Thiocarboxylic Acid (or Thiourea) Derivatives .. 75
11.3.1.1.2.1 Variation 1: From 1,4-Quinones and Thioureas ... 76
11.3.1.1.2.2 Variation 2: From 1,4-Quinones and Thiocarboxylic Acids or 4-(Arylthioyl)morpholines .. 77
11.3.1.1.2.3 Variation 3: From 1,4-Quinones and 4-(2-Phenylethanethioyl)morpholine in the Presence of Aryl Aldehydes .. 78
11.3.1.1.2 By Formation of One O/C45 C Bond ... 80
11.3.1.1.2.1 Method 1: From Cyclocondensations of S-(2,5-Dihydroxyaryl) Thioesters or Thiocarbamate Derivatives 80
11.3.1.1.3 By Formation of One S/C45 C Bond ... 82
11.3.1.1.3.1 Method 1: Rearrangement of O-(2,4,6-Trihalophenyl) N,N-Dimethylthiocarbamates .. 82
11.3.2 Synthesis by Substituent Modification .. 83
11.3.2.1 Addition Reactions .. 83
11.3.2.1.1 Method 1: N-Protonation of a 1,3-Benzoxathiol-2-imine 83
11.3.2.2 Substitution of Existing Substituents .. 84
11.3.2.2.1 Method 1: Elimination of Hydride from a 1,3-Benzoxathiole 84
11.3.2.2.2 Method 2: Elimination of an Ethoxy Group from a 2-Ethoxy-1,3-benzoxathiole .. 85
11.3.2.3 Modification of Substituents ... 86

11.4 Product Class 4: 1,2-Oxaselenolium Salts
H. Perst

11.4.1 Synthesis by Ring-Closure Reactions ... 89
11.4.1.1 By Formation of One O—Se Bond ... 89
11.4.1.1.1 Method 1: Rearrangement of Z-3-(Arylselanyl)propenoyl Chlorides 89
11.4.2 Synthesis by Substituent Modification ... 91
11.4.2.1 Addition Reactions .. 91
11.4.2.1.1 Method 1: Protonation of 1,6-Dioxo-6α,4α-selenapentalenes 91

11.5 Product Class 5: 1,3-Oxaselenolium Salts
H. Perst

11.5.1 Synthesis by Ring-Closure Reactions ... 93
11.5.1.1 By Formation of One O—C and One Se—C Bond .. 93
11.5.1.1.1 Method 1: Cyclocondensation of α-Bromo Ketones with Tetramethylselenourea .. 93
Variation 1: Cyclocondensation of α-Bromo Ketones with N,N-Disubstituted Selenoamides

Synthesis by Substituent Modification

Addition Reactions

Method 1: N-Protonation of 1,3-Oxaselenol-2-imines

Product Class 6: 1,2-Oxatellurolium Compounds and Benzoannulated Analogues

Product Subclass 1: Monocyclic 1,2-Oxatellurolium Compounds

Synthesis by Ring-Closure Reactions

By Formation of One O–Te Bond

Method 1: Rearrangement of Z-3-(Aryltellanyl)propenoyl Chlorides

Substitution of Existing Substituents

Method 1: Substitution of Chloride by Other Anions

Product Subclass 2: 2,1-Benzoxatellurolium Compounds

Synthesis by Ring-Closure Reactions

By Annulation to an Arene

Method 1: Rearrangement of 2-(Aryltellanyl)benzoyl Chlorides

Synthesis by Ring Transformation

Hetero-Ring Size Retained Overall

Method 1: By Oxidation of Preformed 3H-2,1-Benzoxatelluroles

By Ring Contraction

Method 1: By Rearrangement of 1,1-Dihalo-4H-1-benzotellurin-4-ones

Product Class 7: 1,2-Dithiolium Salts and Related Compounds

Product Subclass 1: Simple 1,2-Dithiolium Salts

Synthesis by Ring-Closure Reactions

By Formation of One S–S and Two S–C Bonds

Method 1: From 1,3-Diketones, 1,3-Dialdehydes, or 3-Oxoaldehydes

Method 2: From Polyhalo-Substituted Propenes

By Formation of One S–S and One S–C Bond
Method 1: From 3-Oxothiocarboxylic Acid Derivatives
Method 2: From β-Thioxo Ketones
Method 3: From α,β-Unsaturated β-Amino Ketones

By Formation of Two S—C Bonds
Method 1: From 1,3-Dioxo Compounds and Disulfane or Polysulfanes
Method 2: From 1,3-Dioxo Compounds and Diacetyl Disulfide

By Formation of One S—C Bond
Method 1: From 1,3-Dioxo Compounds and Disulfane or Polysulfanes
Method 2: From 1,3-Dioxo Compounds and Diacetyl Disulfide

Aromatization
Method 1: From 3-Alkylidene-3H-1,2-dithioles
Method 2: By Oxidation of 3H-1,2-Dithiole-3-thiones
Method 3: From 3H-1,2-Dithiol-3-ones or 3H-1,2-Dithiole-3-thiones by Halogenation

Synthesis by Substituent Modification
Substitution of Existing Substituents
Of Hydrogen
Of Halogen or Alkylsulfanyl Groups
Addition Reactions
Protonation
Modification of Substituents
Alkylation of 3H-1,2-Dithiol-3-ones and 3H-1,2-Dithiole-3-thiones
Reactions at the α-Methyl Group
Exchange of Anions

Product Subclass 2: Mesoionic and Zwitterionic 1,2-Dithiolium Salts
1,2-Dithiolium-4-olates
Synthesis by Ring-Closure Reactions
By Formation of One S—S and Two S—C Bonds
Method 1: From Bromo-Substituted Acetones
Method 2: From Propane-1,2,3-triones
Method 3: From 1,3-Dichloroacetone
Aromatization
1,2-Dithiolium-3-yl phenolates and Analogous Compounds
Aromatization
Synthesis by Substituent Modification
Product Subclass 3: Annulated 1,2-Dithiolium Salts

11.7.3.1 Synthesis by Ring-Closure Reactions
- 11.7.3.1.1 By Formation of Two S—C Bonds
- 11.7.3.1.2 By Formation of One C—C Bond
- 11.7.3.1.3 Synthesis by Ring Transformation
- 11.7.3.2 Aromatization
- 11.7.3.3 Synthesis by Substituent Modification
 - 11.7.3.3.1 Substitution of Existing Substituents
 - 11.7.3.3.2 Modification of Substituents

Product Subclass 4: Heterapentalenes Related to the 1,2-Dithiolium System

11.7.4.1 1,6-Dioxa-6αH-thiapentalenes
- 11.7.4.1.1 Synthesis by Ring-Closure Reactions
- 11.7.4.1.2 Synthesis by Ring Transformation
- 11.7.4.1.3 Synthesis by Substituent Modification
 - 11.7.4.1.3.1 Substitution of Existing Substituents
 - 11.7.4.1.3.1.1 Of Hydrogen
 - 11.7.4.1.3.1.2 Of Halogen
 - 11.7.4.1.3.2 1-Oxa-6αH-dithiapentalenes
- 11.7.4.2 1,6-Dioxa-6αH-dithiapentalenes
 - 11.7.4.2.1 By Formation of One O—S, One S—S, and Two S—C Bonds
 - 11.7.4.2.2 By Formation of One O—S and One O—C Bond
 - 11.7.4.2.3 By Formation of One O—S and One C—C Bond
 - 11.7.4.2.3.1 Method 1: From 1,2-Dithiolium Salts
 - 11.7.4.2.3.2 Method 2: From 3-[(2-Aryl-2-oxoethyl)sulfanyl]-1,2-dithiolium Salts
 - 11.7.4.2.3.3 Method 3: From 3H-1,2-Dithiol-3-ones or 3H-1,2-Dithiole-3-thiones
- 11.7.4.2.4 By Formation of One O—S Bond
- 11.7.4.2.5 Synthesis by Ring Transformation
 - 11.7.4.2.5.1 Method 1: From 4H-Pyrans- or 4H-Thiopyran-4-thiones
 - 11.7.4.2.5.2 Method 2: From Other Heterapentalenes
- 11.7.4.3 1,6-Dioxa-6αH-selenapentalenes
 - 11.7.4.3.1 Synthesis by Ring Transformation
- 11.7.4.4 1,6-Dioxa-6αH-tellurapentalenes
 - 11.7.4.4.1 Synthesis by Ring-Closure Reactions
11.7.4.5 1,6,6α-Trithiapentalenes ... 149
11.7.4.5.1 Synthesis by Ring-Closure Reactions 150
11.7.4.5.1.1 By Formation of Two S−S, Three S−C, and One C−C Bond ... 150
11.7.4.5.1.2 By Formation of Two S−S and Three S−C Bonds ... 150
11.7.4.5.1.3 By Formation of Two S−S and Two S−C Bonds ... 151
11.7.4.5.1.4 By Formation of Two S−S and One S−C Bond 152
11.7.4.5.1.5 By Formation of One S−S, One S−C, and One C−C Bond 152
11.7.4.5.1.5.1 Method 1: From Dialkylamino-Substituted 1,2-Dithiolium Salts .. 152
11.7.4.5.1.5.2 Method 2: From 3H-1,2-Dithiole-3-thiones ... 153
11.7.4.5.1.6 By Formation of One S−S and One S−C Bond 153
11.7.4.5.1.6.1 Method 1: From 3-[2-(Dialkylamino)vinyl]-1,2-dithiolium Salts .. 153
11.7.4.5.1.6.2 Method 2: From 2-(5-Aryl-3H-1,2-dithiol-3-ylidene)malononitriles .. 154
11.7.4.5.1.7 By Formation of One S−S and One C−C Bond 155
11.7.4.5.1.7.1 Method 1: From 1,2-Dithiolium Salts .. 155
11.7.4.5.1.7.2 Method 2: From 3-(Alkylsulfanyl)-1,2-dithiolium Salts 155
11.7.4.5.1.7.3 Method 3: From 3H-1,2-Dithiole-3-thiones .. 156
11.7.4.5.1.8 By Formation of One S−S Bond .. 157
11.7.4.5.1.8.1 Method 1: From Other 1,2-Dithiole Derivatives 157
11.7.4.5.2 Synthesis by Ring Transformation .. 158
11.7.4.5.2.1 Method 1: From 4H-Thiopyran-4-thiones .. 158
11.7.4.5.2.2 Method 2: From 1-Oxa-6,6α-dithiapentalenes 158
11.7.4.5.3 Synthesis by Substituent Modification 160
11.7.4.5.3.1 Substitution of Existing Substituents .. 160
11.7.4.5.3.1.1 Of Hydrogen .. 160
11.7.4.5.3.1.1.1 Method 1: Substitution by Bromination .. 160
11.7.4.5.3.1.1.2 Method 2: Substitution by Nitration or Nitrosation 160
11.7.4.5.3.1.1.3 Method 3: Substitution by Formylation .. 161
11.7.4.5.3.1.2 Of Heteroatoms .. 161
11.7.4.5.3.2 Modification of Substituents .. 161
11.7.4.5.3.2.1 Method 1: Condensation in the Side Chain by Aldehydes 161
11.7.4.5.3.2.2 Method 2: Condensation in the Side Chain by Carbon Disulfide and Thioformamides 162
11.7.4.6 1,6α,6-Dithia-6-selenapentalenes 162
11.7.4.6.1 Synthesis by Ring-Closure Reactions .. 162
11.7.4.6.2 Synthesis by Ring Transformation .. 163
11.7.4.7 1,6α,6-Dithia-6-azapentalenes ... 163
11.7.4.7.1 Synthesis by Ring-Closure Reactions .. 163
11.7.4.7.1.1 By Formation of One S−N and One N−C Bond 163
11.7.4.7.1.1 Method 1: From 3-[2-(Methylsulfanyl)vinyl]-1,2-dithiolium Salts 163
11.7.4.7.1.2 Method 2: From 3-[2-(Dimethylamino)vinyl]-1,2-dithiolium Salts 164
11.7.4.7.1.2.1 By Formation of One S—N and One C—C Bond .. 164
11.7.4.7.1.2.2 Method 2: From 5-Aryl-3-benzylidene-1,2-dithioles or 3-Methyl-1,2-dithiolium Salts and Isocyanides ... 165
11.7.4.7.2 Synthesis by Ring Transformation ... 165
11.7.4.8 1,6-Dithia-6α-4-selenapentalenes ... 165
11.7.4.8.1 Synthesis by Ring Transformation ... 166
11.7.4.9 1-Oxa-6,6α-dithia-2-azapentalenes ... 166
11.7.4.9.1 Synthesis by Ring-Closure Reactions ... 167
11.7.4.9.2 Synthesis by Ring Transformation ... 167
11.7.4.10 1-Oxa-6,6α-dithia-3-azapentalenes ... 168
11.7.4.10.1 Synthesis by Ring-Closure Reactions ... 169
11.7.4.10.1.1 By Formation of One O—S, One S—S, and One N—C Bond 169
11.7.4.10.1.2 By Formation of One O—S and One N—C Bond .. 169
11.7.4.10.1.2.1 Method 1: From 3-Amino-1,2-dithiolium Salts .. 169
11.7.4.10.1.2.2 Method 2: From 3H-1,2-Dithiole-3-thiones .. 169
11.7.4.10.2 Synthesis by Ring Transformation ... 170
11.7.4.10.2.1 Method 1: From 1,2-Benzothiazoles ... 170
11.7.4.10.2.2 Method 2: From 1,6,6α-Trithia-3-azapentalenes .. 170
11.7.4.11 1,6,6α-Trithia-3-azapentalenes ... 170
11.7.4.11.1 Synthesis by Ring-Closure Reactions ... 171
11.7.4.11.1.1 By Formation of One S—S and One N—C Bond .. 171
11.7.4.11.1.1.1 Method 1: From 3-Amino-1,2-dithiolium Salts .. 171
11.7.4.11.2 Synthesis by Ring Transformation ... 171
11.7.4.12 6,6α-Dithia-1,2-diazapentalenes ... 171
11.7.4.12.1 Synthesis by Ring-Closure Reactions ... 172
11.7.4.12.1.1 By Formation of One S—N and One N—C Bond .. 172
11.7.4.12.1.1.1 Method 1: From 1,2-Dithiolium Salts ... 172
11.7.4.12.1.1.2 Method 2: From 3H-1,2-Dithiole-3-thiones .. 172
11.7.4.12.2 Synthesis by Ring Transformation ... 173
11.7.5 **Product Subclass 5: Extended Structures Based on the 1,2-Dithiolium System** ... 173
11.7.5.1 3-[(3H-1,2-Dithiol-3-ylidene)methyl]-1,2-dithiolium Salts .. 174
11.7.5.1.1 Synthesis by Ring-Closure Reactions ... 174
11.7.5.1.1.1 Method 1: From 1,2-Dithiolium Salts ... 174
11.5.1.2 Method 2: From 3\textit{H}-1,2-Dithiole-3-thiones .. 175
11.5.2 2-H-[3(\textit{H}-1,2-Dithiol-3-ylidene)methyl]-1,6,6\textit{e}-trithiapentalenes and Related Systems .. 175
11.5.2.1 2-H-[3(\textit{H}-1,2-Dithiol-3-ylidene)methyl]-1-oxa-6,6\textit{e}-dithiapentalenes 176
11.5.2.1.1 Synthesis by Ring-Closure Reactions ... 177
11.5.2.1.1.1 Method 1: From 1,2-Dithiolium Salts ... 177
11.5.2.1.1.2 Method 2: From 3\textit{H}-1,2-Dithiole-3-thiones 177
11.5.2.2 2-H-[3(\textit{H}-1,2-Dithiol-3-ylidene)methyl]-1,6,6\textit{e}-trithiapentalenes 178
11.5.2.2.1 Synthesis by Ring Transformation ... 178
11.6 Product Subclass 6: 1,2-Diselenolium Salts and Related Compounds 179
11.6.1 1,2-Diselenolium Salts ... 179
11.6.1.1 Synthesis by Ring-Closure Reactions ... 179
11.6.1.1.1 By Formation of One Se—Se and Two Se—C Bonds 179
11.6.1.1.1.1 Method 1: From 1,3-Diketones, 1,3-Dialdehydes, or 3-Oxoaldehydes 179
11.6.1.1.1.2 Method 2: From a 1,3-Dichloropropenylium Chloride 180
11.6.1.1.2 By Formation of One Se—Se Bond ... 180
11.6.1.2 Aromatization .. 180
11.6.2 1,6,6\textit{e}-Triselenapentalenes .. 181
11.6.2.1 Synthesis by Ring-Closure Reactions ... 181
11.6.3 1,2-Ditellurolium Salts .. 181
11.6.3.1 Synthesis by Ring Transformation ... 182
11.8 Product Class 8: 1,3-Dithiolium Salts, Se and Te Analogues and Benzoannulated Analogues
G. Schukat and E. Fanghanel

11.8 Product Class 8: 1,3-Dithiolium Salts, Se and Te Analogues and Benzoannulated Analogues ... 191
11.8.1 Product Subclass 1: 1,3-(Benzo)Dithiolium Salts 191
11.8.1.1 Synthesis by Ring-Closure Reactions ... 193
11.8.1.1.1 By Formation of Two S—C Bonds ... 193
11.8.1.1.1.1 Fragments S—C—C—S and C ... 193
11.8.1.1.1.1.1 Method 1: From 1,2-Dithiols ... 193
11.8.1.1.1.1.1.1 Variation 1: Reaction with Carboxylic Acid Derivatives 193
11.8.1.1.1.1.1.1.1 Variation 2: Reaction with Aldehydes and Oxidation of the Intermediate 194
11.8.1.1.1.1.2 Fragments S—C—S and C—C ... 195
11.8.1.1.1.1.2.1 Method 1: From Thioacids or Dithioacids and \textit{a}-Substituted Ketones 195
11.8.1.1.1.1.2.2 By Formation of One S—C Bond ... 197
11.8.1.1.1.1.2.2.1 Fragment S—C—S—C—C ... 197
Method 1: From S-(2-Oxoalkyl) Thiocarboxylates 197
Method 2: From S-(2-Oxoalkyl) Dithiocarboxylates 197
Method 3: From S-(2-Carboxyalkyl) Dithiocarboxylates 199
Method 4: From S-(1-Cyanoalkyl) Dithiocarboxylates 201
Method 5: From N,N-Disubstituted Dithiocarbamates 201

Variation 1: From 2-Oxoalkyl N,N-Disubstituted Dithiocarbamates 201
Variation 2: From Alkenyl or Allyl N,N-Dialkyldithiocarbamates 203

Synthesis by Ring Transformation .. 204
Method 1: From 3-(Methylsulfonyl)-1,4,2-dithiazines 204
Method 2: Protonation of 1,3-Dithiol-2-ylidenes 204
Method 3: From 1,3-Dithioles .. 205
Variation 2: Elimination of Alkanolate or Alkanethiolate Ions or Amines 206
Method 4: Oxidation of 1,3-Dithiole-2-thiones with Hydroperoxides 207
Method 5: Oxidation of 2-(1,3-Dithiol-2-ylidene)-1,3-dithioles 208
Method 6: Halogenation of 1,3-Dithiole-2-thiones 209
Method 7: Alkylation of 1,3-Dithiole-2-thiones .. 210
Method 8: Reaction of 2-(Alkylsulfanyl)-1,3-thiaselenolium Salts with Amines 211
Method 9: Reaction of 2-(Alkylsulfanyl)-1,3-dithiolium Salts with Azides 212
Method 10: Reaction of 2-Chloro-1,3-dithiolium Salts with Arenesulfonates .. 214

Synthesis by Ring-Closure Reactions ... 216
By Formation of One Se—C Bond .. 216
Fragment Se—C—S—C—C ... 216
Method 1: From 2-Oxoalkyl N,N-Dimethylselenothiocarbamates 216
Method 1: From 2-(Ethylsulfanyl)-1,4,3-thiaselenazines 216
Method 2: Elimination of Alkanethiolate Ions from 1,3-Thiaselenoles 217
Method 3: Alkylation of 1,3-Thiaselenole-2-thiones 217
Method 4: Reaction of 2-(Alkylsulfanyl)-1,3-thiaselenolium Salts with Amines 218

Synthesis by Ring Transformation .. 219
Method 1: From 1,3-Diselenoles ... 219
Fragment Se—C—Se—C—C ... 219
Method 1: From 2-Oxoalkyl N,N-Dialkyldiselenocarbamates 219
Method 1: From 1,3-Diselenoles ... 220
Method 1: From 1,3-Diselenoles ... 220
Variation 1: Abstraction of a Hydride Ion ... 220
Variation 2: Elimination of Alkaneselenolate Ions 221
11.8.3.2.2 Method 2: Alkylation of 1,3-Diselenole-2-thiones or -2-selones 221

11.8.4 Product Subclass 4: 1,3-(Benzo)Ditellurolium Salts 222

11.8.4.1 Synthesis by Ring Transformation 222

11.8.4.1.1 Method 1: Elimination of Alkanolate Ions from 1,3-Ditelluroles 222

11.8.5 Product Subclass 5: 1,3-(Benzo)Thiatellurolium and 1,3-(Benzo)Selenatellurolium Salts 223

11.9 Product Class 9: Isoxazoles

B. J. Wakefield

11.9.1 Synthesis by Ring-Closure Reactions 231

11.9.1.1 By Formation of Two Heteroatom–Carbon Bonds 231

11.9.1.1.1 Method 1: By Reactions of Hydroxylamine with 1,3-Dialdehydes and Their Acetals 231

11.9.1.1.2 Method 2: By Reactions of Hydroxylamine with 3-Oxoaddehydes 232

11.9.1.1.3 Method 3: By Reactions of Hydroxylamine with 1,3-Diketones 233

11.9.1.1.4 Method 4: Synthesis of Hydroxyisoxazoles and Isoxazolones by Reactions of Hydroxylamine with 3-Oxo Esters and 1,3-Diesters 234

11.9.1.1.5 Method 5: Synthesis of Isoxazolamines by Reactions of Hydroxylamine with 3-Oxonitriles 236

11.9.1.1.6 Method 6: Synthesis of Isoxazolamines by Reactions of Hydroxylamine with 2-Cyano Esters 238

11.9.1.1.6.1 Variation 1: In the Absence of Excess Base 238

11.9.1.1.6.2 Variation 2: In the Presence of Excess Base 239

11.9.1.1.7 Method 7: By Reactions of Hydroxylamine with Miscellaneous Analogues of 1,3-Dicarbonyl Compounds 239

11.9.1.1.8 Method 8: By Reactions of Hydroxylamine with α,β-Acetylenic Carbonyl and Related Compounds 241

11.9.1.1.9 Method 9: Synthesis of Isoxazolamines by Reactions of Hydroxylamine with α,β-Acetylenic Nitriles 241

11.9.1.1.10 Method 10: By Reactions of Hydroxylamine with α,β-Unsaturated Carbonyl Compounds 242

11.9.1.1.10.1 Variation 1: Reactions of β-Amino α,β-Unsaturated Carbonyl Compounds with Hydroxylamine 243

11.9.1.1.10.2 Variation 2: Reactions of [2-(Alkylsulfonyl)alk-1-enyl] Ketones with Hydroxylamine 244

11.9.1.1.11 Method 11: By Reactions of Hydroxylamine with α,β-Unsaturated Nitriles 245

11.9.1.1.12 Method 12: By Reactions of Hydroxylamine with α,β-Dihalo Ketones, Esters, and Nitriles 245

11.9.1.1.13 Method 13: Use of the Nitrosonium Ion as the N—O Component 246

11.9.1.1.14 Method 14: Synthesis of Nitroisoxazoles from Propargyl Bromides and Sodium Nitrite 247

11.9.1.2 By Formation of One Heteroatom—Carbon and One C—C Bond 248
11.9.1.2.1 Fragments O—N—C and C—C .. 248

11.9.1.2.1.1 Method 1: From Nitrile Oxides and Alkynes 249

11.9.1.2.1.2 Method 2: By Cycloaddition of Nitrile Oxides to C==C Bonds, Accompanied by Elimination or Dehydrogenation 251

11.9.1.2.1.2.1 Variation 1: Reactions with Enamines 252

11.9.1.2.1.2.2 Variation 2: Reactions with Enols and Enolates 253

11.9.1.2.2 Fragments O—N—C—C and C ... 254

11.9.1.2.2.1 Method 1: From Dianions Derived from Oximes 254

11.9.1.2.2.1.1 Variation 1: Reactions of Oxime-Derived Dianions with Esters 254

11.9.1.2.2.1.2 Variation 2: Reactions of Oxime-Derived Dianions with Amides 255

11.9.1.2.2.2 Method 2: Synthesis of Isoxazol-5-amines from α-Haloaximes and Isocyanides ... 256

11.9.1.3 By Formation of One Heteroatom—Carbon Bond 256

11.9.1.3.1 Fragment O—N—C—C—C .. 256

11.9.1.3.1.1 Method 1: Cyclization of β-Hydroxyimino Carbonyl Compounds 256

11.9.1.3.1.1.1 Variation 1: Isoxazol-3-ols by Cyclization of Hydroxamic Acids Derived from Protected β-Oxo Esters .. 256

11.9.1.3.1.2 Method 2: Oxidative Cyclization of α,β-Unsaturated Oximes 257

11.9.1.3.1.3 Method 3: Reductive Cyclization of 2-Nitroalkenyl Ketones and 2-Nitroalkenylnitriles ... 258

11.9.2 Synthesis by Ring Transformation ... 259

11.9.2.1 Ring Expansion .. 259

11.9.2.1.1 Method 1: From 2-Acyl-2H-azirines ... 259

11.9.2.2 Ring Transformation .. 260

11.9.2.3 Ring Contraction .. 260

11.9.2.3.1 Method 1: (2-Hydroxyaryl)isoxazoles from Chromones 260

11.9.3 Aromatization .. 261

11.9.3.1 Method 1: Dehydrogenation of Dihydroisoxazoles 261

11.9.3.1.1 Variation 1: Dehydrogenation with N-Bromosuccinimide and Base 261

11.9.3.1.2 Variation 2: Dehydrogenation with γ-Manganese(IV) Oxide 262

11.9.3.2 Method 2: Elimination of HX from Dihydroisoxazoles 262

11.9.3.3 Method 3: Cycloelimination from Dihydroisoxazoles 263

11.9.3.4 Method 4: C==C Bond Migration ... 263

11.9.4 Synthesis by Substituent Modification ... 264

11.9.4.1 Addition Reactions ... 264

11.9.4.1.1 Protonation .. 264

11.9.4.1.2 N-Alkylation ... 265

11.9.4.1.2.1 Method 1: Direct N-Alkylation .. 265

11.9.4.1.3 Addition of Heteroatoms .. 266

11.9.4.2 Substitution of Existing Substituents .. 266

11.9.4.2.1 Of Hydrogen .. 266
Deuteration ... 266
Metalation .. 266
By Carbofunctional Groups .. 266
Method 1: Acylation of Isoxazol-5(4\(H\))-ones 267
Halogenation .. 267
By Sulfur Functionalities ... 268
Method 1: Chlorosulfonation and Sulfonation 268
Method 2: Thiocyanation ... 269
By Nitrogen Functionalities .. 269
Method 1: Nitration .. 269
Method 2: Diazocoupling .. 270
Of Metals .. 271
By Hydrogen and by Metals .. 271
By Halogens .. 271
Method 1: Reaction of Metal Derivatives of Isoxazoles with Halogens ... 271
By Carbofunctional Groups ... 271
Method 1: Reactions of Isoxazol-4-ylithium Compounds 271
Of Carbon Functionalities ... 272
Of Halogens .. 272
By Metals .. 272
By Oxygen Functionalities ... 272
Method 1: Reaction of Haloisoxazoles with Alkoxides 272
By Sulfur Functionalities ... 273
Method 1: Reaction of 5-Chloroisoxazoles with Alkylthiolates .. 273
By Nitrogen Functionalities ... 274
Method 1: Reaction of 5-Chloroisoxazoles with Amines and Lithium Amides .. 274
Method 2: Reaction of a 5-Chloroisoxazole with Sodium Azide ... 274
By Carbofunctional Groups ... 275
Method 1: By Palladium-Catalyzed Cross Coupling 275
Of Oxygen Functionalities ... 275
By Halogens .. 275
Method 1: Reactions of Isoxazol-5(4\(H\))-ones with Phosphoryl Halides ... 275
By Oxygen Functionalities ... 276
By Nitrogen Functionalities ... 276
By Carbon Functionalities ... 276
11.9.4.2.5.4.1 Method 1: Reaction of \(N\)-(Tetrahydropyran-2-yl)isoxazol-5(2\(H\))-ones with Organolithium Compounds .. 276
11.9.4.2.6 Of Nitrogen Functionalities ... 276
11.9.4.2.6.1 By Halogens .. 276
11.9.4.2.6.2 By Oxygen Functionalities ... 277
11.9.4.3 Modification of Substituents ... 277
11.9.4.3.1 Reduction of Substituents ... 277
11.9.4.3.1.1 Reduction of Carbonyl Compounds ... 277
11.9.4.3.1.2 Reduction of Nitroisoxazoles ... 278
11.9.4.3.2 Reactions Involving \(\alpha\)-Deprotonation of Side Chains 278
11.9.4.3.2.1 Method 1: Condensation of 5-Methylisoxazoles with Aldehydes 278
11.9.4.3.2.2 Method 2: Generation of (Isoxazolylmethyl)lithium Compounds 279
11.9.4.3.2.3 Method 3: Reactions Involving Deprotonation of Isoxazolium Salts .. 280
11.9.4.3.3 Preparation and Reactions of Halomethylisoxazoles 280
11.9.4.3.3.1 Method 1: \(\alpha\)-Halogeneration of Methylisoxazoles 281
11.9.4.4 Rearrangement of Substituents ... 281

11.10 Product Class 10: 1,2-Benzisoxazoles and Related Compounds

R. K. Smalley

11.10 Product Class 10: 1,2-Benzisoxazoles and Related Compounds 289
11.10.1 Synthesis by Ring-Closure Reactions .. 291
11.10.1.1 By Annulation to an Arene or Hetarene .. 291
11.10.1.1.1 By Formation of One O—C and One N—C Bond 291
11.10.1.1.2 By Formation of One O—C and One C—C Bond 292
11.10.1.1.3 By Formation of One O—N Bond .. 292
11.10.1.1.3.1 Method 1: By Thermal and Base-Catalyzed Cyclization of 2-Hydroxyaryl Ketoxime and Aldoxime O-Acylates 292
11.10.1.1.3.2 Method 2: By Cyclization of 2-Hydroxyaryl Aldoxime O-Sulfonates 295
11.10.1.1.3.3 Method 3: By Cyclization of 2-Hydroxyaryl Aldoxime O-Carbamates 296
11.10.1.1.3.4 Method 4: By Thermal Cyclization of N-Hydroxy-2-hydroxyarencarboximidamide Derivatives 297
11.10.1.1.3.5 Method 5: By Intramolecular Dehydration of 2-Hydroxyaryl Ketoximes and Aldoximes 298
11.10.1.1.3.6 Method 6: By Cyclization of N,2-Dihydroxybenzamides 299
11.10.1.1.3.7 Method 7: By Oxidative Cyclization of 2-Hydroxyaryl Ketoximes 300
11.10.1.1.4 By Formation of One O—C Bond .. 300
11.10.1.1.4.1 Method 1: By Cyclization of 2-Haloaryl Ketoximes 301
11.10.1.1.4.2 Method 2: By Cyclization of N-Hydroxy-2-fluoroarencarboximidamides 304
11.10.1.1.4.3 Method 3: By Cyclization of 2-Nitroaryl Ketoximes 305
11.10.1.4.4
Method 4: By Cyclization of 2-Methoxy-, 2-Diazo-, 2-Amino-, and 2-(4-Tosyloxy)aryl Ketoximes ... 306

11.10.1.4.5
By Formation of One N—a C Bond ... 307

11.10.1.5.1
Method 1: By Intramolecular Transoximation of 2-[(Isopropylideneamino)oxy]diaryl Ketones ... 308

11.10.1.5.2
Method 2: By Cyclization of 2-[(Isopropylideneamino)oxy]benzonitriles .. 308

11.10.1.2
By Annulation to the Isoxazole Ring .. 309

11.10.1.2.1
Annulation of an Arene Ring .. 309

11.10.1.2.2
Annulation of a Five-Membered Hetarene 310

11.10.1.2.2.1
Method 1: By Intramolecular Transoximation of 2-[(Isopropylideneamino)oxy]diaryl Ketones 310

11.10.1.2.2.2
Method 2: By Cyclization of 2-[(Isopropylideneamino)oxy]benzonitriles .. 311

11.10.1.2.3
Annulation of a Six-Membered Hetarene 311

11.10.1.2.3.1
Method 1: Isoxazolopyridines .. 311

11.10.1.2.3.2
Method 2: Isoxazolodiazines .. 313

11.10.2
Synthesis by Ring Transformation ... 315

11.10.2.1
Hetero-Ring Size Retained Overall ... 315

11.10.2.1.1
Method 1: By Decomposition of 1,3,2,4-Dioxathiazole 2-Oxides ... 315

11.10.2.1.2
Method 2: By Decomposition of 1,4,2-Dioxazol-5-one 316

11.10.2.2
With Ring Contraction of 4-Hydroxy-2H-benzopyran-2-ones 317

11.10.3
Aromatization .. 317

11.10.3.1
Method 1: Aromatization of Hydro-1,2-benzisoxazoles 317

11.10.4
Synthesis by Substituent Modification 319

11.10.4.1
Addition Reactions: Protonation and N-Alkylation 319

11.10.4.2
Substitution of Existing Substituents .. 320

11.10.4.2.1
Of Hydrogen ... 320

11.10.4.2.1.1
Method 1: Metalation .. 320

11.10.4.2.1.2
Method 2: Acylation and Alkylation .. 321

11.10.4.2.1.3
Method 3: Halogenation ... 321

11.10.4.2.1.4
Method 4: Sulfonation .. 323

11.10.4.2.1.5
Method 5: Nitration .. 324

11.10.4.2.2
Of Metals .. 326

11.10.4.2.3
Of Heteroatoms .. 326

11.10.4.3
Modification of Substituents ... 327

11.10.4.4
Rearrangement of Substituents ... 330

11.11
Product Class 11: 2,1-Benzisoxazoles and Related Compounds
R. K. Smalley

11.11
Product Class 11: 2,1-Benzisoxazoles and Related Compounds 337

11.11.1
Synthesis by Ring-Closure Reactions 339
11.11.1 By Annulation to an Arene or Hetarene ... 339
11.11.1.1 By Formation of One O—C and One C—C Bond 339
 11.11.1.1.1 Method 1: Base-Catalyzed Condensation of an Arylacetonitrile with a 1-Halo-4-nitroarene ... 339
 11.11.1.1.2 Method 2: Aminoisoxazolobenzazines by Reaction of Nitrobenzazines with Potassium Cyanide in Methanol 342
11.11.1.1.2 By Formation of One O—N Bond ... 343
 11.11.1.1.2.1 Method 1: Thermal Decomposition of 2-Azidoaryl Carbonyl Compounds .. 343
 11.11.1.1.2.2 Method 2: Deoxygenation of 2-Nitroacylbenzenes 346
 11.11.1.1.2.3 Method 3: Deoxygenation of 2-Nitrosoacylbenzenes 347
11.11.2 By Formation of One O—C Bond ... 347
 11.11.2.1 Method 1: Reduction of 2-Nitroaryl Carbonyl Compounds 348
 11.11.2.2 Method 2: Reduction of 2-Nitrobenzonitriles 351
 11.11.2.3 Method 3: Cyclization of 2-Nitrobenzyl Derivatives 353
 11.11.2.4 Method 4: Cyclization of 2-Nitrosoaryl Ketones 357
 11.11.2.5 Method 5: From 2-(Hydroxyamino)benzonitriles 358
 11.11.2.6 Method 6: Oxidation of 2-Aminoacylbenzenes 360
 11.11.2.7 Method 7: Condensation of 2-Nitroaryl Aldehydes with Electron-Rich Arenes .. 361
11.11.2 By Annulation to the Isoxazole Ring ... 363
 11.11.2.1 Method 1: Annulation of a Six-Membered Ring 363
11.11.2 Synthesis by Ring Transformation ... 364
 11.11.2.1 Hetero-Ring Size Retained Overall .. 364
 11.11.2.1.1 Method 1: Isomerization of Indole and Isoindole Derivatives 365
 11.11.2.2 By Ring Contraction ... 366
11.11.3 Aromatization ... 367
11.11.4 Synthesis by Substituent Modification 367
 11.11.4.1 Addition Reactions ... 367
 11.11.4.1.1 Method 1: Protonation and Complex Formation 367
 11.11.4.1.2 Method 2: N-Alkylation ... 368
 11.11.4.2 Substitution of Existing Substituents 370
 11.11.4.2.1 Method 1: Of Hydrogen ... 370
 11.11.4.2.1.1 Variation 1: By Carbofunctional Groups 370
 11.11.4.2.1.2 Variation 2: Halogenation .. 372
 11.11.4.2.1.3 Variation 3: Methoxylation .. 372
 11.11.4.2.1.4 Variation 4: Nitration .. 373
 11.11.4.3 Modification of Substituents .. 374
11.12 Product Class 12: Oxazoles
G. V. Boyd

11.12.1 Synthesis by Ring-Closure Reactions

11.12.1.1 By Formation of One O—C and One N—C Bond

11.12.1.1.1 Method 1: From Carbonylnitrenes and Alkynes

11.12.1.2 Fragments O—C and C—N

11.12.1.2.1 Method 1: From α-Halo Ketones and Amides

11.12.1.2.2 Method 2: From α-Hydroxy Aldehydes and α-Hydroxy Ketones and Cyanamides

11.12.1.2.3 Method 3: From α-Hydroxy Ketones and Carbamic Acid Derivatives

11.12.1.2.4 Method 4: From α-Hydroxy Carbonyl Compounds and Thiocyanic Acid

11.12.1.2.5 Method 5: From Desyl Chloride and Alkyl or Aryl Thiocyanates

11.12.1.2.6 Method 6: By Oxidative Addition of α-Methylene Ketones to Nitriles

11.12.1.2.7 Method 7: From C,N-Diacylimines and Nitriles

11.12.1.2.8 Method 8: From Acylnitrenes and Nitriles

11.12.1.2.9 Method 9: From Nitriles and Alkynes

11.12.1.3 Fragments N—C and C—O

11.12.1.3.1 Method 1: From Vinyl Azides and Carboxylic Acids or Acyl Chlorides

11.12.1.3.2 Method 2: From Aminomalonalonitrile and Carboxylic Acids or Their Derivatives

11.12.1.3.3 Method 3: From S,S-Disubstituted Dithiooxaldiamides and Aldehydes

11.12.1.4 Fragments O—C and N

11.12.1.4.1 Method 1: By the Fischer Synthesis: Aldehyde Cyanhydrins and Aldehydes

11.12.1.4.2 Method 2: From Aroyl Cyanides and Aldehydes

11.12.1.4.3 Method 3: From Aroylthioamides, Aldehydes, and Iodomethane

11.12.1.4.4 Method 4: Oxazole 3-Oxides from Monooximes of α-Diketones and Aldehydes

11.12.1.4.5 Method 5: From α-(Hydroxyamino)phenylacetic Acid and Aldehydes

11.12.1.4.6 Method 6: From α-Azidoacetophenones, Dimethylformamide, and Phosphoryl Chloride

11.12.1.4.7 Method 7: From α-Azido Ketones

11.12.1.4.8 Method 8: From Phenacylammonium Salts and Carbon Disulfide

11.12.1.2 By Formation of Two N—C Bonds

11.12.1.2.1 Method 1: From Isoxyanides and Carbonyl Compounds

11.12.1.2.2 Method 2: From N-(Tosylmethyl)iminines and Aldehydes

11.12.1.2.3 Method 3: From N-(Tosylmethyl)-N′-tritylcobadiimide and Aldehydes
<table>
<thead>
<tr>
<th>Method Number</th>
<th>Method Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.12.1.3.1.4</td>
<td>Method 4: From Dimethyl N-(Ethoxycarbonylmethyl)dithioimidocarbonate and S-Phenyl Thioesters</td>
<td>417</td>
</tr>
<tr>
<td>11.12.1.3.2</td>
<td>Fragments O—C—N—C and C</td>
<td>418</td>
</tr>
<tr>
<td>11.12.1.3.2.1</td>
<td>Method 1: From Aroyl Isocyanates and Diazomethane</td>
<td>418</td>
</tr>
<tr>
<td>11.12.1.3.2.2</td>
<td>Method 2: From tert-Butyl Isocyanide and an N-Acylimine</td>
<td>419</td>
</tr>
<tr>
<td>11.12.1.3.2.3</td>
<td>Method 3: From Tris(ethoxycarbonyl)methanimine and Dichlorocarbene</td>
<td>419</td>
</tr>
<tr>
<td>11.12.1.3.2.4</td>
<td>Method 4: From 4-(Acylaminomethyl)pyridinium Salts and Acetic Anhydride</td>
<td>419</td>
</tr>
<tr>
<td>11.12.1.4</td>
<td>By Formation of One O—C Bond</td>
<td>420</td>
</tr>
<tr>
<td>11.12.1.4.1</td>
<td>Fragment O—C—N—C—C</td>
<td>420</td>
</tr>
<tr>
<td>11.12.1.4.1.1</td>
<td>Method 1: Cyclization of α-Acylamino Ketones</td>
<td>420</td>
</tr>
<tr>
<td>11.12.1.4.1.2</td>
<td>Method 2: Cyclization of α-Acylamino Nitriles</td>
<td>423</td>
</tr>
<tr>
<td>11.12.1.4.1.3</td>
<td>Method 3: Cyclization of α-Acylamino Carboxylic Acids and Their Derivatives</td>
<td>425</td>
</tr>
<tr>
<td>11.12.1.4.1.4</td>
<td>Method 4: Cyclization of (Acylcarbamoyl)carbenes</td>
<td>433</td>
</tr>
<tr>
<td>11.12.1.4.1.5</td>
<td>Method 5: Cyclization of N-Propargylamides and E-β-(Acylaminomethyl)-β-iodovinyl Phenyl Sulfones</td>
<td>433</td>
</tr>
<tr>
<td>11.12.1.4.1.6</td>
<td>Method 6: Cyclization of N-Acyl-β-haloenamines</td>
<td>435</td>
</tr>
<tr>
<td>11.12.1.4.1.7</td>
<td>Method 7: Cyclization of N-Acylhexafluoropropan-2-imines</td>
<td>436</td>
</tr>
<tr>
<td>11.12.1.4.1.8</td>
<td>Method 8: Cyclization of N,N'-Diaryl-1,2-bis(1H-benzotriazol-1-yl)ethane-1,2-diamines</td>
<td>436</td>
</tr>
<tr>
<td>11.12.1.4.2</td>
<td>Fragment O—C—C—N—C</td>
<td>437</td>
</tr>
<tr>
<td>11.12.1.4.2.1</td>
<td>Method 1: Cyclization of N-Phenacylnitrilium Salts</td>
<td>437</td>
</tr>
<tr>
<td>11.12.1.4.2.2</td>
<td>Method 2: Cyclization of Phenacylnitrones</td>
<td>438</td>
</tr>
<tr>
<td>11.12.1.4.2.3</td>
<td>Method 3: From α-Azido Ketones or Esters, Acyl Halides, and Triphenylphosphine</td>
<td>439</td>
</tr>
<tr>
<td>11.12.1.4.2.4</td>
<td>Method 4: Cyclization of Anilides of 2-Isocyanoaalkanoic Acids</td>
<td>439</td>
</tr>
<tr>
<td>11.12.1.4.2.5</td>
<td>Method 5: From Derivatives of Isocyanoacetic Acid and Arylsulfanyl Chlorides</td>
<td>440</td>
</tr>
<tr>
<td>11.12.1.5</td>
<td>By Formation of One N—C Bond</td>
<td>441</td>
</tr>
<tr>
<td>11.12.1.5.1</td>
<td>Fragment N—C—C—O—C</td>
<td>441</td>
</tr>
<tr>
<td>11.12.1.5.1.1</td>
<td>Method 1: Intramolecular Aza-Wittig Reaction of β-(Acyloxy)vinyl Azides</td>
<td>441</td>
</tr>
<tr>
<td>11.12.1.5.1.2</td>
<td>Method 2: Cyclization of β-(Acyloxy)-N,N-bis(trimethylsilyl)enamines</td>
<td>442</td>
</tr>
<tr>
<td>11.12.2</td>
<td>Synthesis by Ring Transformation</td>
<td>443</td>
</tr>
<tr>
<td>11.12.2.1</td>
<td>Method 1: From 2H-Azirines or Aziridines</td>
<td>443</td>
</tr>
<tr>
<td>11.12.2.2</td>
<td>Method 2: From an Azetidine</td>
<td>445</td>
</tr>
<tr>
<td>11.12.2.3</td>
<td>Method 3: From Vinylene Carbonate and Amides</td>
<td>446</td>
</tr>
<tr>
<td>11.12.2.4</td>
<td>Method 4: From 4-Benzamido-3H-1,2-dithiole-3-thione</td>
<td>446</td>
</tr>
<tr>
<td>11.12.2.5</td>
<td>Method 5: From Isoxazoles</td>
<td>447</td>
</tr>
<tr>
<td>11.12.2.6</td>
<td>Method 6: From a 1,3,2-Dioxaphosphole and Acyl Isocyanates</td>
<td>449</td>
</tr>
<tr>
<td>11.12.2.7</td>
<td>Method 7: From 1-Acyl-1H-1,2,3-triazoles</td>
<td>449</td>
</tr>
<tr>
<td>11.12.2.8</td>
<td>Method 8: From a Pyridin-3(4H)-one</td>
<td>451</td>
</tr>
<tr>
<td>11.12.3</td>
<td>Aromatization</td>
<td>451</td>
</tr>
</tbody>
</table>
11.12.3.1 Method 1: By Dehydrogenation of 2-Oxazolines 451
11.12.3.2 Method 2: By Decarboxylation ... 452
11.12.3.3 Method 3: By Retro-Diels–Alder Reactions 452

11.12.4 Synthesis by Substituent Modification ... 453

11.12.4.1 Substitution Reactions .. 453
11.12.4.1.1 Method 1: Electrophilic Substitution 453
11.12.4.1.2 Method 2: Reactions of Metalated Oxazoles with Electrophiles 456
11.12.4.1.3 Method 3: Nucleophilic Substitution 467

11.12.4.2 Elimination Reactions .. 469
11.12.4.2.1 Method 1: Reduction of Oxazole 3-Oxides 469

11.12.4.3 Addition Reactions ... 469
11.12.4.3.1 Method 1: O-Alkylation, O-Acylation and S-Alkylation 469
11.12.4.3.2 Method 2: N-Alkylation and N-Acylation 472

11.12.4.4 By Rearrangement ... 473
11.12.4.4.1 Method 1: The Cornforth Rearrangement 473

11.12.4.5 Modification of Substituents .. 473
11.12.4.5.1 Method 1: Oxidation of Oxazolylmethanols 473

11.13 Product Class 13: Benzoxazoles and Other Annulated Oxazoles

G. V. Boyd

11.13.1 Synthesis by Ring-Closure Reactions ... 481
11.13.1.1 By Formation of One O—C and One N—C Bond 481
11.13.1.1.1 Method 1: From 2-Aminophenols and Carboxylic Acids or Acid Anhydrides 481
11.13.1.1.2 Method 2: From 2-Nitrophenols and Tertiary Amines 482
11.13.1.1.3 Method 3: From 3-Aminotropolones and Ortho Esters 482
11.13.1.1.4 Method 4: From Phenanthra-9,10-quinone Imines and Aldehydes 483
11.13.1.2 By Formation of One O—C Bond .. 484
11.13.1.2.1 Fragment O—C—N—C ... 484
11.13.1.2.1.1 Method 1: Cyclization of 1-(Carboxymethyl)pyridin-2(1H)-one 484
11.13.1.2.2 Fragment O—C—C—N—C .. 485
11.13.1.2.2.1 Method 1: From N-Acyl- and O,N-Diacyl-2-aminophenols and Related Compounds ... 485
11.13.1.2.2.2 Method 2: Oxidative Cyclization of N-(2-Hydroxyphenyl)thiobenzamides 487
11.13.1.2.2.3 Method 3: From 2-Aminophenols or 2-Fluoroanilines, Aryl Iodides, and Carbon Monoxide 487
11.13.1.2.2.4 Method 4: Beckmann Rearrangement of 2-Hydroxy-Substituted Acetophenone and Propiophenone Oximes 489
11.13.1.2.2.5 Method 5: Cyclization of N-(2-Hydroxyphenyl)amidines 490
11.13 By Formation of One N―C Bond

11.13.1 Fragment N―C―C―O

11.13.1.1 Method 1: Reductive Cyclization of 2-Nitrophenyl and 2-Azidophenyl Benzoate

11.13 Synthesis by Ring Transformation

11.13.1 Method 1: Benzoazole from Benzisoxazole

11.13.2 Synthesis by Substituent Modification

11.14 Product Class 14: 1,3-Oxaphospholes and Benzoannulated Analogues

D. Gudat

11.14.1 Synthesis by Ring-Closure Reactions

11.14.1.1 By Formation of Two P―C Bonds

11.14.1.1.1 Method 1: From Ketene O,N-Acetals and Phosphorus Trihalides

11.14.1.2 By Formation of One P―C and One O―C Bond

11.14.1.2.1 Fragments P―C―C―O and C

11.14.1.2.1.1 Method 1: From 2-Phosphinophenols

11.14.1.2.1.1.1 Variation 1: Condensation with Acyl Chlorides

11.14.1.2.1.1.2 Variation 2: Condensation with N-Arylimidoyl Chlorides

11.14.1.2.2 Fragments P―C, C and O―C

11.14.1.2.2.1 Method 1: From Carbene Complexes and Phosphaalkynes

11.14.1.2.3 Fragments O―C―C and P―C

11.14.1.2.3.1 Method 1: From 2-Diazo-1,3-diketones and Phosphaalkynes

11.14.1.2 Synthesis by Ring Transformation

11.14.2 Method 1: From Phosphaalkynes and Isomünchnones

11.15 Product Class 15: Isothiazoles

D. W. Brown and M. Sainsbury

11.15 Synthesis by Ring-Closure Reactions

11.15.1 By Formation of One S―C and One N―C Bond

11.15.1.1 Method 1: By Cycloaddition of Thiazyl Chloride to a Furan or a Pyrrole

11.15.1.1.2 Method 2: By Addition of Thiazyl Chloride to Alkenes

11.15.1.1.3 Method 3: By 1,3-Dipolar Cycloaddition of Nitrile Sulfides to Alkynes and Alkenes

11.15.1.1.3.1 Variation 1: From 1,3,4-Oxathiazol-2-ones

11.15.1.1.3.2 Variation 2: From 1,3,4-Oxathiazoles
Variation 3: From Difluoro-\(\alpha\)-sulfanes .. 518
Variation 4: From Thiobenzamides ... 521
By Formation of One S—N Bond ... 521
Method 1: By Oxidative Ring Closure of 3-Aminopropenethioamides
or 3-Aminoprop-2-enethiones ... 521
Variation 1: From \(\alpha\)-Cyanoketones and Ammonia 522
Variation 2: From 2,2-Bis(sulfanyl)ethene-1,1-dicarbonitriles or
2-Substituted 2-Aminoethene-1,1-dicarbonitriles and
Hydrogen Sulfide .. 524
Variation 3: From Acetamides and Phenyl Isothiocyanate 525
Variation 4: From Thiobenzamides ... 521
By Formation of One S/C\(_4\)N Bond 521
Method 1: By Oxidative Ring Closure of 3-Aminopropenethioamides
or 3-Aminoprop-2-enethiones ... 521
Variation 1: From \(\alpha\)-Cyanoketones and Ammonia 522
Variation 2: From 2,2-Bis(sulfanyl)ethene-1,1-dicarbonitriles or
2-Substituted 2-Aminoethene-1,1-dicarbonitriles and
Hydrogen Sulfide .. 524
Variation 3: From Acetamides and Phenyl Isothiocyanate 525
Variation 4: From Thiobenzamides ... 521
Method 2: From 1,2-Dithioles and Related Compounds 528
Variation 1: From 3H-1,2-Dithioles .. 528
Variation 2: From Ethene-1,1-dithiolates 529
Method 3: From Bis(2-cyanoethyl) Disulfides and Related Compounds .. 532
Method 4: From 3-Oxo- or 3-Hydrazinoprop-1-enyl Thiocyanates 534
Method 5: From Propynones or 3-Chloroprop-2-enals 536
Method 6: From 3-Thiocyanatoprop-2-enals 539
Method 7: From Propynones and Hydroxylamine O-Sulfonic Acid 539
Method 8: From 1-Aminopropan-2-ones, 1-Aminopropene-2-nitriles, or
2-Arylethene-1,1-dicarbonitriles 540
Method 9: From But-2-ynedinitrile or But-2-ynediamide 542
By Formation of One N—C Bond ... 542
Method 1: From Propenes or Propanols 542
Method 2: From Sulfiminic Acid or Sulfimides 543
Method 3: From Thiolates .. 543
Method 4: From Prop-2-enethiones ... 545
By Formation of One C—C Bond ... 546
Synthesis by Ring Transformation ... 547
Method 1: From 1,2-Dithiolium Salts 547
Method 2: From 1,4-Dithiin-2,3,5,6-tetracarbonitrile 549
Method 3: From 1,4,2-Dithiazines ... 549
Synthesis by Substituent Modification 550
Substitution of Existing Substituents 550
Of Carbon Functionalities .. 550
Method 1: Decarboxylation .. 550
Method 2: N-Dealkylation of 2-Alkylisothiazolium Salts 551
Of Heteroatoms ... 552
Method 1: Electrophilic Substitution 552
Method 2: Nucleophilic Substitution 554
Method 3: Isothiazole-5-carboxylic Acids, 5-carbaldehydes, and
5-Alkylisothiazoles from Isothiazol-5-yllithiums 557
Method 4: From Isothiazolamines via Diazonium Salts 559
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.15.3.1.2.5</td>
<td>Method 5: Aryl and Heteroarylisothiazoles from Isothiazolamines</td>
</tr>
<tr>
<td>11.15.3.2</td>
<td>Addition Reactions</td>
</tr>
<tr>
<td>11.15.3.2.1</td>
<td>Addition of Organic Groups</td>
</tr>
<tr>
<td>11.15.3.2.1.1</td>
<td>Method 1: Intramolecular S-Alkylation</td>
</tr>
<tr>
<td>11.15.3.2.1.2</td>
<td>Method 2: N-Alkylation and the Synthesis of 2-Alkylisothiazolium Salts</td>
</tr>
<tr>
<td>11.15.3.2.2</td>
<td>Addition of Heteroatoms</td>
</tr>
<tr>
<td>11.15.3.2.2.1</td>
<td>Method 1: Oxidation</td>
</tr>
<tr>
<td>11.15.3.3</td>
<td>Modification of Substituents</td>
</tr>
<tr>
<td>11.15.3.3.1</td>
<td>Method 1: From Acylthiazoles</td>
</tr>
<tr>
<td>11.15.3.3.2</td>
<td>Method 2: Modification of Side Chains</td>
</tr>
<tr>
<td>11.16</td>
<td>Product Class 16: Benzisothiazoles</td>
</tr>
<tr>
<td>11.16.1</td>
<td>Product Subclass 1: 1,2-Benzisothiazoles</td>
</tr>
<tr>
<td>11.16.1.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
</tr>
<tr>
<td>11.16.1.1.1</td>
<td>By Formation of Two C—C Bonds</td>
</tr>
<tr>
<td>11.16.1.1.2</td>
<td>By Formation of One S—N or One N—C Bond</td>
</tr>
<tr>
<td>11.16.1.1.2.1</td>
<td>Method 1: From Thiols, Disulfides, and Related Compounds</td>
</tr>
<tr>
<td>11.16.1.1.2.2</td>
<td>Method 2: From Oximes</td>
</tr>
<tr>
<td>11.16.1.1.2.3</td>
<td>Method 3: From (Aminosulfanyl)arenes</td>
</tr>
<tr>
<td>11.16.1.1.2.4</td>
<td>Method 4: From Disulfides</td>
</tr>
<tr>
<td>11.16.1.1.2.5</td>
<td>Method 5: From 2-Acylbenzenesulfonamides or 2-(Sulfinyl)benzamides</td>
</tr>
<tr>
<td>11.16.1.1.3</td>
<td>By Formation of One S—C Bond</td>
</tr>
<tr>
<td>11.16.1.2</td>
<td>Synthesis by Ring Transformation</td>
</tr>
<tr>
<td>11.16.1.3</td>
<td>Synthesis by Substituent Modification</td>
</tr>
<tr>
<td>11.16.1.3.1</td>
<td>Substitution of Existing Substituents</td>
</tr>
<tr>
<td>11.16.1.3.1.1</td>
<td>Electrophilic Substitution</td>
</tr>
<tr>
<td>11.16.1.3.1.2</td>
<td>Nucleophilic Substitution</td>
</tr>
<tr>
<td>11.16.1.3.2</td>
<td>Addition Reactions</td>
</tr>
<tr>
<td>11.16.1.3.2.1</td>
<td>Addition of Organic Groups</td>
</tr>
<tr>
<td>11.16.1.3.2.1.1</td>
<td>Method 1: Alkylation of Saccharins</td>
</tr>
<tr>
<td>11.16.1.3.2.2</td>
<td>Addition of Heteroatoms</td>
</tr>
<tr>
<td>11.16.1.3.2.2.1</td>
<td>Method 1: Oxidation</td>
</tr>
<tr>
<td>11.16.2</td>
<td>Product Subclass 2: 2,1-Benzisothiazoles</td>
</tr>
<tr>
<td>11.16.2.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
</tr>
<tr>
<td>11.16.2.1.1</td>
<td>By Formation of One S—N Bond</td>
</tr>
</tbody>
</table>
11.16.2.1.1 Method 1: From 2-Nitrophenylmethanethiols or 2-Nitrobenzenecarbothioamides

11.16.2.1.2 Method 2: From 2-Aminophenylmethanethiols or 2-Aminobenzenecarbothioamides

11.16.2.1.3 Method 3: From Isatoic Anhydride

11.16.2.1.4 Method 4: From 2-Methylanilines

11.16.2.1.5 Method 5: From Bis(2-aminophenyl)methane

11.16.2.2 Synthesis by Ring Transformation

11.16.2.2.1 From 2,1-Benzisoxazoles

11.16.2.3 Synthesis by Substituent Modification

11.16.2.3.1 Substitution of Existing Substituents

11.16.2.3.1.1 Of Hydrogen

11.16.2.3.1.2 Of Heteroatoms

11.16.2.3.1.2.1 Electrophilic Substitution

11.16.2.3.1.2.2 Nucleophilic Substitution

11.16.2.3.1.2.2.1 From 3-Chloro-2,1-benzisothiazoles

11.16.2.3.1.2.2.2 Method 2: From 2,1-Benzisothiazole 3-Diazonium Salts

11.16.2.3.2 Addition Reactions

11.16.2.3.2.1 Method 1: N-Alkylation

11.17 Product Class 17: Thiazoles
D. Kikelj and U. Urleb

11.17.1 Synthesis by Ring-Closure Reactions

11.17.1.1 By Formation of Three Heteroatom—Carbon Bonds and One C—C Bond

11.17.1.1.1 Fragments C—N, C, C, and S

11.17.1.1.2 From Alkali Cyanides and Hydrogen Sulfide

11.17.1.2 By Formation of Three Heteroatom—Carbon Bonds

11.17.1.2.1 By Formation of Two S—C Bonds and One N—C Bond

11.17.1.2.1.1 Fragments N—C, C—C, and S

11.17.1.2.1.1.1 Method 1: From Enamines, Cyanamide, and Sulfur

11.17.1.2.2 By Formation of One S—C Bond and Two N—C Bonds

11.17.1.2.2.1 Fragments S—C, C—C, and N

11.17.1.2.2.1.1 Method 1: From α-Bromoketimines and Ammonium Thiocyanate

11.17.1.2.2.2 Fragments S—C, N, and C

11.17.1.2.2.2.1 Method 1: From 5-Hydroxy-3-sulfanylpentan-2-one, Acetaldehyde, and Hydrazine

11.17.1.3 By Formation of Two Heteroatom—Carbon Bonds and One C—C Bond
11.17.1.3.1 Fragments S—C, N—C, and C .. 635
11.17.1.3.1.1 Method 1: From Chloridimidothiocarbonates, Dimethylthioformamide, and Isocyanides 635
11.17.1.4 By Formation of Two Heteroatom—Carbon Bonds ... 636
11.17.1.4.1 Fragments C—C—N—C and S .. 636
11.17.1.4.1.1 Method 1: From N-Vinylimines ... 636
11.17.1.4.1.2 Method 2: From N-(Polychloroalkyl)imidoyl Chlorides 637
11.17.1.4.1.3 Method 3: From N-Functionalized α-Aminonitriles ... 637
11.17.1.4.1.4 Method 4: From α-Acylamino Carbonyl Compounds .. 638
11.17.1.4.1.5 Method 5: From 2-Isocyanoacrylates .. 639
11.17.1.4.1.6 Method 6: From Sulfanyl-Substituted Alkenones ... 640
11.17.1.4.1.7 Method 7: From N-Alkylimines .. 641
11.17.1.4.2 Fragments S—C—N and C—C .. 642
11.17.1.4.2.1 Method 1: From Hypervalent Alkynyliodonium Salts and Aminothiocarbonyl Compounds ... 642
11.17.1.4.2.2 Method 2: From α-Functionalized Carboxylic Acid Derivatives and Aminothiocarbonyl Compounds 643
11.17.1.4.2.2.1 Variation 1: From α-Functionalized Carboxylic Acid Derivatives and Aminothiocarbonyl Compounds ... 643
11.17.1.4.2.2.2 Variation 2: From α-Functionalized Carbonitriles and Aminothiocarbonyl Compounds ... 645
11.17.1.4.2.3 Method 3: From α,β-Unsaturated Carboxylic Acid Derivatives and Aminothiocarbonyl Compounds ... 646
11.17.1.4.2.4 Method 4: From α-Functionalized Ketones or Ketone Derivatives and Aminothiocarbonyl Compounds ... 647
11.17.1.4.2.4.1 Variation 1: From α-Diazo Ketones and Aminothiocarbonyl Compounds ... 647
11.17.1.4.2.4.2 Variation 2: From α-Halo Ketones and Aminothiocarbonyl Compounds ... 647
11.17.1.4.2.4.3 Variation 3: From α-Tosyloxy-Substituted Ketones and Aminothiocarbonyl Compounds ... 654
11.17.1.4.2.4.4 Variation 4: From Acyloxiranes and Aminothiocarbonyl Compounds ... 656
11.17.1.4.2.4.5 Variation 5: From Ketones Halogenated In Situ and Aminothiocarbonyl Compounds ... 656
11.17.1.4.2.4.6 Variation 6: From α-Halomethylketimines and Aminothiocarbonyl Compounds ... 657
11.17.1.4.2.4.7 Variation 7: From 2-2-Bromo-1-phenylethylene)malononitrile and Aminothiocarbonyl Compounds ... 658
11.17.1.4.2.5 Method 5: From α,β-Unsaturated Ketones and Aminothiocarbonyl Compounds ... 658
11.17.1.4.2.6 Method 6: From α-Halo-Substituted Aldehydes and Aminothiocarbonyl Compounds ... 658
11.17.1.4.2.6.1 Variation 1: From Thioureas .. 658
11.17.1.4.2.6.2 Variation 2: From Thioamides .. 659
11.17.1.4.2.7 Method 7: From Enamines and Aminothiocarbonyl Compounds ... 660
11.17.1.4.2.8 Method 8: From 1-Aryl-Substituted 2,2,2-Trichloroethanols and Aminothiocarbonyl Compounds ... 661
11.17.1.4.2.9 Method 9: From 3-Haloalk-1-enes or 3-Haloalk-1-ynes and Aminothiocarbonyl Compounds ... 661
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.17.1.4.2.10</td>
<td>Method 10:</td>
<td>From Thiocyanates and α-Halo Carbonyl Compounds</td>
<td>662</td>
</tr>
<tr>
<td>11.17.1.4.3</td>
<td>Method 1:</td>
<td>From 2-Aminoalkanethioic Acids and “One-Carbon” Reagents</td>
<td>662</td>
</tr>
<tr>
<td>11.17.1.4.3.2</td>
<td>Method 2:</td>
<td>From Ethanedithioamides and Aldehydes</td>
<td>663</td>
</tr>
<tr>
<td>11.17.1.4.4</td>
<td>Method 4:</td>
<td>From Alk-2-ynylamines and Isothiocyanates or Carbon Disulfide</td>
<td>667</td>
</tr>
<tr>
<td>11.17.1.4.4.1</td>
<td>Method 6:</td>
<td>From 2-Sulfanylalkanethioic Acids or Derivatives and Nitriles</td>
<td>664</td>
</tr>
<tr>
<td>11.17.1.4.4.2</td>
<td>Method 7:</td>
<td>From Cyanodithioimidocarbonate and Functionalized Methyl Halides</td>
<td>669</td>
</tr>
<tr>
<td>11.17.1.4.5</td>
<td>Method 8:</td>
<td>From Alkali Salts of Alkali Salts and “Acidic” Methyl Halides</td>
<td>678</td>
</tr>
<tr>
<td>11.17.1.4.5.1</td>
<td>Method 9:</td>
<td>From [Acidic] Methyl Halides</td>
<td>680</td>
</tr>
<tr>
<td>11.17.1.4.5.2</td>
<td>Method 10:</td>
<td>From Alkali Salts of N-Cyanothioureas or N-Cyanocarbothioamides and “Acidic” Methyl Halides</td>
<td>680</td>
</tr>
<tr>
<td>11.17.1.4.5.3</td>
<td>Method 5:</td>
<td>From N-(Diaminomethylene)thioamides and α-Halo Ketones</td>
<td>681</td>
</tr>
<tr>
<td>11.17.1.4.5.4</td>
<td>Method 6:</td>
<td>From N-Imidoylthioamides and N-Thiocarbamoylimidates and “Acidic” Methyl Halides</td>
<td>682</td>
</tr>
<tr>
<td>11.17.1.4.5.5</td>
<td>Method 7:</td>
<td>From N-Acyldithiocarbamates or N-Acylcarbamates and “Acidic” Methyl Halides</td>
<td>684</td>
</tr>
<tr>
<td>11.17.1.4.5.6</td>
<td>Method 8:</td>
<td>From N-Aclylthioureas and “Acidic” Methyl Halides</td>
<td>684</td>
</tr>
<tr>
<td>11.17.1.5.1.9</td>
<td>Method 9: From N-Imidoylcarbothioamides or N-Aroylcarbothioamides and “Acidic” Methyl Halides</td>
<td>685</td>
<td></td>
</tr>
<tr>
<td>11.17.1.5.1.10</td>
<td>Method 10: Additional Methods</td>
<td>687</td>
<td></td>
</tr>
<tr>
<td>11.17.1.5.2</td>
<td>Fragments C—N—C and S—C</td>
<td>687</td>
<td></td>
</tr>
<tr>
<td>11.17.1.5.2.1</td>
<td>Method 1: From N-Thiocarbamoylimidates and Methyl Sulfanylacetate</td>
<td>687</td>
<td></td>
</tr>
<tr>
<td>11.17.1.5.2.2</td>
<td>Method 2: From N-Cyanoimidothioates, S-Methyl-N-cyanoisourea, or Dimethyl Cyanocarbonodithioimidoate and Sulfanylacetic Acid Derivatives</td>
<td>688</td>
<td></td>
</tr>
<tr>
<td>11.17.1.5.2.3</td>
<td>Method 3: From N-(Chloromethylene)imidamidium Salts and Sulfanylacetates or Sulfanylacetone</td>
<td>688</td>
<td></td>
</tr>
<tr>
<td>11.17.1.5.2.4</td>
<td>Method 4: From Alkyl Isothiocyanates and S—C Synthons</td>
<td>689</td>
<td></td>
</tr>
<tr>
<td>11.17.1.5.2.5</td>
<td>Method 5: From (Ethoxycarbonylmethyl)imidodithiocarbonate or Ethyl [1-(Methylsulfanyl)alkylidene]aminoacetates</td>
<td>690</td>
<td></td>
</tr>
<tr>
<td>11.17.1.5.2.6</td>
<td>Method 6: From Alkyl Isocyanides and S—C Synthons</td>
<td>692</td>
<td></td>
</tr>
<tr>
<td>11.17.1.5.2.7</td>
<td>Method 7: From Nitrile Ylides and S—C Synthons</td>
<td>693</td>
<td></td>
</tr>
<tr>
<td>11.17.1.5.2.8</td>
<td>Method 8: Additional Methods</td>
<td>694</td>
<td></td>
</tr>
<tr>
<td>11.17.1.5.3</td>
<td>Fragments C—S—C—N and C</td>
<td>694</td>
<td></td>
</tr>
<tr>
<td>11.17.1.5.3.1</td>
<td>Method 1: From Isothioureas and Carboxylic Acid Derivatives</td>
<td>694</td>
<td></td>
</tr>
<tr>
<td>11.17.1.5.4</td>
<td>Fragments C—S—C and N—C</td>
<td>695</td>
<td></td>
</tr>
<tr>
<td>11.17.1.5.4.1</td>
<td>Method 1: From Phenacyl Thiocyanates and Nitriles</td>
<td>695</td>
<td></td>
</tr>
<tr>
<td>11.17.1.5.6</td>
<td>By Formation of One Heteroatom—Carbon Bond</td>
<td>696</td>
<td></td>
</tr>
<tr>
<td>11.17.1.6.1</td>
<td>By Formation of One S—C Bond</td>
<td>696</td>
<td></td>
</tr>
<tr>
<td>11.17.1.6.1.1</td>
<td>Fragment C—C—N—C—S</td>
<td>696</td>
<td></td>
</tr>
<tr>
<td>11.17.1.6.1.1.1</td>
<td>Method 1: From N-Thiocarbonyl α-Amino Acids and Derivatives</td>
<td>697</td>
<td></td>
</tr>
<tr>
<td>11.17.1.6.1.1.2</td>
<td>Method 2: From α-(Thioaclylamino)carbothioamides</td>
<td>698</td>
<td></td>
</tr>
<tr>
<td>11.17.1.6.1.1.3</td>
<td>Method 3: From α-Thioaclylamino Ketones, α-Thioureido Ketones and α-Thioaclylamino Acetals</td>
<td>699</td>
<td></td>
</tr>
<tr>
<td>11.17.1.6.1.1.4</td>
<td>Method 4: From α-(Aroylamino) Thioketones</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>11.17.1.6.1.1.5</td>
<td>Method 5: From α-(Thioaclylamino)carbonitriles</td>
<td>701</td>
<td></td>
</tr>
<tr>
<td>11.17.1.6.1.1.6</td>
<td>Method 6: From N-(α-Haloacyl)-, N-(α-Haloalkylidene), N-(α-Haloalkyl)-, N-(α-Haloalkenyl)-Substituted Thioureas, Isothiocyanates, or Carbothioamides</td>
<td>701</td>
<td></td>
</tr>
<tr>
<td>11.17.1.6.1.7</td>
<td>Method 7: From Isothiocyanatoallenes</td>
<td>704</td>
<td></td>
</tr>
<tr>
<td>11.17.1.6.1.8</td>
<td>Method 8: Additional Methods</td>
<td>704</td>
<td></td>
</tr>
<tr>
<td>11.17.1.6.2</td>
<td>Fragment C—N—C—C—S</td>
<td>704</td>
<td></td>
</tr>
<tr>
<td>11.17.1.6.2.1</td>
<td>Method 1: From α-(Acylamino)carbothioamides</td>
<td>705</td>
<td></td>
</tr>
<tr>
<td>11.17.1.6.2.2</td>
<td>Method 2: From 2-(Benzylationamo)-Substituted Triphenylphosphonium Salts</td>
<td>705</td>
<td></td>
</tr>
<tr>
<td>11.17.1.6.2.3</td>
<td>Method 3: Thiazoles from N¹,N²-Bis[amino(aryl)methyl]ethanedithioamides</td>
<td>706</td>
<td></td>
</tr>
<tr>
<td>11.17.1.6.2.4</td>
<td>Method 4: Additional Methods</td>
<td>706</td>
<td></td>
</tr>
<tr>
<td>11.17.1.6.2</td>
<td>By Formation of One N—C Bond</td>
<td>707</td>
<td></td>
</tr>
<tr>
<td>11.17.1.6.2.1</td>
<td>Fragment C—C—S—C—N</td>
<td>707</td>
<td></td>
</tr>
</tbody>
</table>
11.1.6.2.1 Method 1: From α-Thiocyanato Carboxylic Acids and Derivatives 707
11.1.6.2.1.1 Method 1: From S-(1-Iminoalkyl)thioglycolic Acids 708
11.1.6.2.1.2 Method 3: From Cynamethyl Carbimidothioates 709
11.1.6.2.1.3 Method 4: From α-[iminomethyl]sulfanyl] Ketones 710
11.1.6.2.1.4 Method 5: From α-Thiocyanato Ketones 711
11.1.6.2.1.5 Method 6: From 2-(Hydroxylimino)alkyl Carbamodithioates or 2-[2-(Hydroxylimino)alkyl]isothioureas 714
11.1.6.2.1.6 Method 7: From Halo-β-thiocyanatoalkenes 714
11.1.6.2.1.7 Method 8: From Alk-1-ynyl Thiocyanates 715
11.1.6.2.1.8 Method 9: From 2-(Hydroxyimino)alkyl Dithiocarboxylates and Carbonodithioates ... 715
11.1.6.2.2 Method 1: From 2-(Hydroxyimino)alkyl Dithiocarboxylates and Carbonodithioates ... 715
11.1.6.2.2.1 Method 2: From β-Thiocyanatoenamines 716
11.1.6.2.2.2 Method 3: From N-Substituted 2-[(Thioacyl)sulfanyl]acetamides 717
11.1.6.2.2.3 Method 4: From Benzyl α-(Hydroxylimino)imidodithioates 717
11.1.6.2.2.4 Method 5: Additional Methods 718
11.1.6.2.2.5 Fragment C—S—C—N .. 718
11.1.6.2.2.1 Method 1: From Dialkyl Cyanodithioimidocarbonates or N-Alkyl N'-Cyanoimidodithiocarbamates .. 718
11.1.6.2.2.2 Method 2: From N-[1-(Alkylsulfanyl)alkylidene]-N'-dimethylimidamide and -guanidinium Salts 719
11.1.6.2.2.3 Method 3: From Methyl Acylcarbonodithioimidoates, Methyl Acylcarbamimidodithioates, or Methyl N-Acylarene carbimidodithioates 720
11.1.2.1 Method 1: By Ring Enlargement of Three- or Four-Membered Heterocycles 721
11.1.2.2 Method 2: By Formal Exchange of Ring Atoms with Retention of Ring Size 722
11.1.2.3 Method 3: By Ring Contraction of Heterocycles 724
11.1.3 Aromatization ... 725
11.1.3.1 Method 1: By Dehydration and Dehydroamination of Dihydrothiazoles 725
11.1.3.2 Method 2: Aromatization by Addition Reactions 726
11.1.3.2.1 Variation 1: Nucleophilic Additions to Exocyclic Double Bonds 726
11.1.3.2.2 Variation 2: S-Alkylation of Thiazole-2(3H)-thiones 728
11.1.3.2.3 Variation 3: N-Alkylation or N-Acylation of 3-Hydroxythiazol-2(3H)-imine 728
11.1.3.2.4 Variation 4: Elimination of Sulfur from Thiazole-2(3H)-thiones 729
11.1.3.2.5 Variation 5: Of Carbofunctional Groups 730
11.1.3.2.5.1 Oxidation of Dihydrothiazoles .. 730
11.1.3.2.5.1.1 2,3-Dihydrothiazoles .. 730
11.1.3.2.5.1.2 2,5-Dihydrothiazoles .. 730
11.1.3.2.5.2 Oxidation of Thiazolidines ... 732
11.1.3.3 Method 3: Aromatization by Rearrangement (Isomerization) 733
11.1.4 Synthesis from Other Thiazoles .. 735
Addition Reactions

11.17.4.1 Addition Reactions

11.17.4.1.1 Quaternization

11.17.4.1.3 Addition of Heteroatoms

11.17.4.1.3.1 Formation of Thiazole 3-Oxides

11.17.4.1.3.2 Formation of 3-Aminothiazolium Salts

11.17.4.2 Synthesis by Substituent Modification

11.17.4.2.1 Method 1: Replacement of Hydrogen by Deuterium

11.17.4.2.2 Method 2: Replacement of Hydrogen by Metals

11.17.4.2.2.1 Variation 1: Replacement of Hydrogen by Lithium, Sodium, or Potassium

11.17.4.2.2.2 Variation 2: Replacement of Hydrogen by Magnesium, Aluminum or Zinc

11.17.4.2.2.3 Variation 3: Replacement of Hydrogen by Silicon or Tin

11.17.4.2.2.4 Variation 4: Replacement of Hydrogen by Mercury

11.17.4.2.3 Method 3: Replacement of Hydrogen by Carbon Electrophiles

11.17.4.2.4 Method 4: Introduction of Nucleophiles

11.17.4.2.5 Method 5: Via Radical Reactions

11.17.4.2.6 Method 6: Replacement of Hydrogen by Metals

11.17.4.2.7 Method 7: By Electrophiles Other Than Carbon Electrophiles

11.17.4.2.7.1 Variation 1: Halogenation of Thiazoles and Thiazole 3-Oxides

11.17.4.2.7.2 Variation 2: Introduction of Chlorosulfonyl, Sulfo, or Thiocyanato Groups

11.17.4.2.7.3 Variation 3: Introduction of Alkylsulfanyl, Arylsulfanyl, Thiolate, or Arylselanyl Groups

11.17.4.2.7.4 Variation 4: Nitration and Nitrosation of Thiazoles

11.17.4.2.7.5 Variation 5: Introduction of Arylazo Groups

11.17.4.2.8 Method 8: Introduction of Amino Groups

11.17.4.2.9 Additional Methods

11.17.4.3 Synthesis of Thiazoles from Metalated Thiazoles

11.17.4.3.1 Method 1: Replacement of Lithium, Magnesium, or Zinc by Carbon Electrophiles

11.17.4.3.2 Method 2: Replacement of Sodium by Carbon Electrophiles

11.17.4.3.3 Method 3: Replacement of Silyl or Mercuro Groups by Hydrogen

11.17.4.3.4 Method 4: Replacement of Silyl and Stannyl Groups by Carbon Electrophiles

11.17.4.3.5 Method 5: Replacement of Silyl, Stannyl or Mercury Containing Groups by Halogens or Thiocyanate

11.17.4.3.6 Method 6: Replacement of Metals by Other Groups

11.17.4.3.6.1 Variation 1: Replacement of Lithium by Sulfur- or Phosphorus-Containing Reagents

11.17.4.3.7 Method 7: Modification of Other Substituents

11.17.4.3.7.1 Variation 1: Carbon Replacement by Hydrogen

11.17.4.3.7.1.1 Decarboxylation of Thiazolecarboxylic Acids and Carboxylates

11.17.4.3.7.1.2 Removal of the Benzoyl Group from 5-Benzoylthiazoles

11.17.4.3.7.1.3 Additional Methods

11.17.4.3.7.2 Variation 2: Replacement of One Carbofunctional Group by Another

11.17.4.3.7.3 Variation 3: Replacement of a Carbon Substituent by Nitrogen
<table>
<thead>
<tr>
<th>Number</th>
<th>Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.17.4.3.7.4</td>
<td>Variation 4: Replacement of a Nitrogen Substituent by Hydrogen</td>
<td>773</td>
</tr>
<tr>
<td>11.17.4.3.7.5</td>
<td>Variation 5: Replacement of a Nitrogen Substituent by Carbon</td>
<td>775</td>
</tr>
<tr>
<td>11.17.4.3.7.6</td>
<td>Variation 6: Substitution of One Nitrogen Substituent by Another</td>
<td>775</td>
</tr>
<tr>
<td>11.17.4.3.7.6.1</td>
<td>Additional Methods</td>
<td>776</td>
</tr>
<tr>
<td>11.17.4.3.7.7</td>
<td>Variation 7: Nitrogen Substituents Replacement by Halogen</td>
<td>777</td>
</tr>
<tr>
<td>11.17.4.3.7.8</td>
<td>Variation 8: Replacement of a Nitrogen Substituent by Oxygen or Sulfur</td>
<td>778</td>
</tr>
<tr>
<td>11.17.4.3.7.9</td>
<td>Variation 9: Replacement of Phosphorus Groups by Hydrogen</td>
<td>779</td>
</tr>
<tr>
<td>11.17.4.3.7.10</td>
<td>Variation 10: Replacement of Oxygen and Sulfur Groups by Hydrogen</td>
<td>780</td>
</tr>
<tr>
<td>11.17.4.3.7.11</td>
<td>Variation 11: Replacement of Sulfur or Oxygen Groups by Carbon-Containing Substituents</td>
<td>781</td>
</tr>
<tr>
<td>11.17.4.3.7.12</td>
<td>Variation 12: Replacement of Oxygen or Sulfur Substituents by Nitrogen</td>
<td>782</td>
</tr>
<tr>
<td>11.17.4.3.7.13</td>
<td>Variation 13: Replacement of Oxygen or Selenium by Halogen</td>
<td>784</td>
</tr>
<tr>
<td>11.17.4.3.7.14</td>
<td>Variation 14: Replacement of Oxygen by Sulfur</td>
<td>784</td>
</tr>
<tr>
<td>11.17.4.3.7.15</td>
<td>Variation 15: Replacement of Sulfur by Oxygen</td>
<td>785</td>
</tr>
<tr>
<td>11.17.4.3.7.16</td>
<td>Variation 16: Replacement of Sulfur by Sulfur</td>
<td>785</td>
</tr>
<tr>
<td>11.17.4.3.7.17</td>
<td>Variation 17: Replacement of Halogen by Hydrogen</td>
<td>786</td>
</tr>
<tr>
<td>11.17.4.3.7.18</td>
<td>Variation 18: Replacement of Halogen by Deuterium</td>
<td>788</td>
</tr>
<tr>
<td>11.17.4.3.7.19</td>
<td>Variation 19: Replacement of Halogen by Carbon Nucleophiles</td>
<td>788</td>
</tr>
<tr>
<td>11.17.4.3.7.20</td>
<td>Variation 20: Replacement of Halogen by Nitrogen</td>
<td>789</td>
</tr>
<tr>
<td>11.17.4.3.7.21</td>
<td>Variation 21: Replacement of Halogen by Oxygen or Sulfur</td>
<td>791</td>
</tr>
<tr>
<td>11.17.4.3.7.22</td>
<td>Variation 22: Replacement of Halogens by Other Halogens</td>
<td>793</td>
</tr>
<tr>
<td>11.17.5</td>
<td>Modification of Substituents</td>
<td>794</td>
</tr>
<tr>
<td>11.17.5.1</td>
<td>Modification of Carbofunctional Substituents</td>
<td>794</td>
</tr>
<tr>
<td>11.17.5.1.1</td>
<td>Method 1: Condensation at Alkyl Groups of Alkylthiazoles, Alkylthiazolium Salts, and Thiazole 3-Oxides</td>
<td>794</td>
</tr>
<tr>
<td>11.17.5.1.2</td>
<td>Method 2: Other Transformations of Carbofunctional Substituents of Thiazoles</td>
<td>799</td>
</tr>
<tr>
<td>11.17.5.2</td>
<td>Modification of Heterofunctional Substituents</td>
<td>800</td>
</tr>
<tr>
<td>11.17.5.2.1</td>
<td>Method 1: Modification of O- and S-Substituents</td>
<td>801</td>
</tr>
<tr>
<td>11.17.5.2.2</td>
<td>Modification of N-Substituents</td>
<td>803</td>
</tr>
<tr>
<td>11.17.5.2.2.1</td>
<td>Method 1: Reduction of Thiazole 3-Oxides</td>
<td>803</td>
</tr>
<tr>
<td>11.17.5.3</td>
<td>Rearrangement of Substituents</td>
<td>804</td>
</tr>
<tr>
<td>11.17.5.3.1</td>
<td>Rearrangement during Transmetalation Reaction</td>
<td>804</td>
</tr>
<tr>
<td>11.17.5.3.2</td>
<td>Rearrangement of Thiazole 3-Oxides</td>
<td>804</td>
</tr>
<tr>
<td>11.17.5.3.3</td>
<td>Rearrangement of 3-Substituted Thiazol-2(3H)-imines and Thiazole-2(3H)-thiones</td>
<td>805</td>
</tr>
<tr>
<td>11.17.5.3.4</td>
<td>Rearrangement of Nitrothiazoles</td>
<td>806</td>
</tr>
<tr>
<td>11.17.5.3.5</td>
<td>Photochemical Rearrangements</td>
<td>806</td>
</tr>
<tr>
<td>11.17.5.3.6</td>
<td>Rearrangement of 3-Benzylthiazolium Salts</td>
<td>806</td>
</tr>
<tr>
<td>11.17.5.3.7</td>
<td>Other Rearrangements and Ring Cleavages</td>
<td>806</td>
</tr>
</tbody>
</table>
11.18 Product Class 18: Benzothiazoles and Related Compounds
H. Ulrich

| Page |
|------------------|------------------|
| 11.18 | Product Class 18: Benzothiazoles and Related Compounds |
| 11.18.1 | Synthesis by Ring-Closure Reactions |
| 11.18.1.1 | By Annulation to an Arene or Hetarene Ring |
| 11.18.1.1.1 | By Formation of One S—C and One N—C Bond |
| 11.18.1.1.1.1 | Method 1: From 2-Amino(het)arenethiols |
| 11.18.1.1.1.2 | Variation 2: With Dithiocarbonates |
| 11.18.1.1.1.3 | Variation 3: With Carbon Disulfide |
| 11.18.1.1.1.4 | Variation 4: With Dithiocarbamates |
| 11.18.1.1.1.5 | Variation 5: With Isothiocyanates |
| 11.18.1.1.1.6 | Variation 6: With Cyanamides |
| 11.18.1.1.1.7 | Variation 7: With Derivatives of Cyanamides |
| 11.18.1.1.1.8 | Variation 8: With Orthoesters |
| 11.18.1.1.1.9 | Variation 9: With N-Chloromethylamines |
| 11.18.1.1.1.10 | Variation 10: With Acyl Chlorides |
| 11.18.1.1.1.11 | Variation 11: With Acyl Chlorides Generated In Situ |
| 11.18.1.1.1.12 | Variation 12: With Acyl Chlorides Using Salts of the Thiol |
| 11.18.1.1.1.13 | Variation 13: With Imidoyl Chlorides and Derivatives |
| 11.18.1.1.1.14 | Variation 14: With Carboxylic Anhydrides |
| 11.18.1.1.1.15 | Variation 15: With Carboxylic or Thiocarboxylic Esters |
| 11.18.1.1.1.16 | Variation 16: With Carboxylic Acids |
| 11.18.1.1.1.17 | Variation 17: With Ketene Acetals |
| 11.18.1.1.1.18 | Variation 18: With Dithioimidocarbonates |
| 11.18.1.1.1.19 | Variation 19: With Nitriles |
| 11.18.1.1.1.20 | Variation 20: With Trifluoromethyl(het)arenes |
| 11.18.1.1.1.21 | Variation 21: With Aliphatic Fluoro Compounds |
| 11.18.1.1.1.22 | Variation 22: With Aldehydes |
| 11.18.1.1.1.23 | Variation 23: With Activated Ketones |
| 11.18.1.1.1.24 | Variation 24: With Carbon Monoxide and Haloarenes |
| 11.18.1.1.1.25 | Variation 25: With Oxiranes |
| 11.18.1.1.1.26 | Variation 26: With a Cyclopropenylium Salt |
| 11.18.1.1.2 | Method 2: From 2-Halonitrobenzenes |
| 11.18.1.1.3 | Method 3: From 2-Unsubstituted (Het)arenamines or Derivatives and a Sulfur Component |
| 11.18.1.1.3.1 | Variation 1: With Carbon Disulfide and Sulfur |
| 11.18.1.1.3.2 | Variation 2: With Chlorocarbonylsulfinyl Chloride |
| 11.18.1.1.3.3 | Variation 3: With Thiocyanates |
| 11.18.1.1.3.4 | Variation 4: With Disulfur Dichloride |
| 11.18.1.1.3.5 | Variation 5: With Phenylphosphonothioic Dichloride |
| 11.18.1.1.3.6 | Variation 6: With Sulfur |
| 11.18.1.1.4 | Method 4: From 2-Substituted (Het)arenamines or Derivatives and a Sulfur Component |
| 11.18.1.1.4.1 | Variation 1: With Dithiocarbonates |
Table of Contents

11.1.1.1.4.2 Variation 2: With Thioureas ... 858
11.1.1.1.4.3 Variation 3: With O-Alkyl Thiocarboxylylates .. 858
11.1.1.1.4.4 Variation 4: With Thioamides .. 858
11.1.1.1.4.5 Variation 5: With Benzoylsulfanyl copper ... 859
11.1.1.1.5 Method 5: From 2-Substituted Nitro(het)arenes and a Sulfur Component 859
11.1.1.1.6 Method 6: From Benzo-1,4-quinoines or Derivatives and a Sulfur Component 860
11.1.1.1.7 Method 7: From 2-Chlorohetarencarbonitriles and Thiourea .. 861
11.1.1.2 By Formation of One S—C Bond .. 861
11.1.1.2.1 Method 1: From N-Arylthioureas ... 861
11.1.1.2.1.1 Variation 1: 2-Unsubstituted N-Arylthioureas ... 862
11.1.1.2.1.2 Variation 2: With a Leaving Group in the 2-Position 864
11.1.1.2.1.3 Variation 3: In Situ Preparation of Thioureas from Isothiocyanates 865
11.1.1.2.1.4 Variation 4: From Guanyl Disulfides .. 865
11.1.1.2.2 Method 2: From Isothioureas ... 866
11.1.1.2.3 Method 3: From N-Arylthioamides .. 866
11.1.1.2.3.1 Variation 1: From 2-Unsubstituted N-Arylthioamides 866
11.1.1.2.3.2 Variation 2: From N-Arylthioamides with a Halogen or Hydroxy Leaving Group in the 2-Position .. 867
11.1.1.2.3.3 Variation 3: In Situ Formation from Amides .. 868
11.1.1.2.4 Method 4: From 2-Sulfanylacetophenone Oximes .. 869
11.1.1.2.5 Method 5: From ortho-Nitrogen-Functionalized Aryl Sulfides or Disulfides 869
11.1.1.2.5.1 Variation 1: From Amides .. 870
11.1.1.2.5.2 Variation 2: From Isocyanides ... 871
11.1.1.2.5.3 Variation 3: From Azomethines ... 871
11.1.1.2.5.4 Variation 4: From Iminophosphoranes ... 872
11.1.1.2.5.5 Variation 5: From Amines ... 873
11.1.1.2.6 By Formation of One N—C Bond ... 873
11.1.1.2.6.1 Method 1: From 2-Thiocyanatoanilines ... 873
11.1.1.2.6.1.1 Variation 1: Using 2-Thiocyanatoanilines ... 873
11.1.1.2.6.1.2 Variation 2: Masked as a Cycloadduct with Azides 874
11.1.1.2.6.1.3 Variation 3: Formed In Situ from 2-Nitroaryl Thiocyanates 874
11.1.1.2.6.1.4 Variation 4: From S-(2-Aminohetaryl) Dithiocarbamates 875
11.1.1.2.6.1.2.1 Variation 1: Using S-(2-Aminohetaryl) Dithiocarbamates 875
11.1.1.2.6.1.2.2 Variation 2: Formed In Situ from S-(2-Nitroaryl) Dithiocarbamates 875
11.1.1.2.6.1.3 Method 3: From 2-(2-Nitroaryl)sulfanyl)cycloalkanones 876
11.1.1.2.7 By Annulation to the Thiazole Ring ... 876
11.1.1.2.7.1 Method 1: Of a Pyrido[2,3] System ... 876
11.1.1.2.7.1.1 Variation 1: From 3-(4-Aminothiazol-5-yl)-3-oxopropanoates 876
11.1.1.2.7.1.2 Variation 2: From 4-Amino-5-benzoylthiazolium Salts 877
11.1.1.2.7.1.3 Variation 3: From 4-Amino-Substituted Thiazoles and Acetoacetates 877
11.1.1.2.7.2 Method 2: Of a Pyrido[3,2] System ... 877
11.1.1.2.7.3 Method 3: Of a Pyrido[4,3] System ... 878
11.1.1.2.7.4 Method 4: Of a Pyridazino[4,5] System .. 878
11.1.1.2.7.5 Method 5: Of a Pyrimido[4,5] System .. 879
11.1.1.2.7.6 Method 6: Of a Pyrimido[5,4] System .. 879
11.18.2 Synthesis by Ring Transformation .. 880
 11.18.2.1 Hetero-Ring Size Retained Overall 880
 11.18.2.1.1 Method 1: From Other Heterocycles 880
 11.18.2.1.2 Method 2: By Ring Opening and Reclosure 881
 11.18.2.2 With Ring Contraction .. 881
 11.18.2.2.1 Method 1: From 1,4-Benzothiazines and Derivatives 881
 11.18.2.2.2 Method 2: From 1,2,4-Benzothiadiazines 882
 11.18.2.2.3 Method 3: From 1,5-Benzothiazepines 883
 11.18.2.2.4 Method 4: From Tetrahydrodibenzo-1,6,3,8-dithiadiazecines 884
 11.18.2.3 With Simultaneous Annulation of a Phenyl Substituent 884
 11.18.2.3.1 Method 1: From 5-Aryl-1,2,3-dithiazoles 885
 11.18.2.3.2 Method 2: From 5-(Arylimino)thiatriazoles 885
 11.18.2.3.3 Method 3: From Heteropentalenes 885
 11.18.3 Aromatization ... 886
 11.18.3.1 Method 1: Of the Thiazole Unit 886
 11.18.3.1.1 Variation 1: By Dehydrogenation 886
 11.18.3.1.2 Variation 2: By Elimination 887
 11.18.3.2 Method 2: Of the Benzene Unit 888
 11.18.4 Synthesis by Substituent Modification 888
 11.18.4.1 Addition Reactions .. 888
 11.18.4.1.1 Method 1: Protonation and Complex Formation 888
 11.18.4.1.2 Method 2: Alkylation 889
 11.18.4.2 Substitution of Existing Substituents 890
 11.18.4.2.1 Of Hydrogen .. 890
 11.18.4.2.1.1 Method 1: By Deuterium 890
 11.18.4.2.1.2 Method 2: By Carbon Groups 891
 11.18.4.2.1.3 Method 3: By Metals 891
 11.18.4.2.1.4 Method 4: By Halogen 891
 11.18.4.2.1.5 Method 5: Sulfonation 892
 11.18.4.2.1.6 Method 6: Nitration 893
 11.18.4.2.2 Of Metals .. 893
 11.18.4.2.2.1 Method 1: Alkylation 893
 11.18.4.2.2.2 Method 2: Hydroxyalkylation 894
 11.18.4.2.2.3 Method 3: Acylation 894
 11.18.4.2.2.4 Method 4: Transmetalation 895
 11.18.4.2.2.5 Method 5: By Heteroatoms 896
 11.18.4.2.3 Of Carbon Functionalities 896
 11.18.4.2.4 Of Heteroatoms .. 896
 11.18.4.2.4.1 Method 1: By Addition of Oxygen 897
 11.18.4.2.4.2 Method 2: By Elimination of Oxygen 897
 11.18.4.2.4.3 Method 3: By Hydrogen 898
11.18.4.2.4.4 Method 4: By Carbon Functionalities .. 898
11.18.4.2.4.5 Method 5: By Hetero Functions .. 900
11.18.4.2.4.6 Method 6: By Rearrangement of Substituents 901
11.18.4.3 Modification of Substituents in the \(\alpha \)-Position 902
11.18.4.3.1 Method 1: \(\alpha \)-Hydroxyalkylation ... 902
11.18.4.3.2 Method 2: Condensation Reactions ... 903
11.18.4.3.3 Method 3: Self-Condensation .. 904
11.18.4.3.4 Method 4: \(\alpha \)-Oxygenation ... 904
11.18.4.3.5 Method 5: Oxirane Formation ... 904
11.18.4.3.6 Method 6: Aziridine Formation ... 905
11.18.4.3.7 Method 7: Sulfur Oxidation .. 905

11.19 Product Class 19: 1,2- and 1,3-Thiaphospholes and Benzoannulated Analogues
D. Gudat

11.19.1 Product Subclass 1: 1,2-Thiaphospholes ... 913
11.19.1.1 Synthesis by Ring Transformation .. 913
11.19.1.1.1 Method 1: Desulfurization of 2-Thio-3\(\text{H} \)-1,2-thiaphospholes 913
11.19.1.1.2 Method 2: Additional Methods .. 915
11.19.1.2 Synthetic Subclass 2: 1,3-(Benzo)Thiaphospholes 915
11.19.2.1 Synthesis by Ring-Closure Reactions ... 915
11.19.2.1.1 By Formation of Two P—C Bonds ... 915
11.19.2.1.1.1 Method 1: From Ketene \(S,N \)-Acetals and Phosphorus Trihalides 915
11.19.2.1.2 Method 2: From 2-Phosphinobenzenethiols 916
11.19.2.2 Synthesis by Ring Transformation .. 917
11.19.2.2.1 Method 1: From Thiaphosphiranes and Acetylenedicarboxylates 917
11.19.2.2.2 Method 2: From 1,3-Dithiolium-4-olates 917
11.19.2.2.1.1 Variation 1: Reaction with Tris(trimethylsilyl)phosphine 917
11.19.2.2.2.1 Variation 2: Reaction with Phosphaalkynes or Phosphaalkenes 918

11.20 Product Class 20: Isoselenazoles
W.-D. Pfeiffer

11.20.1 Synthesis by Ring-Closure Reactions .. 921
11.20.1.1 By Formation of One Se—N, One Se—C, and One N—C Bond 922
11.20.1.1 Fragments C—C—C, N, and Se .. 922
11.20.1.1.1 Method 1: From Alkynones, Hydroxylamine O-Sulfonic Acid, and Selenium 922
11.20.1.1.2 Method 2: From 3-Chloroprop-2-eniminium Salts, Sodium Selenocyanate, and Ammonia 923
11.20.1.2 By Formation of One Se—N and One Se—C Bond 924
11.20.1.2.1 Fragments Se—C—C and N .. 924
11.20.1.2.1.1 Method 1: From 3-Seleno-Substituted Enones and Ammonia 924
11.20.1.2.2 Fragments N—C—C and Se .. 925
11.20.1.2.2.1 Method 1: From an Enamine and Selenium Dioxide 925
11.20.1.3 By Formation of One Se—N Bond 926
11.20.1.3.1 Fragment Se—C—C—N .. 926
11.20.1.3.1.1 Method 1: From Seleno-Substituted Alkenoic Amides 926
11.20.2 Synthesis by Substituent Modification 927
11.20.2.1 By Substitution of Existing Substituents 927
11.20.2.1.1 Of Hydrogen .. 927
11.20.2.1.1.1 Method 1: Bromination .. 927
11.20.2.1.1.2 Method 2: Nitration .. 928
11.20.2.1.2 Of Heteroatoms .. 928
11.20.2.1.2.1 Method 1: Hydrolysis of 3-Chloroisoselenazolium Salts 928
11.20.2.2 Modification of Substituents .. 929
11.20.2.2.1 Method 1: Oxidation of Methyl-Substituted Isoseleazoles 929

11.21 Product Class 21: Annulated Isoseleazole Compounds
W.-D. Pfeiffer

11.21 Product Class 21: Annulated Isoseleazole Compounds 931
11.21.1 Synthesis by Ring-Closure Reactions 933
11.21.1.1 By Ring-Closure of One Se—N and C—N Bond 933
11.21.1.1.1 Fragments Se—Aren—C and N 933
11.21.1.1.1.1 Method 1: From 2-Seleno-Substituted Arenecarbonyl Compounds and a Nitrogen Source 933
11.21.1.1.1.1.1 Variation 1: From 2-Seleno-Substituted Aldehydes or Ketones 933
11.21.1.1.1.1.2 Variation 2: From 2-(Methylselanyl)thiophene-3-carbaldehyde or 2-(Methylselanyl)selenophene-3-carbaldehyde 934
11.21.1.1.1.1.3 Variation 3: From 2-(Chloroselanyl)benzoyl Chloride 935
11.21.1.1.1.1.4 Variation 4: From 2-(Selenocyanato)phenyl Ketones 935
11.21.1.2 By Formation of One Se—N Bond 936
11.21.1.2.1 Fragment Se—Aren—C—N 936
11.21.1.2.1.1 Method 1: Cyclization of 2-(Methylselanyl)benzamides 936
11.21 Synthesis by Ring Transformation

11.21.1 Method 1: 1,2-Benzisoselenazoles from 1-Benzoselenophene-2,3-dione

11.21.2 Method 2: 1,2-Benzisoselenazoles from 3,4-Diphenyl-1,2,5-selenadiazole

11.21.3 Synthesis by Substituent Modification

11.21.3.1 Nucleophilic Substitution

11.21.3.1.1 Method 1: By Potassium Amide

11.21.3.1.2 Method 2: From 3-Chloro-1,2-benzisoselenazolium Salts

11.21.4 Modification of Substituents

11.22 Product Class 22: Selenazoles

W.-D. Pfeiffer

11.22.1 Synthesis by Ring-Closure Reactions

11.22.1.1 By Formation of Two Se—C Bonds

11.22.1.1.1 Method 1: From Vinylphosphonium Salts

11.22.1.1.2 By Formation of One Se—C and One N—C Bond

11.22.1.2 Fragments Se—C—N and C—C

11.22.1.2.1 Method 1: From Selenocarboxamides and α-Halo Carbonyl Compounds

11.22.1.2.2 Variation 1: 2-Alkyl- and 2-Arylselenazoles

11.22.1.2.3 Variation 2: Selenazol-2-amines and 2-(Alkylamino)- and 2-(Arylamino)-Substituted Selenazoles

11.22.1.2.4 Variation 3: 2-Hydrazinoselenazoles and Derivatives

11.22.1.2.5 Variation 4: N-Alkylimino- and N-Arylimino-2,3-dihydroselenazol-3-amines

11.22.1.2.6 Variation 5: Bis(selenazol-2-yl)methane and Oxazol-2-yl(selenazol-2-yl)methane Derivatives

11.22.1.2.7 Variation 6: 2-(2-Furyl)-, 2-(2-Thienyl)-, 2-(Selenophen-2-yl)-, 2-(2-Pyridyl)-, and α-Ribofuranosylselenazoles

11.22.1.2.8 Variation 7: Selenazolidines from Selenoureas and α-Halo Carboxylic Acids

11.22.1.2.9 Variation 8: 4,5-Dihydropyrrolo[3,2-e]benzoselenazoles and 4,5-Dihydroselenazol[4,5-f]quinolines

11.22.1.2.10 Variation 9: 5-Fluoroselenazoles

11.22.1.2.11 Variation 10: 3-(Selenazol-4-yl)alanine

11.22.1.2.12 Method 2: Using Hypervalent Iodine Compounds

11.22.1.2.13 Method 3: From Selenocarboxamides and 2-Chlorooxiranes

11.22.1.2.14 Method 4: From Selenoureas and 3,4,6,7-Tetrachloro-2,3-dihydro-2,5-benzofuranadiol

11.22.1.2.15 Method 5: From α-Bromoacetyl Chlorides and Selenocarboxamides

11.22.1.2.16 Method 6: From Hydrazonoyl Bromides and Selenoureas

11.22.1.2.17 Method 7: From Aziridine Derivatives and Carbon Diselenide

11.22.1.2.18 Fragments N—C—Se and C
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.22.1.2.3.1</td>
<td>Method 1: 2-Aryl-4,9-dioxonaphtho[2,3-d]selenazoles from Sodium Salts of 2-Amino-3-selanylnaphto-1,4-quinone</td>
<td>959</td>
</tr>
<tr>
<td>11.22.1.3</td>
<td>By Formation of One Se—C and One C—C Bond</td>
<td>960</td>
</tr>
<tr>
<td>11.22.1.3.1</td>
<td>Fragments C—N—C—Se and C</td>
<td>960</td>
</tr>
<tr>
<td>11.22.1.3.1.1</td>
<td>Method 1: From 1,1-Disubstituted 3-Acylselenoureas and Active Halomethylene Compounds</td>
<td>960</td>
</tr>
<tr>
<td>11.22.1.3.1.2</td>
<td>Method 2: From N-Selenoacylamidines or Morpholino(selenocarbonyl)amidines and Active Halomethylene Compounds</td>
<td>960</td>
</tr>
<tr>
<td>11.22.1.3.1.3</td>
<td>Method 3: From Selenoacylamidines and Sulfoxonium Ylides</td>
<td>961</td>
</tr>
<tr>
<td>11.22.1.3.2</td>
<td>Fragments C—N—C and C—Se</td>
<td>962</td>
</tr>
<tr>
<td>11.22.1.3.2.1</td>
<td>Method 1: From Isoselenocyanates and -Lithiated Isocyanides</td>
<td>962</td>
</tr>
<tr>
<td>11.22.1.4</td>
<td>By Formation of One Se—C Bond</td>
<td>962</td>
</tr>
<tr>
<td>11.22.1.4.1</td>
<td>Fragment Se—C—N—C—C</td>
<td>963</td>
</tr>
<tr>
<td>11.22.1.4.1.1</td>
<td>Method 1: Oxidation of N-[1-(Dimethylamino)ethylidene]benzenecarboselenoamide</td>
<td>963</td>
</tr>
<tr>
<td>11.22.1.5</td>
<td>By Formation of One N—C Bond</td>
<td>963</td>
</tr>
<tr>
<td>11.22.1.5.1</td>
<td>Fragment N—C—Se—C—C</td>
<td>963</td>
</tr>
<tr>
<td>11.22.1.5.1.1</td>
<td>Method 1: From 1-Phenyl-2-(selenocyanato)ethanone</td>
<td>963</td>
</tr>
<tr>
<td>11.22.2</td>
<td>Synthesis by Ring Transformation</td>
<td>963</td>
</tr>
<tr>
<td>11.22.2.1</td>
<td>Method 1: From 1,3,4-Selenadiazines</td>
<td>963</td>
</tr>
<tr>
<td>11.22.2.1.1</td>
<td>Variation 1: 2-Imino-2,3-dihydroselenazol-3-amine Derivatives</td>
<td>963</td>
</tr>
<tr>
<td>11.22.2.1.2</td>
<td>Variation 2: Acetophenone (4-Phenyl-selenazol-2-yl)hydrazone</td>
<td>964</td>
</tr>
<tr>
<td>11.22.2.3</td>
<td>Synthesis by Substituent Modification</td>
<td>965</td>
</tr>
<tr>
<td>11.22.3</td>
<td>Addition of Organic Groups</td>
<td>965</td>
</tr>
<tr>
<td>11.22.3.1</td>
<td>Method 1: N-Alkylation: 3-Alkylselenazolium Salts</td>
<td>965</td>
</tr>
<tr>
<td>11.22.3.1.2</td>
<td>Method 2: Alkylation under Cyclization</td>
<td>966</td>
</tr>
<tr>
<td>11.22.3.1.2.1</td>
<td>Variation 1: Cyclization of Selenazol-2-amine with Dimethyl Acetylenedicarboxylate or Ethyl Propiolate</td>
<td>966</td>
</tr>
<tr>
<td>11.22.3.1.2.2</td>
<td>Variation 2: Cyclization of 2-Hydrazinoselenazoles with Ortho Esters</td>
<td>966</td>
</tr>
<tr>
<td>11.22.3.1.2.3</td>
<td>Variation 3: Cyclization of Selenazol-2-amines with α-Halo Carbonyl Compounds</td>
<td>967</td>
</tr>
<tr>
<td>11.22.3.2</td>
<td>Substitution of Existing Substituents</td>
<td>968</td>
</tr>
<tr>
<td>11.22.3.2.1</td>
<td>Method 1: Nitration</td>
<td>968</td>
</tr>
<tr>
<td>11.22.3.2.1.1</td>
<td>Method 1: Sulfonation</td>
<td>968</td>
</tr>
<tr>
<td>11.22.3.2.1.2</td>
<td>Method 3: Halogenation</td>
<td>968</td>
</tr>
<tr>
<td>11.22.3.2.1.3</td>
<td>Method 4: Diazo Coupling</td>
<td>969</td>
</tr>
<tr>
<td>11.22.3.2.1.5</td>
<td>Method 5: Condensation of Selenazoles with Aldehydes or 4-Nitrosodialkylanilines</td>
<td>970</td>
</tr>
<tr>
<td>11.22.3.2.1.6</td>
<td>Method 6: Oxidation of Alkylidene Derivatives of 2-Hydrazinoselenazoles to Quinonoid Dyes</td>
<td>971</td>
</tr>
</tbody>
</table>
11.22.3.2.1 Method 7: Substitution of Hydrogen by Cyclization 973
11.22.3.2.2 Substitution of Carbon Functionalities .. 973
11.22.3.2.3 Exchange of Heteroatoms ... 974
11.22.3.3.1 Method 1: Oxidation of 4-Aryl-2-hydrazinoselenazoles to 2-Unsubstituted
Selenazoles ... 974
11.22.3.3.2 Method 2: Acid Cleavage of Selenazo-2-yl Ketones to 2-Unsubstituted
Selenazoles ... 975
11.22.3.3.3 Method 3: By Diazotization of Selenazol-2-ylselenazoles to 2-Unsubstituted
Selenazoles ... 975
11.22.3.3.4 Method 4: By Oxidation of 4-(Chloromethyl)selenazoles with
Hexamethylenetetramine .. 978
11.22.3.3.5 Method 5: By Reaction of 2-Unsubstituted 4-Formylselenazoles with
Diazomethane .. 978
11.22.3.3.6 Method 6: By Reaction of 4-(Chloromethyl)- and
4-(Iodomethyl)selenazoles ... 978
11.22.3.4 Rearrangement Reactions in the Side Chain .. 981
11.22.3.4.1 Method 1: By Reaction of 4-(Phthalimidoethyl)selena-zol-2-yl Ketoximes 984
11.22.3.4.2 Method 2: By Reaction of Selenazo-2-ylacetonitriles with Sodium Nitrite 984
11.22.3.4.3 Method 3: By Reaction of 2-Unsubstituted 4-Formylselenazoles with
Diazomethane .. 984
11.22.3.4.4 Method 4: By Reaction of 4-(Chloromethyl)- and
4-(Iodomethyl)selenazoles ... 984
11.22.3.5 Rearrangement Reactions in the Side Chain .. 985
11.22.3.5.1 Method 1: Beckmann Rearrangement of Aryl Selenazo-2-yl Ketoximes 985
11.22.3.6 Rearrangement Reactions in the Side Chain .. 985
11.22.3.6.1 Method 1: Beckmann Rearrangement of Aryl Selenazo-2-yl Ketoximes 985
11.23 Product Class 23: Annulated Selenazole Compounds
W.-D. Pfeiffer

11.23 Product Class 23: Annulated Selenazole Compounds 991
11.23.1 Synthesis by Ring-Closure Reactions ... 991
11.23.1.1 By Formation of Two Se—C Bonds ... 991
11.23.1.1.1 Fragments Aren—N—C and Se ... 991
11.23 Method 1: From N-Phenylbenzamide and Selenium

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>991</td>
</tr>
</tbody>
</table>

By Formation of One Se—C and One N—C Bond

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>992</td>
</tr>
</tbody>
</table>

Fragments N—Hetarene and Se—C

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>992</td>
</tr>
</tbody>
</table>

Method 1: From a Selenocarboxylate and an Arylamine

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>992</td>
</tr>
</tbody>
</table>

Fragments N—Arene—Se and C

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>993</td>
</tr>
</tbody>
</table>

Method 1: From 2-Aminoaryl Selenocyanates

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>995</td>
</tr>
</tbody>
</table>

Fragments N—C—Se—C

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>996</td>
</tr>
</tbody>
</table>

Fragment N—Hetarene—Se—C

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>997</td>
</tr>
</tbody>
</table>

Method 1: Thieno[3,2-d]selenazoles from Thienvl Selenoates

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>997</td>
</tr>
</tbody>
</table>

11.24 Product Class 24: 1,3-Selenaphospholes

D. Gudat

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
</tr>
</tbody>
</table>

11.24.1 Synthesis by Ring-Closure Reactions

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
</tr>
</tbody>
</table>

By Formation of Two P—C Bonds

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
</tr>
</tbody>
</table>

Fragments C—Se—C—C and P

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
</tr>
</tbody>
</table>

Method 1: From Ketene N,Se-Acetals and Phosphorus Trihalides

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
</tr>
</tbody>
</table>

Synthesis by Ring Transformation

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1002</td>
</tr>
</tbody>
</table>

Method 1: From 1,2,3-Selenadiazoles and Phosphaalkynes

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1002</td>
</tr>
</tbody>
</table>
Product Class 25: Isotellurazoles, and Annulated Isotellurazole and Tellurazole Compounds

W.-D. Pfeiffer

Product Subclass 1: Isotellurazoles (1,2-Tellurazoles)

Synthesis by Ring-Closure Reactions

By Formation of One Te—N, One Te—C, and One N—C Bond

Method 1: From Acetylenic Ketones or Aldehydes and Hydroxylamine O-Sulfonic Acid

By Formation One Te—C and One N—C Bond

Fragments Te—C and N

Method 1: Ring Closure of a 2-Tellurium-Functionalized Enal with a Nitrogen Source

Variation 1: From 3-Oxoprop-1-ene-1-tellurenyl Bromides and Ammonia

Variation 2: From 3-[Dibromo(methyl)-4-tellanyl]prop-2-enals and Ammonia

Variation 3: From 3-[Dibromo(methyl)-4-tellanyl]prop-2-enals and Arylamines

Product Subclass 2: 1,2-Benzisotellurazoles

Synthesis by Ring-Closure Reactions

By Formation of One Te—N and One N—C Bond

Fragments Te—C—C and N

Method 1: Ring Closure of a 2-Tellurium-Functionalized Arylaldehyde with a Nitrogen Source

Variation 1: From 2-(Butyltellanyl)benzaldehyde

Variation 2: From 2-(Iminomethyl)benzenetellurenyl Chlorides

Product Subclass 3: Arenotellurazoles

Synthesis by Ring-Closure Reactions

By Formation of One Te—N Bond

Fragment Te—Arene—C—N

Method 1: From 2-(Butyltellanyl)benzaldehyde

Method 2: Cyclization of 2-(Iminomethyl)benzenetellurenyl Chlorides

Modification of 1,2-Benzisotellurazole Iodide by Alkylation

Product Subclass 3: Arenotellurazoles
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.25.3.1.1.2.3</td>
<td>Variation 3: From Ditellurides via 1,2,5-Oxatellurazoles</td>
<td>1014</td>
</tr>
<tr>
<td>11.25.3.2</td>
<td>Synthesis by Modification</td>
<td>1016</td>
</tr>
<tr>
<td>11.25.3.2.1</td>
<td>Addition Reactions</td>
<td>1016</td>
</tr>
<tr>
<td>11.25.3.2.1.1</td>
<td>Method 1: Reaction with Halogens</td>
<td>1016</td>
</tr>
<tr>
<td>11.25.3.2.1.2</td>
<td>Method 2: Formation of Complexes</td>
<td>1016</td>
</tr>
<tr>
<td>11.25.3.2.1.3</td>
<td>Method 3: Protonation</td>
<td>1016</td>
</tr>
<tr>
<td>11.25.3.2.1.4</td>
<td>Method 4: Methylation of 2-Phenylbenzotellurazole</td>
<td>1017</td>
</tr>
<tr>
<td>11.25.3.2.1.5</td>
<td>Method 5: Reaction of the Methyl Group in 2-Methylbenzotellurazolium Salts</td>
<td>1017</td>
</tr>
</tbody>
</table>

Keyword Index ... 1021
Author Index ... 1093
Abbreviations .. 1155
Volume 12:
Five-Membered Hetarenes with Two Nitrogen or Phosphorus Atoms

Preface ... V
Volume Editor’s Preface .. VII
Table of Contents .. XI

Introduction
R. Neier .. 1

12.1 Product Class 1: Pyrazoles
B. Stanovnik and J. Svete .. 15

12.2 Product Class 2: 1H- and 2H-Indazoles
W. Stadlbauer ... 227

12.3 Product Class 3: Imidazoles
M. R. Grimmert ... 325

12.4 Product Class 4: Benzimidazoles
M. R. Grimmert ... 529

12.5 Product Class 5: Azaindolizines with Two Nitrogen Atoms in the Five-Membered Ring
G. Hajos and Z. Riedl .. 613

12.6 Product Class 6: Azaphospholes and Azarsoles
A. Schmidpeter and K. Karaghiosoff 679

12.7 Product Class 7: Diphospholes
F. Mathey .. 705

Keyword Index .. 719
Author Index .. 741
Abbreviations ... 791
Table of Contents

Introduction
R. Neier

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Product Class 1: Pyrazoles</td>
<td>15</td>
</tr>
<tr>
<td>12.1.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>21</td>
</tr>
<tr>
<td>12.1.1.1</td>
<td>By Formation of One N—C and Two C—C Bonds</td>
<td>21</td>
</tr>
<tr>
<td>12.1.1.3</td>
<td>Method 1: From [(Arlydiazynyl)(methoxyacarbonylmethylene)]triphenyl-phosphoranes and Dichlorocarbene</td>
<td>21</td>
</tr>
<tr>
<td>12.1.2</td>
<td>By Formation of Two N—C Bonds</td>
<td>22</td>
</tr>
<tr>
<td>12.1.2.1</td>
<td>Fragments C—C—C and N—N</td>
<td>22</td>
</tr>
<tr>
<td>12.1.2.1</td>
<td>From 1,3-Dicarbonyl Compounds (and Acetals Thereof) and Hydrazines</td>
<td>22</td>
</tr>
<tr>
<td>12.1.2.1.1</td>
<td>Method 1: From 0,0-Acetals of 1,3-Dicarbonyl Compounds and Hydrazines</td>
<td>23</td>
</tr>
<tr>
<td>12.1.2.1.1</td>
<td>Variation 1: From Malonaldehyde Acetals and Hydrazines</td>
<td>23</td>
</tr>
<tr>
<td>12.1.2.1.2</td>
<td>Variation 2: From 3,3-Dialkoxalkan-1-ones and Hydrazines</td>
<td>24</td>
</tr>
<tr>
<td>12.1.2.1.2</td>
<td>Method 2: From Malonaldehyde and Derivatives and Hydrazines</td>
<td>25</td>
</tr>
<tr>
<td>12.1.2.1.3</td>
<td>Method 3: From β-Oxocarboxylic Aldehydes and Hydrazines</td>
<td>25</td>
</tr>
<tr>
<td>12.1.2.1.3.1</td>
<td>Variation 1: From Carboxyl Compounds and Alkyl Formate Followed by Reaction with Hydrazine Hydrate</td>
<td>26</td>
</tr>
<tr>
<td>12.1.2.1.4</td>
<td>Method 4: From β-Diketones and Hydrazines</td>
<td>28</td>
</tr>
<tr>
<td>12.1.2.1.4.1</td>
<td>Variation 1: From 2-Hydroxyiminono-1,3-dicarbonyl Compounds and Hydrazines</td>
<td>32</td>
</tr>
<tr>
<td>12.1.2.1.4.2</td>
<td>Variation 2: From 2-Acetoxy-1,3-dicarbonyl Compounds and Hydrazines</td>
<td>33</td>
</tr>
<tr>
<td>12.1.2.1.4.3</td>
<td>Variation 3: From Tetracarbonyl Compounds and Hydrazines</td>
<td>33</td>
</tr>
<tr>
<td>12.1.2.1.5</td>
<td>Method 5: From β-Diketones and Acylhydrazines</td>
<td>34</td>
</tr>
<tr>
<td>12.1.2.1.6</td>
<td>Method 6: From 2-Arylazo-1,3-dicarbonyl Compounds and Acylhydrazines</td>
<td>35</td>
</tr>
<tr>
<td>12.1.2.1.7</td>
<td>Method 7: From 3-Oxocarboxylic Acids and Hydrazines</td>
<td>36</td>
</tr>
<tr>
<td>12.1.2.1.7.1</td>
<td>Variation 1: From 3-Oxocarboxylic Acids and 1-Alkyl-1-nitrosohydrazines</td>
<td>41</td>
</tr>
<tr>
<td>12.1.2.1.7.2</td>
<td>Variation 2: From 3-Oxocarbodiimido Esters or 3-Oxocarbothioamides and Hydrazine</td>
<td>41</td>
</tr>
<tr>
<td>12.1.2.1.8</td>
<td>Method 8: From 3-Oxocarboxylic Acid Derivatives and Acylhydrazines</td>
<td>42</td>
</tr>
<tr>
<td>12.1.2.1.9</td>
<td>Method 9: From α-Cyano Ketones and Hydrazines</td>
<td>43</td>
</tr>
<tr>
<td>12.1.2.1.9.1</td>
<td>Variation 1: From α-Cyano-α-(N-methylanilino) Ketones and Hydrazines</td>
<td>44</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.9.2</td>
<td>Variation 2: From α-Cyano Ketones and Semicarbazides and Thiosemicarbazides</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.9.3</td>
<td>Variation 3: From α-Cyano Ketones and Arylsulfonylhazides</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.9.4</td>
<td>Variation 4: From α-Cyano-α-hydroxyimino Ketones and Hydrazines</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.10.1</td>
<td>Method 10: From Malonic Acid Derivatives and Hydrazines</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.10.2</td>
<td>Method 11: From Cyanoacetic Acid Esters and Hydrazine</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.10.3</td>
<td>Method 12: From Alkyl [Alkoxy(imino)methyl]acetates and Arylhydrazine</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.10.4</td>
<td>Method 13: From Malononitriles and Its Derivatives and Hydrazine</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.10.5</td>
<td>Method 14: From 2-Propenediimide Esters and Hydrazine</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.10.6</td>
<td>Method 15: From 2-Substituted Malononitriles and Hydrazine</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.10.7</td>
<td>Method 16: From Alk-2-en-1-ones and Hydrazine</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.10.8</td>
<td>Method 17: From 2-Acryloyloxiranes and Hydrazine</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.10.9</td>
<td>Method 18: From 2-Substituted Alk-2-en-1-ones and Hydrazine</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.11.3</td>
<td>Method 19: From 1,2-Disubstituted 3-(Dimethylamino)prop-2-en-1-ones and Hydrazine</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.11.4</td>
<td>Method 20: From 2-Acryloyl-3-(dimethylamino)prop-2-enoates and Hydrazine</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.11.5</td>
<td>Method 21: From Alkyl 2-Acryl-3-alkoxyprop-2-enoates and Hydrazine</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.11.6</td>
<td>Method 22: From 3-Haloalk-2-en-1-ones and Hydrazine</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.11.7</td>
<td>Method 23: From 3-(Alkylsulfonyl)-2-[(alkylsulfonyl)methyl]alk-2-en-1-ones and Hydrazine</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.11.8</td>
<td>Method 24: From Acrylketene O,N-Acetals or N,S-Acetals and Hydrazine</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.11.9</td>
<td>Method 25: From 3,3-Bis(methylsulfonyl)prop-2-en-1-ones and Hydrazine</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.12.14</td>
<td>Method 26: From Acrylic Acid Derivatives and Hydrazine</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.12.15</td>
<td>Method 27: From 3,3-Diamino-2-nitroprop-2-enethioamides and Hydrazine</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.12.16</td>
<td>Method 28: From 3-Aminoprop-2-enethioamide and Hydrazine</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.12.17</td>
<td>Method 29: From Prop-2-enanitrioles and Hydrazine</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.12.18</td>
<td>Method 30: From Prop-2-enanitrioles and Hydrazides or Thiohydrazides</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.12.19</td>
<td>Method 31: From (Alkoxymethylene)malononitriles and Hydrazine</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.12.20</td>
<td>Method 32: From (Aminomethylene)malononitriles and Hydrazine</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.12.21</td>
<td>Method 33: From (Alkylsulfonyl)acrylonitriles and Hydrazine</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.12.22</td>
<td>Method 34: From 2-Haloacrylonitriles and Hydrazine</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.12.23</td>
<td>Method 35: From 3-Haloacrylonitriles and Hydrazine</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.12.24</td>
<td>Method 36: From 2,3-Dihalofumaronitriles and Hydrazine</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.12.25</td>
<td>Method 37: From Cyanoketene N,S-Acetals or S,S-Acetals and Hydrazine</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.12.26</td>
<td>Method 38: From Tetracyanoethylene and Hydrazine</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.12.27</td>
<td>Method 39: From Alk-2-yn-1-ones and Hydrazine</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.12.28</td>
<td>Method 40: From Alk-2-ynenitriles and Hydrazine</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.12.29</td>
<td>Method 41: From 1,3-Dienes, Alk-1-en-3-ynes, or Alka-1,3-dienes and Hydrazine</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.12.30</td>
<td>Method 42: From Active Methylene Compounds and Diazonium Salts</td>
<td></td>
</tr>
<tr>
<td>12.1.1.2.1.12.31</td>
<td>Method 43: From Active Methylene Compounds and Tosyl Azide</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

12.1.1.2.1.2 From Other Compounds and Hydrazine .. 82
12.1.1.2.1.2.1 Method 1: From Haloalkenes, Hydroxyalkenes, Hydroxyalkynes, or Halo-, Hydroxy-, and Aminocarbonyl Compounds and Hydrazine 82
12.1.1.2.1.2.2 Method 2: From Nitroalkanes or 1-Nitroalkenes and Hydrazine 83
12.1.1.2.1.2.2.1 Variation 1: From 1,1-Dinitroalkanes and Hydrazine 83
12.1.1.2.1.2.2.2 Variation 2: From 1,3-Dinitroalkanes and Hydrazine 84
12.1.1.3 By Formation of One N—C and One C—C Bond ... 84
12.1.1.3.1 Fragments N—N—C and C—C ... 84
12.1.1.3.1.1 From Diazocompounds by 1,3-Dipolar Cycloadditions 84
12.1.1.3.1.1.1 Method 1: From Diazoaalkanes and Alkynes 84
12.1.1.3.1.1.1.1 Variation 1: From Furansylalkynes or 1-Diazo-1-furansylalkanes .. 87
12.1.1.3.1.1.2 Method 2: From Diazoaalkanes and Alkenes Followed by Elimination 88
12.1.1.3.1.1.3 Method 3: From Disubstituted Diazoaalkanes and Alkynes 90
12.1.1.3.1.1.4 Method 4: From 2-Diazocarbonyl Compounds and Alkynes 91
12.1.1.3.1.1.5 Method 5: From Alkenes and Diazocarbonyl Compounds Followed by Elimination ... 91
12.1.1.3.1.1.6 Method 6: From Dimethyl Diazomalonate and Dimethyl Malonate 92
12.1.1.3.1.2 From Nitrile Imines ... 92
12.1.1.3.1.2.1 Method 1: From Nitrile Imines and Alkynes 92
12.1.1.3.1.2.2 Method 2: From Nitrile Imines and Alkenes with a Leaving Group at the 3-Position ... 93
12.1.1.3.1.2.2.1 Variation 1: From Nitrile Imines and 1,3-Dicarbonyl Compounds 94
12.1.1.3.1.2.2.2 Variation 2: From 1-Perfluoroalkyl-1,3-dicarbonyl Compounds and Hydrazonoyl Halides ... 94
12.1.1.3.1.2.2.3 Variation 3: From Ketene Aminals and Nitrile Imines 95
12.1.1.3.1.2.2.4 Variation 4: From Hydrazonoyl Halides and Phosphoranes 96
12.1.1.3.1.3 From Hydrazones and 1,2-Dicarbonyl Compounds 97
12.1.1.3.1.4 From Arylhydrazones and ß-Oxo Esters .. 98
12.1.1.3.1.5 From Arylhydrazones and Dimethyl Acetylenedicarboxylate 98
12.1.1.3.1.6 Fragments N—N—C and C ... 99
12.1.1.3.1.6.1 Method 1: From Hydrazones or Azines by Vilsmeyer–Haack Reaction ... 99
12.1.1.3.1.6.2 Method 2: From Aldehydes and Tosylhydrazones of (Dialkoxyposophoryl)acetaldheydes .. 99
12.1.1.3.1.6.2.1 Variation 1: From Aldehydes and Alkylated Tosylhydrazono Phosphonates 100
12.1.1.3.1.6.2.2 Method 3: From Hydrazones and Carbonyic Acid Derivatives 101
12.1.1.3.1.6.2.3 Variation 1: From Hydrazones and Aroyl Chloride 104
12.1.1.3.1.6.2.4 Method 4: From Arylhydrazones of Active Methylene Compounds and ß-Halocarbonyl Compounds and Chloracetoneritile 105
12.1.1.3.1.6.2.5 Method 5: From Hydrazones and (Dichloromethylene)dimethylammonium Chloride ... 105
12.1.1.3.1.6.2.6 Method 6: From Benzoin Phenylhydrazones and Aldehydes 106
12.1.1.3.1.6.2.7 Method 7: From Monohydrazones of 1,2-Dicarbonyl Compounds and Diethyl [[Ethylsulfanyl]methyl]phosphonate 106
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1.1.3.2.8</td>
<td>Method 8: From Phenylhydrazones and N-Aryltrifluoracetimidoyl Iodides</td>
<td>107</td>
</tr>
<tr>
<td>12.1.3.4</td>
<td>By Formation of One N—N Bond</td>
<td>108</td>
</tr>
<tr>
<td>12.1.4.1</td>
<td>Fragment N—C—C—C—N</td>
<td>108</td>
</tr>
<tr>
<td>12.1.4.1.1</td>
<td>Method 1: From 1,3-Dioximes</td>
<td>108</td>
</tr>
<tr>
<td>12.1.4.1.2</td>
<td>Method 2: From β-Aminothiocinnamic Acid Anilide</td>
<td>109</td>
</tr>
<tr>
<td>12.1.4.1.3</td>
<td>Method 3: From N,N-Diaryl-3-iminoprop-1-enamines</td>
<td>109</td>
</tr>
<tr>
<td>12.1.5.1</td>
<td>By Formation of One N—C Bond</td>
<td>110</td>
</tr>
<tr>
<td>12.1.5.1.1</td>
<td>Method 1: From Hydrazones of Alkane-1,3-diones</td>
<td>110</td>
</tr>
<tr>
<td>12.1.5.1.1.1</td>
<td>Variation 1: From Hydrazones of 1,1-Dialkoxy-3-oxoalkanes</td>
<td>110</td>
</tr>
<tr>
<td>12.1.5.1.1.2</td>
<td>Variation 2: From Arylhydrazones of Methyl Ketones by Acylation of the Methyl Group</td>
<td>111</td>
</tr>
<tr>
<td>12.1.5.1.2</td>
<td>Method 2: From 3-Halo-1-hydrazonoacetones</td>
<td>112</td>
</tr>
<tr>
<td>12.1.5.1.3</td>
<td>Method 3: From Alk-1-ethylhydrazones</td>
<td>113</td>
</tr>
<tr>
<td>12.1.5.1.4</td>
<td>Method 4: From 3-(2-Alklylideneydrazino)propanenitriles</td>
<td>113</td>
</tr>
<tr>
<td>12.1.5.1.5</td>
<td>Method 5: From 2-Cyano-3-(2-alklyhydrazino)- or 2-Cyano-3-(2-arylhydrazino)but-2-enethioamides</td>
<td>114</td>
</tr>
<tr>
<td>12.1.5.1.6</td>
<td>Method 6: From [3-(Ethoxycarbonyl)-3-hydrazono-2-oxopropyl]dimethylsulfonium Salts</td>
<td>114</td>
</tr>
<tr>
<td>12.1.5.1.7</td>
<td>Method 7: From 3-Hydrazonoalkanoic Acid Derivatives</td>
<td>115</td>
</tr>
<tr>
<td>12.1.5.1.8</td>
<td>Method 8: From Alk-2-ynohydrazides</td>
<td>116</td>
</tr>
<tr>
<td>12.1.5.1.9</td>
<td>Method 9: From Azines</td>
<td>116</td>
</tr>
<tr>
<td>12.1.5.1.9.1</td>
<td>Variation 1: From Symmetrical Acrolein Azines with Leaving Groups at 3-Position</td>
<td>117</td>
</tr>
<tr>
<td>12.1.5.1.9.2</td>
<td>Variation 2: From Phosphonium-Substituted Azines</td>
<td>117</td>
</tr>
<tr>
<td>12.1.5.1.10</td>
<td>Method 10: From 3-Diazoolk-1-enes</td>
<td>118</td>
</tr>
<tr>
<td>12.1.5.1.11</td>
<td>Method 11: From 3,3-Disubstituted Alk-2-en-1-one Hydrazones</td>
<td>119</td>
</tr>
<tr>
<td>12.1.5.1.12</td>
<td>Method 12: From 1,3-Substituted 3-Arylhydrazonoprop-1-enones by Oxidative Cyclization</td>
<td>120</td>
</tr>
<tr>
<td>12.1.6.1</td>
<td>By Formation of One C—C Bond</td>
<td>121</td>
</tr>
<tr>
<td>12.1.6.1.1</td>
<td>Fragment C—N—N—C—C</td>
<td>121</td>
</tr>
<tr>
<td>12.1.6.1.1.1</td>
<td>Method 1: From Mono(methylhydrazones) or Mono[[alkoxy carbonyl]methyl]hydrazones of 1,2-Dicarbonyl Compounds</td>
<td>121</td>
</tr>
<tr>
<td>12.1.6.1.1.2</td>
<td>Method 2: From Mono(acetylhydrazones) of 1,3-Dicarbonyl Compounds</td>
<td>122</td>
</tr>
<tr>
<td>12.1.6.1.2</td>
<td>Method 3: From Cinnamaldehyde (2-Phosphoniovinyl)hydrazone Halides</td>
<td>123</td>
</tr>
<tr>
<td>12.1.1.2</td>
<td>Synthesis by Ring Transformation</td>
<td>124</td>
</tr>
<tr>
<td>12.1.2.1</td>
<td>Ring Enlargement</td>
<td>124</td>
</tr>
<tr>
<td>12.1.2.1.1</td>
<td>From Three-Membered Hetero- and Carbocycles</td>
<td>124</td>
</tr>
<tr>
<td>12.1.2.1.1.1</td>
<td>Method 1: Synthesis from Cyclopropanes</td>
<td>124</td>
</tr>
<tr>
<td>12.1.2.1.2</td>
<td>Method 2: Synthesis from Oxiranes</td>
<td>125</td>
</tr>
<tr>
<td>12.1.2.1.3</td>
<td>Method 3: Synthesis from Thiirene 1,1-Dioxides</td>
<td>126</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>12.1.2.1.1.3.1</td>
<td>Variation 1: By Addition of Diazoalkane</td>
<td>126</td>
</tr>
<tr>
<td>12.1.2.1.1.3.2</td>
<td>Variation 2: By Addition of Nitrile Imine</td>
<td>126</td>
</tr>
<tr>
<td>12.1.2.1.1.4</td>
<td>Method 4: Synthesis from Aziridines</td>
<td>127</td>
</tr>
<tr>
<td>12.1.2.1.2</td>
<td>From Four-Membered Heterocycles</td>
<td>128</td>
</tr>
<tr>
<td>12.1.2.1.2.1</td>
<td>Method 1: Synthesis from 1,3-Dithietanes</td>
<td>128</td>
</tr>
<tr>
<td>12.1.2.2</td>
<td>Retention of Ring Size</td>
<td>128</td>
</tr>
<tr>
<td>12.1.2.2.1</td>
<td>Method 1: Synthesis from Furans</td>
<td>128</td>
</tr>
<tr>
<td>12.1.2.2.1.1</td>
<td>Variation 2: From 3-(Dithoxymethyl)-2-ethoxytetrahydrofuran</td>
<td>128</td>
</tr>
<tr>
<td>12.1.2.2.1.2</td>
<td>Variation 2: From Furan-2,4(3H,5H)-ones or 4-Hydroxyfuran-2(5H)-ones</td>
<td>129</td>
</tr>
<tr>
<td>12.1.2.2.1.3</td>
<td>Variation 3: From 3,4-Bis(arylhydrazono)dihydrofuran-2(3H)-ones</td>
<td>130</td>
</tr>
<tr>
<td>12.1.2.2.1.4</td>
<td>Variation 4: From 3-Acylidihydrofuran-2(3H)-ones</td>
<td>130</td>
</tr>
<tr>
<td>12.1.2.2.1.5</td>
<td>Variation 5: From 2-(Arylmethylene)furan-2(3H)-ones</td>
<td>132</td>
</tr>
<tr>
<td>12.1.2.2.1.6</td>
<td>Variation 6: From Furan-3(2H)-ones</td>
<td>132</td>
</tr>
<tr>
<td>12.1.2.2.1.7</td>
<td>Variation 7: From 2-Alkoxy- or 2-Hydroxyfuran-3(2H)-ones</td>
<td>133</td>
</tr>
<tr>
<td>12.1.2.2.2</td>
<td>Method 2: Synthesis from Pyroles</td>
<td>134</td>
</tr>
<tr>
<td>12.1.2.2.2.1</td>
<td>Variation 1: From 2-(Dicyanomethylene)pyrrolidines</td>
<td>134</td>
</tr>
<tr>
<td>12.1.2.2.2.2</td>
<td>Variation 2: From 5-Substituted 2-Oxopyrrolidine-3-carbaldehydes</td>
<td>135</td>
</tr>
<tr>
<td>12.1.2.2.2.3</td>
<td>Variation 3: From 3-[(Dimethylamino)methylene]pyrrolidin-2-one</td>
<td>135</td>
</tr>
<tr>
<td>12.1.2.2.3</td>
<td>Method 3: Synthesis from Isoxazoles</td>
<td>136</td>
</tr>
<tr>
<td>12.1.2.2.3.1</td>
<td>Variation 1: From Isoxazoles and Hydrazines</td>
<td>136</td>
</tr>
<tr>
<td>12.1.2.2.3.2</td>
<td>Variation 2: From Isoxazolium Salts and Hydrazines</td>
<td>137</td>
</tr>
<tr>
<td>12.1.2.2.3.3</td>
<td>Variation 3: From 3,5-Disubstituted Isoxazoles by Reductive Cleavage of the O—N Bond Followed by Treatment with Hydrazine</td>
<td>138</td>
</tr>
<tr>
<td>12.1.2.2.4</td>
<td>Method 4: Synthesis from Oxazoles</td>
<td>138</td>
</tr>
<tr>
<td>12.1.2.2.4.1</td>
<td>Variation 1: From Oxazole-4-carboxyhydrazides</td>
<td>138</td>
</tr>
<tr>
<td>12.1.2.2.4.2</td>
<td>Variation 2: From 2-(Dicyanomethylene)oxazolidine</td>
<td>139</td>
</tr>
<tr>
<td>12.1.2.2.4.3</td>
<td>Variation 3: From 4-[(Dimethylamino)methylene]oxazol-5(4H)-ones</td>
<td>139</td>
</tr>
<tr>
<td>12.1.2.2.5</td>
<td>Method 5: Synthesis from Isothiazoles</td>
<td>140</td>
</tr>
<tr>
<td>12.1.2.2.6</td>
<td>Method 6: Synthesis from Thiazoles</td>
<td>140</td>
</tr>
<tr>
<td>12.1.2.2.7</td>
<td>Method 7: Synthesis from Imidazoles</td>
<td>141</td>
</tr>
<tr>
<td>12.1.2.2.7.1</td>
<td>Variation 1: From 2-(Aroylmethylene)imidazolidines</td>
<td>141</td>
</tr>
<tr>
<td>12.1.2.2.7.2</td>
<td>Variation 2: From 3-Amino-1-methylbenzimidazolium Salts</td>
<td>142</td>
</tr>
<tr>
<td>12.1.2.2.8</td>
<td>Method 8: Synthesis from 1,2,3-Oxadiazolium-5-olates (Sydnones)</td>
<td>143</td>
</tr>
<tr>
<td>12.1.2.2.9</td>
<td>Method 9: Synthesis from 1,2,4-Oxadiazoles</td>
<td>143</td>
</tr>
<tr>
<td>12.1.2.2.10</td>
<td>Method 10: Synthesis from 1,3,4-Oxadiazoles</td>
<td>144</td>
</tr>
<tr>
<td>12.1.2.2.10.1</td>
<td>Variation 1: from 1,3,4-Oxadiazolium-2-olates (Isoxydones)</td>
<td>144</td>
</tr>
<tr>
<td>12.1.2.2.10.2</td>
<td>Variation 2: From 1,3,4-Oxadiazol-2-ylacetones</td>
<td>145</td>
</tr>
<tr>
<td>12.1.2.2.11</td>
<td>Method 11: Synthesis from 1,2,3-Thiadiazoles</td>
<td>146</td>
</tr>
<tr>
<td>12.1.2.2.12</td>
<td>Method 12: Synthesis from 1,2,3-Triazoles</td>
<td>147</td>
</tr>
<tr>
<td>12.1.2.2.13</td>
<td>Method 13: Synthesis from Tetrazoles</td>
<td>147</td>
</tr>
<tr>
<td>12.1.2.3</td>
<td>Ring Contraction</td>
<td>148</td>
</tr>
<tr>
<td>12.1.2.3.1</td>
<td>From Six-Membered Rings</td>
<td>148</td>
</tr>
<tr>
<td>12.1.2.3.1.1</td>
<td>Method 1: Synthesis from Pyrans</td>
<td>148</td>
</tr>
<tr>
<td>12.1.2.3.1.1.1</td>
<td>Variation 1: From Pyranones and Benzopyranone</td>
<td>148</td>
</tr>
<tr>
<td>12.1.2.3.1.2</td>
<td>Variation 2: From 2H-Pyran-4(3H)-ones</td>
<td>150</td>
</tr>
<tr>
<td>Table of Contents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XVI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.1.2.3.1.3 Variation 3: From 3-Acetyldihydro-2H-pyran-2,4(3H)-diones</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>12.1.2.3.1.2 Method 2: Synthesis from Pyridines</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>12.1.2.3.1.3 Method 3: Synthesis from 1,3-Dioxanes</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>12.1.2.3.1.4 Method 4: Synthesis from 1,3-Oxazines</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>12.1.2.3.1.5 Method 5: Synthesis from Pyridazines</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>12.1.2.3.1.5.1 Variation 1: From 2-Substituted 5,6-Diphenyl-2,3-dihydroprizadine</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>12.1.2.3.1.5.2 Variation 2: From 2-Substituted 4-Chloro-, 4-Hydroxy-, 4-Alkoxy-, and 4-(Alkylsulfanyl)pyrazadazin-3(2H)-ones</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>12.1.2.3.1.6 Method 6: Synthesis from Pyrimidines</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>12.1.2.3.1.6.1 Variation 1: From Pyrimidines and Hydrazine Hydrate</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>12.1.2.3.1.6.2 Variation 2: From 1-Aryl-5-bromo-6-methyl/ pyrimidin-2,4(1H,3H)-diones</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>12.1.2.3.1.7 Method 7: Synthesis from 1,2,6-Thiadiazines</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>12.1.2.3.1.7.1 Variation 1: From 1,2,6-Thiadiazines by Extrusion of Sulfur</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>12.1.2.3.1.7.2 Variation 2: From 1,2,6-Thiadiazines and Hydrazine Hydrate</td>
<td>157</td>
<td></td>
</tr>
<tr>
<td>12.1.2.3.1.8 Method 8: Synthesis from 1,3,4-Thiadiazines</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>12.1.2.3.1.9 Method 9: Synthesis from Tetrazines</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>12.1.2.3.2 From Seven-Membered Rings</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>12.1.2.3.2.1 Method 1: Synthesis from 1H-1,5-Diazepines</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>12.1.2.3.2.2 Method 2: Synthesis from 1,3,4-Thiadiazepines</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>12.1.3 Aromatization</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>12.1.3.1 By Dehydrogenation</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>12.1.3.1.1 Method 1: With p-Chloranil</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>12.1.3.1.2 Method 2: With Bromine</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>12.1.3.1.3 Method 3: With Lead(IV) Acetate</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>12.1.3.1.4 Method 4: With Iodobenzene Diacetate</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>12.1.3.2 By Elimination</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>12.1.3.2.1 Method 1: By Dehydration of 4,5-Dihydropyrazol-4-ols</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>12.1.3.2.1.1 Variation 1: By Dehydration of 2-(Arylsulfonyl)-Substituted 2,3-Dihydropyrazol-5-ols and 2,3-Dihydropyrazol-5-amines</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>12.1.3.2.1.2 Variation 2: By Dehydration of 4-(Phenylsulfonyl)-4,5-dihydropyrazole Derivatives</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>12.1.3.2.1.3 Variation 3: By Elimination of Benzamide from Methyl 3-(Benzyloaminio)-4,5-dihydro-3H-pyrazole-3-carboxylate Derivatives</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>12.1.3.2.2 Method 2: Aromatization by Cleavage of the Alkylidene Structural Element</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>12.1.3.3 By Rearrangement</td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>12.1.4 Synthesis by Substituent Modification</td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>12.1.4.1 Substitution of Existing Substituents</td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>12.1.4.1.1 Of Hydrogen</td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>12.1.4.1.1.1 Method 1: Deuteration of Pyrazoles</td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>12.1.4.1.1.2 Method 2: Metallation of Pyrazoles</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>12.1.4.1.1.3 Method 3: C-Acylation and C-Alkylation</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>12.1.4.1.1.3.1 Variation 1: C-Acylation with Acyl Halides</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>Subsection</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>12.1.4.1.2.2 Variation 2: C-Acylation with Acetic Anhydride</td>
<td>171</td>
<td></td>
</tr>
<tr>
<td>12.1.4.1.3.3 Variation 3: C-Acylation with Oxalyl Chloride</td>
<td>171</td>
<td></td>
</tr>
<tr>
<td>12.1.4.1.3.4 Variation 4: C-Alkylation at Position 4</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>12.1.4.1.3.5 Variation 5: C-Alkylation at Position 5</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>12.1.4.1.4 Method 4: Halogenation</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>12.1.4.1.4.1 Variation 1: Halogenation of 1,3-Disubstituted 1H-Pyrazol-5-ols at Position 4</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>12.1.4.1.5 Method 5: Nitration</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>12.1.4.1.5.1 Variation 1: C-Nitration of Pyrazoles with Nitric Acid</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>12.1.4.1.5.2 Variation 2: C-Nitration of Pyrazoles with Acyl Nitrates</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>12.1.4.1.6 Method 6: Nitrosation</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>12.1.4.1.2 Of Carbon Functionalities</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>12.1.4.1.2.1 Method 1: Decarboxylation</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>12.1.4.1.2.2 Method 2: N-Dealkylation</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>12.1.4.1.3 Of Heteroatoms</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>12.1.4.1.3.1 Substitution of Halogen</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>12.1.4.1.3.1.1 Method 1: Lithiation</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>12.1.4.1.3.1.2 Method 2: With Anionic Nucleophiles</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>12.1.4.1.3.1.3 Method 3: With Ammonia and Amines</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>12.1.4.1.3.1.3.1 Variation 1: With Ammonia and Amines in the Presence of Copper Powder or Copper(I) Bromide (Ullmann Reaction)</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>12.1.4.1.3.2 Substitution of Oxygen Functional Groups</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>12.1.4.1.3.3 Substitution of Nitrogen Functional Groups</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>12.1.4.2 Addition Reactions</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>12.1.4.2.1 Addition of Organic Groups</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>12.1.4.2.1.1 N-Acylation</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>12.1.4.2.1.1.1 Method 1: With Carboxylic Anhydrides</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>12.1.4.2.1.1.2 Method 2: With Acyl Chlorides</td>
<td>189</td>
<td></td>
</tr>
<tr>
<td>12.1.4.2.1.1.3 Method 3: With Diazo Ketones</td>
<td>191</td>
<td></td>
</tr>
<tr>
<td>12.1.4.2.1.2 N-Arylation</td>
<td>191</td>
<td></td>
</tr>
<tr>
<td>12.1.4.2.1.2.1 Method 1: With Aryl Halides</td>
<td>191</td>
<td></td>
</tr>
<tr>
<td>12.1.4.2.1.3 N-Alkylation</td>
<td>192</td>
<td></td>
</tr>
<tr>
<td>12.1.4.2.1.3.1 Method 1: N-Alkylation with Alkyl Halides</td>
<td>192</td>
<td></td>
</tr>
<tr>
<td>12.1.4.2.1.3.2 Method 2: N-Alkylation by Michael Addition</td>
<td>193</td>
<td></td>
</tr>
<tr>
<td>12.1.4.2.1.3.2.1 Variation 1: N-Cyanomethylation with Acrylonitrile</td>
<td>194</td>
<td></td>
</tr>
<tr>
<td>12.1.4.2.1.4 Synthesis of Pyrazolium Compounds by Protonation</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>12.1.4.2.1.5 Synthesis of Pyrazolium Compounds by Quaternization</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>12.1.4.2.2 Addition of Heteroatoms</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>12.1.4.2.2.1 Method 1: N-Nitration of N-Unsubstituted Pyrazoles</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>12.1.4.2.2.2 Method 2: Synthesis of Pyrazolium Compounds by N-Oxidation</td>
<td>197</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

12.1.4.3 Modification of Substituents ... 198
12.1.4.3.1 Modification of Carbon Functional Groups 198
12.1.4.3.1.1 Method 1: Reduction of 4-Alkylidenepyrrozol-5(4H)-ones 198
12.1.4.3.1.2 Method 2: Hydrolysis of the Trifluoroacetyl Group to the Carboxy Group 198
12.1.4.3.1.3 Method 3: Aromatization by 1,4-Addition to 4-Benzylidene-4H-pyrazoles 199
12.1.4.3.1.4 Method 4: Oxidation of Alkyl Group 200
12.1.4.3.2 Modification of Heterofunctional Groups 200
12.1.4.3.2.1 Modification of Hydroxy Groups 200
12.1.4.3.2.1.1 Method 1: Acylation of the Hydroxy Group 200
12.1.4.3.2.1.2 Method 2: Alkylation of the Hydroxy Group 201
12.1.4.3.2.2 Modification of the Nitro Group 202
12.1.4.3.2.3 Modification of the Amino Group 202
12.1.4.3.2.4 Method 1: Acylation of the Amino Group 202
12.1.4.4 Cross-Coupling Reactions of Metalated Pyrazole Derivatives 203
12.1.4.4.1 Cross-Coupling Reactions at Position 4 203
12.1.4.4.2 Cross-Coupling Reactions at Position 5 203
12.1.4.4.2.1 Method 1: From 5-Lithio-1-(4-methoxybenzyl)-1H-pyrazole and Electrophiles ... 203
12.1.4.4.2.2 Method 2: Palladium-Catalyzed Cross Coupling of [1-(Benzzyloxy)-1H-pyrazol-5-yl]zinc Chloride with Electrophiles 205

12.2 **Product Class 2: 1H- and 2H-Indazoles**
W. Stadlbauer

12.2 Product Class 2: 1H- and 2H-Indazoles 227
12.2.1 Synthesis by Ring-Closure Reactions 230
12.2.1.1 By Annulation to an Arene ... 230
12.2.1.1.1 By Formation of One N—N and One N—C Bond 230
12.2.1.1.1.1 Fragments N—Arene—C and N 230
12.2.1.1.1.2 Method 1: From 2-Alkylanilines by Diazotization 230
12.2.1.1.1.3 Method 2: From 2-Alkylanilines by Nitrosation 232
12.2.1.1.1.4 Method 3: From 2-Acylanilines by Diazotization and Reductive Cyclization ... 233
12.2.1.1.2.1 Method 4: From 1-Acyl-2-nitroarenes and Amines 234
12.2.1.1.2.2 By Formation of Two N—C Bonds 234
12.2.1.1.2.2.1 Fragments Arene—C and N—N 235
12.2.1.1.2.2.1.1 Method 1: From 1-Acyl-2-haloarenes and Hydrazine 235
12.2.1.1.2.2.1.2 Method 2: From 1-Acyl-2-hydroxy- or 1-Acyl-2-aminoarenes and Hydrazines ... 236
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2.1.2.3</td>
<td>Method 3: From 1-Acyl-2-azidoarenes and Hydrazines</td>
<td>237</td>
</tr>
<tr>
<td>12.2.1.2.4</td>
<td>Method 4: From 2-Acylicyclohexanones and Hydrazines</td>
<td>237</td>
</tr>
<tr>
<td>12.2.1.3</td>
<td>By Formation of One N—C and One C—C Bond</td>
<td>238</td>
</tr>
<tr>
<td>12.2.1.3.1</td>
<td>Fragments N—N—Arene and C</td>
<td>239</td>
</tr>
<tr>
<td>12.2.1.3.1.1</td>
<td>Method 1: From Phenylhydrazines and Carbonic Acid Derivatives</td>
<td>239</td>
</tr>
<tr>
<td>12.2.1.3.1.2</td>
<td>Method 2: From Azobenzenes and a C1 Fragment via Metal Complexes</td>
<td>239</td>
</tr>
<tr>
<td>12.2.1.3.1.3</td>
<td>Method 3: From Azobenzenes and C1 Fragments Such as Methanol or Carbenes</td>
<td>240</td>
</tr>
<tr>
<td>12.2.1.3.2</td>
<td>Fragments Arene and N—N—C</td>
<td>241</td>
</tr>
<tr>
<td>12.2.1.3.2.1</td>
<td>Method 1: From Cyclohexanediones, Benzoquinones, or Arynes and Hydrazones</td>
<td>241</td>
</tr>
<tr>
<td>12.2.1.3.2.2</td>
<td>Method 2: From Benzoquinones or Arynes with Diazalkanes</td>
<td>242</td>
</tr>
<tr>
<td>12.2.1.4</td>
<td>By Formation of One N—N Bond</td>
<td>243</td>
</tr>
<tr>
<td>12.2.1.4.1</td>
<td>Fragment N—Arene—C—N</td>
<td>243</td>
</tr>
<tr>
<td>12.2.1.4.1.1</td>
<td>Method 1: From 2-Acyl-1-aminoarenes</td>
<td>243</td>
</tr>
<tr>
<td>12.2.1.4.1.2</td>
<td>Method 2: From 2-Acyl-1-azidoarenes</td>
<td>243</td>
</tr>
<tr>
<td>12.2.1.4.1.3</td>
<td>Method 3: From 2-Aminoalkyl- or 2-Acyl-1-nitroarenes</td>
<td>245</td>
</tr>
<tr>
<td>12.2.1.5</td>
<td>By Formation of One N—C Bond</td>
<td>246</td>
</tr>
<tr>
<td>12.2.1.5.1</td>
<td>Fragment N—N—Arene—C</td>
<td>247</td>
</tr>
<tr>
<td>12.2.1.5.1.1</td>
<td>Method 1: From 2-Carboxy- or 2-Acyl-1-hydrazinobenzenes</td>
<td>247</td>
</tr>
<tr>
<td>12.2.1.5.1.2</td>
<td>Method 2: From 2-Acyl- or 2-Alkyl-1-azidoarenes</td>
<td>248</td>
</tr>
<tr>
<td>12.2.1.5.1.3</td>
<td>Method 3: From 2-Acyl- or 2-Alkyl-1-azobenzenes</td>
<td>249</td>
</tr>
<tr>
<td>12.2.1.5.2</td>
<td>Fragment N—N—C—Arene</td>
<td>249</td>
</tr>
<tr>
<td>12.2.1.5.2.1</td>
<td>Method 1: From 2-Halobenzohydrazides or 2-Halobenzoxyldrazones</td>
<td>249</td>
</tr>
<tr>
<td>12.2.1.5.2.2</td>
<td>Method 2: From 2-Azidobenzohydrazides or 2-Azidobenzoxyldrazones</td>
<td>250</td>
</tr>
<tr>
<td>12.2.1.5.2.3</td>
<td>Method 3: From 2-(Nitrobenzyl)drazones</td>
<td>251</td>
</tr>
<tr>
<td>12.2.1.5.2.4</td>
<td>Method 4: From Benzohydrazides and Hydrazones of Aldehydes and Ketones</td>
<td>251</td>
</tr>
<tr>
<td>12.2.1.6</td>
<td>By Formation of One C—C Bond</td>
<td>252</td>
</tr>
<tr>
<td>12.2.1.6.1</td>
<td>Fragment Arene—N—N—C</td>
<td>252</td>
</tr>
<tr>
<td>12.2.1.6.1.1</td>
<td>Method 1: From (2-Alkylidenehydrazino)arenes</td>
<td>252</td>
</tr>
<tr>
<td>12.2.1.6.1.2</td>
<td>Method 2: From (2-Alkylidenehydrazino)arenes by Rearrangement</td>
<td>253</td>
</tr>
<tr>
<td>12.2.1.6.1.3</td>
<td>Method 3: From Carbamic Acid Azides by Curtius Rearrangement</td>
<td>253</td>
</tr>
<tr>
<td>12.2.1.2</td>
<td>By Annulation to the Heterocyclic Ring</td>
<td>254</td>
</tr>
<tr>
<td>12.2.1.2.1</td>
<td>By Formation of Two C—C Bonds</td>
<td>254</td>
</tr>
<tr>
<td>12.2.1.2.1.1</td>
<td>Fragments Pyrazole—C and C—C</td>
<td>254</td>
</tr>
<tr>
<td>12.2.1.2.1.1.1</td>
<td>Method 1: From 4-Vinylpyrazoles and Dienophiles</td>
<td>254</td>
</tr>
<tr>
<td>12.2.1.2.1.2</td>
<td>Fragments C—Pyrazole—C and C—C</td>
<td>255</td>
</tr>
<tr>
<td>12.2.1.2.1.2.1</td>
<td>Method 1: From 4,5-Dimethylene-4,5-dihydro-1H-pyrazoles and Dienophiles</td>
<td>255</td>
</tr>
</tbody>
</table>
12.2 Method 2: From Pyrazole-4,5-dicarbaldehyde and Oxoaldehyde
- Page 256

12.2.1 Method 1: From 4-Formylpyrazoles and Diethyl Succinate
- Page 256

12.2.1.3 Method 2: From 3-Methylpyrazoles and α-Oxo Ketenes
- Page 256

12.2.1.2 By Formation of One C—C Bond
- Page 257

12.2.1.2.1 Fragment C—C—Pyrazole—C—C
- Page 257

12.2.2 Synthesis by Ring Transformation
- Page 258

12.2.2.1 Rearrangement of Indoles to Indoxazoles
- Page 261

12.2.2.2 Rearrangement of 1,2-Isoxazoles or 1,2,4-Oxadiazoles
- Page 264

12.2.2.3 Ring Contraction
- Page 266

12.2.2.3.1 Of a Six-Membered Heterocycle
- Page 266

12.2.2.3.2 Of a Seven-Membered Heterocycle
- Page 268

12.2.2.3.3 Of a Seven-Membered Carbocycle
- Page 269

12.2.3 Aromatization
- Page 269

12.2.3.1 Aromatization of the Five-Membered Heterocycle
- Page 269

12.2.3.2 Aromatization of the Six-Membered Carbocycle
- Page 270

12.2.4 Synthesis by Substituent Modification
- Page 271

12.2.4.1 Addition Reactions
- Page 272

12.2.4.1.1 Formation of Indazolium Salts by N-Alkylation
- Page 272

12.2.4.1.2 Introduction of a 1-Hydroxyalkyl Group by Addition of 1H-Indazole to Aldehydes
- Page 273

12.2.4.1.3 Introduction of Alkyl or Alkenyl Groups by Addition of Indazole to Alkenes or Alkynes
- Page 274

12.2.4.1.4 Annulation of a Ring System by Addition to the Heterocyclic Ring
- Page 275

12.2.4.2 Addition of Heteroatoms
- Page 277

12.2.4.2.1 By Oxidation
- Page 277

12.2.4.2.2 Reduction (Hydrogenation) of the Benzo Ring
- Page 277

12.2.4.2 Substitution of Existing Substituents
- Page 278

12.2.4.2.1 Of Hydrogen
- Page 278

12.2.4.2.1.1 Deuterium Exchange
- Page 278

12.2.4.2.1.2 Halogenation
- Page 278

12.2.4.2.1.3 Alkoxylation
- Page 279
| 12.2.4.2.1.4 Method 4: | Sulfonation | 279 |
| 12.2.4.2.1.5 Method 5: | Nitration | 280 |
| 12.2.4.2.1.6 Method 6: | Azo Coupling | 281 |
| 12.2.4.2.1.7 Method 7: | Amination | 282 |
| 12.2.4.2.1.8 Method 8: | Phosphorylation | 283 |
| 12.2.4.2.1.9 Method 9: | Alkylation | 283 |
| 12.2.4.2.1.10 Method 10: | Arylation | 286 |
| 12.2.4.2.1.11 Method 11: | Glycosylation | 287 |
| 12.2.4.2.1.12 Method 12: | Acylation and Carboxylation | 289 |
| 12.2.4.2.1.13 Method 13: | Metalation | 292 |
| 12.2.4.2.2 Of Metals | | 293 |
| 12.2.4.2.2.1 Method 1: | Alkylation of Sodium and Silver Salts | 294 |
| 12.2.4.2.2.2 Method 2: | Glycosylation of 1-(Trimethylsilyl)-1H-indazoles | 294 |
| 12.2.4.2.2.3 Method 3: | Acylation of Silver Salts | 295 |
| 12.2.4.2.3 Of Carbon Functionalities | | 295 |
| 12.2.4.2.3.1 Method 1: | Dealkylation | 295 |
| 12.2.4.2.3.2 Method 2: | Dearylation | 296 |
| 12.2.4.2.3.3 Method 3: | Deacylation and Decarboxylation | 297 |
| 12.2.4.2.4 Of Heteroatoms | | 299 |
| 12.2.4.2.4.1 Method 1: | Removal or Exchange of Halogen Atoms | 299 |
| 12.2.4.2.4.2 Method 2: | Removal or Exchange of Hydroxy Groups | 300 |
| 12.2.4.2.4.3 Method 3: | Removal or Exchange of Amino and Diazo Groups | 301 |
| 12.2.4.2.5 Modification of Substituents | | 303 |
| 12.2.4.2.5.1 Method 1: | Modification of Hydroxy Groups | 303 |
| 12.2.4.2.5.2 Method 2: | Modification of Amino and Diazo Groups | 304 |
| 12.2.4.2.5.3 Method 3: | Modification of Azido Groups | 305 |
| 12.2.4.2.5.4 Method 4: | Modification of Nitro Groups | 306 |
| 12.2.4.2.5.5 Method 5: | Modification of Alkyl Groups | 307 |
| 12.2.4.2.5.6 Method 6: | Modification of Carbonyl Groups | 307 |
| 12.2.4.2.6 Rearrangement of Substituents | | 308 |
| 12.2.4.2.6.1 Method 1: | Rearrangement of 2H-Indazoles into 1H-Indazoles | 308 |
| 12.2.4.2.6.2 Method 2: | Rearrangement of 2-Nitro-2H-indazoles into 3-Nitro-1H-indazoles | 309 |
| 12.2.4.2.6.3 Method 3: | Rearrangement 1,1-Dialkylindazolium-3-olates into 3-Alkoxy-1-alkyl-1H-indazoles and 1,2-Dialkyl-1H-indazol-3(2H)-ones | 309 |
| 12.2.4.2.6.4 Method 4: | Rearrangement of 1,2-Diacetyl-1H-indazol-3(2H)-one into 1-Acetyl-1H-indazol-3-yl Acetate | 310 |
| 12.2.4.2.6.5 Method 5: | Rearrangement of 3H-Indazoles into 1H-Indazoles | 310 |
12.3 Product Class 3: Imidazoles

M. R. Grimmett

12.3 Product Class 3: Imidazoles ... 325
12.3.1 Synthesis by Ring-Closure Reactions 331
12.3.1.1 By Formation of Four N—C Bonds 331
12.3.1.1.1 Method 1: Combination of an Alkene, Carbon Monoxide, and Ammonia 331
12.3.1.1.2 Method 2: Reaction of an α-Dicarbonyl Compound with an Aldehyde and an Amino Source .. 332
12.3.1.1.2.1 Variation 1: Reactions Involving Ammonia, Ammonium Acetate, or a Primary Amine ... 332
12.3.1.1.2.2 Variation 2: Use of Hydroxylamine in Place of Ammonia or Amines; 1-Hydroxyimidazoles and 1-Hydroxyimidazole 3-Oxides 335
12.3.1.1.3 Method 3: Reaction of an α-Hydroxycarbonyl Reagent with an Aldehyde and Ammonia (or an Amine) 336
12.3.1.1.3.1 Variation 1: Use of Reducing Carbohydrates 336
12.3.1.1.3.2 Variation 2: Use of Acyloins and Derivatives 337
12.3.1.1.4 Method 4: The Maquenne Synthesis 338
12.3.1.1.5 Method 5: Miscellaneous Procedures 339
12.3.1.2 By Formation of Three N—C Bonds 339
12.3.1.2.1 Fragments N—C, C—C, and N 339
12.3.1.2.1.1 Method 1: The Bredereck Synthesis 339
12.3.1.2.1.1.1 Variation 1: Use of Formamide 340
12.3.1.2.1.2 Variation 2: Use of Higher Amides 342
12.3.1.2.1.2.1 Method 2: Reaction of α-Hydroxy Ketones with an Imidate and Ammonia .. 342
12.3.1.2.1.3 Method 3: Preparation of 1-Amino-1H-imidazole-2(3H)-thiones from α-Halo Ketones, Thiocyanate, and a Monosubstituted Hydrazine ... 342
12.3.1.2.1.4 Method 4: Preparation of 1-Hydroxyimidazoles from Acetonitrile, an Alkene, and a Nitrosobromide 343
12.3.1.2.2 Fragments N—C—C, N, and C 343
12.3.1.2.2.1 Method 1: Cyclization of an α-Hydroxyiminoketone, an Aldehyde, and Ammonia (or an Amine) .. 344
12.3.1.2.2.2 Method 2: Cyclization of an α-Aminonitrile, an Orthoformate, and a Primary Amine ... 344
12.3.1.3 By Formation of Two N—C Bonds and One C—C Bond 345
12.3.1.3.1 Fragments N—C, N—C, and C 345
12.3.1.3.1.1 Method 1: Reactions of (Nitromethyl)arene Dianions with Aryl Cyanides .. 345
12.3.1.3.1.2 Method 2: Metal–Carbonyl Induced Cyclization of Benzylamine with Carbon Tetrachloride .. 347
12.3.1.4 By Formation of Two N—C Bonds 347
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3.1.4.1</td>
<td>Fragments N—C—N and C—C</td>
<td>347</td>
</tr>
<tr>
<td>12.3.1.4.1.1</td>
<td>Method 1: Reactions of Amidines with α-Hydroxy- or α-Halocarbonyl Compounds</td>
<td>347</td>
</tr>
<tr>
<td>12.3.1.4.1.2</td>
<td>Method 2: Reactions of Guanidines with α-Functionalized Ketones</td>
<td>351</td>
</tr>
<tr>
<td>12.3.1.4.1.3</td>
<td>Method 3: Reactions of Ureas and Thioureas with α-Functionalized Carbonyl Compounds</td>
<td>353</td>
</tr>
<tr>
<td>12.3.1.4.1.4</td>
<td>Method 4: Reactions of Functionalized Alkenes with Amidines, Guanidines, and Ureas</td>
<td>354</td>
</tr>
<tr>
<td>12.3.1.4.1.5</td>
<td>Method 5: Reactions of 2-Cyanoepoxides with Amidines or Guanidines</td>
<td>358</td>
</tr>
<tr>
<td>12.3.1.4.1.6</td>
<td>Method 6: Reaction of Aminonitriles or Aminooximes with Propiolate Esters</td>
<td>359</td>
</tr>
<tr>
<td>12.3.1.4.1.7</td>
<td>Method 7: Use of “Betmip”; Reaction of Iminophosphoranes with α-Diketones</td>
<td>360</td>
</tr>
<tr>
<td>12.3.1.4.1.8</td>
<td>Method 8: Miscellaneous Procedures</td>
<td>361</td>
</tr>
<tr>
<td>12.3.1.4.2</td>
<td>Fragments N—C—C and N—C</td>
<td>361</td>
</tr>
<tr>
<td>12.3.1.4.2.1</td>
<td>Method 1: Reaction of an α-Aminocarbonyl Compound with a Cyanate, Thiocyanate, Isocyanate, or Isothiocyanate</td>
<td>362</td>
</tr>
<tr>
<td>12.3.1.4.2.2</td>
<td>Method 2: Reaction of an α-Aminocarbonyl Compound with Cyanamide</td>
<td>365</td>
</tr>
<tr>
<td>12.3.1.4.2.3</td>
<td>Method 3: Reactions of α-Aminocarbonyl Compounds with Other N—C Reagents</td>
<td>366</td>
</tr>
<tr>
<td>12.3.1.4.2.4</td>
<td>Method 4: Reactions of Imidates with Aminomalononitrile</td>
<td>369</td>
</tr>
<tr>
<td>12.3.1.4.2.5</td>
<td>Method 5: Reaction of N-Isopropylacetonirolirium Chloroferrate with Amino Acid Esters</td>
<td>369</td>
</tr>
<tr>
<td>12.3.1.4.2.6</td>
<td>Method 6: Synthesis of Imidazole-4-thiols and Imidazole-2-carboxylates from α-Oxothioamides</td>
<td>370</td>
</tr>
<tr>
<td>12.3.1.4.2.7</td>
<td>Method 7: Formation of Imidazoles, 1-Hydroximidazoles, and Imidazole N-Oxides from α-Hydroxyimino Ketones</td>
<td>370</td>
</tr>
<tr>
<td>12.3.1.4.2.8</td>
<td>Method 8: Reactions of 1,2-Diimines with Aldoximes</td>
<td>372</td>
</tr>
<tr>
<td>12.3.1.4.2.9</td>
<td>Method 9: Miscellaneous Procedures</td>
<td>373</td>
</tr>
<tr>
<td>12.3.1.4.3</td>
<td>Fragments N—C—C—N and C</td>
<td>374</td>
</tr>
<tr>
<td>12.3.1.4.3.1</td>
<td>Method 1: Reactions of 1,2-Diaminoalkanes with Carbonyl Reagents</td>
<td>374</td>
</tr>
<tr>
<td>12.3.1.4.3.2</td>
<td>Method 2: Reactions of 1,2-Diaminoalkanes with Carbon Reagents</td>
<td>375</td>
</tr>
<tr>
<td>12.3.1.4.3.3</td>
<td>Method 3: Cyclizations Involving 1,2-Diimines</td>
<td>377</td>
</tr>
<tr>
<td>12.3.1.4.3.4</td>
<td>Method 4: Syntheses Based on the Use of Diaminomaleonitrile</td>
<td>378</td>
</tr>
<tr>
<td>12.3.1.4.3.5</td>
<td>Method 5: Reactions of α-Aminonitriles with Aldehydes or Ortho Esters</td>
<td>380</td>
</tr>
<tr>
<td>12.3.1.4.3.6</td>
<td>Method 6: Reactions of Aminooacetimidamides or Their Oximes with Aldehydes or Ortho Esters</td>
<td>380</td>
</tr>
<tr>
<td>12.3.1.4.3.7</td>
<td>Method 7: Synthesis of Imidazole N-Oxides or 1-Hydroxyimidazoles from α-Hydroxyamino Oximes and Aldehydes</td>
<td>381</td>
</tr>
<tr>
<td>12.3.1.4.3.8</td>
<td>Method 8: Syntheses Based on the Pinner Salt</td>
<td>382</td>
</tr>
<tr>
<td>12.3.1.4.3.9</td>
<td>Method 9: From 2-Amino-3-azidoacrylates</td>
<td>383</td>
</tr>
<tr>
<td>12.3.1.4.4</td>
<td>Fragments C—N—C—C and N</td>
<td>384</td>
</tr>
<tr>
<td>12.3.1.4.4.1</td>
<td>Method 1: Reactions of Alkyl N-(α-Cyanoalkyl)imidates with Primary Amines or Hydrazines</td>
<td>384</td>
</tr>
<tr>
<td>12.3.1.4.4.2</td>
<td>Method 2: Reactions of α-Acylamino Ketones with Primary Amines</td>
<td>386</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>12.3.1.4.3</td>
<td>Method 3: Reactions of 2-Azabuta-1,3-dienes with Amines or Hydrazines</td>
<td>387</td>
</tr>
<tr>
<td>12.3.1.4.4</td>
<td>Method 4: Reactions of N-Alkenyformamides with Formamide</td>
<td>390</td>
</tr>
<tr>
<td>12.3.1.4.5</td>
<td>Method 5: Reactions of Acylketene N,S-Acetals with Nitrosoaryl Reagents</td>
<td>390</td>
</tr>
<tr>
<td>12.3.1.5</td>
<td>By Formation of One N—C and One C—C Bond</td>
<td>391</td>
</tr>
<tr>
<td>12.3.1.5.1</td>
<td>Fragments C—N—C and N—C</td>
<td>391</td>
</tr>
<tr>
<td>12.3.1.5.1.1</td>
<td>Method 1: Reaction of Methyl Isocyaniides with an Aldimine</td>
<td>392</td>
</tr>
<tr>
<td>12.3.1.5.1.1.1</td>
<td>Variation 1: Use of Tosylmethyl Isocyanide</td>
<td>392</td>
</tr>
<tr>
<td>12.3.1.5.1.2</td>
<td>Variation 2: Use of Benzotriazol-1-ylmethyl Isocyanide</td>
<td>396</td>
</tr>
<tr>
<td>12.3.1.5.1.2.1</td>
<td>Method 2: Reactions of Tosylmethyl Isocyanide with Imidoyl Chlorides</td>
<td>397</td>
</tr>
<tr>
<td>12.3.1.5.1.3</td>
<td>Method 3: Reactions of Tosylmethyl Isocyanide with N-Hetaryl-Substituted Imidates</td>
<td>398</td>
</tr>
<tr>
<td>12.3.1.5.1.4</td>
<td>Method 4: Reactions of Tosylmethyl Isocyanide with Isothiocyanates</td>
<td>398</td>
</tr>
<tr>
<td>12.3.1.5.1.5</td>
<td>Method 5: Reactions of Tosylmethyl Isocyanide Dianions with Nitriles</td>
<td>399</td>
</tr>
<tr>
<td>12.3.1.5.1.6</td>
<td>Method 6: Reactions of Related Isocyanides with Nitriles</td>
<td>399</td>
</tr>
<tr>
<td>12.3.1.5.1.7</td>
<td>Method 7: Reactions of N-(Tosylmethyl)imido Thioesters with Aldimines</td>
<td>400</td>
</tr>
<tr>
<td>12.3.1.5.1.8</td>
<td>Method 8: Reactions of Tosylmethyl Isocyanide with an Aldehyde and an Amine</td>
<td>401</td>
</tr>
<tr>
<td>12.3.1.5.1.9</td>
<td>Method 9: Reaction of the Enolate of Ethyl Isocyanoacetate with an Isothiourea</td>
<td>402</td>
</tr>
<tr>
<td>12.3.1.5.1.10</td>
<td>Method 10: 1,3-Dipolar Cycloadditions of Mesoionic Oxazolones</td>
<td>403</td>
</tr>
<tr>
<td>12.3.1.5.1.11</td>
<td>Method 11: Self-Condenizations of C-Aryl-N-methyl Nitrones</td>
<td>404</td>
</tr>
<tr>
<td>12.3.1.5.1.12</td>
<td>Method 12: Cycloadditions of Aldimine Anions to Nitriles</td>
<td>404</td>
</tr>
<tr>
<td>12.3.1.5.1.13</td>
<td>Method 13: Cycloaddition of Imines and 2-Azaallenyl Radical Cations</td>
<td>405</td>
</tr>
<tr>
<td>12.3.1.5.1.14</td>
<td>Method 14: Cycloaddition of Isocyanoacetate to Nitriles</td>
<td>406</td>
</tr>
<tr>
<td>12.3.1.5.1.15</td>
<td>Method 15: Cyclization of Methyl Isothiocyanate</td>
<td>407</td>
</tr>
<tr>
<td>12.3.1.5.1.16</td>
<td>Method 16: Cycloaddition of Aryl Chloro-N-(4-nitrobenzyl)thioformimides and Ethyl Cyanoformate</td>
<td>407</td>
</tr>
<tr>
<td>12.3.1.5.1.17</td>
<td>Method 17: Cycloadditions of Gold’s Salt</td>
<td>408</td>
</tr>
<tr>
<td>12.3.1.5.1.18</td>
<td>Method 18: Condensation of Cyanodithioimidocarbonates with α-Amino Esters</td>
<td>408</td>
</tr>
<tr>
<td>12.3.1.5.2</td>
<td>Fragments N—C—N—C and C</td>
<td>408</td>
</tr>
<tr>
<td>12.3.1.6</td>
<td>By Formation of One N—C Bond</td>
<td>408</td>
</tr>
<tr>
<td>12.3.1.6.1</td>
<td>Fragment N—C—C—N—C</td>
<td>408</td>
</tr>
<tr>
<td>12.3.1.6.1.1</td>
<td>Method 1: The Wallach Synthesis</td>
<td>409</td>
</tr>
<tr>
<td>12.3.1.6.1.2</td>
<td>Method 2: Ring Closures of Acylated Glicines or the Related (Formamido)acetamides</td>
<td>410</td>
</tr>
<tr>
<td>12.3.1.6.1.3</td>
<td>Method 3: Cyclization of N-Monoacylated 1,2-Diaminoalkenes</td>
<td>411</td>
</tr>
<tr>
<td>12.3.1.6.1.4</td>
<td>Method 4: Cyclizations Based on N,N-[2-(Acylamino)vinyl]imidamides</td>
<td>415</td>
</tr>
<tr>
<td>12.3.1.6.1.5</td>
<td>Method 5: Cyclization of α-Acylamino Schiff Bases</td>
<td>416</td>
</tr>
<tr>
<td>12.3.1.6.1.6</td>
<td>Method 6: Ring Closure of Formylglycine Amidines</td>
<td>418</td>
</tr>
<tr>
<td>12.3.1.6.1.7</td>
<td>Method 7: Cyclization of Schiff Bases of Diaminomaleonitrile</td>
<td>418</td>
</tr>
<tr>
<td>12.3.1.6.1.8</td>
<td>Method 8: Oxidation of Schiff Bases of 2,3-Diamino-3-cyanoacrylamides</td>
<td>420</td>
</tr>
<tr>
<td>12.3.1.6.1.9</td>
<td>Method 9: Reaction of 3-(Dimethylamino)-2-isocyanoacrylates with Alkyl or Aryl Halides</td>
<td>420</td>
</tr>
<tr>
<td>12.3.1.6.1.10</td>
<td>Method 10: Photochemical Transformations of Diaminomaleonitrile</td>
<td>421</td>
</tr>
<tr>
<td>12.3.1.6.1.11</td>
<td>Method 11: Ring Closure of N-Alkylidene-1-cyanoalkylamine N-Oxides</td>
<td>421</td>
</tr>
<tr>
<td>12.3.1.6.1.12</td>
<td>Method 12: Thermal Rearrangement of 1-(Trifluoroacetyl)alkan-1-one Hydrazones</td>
<td>422</td>
</tr>
<tr>
<td>12.3.1.6.1.13</td>
<td>Method 13: Cyclization of 2-Isoxoyalkanenitriles</td>
<td>423</td>
</tr>
<tr>
<td>12.3.1.6.1.14</td>
<td>Method 14: Synthesis of Imidazole-4- and Imidazole-5-thiols from Thioamides</td>
<td>424</td>
</tr>
<tr>
<td>12.3.1.6.1.15</td>
<td>Method 15: Photochemical Cyclization of Nitrile Ylides</td>
<td>425</td>
</tr>
<tr>
<td>12.3.1.6.2</td>
<td>Fragment N—C—N—C—C</td>
<td>426</td>
</tr>
<tr>
<td>12.3.1.6.2.1</td>
<td>Method 1: Cyclization of Suitably Functionalized Amidines</td>
<td>426</td>
</tr>
<tr>
<td>12.3.1.6.2.2</td>
<td>Method 2: Cyclization of Functionalized Guanidines</td>
<td>432</td>
</tr>
<tr>
<td>12.3.1.6.2.3</td>
<td>Method 3: Reduction of Schiff Bases of Amidines</td>
<td>433</td>
</tr>
<tr>
<td>12.3.1.6.2.4</td>
<td>Method 4: Cyclization of Amidinium Salts and Amidines</td>
<td>433</td>
</tr>
<tr>
<td>12.3.1.6.2.5</td>
<td>Method 5: Cyclization of Amidrazones Derived from Diaminomaleonitrile</td>
<td>438</td>
</tr>
<tr>
<td>12.3.1.6.2.6</td>
<td>Method 6: Cyclizations of Functionalized Ureas and Thioureas</td>
<td>438</td>
</tr>
<tr>
<td>12.3.1.6.2.7</td>
<td>Method 7: Cyclization of Ureido Esters</td>
<td>439</td>
</tr>
<tr>
<td>12.3.1.6.2.8</td>
<td>Method 8: Cyclization of α-Cyanoalkyl Cyanamides</td>
<td>440</td>
</tr>
<tr>
<td>12.3.1.6.2.9</td>
<td>Method 9: Miscellaneous Procedures</td>
<td>441</td>
</tr>
<tr>
<td>12.3.1.7</td>
<td>By Formation of One C—C Bond</td>
<td>442</td>
</tr>
<tr>
<td>12.3.1.7.1</td>
<td>Fragment C—N—C—N—C</td>
<td>442</td>
</tr>
<tr>
<td>12.3.1.7.1.1</td>
<td>Method 1: Ring Closure of N²-Ethoxycarbonylmethyl- and N²-Benzoyl-Substituted N²-Cyanoformimidamides</td>
<td>442</td>
</tr>
<tr>
<td>12.3.1.7.1.2</td>
<td>Method 2: Cyclization of N²-Cyano-N¹-(cyanomethyl)formimidamides and Related Isothioureas</td>
<td>444</td>
</tr>
<tr>
<td>12.3.1.7.1.3</td>
<td>Method 3: Cyclization of 2-Azavinamidinium Salts</td>
<td>445</td>
</tr>
<tr>
<td>12.3.2</td>
<td>Synthesis by Ring Transformation</td>
<td>446</td>
</tr>
<tr>
<td>12.3.2.1</td>
<td>Ring Enlargement</td>
<td>446</td>
</tr>
<tr>
<td>12.3.2.1.1</td>
<td>Method 1: Ring Enlargement of Azirines by Reaction with Nitriles</td>
<td>446</td>
</tr>
<tr>
<td>12.3.2.1.2</td>
<td>Method 2: Ring Expansion of Azetidines</td>
<td>447</td>
</tr>
<tr>
<td>12.3.2.2</td>
<td>From Five-Membered Heterocycles</td>
<td>447</td>
</tr>
<tr>
<td>12.3.2.2.1</td>
<td>Method 1: Photochemical Rearrangement of Pyrazoles</td>
<td>448</td>
</tr>
<tr>
<td>12.3.2.2.2</td>
<td>Method 2: Oxidation of Benzimidazoles</td>
<td>448</td>
</tr>
<tr>
<td>12.3.2.2.3</td>
<td>Method 3: From 1,2,4-Triazoliium Salts</td>
<td>448</td>
</tr>
<tr>
<td>12.3.2.2.4</td>
<td>Method 4: From Tetrazoles</td>
<td>449</td>
</tr>
<tr>
<td>12.3.2.2.4.1</td>
<td>Variation 1: Photolysis of 1-Vinyltetrazoles</td>
<td>449</td>
</tr>
<tr>
<td>12.3.2.2.4.2</td>
<td>Variation 2: Reactions of Tetrazoliium Salts with Bases</td>
<td>451</td>
</tr>
<tr>
<td>12.3.2.2.5</td>
<td>Method 5: From Isoxazoles</td>
<td>451</td>
</tr>
<tr>
<td>12.3.2.2.6</td>
<td>Method 6: From Oxazoles</td>
<td>452</td>
</tr>
<tr>
<td>12.3.2.2.6.1</td>
<td>Variation 1: Heating with a Nitrogen Source</td>
<td>452</td>
</tr>
<tr>
<td>12.3.2.2.6.2</td>
<td>Variation 2: Action of Heat on 2-Oxo-2,3-dihydrooxazole-3-carboxamides</td>
<td>453</td>
</tr>
<tr>
<td>12.3.2.2.6.3</td>
<td>Variation 3: Reaction of Oxazolium Salts with Amines</td>
<td>453</td>
</tr>
<tr>
<td>12.3.2.2.7</td>
<td>Method 7: From Thiazoles</td>
<td>454</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>12.3.2.7.1</td>
<td>Variation 1: Rearrangement of Thiazol-5-amines</td>
<td>454</td>
</tr>
<tr>
<td>12.3.2.7.2</td>
<td>Variation 2: From Thiazole N-Oxides</td>
<td>454</td>
</tr>
<tr>
<td>12.3.2.8</td>
<td>Method 8: From Oxa- or Thiadiazoles</td>
<td>454</td>
</tr>
<tr>
<td>12.3.3</td>
<td>Ring Contraction</td>
<td>454</td>
</tr>
<tr>
<td>12.3.3.1</td>
<td>From Six-Membered Heterocycles</td>
<td>455</td>
</tr>
<tr>
<td>12.3.3.1.1</td>
<td>Method 1: From Pyrimidines</td>
<td>455</td>
</tr>
<tr>
<td>12.3.3.1.1.1</td>
<td>Variation 1: Action of Strong Bases on Chloropyrimidines</td>
<td>455</td>
</tr>
<tr>
<td>12.3.3.1.1.2</td>
<td>Variation 2: Pyrolysis of Azidopyrimidines</td>
<td>455</td>
</tr>
<tr>
<td>12.3.3.1.1.3</td>
<td>Variation 3: Base-Catalyzed Rearrangement of</td>
<td>456</td>
</tr>
<tr>
<td></td>
<td>5-(Acylamino)pyrimidin-4(3H)-ones</td>
<td></td>
</tr>
<tr>
<td>12.3.3.1.2</td>
<td>Method 2: From Pyrazines</td>
<td>457</td>
</tr>
<tr>
<td>12.3.3.1.2.1</td>
<td>Variation 1: Pyrolysis of 2-Azidopyrazines</td>
<td>457</td>
</tr>
<tr>
<td>12.3.3.1.2.2</td>
<td>Variation 2: Photolysis of Pyrazine Derivatives</td>
<td>459</td>
</tr>
<tr>
<td>12.3.3.1.2.3</td>
<td>Variation 3: Action of Strong Bases on Chloropyrazines</td>
<td>459</td>
</tr>
<tr>
<td>12.3.3.1.3</td>
<td>Method 3: From Other Six-Membered Heterocycles</td>
<td>459</td>
</tr>
<tr>
<td>12.3.3.1.4</td>
<td>Method 4: From Seven-Membered Heterocycles</td>
<td>459</td>
</tr>
<tr>
<td>12.3.3</td>
<td>Aromatization</td>
<td>459</td>
</tr>
<tr>
<td>12.3.3.1</td>
<td>Method 1: Oxidation by Manganate or Permanganate</td>
<td>460</td>
</tr>
<tr>
<td>12.3.3.2</td>
<td>Method 2: Use of Active Manganese Dioxide</td>
<td>460</td>
</tr>
<tr>
<td>12.3.3.3</td>
<td>Method 3: Catalytic Dehydrogenation</td>
<td>460</td>
</tr>
<tr>
<td>12.3.4</td>
<td>Synthesis by Substituent Modification</td>
<td>461</td>
</tr>
<tr>
<td>12.3.4.1</td>
<td>Addition Reactions</td>
<td>461</td>
</tr>
<tr>
<td>12.3.4.1.1</td>
<td>Method 1: Protonation</td>
<td>461</td>
</tr>
<tr>
<td>12.3.4.1.2</td>
<td>Method 2: Addition of Metal Groups</td>
<td>462</td>
</tr>
<tr>
<td>12.3.4.1.3</td>
<td>Method 3: Addition of Organic Groups</td>
<td>462</td>
</tr>
<tr>
<td>12.3.4.1.4</td>
<td>Method 4: Addition of Heteroatom Groups</td>
<td>464</td>
</tr>
<tr>
<td>12.3.4.2</td>
<td>Substitution of Existing Substituents on Carbon</td>
<td>464</td>
</tr>
<tr>
<td>12.3.4.2.1</td>
<td>Of Hydrogen</td>
<td>464</td>
</tr>
<tr>
<td>12.3.4.2.1.1</td>
<td>Method 1: Substitution by Hydrogen or Deuterium</td>
<td>465</td>
</tr>
<tr>
<td>12.3.4.2.1.2</td>
<td>Method 2: Substitution by a Metal</td>
<td>466</td>
</tr>
<tr>
<td>12.3.4.2.1.3</td>
<td>Method 3: Substitution by Alkyl Groups</td>
<td>467</td>
</tr>
<tr>
<td>12.3.4.2.1.4</td>
<td>Method 4: Substitution by Hydroxyalkyl Groups</td>
<td>468</td>
</tr>
<tr>
<td>12.3.4.2.1.5</td>
<td>Method 5: Substitution by Other Substituted Alkyl Groups</td>
<td>469</td>
</tr>
<tr>
<td>12.3.4.2.1.6</td>
<td>Method 6: Substitution by Aryl Groups</td>
<td>469</td>
</tr>
<tr>
<td>12.3.4.2.1.7</td>
<td>Method 7: Substitution by Acyl and Aroyl Groups</td>
<td>469</td>
</tr>
<tr>
<td>12.3.4.2.1.8</td>
<td>Method 8: Substitution by Carboxy Groups</td>
<td>470</td>
</tr>
<tr>
<td>12.3.4.2.1.9</td>
<td>Method 9: Substitution by Halogens</td>
<td>470</td>
</tr>
<tr>
<td>12.3.4.2.1.10</td>
<td>Method 10: Substitution by Oxygen Groups</td>
<td>472</td>
</tr>
<tr>
<td>12.3.4.2.1.11</td>
<td>Method 11: Substitution by Sulfur Groups</td>
<td>472</td>
</tr>
<tr>
<td>12.3.4.2.1.12</td>
<td>Method 12: Substitution by Nitrogen Groups</td>
<td>473</td>
</tr>
<tr>
<td>12.3.4.2.2</td>
<td>Of Metals</td>
<td>473</td>
</tr>
<tr>
<td>12.3.4.2.2.1</td>
<td>Method 1: Substitution by Hydrogen or Deuterium</td>
<td>474</td>
</tr>
<tr>
<td>12.3.4.2.2.2</td>
<td>Method 2: Transmetalation</td>
<td>474</td>
</tr>
<tr>
<td>Substitution of Nitrogen Groups</td>
<td>487</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>Method 1: Substitution by Nitrogen or Phosphorus Groups</td>
<td>482</td>
<td></td>
</tr>
<tr>
<td>Method 2: Substitution of Oxygen Groups</td>
<td>487</td>
<td></td>
</tr>
<tr>
<td>Method 3: Substitution of Nitrogen Groups</td>
<td>487</td>
<td></td>
</tr>
<tr>
<td>Substitution of Existing Substituents on Carbon</td>
<td>488</td>
<td></td>
</tr>
<tr>
<td>Method 1: Substitution by Hydrogen or Deuterium</td>
<td>488</td>
<td></td>
</tr>
<tr>
<td>Method 2: Substitution by Metals</td>
<td>488</td>
<td></td>
</tr>
<tr>
<td>Method 3: Substitution by Alkyl and Substituted Alkyl Groups</td>
<td>489</td>
<td></td>
</tr>
<tr>
<td>Method 4: Substitution by Alkyl Groups</td>
<td>492</td>
<td></td>
</tr>
<tr>
<td>Method 5: Substitution by Aryl Groups</td>
<td>492</td>
<td></td>
</tr>
<tr>
<td>Method 6: Substitution by Aryl Groups</td>
<td>494</td>
<td></td>
</tr>
<tr>
<td>Method 7: Substitution by a Nitrile Group</td>
<td>495</td>
<td></td>
</tr>
<tr>
<td>Method 8: Substitution by Silyl Groups</td>
<td>495</td>
<td></td>
</tr>
<tr>
<td>Method 9: Substitution by Chalcogen Groups</td>
<td>496</td>
<td></td>
</tr>
<tr>
<td>Method 10: Replacement by a Nitro Group</td>
<td>496</td>
<td></td>
</tr>
<tr>
<td>Of Metals</td>
<td>497</td>
<td></td>
</tr>
<tr>
<td>Of Organic Groups</td>
<td>497</td>
<td></td>
</tr>
<tr>
<td>Method 1: Substitution of Alkyl or Aryl Groups</td>
<td>497</td>
<td></td>
</tr>
<tr>
<td>Method 2: Substitution of Acyl or Aroyl Groups</td>
<td>497</td>
<td></td>
</tr>
<tr>
<td>Of Heteroatom Groups</td>
<td>484</td>
<td></td>
</tr>
<tr>
<td>Method 1: Substitution of Halogen</td>
<td>484</td>
<td></td>
</tr>
<tr>
<td>Variation 1: Reduction</td>
<td>484</td>
<td></td>
</tr>
<tr>
<td>Variation 2: Metal–Halogen Exchange</td>
<td>484</td>
<td></td>
</tr>
<tr>
<td>Variation 3: By an Organic Group</td>
<td>485</td>
<td></td>
</tr>
<tr>
<td>Variation 4: By Another Halogen</td>
<td>486</td>
<td></td>
</tr>
<tr>
<td>Variation 5: By an Oxygen or Sulfur Species</td>
<td>486</td>
<td></td>
</tr>
<tr>
<td>Variation 6: By a Nitrogen Function</td>
<td>487</td>
<td></td>
</tr>
<tr>
<td>Method 2: Substitution of Oxygen Groups</td>
<td>487</td>
<td></td>
</tr>
<tr>
<td>Method 3: Substitution of Nitrogen Groups</td>
<td>487</td>
<td></td>
</tr>
<tr>
<td>Substitution of Existing Substituents on Nitrogen</td>
<td>488</td>
<td></td>
</tr>
<tr>
<td>Method 1: Substitution by Hydrogen or Deuterium</td>
<td>488</td>
<td></td>
</tr>
<tr>
<td>Method 2: Substitution by Metals</td>
<td>488</td>
<td></td>
</tr>
<tr>
<td>Method 3: Substitution by Alkyl and Substituted Alkyl Groups</td>
<td>489</td>
<td></td>
</tr>
<tr>
<td>Method 4: Substitution by Alkyl Groups</td>
<td>492</td>
<td></td>
</tr>
<tr>
<td>Method 5: Substitution by Aryl Groups</td>
<td>492</td>
<td></td>
</tr>
<tr>
<td>Method 6: Substitution by Aryl Groups</td>
<td>494</td>
<td></td>
</tr>
<tr>
<td>Method 7: Substitution by a Nitrile Group</td>
<td>495</td>
<td></td>
</tr>
<tr>
<td>Method 8: Substitution by Silyl Groups</td>
<td>495</td>
<td></td>
</tr>
<tr>
<td>Method 9: Substitution by Chalcogen Groups</td>
<td>496</td>
<td></td>
</tr>
<tr>
<td>Method 10: Replacement by a Nitro Group</td>
<td>496</td>
<td></td>
</tr>
<tr>
<td>12.3.4.1.1.1</td>
<td>Variation 1: Metalation</td>
<td>499</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------------</td>
<td>-----</td>
</tr>
<tr>
<td>12.3.4.1.1.2</td>
<td>Variation 2: Carbanion Condensations</td>
<td>500</td>
</tr>
<tr>
<td>12.3.4.1.1.3</td>
<td>Variation 3: Halogenation</td>
<td>500</td>
</tr>
<tr>
<td>12.3.4.1.1.4</td>
<td>Variation 4: Oxidation</td>
<td>500</td>
</tr>
<tr>
<td>12.3.4.1.2</td>
<td>Method 2: Addition Reactions of Unsaturated Carbon Groups</td>
<td>500</td>
</tr>
<tr>
<td>12.3.4.1.3</td>
<td>Method 3: Reactions of Aryl Groups</td>
<td>500</td>
</tr>
<tr>
<td>12.3.4.1.4</td>
<td>Method 4: Nucleophilic Substitutions and Eliminations of Haloalkyl Groups</td>
<td>501</td>
</tr>
<tr>
<td>12.3.4.1.5</td>
<td>Method 5: Reactions of Hydroxyalkyl Groups</td>
<td>501</td>
</tr>
<tr>
<td>12.3.4.1.6</td>
<td>Method 6: Reactions of Aldehyde and Ketone Groups</td>
<td>501</td>
</tr>
<tr>
<td>12.3.4.1.7</td>
<td>Method 7: Reactions of Carboxy Groups</td>
<td>502</td>
</tr>
<tr>
<td>12.3.4.1.8</td>
<td>Method 8: Reactions of Nitrile Groups</td>
<td>503</td>
</tr>
<tr>
<td>12.3.4.2</td>
<td>Chalcogen Groups</td>
<td>503</td>
</tr>
<tr>
<td>12.3.4.2.1</td>
<td>Method 1: Removal of Sulfur Groups</td>
<td>503</td>
</tr>
<tr>
<td>12.3.4.2.2</td>
<td>Method 2: Alkylation, Arylation, and Acylation</td>
<td>503</td>
</tr>
<tr>
<td>12.3.4.2.3</td>
<td>Method 3: Oxidation of Sulfur Groups</td>
<td>504</td>
</tr>
<tr>
<td>12.3.4.3</td>
<td>Nitrogen Groups</td>
<td>504</td>
</tr>
<tr>
<td>12.3.4.3.1</td>
<td>Method 1: Reactions of Amino Groups</td>
<td>504</td>
</tr>
<tr>
<td>12.3.4.3.2</td>
<td>Method 2: Reactions of Nitroso Groups</td>
<td>505</td>
</tr>
<tr>
<td>12.3.4.3.3</td>
<td>Method 3: Reactions of Nitro Groups</td>
<td>505</td>
</tr>
<tr>
<td>12.3.4.5</td>
<td>Modification of Substituents on Nitrogen Substituents</td>
<td>505</td>
</tr>
<tr>
<td>12.3.4.5.1</td>
<td>Organic Groups</td>
<td>505</td>
</tr>
<tr>
<td>12.3.4.5.1.1</td>
<td>Method 1: Alkyl Groups</td>
<td>505</td>
</tr>
<tr>
<td>12.3.4.5.1.2</td>
<td>Method 2: Unsaturated Carbon Groups</td>
<td>506</td>
</tr>
<tr>
<td>12.3.4.5.1.3</td>
<td>Method 3: Aryl Groups</td>
<td>507</td>
</tr>
<tr>
<td>12.3.4.5.1.4</td>
<td>Method 4: Acyl and Aroyl Groups</td>
<td>507</td>
</tr>
<tr>
<td>12.3.4.5.1.5</td>
<td>Method 5: Carboxy Groups</td>
<td>508</td>
</tr>
<tr>
<td>12.3.4.5.1.6</td>
<td>Method 6: N-Oxides and N-Hydroxy Species</td>
<td>508</td>
</tr>
<tr>
<td>12.3.4.5.1.7</td>
<td>Method 7: Sulfur Groups</td>
<td>509</td>
</tr>
<tr>
<td>12.3.4.5.1.8</td>
<td>Method 8: Nitrogen and Phosphorus Groups</td>
<td>509</td>
</tr>
<tr>
<td>12.3.4.5.1.8.1</td>
<td>Variation 1: Amino Groups</td>
<td>509</td>
</tr>
<tr>
<td>12.3.4.5.1.8.2</td>
<td>Variation 2: Nitro Groups</td>
<td>510</td>
</tr>
<tr>
<td>12.3.4.5.1.8.3</td>
<td>Variation 3: Phosphorus Groups</td>
<td>510</td>
</tr>
<tr>
<td>12.3.4.5.1.9</td>
<td>Method 9: Halogen Groups</td>
<td>510</td>
</tr>
<tr>
<td>12.3.4.6</td>
<td>Rearrangement of Substituents</td>
<td>510</td>
</tr>
<tr>
<td>12.3.4.6.1</td>
<td>Method 1: Photolytic and Thermolytic Rearrangements of 1-Alkylimidazoles</td>
<td>510</td>
</tr>
<tr>
<td>12.3.4.6.2</td>
<td>Method 2: Rearrangement of 1-Acylimidazoles</td>
<td>511</td>
</tr>
<tr>
<td>12.3.4.6.3</td>
<td>Method 3: Dimroth Rearrangement</td>
<td>511</td>
</tr>
<tr>
<td>12.3.4.6.4</td>
<td>Method 4: Rearrangement of 1-Nitroimidazoles</td>
<td>511</td>
</tr>
<tr>
<td>12.3.4.6.5</td>
<td>Method 5: Miscellaneous</td>
<td>512</td>
</tr>
</tbody>
</table>
12.4 **Product Class 4: Benzimidazoles**
M. R. Grimmell

12.4 Product Class 4: Benzimidazoles ... 529

12.4.1 Synthesis by Ring-Closure Reactions 534

12.4.1.1 By Annulation to an Arene ... 535

12.4.1.1.1 By Formation of Two N–C Bonds 535

12.4.1.1.1.1 With Formation of 1–2 and 2–3 Bonds 535

12.4.1.1.1.2 Method 1: Reaction of 1,2-Diaminoaromatics with Carbonic Acid Analogues ... 535

12.4.1.1.1.2 Method 2: Reaction of 1,2-Diaminoaromatics with Carboxylic Acids and Derivatives ... 536

12.4.1.1.1.2.1 Variation 1: Reaction with Monocarboxylic Acids 536

12.4.1.1.1.2.2 Variation 2: Reactions with Dicarboxylic Acids 540

12.4.1.1.1.2.3 Variation 3: Reactions with Carboxylic Acid Derivatives 541

12.4.1.1.1.3 Method 3: Reaction of 1,2-Diaminoaromatics with Imidates 541

12.4.1.1.1.4 Method 4: Via Palladium-Catalyzed Carbonylation of Iodobenzene 543

12.4.1.1.1.5 Method 5: Reactions of Aldehydes with 1,2-Diaminoaromatics 544

12.4.1.1.1.6 Method 6: Reactions of Ketones with 1,2-Diaminoaromatics 545

12.4.1.1.1.7 Method 7: Reactions of β-Diketones or β-Oxo Esters with 1,2-Diaminoaromatics ... 546

12.4.1.1.1.8 Method 8: Reactions of Unsaturated Species with 1,2-Diaminoaromatics ... 547

12.4.1.1.1.9 Method 9: Reactions of Hydrogen Cyanide Derivatives with 1,2-Diaminoaromatics ... 548

12.4.1.1.1.10 Method 10: Reactions of 1,2-Diaminoaromatics with Alcohols 550

12.4.1.1.1.11 Method 11: Miscellaneous Cyclizations Involving 1,2-Diaminoaromatics 550

12.4.1.1.1.12 Method 12: Reactions of 2-Nitroanilines with Carbon Synthons 551

12.4.1.1.1.12.1 Variation 1: Reactions with Carboxylic Acids and Derivatives 551

12.4.1.1.1.12.2 Variation 2: Reactions with Alcohols 552

12.4.1.1.1.12.3 Variation 3: Reactions with Carboxylic Acid Derivatives 553

12.4.1.1.1.12.4 Variation 4: Reactions with Aldehydes Forming Benzimidazole N-Oxides 553

12.4.1.1.1.12.5 Variation 5: Reactions with Alkyl Halides 553

12.4.1.1.1.13 Method 13: Reaction of Benzyo-1,2-quinone Dioximes with Aldehydes 554

12.4.1.1.1.14 By Reaction of a Guanidine with a 1,2-Dicarbonyl Species 554

12.4.1.1.1.2.1 Method 1: Reaction of an o-Quinone with a Guanidine 554

12.4.1.1.1.2.2 By Formation of One N–C Bond 555

12.4.1.1.1.2.2.1 With Formation of 1–2 or 2–3 Bonds 555

12.4.1.1.1.2.3 Method 1: Cyclization of 1-(Acylation)- or 1-(Aroylamino)-2-aminoaromatics ... 555

12.4.1.1.1.2.3.1 Method 2: Cyclization of Aroylated or Aroylated 2-Aminophenylhydrazines ... 557

12.4.1.1.1.2.3.1 Variation 1: Formation of 1- and 2-Substituted and 1,2-Disubstituted Benzimidazoles ... 558
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4.1.2.1.2</td>
<td>Variation 2: Formation of Benzimidazole N-Oxides</td>
<td>559</td>
</tr>
<tr>
<td>12.4.1.2.1.4</td>
<td>Method 4: Cyclization of Activated N-Alkyl- or N-Alkenyl-2-nitroanilines to Benzimidazole N-Oxides</td>
<td>560</td>
</tr>
<tr>
<td>12.4.1.2.1.5</td>
<td>Method 5: Cyclization of 2-Aminophenylhydrazones of Aldehydes</td>
<td>562</td>
</tr>
<tr>
<td>12.4.1.2.1.6</td>
<td>Method 6: Cyclization of Diaoylated 1,2-Diaminoarenes and Related Derivatives</td>
<td>562</td>
</tr>
<tr>
<td>12.4.1.2.1.7</td>
<td>Method 7: Cyclizations of 1,2-Disocyanatoarenes and Their Sulfur Analogues</td>
<td>563</td>
</tr>
<tr>
<td>12.4.1.2.1.8</td>
<td>Method 8: Cyclization of 2-Aminoaryl Azides</td>
<td>563</td>
</tr>
<tr>
<td>12.4.1.2.1.9</td>
<td>Method 9: Cyclization of Schiff Bases of 1,2-Diaminoarenes or 2-Nitroanilines</td>
<td>564</td>
</tr>
<tr>
<td>12.4.1.2.1.10</td>
<td>Method 10: Thermolysis of Schiff Bases of 2-Azidoanilines</td>
<td>565</td>
</tr>
<tr>
<td>12.4.1.2.1.11</td>
<td>Method 11: Cyclization of N-(2-Aminoaryl)- or N-(2-Nitroaryl)ureas (or -thioureas)</td>
<td>565</td>
</tr>
<tr>
<td>12.4.1.2.1.12</td>
<td>Method 12: Cyclization of an O-Aroyl-2-aminobenzamide Oxime</td>
<td>567</td>
</tr>
<tr>
<td>12.4.1.2.1.13</td>
<td>Method 13: Reductive Cyclization of N-Cyano-2-nitroanilines</td>
<td>567</td>
</tr>
<tr>
<td>12.4.1.2.1.14</td>
<td>Method 14: Conversion of N,N-Disubstituted 2-Nitroanilines into Benzimidazoles and Their N-Oxides</td>
<td>568</td>
</tr>
<tr>
<td>12.4.1.2.1.15</td>
<td>Method 15: Conversion of N,N'-Disubstituted 1,2-Diaminoarenes into Benzimidazoles</td>
<td>569</td>
</tr>
<tr>
<td>12.4.1.2.1.15.1</td>
<td>Variation 1: Acid-Catalyzed Cyclizations</td>
<td>569</td>
</tr>
<tr>
<td>12.4.1.2.1.15.2</td>
<td>Variation 2: Oxidative Cyclizations</td>
<td>570</td>
</tr>
<tr>
<td>12.4.1.2.1.16</td>
<td>Method 16: Ring Closure of 1-(2-Nitroaryl)-4,5-dihydro-1H-1,2,3-triazoles</td>
<td>571</td>
</tr>
<tr>
<td>12.4.1.2.2</td>
<td>With Formation of 1–5 or 3–4 Bonds</td>
<td>571</td>
</tr>
<tr>
<td>12.4.1.2.2.1</td>
<td>Method 1: Cyclization of Arylamidines or Arylguanidines</td>
<td>572</td>
</tr>
<tr>
<td>12.4.1.2.2.1.1</td>
<td>Variation 1: Direct Cyclization of Amidines or Guanidines</td>
<td>572</td>
</tr>
<tr>
<td>12.4.1.2.2.1.2</td>
<td>Variation 2: Pyrolysis of Oxadiazoles</td>
<td>573</td>
</tr>
<tr>
<td>12.4.1.2.2.2</td>
<td>Method 2: Cyclization of Arylureas and Arylthioureas</td>
<td>573</td>
</tr>
<tr>
<td>12.4.1.2</td>
<td>By Annulation to the Heterocyclic Ring</td>
<td>574</td>
</tr>
<tr>
<td>12.4.1.2.1</td>
<td>By Formation of Two C–C Bonds</td>
<td>574</td>
</tr>
<tr>
<td>12.4.1.2.2</td>
<td>By Formation of One C–C Bond</td>
<td>574</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Synthesis by Ring Transformation</td>
<td>575</td>
</tr>
<tr>
<td>12.4.2.1</td>
<td>From Benzo Five-Membered Ring Heterocycles</td>
<td>575</td>
</tr>
<tr>
<td>12.4.2.1.1</td>
<td>Method 1: From Indazoles</td>
<td>575</td>
</tr>
<tr>
<td>12.4.2.1.2</td>
<td>Method 2: From Benzoazoles</td>
<td>575</td>
</tr>
<tr>
<td>12.4.2.1.3</td>
<td>Method 3: From Benzofuroxans</td>
<td>575</td>
</tr>
<tr>
<td>12.4.2.2</td>
<td>Ring Contraction</td>
<td>577</td>
</tr>
<tr>
<td>12.4.2.2.1</td>
<td>Method 1: From Quinoxalines</td>
<td>577</td>
</tr>
<tr>
<td>12.4.2.2.1.1</td>
<td>Variation 1: Action of Strong Bases on 2-Haloquinoxalines</td>
<td>577</td>
</tr>
<tr>
<td>12.4.2.2.1.2</td>
<td>Variation 2: Ring Contractions of Quinoxaline N-Oxides</td>
<td>578</td>
</tr>
<tr>
<td>12.4.2.2.2</td>
<td>Method 2: Miscellaneous Ring Constructions</td>
<td>578</td>
</tr>
<tr>
<td>12.4.3</td>
<td>Aromatization</td>
<td>578</td>
</tr>
</tbody>
</table>
Table of Contents

12.4.4 Synthesis by Substituent Modification ... 579
12.4.4.1 Addition Reactions ... 579
12.4.4.1.1 Addition of Hydrogen ... 580
12.4.4.1.2 Addition of Metals .. 580
12.4.4.1.3 Addition of Organic Groups ... 580
12.4.4.1.4 Addition of Heteroatoms .. 580
12.4.4.2 Substitution of Existing Substituents on Carbon 581
12.4.4.2.1 Of Hydrogen .. 581
12.4.4.2.1.1 Method 1: Substitution by Hydrogen or Deuterium 581
12.4.4.2.1.2 Method 2: Substitution by a Metal 581
12.4.4.2.1.3 Method 3: Substitution by Alkyl, Aryl, and Substituted Alkyl Groups 582
12.4.4.2.1.4 Method 4: Substitution by Acyl or Aroyl Groups 584
12.4.4.2.1.5 Method 5: Substitution by Halogens 584
12.4.4.2.1.6 Method 6: Substitution by Chalcogen Groups 585
12.4.4.2.1.7 Method 7: Substitution by Nitrogen Groups 586
12.4.4.2.1.7.1 Variation 1: Amination .. 586
12.4.4.2.1.7.2 Variation 2: Nitration .. 587
12.4.4.2.2 Of Metals ... 588
12.4.4.2.3 Of Carbon Functionalities .. 589
12.4.4.2.3.1 Method 1: Substitution by Amino Groups 589
12.4.4.2.3.2 Method 2: Substitution by Hydrogen (Decarboxylation) 589
12.4.4.2.4 Of Heteroatoms .. 589
12.4.4.2.4.1 Method 1: Substitution of Halogen 590
12.4.4.2.4.1.1 Variation 1: Reduction .. 590
12.4.4.2.4.1.2 Variation 2: Electrophilic Displacement 590
12.4.4.2.4.1.3 Variation 3: Nucleophilic Displacement 590
12.4.4.2.4.2 Method 2: Substitution of Chalcogen Groups 591
12.4.4.2.4.3 Method 3: Substitution of Nitrogen Groups 591
12.4.4.3 Substitution of Existing Substituents on Nitrogen 592
12.4.4.3.1 Of Hydrogen .. 592
12.4.4.3.1.1 Method 1: Substitution by Alkyl, Substituted Alkyl, and Unsaturated Carbon Groups 592
12.4.4.3.1.2 Method 2: Substitution by Aryl Groups 593
12.4.4.3.1.3 Method 3: Substitution by Acyl Groups 593
12.4.4.3.1.4 Method 4: Substitution by Silyl Groups 594
12.4.4.3.1.5 Method 5: Substitution by Chalcogens 594
12.4.4.3.1.6 Method 6: Substitution by Nitrogen and Phosphorus Groups 594
12.4.4.3.2 Of Metals ... 594
12.4.4.3.3 Of Carbon Functionalities .. 594
12.4.4.3.4 Of Heteroatoms .. 594
12.5 Product Class 5: Azaindolizines with Two Nitrogen Atoms in the Five-Membered Ring
G. Hajós and Z. Riedl

12.5.1 Product Subclass 1: Imidazo[1,2-α]pyridines

12.5.1.1 Synthesis by Ring-Closure Reactions

12.5.1.1.1 Method 1: Reaction of Pyrindin-2-amine with Bifunctional Reagents

12.5.1.1.2 Variation 1: Reaction of Pyrindin-2-amine Derivatives with α-Halo Oxo Compounds

12.5.1.1.3 Variation 2: Reaction of Pyrindin-2-amine Derivatives with α-Dioxo Compounds

12.5.1.1.4 Variation 3: Transformation of Pyrindin-2-amine Derivatives

12.5.1.2 Method 2: Ring Closures Starting from N-Substituted Pyrindin-2-amines

12.5.1.3 Method 3: Dipolar Cyclization

12.5.1.3.1 Variation 1: 1,5-Dipolar Cyclization

12.5.1.3.2 Variation 2: 1,3-Dipolar Cyclization

12.5.1.4 Method 4: Miscellaneous Procedures
<p>| 12.5.1.2 | Synthesis by Substituent Modification | 624 |
| 12.5.1.2.1 | Method 1: Electrophilic Substitution | 624 |
| 12.5.1.2.2 | Method 2: Substitution via Lithiation | 625 |
| 12.5.1.2.3 | Method 3: Introduction of Elements of the Third Row of the Periodic Table | 626 |
| 12.5.1.2.4 | Method 4: Nucleophilic Substitution | 627 |
| 12.5.1.2.5 | Method 5: Interconversion of Substituents | 628 |
| 12.5.1.2.6 | Method 6: Quaternization | 628 |
| 12.5.2 | Product Subclass 2: Aza Analogues of Imidazo[1,2-α]pyridines Containing Additional Nitrogen Atoms in the Six-Membered Ring | 629 |
| 12.5.2.1 | Synthesis by Ring-Closure Reactions | 630 |
| 12.5.2.1.1 | Method 1: Reaction of α-Aminoazines with Bifunctional Reagents | 630 |
| 12.5.2.1.1.1 | Variation 1: Reaction of α-Aminoazines with α-Halo Oxo Reagents | 630 |
| 12.5.2.1.1.2 | Variation 2: Reaction of α-Aminodiazines with α-Dioxo Compounds | 635 |
| 12.5.2.1.1.3 | Variation 3: Reaction of α-Aminoazines with α-Oxocarboxylic Acid Derivatives | 635 |
| 12.5.2.1.2 | Method 2: Ring Closure of Functionalized α-(Alkylamino)azines | 636 |
| 12.5.2.1.3 | Method 3: Miscellaneous Procedures | 637 |
| 12.5.2.2 | Synthesis by Substituent Modification | 638 |
| 12.5.2.2.1 | Method 1: Electrophilic Substitution | 638 |
| 12.5.2.2.2 | Method 2: Substitution via Lithiation | 640 |
| 12.5.2.2.3 | Method 3: Nucleophilic Substitution | 641 |
| 12.5.2.2.4 | Method 4: Oxidation of the Ring Nitrogen Atom | 642 |
| 12.5.2.2.5 | Method 5: Reduction | 642 |
| 12.5.2.2.6 | Method 6: Ring Transformation | 642 |
| 12.5.3 | Product Subclass 3: Imidazo[1,5-α]pyridines | 643 |
| 12.5.3.1 | Synthesis by Ring-Closure Reactions | 643 |
| 12.5.3.1.1 | Method 1: Ring Closure Starting from 2-(Aminomethyl)pyridine Derivatives | 643 |
| 12.5.3.1.1.1 | Variation 1: Ring Closures of 2-[(Acylamino)methyl]pyridines | 643 |
| 12.5.3.1.1.2 | Variation 2: Cyclization of 2-Pyridylglycine Esters with Oxo Compounds | 645 |
| 12.5.3.1.2 | Method 2: 1,3-Dipolar Cyclization | 646 |
| 12.5.3.1.3 | Method 3: Reactions with Carbenes | 646 |
| 12.5.3.1.4 | Method 4: Miscellaneous Procedures | 646 |
| 12.5.3.2 | Synthesis by Substituent Modification | 648 |
| 12.5.3.2.1 | Method 1: Electrophilic Substitution | 648 |
| 12.5.3.2.2 | Method 2: Substitution via Lithiation | 650 |
| 12.5.4 | Product Subclass 4: Aza Analogues of Imidazo[1,5-α]pyridines Containing Additional Nitrogen Atoms in the Six-Membered Ring | 651 |
| 12.5.4.1 | Synthesis by Ring-Closure Reactions | 651 |
| 12.5.4.1.1 | Method 1: Ring Closure Starting from 2-(Aminomethyl)diazine Derivatives | 651 |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5.1.2</td>
<td>Method 2: 1,3-Dipolar Cyclization</td>
<td>653</td>
</tr>
<tr>
<td>12.5.1.3</td>
<td>Method 3: Ring Closure of 2-(Aminoalkyl)pyrazines using Carbon Disulfide</td>
<td>653</td>
</tr>
<tr>
<td>12.5.4.2</td>
<td>Synthesis by Substituent Modification</td>
<td>654</td>
</tr>
<tr>
<td>12.5.4.2.1</td>
<td>Method 1: Electrophilic Substitution</td>
<td>654</td>
</tr>
<tr>
<td>12.5.4.2.2</td>
<td>Method 2: Nucleophilic Substitution</td>
<td>655</td>
</tr>
<tr>
<td>12.5.4.2.3</td>
<td>Method 3: Oxidation</td>
<td>656</td>
</tr>
<tr>
<td>12.5.5</td>
<td>Product Subclass 5: Pyrazolo[1,5-a]pyridines</td>
<td>656</td>
</tr>
<tr>
<td>12.5.5.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>657</td>
</tr>
<tr>
<td>12.5.5.1.1</td>
<td>Method 1: Ring Closure of β-Aminoalkyepyridines by Oxidation</td>
<td>657</td>
</tr>
<tr>
<td>12.5.5.1.2</td>
<td>Method 2: Ring Closure by Cyclocondensation</td>
<td>657</td>
</tr>
<tr>
<td>12.5.5.1.3</td>
<td>Method 3: 1,3-Dipolar Cycloaddition</td>
<td>658</td>
</tr>
<tr>
<td>12.5.5.1.4</td>
<td>Method 4: 1,5-Dipolar Cyclization</td>
<td>661</td>
</tr>
<tr>
<td>12.5.5.1.5</td>
<td>Method 5: Ring Closure Including Ring Transformation</td>
<td>663</td>
</tr>
<tr>
<td>12.5.5.2</td>
<td>Synthesis by Substituent Modification</td>
<td>665</td>
</tr>
<tr>
<td>12.5.5.2.1</td>
<td>Method 1: Electrophilic Substitution</td>
<td>665</td>
</tr>
<tr>
<td>12.5.5.2.2</td>
<td>Method 2: Substitution via Lithiation</td>
<td>666</td>
</tr>
<tr>
<td>12.5.6</td>
<td>Product Subclass 6: Aza Analogues of Pyrazolo[1,5-a]pyridines Containing Additional Nitrogen Atoms in the Six-Membered Ring</td>
<td>667</td>
</tr>
<tr>
<td>12.5.6.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>667</td>
</tr>
<tr>
<td>12.5.6.1.1</td>
<td>Method 1: 1,3-Dipolar Cycloaddition</td>
<td>667</td>
</tr>
<tr>
<td>12.5.6.1.2</td>
<td>Method 2: Simultaneous Formation of the Five- and Six-Membered Rings</td>
<td>668</td>
</tr>
<tr>
<td>12.5.6.1.3</td>
<td>Method 3: Ring Closure Including Ring Transformation</td>
<td>669</td>
</tr>
<tr>
<td>12.5.6.2</td>
<td>Synthesis by Substituent Modification</td>
<td>670</td>
</tr>
<tr>
<td>12.5.6.2.1</td>
<td>Method 1: Electrophilic Substitution</td>
<td>670</td>
</tr>
<tr>
<td>12.5.6.2.2</td>
<td>Method 2: Palladium-Catalyzed Coupling</td>
<td>671</td>
</tr>
<tr>
<td>12.5.6.2.3</td>
<td>Method 3: Reduction</td>
<td>672</td>
</tr>
</tbody>
</table>

12.6 | **Product Class 6: Azaphospholes and Azarsoles**
A. Schmidpeter and K. Karaghiosoff |

12.6 | **Product Class 6: Azaphospholes and Azarsoles** | 679 |
12.6.1 | **Product Subclass 1: 1H-1,2-Azaphospholes** | 679 |
12.6.1.1 | Synthesis by Ring-Closure Reactions | 680 |
12.6.1.1.1 | By Formation of One N–P and One P–C Bond | 680 |
12.6.1.1.1 | Method 1: Cyclocondensation of β-Methylene Ketimines with Phosphorus Trichloride or Tribromide and a Base | 680 |
12.6.1.2 | Synthesis from Other Heterocycles | 680 |
12.6.1.2.1 | By Formation of One N–C and One C–C Bond | 680 |
Table of Contents

12.6.1.2.1 Method 1: Cycloaddition of 1-Aza-2-phospha-4-avanadam(V)cyclobutenes and Alkynes .. 680

12.6.1.2.2 By Formation of One P—C and One C—C Bond .. 681

12.6.1.2.2.1 Method 1: Cycloaddition of 1H-1,3,2-Diazaphospholines and Alkynes 681

12.6.1.2.3 By Formation of One C—C Bond .. 681

12.6.1.2.3.1 Method 1: Flash-Vacuum Pyrolysis of 3-Aryl-1,2,3,4-tribenzophospholes ... 681

12.6.2 **Product Subclass 2: Monocyclic 1H-1,3-Azaphospholes and 1H,1,3-Azaroles** .. 682

12.6.2.1 Synthesis by Ring-Closure Reactions .. 683

12.6.2.1.1 By Formation of Two P—C Bonds .. 683

12.6.2.1.1.1 Method 1: 4+1 Cyclocondensation of N-[Chloro(phenyl)methylene]-
N-(2-oxo-1,2-dihydropyryl)benzenammonium Chloride with
Tris(trimethylsilyl)phosphine .. 683

12.6.2.1.1.1 Variation 1: From Ethenediamines and Phosphorus Trichloride 683

12.6.2.1.1.2 Variation 2: From 4,5-Dihydroxazolium Bromides and
4,5-Dihydrooxazolium Bromides .. 684

12.6.2.1.1.2 Method 2: Phosphorus–Oxygen Exchange in Oxazolium Compounds by
the Action of Tris(trimethylsilyl)phosphine .. 685

12.6.2.1.2 By Formation of One P—C and One C—C Bond .. 686

12.6.2.1.2.1 Method 1: 3+2-Cycloaddition/Reversion Reactions with
Phosphaalkynes and Phosphaalkenes .. 686

12.6.3 **Product Subclass 3: 1H-1,3-Benzazaphospholes and 1H,1,3-Benzazaroles** 688

12.6.3.1 Synthesis by Ring-Closure Reactions .. 689

12.6.3.1.1 By Formation of One N—C and One P—C Bond 689

12.6.3.1.1.1 Method 1: 4+1 Cyclocondensation of 2-Phosphinophenylamines and
2-Arsinophenylamines with Carbonyl Compounds 689

12.6.3.1.2 By Formation of Two P—C or Two As—C Bonds 692

12.6.3.1.2.1 Method 1: 4+1 Cyclocondensation of [N-(2-Lithiophenyl)-2,2-dimethyl-
propanimidoyl][lithium with tert-Butylphosphonous Dichloride
or tert-Butylarsinous Dichloride ... 692

12.6.4 **Product Subclass 4: [1,3]Azaphospholo[1,2-a]pyridines and Related Compounds** .. 692

12.6.4.1 Synthesis by Ring-Closure Reactions .. 693

12.6.4.1.1 By Formation of Two P—C or As—C Bonds .. 694

12.6.4.1.1.1 Method 1: Oxygen–Phosphorus or Oxygen–Arsenic Exchange in
Oxazolo[3,2-a]pyridin-4-ium Salts with Tris(trimethylsilyl)-
phosphine or Tris(trimethylsilyl)arsine .. 694
Table of Contents

12.6.5 Product Subclass 5: [1,3]Azaphospholo[1,5-α]pyridines and Related Compounds ... 694
12.6.5.1 Synthesis by Ring-Closure Reactions ... 696
12.6.5.1.1 By Formation of Two P–C Bonds .. 696
12.6.5.1.1.1 Method 1: [4 + 1] Cyclocondensation of Cyclominium Salts with Phosphorus Trichloride ... 696
12.6.5.1.1.2 Method 2: [3 + 2] Cycloaddition of Pyridinium and Related Ylides with Phospaalkynes ... 699
12.6.5.1.1.3 Method 3: [1,5] Electrocyclization of Pyridinium Ylides 700

12.7 Product Class 7: Diphospholes
F. Mathey

12.7 Product Class 7: Diphospholes ... 705
12.7.1 Product Subclass 1: 1,2-Diphospholes .. 705
12.7.1.1 Method 1: Alkylation of 1,2-Diphospholides ... 705
12.7.2 Product Subclass 2: 1,2-Diphospholides ... 706
12.7.2.1 Method 1: From Diylides ... 706
12.7.2.2 Method 2: From 1,2-Dihydrophosphetes .. 707
12.7.2.3 Method 3: From Phosphonium Salts by Ring Closure 708
12.7.3 Product Subclass 3: 1,3-Diphospholes .. 708
12.7.3.1 Method 1: From Phospaalkynes ... 709
12.7.3.2 Method 2: From 1,3-Diphospholides ... 709
12.7.3.3 Method 3: From 1,2-Bis(phosphino)arenes by Ring Closure 710
12.7.4 Product Subclass 4: 1,3-Diphospholides ... 710
12.7.4.1 Method 1: From Phospaalkynes ... 710
12.7.4.2 Method 2: From 1,2-Dihydro-1,2-diphosphetes 711
12.7.4.3 Method 3: From 1,2-Bis(phosphino)arenes by Ring Closure 713
12.7.5 Product Subclass 5: 11-Diphospholyl Complexes 714
12.7.5.1 Method 1: From Metal-1,2-Diphosphaalkyl Complexes by Ring Closure ... 715
12.7.5.2 Method 2: From Phospaalkynes ... 716
12.7.5.3 Method 3: From Diphospholides ... 716

Keyword Index .. 719
Author Index .. 741
Abbreviations .. 791
Volume 13: Five-Membered Hetarenes with Three or More Heteroatoms

Introduction
R. C. Storr and T. L. Gilchrist .. 1

13.1 Product Class 1: 1,2,5-Oxathiazoles, 1,2,3-Dithiazoles, and Related Compounds
N. G. Argyropoulos .. 9

13.2 Product Class 2: 1,2,4-Dioxazoles, 1,2,4-Oxathiazoles, and 1,2,4-Dithiazoles
N. G. Argyropoulos .. 29

13.3 Product Class 3: 1,3,2-Oxathiazoles, 1,3,2-Dithiazoles, and Related Compounds
N. G. Argyropoulos .. 73

13.4 Product Class 4: 1,4,2-Oxathiazoles and Related Compounds
N. G. Argyropoulos .. 95

13.5 Product Class 5: 1,2,3-Oxadiazoles
T. L. Gilchrist ... 109

13.6 Product Class 6: 1,2,4-Oxadiazoles
K. Hemming ... 127

13.7 Product Class 7: 1,2,5-Oxadiazoles
R. M. Paton .. 185

13.8 Product Class 8: 1,3,4-Oxadiazoles
G. W. Weaver ... 219

13.9 Product Class 9: 1,2,3-Thiadiazoles
D. J. Wilkins and P. A. Bradley .. 253

13.10 Product Class 10: 1,2,4-Thiadiazoles
D. J. Wilkins and P. A. Bradley .. 277

13.11 Product Class 11: 1,2,5-Thiadiazoles and Related Compounds
P. A. Koutentis ... 297

13.12 Product Class 12: 1,3,4-Thiadiazoles
S. J. Collier .. 349

13.13 Product Class 13: 1,2,3-Triazoles
A. C. Tomé .. 415
13.14 **Product Class 14: 1,2,4-Triazoles**
A. D. M. Curtis .. 603

13.15 **Product Class 15: Dithiaphospholes and Their Analogues**
R. K. Bansal, N. Gupta, and S. J. Collier 641

13.16 **Product Class 16: Oxazaphospholes and Thiazaphospholes**
R. K. Bansal and Neelima Gupta .. 647

13.17 **Product Class 17: Oxadiphospholes and Their Analogues**
S. J. Collier ... 659

13.18 **Product Class 18: Diazaphospholes and Diazarsoles**
R. K. Bansal and Neelima Gupta .. 689

13.19 **Product Class 19: Azadiphospholes and Their Analogues**
S. J. Collier ... 717

13.20 **Product Class 20: Triphospholes and Diphospharsoles**
R. K. Bansal and Neelima Gupta .. 729

13.21 **Product Class 21: Thiadiazaphospholes**
S. J. Collier ... 739

13.22 **Product Class 22: Triazaphospholes**
R. K. Bansal and Neelima Gupta .. 743

13.23 **Product Class 23: Diazadiphospholes**
S. J. Collier ... 757

13.24 **Product Class 24: Tetraphospholes**
S. J. Collier ... 763

13.25 **Product Class 25: Tetraazaphospholes**
S. J. Collier ... 767

13.26 **Product Class 26: Pentaphospholes and Pentarsoles**
R. K. Bansal and Neelima Gupta .. 771

13.27 **Product Class 27: Selenazoles and Tellurazoles Containing One or More Other Heteroatoms**
R. A. Aitken ... 777

13.28 **Product Class 28: Oxatriazoles**
M. Begtrup ... 823

13.29 **Product Class 29: Thiaatriazoles**
M. Begtrup ... 833
13.30 **Product Class 30: Tetrazoles**
A. F. Brigas .. 861

13.31 **Product Class 31: Pentazoles**
R. C. Storr .. 917

Keyword Index .. 923

Author Index .. 955

Abbreviations .. 1005
Table of Contents

Introduction
R. C. Storr and T. L. Gilchrist

Introduction .. 1

13.1 Product Class 1: 1,2,5-Oxathiazoles, 1,2,3-Dithiazoles,
and Related Compounds
N. G. Argyropoulos

13.1 Product Class 1: 1,2,5-Oxathiazoles, 1,2,3-Dithiazoles,
and Related Compounds .. 9

13.1.1 Product Subclass 1: Annulated 1,2,5-Oxathiazoles

13.1.1.1 Synthesis by Ring-Closure Reactions 10
13.1.1.1.1 By Formation of Two O—S Bonds and One S—C Bond, or One O—S,
One S—S, and One S—C Bond ... 10
13.1.1.1.1 Method 1: 1,6-Dioxa-6a¹4-thia-2,5-diazapentalenes and
1-Oxa-6,6a¹4-dithia-2,5-diazapentalenes from 1,3-Dioximes . . 10

13.1.2 Product Subclass 2: Monocyclic 1,2,3-Dithiazoles

13.1.2.1 Synthesis by Ring-Closure Reactions 14
13.1.2.1.1 By Formation of One S—N and One S—C Bond 14
13.1.2.1.1 Method 1: Appel’s Salt from Acetonitrile and Sulfur Monochloride 14
13.1.2.2 Synthesis by Substituent Modification 15
13.1.2.2.1 Method 1: From Appel’s Salt and Substituted Phenols or Hydrazines . . 15

13.1.3 Product Subclass 3: Annulated 1,2,3-Dithiazoles

13.1.3.1 Synthesis by Ring-Closure Reactions 18
13.1.3.1.1 By Formation of One S—S and One S—N Bond 19
13.1.3.1.1 Method 1: 1,2,3-Benzodithiazolium Salts from
2-Aminobenzenethiols and Thionyl Chloride 19
13.1.3.1.2 By Formation of One S—N and One S—C Bond 20
13.1.3.1.2.1 Method 1: 1,2,3-Benzodithiazolium Salts (Herz Salts) from
Arylamines and Sulfur Monochloride 20
13.1.3.1.2.2 Method 2: Heteroannulated Herz Salts from Heteroaromatic Amines
and Sulfur Monochloride: Synthesis by Annulation to
a Heterocyclic Ring ... 21

13.1.3.2 Aromatization .. 23
13.1.3.2.1 Method 1: 1,2,3-Benzodithiazolium Salts by Oxidation of
Benzodithiazoyl Radicals ... 23
13.1.3.2.2 Method 2: 1,2,3-Benzodithiazolium Salts by Dehydration of 3H-1,2,3-Benzodithiazole 2-Oxides ... 23
13.1.3.3 Synthesis by Substituent Modification ... 24
13.1.3.3.1 Method 1: From Other 1,2,3-Benzodithiazolium Salts and Amines 24

13.2 Product Class 2: 1,2,4-Dioxazoles, 1,2,4-Oxathiazoles, and 1,2,4-Dithiazoles N. G. Argyropoulos

13.2.1 Product Class 2: 1,2,4-Dioxazoles, 1,2,4-Oxathiazoles, and 1,2,4-Dithiazoles 29
13.2.1.1 Product Subclass 1: Monocyclic 1,2,4-Dithiazoles 29
13.2.1.1.1 Synthesis by Ring-Closure Reactions ... 34
13.2.1.1.1.1 By Formation of One S–S Bond, Two S–C Bonds, and One N–C Bond 34
13.2.1.1.1.1.1 Method 1: 1,2,4-Dithiazolium Salts from Nitriles and Phosphorus Pentasulfide ... 34
13.2.1.1.1.2 By Formation of One S–S and Two S–C Bonds 35
13.2.1.1.1.2.1 Method 1: 3,5-Diaryl-1,2,4-dithiazolium Salts from 1,3-Dichloro-2-azoniaallene Salts and Hydrogen Sulfide 35
13.2.1.1.1.3 By Formation of One S–S and One S–N Bond 36
13.2.1.1.1.3.1 Method 1: 3,5-Diaryl-1,2,4-dithiazolium Salts by Oxidation of Aryl Thioamides .. 36
13.2.1.1.1.3.1.1 Variation 1: Symmetrical 3,5-Diaryl-1,2,4-dithiazolium Salts .. 36
13.2.1.1.1.3.1.2 Variation 2: 3,5-Diaryl-1,2,4-Dithiazolium Salts by Oxidation of N-Thioaroyl Formamides and Formamidines 37
13.2.1.1.1.3.1.3 Variation 3: Unsymmetrically Substituted 3,5-Diaryl-1,2,4-dithiazolium Salts from Aryl Thioamide S-Oxides and Thiobenzoic Acid Derivatives .. 38
13.2.1.1.1.3.1.4 Variation 4: Unsymmetrically Substituted 3,5-Diaryl-1,2,4-dithiazolium Salts from the Oxidative Cyclization of Thiobenzamides 39
13.2.1.1.1.4 By Formation of One S–S and One S–N Bond 40
13.2.1.1.1.4.1 Method 1: 1,2,4-Dithiazolium Salts from N-Acylthiourea Derivatives 40
13.2.1.1.1.4.1.1 Variation 1: 3-Amino-5-aryl-1,2,4-dithiazolium Salts by Oxidation of N-Acylthiourea Derivatives .. 40
13.2.1.1.1.4.1.2 Variation 2: 3-Amino-5-aryl-1,2,4-dithiazolium Salts from Transition-Metal-Coordinated N-Acylthioureas and Thionyl Chloride .. 41
13.2.1.1.1.5 By Formation of One S–S Bond .. 42
13.2.1.1.1.5.1 Method 1: 1,2,4-Dithiazolium Salts by Oxidation of Dithiobiurets (Dithioimidodicarbonic Diamides) .. 42
13.2.1.1.1.5.1.1 Variation 1: Oxidation of Preformed Dithiobiurets 42
13.2.1.1.1.5.1.2 Variation 2: Synthesis by Oxidation of Dithiobiurets Formed In Situ 44
13.2.1.1.1.5.1.3 Variation 3: Synthesis from 1,3-Dichloro-2-azaprop-2-enimium Salts via a Dithiobiuret Intermediate .. 45
13.2.1.1.1.5.1.4 Variation 4: Oxidative Dealkylation–Cyclization of Isodithiobiurets 46
<table>
<thead>
<tr>
<th>Section</th>
<th>Method 1</th>
<th>Method 2</th>
<th>Method 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.2.1.5.2</td>
<td>1,2,4-Dithiazolium Salts by Oxidation of Aminocarbonothioylidithiocarbamate Esters</td>
<td>3-Amino-5-aryl-1,2,4-dithiazolium Salts by Oxidation of Transition-Metal Complexes of 1,1-Diethyl-3-thiobenzoylthiourea Derivatives</td>
<td>3-Amino-5-aryl-1,2,4-dithiazolium Salts by Oxidation of Transition-Metal Complexes of 1,1-Diethyl-3-thiobenzoylthiourea Derivatives</td>
</tr>
<tr>
<td>13.2.1.5.3</td>
<td>Synthesis by Ring Transformation</td>
<td>1,2,4-Dithiazolium Salts by Oxidation of Aminocarbonothioylidithiocarbamate Esters</td>
<td>1,2,4-Dithiazolium Salts by Oxidation of Aminocarbonothioylidithiocarbamate Esters</td>
</tr>
<tr>
<td>13.2.1.2</td>
<td>Synthesis by Ring Transformation</td>
<td>1,2,4-Dithiazolium Salts from Thiocarbonylimino-1,2,4-dithiazolidines and Alkylating Reagents</td>
<td>1,2,4-Dithiazolium Salts from Thiocarbonylimino-1,2,4-dithiazolidines and Alkylating Reagents</td>
</tr>
<tr>
<td>13.2.1.2.1</td>
<td>Synthesis by Ring Transformation</td>
<td>1,2,4-Dithiazolium Salts from 1,2,3,4-Thiatriazol-5-amine and O-Aryl Chlorothioformates</td>
<td>1,2,4-Dithiazolium Salts from 1,2,3,4-Thiatriazol-5-amine and O-Aryl Chlorothioformates</td>
</tr>
<tr>
<td>13.2.1.2.2</td>
<td>Synthesis by Ring Transformation</td>
<td>1,2,4-Dithiazolium Salts from 1,2,3,4-Thiatriazol-5-amine and O-Aryl Chlorothioformates</td>
<td>1,2,4-Dithiazolium Salts from 1,2,3,4-Thiatriazol-5-amine and O-Aryl Chlorothioformates</td>
</tr>
<tr>
<td>13.2.1.3</td>
<td>Aromatization</td>
<td>1,2,4-Dithiazolium Salts from Thiocarbonylimino-1,2,4-dithiazolidines and Alkylating Reagents</td>
<td>1,2,4-Dithiazolium Salts from Thiocarbonylimino-1,2,4-dithiazolidines and Alkylating Reagents</td>
</tr>
<tr>
<td>13.2.1.3.1</td>
<td>1,2,4-Dithiazolium Salts from Thiocarbonylimino-1,2,4-dithiazolidines and Alkylating Reagents</td>
<td>1,2,4-Dithiazolium Salts from Thiocarbonylimino-1,2,4-dithiazolidines and Alkylating Reagents</td>
<td>1,2,4-Dithiazolium Salts from Thiocarbonylimino-1,2,4-dithiazolidines and Alkylating Reagents</td>
</tr>
<tr>
<td>13.2.1.3.2</td>
<td>1,2,4-Dithiazolium Salts from Thiocarbonylimino-1,2,4-dithiazolidines and Alkylating Reagents</td>
<td>1,2,4-Dithiazolium Salts from Thiocarbonylimino-1,2,4-dithiazolidines and Alkylating Reagents</td>
<td>1,2,4-Dithiazolium Salts from Thiocarbonylimino-1,2,4-dithiazolidines and Alkylating Reagents</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Product Subclass 2: Annulated 1,2,4-Oxathiazoles and 1,2,4-Dithiazoles</td>
<td>1,2,4-Dithiazolium Salts by Nucleophilic Substitution of Substituents</td>
<td>1,2,4-Dithiazolium Salts by Nucleophilic Substitution of Substituents</td>
</tr>
<tr>
<td>13.2.2.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>1,2,4-Dithiazolium Salts by Nucleophilic Substitution of Substituents</td>
<td>1,2,4-Dithiazolium Salts by Nucleophilic Substitution of Substituents</td>
</tr>
<tr>
<td>13.2.2.1.1</td>
<td>Synthesis by Double-Cyclization Reactions</td>
<td>1,2,4-Dithiazolium Salts by Nucleophilic Substitution of Substituents</td>
<td>1,2,4-Dithiazolium Salts by Nucleophilic Substitution of Substituents</td>
</tr>
<tr>
<td>13.2.2.1.1.1</td>
<td>Synthesis by Double-Cyclization Reactions</td>
<td>1,2,4-Dithiazolium Salts by Nucleophilic Substitution of Substituents</td>
<td>1,2,4-Dithiazolium Salts by Nucleophilic Substitution of Substituents</td>
</tr>
<tr>
<td>13.2.2.1.1.1.1</td>
<td>Synthesis by Double-Cyclization Reactions</td>
<td>1,2,4-Dithiazolium Salts by Nucleophilic Substitution of Substituents</td>
<td>1,2,4-Dithiazolium Salts by Nucleophilic Substitution of Substituents</td>
</tr>
<tr>
<td>13.2.2.2</td>
<td>Synthesis by Annulation to a Heterocyclic Ring</td>
<td>1,2,4-Dithiazolium Salts by Nucleophilic Substitution of Substituents</td>
<td>1,2,4-Dithiazolium Salts by Nucleophilic Substitution of Substituents</td>
</tr>
<tr>
<td>13.2.2.2.1</td>
<td>Synthesis by Annulation to a Heterocyclic Ring</td>
<td>1,2,4-Dithiazolium Salts by Nucleophilic Substitution of Substituents</td>
<td>1,2,4-Dithiazolium Salts by Nucleophilic Substitution of Substituents</td>
</tr>
<tr>
<td>13.2.2.2.2</td>
<td>Synthesis by Annulation to a Heterocyclic Ring</td>
<td>1,2,4-Dithiazolium Salts by Nucleophilic Substitution of Substituents</td>
<td>1,2,4-Dithiazolium Salts by Nucleophilic Substitution of Substituents</td>
</tr>
<tr>
<td>13.2.2.2.2.1</td>
<td>Synthesis by Annulation to a Heterocyclic Ring</td>
<td>1,2,4-Dithiazolium Salts by Nucleophilic Substitution of Substituents</td>
<td>1,2,4-Dithiazolium Salts by Nucleophilic Substitution of Substituents</td>
</tr>
<tr>
<td>13.2.2.2.2.2</td>
<td>Synthesis by Annulation to a Heterocyclic Ring</td>
<td>1,2,4-Dithiazolium Salts by Nucleophilic Substitution of Substituents</td>
<td>1,2,4-Dithiazolium Salts by Nucleophilic Substitution of Substituents</td>
</tr>
</tbody>
</table>

Science of Synthesis Original Edition Volume 13
© Georg Thieme Verlag KG
13.2.1.2.2.1 Method 1: Trithiadiazapentalenes by Oxygen–Sulfur Exchange Reactions

13.2.1.2.2.1.1 Variation 1: Diazapentalenes by Oxygen–Sulfur Exchange Reactions of 3-Acylimino-3H-1,2,4-oxathiazoles and 3-Acylimino-3H-1,2,4-dithiazoles with Phosphorus Pentasulfide

13.2.1.2.2.1.2 Variation 2: 1,6,6aº4-Trithia-3-azapentalenes by Oxygen–Sulfur Exchange Reactions of 3H-1,2-Dithiol-3-ylidenebenzamide Derivatives

13.2.1.2.2.1.3 Variation 3: 1,6,6aº4-Trithia-3-azapentalenes by Oxygen–Sulfur Exchange Reactions of (1,2-Dithiol-3-ylidene)benzamide Derivatives

13.2.1.2.3 By Formation of One S–S and One N–C Bond

13.2.1.2.3.1 Method 1: Heterapentalenes from N-Aryl-3-imino-3H-1,2,4-dithiazol-5-amines and Aryl Isothiocyanates

13.2.1.2.3.2 Method 2: 1,6,6aº4-Trithia-3-azapentalenes from 3H-1,2-Dithiol-3-imines and Isothiocyanates

13.2.2 Synthesis by Ring Transformation

13.2.2.1 Method 1: 5-Aryl-2-(methylsulfanyl)-1,6,6aº4-trithia-3,4-diazapentalenes from 1,3,5-Triazinium Salts and Hydrogen Sulfide

13.2.3 Synthesis by Substituent Modification

13.2.3.1 Method 1: Synthesis of Amino-Substituted 1,6,6aº4-Trithia-3,4-diazapentalenes by Nucleophilic Substitution

13.3 Product Class 3: 1,3,2-Oxathiazoles, 1,3,2-Dithiazoles, and Related Compounds

13.3.1 Product Subclass 1: Monocyclic 1,3,2-Oxathiazoles

13.3.1.1 Synthesis by Ring-Closure Reactions

13.3.1.1.1 By Formation of One S–N and One O–C Bond

13.3.1.1.1.1 Method 1: Mesoionic 1,3,2-Oxathiazolium-5-olates from Aryl(sulfanyl)-acetic Acids by S-Nitrosation and Dehydration

13.3.2 Product Subclass 2: Monocyclic 1,3,2-Dithiazoles

13.3.2.1 Synthesis by Ring-Closure Reactions

13.3.2.1.1 By Formation of Two S–N Bonds

13.3.2.1.1.1 Method 1: Syntheses of 1,3,2-Dithiazolium Chlorides from Ethane-1,2-disulfenyl Dichlorides

13.3.2.1.1.1.1 Variation 1: From 1-Chloroethane-1,2-disulfenyl Dichloride and Bis(trimethylsilyl)sulfur Diimide

13.3.2.1.1.1.2 Variation 2: From 1-Chloroethane-1,2-disulfenyl Chlorides and Trimethylsilyl Azide
13.3.2.1.2 By Formation of Two S—C Bonds ... 80
13.3.2.1.2.1 Fragments S—N—S and C—C .. 80
13.3.2.1.2.1.1 Method 1: 1,3,2-Dithiazolium Salts by Cycloaddition 80
13.3.2.1.2.1.1.1 Variation 1: 1,3-Dipolar Cycloaddition of the Dithionitronium Cation to Alkynes ... 80
13.3.2.1.2.1.2 Variation 2: Cycloadditions of Dichlorodithionitronium Hexafluoroarsenate to Alkynes ... 82
13.3.2.1.2.1.3 Method 2: Mesoionic 1,3,2-Dithiazole-4-imines from Phenylacetylene and Tetrasulfur Tetranitride ... 83
13.3.2.1.2.2 Method 3: Mesoionic 1,3,2-Dithiazole-4-thiones from Alkynes and 1,2,4,6-Tetrathia-3,5,7-triazepinium Chloride 83
13.3.2.2 Aromatization .. 84
13.3.2.2.1 Method 1: 1,3,2-Dithiazolium Salts by Oxidation of 1,3,2-Dithiazolyl Free Radicals ... 84
13.3.2.3 Synthesis by Substituent Modification ... 85
13.3.2.3.1 Method 1: Mesoionic 1,3,2-Dithiazole-4-thiones from 1,3,2-Dithiazolium Salts and Vice Versa ... 85
13.3.2.3.2 Method 2: 5-Amino-1,3,2-dithiazole-4-thiones from 1,3,2-Dithiazolium Salts ... 86
13.3.2.3.3 Method 3: Mesoionic 1,3,2-Dithiazol-4-ones by Oxidation of 1,3,2-Dithiazole-4-thiones ... 87
13.3.3 Product Subclass 3: Annulated 1,3,2-Dithiazoles 88
13.3.3.1 Synthesis by Ring-Closure Reactions ... 89
13.3.3.1.1 By Annulation to an Arene or a Hetarene 89
13.3.3.1.1.1 By Formation of Two S—N Bonds .. 89
13.3.3.1.1.1.1 Method 1: 1,3,2-Dithiazolium Salts from Sulfenyl Chlorides and Trimethylsilyl Azide ... 89
13.3.3.1.1.1.2 Method 2: 1,3,2-Benzodithiazolium Chloride from Benzene-1,2-disulfenyl Dichloride and Bis(trimethylsilyl)sulfur Diimide 91
13.3.3.2 Aromatization .. 92
13.3.3.2.1 Method 1: [1,3,2]Dithiazolo[4,5-b]quinoxalinium Salts by Oxidation of the [1,3,2]Dithiazolo[4,5-b]quinoxalin-2-yl Radical .. 92

13.4 Product Class 4: 1,4,2-Oxathiazoles and Related Compounds
N. G. Argyropoulos

13.4 Product Class 4: 1,4,2-Oxathiazoles and Related Compounds 95
13.4.1 Product Subclass 1: 1,3,4-Oxathiazolium Salts 95
13.4.1.1 Synthesis by Ring-Closure Reactions ... 96
13.4.1.1.1 By Formation of One O—C Bond ... 96
13.4.1.1.1.1 Fragment C—N—S—C—O ... 96
13.4.1.1.1 Method 1: Synthesis by Intramolecular Cyclization of N-(Acylsulfanyl)amides .. 96
13.4.2 Product Subclass 2: 1,4,2-Oxathiazolium Salts .. 97
13.4.2.1 Aromatization .. 97
13.4.2.1.1 Method 1: Synthesis by Solvolysis of 5H-1,4,2-Oxathiazoles 97
13.4.3 Product Subclass 3: 1,4,2-Dithiazolium Salts .. 98
13.4.3.1 By Formation of One S—N Bond 100
13.4.3.1.1 Fragment N—C—S—C .. 100
13.4.3.1.1.1 Method 1: Intramolecular Cyclization of Iminomethyl Dithiocarbamates .. 100
13.4.3.1.1.2 Variation 1: From Aryl[(methylsulfonyl)oxy]imino)methyl Dithiocarbamates .. 100
13.4.3.1.1.2 Variation 2: From Bromo(diethylamino)methaniminium Bromide and Sodium Pyrrolidinecarbothioate 101
13.4.3.1.2 By Formation of One S—C Bond 102
13.4.3.1.2.1 Fragment C—N—S—C .. 102
13.4.3.1.2.1.1 Method 1: Intramolecular Cyclization of N-(Thioacylsulfanyl)amides .. 102
13.4.3.2 Aromatization .. 103
13.4.3.2.1 Method 1: By Alkylation of 1,4,2-Dithiazole-5-thiones 103
13.4.3.2.2 Method 2: By Solvolysis of 5H-1,4,2-Dithiazoles 104
13.4.3.3 Synthesis by Substituent Modification 106
13.4.3.3.1 Substitution of Existing Substituents 106
13.4.3.3.1 Method 1: Nucleophilic Substitution of 5-Methylsulfanyl Groups from 1,4,2-Dithiazolium Salts 106

13.5 Product Class 5: 1,2,3-Oxadiazoles
T. L. Gilchrist

13.5 Product Class 5: 1,2,3-Oxadiazoles .. 109
13.5.1 Synthesis by Ring-Closure Reactions ... 111
13.5.1.1 By Formation of One O—N Bond 111
13.5.1.1.1 Fragment O—C—C—N .. 111
13.5.1.1.1 Method 1: From α-Diazocarbonyl Compounds 111
13.5.1.2 By Formation of One O—C Bond 112
13.5.1.2.1 Fragment O—N—N—C .. 112
13.5.1.2.1.1 Method 1: Via N-Nitroso Compounds 112
13.5.1.2.1.1 Variation 1: Sydnones from N-Nitroso-α-amino Acids 112
13.5.1.2.1.1.1 Variation 2: Sydnone Imines from N-Nitroso-α-amino Nitriles 113
13.5.2 Synthesis by Substituent Modification 114
13.5.2.1 Substitution of Existing Substituents 114
13.5.2.1.1 Of Hydrogen ... 114
13.5.2.1.1.1 Method 1: By a Metal .. 114
13.5.2.1.1.2 Method 2: By a Carbon Functionality 115
13.5.2.1.1.3 Method 3: By a Heteroatom 116
13.5.2.1.2 Of Organometallic Groups 117
13.5.2.1.2.1 Method 1: By Another Metal 117
13.5.2.1.2.2 Method 2: By a Carbon Functionality 118
13.5.2.1.2.3 Method 3: By a Heteroatom 119
13.5.2.1.3 Of Carbon Functionalities 119
13.5.2.1.3.1 Method 1: By Hydrogen 119
13.5.2.1.4 Of Heteroatoms .. 120
13.5.2.1.4.1 Method 1: By Hydrogen 120
13.5.2.1.4.2 Method 2: By a Metal .. 120
13.5.2.1.4.3 Method 3: By a Carbon Functionality 121
13.5.2.1.4.4 Method 4: By Another Heteroatom 121
13.5.2.2 Modification of Substituents 122
13.5.2.2.1 Method 1: Of Side-Chain α-Carbon Substituents 122
13.5.2.2.2 Method 2: Of Side-Chain α-Heteroatom Substituents .. 123

13.6 Product Class 6: 1,2,4-Oxadiazoles
K. Hemming

13.6 Product Class 6: 1,2,4-Oxadiazoles 127
13.6.1 Synthesis by Ring-Closure Reactions 128
13.6.1.1 By Formation of One O—C and One N—C Bond 128
13.6.1.1.1 Fragments O—N—C and N—C 128
13.6.1.1.1.1 Method 1: By the 1,3-Dipolar Cycloaddition Reactions of Nitrile Oxides with Nitriles 128
13.6.1.1.1.1 Variation 1: By Using an Aliphatic Nitrile Oxide Generated from a Nitroalkane and Phenyl Isocyanate 129
13.6.1.1.1.2 Variation 2: By Using Nitrile Oxides Generated from Imidoyl Halides (Haloximes) 130
13.6.1.1.2 Method 2: By 1,3-Dipolar Cycloaddition of Nitrile Oxides to Imines, Followed by Aromatization of the Intermediate 4,5-Dihydro-1,2,4-oxadiazole 130
13.6.1.1.2.1 Method 1: Via N-Acylamidoximes 131
13.6.1.1.2.1.1 Variation 1: Via N-Acylamidoximes Derived from the Reaction of Amide Precursors with N,N-Dialkylformamide Dialkyl Acetals 132
13.6.1.1.2.1.2 Variation 2: Via N-Acylamidoximes Derived from Nitriles ... 132
13.6.1.1.2.1.3 Variation 3: Via N-Acylamidoximes Derived from N-Acyi Isothiocyanates 133
13.6.1.1.2.1.4 Variation 4: Via N-Acylamidoximes Derived from N-Cyano Compounds 134
Table of Contents

13.6.1.2.2 Method 2: By Nitrosation of N-Acyl \(\alpha \)-Amino Acid Derivatives Bearing Active Hydrogens on a Carbon Atom .. 135
13.6.1.1.3 Fragments O—N—C—N and C .. 136
13.6.1.1.3.1 Method 1: From an Amidoxime and a Carbonic Acid Derivative .. 136
13.6.1.1.3.1.1 Variation 1: From an Amidoxime and a Chloroformate .. 137
13.6.1.1.3.1.2 Variation 2: From an Amidoxime and Phosgene .. 138
13.6.1.1.3.1.3 Method 2: From an Amidoxime and a Carboxylic Acid or a Carboxylic Acid Derivative .. 138
13.6.1.1.3.1.2.1 Variation 1: From an Amidoxime and a Carboxylic Acid .. 139
13.6.1.1.3.1.2.2 Variation 2: From an Amidoxime and a Carboxylic Acid Ester .. 140
13.6.1.1.3.1.2.3 Variation 3: From an Amidoxime and an Anhydride .. 141
13.6.1.1.3.1.2.4 Variation 4: From an Amidoxime and an Acid Chloride .. 142
13.6.1.1.3.1.3 Method 3: From an Amidoxime and a Nitrile Derivative .. 143
13.6.1.1.3.1.3.1 Variation 1: From an Amidoxime and an Alkyl or Aryl Nitrile .. 145
13.6.1.1.3.1.3.2 Variation 2: From an Amidoxime and a Cyanate .. 145
13.6.1.1.3.1.3.3 Variation 3: From an Amidoxime and a Cyanogen Halide .. 145
13.6.1.1.3.1.4 Method 4: From an Amidoxime and an Orthoformate .. 146
13.6.1.1.3.1.5 Method 5: From an Amidoxime and a Cumulene or Heterocumulene .. 147
13.6.1.1.3.1.6 Method 6: From an Amidoxime and an Iminium Compound .. 147
13.6.1.1.3.1.7 Method 7: From an Amidoxime and an Imino Ether, Lactim Ether, Imidic Chloride, or Alkoxyimidoyl Compound .. 149
13.6.1.2 By Formation of One O—N Bond .. 150
13.6.1.2.1 Fragment O—C—N—C—N .. 150
13.6.1.2.1.1 Method 1: From Nitrone Precursors .. 150
13.6.1.2.1.1.1 Variation 1: By Using Nitrilimines Derived from N-Acylamidrazones .. 151
13.6.1.2.1.2 Variation 2: By Using Nitrilimines Derived Ultimately from Trimethylsilyl Azide .. 151
13.6.1.3 By Formation of One O—C Bond .. 152
13.6.1.3.1 Fragment O—N—C—N—C .. 152
13.6.1.3.1.1 Method 1: From N-Acylamidoximes .. 152
13.6.1.3.1.2 Method 2: From N-(Dicyanovinyl)amidoximes .. 153
13.6.1.3.1.3 Method 3: Cyclization of the Oxime Oxygen onto an Iminim Carbon .. 153
13.6.1.4 By Formation of One N—C Bond .. 154
13.6.1.4.1 Fragment N—C—O—N—C .. 154
13.6.1.4.1.1 Method 1: From Imidates .. 154
13.6.1.4.2 Fragment N—C—N—O—C .. 154
13.6.1.4.2.1 Method 1: From O-Acylamidoximes Derived from Amidoximes .. 154
13.6.1.4.2.2 Method 2: Cyclization of O-Acylamidoximes Formed as Intermediates from Purine Precursors .. 155
13.6.1.4.2.3 Method 3: Staudinger/Aza-Wittig Reaction of O-Acylazidooximes .. 156
13.6.2 Synthesis by Ring Transformation .. 157
13.6.2.1 Method 1: From Tetrazoles .. 157
13.6.2.2 Method 2: From 1,2,4-Oxadiazoles .. 158
13.6.2.3 Method 3: From 1,2,5-Oxadiazoles .. 159
13.6.2.4 Method 4: From Imidazoles .. 159
13.6.3 Aromatization ... 161
 13.6.3.1 Method 1: By Dehydrogenation 161
 13.6.3.2 Method 2: By the Elimination of HX or YX 162
13.6.4 Synthesis by Substituent Modification 163
 13.6.4.1 Substitution of Existing Substituents 163
 13.6.4.1.1 Of Hydrogen ... 163
 13.6.4.1.1.1 Method 1: By Metals 163
 13.6.4.1.2 Of Metals ... 163
 13.6.4.1.2.1 Method 1: By Heteroatoms 163
 13.6.4.1.3 Of Carbon Functionalities 164
 13.6.4.1.3.1 Method 1: By Heteroatoms 164
 13.6.4.1.4 Of Heteroatoms .. 165
 13.6.4.1.4.1 Method 1: By Carbon 165
 13.6.4.1.4.2 Method 2: By Another Heteroatom 165
 13.6.4.2 Addition Reactions .. 167
 13.6.4.3 Modification of Existing Substituents 167
 13.6.4.3.1 Method 1: Modification of Substituents with an α-CH 168
 13.6.4.3.1.1 Variation 1: Deprotonation and Reaction of 5-Alkyl Groups 168
 13.6.4.3.2 Method 2: Modification of a C3 or C5 Ester Functionality 169
 13.6.4.3.2.1 Variation 1: Synthesis of 3-Carbonitrile Derivatives 170
 13.6.4.3.2.2 Variation 2: Curtius Reaction 170
 13.6.4.3.3 Method 3: Reactions of Halomethyl-Substituted Oxadiazoles 171
 13.6.4.3.4 Method 4: Synthesis of 3- and 5-Carbaldehydes, Imines, and Related Derivatives 172
 13.6.4.3.5 Method 5: Wittig Reactions at the α-Carbon 174
 13.6.4.3.6 Method 6: Modification of Nitrogen Substituents 175
13.6.5 Solid-Phase Syntheses .. 176
 13.6.5.1 Method 1: Synthesis from Solid-Supported Esters 177
 13.6.5.2 Method 2: Synthesis Using Resin-Bound Amidoximes Derived from Resin-Bound Nitriles 178

13.7 Product Class 7: 1,2,5-Oxadiazoles
R. M. Paton

13.7 Product Class 7: 1,2,5-Oxadiazoles .. 185
 13.7.1 Product Subclass 1: Monocyclic 1,2,5-Oxadiazoles (Furazans) 185
 13.7.1.1 Synthesis by Ring-Closure Reactions 186
 13.7.1.1.1 By Formation of One O—N Bond 186
 13.7.1.1.1.1 Method 1: From 1,2-Dione Dioximes 186
13.7.1.2 Synthesis by Ring Transformation ... 188
13.7.1.2.1 Method 1: From 1,2,4-Oxadiazoles 188
13.7.1.2.2 Method 2: From Isoxazoles ... 189
13.7.1.3 Synthesis by Substituent Modification 189
13.7.1.3.1 Substitution of Existing Substituents 190
13.7.1.3.1.1 Method 1: Substitution of Halogens by Nucleophiles 190
13.7.1.3.1.2 Method 2: Deoxygenation of 1,2,5-Oxadiazole 2-Oxides 190
13.7.1.3.1.3 Method 3: Substitution of Nitrogen by Nucleophiles 191
13.7.1.3.2 Modification of Substituents .. 192
13.7.1.3.2.1 Of Oxygen ... 192
13.7.1.3.2.2 Of Sulfur ... 193
13.7.1.3.2.3 Of Nitrogen ... 193
13.7.1.3.2.4 Of Carbon .. 194
13.7.2 Product Subclass 2: 2,1,3-Benzoxadiazoles (Benzofurazans) and Other Annulated 1,2,5-Oxadiazoles ... 194
13.7.2.1 Synthesis by Ring-Closure Reactions 195
13.7.2.1.1 By Annulation to an Arene .. 195
13.7.2.1.1.1 By Formation of One O—N Bond 195
13.7.2.1.1.1.1 Fragment O—N—C—C—N ... 195
13.7.2.1.1.1.2 Method 1: From Benzo-1,2-quinone Dioximes 195
13.7.2.1.1.1.2 Method 2: From 2-Azidonitro- and 2-Azidonitrosoarenes, and 2-Azidoanilines ... 195
13.7.2.1.2 By Annulation to the Heterocyclic Ring 196
13.7.2.2 Synthesis by Ring Transformation ... 197
13.7.2.3 Synthesis by Substituent Modification 197
13.7.2.3.1 Substitution of Existing Substituents 197
13.7.2.3.1.1 Method 1: Substitution of Hydrogen 197
13.7.2.3.1.2 Method 2: Substitution of Halogens by Nucleophiles 197
13.7.2.3.2 Modification of Substituents .. 198
13.7.2.3.2.1 Method 1: Deoxygenation of 2,1,3-Benzoxadiazole 1-Oxides .. 198
13.7.3 Product Subclass 3: Monocyclic 1,2,5-Oxadiazole 2-Oxides (Furoxans) .. 199
13.7.3.1 Synthesis by Ring-Closure Reactions 200
13.7.3.1.1 By Formation of One O—N and One C—C Bond 200
13.7.3.1.1.1 Fragments O—N—C and N—C .. 200
13.7.3.1.1.1.1 Method 1: By Dimerization of Nitrile Oxides 200
13.7.3.1.1.1.1 Variation 1: From Nitrile Oxides Generated from Oximes and Hydroximoyl Halides ... 202
13.7.3.1.1.1.2 Variation 2: From Nitrile Oxides Generated from Nitrolic Acids and Their Precursors ... 202
13.7.3.1.1.1.3 Variation 3: From Nitrile Oxides Generated from Nitroalkyl Compounds ... 203
13.7.3.1.2 By Formation of One O—N Bond ... 203
13.7.3.1.2.1 Fragment O—N—C—C—N ... 203
13.7.3.1.2.1.1 Method 1: From 1,2-Dione Dioximes 203
13.7.3.1.2.1.2 Method 2: From α-Nitro Ketoximes 204
13.7.3.2 Synthesis by Substituent Modification 205
13.7.3.2.1 Substitution of Existing Substituents 205
13.7.3.2.1.1 Method 1: Substitution of Halogens by Nucleophiles 205
13.7.3.2.1.2 Method 2: Substitution of Sulfur by Nucleophiles 206
13.7.3.2.1.3 Method 3: Substitution of Nitrogen by Nucleophiles 206
13.7.3.2.2 Modification of Substituents ... 207
13.7.4 Product Subclass 4: 2,1,3-Benzoxadiazole 1-Oxides (Benzofuroxans) and Other Annulated Furoxans .. 207
13.7.4.1 Synthesis by Ring-Closure Reactions .. 208
13.7.4.1.1 By Annulation to an Arene ... 208
13.7.4.1.1.1 By Formation of One O—N Bond 208
13.7.4.1.1.1.1 Fragment O—N—C—C—N ... 208
13.7.4.1.1.1.1.1 Method 1: From 1,2-Quinone Dioximes 208
13.7.4.1.1.1.1.2 Method 2: From 2-Nitroanilines 209
13.7.4.1.1.1.1.3 Method 3: From 2-Nitroaryl Azides 209
13.7.4.1.2 By Annulation to the Heterocyclic Ring 210
13.7.4.2 Synthesis by Ring Transformation ... 211
13.7.4.3 Synthesis by Substituent Modification 211
13.7.4.3.1 Substitution of Existing Substituents 211
13.7.4.3.1.1 Method 1: Substitution of Hydrogen 211
13.7.4.3.1.2 Method 2: Substitution of Halogens by Nucleophiles 212

13.8 Product Class 8: 1,3,4-Oxadiazoles
G. W. Weaver

13.8 Product Class 8: 1,3,4-Oxadiazoles ... 219
13.8.1 Synthesis by Ring-Closure Reactions ... 220
13.8.1.1 By Formation of Two O—C Bonds ... 220
13.8.1.1.1 Fragments C—N—N—C and O ... 220
13.8.1.1.1.1 Method 1: Oxidation of Diazines with Lead(IV) Acetate 220
13.8.1.2 By Formation of One O—C and One N—C Bond 221
13.8.1.2.1 Fragments N—N—C and O—C ... 221
13.8.1.2.1.1 Method 1: Reaction of Diazo Compounds with Ketones 221
13.8.1.2.2 Fragments O—C—N—N and C ... 222
13.8.1.2.2.1 Method 1: Reaction of Acylhydrazines with Derivatives of Carbonic Acid 222
Variation 1: Use of Carbonyldiimidazole To Effect Cyclization 222

Variation 2: Synthesis of Mesoionic Isosydnones Using Phosgene 223

Variation 3: Cyclization Using Carbon Disulfide 223

Variation 4: Reaction of Acylhydrazines with Cyanogen Bromide 224

Method 2: Reaction of Acylhydrazines with Carboxylic Acid Derivatives 225

Variation 1: Reaction with Ortho Esters 225

Variation 2: Reaction with a Carboxylic Acid and 2-Chloro-1,3-dimethyl-4,5-dihydroimidazolium Chloride 226

Variation 3: Reaction with Imidate Hydrochlorides 227

Method 3: Reaction of Diacyl Diimides with Carbenes 228

Variation 1: From Diacylhydrazine Compounds 228

Variation 7: Dehydration Using Hexamethyldisilazane 233

Variation 8: Dehydration Using Trifluoromethanesulfonic Anhydride 234

Variation 9: Dehydration Using Tosyl Chloride 234

Variation 10: Dehydration Using 2-Chloro-1,3-dimethyl-4,5-dihydroimidazolium Chloride 235

Variation 11: Dehydration Using Burgess-Type Reagents 235

Method 2: Synthesis of 1,3,4-Oxadiazolamines from Acyl Semicarbazides 236

Variation 1: Cyclization Using Carbodiimides 236

Variation 2: Desulfurization with Mercury(II) Acetate under Microwave Irradiation 237

Variation 3: Oxidation of Aldehyde Acyl Hydrazones 238

Variation 4: Oxidation withLead(IV) Oxide 239

Variation 5: Oxidation with Bromine 240

Method 5: Ring Closure by Internal Alkylation 241

Synthesis by Ring Transformation 242

Method 1: Reactions of Azirines with Acylhydrazines 242

Method 2: By Photochemical Rearrangement of Substituted 1,2,4-Oxadiazoles 242

Method 3: Reactions of Tetrazoles with Carboxylic Acid Derivatives 243

Variation 1: Reaction with Acetic Anhydride 243

Variation 2: Reaction with Carboxylic Acid Chlorides 244

Method 4: Reactions of 1,2,4-Triazines with Bromine 245

Synthesis by Substituent Modification 245

Substitution of Existing Substituents 245
13.8.3.1 Of Hydrogen ... 245
13.8.3.1.1 Acylation Reactions .. 245
13.8.3.1.2 Of Heteroatoms ... 246
13.8.3.2.1 Method 1: Displacement of Chlorine by Nucleophiles 246
13.8.3.2 Addition Reactions ... 246
13.8.3.2.1 Protonation ... 247
13.8.3.2.2 N-Alkylation .. 247
13.8.3.2.3 N-Acylation .. 247
13.8.3.3 Modification of Existing Substituents 248
13.8.3.3.1 Reactions of Sulfur Substituents 248
13.8.3.3.2 Reactions of Nitrogen Substituents 248
13.8.3.3.3 Reactions of Carbon Substituents 249
13.8.3.3.3.1 Method 1: Lithiation of a Methyl Substituent, Silylation, and Peterson Alkenation with a Ketone 249

13.9 Product Class 9: 1,2,3-Thiadiazoles
D. J. Wilkins and P. A. Bradley

13.9 Product Class 9: 1,2,3-Thiadiazoles .. 253
13.9.1 Product Subclass 1: Monocyclic 1,2,3-Thiadiazoles 253
13.9.1.1 Synthesis by Ring-Closure Reactions 255
13.9.1.1.1 By Formation of One S—N and One S—C Bond 255
13.9.1.1.1.1 Method 1: Wolff’s Synthesis 255
13.9.1.1.2 Method 2: Hurd–Mori Synthesis 256
13.9.1.1.2.1 Variation 1: Use of Thionyl Chloride in the Hurd–Mori Procedure 256
13.9.1.1.2.2 Variation 2: Use of Sulfur Dichloride or Sulfur Monochloride in the Hurd–Mori Procedure 257
13.9.1.1.2 By Formation of One S—N and One C—C Bond 258
13.9.1.1.2.1 Method 1: Pechmann and Nold Synthesis 258
13.9.1.1.2.1.1 Variation 1: Reaction of Isothiocyanates with Diazocompounds 258
13.9.1.1.2.1.2 Variation 2: Modified Pechmann Synthesis 259
13.9.1.1.2.1.3 Variation 3: Use of Lithium (Trimethylsilyl)diazomethane 260
13.9.1.2 Synthesis by Ring Transformation 261
13.9.1.2.1 Method 1: Synthesis From 1,2,3-Triazolethiols 261
13.9.1.2.2 Method 2: Synthesis From 1,2,3-Oxadiazoles 262
13.9.1.2.3 Method 3: From Isothiazolones 262
13.9.1.3 Synthesis by Substituent Modification 263
13.9.1.3.1 Method 1: Transformations Involving Metalation and Subsequent Electrophilic Quench .. 263
13.9.1.3.2 Method 2: Removal of Carbonyl Substituents 264
13.9.1.3.3 Method 3: Transformations Involving Diazonium Intermediates ... 265
13.9 Method 4: Conversion of Substituents into Alkene Derivatives

13.9.2 Product Subclass 2: Annulated 1,2,3-Thiadiazoles

13.9.2.1 Synthesis by Ring-Closure Reactions

13.9.2.1.1 By Annulation to an Arene

13.9.2.1.1.1 Method 1: From 2-Aminobenzenethiols

13.9.2.1.1.2 Method 2: Reaction of Diazooxides with Phosphorus Pentasulfide

13.9.2.2 Synthesis by Ring Transformation

13.9.2.2.1 Method 1: Synthesis from Dithiazoles

13.9.2.2.2 Method 2: Synthesis from 1,2-Benzothiazol-7-amines

13.9.2.2.3 Method 3: Synthesis from 1,3-Benzothiazol-7-amines

13.9.2.2.4 Method 4: Synthesis from 1,2,3-Benzothiadiazol-7-amines

13.10 Product Class 10: 1,2,4-Thiadiazoles

13.10.1 Synthesis by Ring-Closure Reactions

13.10.1.1 By Formation of One S—N, One S—C, and One N—C Bond

13.10.1.1.1 Fragments C—N, C—N, and S

13.10.1.1.1.1 Method 1: Reaction of Nitriles with Sulfur

13.10.1.1.1.2 Method 2: Reaction of Nitriles with Sulfur Dichloride

13.10.1.2 By Formation of One S—N and One N—C Bond

13.10.1.2.1 Fragments N—C—S and N—C

13.10.1.2.1.1 Method 1: Oxidation of Thioamides

13.10.1.2.2 Fragments N—C—N and C—S

13.10.1.2.2.1 Method 1: Oxidation of N-Arylthioureas and N-Alkylthioureas

13.10.1.2.2.2 Method 2: Reaction of Amidoximes and Related Derivatives

13.10.1.2.2.2.1 Variation 1: Amidoximes and Isothiocyanates

13.10.1.2.2.2.2 Variation 2: Reaction of Amidoximes with Carbon Disulfide

13.10.1.2.2.3 Variation 3: Reaction of N-Sulfenylamidines with Isothiocyanates

13.10.1.2.2.3.1 Method 3: Synthesis from Amidines

13.10.1.2.2.3.1.1 Variation 1: Reaction of Amidines with Carbon Disulfide

13.10.1.2.2.3.2 Variation 2: Reaction of Amidines with Trichloromethylsulfonyl Chloride

13.10.1.2.3 Fragments C—N—C—S and N

13.10.1.2.3.1 Method 1: From Thioimidates with Chloramine

13.10.1.2.3.1.1 Variation 1: Reaction of Cyanothioiminocarbonates with Chloramine

13.10.1.2.3.1.2 Variation 2: Reaction of Ethoxycarbonylimidothiocarbonates with Chloramine

13.10.1.3 By Formation of One S—C and One N—C Bond

13.10.1.3.1 Fragments C—N—S and C—N
13.10. 1.3.1.1 Method 1: 1,3-Dipolar Cycloaddition Reactions of Nitrile Sulfides with Nitriles .. 286
13.10. 1.4 By Formation of One S—N Bond .. 287
13.10. 1.4.1 Fragments N—C—N—C—S ... 287
13.10. 1.4.1.1 Method 1: Oxidation of Thioacylamidine Derivatives 287
13.10. 1.4.1.1.1 Variation 1: Oxidation of Thioacylamidine Derivatives 288
13.10. 1.4.1.1.2 Variation 2: Oxidation of Thioacylguanidines 288
13.10. 1.4.1.1.3 Variation 3: Oxidation of Aminothioureas 289
13.10. 2 Synthesis by Ring Transformation ... 290
13.10. 2.1 Method 1: Rearrangement of Oxadiazoles and Isoxazoles 290
13.10. 2.1.1 Variation 1: 1,2,4-Oxadiazole Rearrangements 290
13.10. 2.1.2 Variation 2: 1,2,5-Oxadiazole Rearrangements 291
13.10. 2.1.3 Variation 3: Isoxazole Rearrangements 291
13.10. 2.2 Method 2: Dithiazolidine Rearrangements 292
13.10. 3 Synthesis by Substituent Modification 292
13.10. 3.1 Method 1: Transformations Involving Diazonium Intermediates 292
13.10. 3.2 Method 2: Nucleophilic Substitution of Halogen Substituents 293
13.11 Product Class 11: 1,2,5-Thiadiazoles and Related Compounds
P. A. Koutentis

13.11 Product Class 11: 1,2,5-Thiadiazoles and Related Compounds 297
13.11.1 Product Subclass 1: Monocyclic 1,2,5-Thiadiazoles 298
13.11.1.1 Synthesis by Ring-Closure Reactions 298
13.11.1.1.1 By Formation of Two S—N Bonds and One C—C Bond 298
13.11.1.1.1 Fragments N—C, N—C, and S 298
13.11.1.1.1.1 Method 1: Reaction of Potassium Cyanide and Sulfur Dioxide ... 298
13.11.1.1.2 By Formation of Two S—N Bonds 300
13.11.1.1.2.1 Fragments N—C—C—N and S 300
13.11.1.1.2.1.1 Method 1: From Aliphatic 1,2-Diamines 300
13.11.1.1.2.1.2 Method 2: From 2-Aminooacetamides 301
13.11.1.1.2.1.3 Method 3: From 2-Aminoacetamidines 303
13.11.1.1.2.1.4 Method 4: From Cyanoacetamides 304
13.11.1.1.2.1.5 Method 5: From Cyanamid and Its Esters 305
13.11.1.1.2.1.6 Method 6: From 1,2-Diimines and Related Compounds 307
13.11.1.1.3 By Formation of One S—N and One N—C Bond 308
13.11.1.1.3.1 Fragments S—N and C—C—N 308
13.11.1.1.3.1.1 Method 1: From Aliphatic Monoamines 308
13.11.1.1.3.1.2 Method 2: From Enamines 308
13.11.1.1.3.1.3 Method 3: From Alkyl Aryl Ketonimes 309
13.11.1.1.4 By Formation of Two N—C Bonds 310
13.11.1.4.2 Rearrangement of Substituents ... 328
13.11.1.4.2.1 Method 1: Curtius Rearrangement of Azidocarbonyl Compounds 328
13.11.1.4.2.2 Method 2: Rearrangement of Thionocarbamates ... 328
13.11.1.4.3 Modification of Substituents ... 329
13.11.1.4.3.1 Of Carbon ... 329
13.11.1.4.3.1.1 Method 1: Oxidative Degradation of 2,1,3-Benzothiadiazoles 329
13.11.1.4.3.1.2 Method 2: Beckmann Fragmentation of 2,1,3-Benzothiadiazole-4,5-dione Acetoximes 330
13.11.1.4.3.2 Of Heteroatoms ... 330
13.11.2 Product Subclass 2: Annulated 1,2,5-Thiadiazoles (2,1,3-Benzothiadiazoles and Related Systems) ... 331
13.11.2.1 Synthesis by Ring-Closure Reactions ... 331
13.11.2.1.1 By Annulation to an Arene ... 331
13.11.2.1.1.1 Method 1: From Arene-1,2-diamines ... 331
13.11.2.1.1.2 Method 2: From Quinone 1,2-Dioximes ... 333
13.11.2.1.1.2 By Formation of One S—N and One N—C Bond ... 333
13.11.2.1.1.2.1 Method 1: From Anilines ... 333
13.11.2.1.2 By Formation of Two S—C and Two N—C Bonds ... 334
13.11.2.1.2.1 Method 1: From Active Hydrocarbons and Tetrasulfur Tetranitride ... 334
13.11.2.1.2.1.2 Method 2: From Phenols and Related Compounds and Tetrasulfur Tetranitride ... 335
13.11.2.1.3 By Formation of One S—N Bond ... 339
13.11.2.1.3.1 Method 2: From Arylsulfur Diimides ... 340
13.11.2.1.3.2 Method 3: From Quinones or Hydroquinones ... 340
13.11.2.1.4 By Formation of One N—C Bond ... 340
13.11.2.1.4.1 Method 1: From 1,2-Bis(sulfinylamino)benzene ... 340
13.11.2.1.4.2 Method 1: From 1,2,5-Thiadiazole ... 341
13.11.2.1.4.3 Method 2: From 1,2,5-Thiadiazole-3,4-diamine ... 341
13.11.2.1.5 By Formation of One N—C Bond ... 341
13.11.2.1.5.1 Method 1: From Arylsulfur Diimides ... 341
13.11.2.1.6 By Annulation to 1,2,5-Thiadiazole ... 341
13.11.2.1.6.1 Method 1: From 1,2,5-Thiadiazole-3,4-dicarbonitrile ... 341
13.11.2.1.6.2 Method 2: From 1,2,5-Thiadiazolamines ... 341
13.11.2.1.6.3 Method 3: From 1,2,5-Thiadiazole-3,4-diamine ... 342
13.11.2.1.6.4 Method 4: From 1,2,5-Thiadiazole-3,4-dicarbonyl Compounds ... 343

13.12 Product Class 12: 1,3,4-Thiadiazoles
S. J. Collier

13.12 Product Class 12: 1,3,4-Thiadiazoles ... 349
13.12.1 Synthesis by Ring-Closure Reactions ... 351
13.12.1.1 By Formation of Two S—C and Two N—C Bonds ... 352
Fragments N—N, S, and Two C Fragments .. 352

Method 1: Reaction of Aldehydes with Hydrazine and Sulfur 352

By Formation of Two S—C Bonds and One N—C Bond 353

Fragments N—N—C, S, and C .. 353

Method 1: Reactions of Methylpyridines (or Methylquinolines) with Aroylhydrazines and Sulfur .. 353

By Formation of Two S—C Bonds .. 353

Fragments N—N—C, S, and C .. 353

Method 1: From 2,3-Diazabuta-1,3-dienes and a Sulfur Source 353

Method 2: From Diformyl- or Diacylhydrazines and a Sulfur Source 356

By Formation of One S—C and One N—C Bond 356

Fragments S—C—N—N and C .. 356

Method 1: From Thiodyrazide Derivatives ... 356

Variation 1: By Reaction with Carboxylic Acid Derivatives 357

Variation 2: By Reaction with Ortho Esters or Trihalomethyl Compounds ... 358

Variation 3: By Reaction with Imines and Related Compounds 359

Variation 4: By Reaction with Isothiocyanates (and Isocyanates) 362

Variation 5: By Reaction with Nitriles and Related Compounds 363

Variation 6: By Reaction with Thiocarbonyl Compounds 365

Variation 7: By Reaction with Miscellaneous Reagents 366

Fragments N—N—C and S—C .. 367

Method 1: From Hydrazides and Thiocarbonyl Compounds 367

Method 2: From Amidrazones and Thiocarbonyl Compounds 368

Method 3: From Diazocompounds and Thiocarbonyl Derivatives 369

By Formation of Two N—C Bonds .. 370

Fragments C—S—C and N—N .. 370

Method 1: From Hydrazine and Thiocarbonyl Compounds 370

By Formation of One S—C Bond .. 372

Fragment S—C—N—N—C ... 372

Method 1: By Cyclization of Monothiodiaclyhydrazine Derivatives 372

Method 2: By Cyclization of Dithioacylhydrazine Derivatives 375

Method 3: By Cyclization of \(N'\)-Imidoylthiohydrazides 376

Method 4: By Cyclization of Thiaoacylhydrazones 377

Synthesis by Ring Transformation .. 380

Aromatization ... 381

Synthesis by Substituent Modification ... 383

Substitution of Existing Substituents .. 383

Of Hydrogen .. 383

Method 1: By Acylation (Through Rearrangement) 384

Method 2: By Halogen .. 384
13.12.4.1.3 Method 3: By Sulfur-Containing Groups .. 384
13.12.4.1.4 Method 4: By Nitrogen-Containing Groups .. 385
13.12.4.1.2 Of Carbon .. 385
13.12.4.1.2.1 Method 1: By Hydrogen ... 385
13.12.4.1.3 Of Heteroatoms ... 386
13.12.4.1.3.1 Substitution of Halogen ... 386
13.12.4.1.3.1.1 Method 1: By Hydrogen .. 386
13.12.4.1.3.1.2 Method 2: By Carbon .. 387
13.12.4.1.3.1.3 Method 3: By Oxygen .. 387
13.12.4.1.3.1.4 Method 4: By Sulfur .. 388
13.12.4.1.3.1.5 Method 5: By Nitrogen .. 388
13.12.4.1.3.2 Substitution of Oxygen .. 389
13.12.4.1.3.3 Substitution of Sulfur .. 389
13.12.4.1.3.3.1 Method 1: By Carbon .. 389
13.12.4.1.3.3.2 Method 2: By Oxygen .. 390
13.12.4.1.3.3.3 Method 3: By Nitrogen .. 391
13.12.4.1.3.4 Substitution of Nitrogen ... 391
13.12.4.1.3.4.1 Method 1: Reductive Deamination .. 391
13.12.4.1.3.4.2 Method 2: By Oxygen .. 392
13.12.4.1.3.4.3 Method 3: By Halogen ... 393
13.12.4.2 Addition Reactions .. 393
13.12.4.2.1 Of Organic and Heteroatom Groups .. 394
13.12.4.2.1.1 Method 1: N-Functionalization by Electrophiles .. 394
13.12.4.3 Modification of Substituents .. 396
13.12.4.3.1 Of Carbon ... 396
13.12.4.3.1.1 Method 1: Alkyl Groups .. 396
13.12.4.3.1.1.1 Variation 1: C-Metalation, Alkylation, and Acylation 396
13.12.4.3.1.1.2 Variation 2: C-Halogenation .. 398
13.12.4.3.2 Of Oxygen .. 399
13.12.4.3.2.1 Method 1: O-Acylation .. 399
13.12.4.3.2.2 Method 2: O-Dealkylation ... 400
13.12.4.3.3 Of Sulfur Groups ... 400
13.12.4.3.3.1 Method 1: S-Alkylation .. 401
13.12.4.3.3.2 Method 2: S-Dealkylation ... 402
13.12.4.3.4 Of Nitrogen .. 403
13.12.4.3.4.1 Method 1: N-Functionalization .. 403

Table of Contents
Product Class 13: 1,2,3-Triazoles

A. C. Tomé

13.13 Product Class 13: 1,2,3-Triazoles

.. 415

13.13.1 Product Subclass 1: Monocyclic N-Unsubstituted and 1-Substituted 1,2,3-Triazoles

.. 418

13.13.1.1 Synthesis by Ring-Closure Reactions

.. 418

13.13.1.1.1 By Formation of One N—N and One N—C Bond

.. 418

13.13.1.1.1.1 Fragments C—C—N and N

.. 418

13.13.1.1.1.1.1 Method 1: From 2-Diazo-1,3-dicarbonyl Compounds and Amine Derivatives

.. 418

13.13.1.1.1.1.1 Variation 1: From 2-Diazo-3-oxopropanoates and Amine Derivatives

.. 419

13.13.1.1.1.1.1 Variation 2: From 2-Diazo-3-oxoaldehydes and Amine Derivatives

.. 420

13.13.1.1.1.1.3 Variation 3: From Dimethyl Diazomalonate and Amines

.. 421

13.13.1.1.1.2 Method 2: From Vinyldiazonium Salts and Amine Derivatives

.. 422

13.13.1.1.1.2.1 Method 3: From Dichloro- or Trichloroacetalddehyde Sulfonylhydrazones and Primary Amines

.. 423

13.13.1.1.2 Fragments C—C—N and N—N

.. 424

13.13.1.1.2.1 Method 1: From Enaminones and Diazotransfer Reagents

.. 424

13.13.1.1.2.1.1 Variation 1: From Enaminones and 3-Diazo-1,3-dihydro-2H-indol-2-one Derivatives

.. 424

13.13.1.1.2.1.2 Variation 2: From Enaminones and Sulfonyl Azides

.. 426

13.13.1.1.2 By Formation of One N—N and One C—C Bonds

.. 426

13.13.1.1.2.1 Fragments C—N—N and C—N

.. 426

13.13.1.1.2.1.1 Method 1: From Diazoolkanes and Nitriles

.. 426

13.13.1.1.2.1.1.1 Variation 1: From Diazoolkanes and Aryl Cyanates

.. 428

13.13.1.1.2.1.1.2 Variation 2: From Diazoolkanes and Activated Nitriles

.. 428

13.13.1.1.2.1.1.3 Variation 3: From [Diazotrimethylsilyl]methyl]lithium and Nitriles

.. 429

13.13.1.1.2.1.2 Method 2: From Diazoolkanes and Imines, Oximes, or Diarylazines

.. 430

13.13.1.1.2.1.3 Variation 1: From Diazoolkanes and Imines

.. 430

13.13.1.1.2.1.3.1 Variation 2: From Diazoolkanes and Oximes

.. 431

13.13.1.1.2.1.4 Variation 3: From Diazoolkanes and Diarylazines

.. 432

13.13.1.1.2.2 Method 3: From Diazoolkanes and Heterocumulenes

.. 432

13.13.1.1.2.2.1 Variation 1: From Diazoolkanes and Ketenimines

.. 433

13.13.1.1.2.2.2 Variation 2: From Diazoolkanes and Carbodiimides

.. 434

13.13.1.1.2.2.3 Variation 3: From Diazoolkanes and Isocyanates

.. 435

13.13.1.1.2.2.4 Variation 4: From Diazoolkanes and Isothiocyanates

.. 436

13.13.1.1.2.3 Method 4: From N-Alkyl-N-nitrosoamines and Nitriles

.. 437

13.13.1.1.3 By Formation of Two N—C Bonds

.. 438

13.13.1.1.3.1 Fragments N—N and N—C

.. 438

13.13.1.1.3.1.1 Addition of Azides to Alkynes

.. 438

13.13.1.1.3.1.1.1 Method 1: Addition of Hydrazoic Acid to Alkynes

.. 439

13.13.1.1.3.1.1.2 Method 2: Addition of the Azide Ion to Alkynes

.. 440
Table of Contents

13.1.1.1.1.3 Method 3: Addition of Alkyl, Aryl, or Hetaryl Azides to Alkynes 441
13.1.1.1.1.3.1 Variation 1: Addition of Azides to Acetylene and to Symmetrically Substituted Alkynes 442
13.1.1.1.1.3.2 Variation 2: Addition of Azides to Alk-1-yynes 443
13.1.1.1.1.3.3 Variation 3: Addition of Azides to Unsymmetrical Disubstituted Alkynes 446
13.1.1.1.1.3.4 Variation 4: Using Polymer-Supported Methods 448
13.1.1.1.1.3.5 Variation 5: Intramolecular 1,3-Dipolar Cycloadditions 450
13.1.1.1.1.3.6 Variation 6: Addition of Azides to Alkoxyalkynes 452
13.1.1.1.1.4 Method 4: Addition of Ethyl Azidoformate and Cyanogen Azide to Alkynes 453
13.1.1.1.1.5 Method 5: Addition of Sulfonyl Azides to Alkynes 454
13.1.1.1.1.6 Method 6: Addition of Azidotrimethylsilane and Azidotributylstannane to Alkynes 456
13.1.1.1.1.7 Method 7: Addition of Azides to Metal Acetylides 457
13.1.1.1.1.2 Addition of Azides to C–C Bonds 458
13.1.1.1.1.2.1 Method 1: Addition of Sodium Azide to Activated Alkenes 458
13.1.1.1.1.2.2 Method 2: Addition of Azides to Activated Alkenes 461
13.1.1.1.1.2.3 Method 3: Addition of Azides to Strained Alkenes 462
13.1.1.1.1.2.4 Method 4: Addition of Azides to Allenes 464
13.1.1.1.1.2.5 Method 5: Addition of Azides to α-Acylphosphorus Ylides 466
13.1.1.1.1.2.6 Method 6: Addition of Azides to Enamines or Enol Ethers 468
13.1.1.1.1.2.6.1 Variation 1: Addition of Azides to Enamines 469
13.1.1.1.1.2.6.2 Variation 2: Addition of Azides to Enol Ethers 473
13.1.1.1.1.2.7 Method 7: Addition of Azides to Vinyl Acetate 474
13.1.1.1.1.2.8 Method 8: Addition of Azides to Ketene Acetals 475
13.1.1.1.1.3 Reaction of Azides with Active Methylene Compounds 478
13.1.1.1.1.3.1 Method 1: Reaction of Azides with 1,3-Diketones, 3-Oxo Esters, or 3-Oxoaamides 478
13.1.1.1.1.3.2 Method 2: Reaction of Azides with Malonic Esters, Malonamides, or Acetamides 481
13.1.1.1.1.3.3 Method 3: Reaction of Azides with Acetonitrile Derivatives 483
13.1.1.1.1.3.4 Method 4: Reaction of Aryl Azides with Alkoxides 486
13.1.1.1.4 By Formation of One N—N Bond 487
13.1.1.1.4.1 Fragment N—N—C—C—N 487
13.1.1.1.4.1.1 Method 1: Cyclization of α-Diazoamides 487
13.1.1.1.4.1.2 Method 2: Thermolysis of α-Azidoacetophenone (Phenylsulfonyl)hydrazones 487
13.1.1.1.4.1.3 Method 3: Cyclization of α-Hydroxyimino Hydrazones 488
13.1.1.1.4.1.4 Method 4: Cyclization of α-Hydroxyimino Aroyl- or Arylsulfonylhydrazones 489
13.1.1.1.4.1.5 Method 5: Cyclization of 1,2-Diketone Bis(hydrazone) Derivatives 490
13.1.1.1.4.1.5.1 Variation 1: Cyclization of 1,2-Diketone Bis(hydrazone) Derivatives 490
13.1.1.1.4.1.5.2 Variation 2: Cyclization of 1,2-Diketone Bis(arylsulfonylhydrazones) 491
13.1.1.1.4.1.5.3 Variation 3: Cyclization of 1,2-Diketone Bis(semicolonbazones) 491
13.1.1.1.4.1.5.4 Variation 4: Cyclization of 1,2-Diketone Bis(acylhydrazones) 492
13.1.1.1.4.1.6 Method 6: Cyclization of (1,2-Diphenylethene-1,2-diyl)bis(trityldiazene) 493
13.1.1.5 By Formation of One N—C Bond ... 494
13.1.1.5.1 Fragment N—N—N—C ... 494
13.1.1.5.1.1 Method 1: Cyclization of Linear Triazenes and Tetrazenes 494
13.1.1.5.1.2 Method 2: Cyclization of Vinyl Azides 495
13.1.1.5.1.3 Method 3: Cyclization of 2-(Formyloxy)vinyl Azides 496
13.1.1.2 Synthesis by Ring Transformation 497
13.1.1.3 Aromatization ... 500
13.1.1.3.1 Method 1: By Oxidation Reactions 500
13.1.1.3.2 Method 2: By Elimination Reactions 502
13.1.1.4 Synthesis by Substituent Modification 503
13.1.1.4.1 Substitution of Existing Substituents 503
13.1.1.4.1.1 Of Hydrogen .. 503
13.1.1.4.1.1.1 Method 1: Lithiation ... 503
13.1.1.4.1.1.2 Method 2: N-Trimethylsilylation 505
13.1.1.4.1.1.3 Method 3: Carboxylation 505
13.1.1.4.1.1.4 Method 4: Acylation ... 506
13.1.1.4.1.1.5 Method 5: Formylation ... 507
13.1.1.4.1.1.6 Method 6: Arylation .. 507
13.1.1.4.1.1.7 Method 7: Alkylation ... 509
13.1.1.4.1.1.8 Method 8: Halogenation 511
13.1.1.4.1.1.9 Method 9: N-Amination ... 514
13.1.1.4.1.1.10 Method 10: N-Hydroxylation 514
13.1.1.4.1.1.11 Method 11: Nitration ... 515
13.1.1.4.1.2 Of Metals ... 516
13.1.1.4.1.2.1 Method 1: Desilylation ... 516
13.1.1.4.1.3 Of Carbon Functionalities ... 517
13.1.1.4.1.3.1 Method 1: Decarboxylation 517
13.1.1.4.1.3.2 Method 2: Deformylation 517
13.1.1.4.1.3.3 Method 3: Deacylation 518
13.1.1.4.1.3.4 Method 4: Dearylation 519
13.1.1.4.1.3.5 Method 5: Dealkylation 519
13.1.1.4.1.4 Of Heteroatoms .. 521
13.1.1.4.1.4.1 Method 1: Substitution of Halogens by Nucleophiles 521
13.1.1.4.1.4.2 Method 2: Substitution of Hydroxy Groups by Halogens 522
13.1.1.4.1.4.3 Method 3: Substitution of Diazonium Groups by Nucleophiles 522
13.1.1.4.1.4.4 Method 4: Deoxygenation 523
13.1.1.4.1.4.5 Method 5: Dehalogenation 524
13.1.1.4.2 Addition Reactions .. 524
13.1.1.4.2.1 Method 1: Conversion into N-Oxides 524
13.1.1.4.3 Rearrangement of Substituents 525
13.1.2 Product Subclass 2: Monocyclic 2-Substituted 1,2,3-Triazoles 528
13.1.2.1 Synthesis by Ring-Closure Reactions 528
13.13.2.1.1 By Formation of One N—N and One N—C Bond .. 528
13.13.2.1.1.1 Fragments C—C=N—N and N ... 528
13.13.2.1.1.1 Method 1: From N-Aminophthalimide and Conjugated Azoalkenes 528
13.13.2.1.2 By Formation of Two N—C Bonds .. 528
13.13.2.1.2 Fragments N—N—N and C—C ... 528
13.13.2.1.2.1 Method 1: Addition of Azidotrimethylsilane and Azidotributylstannane to Alkynes ... 528
13.13.2.1.2.2 Method 2: Addition of Acyl or Alkoxy carbonyl Azides to \(\alpha\)-Acylphosphorous Ylides ... 529
13.13.2.1.3 By Formation of One N—N Bond ... 529
13.13.2.1.3.1 Fragment N—N—C—C—N ... 529
13.13.2.1.3.1 Method 1: Cyclization of \(\alpha\)-Hydroxyimino Hydrazones 529
13.13.2.1.3.1 Method 2: Cyclization of 1,2-Diketone Bis(arylhydrazones) 532
13.13.2.1.3.1 Method 3: Cyclization of \(\alpha\)-Imino Hydrazones 534
13.13.2.1.3.1 Method 4: Cyclization of 1,2-Bis(\(N\)-alkoxy-\(N\)-nitrosoamines) 535
13.13.2.2 Synthesis by Ring Transformation .. 535
13.13.2.3 Synthesis by Substituent Modification .. 540
13.13.3 Product Subclass 3: N-Unsubstituted and 1-Substituted Benzotriazoles 540
13.13.3.1 Synthesis by Ring-Closure Reactions .. 540
13.13.3.1.1 By Formation of Two N—N Bonds .. 540
13.13.3.1.1 Fragments N—C—C—N and N ... 540
13.13.3.1.1 Method 1: From Benzene-1,2-diamines and Nitrous Acid 540
13.13.3.1.2 By Formation of One N—N and One N—C Bond 543
13.13.3.1.2 Fragments C—C=N and N—N ... 543
13.13.3.1.2.1 Method 1: From Arylamines and 2-Azido-3-ethyl-1,3-benzothiazolium Tetrafluoroborate ... 543
13.13.3.1.2.2 Fragments C—C=N—N and N ... 544
13.13.3.1.2.2 Method 1: From \(\alpha\)-Diazo Ketones and Amines 544
13.13.3.1.3 By Formation of Two N—C Bonds .. 544
13.13.3.1.3 Fragments N—N—N and C—C ... 544
13.13.3.1.3.1 Method 1: From Azides and Dehydrobenzene 544
13.13.3.1.3.1 Method 2: From Azides and Quinones .. 546
13.13.3.1.4 By Formation of One N—N Bond .. 547
13.13.3.1.4 Fragments N—N—C—C—N ... 547
13.13.3.1.4.1 Method 1: Cyclization of 2-Nitrophenylhydrazines 547
13.13.3.1.4.1.1 Variation 1: Reaction of 1-Chloro-2-nitrobenzenes or 1,2-Dinitrobenzenes with Hydrazine ... 547
13.13.3.1.4.1.2 Method 2: Cyclization of (2-Aminophenyl)hydrazine Derivatives 549
13.13.3.1.4.1.3 Method 3: Cyclization of (2-Aminophenyl)triazene Derivatives 549
13.13.3 Synthesis by Substituent Modification

13.13.3.1 Substitution of Existing Substituents

13.13.3.1.1 Of Hydrogen

13.13.3.1.1.1 Method 1: N-Trimethylsilylation

13.13.3.1.1.2 Method 2: Carboxylation

13.13.3.1.1.3 Method 3: Acylation

13.13.3.1.1.4 Method 4: N-Formylation

13.13.3.1.1.5 Method 5: Arylation

13.13.3.1.1.6 Method 6: Alkynylation

13.13.3.1.1.7 Method 7: Alkenylation

13.13.3.1.1.8 Method 8: Alkylation

13.13.3.1.1.9 Method 9: Halogenation

13.13.3.1.1.10 Method 10: Sulfonylation

13.13.3.1.1.11 Method 11: N-Amination

13.13.3.1.1.12 Method 12: Nitration

13.13.3.1.1.13 Method 13: Azo Coupling

13.13.3.2 Of Carbon Functionalities

13.13.3.2.1 Method 1: Decarboxylation

13.13.3.2.2 Method 2: Deacylation

13.13.3.3 Of Heteroatoms

13.13.3.3.1 Method 1: Deoxygenation

13.13.3.3.2 Method 2: Dehalogenation

13.13.3.4 Addition Reactions

13.13.3.4.1 Method 1: Conversion into N-Oxides or Epoxides

13.13.4 Product Subclass 4: 2-Substituted Benzotriazoles
13.13.4.2 Synthesis by Ring Transformation .. 578
13.13.4.2.1 Method 1: Isomerization of 4-(Arylazo)-2,1,3-benzoxadiazoles 578
13.13.4.2.2 Method 2: Transformation of 1,3,3-Trialkyl-2-(2,4-dinitrophenyl)diaziridines 578
13.13.4.2.3 Method 3: Transformation of 1-(2-Nitrophenyl)-1H-tetrazoles 579
13.13.4.3 Synthesis by Substituent Modification 580

13.14 Product Class 14: 1,2,4-Triazoles
A. D. M. Curtis

13.14.1 Synthesis by Ring-Closure Reactions 603
13.14.1.1 By Formation of Four N—C Bonds 604
13.14.1.1.1 Method 1: Reaction of Carboxylic Acids with Hydrazine 604
13.14.1.2 By Formation of Three N—C Bonds 605
13.14.1.2.1 Fragments C—N—C, N, and N 605
13.14.1.2.1.1 Method 1: From Acylhydrazines and Thioesters 605
13.14.1.2.2 Fragments N—C, N—N, and C 605
13.14.1.2.2.1 Method 1: From Amidines, Hydrazine, and Esters 605
13.14.1.3 By Formation of Two N—C Bonds 606
13.14.1.3.1 Fragments C—N—C and N—N 606
13.14.1.3.1.1 Method 1: From Iminoesters, Thioesters, Amidines, and Guanidines with Hydrazines 606
13.14.1.3.1.1.1 Variation 1: From N-Cyanoimines 606
13.14.1.3.1.2 Variation 2: From N-Acylimines 607
13.14.1.3.1.2 Method 2: From Diacylamines and Hydrazines 607
Table of Contents

13.14.1.3.2 Fragments C—N—N and C—N .. 608
13.14.1.3.2.1 Method 1: From Acylhydrazines and Carboxylic Acid Derivatives 608
13.14.1.3.2.1.1 Variation 1: From Acylhydrazines and Carboxylic Ester Imides 608
13.14.1.3.2.1.2 Variation 2: From Aroylhydrazines and Thioamides 609
13.14.1.3.2.1.3 Variation 3: From Acylhydrazines and Aromatic Nitriles 609
13.14.1.3.2.2 Method 2: From Hydrazones of Carboxylic Acid Chlorides 610
13.14.1.3.3 Fragments C—N—N—C and N .. 610
13.14.1.3.3.1 Method 1: From Aroylsemicarbazides and Amines 610
13.14.1.3.3.2 Method 2: From Diacylhydrazines and Amines 611
13.14.1.3.3.3 Method 3: From Chlorinated Azines and Amines 612
13.14.1.3.4 Fragments N—C—N—N and C .. 612
13.14.1.3.4.1 Method 1: From Aminoguanidines .. 612
13.14.1.3.4.1.1 Variation 1: With Carboxylic Acids .. 613
13.14.1.3.4.1.2 Variation 2: With Carboxylic Ester Imides 614
13.14.1.3.4.2 Method 2: From Amidrazones .. 614
13.14.1.3.4.2.1 Variation 1: With Ortho Esters ... 614
13.14.1.3.4.2.2 Variation 2: With Carboxylic Acids .. 615
13.14.1.4 By Formation of One N—C Bond .. 615
13.14.1.4.1 Fragments N—C—N—N—C ... 615
13.14.1.4.1.1 Method 1: From Acylated Aminoguanidines 615
13.14.1.4.1.2 Method 2: From Acylated Amidrazones 616
13.14.1.4.1.3 Method 3: From Acyclaminothioureas 616
13.14.1.4.2 Fragments C—N—C—N—N ... 617
13.14.1.4.2.1 Method 1: From Acylamidrazones .. 617
13.14.1.4.2.2 Method 2: By Oxidation of Amidrazones 617
13.14.1.2 Synthesis by Ring Transformation .. 618
13.14.2.1 Formal Exchange of Ring Members with Retention of the Ring Size 618
13.14.2.1.1 Method 1: From 1,3-Oxazolones ... 618
13.14.2.1.1.1 Variation 1: From 1,3-Oxazol-4(5H)-ones 618
13.14.2.1.1.2 Variation 2: From 4-Hydradzono-1,3-oxazol-5(4H)-ones 619
13.14.2.1.2 Method 2: From 1,2,4-Oxadiazoles .. 619
13.14.2.1.2.1 Variation 1: From 3-Arylazo-1,2,4-oxadiazoles 620
13.14.2.1.2.2 Variation 2: From N-(Anilinomethylene)-1,2,4-oxadiazol-3-amines 620
13.14.2.1.3 Method 3: From 1,3,4-Oxadiazoles .. 620
13.14.2.1.3.1 Variation 1: From 2,5-Bis(trifluoromethyl)-1,3,4-oxadiazole 620
13.14.2.1.3.2 Variation 2: From 1,3,4-Oxadiazol-2-amines 621
13.14.2.1.4 Method 4: From 1,3,4-Oxadiazolium Salts 621
13.14.2.1.5 Method 5: From Tetrazoles ... 622
13.14.2.1.5.1 Variation 1: From 2,5-Disubstituted Tetrazoles and Nitriles 622
13.14.2.1.5.2 Variation 2: From 2-Substituted Tetrazoles and Benzimidoyl Chlorides 623
13.14.2.2 By Ring Contraction ... 623
13.14.2.2.1 Method 1: From 4H-1,3-Oxazin-4-ones and 4H-1,3-Benzoxazin-4-ones 623
13.14.2.2.2 Method 2: From Pyrimidine and Quinazoline Derivatives 624
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.14.2.2.1</td>
<td>Variation 1: From 4-Imino-3,4-dihydropyrimidines</td>
<td>624</td>
</tr>
<tr>
<td>13.14.2.2.2</td>
<td>Variation 2: From 4,6-Diethoxypyrimidines</td>
<td>624</td>
</tr>
<tr>
<td>13.14.2.2.3</td>
<td>Variation 3: From 4-Chloroquinazolines</td>
<td>625</td>
</tr>
<tr>
<td>13.14.2.2.3</td>
<td>Method 3: From 1,3,5-Triazine</td>
<td>625</td>
</tr>
<tr>
<td>13.14.3</td>
<td>Aromatization</td>
<td>626</td>
</tr>
<tr>
<td>13.14.3.1</td>
<td>Method 1: By Dehydrogenation of Dihydro-1,2,4-triazoles</td>
<td>626</td>
</tr>
<tr>
<td>13.14.4</td>
<td>Synthesis by Substituent Modification</td>
<td>626</td>
</tr>
<tr>
<td>13.14.4.1</td>
<td>Substitution of Existing Substituents</td>
<td>626</td>
</tr>
<tr>
<td>13.14.4.1.1</td>
<td>Of Hydrogen</td>
<td>626</td>
</tr>
<tr>
<td>13.14.4.1.1</td>
<td>By Deuterium</td>
<td>626</td>
</tr>
<tr>
<td>13.14.4.1.2</td>
<td>By Metals</td>
<td>626</td>
</tr>
<tr>
<td>13.14.4.1.2.1</td>
<td>Method 1: Trimethylstannylation</td>
<td>626</td>
</tr>
<tr>
<td>13.14.4.1.3</td>
<td>By Carbon</td>
<td>627</td>
</tr>
<tr>
<td>13.14.4.1.3.1</td>
<td>Method 1: N-Alkylation</td>
<td>627</td>
</tr>
<tr>
<td>13.14.4.1.3.2</td>
<td>Method 2: C-Alkylation</td>
<td>628</td>
</tr>
<tr>
<td>13.14.4.1.3.2.1</td>
<td>Variation 1: By Lithiation</td>
<td>628</td>
</tr>
<tr>
<td>13.14.4.1.3.2.2</td>
<td>Variation 2: By Radical Substitution</td>
<td>628</td>
</tr>
<tr>
<td>13.14.4.1.3.3</td>
<td>Method 3: N-Arylation</td>
<td>629</td>
</tr>
<tr>
<td>13.14.4.1.3.4</td>
<td>Method 4: N-Acylation</td>
<td>629</td>
</tr>
<tr>
<td>13.14.4.1.3.5</td>
<td>Method 5: C-Acylation</td>
<td>630</td>
</tr>
<tr>
<td>13.14.4.1.4</td>
<td>By Halogens</td>
<td>631</td>
</tr>
<tr>
<td>13.14.4.1.5</td>
<td>By Other Heteroatoms</td>
<td>632</td>
</tr>
<tr>
<td>13.14.4.1.6</td>
<td>Of Metals</td>
<td>632</td>
</tr>
<tr>
<td>13.14.4.1.7</td>
<td>Of Carbon</td>
<td>633</td>
</tr>
<tr>
<td>13.14.4.1.8</td>
<td>Of Heteroatoms</td>
<td>633</td>
</tr>
<tr>
<td>13.14.4.1.9</td>
<td>Method 1: Of Halogens</td>
<td>633</td>
</tr>
<tr>
<td>13.14.4.1.10</td>
<td>Method 2: Of Sulfur</td>
<td>633</td>
</tr>
<tr>
<td>13.14.4.1.11</td>
<td>Method 3: Of Nitrogen</td>
<td>634</td>
</tr>
<tr>
<td>13.14.4.2</td>
<td>Addition Reactions</td>
<td>634</td>
</tr>
<tr>
<td>13.14.4.2.1</td>
<td>Method 1: N-Alkylation</td>
<td>634</td>
</tr>
<tr>
<td>13.14.4.2.1</td>
<td>Rearrangement</td>
<td>635</td>
</tr>
<tr>
<td>13.14.4.4</td>
<td>Modification of Substituents</td>
<td>635</td>
</tr>
<tr>
<td>13.14.4.4.1</td>
<td>Method 1: Modification of 1,2,4-Triazolones</td>
<td>636</td>
</tr>
<tr>
<td>13.14.4.4.2</td>
<td>Method 2: Modification of 1,2,4-Triazolethiones</td>
<td>636</td>
</tr>
</tbody>
</table>
Table of Contents

13.15 Product Class 15: Dithiaphospholes and Their Analogues
R. K. Bansal, N. Gupta, and S. J. Collier

13.15 Product Class 15: Dithiaphospholes and Their Analogues .. 641
13.15.1 Product Subclass 1: 1,3,2-Benzodithiaphospholium, 1,3,2-Benzodithiarsolium, and 1,3,2-Benzodithiastibolium Salts 641
13.15.1.1 Aromatization .. 643
13.15.1.1.1 Method 1: Synthesis by Chloride Abstraction ... 643

13.16 Product Class 16: Oxazaphospholes and Thiazaphospholes
R. K. Bansal and Neelima Gupta

13.16 Product Class 16: Oxazaphospholes and Thiazaphospholes ... 647
13.16.1 Product Subclass 1: 1,2,4-Oxazaphospholes ... 647
13.16.1.1 Synthesis by Ring-Closure Reactions ... 648
13.16.1.1.1 By Formation of One O—C and One N—C Bond .. 648
13.16.1.1.1.1 Fragments C—P—C and O—N .. 648
13.16.1.1.1.1.1 Method 1: Cyclocondensation of a 2-Phosphaallylic Cation with Hydroxylamine .. 648
13.16.1.1.1.2 By Formation of One O—C and One P—C Bond .. 648
13.16.1.1.1.1.1 Fragments O—N—C and P—C ... 648
13.16.1.1.1.1.1.1 Method 1: [3 + 2] Cycloaddition of Nitrile Oxides 648

13.16.2 Product Subclass 2: 1,2,4-Thiazaphospholes ... 650
13.16.2.1 Synthesis by Ring-Closure Reactions ... 650
13.16.2.1.1 By Formation of One S—C and One P—C Bond .. 650
13.16.2.1.1.1 Fragments S—N—C and P—C .. 650
13.16.2.1.1.1.1 Method 1: Synthesis by [3 + 2] Cycloaddition .. 650
13.16.2.1.1.1.1.1 Variation 1: Using a Phosphaalkyne and 5-Phenyl-1,3,4-oxathiazol-2-one .. 650
13.16.2.1.1.1.1.1.1 Variation 2: Using a Phosphaalkyne and 4-Phenyl- 1,3,2-oxathiazolium-5-olate .. 650
13.16.2.1.1.1.1.1.1 Variation 3: Using a Phosphaalkene and 1,3,4-Oxathiazol-2-one 651

13.16.3 Product Subclass 3: 1,3,2-Oxazaphospholes ... 652
13.16.3.1 Synthesis by Ring-Closure Reactions ... 652
13.16.3.1.1 By Formation of One O—P and One N—P Bond .. 652
13.16.3.1.1.1 Fragments O—C—C—N and P ... 652
13.16.3.1.1.1.1 Method 1: Cyclocondensation of 2-Amino Ketones or 2-Aminophenols with Phosphorus(III) Compounds 652

13.16.4 Product Subclass 4: 1,3,2-Benzothiazaphospholes and -arsoles 653
13.16.4.1 Synthesis by Ring-Closure Reactions ... 653
13.16.4.1.1 By Formation of One S—P and One N—P Bond .. 653
13.16.4.1.1.1 Fragments S—arene—N and P .. 653
13.16.4.1.1.1 Method 1: Condensation of 2-Aminothiophenol with Phosphines 653
13.16.4.2 Aromatization .. 654
13.16.4.2.1 Method 1: By Halide Abstraction .. 654
13.16.5 Product Subclass 5: 1,3,4-Thiazaphospholes 655
13.16.5.1 Synthesis by Ring-Closure Reactions .. 655
13.16.5.1.1 By Formation of One N—P and One P—C Bond 655
13.16.5.1.1.1 Fragments C—S—C—N and P ... 655
13.16.5.1.1.1 Method 1: [4 + 1] Cyclocondensation 655
13.16.5.1.2 By Formation of One N—P and One S—C Bond 656
13.16.5.1.2.1 Fragments S—C—N and P—C ... 656
13.16.5.1.2.1.1 Method 1: [3 + 2] Cyclocondensation 656

13.17 Product Class 17: Oxadiphospholes and Their Analogues
S. J. Collier

13.17.1 Product Subclass 1: 1,2,4-Oxadiphospholes 660
13.17.1.1 Synthesis by Ring-Closure Reactions .. 661
13.17.1.1.1 By Formation of One O—P and One P—C Bond 661
13.17.1.1.1 Method 1: From Mesitylphosphaalkenes 661

13.17.2 Product Subclass 2: 1,2,4-Thiadiphospholes 662
13.17.2.1 Synthesis by Ring-Closure Reactions .. 665
13.17.2.1.1 By Formation of One S—P and Three P—C Bonds 665
13.17.2.1.1.1 Fragments S—C, C, and Two P Fragments 665
13.17.2.1.1.1 Method 1: From Lithium Phosphide and Carbon Disulfide 665
13.17.2.1.2 By Formation of One S—P, One S—C, and One P—C Bond 665
13.17.2.1.2.1 Fragments P—C, P—C, and S .. 665
13.17.2.1.2.1 Method 1: From Phosphaacetylenes and a Sulfur Source 665
13.17.2.1.2.1.1 Variation 1: Use of Stoichiometric Metal–Sulfur Complexes 666
13.17.2.1.2.1.2 Variation 2: Use of Elemental Sulfur with a Tantalum Catalyst 667
13.17.2.1.2.1.3 Variation 3: Use of Carbon Disulfide, Carbon Disulfide Ylides, 669
and Other Sulfur Sources

13.17.2.2 Synthesis by Ring Transformation .. 670
13.17.2.3 Synthesis by Substituent Modification .. 671
13.17.2.3.1 Addition Reactions ... 671
13.17.2.3.1.1 Formation of Metal Complexes .. 671
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.17.3</td>
<td>Product Subclass 3: 1,2,4-Selenadiphospholes</td>
<td>673</td>
</tr>
<tr>
<td>13.17.3.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>675</td>
</tr>
<tr>
<td>13.17.3.1.1</td>
<td>By Formation of One Se—P, One Se—C, and One P—C Bond</td>
<td>675</td>
</tr>
<tr>
<td>13.17.3.1.1.1</td>
<td>Fragments P—C, P—C, and Se</td>
<td>675</td>
</tr>
<tr>
<td>13.17.3.1.1.1</td>
<td>Method 1: From Phosphaacetylenes and Elemental Selenium</td>
<td>675</td>
</tr>
<tr>
<td>13.17.3.2</td>
<td>Synthesis by Ring Transformation</td>
<td>676</td>
</tr>
<tr>
<td>13.17.3.3</td>
<td>Addition Reactions</td>
<td>677</td>
</tr>
<tr>
<td>13.17.3.3.1</td>
<td>Formation of Metal Complexes</td>
<td>677</td>
</tr>
<tr>
<td>13.17.4</td>
<td>Product Subclass 4: 1,2,4-Telluradiphospholes</td>
<td>678</td>
</tr>
<tr>
<td>13.17.4.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>679</td>
</tr>
<tr>
<td>13.17.4.1.1</td>
<td>By Formation of One Te—P, One Te—C, and One P—C Bond</td>
<td>679</td>
</tr>
<tr>
<td>13.17.4.1.1.1</td>
<td>Fragments P—C, P—C, and Te</td>
<td>679</td>
</tr>
<tr>
<td>13.17.4.1.1.1</td>
<td>Method 1: From Phosphaacetylenes and Elemental Tellurium</td>
<td>679</td>
</tr>
<tr>
<td>13.17.4.2</td>
<td>Synthesis by Ring Transformation</td>
<td>680</td>
</tr>
<tr>
<td>13.17.4.3</td>
<td>Synthesis by Substituent Modification</td>
<td>680</td>
</tr>
<tr>
<td>13.17.4.3.1</td>
<td>Addition Reactions</td>
<td>680</td>
</tr>
<tr>
<td>13.17.4.3.1.1</td>
<td>Formation of Metal Complexes</td>
<td>680</td>
</tr>
<tr>
<td>13.17.5</td>
<td>Product Subclass 5: 1,2,5-Thiadiphospholes</td>
<td>681</td>
</tr>
<tr>
<td>13.17.6</td>
<td>Product Subclass 6: 1,3,4-Thiadiphospholes</td>
<td>682</td>
</tr>
<tr>
<td>13.17.6.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>682</td>
</tr>
<tr>
<td>13.17.6.1.1</td>
<td>By Formation of One P—P, One S—C, and Two P—C Bonds</td>
<td>682</td>
</tr>
<tr>
<td>13.17.6.1.1.1</td>
<td>Fragments S—C, C, and Two P Fragments</td>
<td>682</td>
</tr>
<tr>
<td>13.17.6.1.1.1</td>
<td>Method 1: From Metallodisilylphosphanes and Carbon Disulfide</td>
<td>682</td>
</tr>
<tr>
<td>13.17.6.1.2</td>
<td>By Formation of One P—P and Two S—C Bonds</td>
<td>683</td>
</tr>
<tr>
<td>13.17.6.1.2.1</td>
<td>Fragments P—C, P—C, and S</td>
<td>683</td>
</tr>
<tr>
<td>13.17.6.1.2.1</td>
<td>Method 1: From Phosphaacetylenes and a Sulfur Source</td>
<td>683</td>
</tr>
<tr>
<td>13.17.6.2</td>
<td>Synthesis by Ring Transformation</td>
<td>684</td>
</tr>
<tr>
<td>13.17.6.3</td>
<td>Synthesis by Substituent Modification</td>
<td>684</td>
</tr>
<tr>
<td>13.17.6.3.1</td>
<td>Addition Reactions</td>
<td>684</td>
</tr>
<tr>
<td>13.17.6.3.1.1</td>
<td>Formation of Bis(η¹-Complexes)</td>
<td>684</td>
</tr>
<tr>
<td>13.17.7</td>
<td>Product Subclass 7: 1,3,4-Selenadiphospholes</td>
<td>685</td>
</tr>
<tr>
<td>13.17.7.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>685</td>
</tr>
<tr>
<td>13.17.7.1.2</td>
<td>By Formation of One P—P and Two Se—C Bonds</td>
<td>685</td>
</tr>
<tr>
<td>13.17.7.1.2.1</td>
<td>Fragments P—C, P—C, and Se</td>
<td>685</td>
</tr>
<tr>
<td>13.17.7.1.2.1</td>
<td>Method 1: From Phosphaacetylenes and Elemental Selenium</td>
<td>685</td>
</tr>
</tbody>
</table>
13.18
Product Class 18: Diazaphospholes and Dizaoarsoles
R. K. Bansal and Neelima Gupta

13.18.1
Product Subclass 1: Monocyclic 1,2,3-Diazaphospholes and 1,2,3-Diazaoarsoles

13.18.2
Product Subclass 2: 1,2,3-Diazaphospholo[1,5-a]pyridines

13.18.3
Product Subclass 3: Monocyclic 1,2,4-Diazaphospholes and 1,2,4-Diazaoarsoles

13.18.4
Product Subclass 4: 1,2,4-Diazaphospholo[1,5-a]pyridines and 1,2,4-Diazarsolo[1,5-a]pyridines

13.18.5
Product Subclass 5: Monocyclic 1,3,2-Diazaphospholes

Table of Contents
XLIII

Science of Synthesis Original Edition Volume 13
© Georg Thieme Verlag KG
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.18.5.1.1</td>
<td>By Formation of Two N—P Bonds</td>
</tr>
<tr>
<td>13.18.5.1.1.1</td>
<td>Fragments N—C—N and P</td>
</tr>
<tr>
<td>13.18.5.1.1.1.1</td>
<td>Method 1: [4 + 1] Cyclocondensation</td>
</tr>
<tr>
<td>13.18.5.1.1.1.1.1</td>
<td>Variation 1: Cyclocondensation with Phosphorus Trichloride</td>
</tr>
<tr>
<td>13.18.5.1.1.1.2</td>
<td>Variation 2: Cyclocondensation with Hexamethylphosphorous Triamide</td>
</tr>
</tbody>
</table>

Product Subclass 6: Pyrrolo[3,4-d][1,3,2]diazaphospholes

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.18.6.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
</tr>
<tr>
<td>13.18.6.1.1</td>
<td>By Formation of Two N—P Bonds</td>
</tr>
<tr>
<td>13.18.6.1.1.1</td>
<td>Fragments N—C—N and P</td>
</tr>
<tr>
<td>13.18.6.1.1.1.1</td>
<td>Method 1: Cyclocondensation with Phosphorus Trichloride</td>
</tr>
</tbody>
</table>

Product Subclass 7: 1,3,2-Benzodiazaphospholes

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.18.7.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
</tr>
<tr>
<td>13.18.7.1.1</td>
<td>By Formation of Two N—P Bonds</td>
</tr>
<tr>
<td>13.18.7.1.1.1</td>
<td>Fragments N—C—N and P</td>
</tr>
<tr>
<td>13.18.7.1.1.1.1</td>
<td>Method 1: Condensation of Benzene-1,2-diamines with Hexamethylphosphorous Triamide</td>
</tr>
</tbody>
</table>

Product Subclass 8: Monocyclic 1,4,2-Diazaphospholes

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.18.8.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
</tr>
<tr>
<td>13.18.8.1.1</td>
<td>By Formation of One N—P and One N—C Bond</td>
</tr>
<tr>
<td>13.18.8.1.1.1</td>
<td>Fragments N—C—N and P</td>
</tr>
<tr>
<td>13.18.8.1.1.1.1</td>
<td>Method 1: By [3 + 2] Cyclocondensation</td>
</tr>
</tbody>
</table>

Product Subclass 9: Thiazolo[2,3-e][1,4,2]diazaphospholes, Thiazolo[3,2-d][1,4,2]diazaphospholes, and Related Systems

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.18.9.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
</tr>
<tr>
<td>13.18.9.1.1</td>
<td>By Formation of One N—P and One N—C Bond</td>
</tr>
<tr>
<td>13.18.9.1.1.1</td>
<td>Fragments N—C—N and P—C</td>
</tr>
<tr>
<td>13.18.9.1.1.1.1</td>
<td>Method 1: By [3 + 2] Cyclocondensation with (Chloromethyl)dichlorophosphine</td>
</tr>
<tr>
<td>13.18.9.1.2</td>
<td>By Formation of One N—P and One P—C Bond</td>
</tr>
<tr>
<td>13.18.9.1.2.1</td>
<td>Fragments N—C—N and P—C</td>
</tr>
<tr>
<td>13.18.9.1.2.1.1</td>
<td>Method 1: By [4 + 1] Cyclocondensation with Phosphorus Trichloride</td>
</tr>
</tbody>
</table>

Product Subclass 10: 1,4,2-Diazaphospholo[4,5-a]pyridines and Related Systems

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.18.10.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
</tr>
<tr>
<td>13.18.10.1.1</td>
<td>By Formation of One N—P and One N—C Bond</td>
</tr>
<tr>
<td>13.18.10.1.1.1</td>
<td>Fragments N—C—N and C—P</td>
</tr>
</tbody>
</table>
Table of Contents

13.18.10.1.1.1 Method 1: \[3 + 2\] Cyclocondensation with (Chloromethyl)dichlorophosphine 711
13.18.10.1.2 By Formation of One N—P and One P—C Bond ... 712
13.18.10.1.2.1 Fragments N—C—N and P ... 712
13.18.10.1.2.1.1 Method 1: \[4 + 1\] Cyclocondensation with Phosphorus Trichloride 712

13.19

Product Class 19: Azadiphospholes and Their Analogues

S. J. Collier

13.19

Product Class 19: Azadiphospholes and Their Analogues 717
13.19.1 Product Subclass 1: Monocyclic 1,2,3-Azadiphospholes 717
13.19.1.1 Synthesis by Ring-Closure Reactions .. 719
13.19.1.1.1 By Formation of One P—P and One P—C Bond 719
13.19.1.1.1.1 Fragments C—C—N—P and P ... 719
13.19.1.1.1.1.1 Method 1: Flash Pyrolysis of Substituted Aminophosphines 719
13.19.1.2 Synthesis by Ring Transformation .. 720
13.19.2 Product Subclass 2: 1,2,3-Benzazadiphospholes and Analogues 721
13.19.2.1 Synthesis by Ring-Closure Reactions .. 721
13.19.2.1.1 By Formation of One N—P (As, Sb) and One P—P (As, Sb) Bond 721
13.19.2.1.1.1 Fragments P—C—N and P (As, Sb) .. 721
13.19.2.1.1.1.1 Method 1: Condensation of Phosphinoanilines with Hexamethylphosphorous Triamide, Hexamethyarsenous Triamide, or Tris(dimethylamino)stibine 721
13.19.3 Product Subclass 3: 1,2,4-Azadiphospholes 722
13.19.3.1 Synthesis by Ring-Closure Reactions .. 723
13.19.3.1.1 By Formation of One N—P, One N—C, and One P—C Bond 723
13.19.3.1.1.1 Fragments P—C, P—C, and N .. 723
13.19.3.1.1.1.1 Method 1: Synthesis from Alkylidynephosphines and Imidometal Complexes ... 723
13.19.3.1.2 By Formation of One N—P and One P—C Bond 724
13.19.3.1.2.1 Fragments N—C—P and C—P .. 724
13.19.3.1.2.1.1 Method 1: Dimerization of N-(tert-Butyl)-N-(phosphinidynemethyl)amine 724
13.19.4 Product Subclass 4: 1,2,5-Azadiphospholes 725
13.19.4.1 Synthesis by Ring-Closure Reactions .. 726
13.19.4.1.1 By Formation of Two N—P Bonds and One C—C Bond 726
13.19.4.1.1.1 Fragments P—C, P—C, and N .. 726
13.19.4.1.1.1.1 Method 1: Synthesis from Alkylidyne phosphines and Imidovanadium Complexes ... 726
Method 2: Direct Synthesis of η^4-1,2,5-Azadiaphosphole Complexes from Alkylidyne phosphines and Imidoiridium Complexes

Product Subclass 5: 1,3,4-Azadiaphospholes

Product Class 20: Triphospholes and Diphospharsolides
R. K. Bansal and Neelima Gupta

Product Class 20: Triphospholes and Diphospharsolides

Product Subclass 1: 1,2,3-Triphospholides

Synthesis by Aromatization

Method 1: From 1,3-Dihydro-1,2,3-triphospholes

Product Subclass 2: 1,2,4-Triphospholides and 1,2,4-Triphospholes

Synthesis by Ring-Closure Reactions

By Formation of One P–P and Two P–C Bonds

Fragments P–C, P–C, and P

Method 1: Reductive Cyclocondensation of Phosphaalkynes or Phosphaalkenes

Variation 1: By the Use of Lithium Bis(trimethylsilyl)phosphide

Variation 2: By the Use of Potassium Menthoxide

By Formation of Two P–C Bonds

Fragments P–P–C and P–C

Method 1: Synthesis from a 2,3,4-Triphosphapentadienide Anion

Ring Contraction

Method 1: Of Tri-tert-butyl-1,3,5-triphosphabenzene

Aromatization

Method 1: Of a Triphospholane

Synthesis by Substituent Modification

Addition Reactions

Method 1: Reaction of 1,2,4-Triphospholides with Electrophiles

Product Subclass 3: Diphospharsolides

Synthesis by Ring-Closure Reactions

Method 1: Reductive Cyclization of a Phosphaalkyne with Lithium Bis(trimethylsilyl)arsenide
13.21 Product Class 21: Thiadiazaphospholes
S. J. Collier

13.21 Product Class 21: Thiadiazaphospholes ... 739
13.21.1 Aromatization .. 740
13.21.1.1 Method 1: Synthesis by Chloride Abstraction 740

13.22 Product Class 22: Triazaphospholes
R. K. Bansal and Neelima Gupta

13.22 Product Class 22: Triazaphospholes ... 743
13.22.1 Product Subclass 1: 1,2,3,4-Triazaphospholes 743
13.22.1.1 Synthesis by Ring-Closure Reactions ... 744
13.22.1.1.1 By Formation of One N–P and One N–C Bond 744
13.22.1.1.1.1 Method 1: [3 + 2] Cycloaddition of Azides 744
13.22.1.1.1.1.1 Variation 1: Use of Phosphaalkynes 744
13.22.1.1.1.2 Variation 2: Use of Phosphaalkenes 745
13.22.1.1.2 By Formation of One N–N and One P–C Bond 745
13.22.1.1.2.1 Fragments N–N–C and N–P ... 745
13.22.1.1.2.1 Method 1: [3 + 2] Cycloaddition of Halo(imino)phosphines 745
13.22.1.2 Product Subclass 2: Monocyclic 1,2,4,3-Triazaphospholes 746
13.22.1.2.1 Synthesis by Ring-Closure Reactions 747
13.22.1.2.1.1 By Formation of Two N–P Bonds 748
13.22.1.2.1.1 Fragments N–N–C and N–P ... 748
13.22.1.2.1.1 Method 1: [4 + 1] Cyclocondensation 748
13.22.1.2.1.1.1 Variation 1: From Amidrazone Hydrochlorides and Hexaalkylphosphorous Triamides .. 748
13.22.1.2.1.1.2 Variation 2: From Amidrazone Hydrochlorides and Phosphorus Pentachloride .. 749
13.22.1.2.1.2 By Formation of One N–P and One N–C Bond 749
13.22.1.2.1.2 Fragments P–N–C and N–N ... 749
13.22.1.2.1.2 Method 1: [3 + 2] Cyclocondensation of N-Phosphino Imidates and Hydrazines ... 749
13.22.1.2.2 Synthesis by Substituent Modification 751
13.22.1.2.2 Substitution of Hydrogen ... 751
13.22.2 Product Subclass 3: Thiazolo[2,3-e][1,2,4,3]triazaphospholes and [1,2,4,3]Triazaphospholo[1,5-a]pyridines .. 751
13.22.2.1 Synthesis by Ring-Closure Reactions ... 752
13.22.2.1.1 By Formation of Two N–P Bonds .. 752
13.22.3.1.1 Fragments N—N—C—N and P .. 752
13.22.3.1.1.1 Method 1: [4 + 1] Cyclocondensation .. 752

13.23 Product Class 23: Diazadiphospholes
S. J. Collier

13.23 Product Class 23: Diazadiphospholes .. 757
13.23.1 Product Subclass 1: 1,2,3,4-Diazadiphospholes 757
13.23.1.1 Synthesis by Ring-Closure Reactions .. 758
13.23.1.1.1 By Formation of One N—P and One P—C Bond 758
13.23.1.1.1.1 Fragments N—N—C and P—P .. 758
13.23.1.1.1.1.1 Method 1: From Lithium Diazo(trimethylsilyl)methanide and White Phosphorus 758

13.23.1.2 Synthesis by Substituent Modification .. 758
13.23.1.2.1 Substitution of Existing Substituents ... 758
13.23.1.2.1.1 Of Hydrogen ... 758
13.23.1.2.1.1.1 Method 1: By a Metal ... 758

13.23.2 Product Subclass 2: 1,2,3,5-Diazadiphospholes 759
13.23.2.1 Synthesis by Ring-Closure Reactions .. 760
13.23.2.1.1 By Formation of Two N—P Bonds ... 760
13.23.2.1.1.1 Fragments P—C—P and N—N ... 760
13.23.2.1.1.1.1 Method 1: Condensation of Bis(dichlorophosphino)methane with Alkyl- and Arylhydrazines 760

13.24 Product Class 24: Tetraphospholes
S. J. Collier

13.24 Product Class 24: Tetraphospholes .. 763
13.24.1 Synthesis by Ring-Closure Reactions .. 764
13.24.1.1 Formation of Two P—C Bonds ... 764
13.24.1.1.1 Fragments P—P—P—P and C .. 764
13.24.1.1.1.1 Method 1: From White Phosphorus and Sodium Powder in Diglyme 764

13.25 Product Class 25: Tetraazaphospholes
S. J. Collier

13.25 Product Class 25: Tetraazaphospholes .. 767
13.25.1 Synthesis by Ring-Closure Reactions .. 767
13.25.1.1 By Formation of One N—N and One N—P Bond 767
13.25.1.1.1 Fragments N—N—N and N—P .. 767
13.25.1.1.1 Method 1: By 1,3-Dipolar Cycloaddition of Alkyl Azides with
\[N\text{-}N\text{-}phosphinidyneammonium~ions\] 767

13.26 Product Class 26: Pentaphospholes and Pentarsoles
R. K. Bansal and Neelima Gupta

13.26 Product Class 26: Pentaphospholes and Pentarsoles 771
13.26.1 Product Subclass 1: Pentaphospholides 771
13.26.1.1 Synthesis by Ring-Closure Reactions 772
13.26.1.1.1 Method 1: Synthesis of Metal Pentaphospholides from Phosphorus and
an Alkali Metal Phosphide .. 772
13.26.1.1.1 Variation 1: From White Phosphorus and Sodium Dihydrogenphosphide • 772
13.26.1.1.2 Variation 2: From White Phosphorus and Lithium Dihydrogenphosphide • 773
13.26.1.1.3 Variation 3: From Red Phosphorus and Potassium Dihydrogenphosphide 773
13.26.2 Product Subclass 2: Pentarsolides .. 774
13.26.2.1 Synthesis by Ring-Closure Reactions 775
13.26.2.1.1 Method 1: Synthesis of Pentarsolyl Complexes from Yellow Arsenic 775

13.27 Product Class 27: Selenazoles and Tellurazoles Containing One or
More Other Heteroatoms
R. A. Aitken

13.27 Product Class 27: Selenazoles and Tellurazoles Containing
One or More Other Heteroatoms .. 777
13.27.1 Product Subclass 1: 1,2,3,5-Diselenadiazolium Salts and
1,2,3,5-Diselenadiazolyl-Containing Compounds 777
13.27.1.1 Synthesis by Ring-Closure Reactions 778
13.27.1.1.1 By Formation of One Se—Se and Two Se—N Bonds 778
13.27.1.1.1 Method 1: Reaction of \[N\text{-},N\text{-},N\text{-}\text{Tris(trimethylsilyl)}\]amidines with
Selenium Dichloride .. 778
13.27.1.2 Synthesis by Ring Transformation 778
13.27.1.2.1 One-Electron Reduction ... 778
13.27.2 Product Subclass 2: 1,2,3-Benzoxaselenazoles 779
13.27.2.1 Synthesis by Ring-Closure Reactions 780
13.27.2.1.1 By Formation of One Se—O, One Se—N, and One O—C Bond 780
13.27.2.1.1 Method 1: Reaction of a Hindered Aniline with Selenium Oxychloride • 780
13.27.3 Product Subclass 3: 2,1,3-Benzoxatellurazoles and Naphth[2,1-
c][1,2,5]oxatellurazoles .. 780
13.27.3.1 Synthesis by Ring-Closure Reactions 781
13.27.3.1.1 By Formation of One Te—O, One Te—C, and One N—C Bond 781
13.27.3.1.1 Method 1: From \[\alpha\text{-}Tetralone Oximes\] 781
13.27.3.1.2 By Formation of One Te—O and One N—C Bond .. 781
13.27.3.1.2.1 Method 1: Nitration and Reduction of an Aryltellurium Trichloride 781
13.27.4 Product Subclass 4: 1,2,3-Benzothiaselenazolium Salts and
Benzobis(1,2,3-thiaselenazoles) ... 782
13.27.4.1 Synthesis by Ring-Closure Reactions ... 783
13.27.4.1.1 By Formation of One Se—S and One Se—N Bond 783
13.27.4.1.1.1 Method 1: Reaction of 2-Aminobenzenethiols with Selenious Acid 783
13.27.4.1.1.2 Method 2: Reaction of 1,2,3-Benzodithiazolium Salts with Selenious Acid 783
13.27.4.1.1.3 Method 3: Reaction of a Diaminobenzenedithiol with Selenium Tetrachloride ... 784
13.27.4.2 Synthesis by Substituent Modification .. 784
13.27.4.2.1 Substitution of Existing Substituents .. 784
13.27.4.2.1.1 Of Halogens .. 784
13.27.4.2.1.1.1 Method 1: Reaction with Anilines .. 784
13.27.4.2.1.2 Of Methoxy Groups .. 785
13.27.4.2.1.2.1 Method 1: Reaction with Dialkylammonium Acetates 785
13.27.5 Product Subclass 5: 2,1,3-Benzothiaselenazolium Salts 785
13.27.5.1 Synthesis by Ring-Closure Reactions .. 785
13.27.5.1.1 By Formation of One S—Se and One S—N Bond 785
13.27.5.1.1.1 Method 1: Reaction of 2-Aminobenzeneselenol Hydrochlorides with
Thionyl Chloride ... 785
13.27.5.2 Synthesis by Substituent Modification .. 786
13.27.5.2.1 Substitution of Existing Substituents .. 786
13.27.5.2.1.1 Of Halogens .. 786
13.27.5.2.1.1.1 Method 1: Reaction with Anilines .. 786
13.27.5.2.1.2 Of Methoxy Groups .. 786
13.27.5.2.1.2.1 Method 1: Reaction with Dialkylammonium Acetates 786
13.27.6 Product Subclass 6: 1,2,4-Diselenazolium Salts .. 787
13.27.6.1 Synthesis by Ring-Closure Reactions .. 787
13.27.6.1.1 By Formation of One Se—Se and Two Se—C Bonds 787
13.27.6.1.1.1 Method 1: Reaction of a Chlorinated Iminium Salt with
Sodium Hydrogen Selenide Followed by Oxidation 787
13.27.6.1.2 By Formation of One Se—Se and One Se—C Bond 787
13.27.6.1.2.1 Method 1: Reaction of an N-Benzoylselenoureia Nickel Complex
with Diphosgene .. 787
13.27.6.1.3 By Formation of One Se—Se and One N—C Bond 788
13.27.6.1.3.1 Method 1: Iodine Oxidation of Aromatic Selenoamides 788
Product Subclass 7: 1,2,3-Benzodiselenazolium Salts

Synthesis by Ring-Closure Reactions

By Formation of One Se—Se and One Se—N Bond

Method 1: Reaction of 2-Aminobenzeneselenol Hydrochlorides with Selenious Acid

Synthesis by Substituent Modification

Substitution of Existing Substituents

Of Halogens

Method 1: Reaction with Anilines

Of Methoxy Groups

Method 1: Reaction with Dialkylammonium Acetates

Product Subclass 8: 1,3,2-Benzodiselenazolium Salts

Synthesis by Ring-Closure Reactions

By Formation of Two Se—N Bonds

Method 1: Reaction of Benzene-1,2-diselenenyl Dichloride with Trimethylsilyl Azide

Product Subclass 9: 1,2,3-Selenadiazoles

Synthesis by Ring-Closure Reactions

By Formation of One Se—N and One Se—C Bond

Method 1: Reaction of Semicarbazones with Selenium Dioxide

Variation 1: In Acetic Acid

Variation 2: In Aqueous Dioxane

Method 2: Reaction of Tosylhydrazones with Diselenium Dichloride

Method 3: Reaction of Tosylhydrazones with Selenium Oxychloride

By Formation of One Se—N and One C—C Bond

Method 1: Reaction of an Aryl Isoselenocyanate with Diazomethane

Aromatization

Method 1: N-Debenzoylation of 2-Benzoyl-5-(benzoylimino)-2,5-dihydro-1,2,3-selenadiazoles

Synthesis by Substituent Modification

Rearrangement of Substituents

Method 1: Curtius Rearrangement of 5-(Azidocarbonyl)-1,2,3-selenadiazoles

Product Subclass 10: 1,2,3-Benzoselenadiazoles

Synthesis by Ring-Closure Reactions

By Formation of One Se—N and One N—N Bond

Method 1: Diazotization of 2-Aminobenzeneselenol

Aromatization
13.27.10.2.1 Method 1: Reaction of a 6,7-Dihydro-1,2,3-benzoselenadiazole with Selenium ... 796

13.27.11 Product Subclass 11: 1,2,4-Selenadiazoles .. 797

13.27.11.1 Synthesis by Ring-Closure Reactions .. 797

13.27.11.1.1 By Formation of One Se—N and One N—C Bond .. 797

13.27.11.1.1 Method 1: Oxidation of Selenoamides .. 797

13.27.11.1.1.1 Variation 1: Using Iodine ... 797

13.27.11.1.1.2 Variation 2: Using N-Bromosuccinimide ... 798

13.27.11.1.1.3 Variation 3: Using Hydrogen Peroxide ... 798

13.27.11.1.1.4 Variation 4: Using 3-Chloroperoxybenzoic Acid 799

13.27.11.1.2 Method 2: Reaction of N-Bromoamidines with Potassium Selenocyanate 799

13.27.11.2 Method 2: Reaction of N-Bromoamidines with Potassium Selenocyanate 799

13.27.12 Product Subclass 12: 1,2,5-Selenadiazoles .. 800

13.27.12.1 Synthesis by Ring-Closure Reactions .. 800

13.27.12.1.1 By Formation of Two Se—N Bonds .. 800

13.27.12.1.1 Method 1: Reaction of 1,2-Diamines with Selenium Compounds 800

13.27.12.1.1.1 Variation 1: Using Diselenium Dichloride .. 800

13.27.12.1.1.2 Variation 2: Using Selenium Dioxide .. 800

13.27.12.1.1.3 Variation 3: Using a Selenium Diamide .. 801

13.27.12.1.1.4 Method 2: Reaction of 1,2-Diimines with Selenium Compounds 801

13.27.12.1.1.4 Method 2: Reaction of 1,2-Diimines with Selenium Compounds 801

13.27.12.1.1.5 Method 3: Reaction of 1,2-Dioximes with Selenium Compounds 802

13.27.12.1.1.6 Method 4: Reaction of 1,2-Bis[(trimethylsilyl)imines] with Selenium Oxychloride .. 803

13.27.12.1.2 Method 2: Reaction of 1,2-Diimines with Selenium Compounds 801

13.27.12.1.2 Method 2: Reaction of 1,2-Diimines with Selenium Compounds 801

13.27.12.1.2.1 Variation 1: Using Diselenium Dichloride .. 801

13.27.12.1.2.2 Variation 2: Using Selenium Oxychloride ... 802

13.27.12.1.2.2 Variation 2: Using Selenium Oxychloride ... 802

13.27.12.1.2.3 Method 3: Reaction of 1,2-Dioximes with Selenium Compounds 802

13.27.12.1.2.4 Method 4: Reaction of 1,2-Bis[(trimethylsilyl)imines] with Selenium Oxychloride .. 803

13.27.12.1.3 Method 3: Reaction of 1,2-Dioximes with Selenium Compounds 802

13.27.12.1.3 Method 4: Reaction of 1,2-Dioximes with Selenium Compounds 802

13.27.12.1.3.1 Variation 1: Using Diselenium Dichloride .. 801

13.27.12.1.3.2 Variation 2: Using Selenium Dioxide .. 802

13.27.12.1.3.3 Variation 1: Using Diselenium Dichloride .. 801

13.27.12.1.3.4 Variation 2: Using Selenium Dioxide .. 802

13.27.12.1.4 Method 4: Reaction of 1,2-Bis[(trimethylsilyl)imines] with Selenium Oxychloride .. 803

13.27.12.1.4 Method 4: Reaction of 1,2-Bis[(trimethylsilyl)imines] with Selenium Oxychloride .. 803

13.27.12.2 Synthesis by Ring Transformation .. 804

13.27.12.2.1 From 1,2,5-Thiadiazoles ... 804

13.27.12.2.1 From 1,2,5-Thiadiazoles ... 804

13.27.12.2.1.1 Method 1: Reaction of 1,2,5-Thiadiazoles with Grignard Reagents and Diselenium Dichloride .. 804

13.27.12.2.2 From a Pyrimidin-4(3H)-one ... 805

13.27.12.2.2 From a Pyrimidin-4(3H)-one ... 805

13.27.12.2.2.1 Method 1: Reaction of a 5-Aminopyrimidin-4(3H)-one with Selenium Dioxide .. 805

13.27.12.2.2.1 Method 1: Reaction of a 5-Aminopyrimidin-4(3H)-one with Selenium Dioxide .. 805

13.27.13 Product Subclass 13: 2,1,3-Benzoselenadiazoles .. 805

13.27.13.1 Synthesis by Ring-Closure Reactions .. 806

13.27.13.1.1 By Formation of Two Se—N Bonds .. 806

13.27.13.1.1 Method 1: Reaction of 1,2-Diaminoarenes with Selenium Dioxide 806

13.27.13.1.1 Method 2: Reaction of 1,2-Diaminoarenes with Selenium Oxychloride 806

13.27.13.1.1.1 Method 3: Reaction of 1,2-Diaminoarenes with Selenium Tetrachloride 807

13.27.13.1.1.2 Method 4: Reaction of Spiro cyclic Aminals with Selenium Dioxide 808

13.27.13.1.1.3 Method 5: Reaction of 1,2-Bis[(trimethylsilyl)imines] with Selenium Oxychloride or Selenium Tetrachloride 808
Synthesis by Substituent Modification .. 809

13.2.1 Substitution of Existing Substituents 809

13.2.1.1 Of Hydrogen ... 809

13.2.1.2 Of Bromine or Iodine .. 810

13.2.1.1.1 Method 1: Nitration 809

13.2.1.2.1 Method 1: Nucleophilic Substitution 810

13.2.2 Addition Reactions .. 811

13.2.2.1 Method 1: N-Alkylation 811

Product Subclass 14: 1,3,4-Selenadiazoles and 1,3,4-Selenadiazolium Salts 811

13.2.14 Synthesis by Ring-Closure Reactions 811

13.2.14.1 By Formation of One Se—C and Two N—C Bonds 811

13.2.14.1.1 Method 1: Reaction of Selenobenzamides with Hydrazine Hydrate 811

13.2.14.1.2 By Formation of Two Se—C Bonds 812

13.2.14.2 Method 1: Reaction of Dimethylformamide Azine with Hydrogen Selenide .. 812

13.2.14.3 By Formation of One Se—C and One N—C Bond 813

13.2.14.3.1 Method 1: Reaction of Isoselenocyanates with Selenosemicarbazides 813

13.2.14.3.2 Method 2: Reaction of Carboxylic Acids with Selenosemicarbazide and Phosphoryl Chloride 813

13.2.14.4 By Formation of One Se—C Bond 814

13.2.14.4.1 Method 1: Reaction of N-Acryl-N'-selenoacylhydrazines with Acetic Anhydride/Perchloric Acid 814

Product Subclass 15: 1,2,3-Benzotelluradiazolium Salts 815

13.2.15 Synthesis by Ring-Closure Reactions 815

13.2.15.1 By Formation of One Te—N Bond 815

13.2.15.1.1 Method 1: Reaction of a 2-(Arylazo)arenetellurenyl Chloride with Silver Perchlorate 815

Product Subclass 16: 1,2,5-Telluradiazoles 816

13.2.16 Synthesis by Ring Transformation 816

13.2.16.1 Method 1: Reaction of 1,2,5-Thiadiazoles or 1,2,5-Selenadiazoles with a Grignard Reagent Followed by Tellurium Tetrachloride 816

Product Subclass 17: 2,1,3-Benzotelluradiazoles 817

13.2.17 Synthesis by Ring-Closure Reactions 817

13.2.17.1 By Formation of Two Te—N Bonds 817

13.2.17.1.1 Method 1: Reaction of a 1,2-Bis[(trimethylsilyl)imine] with Tellurium Tetrachloride 817

13.2.17.1.2 Method 2: Reaction of a 1,2-Diamine with Tellurium Tetrachloride 817
13.27.17.1.2 By Formation of One Te—N and One N—C Bond 818
13.27.17.1.2.1 Method 1: Reaction of a Lithiated Arylamine with a Silylated Tellurium Imide ... 818
13.27.17.2 Synthesis by Ring Transformation .. 818
13.27.17.2.1 Method 1: Reaction of an Aromatic-Fused 1,2,5-Selenadiazole with a Grignard Reagent, Followed by Tellurium Tetrachloride 818

13.28 Product Class 28: Oxatriazoles
M. Begtrup

13.28.1 Product Class 28: Oxatriazoles ... 823
13.28.1.1 Product Subclass 1: 1,2,3,4-Oxatriazoles ... 823
13.28.1.1.1 Synthesis by Ring-Closure Reactions .. 824
13.28.1.1.1.1 By Formation of One N—N, One O—C, and One N—C Bond 824
13.28.1.1.1.1 Method 1: 1,2,3,4-Oxatriazol-3-ium-5-olates from Nitromethide Anions and Arenediazonium Ions ... 824
13.28.1.1.1.2 By Formation of One N—N and One O—C Bond 825
13.28.1.1.1.2 Method 1: 1,2,3,4-Oxatriazol-3-ium-5-thiolates from Nitromethide Anions and Arenediazonium Ions ... 824
13.28.1.1.1.3 By Formation of One O—C and One N—C Bond 826
13.28.1.1.1.3 Method 1: 1,2,3,4-Oxatriazol-3-ium-5-olates from Nitromethide Anions and Arenediazonium Ions ... 824
13.28.1.1.2 Synthesis by Ring Transformation .. 828
13.28.1.1.2 Method 1: 1,2,3,4-Oxatriazolium-5-aminides from
1,2,3,4-Oxatriazolium-5-anilides and Aryl Isocyanates .. 828
13.28.1.2 Synthesis by Substituent Modification .. 829
13.28.1.2.1 Method 1: 1,2,3,4-Oxatriazolium Salts by Alkylation of
1,2,3,4-Oxatriazolium-5-thiolates ... 829
13.28.1.3.2 Method 2: N-Acylation and Sulfonation of 1,2,3,4-Oxatriazolium-5-aminides .. 829
13.28.1.3.3 Method 3: 1,2,3,4-Oxatriazolium-5-olates from 1,2,3,4-Oxatriazolium-5-aminides and Nitrous Acid 830

13.28.2 Product Subclass 2: 1,2,3,5-Oxatriazoles .. 830
13.28.2.1 Synthesis by Ring-Closure Reactions .. 830
13.28.2.1.1 By Formation of One O—N and One N—C Bond 830
13.28.2.1.1.1 Fragments C—N—O and N—N .. 830
13.28.2.1.1.1 Method 1: 2,3-Dihydro-1,2,3,5-oxatriazoles from Nitrile Oxides and Azo Compounds 830

13.29 Product Class 29: Thiatriazoles
M. Begtrup

13.29 Product Class 29: Thiatriazoles .. 833
13.29.1 Product Subclass 1: 1,2,3,4-Thiatriazoles 833
13.29.1.1 Synthesis by Ring-Closure Reactions 834
13.29.1.1.1 By Formation of One S—N and One N—C Bond 834
13.29.1.1.1.1 Method 1: From Thiohydrazides and Nitrous Acid 834
13.29.1.1.1.1.1 Variation 1: 5-Substituted 1,2,3,4-Thiatriazoles from Thiohydrazides and Nitrous Acid 834
13.29.1.1.1.1.2 Variation 2: Alkoxyl- and Aryloxyl-1,2,3,4-thiatriazoles from O-Substituted Hydrazinecarbothioates and Nitrous Acid 834
13.29.1.1.1.3 Variation 3: 5-(Alkysulfanyl)-1,2,3,4-thiatriazoles from Hydrazinecarbothioates and Nitrous Acid 835
13.29.1.1.1.4 Variation 4: 1,2,3,4-Thiatriazol-5-amines from Thiosemicarbazides and Nitrous Acid 835
13.29.1.1.1.5 Variation 5: 1,2,3,4-Thiatriazol-5-amines from Thiosemicarbazides and Diazonium Salts 836
13.29.1.1.1.6 Variation 6: 5-Hydrazino-1,2,3,4-thiatriazole from Thiocarbazide and Nitrous Acid 836
13.29.1.1.2 By Formation of One S—N and One N—C Bond 837
13.29.1.1.2.1 Method 1: 1,2,3,4-Thiatriazoles from Dithiocarboxylates and Sodium Azide .. 837
13.29.1.1.2.2 Method 2: 5-Chloro-1,2,3,4-thiatriazole from Thiophosgene and Sodium Azide 837
13.29.1.1.2.3 Method 3: 5-Alkyl- and 5-Aryl-1,2,3,4-thiatriazoles from 1-Methyl-2-[(thioacyl)sulfanyl]pyridinium Iodides and Sodium Azide 838
13.29.1.1.2.4 Method 4: 5-Alkoxyl- and 5-Aryloxyl-1,2,3,4-thiatriazoles from O-Alkyl or O-Aryl Chloridothiocarbonates and Sodium Azide 839
13.29.1.1.2.5 Method 5: From Thioketenes and Hydrazoic Acid 839
13.29.1.1.2.6 Method 6: 1,2,3,4-Thiatriazol-5-amines from Isothiocyanates and Hydrazoic Acid or Trimethylsilyl Azide 840
13.29.1.2.6.1 Variation 1: 1,2,3,4-Thiatriazol-5-amines from Isothiocyanates and Hydrazoic Acid ... 840
13.29.1.2.6.2 Variation 2: 1,2,3,4-Thiatriazol-5-amines from Isothiocyanates and Trimethylsilyl Azide ... 841
13.29.1.2.7 Method 7: 1,2,3,4-Thiatriazole-5-thiol from Carbon Disulfide and Azide Salts .. 841
13.29.1.2.7.1 Variation 1: 1,2,3,4-Thiatriazole-5-thiol from Carbon Disulfide and Diazidobis(triphenylphosphine)palladium 842
13.29.1.2 Synthesis by Ring Transformation .. 842
13.29.1.2.1 Method 1: 1,2,3,4-Thiatriazol-3-ium-5-olates from 1,2,3,4-Oxatriazol-3-ium-5-thiolates ... 842
13.29.1.2.2 Method 2: N-Substituted 1,2,3,4-Thiatriazol-5-amines from Substituted Tetrazole-5-thiols .. 843
13.29.1.2.3 Method 3: 5-Diazoalkyl-1,2,3,4-thiatriazoles from 5-Chloro-1,2,3-thiadiazoles and Sodium Azide 843
13.29.1.2.4 Method 4: Sulfonylamino-1,2,3,4-thiatriazoles from 1,3-Thiazetidine-2,4-diimines and Sodium Azide 844
13.29.1.3 Synthesis by Substituent Modification .. 844
13.29.1.3.1 Method 1: 5-Substituted 1,2,3,4-Thiatriazoles by Reaction of 5-Chloro-1,2,3,4-thiatriazole with Nucleophiles 844
13.29.1.3.2 Method 2: 5-Substituted 3-Alkyl-1,2,3,4-thiatriazolium Salts by Reaction of 5-Alkoxy-3-alkyl-1,2,3,4-thiatriazolium Salts with Nucleophiles ... 845
13.29.1.3.3 Method 3: 5-Substituted 1,2,3,4-Thiatriazolium Salts by Alkylation of 1,2,3,4-Thiatriazoles, 1,2,3,4-Thiatriazol-3-ium-5-olates, and 1,2,3,4-Thiatriazol-3-ium-5-aminides 845
13.29.1.3.4 Method 4: Oxidation of 5-Phenyl-1,2,3,4-thiatriazole .. 846
13.29.1.3.5 Method 5: Alkylation and Acylation of 1,2,3,4-Thiatriazole-5-thiol ... 847
13.29.1.3.6 Method 6: Alkylation and Acylation of 1,2,3,4-Thiatriazole-5-amines ... 847
13.29.2 Product Subclass 2: 1,2,3,5-Thiatriazoles .. 848
13.29.2.1 Synthesis by Ring-Closure Reactions .. 849
13.29.2.1.1 By Formation of Two S—N Bonds .. 849
13.29.2.1.1.1 Method 1: 1,2,3,5-Thiatriazol-3-ium-4-aminides from 1-Aminoguanidines and Thionyl Chloride .. 849
13.29.2.1.1.2 Method 2: From Amidrazones and Thionyl Chloride .. 850
13.29.2.1.1.3 Method 3: From Amidrazones and Sulfuryl Fluoride .. 850
13.29.2.1.1.4 Method 4: 1,2,3,5-Thiatriazolidin-4-one 1-Oxides from Semicarbazides and Thionyl Chloride .. 851
13.29.2.1.1.5 Method 5: 1,2,3,5-Thiatriazolidine-4-thiones from 1,2,4-Triaza-3-silacyclopentane-5-thiones and Sulfur Dichloride .. 851
13.29.2.1.2 By Formation of One S—N and One N—C Bond .. 852
13.29.2.1.2.1 Method 1: 2,5-Dihydro-1,2,3,5-thiatriazoles from Nitrilimines and N-Thionylalanline .. 852
13.29.2.1.2.2 Method 2: From Nitrilimines and N-Sulfonylamines 852
13.29.2.1.2.3 Method 3: From \(N'-(\text{Chlorosulfonyl})\text{carbamimidic} \) Chlorides and Hydrazines .. 852

13.29.2.1.2.4 Method 4: From Sulfonylcarbamoyl Chlorides and Hydrazines .. 853

13.29.2.1.3 By Formation of One \(N\text{—C} \) Bond .. 853

13.29.2.1.3.1 Method 1: From Hydrazinesulfonamides and Base .. 853

13.29.2.2 Synthesis by Ring Transformation .. 854

13.29.2.2.1 Method 1: From 1,2,5-Thiadiazol-3(2\(H \))-one 1-Oxides and Hydrazines 854

13.29.2.3 Synthesis by Substituent Modification .. 855

13.29.2.3.1 Method 1: From Hydrazinesulfonamides and Base .. 855

13.30 Product Class 30: Tetrazoles
A. F. Brigas

13.30.1 Synthesis by Ring-Closure Reactions .. 861

13.30.1.1 By Formation of One \(N\text{—N} \) and Two \(N\text{—C} \) Bonds .. 864

13.30.1.1.1 Fragments \(N\text{—N—N, N, and C} \) .. 864

13.30.1.1.1.1 Method 1: From Carbon Disulfide or Carboxylic Acid Derivatives with Amine and Azide .. 864

13.30.1.1.1.1 Variation 1: From Ortho Esters .. 864

13.30.1.1.1.2 Variation 2: From Acid Chlorides .. 864

13.30.1.1.1.3 Variation 3: From Amidines .. 865

13.30.1.1.1.4 Variation 4: From Chloroalkaniminium Salts .. 865

13.30.1.1.2 Method 2: Via Ketone and Azide (Schmidt Reaction) .. 866

13.30.1.2 By Formation of Two \(N\text{—N} \) Bonds .. 867

13.30.1.2.1 Fragments \(N\text{—C—N—N and N} \) .. 867

13.30.1.2.1.1 Method 1: From Amidrazones and Sodium Nitrite .. 867

13.30.1.3 By Formation of One \(N\text{—N} \) and One \(N\text{—C} \) Bond .. 868

13.30.1.3.1 Fragments \(C—N—N—N \) and \(N \) .. 868

13.30.1.3.1.1 Method 1: Via Azidochloroalkaniminium Chlorides and Amines .. 868

13.30.1.3.1.2 Method 2: Via 1,1-Diazido-1-ethoxyalkanes and Amines .. 868

13.30.1.3.2 Fragments \(N—N—N \) and \(C—N \) .. 868

13.30.1.3.2.1 Method 1: From Carbonic Acid Derivatives .. 869

13.30.1.3.2.1.1 Variation 1: From Carbonimidic Dichlorides .. 869

13.30.1.3.2.1.2 Variation 2: From Isocyanates, Isothiocyanates, or Carbodiimides .. 869

13.30.1.3.2.1.3 Variation 3: From Other Carbonic Acid Derivatives .. 871

13.30.1.3.2.1.4 Variation 4: From Cyanates, Thiocyanates, and Their Derivatives .. 872

13.30.1.3.2.2 Method 2: From Carboxylic Acid Derivatives .. 874
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.30.1.3.2.2.1</td>
<td>Variation 1: From Amides</td>
<td>874</td>
</tr>
<tr>
<td>13.30.1.3.2.2.2</td>
<td>Variation 2: From Acid Chlorides</td>
<td>875</td>
</tr>
<tr>
<td>13.30.1.3.2.2.3</td>
<td>Variation 3: From Imidoyl Chlorides</td>
<td>876</td>
</tr>
<tr>
<td>13.30.1.3.2.2.4</td>
<td>Variation 4: From Other Carboxylic Acid Derivatives (Imidates, Thioimidates, and Amidines)</td>
<td>877</td>
</tr>
<tr>
<td>13.30.1.3.2.2.5</td>
<td>Variation 5: From Nitriles</td>
<td>877</td>
</tr>
<tr>
<td>13.30.1.3.2.2.6</td>
<td>Variation 6: From Nitrilium Salts</td>
<td>878</td>
</tr>
<tr>
<td>13.30.1.3.2.2.7</td>
<td>Variation 7: From Isocyanides</td>
<td>880</td>
</tr>
<tr>
<td>13.30.1.3.2.2.8</td>
<td>Variation 8: From Ketene S,N-Acetals</td>
<td>881</td>
</tr>
<tr>
<td>13.30.1.3.3</td>
<td>Method 3: From Oximes</td>
<td>882</td>
</tr>
<tr>
<td>13.30.1.3.3.1</td>
<td>Method 1: From Acylhydrazines and Aryldiazonium Salts</td>
<td>882</td>
</tr>
<tr>
<td>13.30.1.3.3.2</td>
<td>Method 2: From Aldehyde Hydrazones and Azides</td>
<td>883</td>
</tr>
<tr>
<td>13.30.1.4</td>
<td>By Formation of One N—N Bond</td>
<td>884</td>
</tr>
<tr>
<td>13.30.1.4.1</td>
<td>Fragment N—N—C—N—N</td>
<td>884</td>
</tr>
<tr>
<td>13.30.1.4.1.1</td>
<td>Method 1: From Formazanes</td>
<td>884</td>
</tr>
<tr>
<td>13.30.1.4.1.2</td>
<td>Fragment N—C—N—N</td>
<td>885</td>
</tr>
<tr>
<td>13.30.1.4.2.1</td>
<td>Method 1: From (\alpha)-Azidooximes</td>
<td>885</td>
</tr>
<tr>
<td>13.30.1.4.2.2</td>
<td>Method 2: From (\text{gem})-Diazides</td>
<td>885</td>
</tr>
<tr>
<td>13.30.1.4.2.3</td>
<td>Method 3: From Hetaryltriazenes</td>
<td>886</td>
</tr>
<tr>
<td>13.30.1.5</td>
<td>By Formation of One N—C Bond</td>
<td>887</td>
</tr>
<tr>
<td>13.30.1.5.1</td>
<td>Fragment C—N—N—N</td>
<td>887</td>
</tr>
<tr>
<td>13.30.1.5.1.1</td>
<td>Method 1: From Tetrazenes</td>
<td>887</td>
</tr>
<tr>
<td>13.30.2</td>
<td>Synthesis by Ring Transformation</td>
<td>887</td>
</tr>
<tr>
<td>13.30.2.1</td>
<td>Method 1: From Azidoaziridines</td>
<td>887</td>
</tr>
<tr>
<td>13.30.2.2</td>
<td>Method 2: From Isoxazoles and Isoxazolium Salts</td>
<td>888</td>
</tr>
<tr>
<td>13.30.2.3</td>
<td>Method 3: From Oxazolones</td>
<td>888</td>
</tr>
<tr>
<td>13.30.2.4</td>
<td>Method 4: From Triazoles and from Thiatriazolamines</td>
<td>889</td>
</tr>
<tr>
<td>13.30.2.5</td>
<td>Method 5: From 1,3,5-Triazines</td>
<td>890</td>
</tr>
<tr>
<td>13.30.3</td>
<td>Aromatization</td>
<td>890</td>
</tr>
<tr>
<td>13.30.4</td>
<td>Synthesis by Substituent Modification</td>
<td>891</td>
</tr>
<tr>
<td>13.30.4.1</td>
<td>Substitution of Existing Substituents</td>
<td>891</td>
</tr>
<tr>
<td>13.30.4.1.1</td>
<td>Of Hydrogen</td>
<td>891</td>
</tr>
<tr>
<td>13.30.4.1.1.1</td>
<td>Method 1: Hydrogen–Deuterium Exchange</td>
<td>891</td>
</tr>
<tr>
<td>13.30.4.1.1.2</td>
<td>Method 2: Metalation</td>
<td>891</td>
</tr>
<tr>
<td>13.30.4.1.1.3</td>
<td>Method 3: Of Hydrogen at Nitrogen</td>
<td>891</td>
</tr>
<tr>
<td>13.30.4.1.1.4</td>
<td>Method 4: By Carbon</td>
<td>892</td>
</tr>
<tr>
<td>13.30.4.1.1.5</td>
<td>Method 5: By a Heteroatom (X, O, S, Se, N, and P)</td>
<td>894</td>
</tr>
<tr>
<td>13.30.4.1.2</td>
<td>Of Metals</td>
<td>894</td>
</tr>
<tr>
<td>13.30.4.1.2.1</td>
<td>Method 1: By Deuterium</td>
<td>894</td>
</tr>
<tr>
<td>13.30.4.1.2.2</td>
<td>Method 2: By Hydrogen</td>
<td>894</td>
</tr>
<tr>
<td>13.30.4.1.2.3</td>
<td>Method 3: By Another Metal</td>
<td>895</td>
</tr>
</tbody>
</table>
13.30.4.1.2.4 Method 4: By Carbon .. 895
13.30.4.1.2.5 Method 5: By a Heteroatom 897
13.30.4.1.3 Of Carbon Functionalities .. 897
13.30.4.1.3.1 Nitrogen and Carbon Decarboxylation, Decylation, and Dealkylation 897
13.30.4.1.4 Of Heteroatoms ... 898
13.30.4.1.4.1 Of Halogen .. 898
13.30.4.1.4.1.1 Method 1: By Hydrogen 898
13.30.4.1.4.1.2 Method 2: By Palladium at Carbon 899
13.30.4.1.4.1.3 Method 3: By Carbon at Carbon 899
13.30.4.1.4.1.4 Method 4: By Nitrogen .. 900
13.30.4.1.4.1.5 Method 5: By Fluorine at Carbon 901
13.30.4.1.4.1.6 Method 6: By Oxygen at Carbon 901
13.30.4.1.4.1.6.1 Variation 1: By Reaction with Phenols 901
13.30.4.1.4.1.6.2 Variation 2: By Reaction with Alcohols 902
13.30.4.1.4.1.7 Method 7: Of Chlorine by Sulfur or Selenium at Carbon 903
13.30.4.1.4.2 Of Other Functions .. 903
13.30.4.1.4.2.1 Method 1: Of Oxygen Functions 903
13.30.4.1.4.2.2 Method 2: Of Sulfur Functions 904
13.30.4.2 Addition Reactions .. 904
13.30.4.3 Rearrangements ... 905
13.30.4.3.1 Method 1: Dimroth Rearrangement 905
13.30.4.3.2 Method 2: N1 to N2 Isomerization 906
13.30.4.3.3 Method 3: Smiles Rearrangement 906
13.30.4.3.4 Method 4: Claisen-Type Rearrangement 907
13.30.4.3.5 Method 5: N1-Alkyl Group Rearrangement 908

13.31 Product Class 31: Pentazoles
R. C. Storr

13.31 Product Class 31: Pentazoles .. 917
13.31.1 Synthesis by Ring-Closure Reactions 919
13.31.1.1 By Formation of Two N—N Bonds 919
13.31.1.1.1 Method 1: From a Diazonium Salt and an Azide Ion 919
13.31.2 Synthesis by Substituent Modification 920
13.31.2.1 Method 1: Dearylation of N-Arylpentazoles 920

Keyword Index ... 923
Author Index ... 955
 Abbreviations ... 1005
Volume 14:
Six-Membered Hetarenes with One Chalcogen

Preface .. V
Volume Editor’s Preface .. VII
Table of Contents ... XI

Introduction
E. J. Thomas ... 1

14.1 Product Class 1: Pyrylium Salts
T. S. Balaban and A. T. Balaban ... 11

14.2 Product Class 2: Benzopyrylium Salts
M. Nógrádi ... 201

14.3 Product Class 3: Pyranones and Pyranthiones
K. Afarinkia and V. Vinader .. 275

14.4 Product Class 4: Benzopyranones and Benzopyranthiones
A. C. Williams and N. Camp ... 347

14.5 Product Class 5: 3-Oxidopyrylium Salts and Their Thio and
Benzo-Fused Analogues
A. Nelson ... 639

14.6 Product Class 6: Thiopyrylium Salts
W.-D. Rudorf ... 649

14.7 Product Class 7: Benzothiopyrylium Salts
W.-D. Rudorf ... 719

14.8 Product Class 8: Thiopyranones and Thiopyranthiones
S. Faulkner, R. C. Whitehead, and R. J. Aarons 771

14.9 Product Class 9: Benzothiopyranones and Benzothiopyranthiones
A. Nelson ... 787

14.10 Product Class 10: Selenopyrylium and Benzoselenopyrylium Salts
P. J. Murphy ... 817

14.11 Product Class 11: Selenopyranones and Benzoselenopyranones
P. J. Murphy ... 855
| 14.12 | **Product Class 12: Telluropyrylium and Benzotelluropyrylium Salts**
P. J. Murphy | 881 |
| 14.13 | **Product Class 13: Telluropyranones and Benzotelluropyranones**
P. J. Murphy | 897 |

Keyword Index
915

Author Index
959

Abbreviations
1005
Volume 14:
Six-Membered Hetarenes with One Chalcogen

Introduction
E. J. Thomas

Introduction .. 1

14.1 Product Class 1: Pyrylium Salts
T. S. Balaban and A. T. Balaban

14.1 Product Class 1: Pyrylium Salts ... 11
14.1.1 Synthesis by Ring-Closure Reactions .. 25
14.1.1.1 By Formation of One O—C and Two C—C Bonds 25
14.1.1.1.1 Method 1: \([C_3 + C_1 + C_1]\) Diacylation of Propene and Higher Alkenes 25
14.1.1.1.1.1 Variation 1: Diacylation of Acyclic Propene Derivatives 25
14.1.1.1.1.2 Variation 2: Diacylation of Aryl-Substituted Alkenes 37
14.1.1.1.1.3 Variation 3: Diacylation of 1-Methylcycloalkenes or Methylene
cycloalkanes .. 41
14.1.1.1.1.4 Variation 4: Diacylation of Cycloalkenes 42
14.1.1.1.1.5 Variation 5: Triacylation of Alkenes 43
14.1.1.1.2 Method 2: \([C_2 + C_1 + C_2]\) Condensation of Methyl(ene) Ketones or Their Equivalents with Aldehydes, Orthoesters, or Their Derivatives 44
14.1.1.1.2.1 Variation 1: Condensation of Methyl(ene) Ketones with Aldehydes by Dehydrocyclization ... 47
14.1.1.1.2.2 Variation 2: Pyrylium Salts from Methyl(ene) Ketones and Aldehyde Derivatives (Acetals, Acylals) 55
14.1.1.1.2.3 Variation 3: Condensation of Methyl(ene) Ketones with Orthoesters 57
14.1.1.1.2.4 Variation 4: Condensation of Alkynes with Aldehydes 61
14.1.1.1.3 Method 3: \([C_2 + C_1 + C_1]\) Condensation of Methyl(ene) Ketones or Their Equivalents with Carboxylic Acid Derivatives 62
14.1.1.1.3.1 Variation 1: Condensation of Aryl Methyl Ketones with Carboxylic Acid Derivatives .. 62
14.1.1.1.3.2 Variation 2: Condensation of \(\alpha\)-Oxo Carboxylic Esters with Benza
dehydes ... 66
14.1.1.1.3.3 Variation 3: From Alkynes and Carboxylic Acid Derivatives 66
14.1.1.1.3.4 Variation 4: Acylation of Aromatic Hydrocarbons, Aromatic Heterocycles, or Phenol Ethers ... 67
14.1.1.1.4 Method 1: \([C_3 + C_2]\) Condensation of Methyl(ene) Ketones or Their Synthetic Equivalents with 1,3-Dicarbonyl Compounds, \(\alpha,\beta\)- Unsaturated Oxo Compounds, or Their Synthetic Equivalents 68
14.1.1.1.4.1 Variation 1: From Methyl(ene) Ketones and 1,3-Dicarbonyl Compounds 68
14.1.1.1.4.2 Variation 2: From Methyl(ene) Ketones and Enols or Other Derivatives of 1,3-Dicarbonyl Compounds .. 70
Variation 3: From Methyl(ene) Ketones or Their Synthetic Equivalents and β-Oxo Aldehydes or Their Synthetic Equivalents .. 75

Variation 4: From Methyl(ene) Ketones and α,β-Unsaturated Ketones Followed by Dehydrocyclization ... 82

Variation 5: Directly from Two Equivalents of α,β-Unsaturated Ketones ... 95

Variation 6: From α,β-Unsaturated Ketones and 1,3-Diketones, 3-Oxo Esters, or α-Acyloxy Ketones ... 95

Variation 7: From α,β-Unsaturated Ketones and Cyclic Ketones 96

Variation 8: From Methyl(ene) Ketones or Their Synthetic Equivalents and 2-Benzylidenecyclohexanone Derivatives 99

Variation 9: From Ketones or Their Synthetic Equivalents and β-Chloro-α,β-unsaturated Ketones or Aldehydes 102

Variation 10: From Alkynes and α,β-Unsaturated Ketones .. 104

Variation 11: From Benzil and Cyclopentadiene .. 105

Variation 12: 2,4,6-Triarylpyrylium Perchlorates from 1,3-Diarylpropane-1,3-diones by Cleavage of an Aroyl Group ... 105

Method 2: \([C_4^+ \cdot C_1^-]\) Forming a C_5-Chain from Two Synthons ... 106

Variation 1: From α,β- or β,γ-Unsaturated Ketones and Carboxylic Acid Derivatives ... 106

Variation 2: Condensation of 1,3-Diketones with Orthoformates 112

Variation 3: 2,4,6-Triarylpyrylium Salts from Acetophenone Derivatives by Cleavage of an Aroyl Group from an Initially Formed 1,3-Diarylbut-2-en-1-one Derivative .. 113

By Formation of One O—C Bond .. 113

Method 1: Pyrylium Ring Closure from a Preformed Acyclic C_5 Chain .. 113

Variation 1: Formation of Pyrylium Salts from Pent-2-ene-1,5-diones (Pyrylium Pseudobases) and -dioates .. 113

Variation 2: From Synthetic Equivalents of Pseudobases ... 118

Variation 3: Formation of Pyrylium Salts by Dehydrocyclizations of Penta-2,4-dien-1-ones and Analogous Compounds 122

Variation 4: Pyrylium Salts from 5-Oxopent-2-enenitriles or Their Tautomers ... 130

Variation 5: Formation of Pyrylium Salts by Dehydrocyclizations of Pentane-1,5-diones ... 131

Variation 6: 2,6-Diarylpyrylium Salts from 1-Arylpent-2-en-4-yn-1-ones .. 143

Variation 7: Formation of Pyrylium Salts from 3-Hydroxypenta-1,4-diynes .. 144

Variation 8: 2,6-Diarylpyrylium Salts by Acylation of Aralkyl Ethers with Glutaric Acid ... 145

Aromatization ... 145

Method 1: By Reaction of Pyranones with C-Nucleophiles, Followed by Dehydration ... 145

Method 2: By Hydride Abstraction from a Preformed Pyran System 151

Variation 1: Formation of Pyrylium Salts by Hydride Abstraction from a 4H-Pyran ... 151

Variation 2: Formation of Pyrylium Salts by Addition to 2,6-Disubstituted Pyrylium Cations ... 152
14.1.3 Synthesis by Substituent Modification ... 164
14.1.3.1 Method 1: From Pyranones or Pyranthiones and Electrophiles 164
14.1.3.1.1 Variation 1: By Alkylation of Pyranones or Pyranthiones 164
14.1.3.1.2 Variation 2: By Protonation of Pyranones or Pyranthiones 166
14.1.3.2 Method 2: By Cleavage of Alkoxy or Acyloxy Substituents 167
14.1.3.3 Method 3: Modification by Addition to Alkyne Substituents 169
14.1.3.4 Method 4: Formation of Pyrylium Salts by Condensation of 2/4-Methyl(ene) Groups with Carbonyl Compounds 172
14.1.3.4.1 Variation 1: 2-Arylviny1- and 4-Arylviny1-Substituted Pyrylium Salts 172
14.1.3.4.2 Variation 2: Pyrlocyanines by Condensation of 2/4-Methyl(ene)- Substituted Pyrylium Salts with Carbonyl Compounds or Orthoesters .. 176
14.1.3.4.3 Variation 3: Condensation of Methyl(ene) Groups with Other Electrophiles .. 182
14.1.3.4.4 Variation 4: Modification of Pyrylium Salts by Metalation of 2/4-Methyl Groups .. 184
14.1.3.5 Method 5: Isotopic Exchange .. 185
14.1.3.5.1 Variation 1: Isotopic Exchange of Side-chain α- and γ- ("Benzylic") Hydrogen Atoms .. 185
14.1.3.5.2 Variation 2: Isotopic Exchange of the Oxygen Heteroatom 188
14.1.4 Anion Exchange in Pyrylium Salts .. 189
14.1.4.1 Method 1: Metathetic Exchange of Anions Made Possible by Solubility Differences, or by Ion-Exchange Resins 189
14.1.4.2 Method 2: Via Stable Pseudobases 190
14.1.4.3 Method 3: Via Anion Stripping by Sodium Borohydride and Carboxylic Acids .. 191

14.2 Product Class 2: Benzopyrylium Salts
M. Nógrádi

14.2.1 Product Class 2: Benzopyrylium Salts .. 201
14.2.1.1 Product Subclass 1: 1-Benzopyrylium Salts (Including Flavylium Salts) 201
14.2.1.1.1 Synthesis by Ring-Closure Reactions .. 203
14.2.1.1.1.1 Method 1: Reaction of a Phenol with a 3-Oxocarboxylic Ester 204
14.2.1.1.1.2 Method 2: Reaction of a Phenol with a 2-(Ethoxymethylene)- 3-oxocarboxylic Ester .. 204
14.2.1.1.1.3 Method 3: Reaction of a Phenol with a 1,3-Dioxo Compound 204
14.2.1.1.1.4 Method 4: Reaction of a Phenol with a 3-Chlorovinyl Aldehyde 207
14.2.1.1.1.5 Method 5: Reaction of a Phenol with an Ethynyl Ketone 207
14.2.1.1.1.6 Method 6: Reaction of a Phenol with a Vinyl Ketone 207
14.2.1.1.7 Method 7: Reaction of a 2-Hydroxybenzaldehyde (Salicylaldehyde) with a Carbaldehyde, Ketone, or Acetal ... 208
14.2.1.1.7.1 Variation 1: With an α-Methylene Aldehyde or Acetal ... 208
14.2.1.1.7.2 Variation 2: With Acetophenones ... 209
14.2.1.1.7.3 Variation 3: With an ω-Substituted or Cyclic Acetophenone 210
14.2.1.1.7.4 Variation 4: With a 2-Arylvinyl Methyl Ketone ... 212
14.2.1.1.8 Method 8: Reaction of a 2-Hydroxybenzaldehyde (Salicylaldehyde) with an α-Methylene Carboxylic Acid Derivative 213
14.2.1.1.8.1 Variation 1: With an α-Methylene Carbonitrile ... 213
14.2.1.1.8.2 Variation 2: With a 3-Oxoalkanoic Ester ... 213
14.2.1.1.9 Method 9: Reaction of a 2-Hydroxybenzaldehyde (Salicylaldehyde) with Aliphatic or Alicyclic α,α'-Bis(methylene) Ketones 214
14.2.1.1.10 Method 10: Reaction of 2-Acylphenols (2-Hydroxyacetophenones or 2-Hydroxybenzophenones) with α-Methylene Ketones 216
14.2.1.1.11 Method 11: Reaction of a 2-Acylphenol (2-Hydroxyacetophenone or 2-Hydroxybenzophenone) with a Compound Contributing One Carbon Atom to the Pyrylium Ring ... 218
14.2.1.1.12 By Formation of One Heteroatom—Carbon Bond ... 219
14.2.1.1.12.1 Method 1: Ring Closure of 3-(2-Hydroxyaryl)prop-2-en-1-ones 219
14.2.1.1.12.2 Method 2: Ring Closure of 3-Aryl-1-(2-hydroxyaryl)prop-2-en-1-ones (2'-Hydroxychalcones) to Flavylium Salts ... 220
14.2.1.1.12.3 Method 3: Ring Closure of 1-(2-Hydroxyaryl)-3-phenylpropane-1,3-diones (2'-Hydroxydibenzoylmethanes) ... 221
14.2.1.1.12.4 Method 4: Cyclization of 1-Aryl-3-hydroxy-3-(2-hydroxyaryl)-propan-1-ones ... 221
14.2.1.1.12.5 Method 5: Oxidative Cyclization of 1-Aryl-3-(2-hydroxyaryl)-propan-1-ones ... 222
14.2.1.1.12.6 Method 6: Ring Closure of a 1,3-Diarylprop-2-en-1-one 222
14.2.1.2 Synthesis by Ring Transformation ... 223
14.2.1.2.1 Method 1: Synthesis from 3-Acyl-2H-1-benzopyran-2-ones 223
14.2.1.3 Aromatization .. 224
14.2.1.3.1 Method 1: Reduction of 2H-1-Benzopyran-2-ones and 4H-1-Benzopyran-4-ones with a Metal ... 224
14.2.1.3.2 Method 2: Addition–Dehydroxylation of 2H-1-Benzopyran-2-ones and 4H-1-Benzopyran-4-ones Using Organometallic Compounds ... 224
14.2.1.3.2.1 Variation 1: Aromatization of 2H-1-Benzopyran-2-ones by Addition of a Grignard Reagent and Dehydroxylation 224
14.2.1.3.2.2 Variation 2: Aromatization of 4H-1-Benzopyran-4-ones by Addition of a Grignard Reagent and Dehydroxylation 225
14.2.1.3.2.3 Variation 3: With Isolation of the Intermediate Tertiary Alcohol 226
14.2.1.3.3 Method 3: Transformations by Reaction with Activated Arenes, Arylethenes, or Hetarenes ... 226
14.2.1.3.4 Method 4: Transformations of 2H-1-Benzopyran-2-ones and 4H-1-Benzopyran-4-ones by Reaction with C—H Acidic Pyrylium Salts ···· 227
14.2.1.3.5 Method 5: Transformation of 4H-1-Benzopyran-4-ones by Reaction with
 \(N,N\)-Dimethylacetamide 228
14.2.1.3.6 Method 6: By Double Elimination from 2,4-Diethoxy-3,4-dihydro-
 2H-1-benzopyrans 229
14.2.1.3.7 Method 7: Aromatization by Dehydrogenation and Redox Reactions 229
14.2.1.3.7.1 Variation 1: By Acid-Induced Disproportionation 229
14.2.1.3.7.2 Variation 2: Dehydrogenation with Oxidizing Agents 230
14.2.1.3.8 Method 8: Aromatization by O-Alkylation or Protonation 234
14.2.1.3.8.1 Variation 1: By O-Alkylation ... 234
14.2.1.3.8.2 Variation 2: By Protonation of 4H-1-Benzopyran-4-ones, 2-Alkylidene-
 2H-1-benzopyrans, and 4-Alkylidene-4H-1-benzopyrans 236
14.2.1.3.9 Method 9: Aromatization of a 2-Amino-2H-benzopyran by Protonation
 Combined with Elimination of the Amino Group 238
14.2.1.3.10 Method 10: Aromatization of 2-Hydroxy-2H-benzopyrans by Protonation
 Combined with Dehydration 238
14.2.1.3.11 Method 11: Aromatization Combined with Substitution 238
14.2.1.4 Synthesis by Substituent Modification 239
14.2.1.4.1 Method 1: Nucleophilic Addition of a Trialkyl Phosphite and Reoxidation 239
14.2.1.4.2 Method 2: Addition of an Activated Arene or Alkene Followed by
 Reoxidation or Disproportionation 240
14.2.1.4.3 Method 3: Condensation of a 1-Benzopyrylium Salt with a
 Carboxylic Acid Having an Activated Methylene Group,
 Combined with Disproportionation 240
14.2.1.4.4 Method 4: Replacement of an Alkoxy Group by
 a Substituted Amino Group 241
14.2.2 Product Subclass 2: 2-Benzopyrylium Salts 242
14.2.2.1 Synthesis by Ring-Closure Reactions 244
14.2.2.1.1 By Formation of One Heteroatom—Carbon and One C—C Bond 244
14.2.2.1.1.1 Method 1: From (2-Oxoalkyl)arenes or Their Acylated Enols with
 a Carboxylic Acid Derivative (as C1 Component) 244
14.2.2.1.1.1.1 Variation 1: From Arylacetones with an Aliphatic Carboxylic Anhydride and
 Perchlorylic Acid 244
14.2.2.1.1.1.2 Variation 2: From Arylacetones with an Aromatic Acid Chloride and
 Aluminum Trichloride 244
14.2.2.1.1.1.3 Variation 3: Transformation of an Enol Lactone of a Benzyl
 2-(Carboxymethyl)aryl Ketone with an Acid Anhydride and
 Perchlorylic Acid 245
14.2.2.1.1.2 Method 2: From a (Cyanomethyl)arene with Carboxylic Acid Derivatives
 (as C1 Component) 246
14.2.2.1.2 By Formation of One Heteroatom—Carbon Bond 246
14.2.2.1.2.1 Method 1: Synthesis from 1,2-Dicarbofunctional Arenes 246
14.2.2.1.2.1.1 Variation 1: Ring Closure of 2-Acyl-1-(2-oxoalkyl)arenes 246
14.2.2.1.2.1.2 Variation 2: Ring Closure of (2-Acylaryl)acetic Acid Derivatives 247
14.2.2.1.2.1.3 Variation 3: Ring Closure of 2-Formyl-1-(2-oxoalkyl)arenes 247

Table of Contents
Variation 4: Ring Closure of 2-Cyano-1-(2-oxoalkyl)arenes

Variation 5: By Ring Closure and Aryl Migration of [2-(Diarylmethyl)phenyl]acetic Acids

By Formation of One C–C Bond

Method 1: Ring Closure of the O-Acylene Form of Aryl Benzyl Ketones with Polyphosphoric Acid

Aromatization

Method 1: By Addition of Grignard Reagents to 1H-2-Benzopyran-1-ones (Isocoumarins)

Method 2: By Oxidative Fragmentation of 1H-2-Benzopyrans (Isochromans)

Product Subclass 3: Dibenzo[b,d]pyrylium Salts

Synthesis by Ring-Closure Reactions

By Formation of One O–C and One C–C Bond

Method 1: Ring Closure of an o-Acylxybiphenyl Derivative with Polyphosphoric Acid

By Formation of One C–C Bond

Method 1: Ring Closure of a 3-(2-Carboxymethylaryl)-2-benzopyrylium Salt with Phosphorus Pentachloride

Synthesis by Ring Transformation

Method 1: By Autoxidation of a 9-Arylfluorene to a 9-Hydroperoxide Followed by Acid-Catalyzed Ring Expansion

Aromatization

Method 1: Nucleophilic Addition to the Carbonyl Group of 6H-Dibenzo[b,d]pyran-6-ones Followed by Dehydration

Method 2: Dehydrogenation of a Dibenzo[b,d]pyran by Phosphorus Pentachloride/Thionyl Chloride

Product Subclass 4: Dibenzo[b,e]pyrylium Salts (Xanthylium Salts)

Synthesis by Ring-Closure Reactions

By Formation of One O–C Bond and Two C–C Bonds

Method 1: Use of a Reagent Providing C10 of the Dibenzo[b,e]pyrylium Salt

Variation 1: Introduction of C10 with 2-Chloro-1,1-diethoxyethane Followed by Dehydrohalogenation

Variation 2: Introduction of C10 with Trifluoroacetic Anhydride

Variation 3: Introduction of C10 with an Arylcarboxylic Acid Equivalent

Variation 4: Introduction of C10 with an Arylaldehyde

Variation 5: Introduction of C10 with an Aldehyde Acetal

By Formation of One O–C and One C–C Bond

Method 1: Reaction of an Activated Phenol with a 2-Hydroxybenzaldehyde
14.2.4.1.2 Method 2: Dimerization of an o-Methylquinone .. 259
14.2.4.1.3 By Formation of Two C—C Bonds ... 260
14.2.4.1.3.1 Method 1: C10 Introduced by Dichloromethyl Methyl Ether/Tin(IV) Chloride .. 260
14.2.4.2 Synthesis by Ring Transformation .. 260
14.2.4.2.1 Method 1: Thermolysis of a 1,3-Dibromo-7,7-diphenylbicyclo[4.1.0]-hept-3-ene-2,5-dione .. 260
14.2.4.3 Aromatization ... 261
14.2.4.3.1 Method 1: Aromatization of 10H-Dibenzo[b,e]pyran-10-ones 261
14.2.4.3.1.1 Variation 1: Transformation of a 10H-Dibenzo[b,e]pyran-10-one by Protonation Followed by Dehydration with Trifluoromethanesulfonic Anhydride .. 261
14.2.4.3.1.2 Variation 2: Reduction and Dehydration of 10H-Dibenzo[b,e]pyran-10-ones .. 262
14.2.4.3.1.3 Variation 3: Addition of a Nucleophile to a 10H-Dibenzo[b,e]pyran-10-one Followed by Dehydration .. 262
14.2.4.3.1.4 Variation 4: Aromatization of a 10-Alkylidene-10H-dibenzo[b,e]pyran by Protonation .. 263
14.2.4.3.2 Method 2: Aromatization by Dehydrogenation of 10H-Dibenzo[b,e]pyrans .. 264
14.2.4.4 Synthesis by Substituent Modification ... 265
14.2.4.4.1 Method 1: Alkylation of Xanthylum Salts in the Pyrylium Ring 265

14.3 Product Class 3: Pyranones and Pyranthiones
K. Afarinkia and V. Vinader

14.3.1 Product Subclass 1: 2H-Pyran-2-ones ... 275
14.3.1.1 Synthesis by Ring-Closure Reactions .. 277
14.3.1.1.1 By Formation of One O—C and Two C—C Bonds 277
14.3.1.1.1.1 Method 1: Cyclization of Carbon Dioxide and Two Alkynes 277
14.3.1.1.2 By Formation of One O—C and One C—C Bond 279
14.3.1.1.2.1 Method 1: Cyclizations Utilizing Carbon Dioxide 279
14.3.1.1.2.2 Method 2: Cyclizations Utilizing β-Haloacrylates 279
14.3.1.1.2.3 Method 3: Reaction of Enols and Enolates with Malonyl Chlorides 280
14.3.1.1.2.4 Method 4: Reaction of Enolates with Acetoacetates 282
14.3.1.1.2.5 Method 5: Addition of Enolates to Propynoates and Related Reactions .. 282
14.3.1.1.2.6 Method 6: From α-Oxoketene Dithioacetals and Related Compounds 283
14.3.1.1.2.7 Method 7: Addition of Enolates and Enols to Enamino Esters, Enamino Ketones, and Related Compounds .. 285
14.3.1.1.2.7.1 Variation 1: Of Active Methylene Compounds to β-Substituted Acrylates 286
14.3.1.2.7.2 Variation 2: Of Glycine Derivatives and Active Methylene Compounds to Enamino Ketones .. 288
14.3.1.2.7.3 Variation 3: From Enols and Glycine Derivatives 288
14.3.1.2.8 Method 8: Reaction of Ylides with Diphenylcyclopropenone 289
14.3.1.2.9 Method 9: Self-Condensation of 3-Oxo Esters and Related Compounds .. 289
14.3.1.2.10 Method 10: [4 + 2] Cycloaddition Reactions 291
14.3.1.1.3 By Formation of Two C–C Bonds 292
14.3.1.1.3.1 Method 1: [4 + 2] Cycloaddition Reactions 292
14.3.1.1.4 By Formation of One O–C Bond 293
14.3.1.1.4.1 Method 1: Synthesis by Electrocyclization 293
14.3.1.1.4.2 Method 2: Synthesis from 5-Oxo Esters and Related Compounds .. 294
14.3.1.1.4.2.1 Variation 1: From 3,5-Dioxo Esters 295
14.3.1.1.4.2.2 Variation 2: From Enol Derivative Reactions of 3,5-Dioxo Esters .. 297
14.3.1.1.4.2.3 Variation 3: From 5-Oxo Unsaturated Esters 297
14.3.1.1.5 By Formation of One C–C Bond 298
14.3.1.1.5.1 Method 1: Synthesis by Horner–Wittig Reaction 298
14.3.1.2 Synthesis by Ring Transformation 298
14.3.1.2.1 Method 1: From Rearrangements of 4H-Pyran-4-ones 298
14.3.1.2.1.1 Variation 1: By Photochemical Rearrangement 299
14.3.1.2.1.2 Variation 2: By Acid-Catalyzed Rearrangement 299
14.3.1.2.2 Method 2: By Oxidation of Furans 300
14.3.1.2.3 Method 3: Oxidation of Catechols and Veratroles 301
14.3.1.3 Aromatization ... 302
14.3.1.3.1 Method 1: By Elimination 302
14.3.1.3.2 Method 2: By Oxidative Dehydrogenation 302
14.3.1.4 Synthesis by Substituent Modification 303
14.3.1.4.1 Substitution of Hydrogen 303
14.3.1.4.1.1 Method 1: Electrophilic Substitution of 2H-Pyran-2-ones 303
14.3.1.4.1.2 Method 2: Metalation of 2H-Pyran-2-ones 305
14.3.1.4.2 Substitution of Metals ... 306
14.3.1.4.2.1 Method 1: Halogenation 306
14.3.1.4.2.2 Method 2: Sulfanylation 307
14.3.1.4.2.3 Method 3: Alkylation .. 307
14.3.1.4.3 Substitution of Halogen .. 307
14.3.1.4.3.1 Method 1: Halogen–Metal Exchange 308
14.3.1.4.3.2 Method 2: Alkenyl and Aryl Coupling Reactions 309
14.3.1.4.3.3 Method 3: Reduction ... 310
14.3.1.4.3.4 Method 4: Direct Substitution 310
14.3.1.4.4 Modification of Oxygen and Nitrogen Substituents 311
14.3.1.4.4.1 Method 1: Alkylation of Oxygen or Nitrogen Substituents 311
14.3.1.4.5 Modification of Carbon Substituents 311
14.3.3.4.1 Substitution of Hydrogen .. 332
14.3.3.4.1.1 Method 1: Electrophilic Substitution of 4H-Pyran-4-ones 332
14.3.3.4.1.1.1 Variation 1: Deuteration .. 332
14.3.3.4.1.1.2 Variation 2: Halogenation 333
14.3.3.4.1.1.3 Variation 3: Alkylation, Formylation, and Friedel–Crafts Reactions 333
14.3.3.4.2 Substitution of Halogen ... 333
14.3.3.4.2.1 Method 1: Aryl Coupling Reactions 333
14.3.3.4.3 Substitution of Oxygen ... 334
14.3.3.4.3.1 Method 1: Direct Substitution 334
14.3.3.4.4 Modification of Oxygen and Nitrogen Substituents 334
14.3.3.4.5 Modification of Carbon Substituents 335
14.3.3.4.5.1 Method 1: Carboxy Substituents 335
14.3.3.4.5.2 Method 2: Alkyl Substituents 336
14.3.3.4.5.2.1 Variation 1: Deprotonation 336
14.3.3.4.5.2.2 Variation 2: Substitution 336

14.3.4 Product Subclass 4: 4H-Pyran-4-thiones 337
14.3.4.1 Synthesis by Ring-Closure Reactions 337
14.3.4.1.1 By Formation of One O–C and One C–C Bond 337
14.3.4.1.1.1 Method 1: From Aroylacetonitriles 337
14.3.4.2 Synthesis by Substituent Modification 337
14.3.4.2.1 Method 1: Thiation .. 337

14.4 Product Class 4: Benzopyranones and Benzopyranthiones
A. C. Williams and N. Camp

14.4 Product Class 4: Benzopyranones and Benzopyranthiones 347
14.4.1 Product Subclass 1: 2H-1-Benzopyran-2-ones 350
14.4.1.1 Synthesis by Ring-Closure Reactions 351
14.4.1.1.1 By Annulation to an Arene 351
14.4.1.1.1.1 Method 1: From Aroylacetonitriles 351
14.4.1.1.1.1.1 Method 1: Palladium-Catalyzed Carbonylative Annulation of Internal Alkynes by 2-Iodophenols 351
14.4.1.1.1.1.2 Method 1: Thiation ... 352
14.4.1.1.1.2 Method 2: By Formation of One O–C and One C–C Bond 352
14.4.1.1.1.2.1 Method 2: By Formation of the 1–2 and 2–3 Bonds 352
14.4.1.1.1.2.1.1 Method 1: Rhodium-Catalyzed Carbonylative Cyclization of (2-Hydroxyphenyl)alkynes 352
14.4.1.1.1.2.1.2 Method 2: 4-Hydroxy-2H-1-benzopyran-2-ones by Carbonylation of 2-Hydroxyphenyl Ketones 353
14.4.1.1.2.1.3 Method 3: Base-Catalyzed Reaction of 2-Hydroxyphenyl Ketones with Diethyl Carbonate ... 354
14.4.1.1.2.1.4 Method 4: Base-Catalyzed Reaction of 2-Hydroxyphenyl Ketones with Alkyl Chloroformates 355
14.4.1.1.2.2 With Formation of the 1–2 and 3–4 Bonds 355
14.4.1.1.2.2.1 Method 1: Wittig Reaction of 2-Hydroxybenzaldehydes and 2-Hydroxyphenyl Ketones .. 355
14.4.1.1.2.2.2 Method 2: Condensation of 2-Hydroxybenzaldehydes and 2-Hydroxyphenyl Ketones with Acetic Acid Derivatives 357
14.4.1.1.2.2.2.1 Variation 1: Condensation of 2-Hydroxybenzaldehydes with Acetic Anhydride ... 357
14.4.1.1.2.2.2.2 Variation 2: Condensation of 2-Hydroxyphenyl Ketones with Halo- or Arylacetyl Chlorides ... 358
14.4.1.1.2.2.2.3 Variation 3: Condensation of 2-Hydroxybenzaldehydes with Other Arylacetic Acid Derivatives 359
14.4.1.1.2.2.2.4 Variation 4: Knoevenagel Condensation of 2-Hydroxybenzaldehydes with Ethyl Nitroacetate 361
14.4.1.1.2.2.2.5 Variation 5: Knoevenagel Condensation of 2-Hydroxybenzaldehydes with Glycine and Glycolic Acid Derivatives 361
14.4.1.1.2.2.2.6 Variation 6: Knoevenagel Condensation of 2-Hydroxybenzaldehydes or 2-Hydroxyphenyl Ketones with Ethyl Cyanoacetate 363
14.4.1.1.2.2.2.7 Variation 7: Synthesis of 3-Substituted 2H-1-Benzopyran-2-ones by Knoevenagel Condensation of Substituted Acetic Acid Derivatives .. 364
14.4.1.1.2.2.2.8 Variation 8: Knoevenagel Condensation of 2-Hydroxybenzaldehydes with Phosphorylacetate Derivatives 365
14.4.1.1.2.2.2.9 Variation 9: Knoevenagel Condensation of 2-Hydroxybenzaldehydes with Malonic Acid and Its Derivatives 367
14.4.1.1.2.2.2.10 Variation 10: Knoevenagel Condensation of 2-Hydroxybenzaldehydes with β-Oxo Esters .. 369
14.4.1.1.2.2.2.11 Variation 11: Knoevenagel Condensation of 2-Hydroxybenzaldehydes with Acrylates ... 370
14.4.1.1.2.2.3 Method 3: Reaction of 2-Hydroxybenzaldehyde Imines and Oximes and 2-Hydroxybenzamides with Carbon Suboxide 371
14.4.1.1.2.2.4 Method 4: Rearrangement of [(2-Hydroxybenzylidene)amino]acetates and N’-(2-Hydroxybenzylidene)acetohydrazides 372
14.4.1.1.2.2 With Formation of the 1–2 and 4–4a Bonds 374
14.4.1.1.2.3.1 Method 1: Acid-Catalyzed Condensation of Phenols and 1,3-Dicarbonyl Compounds (The Pechmann Reaction) 374
14.4.1.1.2.3.1.1 Variation 1: Sulfuric Acid as Condensing Agent .. 374
14.4.1.1.2.3.1.2 Variation 2: Zinc(II) Chloride as Condensing Agent 376
14.4.1.1.2.3.1.3 Variation 3: Sulfonylic Acids as Condensing Agents 377
14.4.1.1.2.3.1.4 Variation 4: Hydrogen Chloride or Fluoride as Condensing Agents .. 377
14.4.1.1.2.3.1.5 Variation 5: Aluminum Trichloride as Condensing Agent 379
14.4.1.1.2.3.1.6 Variation 6: Phosphoryl Chloride as Condensing Agent 379
14.4.1.1.2.3.1.7 Variation 7: Other Phosphoric Acid Derivatives as Condensing Agents 380
14.4.1.1.2.3.1.8 Variation 8: Montmorillonite K 10 and KSF as Condensing Agents 381
14.4.1.1.2.3.1.9 Variation 9: Trifluoroacetic Acid as Condensing Agent 382
14.4.1.1.2.3.1.10 Variation 10: Sulfonic Acid Resins as Condensing Agents 383
14.4.1.1.2.3.2 Method 2: Reaction of Phenols with Alkynoates and Alkynoic Acids 384
14.4.1.1.2.3.2.1 Variation 1: Palladium-Catalyzed Coupling of Phenols with Alkynoates and Alkynoic Acids ... 384
14.4.1.1.2.3.2.2 Variation 2: Acid-Catalyzed Coupling of Phenols with Alkynoic Acids ... 385
14.4.1.1.2.3.2.3 Variation 3: Coupling of Phenols and Acetylenedicarboxylates Using Triphenylphosphine ... 386
14.4.1.1.2.3.2.4 Variation 4: Zinc-Catalyzed Coupling of Phenols with Alkynoates 388
14.4.1.1.2.3.2.5 Method 3: Reaction of Phenols with 3-(Dialkylamino)acrylates and Cinnamates ... 388
14.4.1.1.3 By Formation of One O—C Bond ... 389
14.4.1.1.3.1 With Formation of the 1—2 Bond .. 389
14.4.1.1.3.1.1 Method 1: Lactonization of 3-(2-Hydroxyphenyl)propanoic or -acrylic Acids ... 389
14.4.1.1.3.1.2 Method 2: Lactonization of 3-(2-Alkxyphenyl)propanoic or -acrylic Acids 391
14.4.1.1.3.1.3 Method 3: Lactonization of 3-(2-Hydroxyphenyl)propanoates or -acrylates ... 393
14.4.1.1.3.1.3.1 Variation 1: Acid-Catalyzed Lactonization of 3-(2-Hydroxyphenyl)-propanoates or -acrylates ... 393
14.4.1.1.3.1.3.2 Variation 2: Base-Catalyzed Lactonization of 3-(2-Hydroxyphenyl)-propanoates or -acrylates ... 394
14.4.1.1.3.1.3.3 Variation 3: Neutral, Thermal Lactonization of 3-(2-Hydroxyphenyl)-propanoates or -acrylates ... 395
14.4.1.1.3.1.4 Method 4: Lactonization of 3-(2-Alkxyphenyl)- or 3-(2-Acyloxyphenyl)-acrylates ... 396
14.4.1.1.3.1.4.1 Variation 1: Acid-Catalyzed Lactonization of 3-(2-Alkxyphenyl)acrylates 397
14.4.1.1.3.1.4.2 Variation 2: Base-Catalyzed Lactonization of 3-(2-Alkxyphenyl)- and 3-(2-Acyloxyphenyl)acrylates ... 398
14.4.1.1.3.1.4.3 Variation 3: Neutral or Thermal Lactonization of 3-(2-Alkxyphenyl)-acrylates, with Concomitant Claisen Rearrangement 399
14.4.1.1.3.1.5 Method 5: Lactonization of 3-(2-Hydroxyphenyl)acrylamides 401
14.4.1.1.3.1.6 Method 6: Lactonization of 3-(2-Hydroxyphenyl)-3-oxopropanamides ... 403
14.4.1.1.3.1.7 Method 7: Lactonization of 3-(2-Alkxy- and 3-(2-Hydroxyphenyl)-acrylonitriles ... 404
14.4.1.1.3.1.8 Method 8: Oxidative Cyclization of 2-Allylphenols 405
14.4.1.1.3.2 With Formation of the 1—8a Bond .. 406
14.4.1.1.3.2.1 Method 1: Cyclization of 2-(2-Nitrobenzylidene)malonic Acids 406
14.4.1.1.3.2.2 Method 2: Cyclization of Benzyl 3-(2-Halophenyl)acrylates 407
14.4.1.1.4 By Formation of One C—C Bond .. 407
14.4.1.1.4.1 With Formation of the 2—3 Bond .. 407
14.4.1.1.4.1.1 Method 1: Cyclization of a 2-Propanoylphenyl N,N-Dialkylcarbamate ... 407
14.4.1.1.4.2 With Formation of the 3—4 Bond .. 408
14.4.1.1.4.2.1 Method 1: Cyclization of 2-Acyloxyaryl Ketones and Cyanides 408
14.4.1.1.4.2.2 Method 2: Base-Catalyzed Cyclization of 2-Acylxybenzoates 409
14.4.1.1.4.2.3 Method 3: Intramolecular Bayliss–Hillman Reaction of 2-Formylphenyl Acrylate .. 410
14.4.1.1.4.2.4 Method 4: Ring-Closing Metathesis of a Polymer-Supported 2-(Propenoyloxy)styrene .. 410
14.4.1.1.4.3 Method 1: Palladium-Catalyzed Intramolecular Cyclization of Phenyl Propynoates .. 411
14.4.1.1.4.3.1 Method 1: Baeyer–Villiger Reaction of 2,3-Dihydro-1H-inden-1-ones with Subsequent Aromatization 415
14.4.1.1.4.3.2 Method 2: Base-Catalyzed Isomerization of 3,3′-Bibenzo[b]furan-2,2′-diones 416
14.4.1.1.4.3.3 Method 1: Reaction of Ethyl 4-Oxo-4H-1-benzopyran-3-carboxylates with Hydroxylamine .. 417
14.4.1.1.4.3.4 Method 1: Dehydrogenation of 3,4-Dihydro-2H-1-benzopyran-2-ones with Palladium on Charcoal .. 418
14.4.1.1.4.3.5 Method 1: Dehydrogenation of 3,4-Dihydro-2H-1-benzopyran-2-ones with Other Agents .. 418
14.4.1.1.4.3.6 Method 1: Oxidation of 2H-1-Benzopyran-2-ones to 2H-1-Benzopyran-2-ones .. 419
14.4.1.1.4.3.7 Method 1: Oxidation of 2H-1-Benzopyran-2-ols .. 420
14.4.1.1.4.3.8 Method 1: Base-Catalyzed Dehydrohalogenation of 3-Halo-3,4-dihydro-2H-1-benzopyran-2-ones .. 423
14.4.1.1.4.3.9 Method 1: Debromination of 3,4-Dibromo-3,4-dihydro-2H-1-benzopyran-2-ones .. 424
14.4.1.1.4.3.10 Method 1: Reaction of Aldehydes with Ylides and Phosphonates of 3,4-Dihydro-2H-1-benzopyran-2-ones .. 425
14.4.1.1.4.3.11 Method 1: Acylation of 3-Acyl-3,4-dihydro-2H-1-benzopyran-2-ones .. 426
14.4.1.1.4.3.12 Method 1: Reactions of 3-Diazo-2H-1-benzopyran-2,4(3H)-diones .. 427
14.4.1.1.4.3.13 Method 1: Reactions of 3-Acyloxyaryl Ketones and Cyanides 408
14.4.1.1.4.3.14 Method 1: Base-Catalyzed Cyclization of 2-Acylxybenzoates 409
14.4.1.1.4.3.15 Method 1: Ring-Closing Metathesis of a Polymer-Supported 2-(Propenoyloxy)styrene .. 410
14.4.1.1.4.3.16 Method 1: Palladium-Catalyzed Intramolecular Cyclization of Phenyl Propynoates .. 411
14.4.1.1.4.3.17 Method 1: Intramolecular Heck Reaction .. 412
14.4.1.1.4.3.18 Method 1: Intramolecular Bayliss–Hillman Reaction of 2-Formylphenyl Acrylate .. 410
14.4.1.1.4.3.19 Method 1: Acid-Catalyzed Cyclization of Aryl 3-Ethoxyacrylates 412
14.4.1.1.4.3.20 Method 1: Acid-Catalyzed or Thermal Cyclization of Diaryl Malonates 414
14.4.1.1.4.3.21 Method 1: Baeyer–Villiger Reaction of 2,3-Dihydro-1H-inden-1-ones with Subsequent Aromatization 415
14.4.1.1.4.3.22 Method 1: Base-Catalyzed Isomerization of 3,3′-Bibenzo[b]furan-2,2′-diones 416
14.4.1.2 Synthesis by Ring Transformation .. 415
14.4.1.2.1 By Ring Enlargement .. 415
14.4.1.2.1.1 Method 1: Baeyer–Villiger Reaction of 2,3-Dihydro-1H-inden-1-ones with Subsequent Aromatization 415
14.4.1.2.1.2 Method 2: Base-Catalyzed Isomerization of 3,3′-Bibenzo[b]furan-2,2′-diones 416
14.4.1.2.2 With Retention of Ring Size .. 417
14.4.1.2.2.1 Method 1: Reaction of Ethyl 4-Oxo-4H-1-benzopyran-3-carboxylates with Hydroxylamine .. 417
14.4.1.3 Aromatization .. 418
14.4.1.3.1 By Oxidation .. 418
14.4.1.3.1.1 Method 1: Dehydrogenation of 3,4-Dihydro-2H-1-benzopyran-2-ones with Palladium on Charcoal .. 418
14.4.1.3.1.2 Method 2: Dehydrogenation of 3,4-Dihydro-2H-1-benzopyran-2-ones with Other Agents .. 418
14.4.1.3.1.3 Method 3: Dehydrogenation of 5,6-Dihydro-2H-1-benzopyran-2-ones with Quinones .. 419
14.4.1.3.1.4 Method 4: Oxidation of 2H-1-Benzopyrans to 2H-1-Benzopyran-2-ones .. 420
14.4.1.3.1.5 Method 5: Oxidation of 2H-1-Benzopyran-2-ols .. 422
14.4.1.3.2 By Elimination .. 423
14.4.1.3.2.1 Method 1: Base-Catalyzed Dehydrohalogenation of 3-Halo-3,4-dihydro-2H-1-benzopyran-2-ones .. 423
14.4.1.3.2.2 Method 2: Debromination of 3,4-Dibromo-3,4-dihydro-2H-1-benzo- pyran-2-ones .. 424
14.4.1.3.3 By Formal Aromatizations Resulting from Tautomerism .. 425
14.4.1.3.3.1 Method 1: Reactions of 3-Diazo-2H-1-benzopyran-2,4(3H)-diones .. 425
14.4.1.3.3.2 Method 2: Reaction of Aldehydes with Ylides and Phosphonates of 3,4-Dihydro-2H-1-benzopyran-2-ones .. 426
14.4.1.3.3.3 Method 3: Acylation of 3-Acyl-3,4-dihydro-2H-1-benzopyran-2-ones .. 427
Method 4: Reaction of 4-Acyl-3,4-dihydro-2H-1-benzopyran-2-ones with Secondary Amines .. 428
Method 5: Isomerization of 3-[(Arylamino)methylene]-2H-1-benzo-
pyran-2,4(3H)-diones to 4-(Arylamino)-2-oxo-2H-1-benzo-
pyran-3-carbaldehydes .. 429
Method 6: Hydrolysis of 3-Acetyl- and 3-(Ethoxycarbonyl)-2H-1-benzo-
pyran-2,4(3H)-diones .. 429
Method 7: Reaction of 3-[(Dialkylamino)methylene]-4-thioxo-
3,4-dihydro-2H-1-benzopyran-2-ones with Propenal 430
Method 8: O-Methylation of 2H-1-Benzopyran-2,4(3H)-diones 430
Method 9: Reactions of 2H-1-Benzopyran-2,7,8-triones and
2H-1-Benzopyran-2,7,8-trione 7-(O-Methylximines) 431
Method 1: Hydrolysis of 2H-1-Benzopyran-2-imines 436
Method 2: Hydrolysis of 2-(Dialkylamino)-4H-1-benzopyran-4-ones 437
Method 1: Hydrolysis of 2H-1-Benzopyran-2-thiones 437
Method 1: Condensation of 2-Hydroxyphenyl Ketones with
Carbon Disulfide ... 438
Method 1: Reaction of Phosphacumulenes with
2-Hydroxybenzaldehydes 438
Method 1: Reaction of Polyfluoroalkyl Phenyl Ketones with
Sodium Sulfide .. 440
Method 1: Conversion of 2H-1-Benzopyran-2-ones into
2H-1-Benzopyran-2-thiones 440
Variation 1: Direct Thionation of 2H-1-Benzopyran-2-ones with
Phosphorus Pentasulfide 441
14.4.2.1.1.2 Variation 2: Direct Thionation of \(2H\)-1-Benzopyran-2-ones with Lawesson’s Reagent .. 443
14.4.2.2 Addition Reactions .. 444
14.4.2.2.1 Method 1: Oxidation of \(2H\)-1-Benzopyran-2-thiones with 3-Chloroperoxybenzoic Acid .. 444

14.4.3 Product Subclass 3: \(4H\)-1-Benzopyran-4-ones .. 444
14.4.3.1 Synthesis by Ring-Closure Reactions .. 445
14.4.3.1.1 By Annulation to an Arene .. 445
14.4.3.1.1.1 By Formation of One \(O\)–C and Two \(C\)–C Bonds .. 445
14.4.3.1.1.1.1 With Formation of the 1–2, 3–4, and 4–4a Bonds 445
14.4.3.1.1.1.1 Method 1: Reaction of 2-Iodophenols with Alkynes or Allenes and Carbon Monoxide .. 445
14.4.3.1.1.2 By Formation of One \(O\)–C and One \(C\)–C Bond .. 447
14.4.3.1.1.2.1 With Formation of the 1–2 and 2–3 Bonds .. 447
14.4.3.1.1.2.1.1 Method 1: Condensation of 2-Hydroxyphenyl Ketones with Carboxylic Acid Derivatives .. 447
14.4.3.1.1.2.1.1.1 Variation 1: Condensation of 2-Hydroxyphenyl Ketones with Carboxylic Acids .. 447
14.4.3.1.1.2.1.1.2 Variation 2: Condensation of 2-Hydroxyphenyl Ketones with Acyl Chlorides .. 450
14.4.3.1.1.2.1.1.3 Variation 3: Condensation of 2-Hydroxyphenyl Ketones with Carboxylic Acid Anhydrides .. 455
14.4.3.1.1.2.1.1.4 Variation 4: Condensation of 2-Hydroxyphenyl Ketones with Carboxylic Esters .. 456
14.4.3.1.1.2.1.1.5 Variation 5: Condensation of 2-Hydroxyphenyl Ketones with Carboxamides .. 459
14.4.3.1.1.2.1.1.6 Variation 6: Condensation of 2-Hydroxyphenyl Ketones with Diaminomethyl Ethers, Formamide Acetals, or Ortho Esters .. 460
14.4.3.1.1.2.1.2 Method 2: Condensation of 2-Hydroxyphenyl (Methylsulfinyl)methyl Ketones with Aldehydes .. 461
14.4.3.1.1.2.1.3 Method 3: Condensation of 2-Hydroxyphenyl Ketones with Aldehydes with Subsequent Oxidation .. 462
14.4.3.1.1.2.2 With Formation of the 1–2 and 3–4 Bonds .. 463
14.4.3.1.1.2.2.1 Method 1: Condensation of 2-Hydroxybenzoic Acid Derivatives with 2-Hydroxybenzaldehydes and Naphthaldehydes .. 463
14.4.3.1.1.2.2.1.1 Variation 1: Reaction of Enamines with Aldehydes with Subsequent Oxidation .. 463
14.4.3.1.1.2.2.1.2 Variation 2: Reaction of Enamines with Mixed Anhydrides .. 465
14.4.3.1.1.2.2.1.3 Variation 3: Reaction of Enamines with Acyl Chlorides .. 466
14.4.3.1.1.2.2.1.4 Variation 4: Reaction of Enolates with Acyl Chlorides .. 467
14.4.3.1.1.2.2.1.5 Variation 5: Reactions of Aldehyde and Ketone Enolates with Carboxylic Acid Esters .. 468
14.4.3.1.2.2 Method 2: Reaction of 2-Hydroxybenzoates with Ylides and Acyl Chlorides ... 471

14.4.3.1.2.3 With Formation of the 1–2 and 4–4a Bonds .. 471

14.4.3.1.2.3.1 Method 1: Condensation of Phenols with 1,3-Dicarbonyl Compounds (The Simonis Reaction) ... 471

14.4.3.1.2.3.1.1 Variation 1: Sulfuric Acid Catalyzed Condensation of Phenols with 1,3-Dicarbonyl Compounds 472

14.4.3.1.2.3.1.2 Variation 2: Phosphoric Acid and Phosphorus Pentoxide Catalyzed Condensation of Phenols with 1,3-Dicarbonyl Compounds .. 472

14.4.3.1.2.3.1.3 Variation 3: Thermal Condensation of Phenols with 1,3-Dicarbonyl Compounds .. 473

14.4.3.1.2.3.1.4 Variation 4: Trifluoroacetic Acid Catalyzed Condensation of Phenols with 1,3-Dicarbonyl Compounds ... 474

14.4.3.1.2.3.1.5 Variation 5: Condensation of (Aminocarbonyl)acetic Acid Esters with Phenols .. 474

14.4.3.1.2.3.2 Method 2: Condensation of Phenols with 3-Haloacrylic Acid Derivatives 475

14.4.3.1.2.3.3 Method 3: Condensation of Phenols with Alkynoic Acids or Acyl Chlorides .. 478

14.4.3.1.3 By Formation of One O–C Bond ... 480

14.4.3.1.3.1 With Formation of the 1–2 Bond ... 480

14.4.3.1.3.1.1 Method 1: Cyclization of 1-(2-Hydroxyphenyl)- and 1-(2-Alkoxyphenyl)alkane-1,3-diones ... 480

14.4.3.1.3.1.1.1 Variation 1: Cyclization of 1-(2-Hydroxyphenyl)alkane-1,3-diones with Hydrogen Chloride ... 481

14.4.3.1.3.1.1.2 Variation 2: Cyclization of 1-(2-Hydroxyphenyl)alkane-1,3-diones with Sulfuric Acid ... 482

14.4.3.1.3.1.1.3 Variation 3: Cyclization of 1-(2-Hydroxyphenyl)alkane-1,3-diones with Hydrogen Bromide ... 484

14.4.3.1.3.1.1.4 Variation 4: Cyclization of 1-(2-Alkoxyphenyl)alkane-1,3-diones with Hydrogen Iodide ... 484

14.4.3.1.3.1.1.5 Variation 5: Cyclization of 1-(2-Alkoxyphenyl)- or 1-(2-Hydroxyphenyl)-alkane-1,3-diones with Acetic Acid ... 485

14.4.3.1.3.1.1.6 Variation 6: Cyclization of Solid-Supported 1-(2-Hydroxyphenyl)-alkane-1,3-diones with Trifluoroacetic Acid ... 486

14.4.3.1.3.1.1.7 Variation 7: Cyclization of 1-(2-Hydroxyphenyl)alkane-1,3-diones with Iodine ... 487

14.4.3.1.3.1.1.8 Variation 8: Cyclization of 1-(2-Hydroxyphenyl)alkane-1,3-diones with 4-Toluenesulfonic Acid ... 487

14.4.3.1.3.1.1.9 Variation 9: Cyclization of 1-(2-Hydroxyphenyl)alkane-1,3-diones with Sulfonic Acid Resins ... 488

14.4.3.1.3.1.1.10 Variation 10: Cyclization of 1-(2-Hydroxyphenyl)alkane-1,3-diones with Montmorillonite K 10 ... 488

14.4.3.1.3.1.2 Method 2: Cyclization of 3-(Dialkylamino)-1-(2-hydroxyphenyl)-prop-2-en-1-ones ... 489
14.4.3.1.3.1.2 Variation 1: Cyclization of 3-(Dialkylamino)-1-(2-hydroxyphenyl)-prop-2-en-1-ones with Hydrogen Chloride 489
14.4.3.1.3.1.2.2 Variation 2: Cyclization of 3-(Dialkylamino)-1-(2-hydroxyphenyl)-prop-2-en-1-ones with Sulfuric Acid ... 489
14.4.3.1.3.1.2.3 Variation 3: Cyclization of 3-(Dialkylamino)-1-(2-hydroxyphenyl)-prop-2-en-1-ones with Halogens ... 490
14.4.3.1.3.1.2.4 Variation 4: Cyclization of 3-(Dialkylamino)-1-(2-hydroxyphenyl)-prop-2-en-1-ones with Chlorosulfonyl Isocyanate and Anilines 490
14.4.3.1.3.1.2.5 Variation 5: Cyclization of Polymer-Bound 3-(Dialkylamino)-1-[2-(tert-butyldimethylsiloxy)phenyl]prop-2-en-1-ones 491
14.4.3.1.3.1.2.6 Variation 6: Other Electrophilic Cyclizations of 3-(Dialkylamino)-1-(2-hydroxyphenyl)prop-2-en-1-ones .. 492
14.4.3.1.3.1.3 Method 3: Cyclization of \(N,N \)-Dialkyl-3-(2-hydroxyphenyl)-3-oxopropanamides ... 494
14.4.3.1.3.1.4 Method 4: Cyclization of 3-Halo-1-(2-hydroxyphenyl)prop-2-en-1-ones ... 495
14.4.3.1.3.1.5 Method 5: Cyclization of 1-(2-Hydroxyphenyl)prop-2-en-1-ones ... 496
14.4.3.1.3.1.5.1 Variation 1: Cyclization of 1-(2-Hydroxyphenyl)prop-2-en-1-ones with Iodine ... 496
14.4.3.1.3.1.5.2 Variation 2: Cyclization of 1-(2-Hydroxyphenyl)prop-2-en-1-ones with Selenium Dioxide ... 498
14.4.3.1.3.1.5.3 Variation 3: Cyclization of 1-(2-Hydroxyphenyl)prop-2-en-1-ones with Quinones ... 499
14.4.3.1.3.1.5.4 Variation 4: Cyclization of 1-(2-Hydroxyphenyl)prop-2-en-1-ones with Hypervalent Iodine Reagents ... 500
14.4.3.1.3.1.5.5 Variation 5: Cyclization of 1-(2-Hydroxyphenyl)prop-2-en-1-ones with Bromine ... 501
14.4.3.1.3.1.6 Method 6: Oxidative Cyclization of 1-(2-Hydroxyphenyl)-prop-2-en-1-ones with Thallium(III) Salts ... 501
14.4.3.1.3.1.7 Method 7: Oxidative Cyclization of 1-(2-Hydroxyphenyl)-prop-2-en-1-ones with Alkaline Peroxide ... 503
14.4.3.1.3.1.8 Method 8: Cyclization of 1-(2-Hydroxyphenyl)prop-2-yn-1-ones ... 504
14.4.3.1.3.1.8.1 Variation 1: Acid-Catalyzed Cyclization of 1-(2-Hydroxyphenyl)-prop-2-yn-1-ones ... 504
14.4.3.1.3.1.8.2 Variation 2: Base-Catalyzed Cyclization of 1-(2-Hydroxyphenyl)-prop-2-yn-1-ones ... 505
14.4.3.1.3.1.8.3 Variation 3: Cyclization of 1-(2-Hydroxyphenyl)prop-2-yn-1-ones with Secondary Amines ... 506
14.4.3.1.3.2 With Formation of the 1–8a Bond ... 507
14.4.3.1.3.2.1 Method 1: Cyclization of 1-(2-Fluorophenyl)-1,3-diones ... 507
14.4.3.1.3.4 By Formation of One C–C Bond ... 509
14.4.3.1.4.1 With Formation of the 2–3 Bond ... 509
14.4.3.1.4.1.1 Method 1: Cyclization of 2-Acyloxyphenyl Ketones ... 509
14.4.3.1.4.1.1.1 Variation 1: Cyclization of 2-Acyloxyphenyl Ketones with Inorganic Bases ... 509
14.4.3.1.4.1.1.2 Variation 2: Cyclization of 2-Acyloxyphenyl Ketones with Organic Bases ... 510
14.4.3.1.4.1.3 Variation 3: Thermal Cyclization of 2-Acyloxyphenyl Ketones ... 511
14.4.1.4.1.2 Method 2: Cyclization of 2-Acyloxyphenyl Ketones by Intramolecular Wittig Reaction ... 512
14.4.1.4.2 With Formation of the 4—a Bond .. 513
14.4.1.4.2.1 Method 1: Intramolecular Friedel–Crafts Reaction of 3-Phenoxyacrylic Acid Derivatives ... 513
14.4.2 Synthesis by Ring Transformation ... 514
14.4.2.1 By Ring Enlargement .. 514
14.4.2.1.1 Method 1: Cyanide-Catalyzed Rearrangement of 2-Benzylidene-benzo[b]furan-3-ones ... 514
14.4.2.2 By Formal Exchange of Ring Members with Retention of Ring Size .. 515
14.4.2.2.1 Method 1: Rearrangements of 4H-1-Benzopyran-4-one Containing Systems ... 515
14.4.3 Aromatization ... 517
14.4.3.1 By Oxidation ... 517
14.4.3.1.1 Method 1: Aromatization of 2,3-Dihydro-4H-1-benzopyran-4-ones Using Thallium(III) Salts and Hypervalent Iodine Reagents 517
14.4.3.1.2 Method 2: Aromatization of 2,3-Dihydro-4H-1-benzopyran-4-ones with Quinones ... 518
14.4.3.1.3 Method 3: Oxidative Rearrangement of 2-Monosubstituted and 2,2-Disubstituted 2,3-Dihydro-4H-benzopyran-4-ones ... 518
14.4.3.1.4 Method 4: Oxidation of 4H-1-Benzopyran-4-ones to 4H-1-Benzopyran-4-ones ... 520
14.4.3.1.5 Method 5: Oxidation of 2H-1-Benzopyran-4-ones to 4H-1-Benzopyran-4-ones ... 521
14.4.3.2 By Elimination ... 522
14.4.3.2.1 Method 1: Dehydrohalogenation ... 522
14.4.3.2.2 Method 2: Dehydration of 2-Hydroxy-2,3-dihydro-4H-1-benzopyran-4-ones ... 525
14.4.3.2.3 Method 3: Elimination of Alcohols from 2-Alkoxy-2,3-dihydro-4H-1-benzopyran-4-ones ... 526
14.4.3.2.4 Method 4: Elimination of Benzenesulfonic Acid from 3-Alkyl-3-(phenylsulfonyl)-2,3-dihydro-4H-benzopyran-4-ones ... 527
14.4.3.4 Synthesis by Substituent Modification ... 527
14.4.3.4.1 Substitution of Existing Substituents ... 527
14.4.3.4.1.1 Of Hydrogen ... 527
14.4.3.4.1.1.1 Method 1: Oxidation and Hydrolysis of 1-Benzopyrylium Salts to 4H-1-Benzopyran-4-ones ... 527
14.4.3.4.1.2 Of Carbon ... 528
14.4.3.4.1.2.1 Method 1: Oxidative Cleavage of 4,4’-Bi-4H-1-benzopyranyldienes to 4H-1-Benzopyran-4-ones ... 528
14.4.3.4.1.3 Of Sulfur ... 529
14.4.3.4.1.3.1 Method 1: Conversion of 4H-1-Benzopyran-4-thiones into 4H-1-Benzopyran-4-ones ... 529
14.4.3.2 Modification of Substituents .. 530

14.4.3.4.2 Formal Oxidation State Changes Resulting from Tautomerism 530

14.4.3.4.2.1 Method 1: Base-Catalyzed Condensation of 2,3-Dihydro-4H-1-benzopyran-4-ones and Aldehydes 530

14.4.3.4.2.2 Method 2: Oxidation of 3-Benzylidene-2-phenyl-2,3-dihydro-4H-1-benzopyran-4-ones .. 530

14.4.3.4.2.3 Method 3: S-Alkylation of 4-Hydroxy-2H-1-benzopyran-2-thiones 532

14.4.4 Product Subclass 4: 4H-1-Benzopyran-4-thiones 532

14.4.4.1 Synthesis by Substituent Modification .. 533

14.4.4.1.1 Substitution of Existing Substituents 533

14.4.4.1.1.1 Of Oxygen ... 533

14.4.4.1.1.1.1 Method 1: Conversion of 4H-1-Benzopyran-4-ones into 4H-1-Benzopyran-4-thiones ... 533

14.4.4.1.1.1.1.1 Variation 1: Direct Conversion of 4H-1-Benzopyran-4-ones into 4H-1-Benzopyran-4-thiones ... 533

14.4.4.1.1.1.2 Variation 2: Indirect Conversion via Imines 535

14.4.4.4.5 Product Subclass 5: 1H-2-Benzopyran-1-ones 536

14.4.5 Synthesis by Ring-Closure Reactions ... 536

14.4.5.1 By Annulation to an Arene ... 536

14.4.5.1.1 By Formation of One O—C and One C—C Bond 536

14.4.5.1.1.1 Method 1: Cyclization of Derivatives of 2-(Formylmethyl)- and 2-(2-Oxoethyl)benzoic Acids .. 544

14.4.5.1.1.2 Variation 2: Cyclization Using Palladium and Zinc Catalysis 542

14.4.5.1.1.2.1 Variation 1: Cyclization Using Palladium and Lithium Catalysis 542

14.4.5.1.1.2.2 Variation 3: Cyclization Using Palladium and Copper Acetylides 543

14.4.5.1.1.2.3 Variation 4: Cyclization Using Preformed Copper Acetylides 543

14.4.5.1.1.3 With Formation of the 2—3 and 3—4 Bonds 538

14.4.5.1.1.3.1 Method 1: From 2-Benzoyl- or 2-Acetylbenzoates with Trimethylsulfoxonium Ylide ... 538

14.4.5.1.1.4 With Formation of the 2—3 and 4—4a Bonds 539

14.4.5.1.1.4.1 Method 1: Cyclization of Thallated Benzoic Acids with Alkenes under Palladium Catalysis .. 539

14.4.5.1.1.4.2 Method 2: Cyclization of 2-Iodobenzoates with Alkynes 541

14.4.5.1.1.4.2.1 Variation 1: Cyclization Using Palladium Catalysis 541

14.4.5.1.1.4.2.2 Variation 2: Cyclization Using Palladium and Zinc Catalysis 542

14.4.5.1.1.4.2.3 Variation 3: Cyclization Using Palladium and Lithium Catalysis 542

14.4.5.1.1.4.2.4 Variation 4: Cyclization Using Preformed Copper Acetylides 543

14.4.5.1.1.5 By Formation of One O—C Bond ... 544

14.4.5.1.1.6 With Formation of the 1—2 Bond ... 544

14.4.5.1.1.7 Method 1: Cyclization of Derivatives of 2-(Formylmethyl)- and 2-(2-Oxoethyl)benzoic Acids .. 544
Variation 1: From 2-Halobenzoates via Palladium Catalysis Followed by Acid-Mediated Cyclization .. 544
Variation 2: Cyclization of 2-(Formylmethyl)benzoic Acids 546
Variation 3: Cyclization of 2-(2-Oxoethyl)benzoic Acids 546
Variation 4: Cyclization of 2-(Formylmethyl)benzoates 548
Variation 5: Cyclization of 2-(2-Oxoethyl)benzoates 549
Variation 6: Cyclization of 2-(Formylmethyl)benzamides 550
Variation 7: Cyclization of 2-(2-Oxoethyl)benzonitriles 551
Variation 1: Cyclization with Stoichiometric Palladium 552
Variation 2: Cyclization with Palladium Catalysts and Oxygen 552
Variation 3: Cyclization with N-(Phenylselanyl)succinimide and Acid 553
Method 2: Cyclization of 2-Allylbenzoic Acids 554
Variation 1: Using Stoichiometric Palladium 554
Variation 2: Using Catalytic Palladium .. 555
Method 3: Cyclization of 2-(2-Bromovinyl)benzoates 555
Method 4: Cyclization of 2-Alk-1-ynylbenzoic Acids 556
Variation 1: Cyclization Using Palladium Catalysts 556
Variation 2: Cyclization Using Mercury Salts 557
Variation 3: Halolactonization .. 558
Method 5: Cyclization of 2-(Phenylethynyl)benzonitrile 559
Method 1: Acid-Catalyzed Cyclization of 2-Oxopropyl Benzoates 560
Method 1: Base-Catalyzed Condensation of 2-Methylbenzoates and 4-Methoxy-2H-pyrans-2-ones 561
Method 1: Acid-Catalyzed Rearrangement of 3-(1-Hydroxyalkyl)-3H-benzo[c]furans-1-ones 561
Method 1: Acid-Catalyzed Rearrangement of Dibenzo[b,f]azocine-6,12-diones 562
Aromatization .. 562
Method 1: Elimination of Hydrogen Bromide 562
Method 2: Other Eliminations .. 564
Synthesis by Substituent Modification ... 564
14.4.5.4.1 Substitution of Existing Substituents
- Of Carbon
- Method 1: Oxidation of 1-Benzylidene-1H-2-benzopyrans
- Method 1: Reaction of 4-Acyl-1H-2-benzopyran-1,3(4H)-diones with Hydrazine

14.4.6 Product Subclass 6: 1H-2-Benzopyran-1-thiones
- Synthesis by Substituent Modification
- Of Oxygen
- Method 1: Conversion of 1H-2-Benzopyran-1-ones into 1H-2-Benzopyran-1-thiones with Lawesson’s Reagent

14.4.7 Product Subclass 7: 3H-2-Benzopyran-3-ones
- Synthesis by Ring-Closure Reactions
- By Annulation to an Arene
- By Formation of One O–C Bond
- With Formation of the 2–3 Bond
- Method 1: Cyclization of 2-Substituted Arylacetic Acids
- Variation 1: Dehydration of (2-Acylphenyl)acetic Acids with Acetic Anhydride or Carbodiimides
- Variation 2: Cyclization of 9,10-Dioxo-9,10-dihydroanthracene-1-acetates
- Method 2: Photocyclization of a 2-(Diazoacetyl)benzoate
- Method 1: Intramolecular Friedel–Crafts Alkylation of 1-Naphthyl Acetates

14.4.8 Product Subclass 8: 6H-Dibenzo[b,d]pyran-6-ones
- Synthesis by Ring-Closure Reactions
- By Annulation to an Arene
- By Formation of One O–C and One C–C Bond
- With Formation of the 5–6 and 10a–10b Bonds
- Method 1: Reaction of 2-Bromobenzonitriles with Phenols and Phenyl Ethers
- By Formation of One O–C Bond
14.4.8.1.1.2.1 With Formation of the 4a–5 Bond ... 573
14.4.8.1.1.2.1.1 Method 1: Cyclization of 2′-Nitrobi nenyl-2-carboxylic Acids 573
14.4.8.1.1.2.1.2 Method 2: Oxidative Cyclization of Biphenyl-2-carboxylic Acid 574
14.4.8.1.1.2.2 With Formation of the 5–6 Bond .. 574
14.4.8.1.1.2.2.1 Method 1: Cyclization of 2¢-Nitrobiphenyl-2-carboxylic Acids 574
14.4.8.1.1.2.2.1.1 Variation 1: Oxidative Cyclization of Biphenyl-2-carboxylic Acid 577
14.4.8.1.1.2.2.1.2 Variation 2: Lactonization of Hydroxy Esters 577
14.4.8.1.1.2.2.1.3 Variation 3: Lactonization of Hydroxy Amides 577
14.4.8.1.1.2.2.1.4 Variation 4: Lactonization of 2-(2′-Hydroxy-2-bisphenyl)-4,5-dihydrooxazoles ... 577
14.4.8.1.1.2.2.1.5 Variation 5: Reductive Lactonization of Naphthoquinones 578
14.4.8.1.1.3 By Formation of One C—C Bond .. 579
14.4.8.1.1.3.1 With Formation of the 10a–10b Bond ... 579
14.4.8.1.1.3.1.1 Method 1: Intramolecular Metal-Catalyzed Arylation 579
14.4.8.1.1.3.1.1.1 Variation 1: Palladium-Catalyzed Cyclization of 2-(Trifluoromethylsulfonyloxy)benzoates ... 579
14.4.8.1.1.3.1.1.2 Variation 2: Palladium-Catalyzed Cyclization of 2-Bromobenzoates 580
14.4.8.1.1.3.1.1.3 Variation 3: Copper-Catalyzed Cyclization of 2-Bromobenzoates 582
14.4.8.1.1.3.1.1.4 Variation 4: Palladium-Catalyzed Cyclization of 2-Iodobenzoates 583
14.4.8.1.2 By Annulation to a Heterocycle ... 584
14.4.8.1.2.1 By Formation of Two C—C Bonds ... 584
14.4.8.1.2.1.1 With Formation of the 6a–7 and 10–10a Bonds 584
14.4.8.1.2.1.1.1 Method 1: Base-Catalyzed Addition of 3-(Phenylsulfanyl)-benzo[c]furan-1(3H)-one to 2H-1-Benzopyran-2-one ... 584
14.4.8.1.2.1.2 With Formation of the 7–8 and 9–10 Bonds ... 584
14.4.8.1.2.1.2.1 Method 1: Condensation of 4-Methyl-2-oxo-2H-1-benzopyran-3-carbonitrile with Malononitrile and Aldehydes .. 584
14.4.8.1.2.2 By Formation of One C—C Bond .. 586
14.4.8.1.2.2.2 With Formation of the 7–8 Bond ... 586
14.4.8.1.2.2.3 With Formation of the 7–8 Bond ... 586
14.4.8.1.2.2.4 Method 1: Intramolecular Friedel–Crafts Reaction 586
14.4.8.2 Synthesis by Ring Transformation ... 586
14.4.8.2.1 Ring Enlargement .. 586
14.4.8.2.1.1 Method 1: Baeyer–Villiger Reaction of 9H-Fluoren-9-one 586
14.4.8.3 Aromatization .. 587
14.4.8.3.1 Method 1: Aromatization of 1,2,3,4-Tetrahydro-6H-dibenzo[b,d]pyran-6-ones with Palladium ... 587
14.4.8.3.2 Method 2: Aromatization of 1,2,3,4-Tetrahydro-6H-dibenzo[b,d]pyran-6-ones by Additional Methods .. 588
14.4.9 Product Subclass 9: 6H-Dibenzo[b,d]pyran-6-thiones 588
14.4.9.1 Synthesis by Substituent Modification ... 588
14.4.9.1.1 Substitution of Existing Substituents ... 588
14.4.9.1.1.1 Of Oxygen ... 588
14.4.9.1.1.1.1 Method 1: Conversion of 6H-Dibenzo[b,d]pyran-6-ones into
 6H-Dibenzo[b,d]pyran-6-thiones with Lawesson’s Reagent 588
14.4.9.1.2 Addition Reactions ... 588
14.4.9.1.2.1 Method 1: Oxidation of 6H-Dibenzo[b,d]pyran-6-thione 589
14.4.10 Product Subclass 10: 9H-Xanthen-9-ones 589
14.4.10.1 Synthesis by Ring-Closure Reactions ... 590
14.4.10.1.1 By Annulation to an Arene ... 590
14.4.10.1.1.1 By Formation of One O—C and One C—C Bond 590
14.4.10.1.1.1.1 With Formation of the 4a—10 and 9—9a, the 8a—9 and 10—10a,
 the 4a—10 and 8a—9, or the 9—9a and 10—10a Bonds 590
14.4.10.1.1.1.1.1 Method 1: Condensation of Phenols and Naphthols with
 2-Hydroxybenzoates ... 590
14.4.10.1.1.1.1.1.1 Variation 1: Thermal Condensation of Phenols and Naphthols with
 2-Hydroxybenzoates ... 590
14.4.10.1.1.1.1.2 Variation 2: Lewis Acid Catalyzed Condensation of Phenols and
 Naphthols with 2-Hydroxybenzoic Acids 591
14.4.10.1.1.1.1.3 Variation 3: Friedel–Crafts Acylation of Dimethoxybenzenes with
 2-Alkoxybenzoic Halides with Concomitant Cyclization 591
14.4.10.1.1.1.2 Method 2: Biaryl Ether Formation with Subsequent
 Intramolecular Friedel–Crafts Cyclization 593
14.4.10.1.1.1.2.1 Variation 1: O-Arylation Using 2-Halobenzoic Acids with Subsequent
 Acid-Mediated Cyclization ... 593
14.4.10.1.1.1.2.2 Variation 2: Rearrangement of Phenyl Benzoates with Subsequent
 Intramolecular Friedel–Crafts Cyclization 593
14.4.10.1.1.1.3 Method 3: Pyrolysis of Phenyl 2-Hydroxybenzoate 594
14.4.10.1.1.2 By Formation of Two C—C Bonds 595
14.4.10.1.1.2.1 With Formation of the 8a—9 and 9—9a Bonds 595
14.4.10.1.1.2.1.1 Method 1: Lithiation and Carboxylation of Diphenyl Ethers 595
14.4.10.1.1.2.1.2 Method 2: Friedel–Crafts Reaction of Diphenyl Ethers 596
14.4.10.1.1.3 By Formation of One O—C Bond 596
14.4.10.1.1.3.1 With Formation of the 4a—10 or 10—10a Bonds 596
14.4.10.1.1.3.1.1 Method 1: Ring Closure of 2,2'-Disubstituted Benzophenones 596
14.4.10.1.1.3.1.1.1 Variation 1: Base-Catalyzed Ring Closure of (2-Hydroxyphenyl)(2-halo- or
 2-methoxyphenyl)methanones ... 596
14.4.10.1.1.3.1.1.2 Variation 2: Ring Closure of Bis(2-alkoxyphenyl)methanones 597
14.4.10.1.1.3.1.1.3 Variation 3: Ring Closure of Bis(2-hydroxyphenyl)methanones 598
14.4.10.1.1.3.1.2 Method 2: Base-Catalyzed Condensation of 2-Hydroxyphenyl
 Methyl Ketones and 2-(Methoxycarbonyl)phenylacetates 599
14.4.10.1.1.4 By Formation of One C—C Bond 599

Table of Contents XXXIII

Science of Synthesis Original Edition Volume 14
© Georg Thieme Verlag KG
14.4.10.1.1.1 With Formation of the 8a—9 or 9—9a Bonds ... 599
14.4.10.1.1.1 Method 1: Intramolecular Friedel–Crafts Acylation 599
14.4.10.1.1.1.1 Variation 1: Polyphosphoric Acid Catalyzed Intramolecular
Friedel–Crafts Acylation of 2-Phenoxybenzoic Acids 599
14.4.10.1.1.1.2 Variation 2: Intramolecular Friedel–Crafts Acylation of 2-Phenoxybenzoic
Acids Catalyzed by Phosphorus Pentoxide/Methanesulfonic
Acid .. 600
14.4.10.1.1.1.3 Variation 3: Sulfuric Acid Catalyzed Intramolecular Friedel–Crafts
Acylation of 2-Phenoxybenzoic Acids .. 601
14.4.10.1.1.1.4 Variation 4: Nafion-H Resin-Catalyzed Intramolecular
Friedel–Crafts Acylation of 2-Phenoxybenzoic Acids 601
14.4.10.1.1.1.5 Variation 5: Intramolecular Friedel–Crafts Acylation via
Mixed Anhydride Formation .. 602
14.4.10.1.1.2 Method 2: Base-Catalyzed Cyclization of
N,N-Dialkyl-2-phenoxybenzamides .. 602
14.4.10.1.1.3 Method 3: Copper(II)-Catalyzed Cyclization of 2-Phenoxybenzaldehydes 603
14.4.10.1.2 By Annulation to a Heterocycle ... 604
14.4.10.1.2.1 By Formation of Two C—C Bonds ... 604
14.4.10.1.2.1.1 With Formation of the 1—9a and 4—4a Bonds 604
14.4.10.1.2.1.1.1 Method 1: CycloadDITION of 3-(Phenylsulfinyl)-4H-1-benzopyran-4-ones
and Danishefsky’s Diene .. 604
14.4.10.1.2.1.2 With Formation of the 2—3 and 4—4a Bonds 604
14.4.10.1.2.1.2.1 Method 1: CycloadDITION of 3,3-Dialkyl-3,4-dihydro-9H-xanthen-9-ones
with Dimethyl Acetylenedicarboxylate .. 604
14.4.10.1.2.2 By Formation of One C—C Bond ... 605
14.4.10.1.2.2.1 With Formation of the 1—9a Bond .. 605
14.4.10.1.2.2.1.1 Method 1: Photochemical Rearrangement of
2-Styryl-4H-1-benzopyran-4-ones .. 605
14.4.10.1.2.2.4 With Formation of the 3—4 or 5—6 Bonds 606
14.4.10.1.2.2.4.1 Method 1: Intramolecular Friedel–Crafts Reaction of
3-Benzyl-4-oxo-4H-1-benzopyran-2-carboxylic Acid 606
14.4.10.1.2.2.3 With Formation of the 4—4a Bond .. 606
14.4.10.1.2.2.3.1 Method 1: Photochemical Cyclization of 3-(2-Methylbenzoyl)-
4H-1-benzopyran-4-one ... 606
14.4.10.2 Aromatization ... 607
14.4.10.2.1 Method 1: Oxidation of 1,2,3,4-Tetrahydro-9H-xanthen-9-ones
Using Quinones .. 607
14.4.10.2.2 Method 2: Oxidation of 1,2,3,4-Tetrahydro-9H-xanthen-9-ones
Using Sulfur ... 607
14.4.10.2.3 Method 3: Oxidation of 1,2,3,4,4a,9a-Hexahydro-9H-xanthen-9-ones
Using Palladium on Charcoal .. 608
14.4.10.3 Synthesis by Substituent Modification ... 609
14.4.10.3.1 Substitution of Existing Substituents
14.4.10.3.1.1 Of Hydrogen

14.4.10.3.1.1.1 Method 1: Oxidation of 9H-Xanthenes to 9H-Xanthen-9-ones
14.4.10.3.1.1.1.1 Variation 1: Oxidation with Manganese Reagents
14.4.10.3.1.1.1.2 Variation 2: Oxidation with Cerium Reagents

14.4.10.3.1.1.2 Method 1: Oxidation of 9H-Xanthenes to 9H-Xanthen-9-ones

14.4.10.3.1.1.3 Method 1: Conversion of 9-(Trimethylsilyl)-9H-Xanthene into 9H-Xanthene-9-thione S-Oxide
14.4.10.3.1.1.3.1 Variation 1: Direct Thionation of 9H-Xanthene-9-one with Lawesson’s Reagent
14.4.10.3.1.1.3.2 Variation 2: Indirect Thionation of 9H-Xanthen-9-ones via Imines
14.4.10.3.1.1.3.3 Variation 3: Synthesis of 9H-Xanthene-9-thiones from 9H-Xanthene-9-ones via 9,9-Dichloro-9H-xanthenes

14.4.11 Product Subclass 11: 9H-Xanthene-9-thiones
14.4.11.1 Synthesis by Ring-Closure Reactions
14.4.11.1.1 By Annulation to the Heterocyclic Ring
14.4.11.1.1.1 With Formation of the 1–9a and 4–4a Bonds
14.4.11.1.1.1.1 Method 1: Cycloaddition of 4-Thioxo-4H-1-benzopyran-3-carbonitriles and Buta-1,3-dienylamines

14.4.11.1.1.1.2 Method 2: Conversion of 9-(Trimethylsilyl)-9H-Xanthene into a 9H-Xanthene-9-thione S-Iminide
14.4.11.2 Synthesis by Substituent Modification
14.4.11.2.1 Substitution of Existing Substituents
14.4.11.2.1.1 Of Silicon
14.4.11.2.1.1.1 Method 1: Conversion of 9-Alkylidene-9H-xanthenes into 9H-Xanthene-9-thione
14.4.11.2.1.1.2 Method 2: Conversion of Bi-9H-xanthen-9-ylidene Sulfide into 9H-Xanthene-9-thione
14.4.11.2.1.2 Of Carbon
14.4.11.2.1.2.1 Method 1: Conversion of 9-Alkylidene-9H-xanthenes into 9H-Xanthene-9-thione
14.4.11.2.1.2.2 Method 2: Conversion of Bi-9H-xanthen-9-ylidene Sulfide into 9H-Xanthene-9-thione
14.4.11.2.1.3 Of Oxygen
14.4.11.2.1.3.1 Method 1: Conversion of 9H-Xanthen-9-ones into 9H-Xanthene-9-thiones
14.4.11.2.1.3.1.1 Variation 1: Direct Thionation of 9H-Xanthen-9-one with Lawesson’s Reagent
14.4.11.2.1.3.1.2 Variation 2: Indirect Thionation of 9H-Xanthen-9-ones via Imines
14.4.11.2.1.3.1.3 Variation 3: Synthesis of 9H-Xanthene-9-thiones from 9H-Xanthen-9-ones via 9,9-Dichloro-9H-xanthenes

14.4.11.2.2 Modification of Substituents
14.4.11.2.2.1 Cycloreversion
14.4.11.2.2.1.1 Method 1: Thermolysis of 4’,5’-Dimethyl-3’,6’-dihydrospiro[9H-xanthene-9,2’-2H-thiopyran]
Product Class 5: 3-Oxidopyrylium Salts and Their Thio and Benzo-Fused Analogues

14.5.1 Synthesis of Product Class 5

1. **Method 1:** By Condensation of an α,β-Unsaturated Ketone and an α-Acyloxy Ketone
2. **Method 2:** By Deacylation of 3-(Acyloxy)pyrylium or 3-(Acyloxy)thiopyrylium Salts
3. **Method 3:** By Oxidation of Thiopyran-3-ones
4. **Method 4:** By Oxidation of Thiabenzenes with Molecular Oxygen

14.5.2 Applications of Product Class 5 in Organic Synthesis

1. **Method 1:** [3 + 2]-Cycloaddition Reactions of 3-Oxidopyrylium Salts
2. **Variation 1:** In Situ Generation of the 3-Oxidopyrylium Salt from a 6-(Acyloxy)-2H-pyran-3(6H)-one
3. **Variation 2:** In Situ Generation of the 3-Oxidopyrylium Salt from Methyl 2-(Diazoacetyl)benzoate
4. **Variation 3:** In Situ Generation of the 3-Oxidopyrylium Salt by Migration of a Silyl Group

Product Class 6: Thiopyrylium Salts

14.6.1 Synthesis by Ring-Closure Reactions

1. **Method 1:** By Formation of Two S–C and Two C–C Bonds
2. **Method 2:** By Formation of Two S–C Bonds and One C–C Bond
3. **Method 3:** By Formation of Two S–C Bonds
4. **Method 4:** By Formation of One S–C and One C–C Bond

14.6.1.1 Method 1: Reaction of Methyl Ketones with Triethyl Orthoformate and Hydrogen Sulfide

14.6.1.2 Method 2: Reaction of 3-Aryl-3-chloroprop-2-eniminium Salts with Cyanoacetic Acid Derivatives and Sulfur Transfer Reagents

14.6.1.3 Method 3: Reaction of 1,5-Diketones with Sulfur Transfer Reagents

14.6.1.4 Method 4: Reaction of 1,5-Diketones with Hydrogen Sulfide in the Presence of Phosphorus Pentasulfide

14.6.1.5 Variation 1: With Phosphorus Pentasulfide

14.6.1.6 Variation 2: With Hydrogen Sulfide in the Presence of Acid

14.6.1.7 Variation 3: With Hydrogen Sulfide in the Presence of Hydride Acceptors

14.6.1.8 Variation 4: With Hydrogen Sulfide in the Presence of a Lewis Acid

14.6.1.9 Variation 5: From Unsaturated 1,5-Diketones with Hydrogen Sulfide

14.6.1.10 Method 5: By Formation of One S–C and One C–C Bond

Table of Contents

14.5 Product Class 5: 3-Oxidopyrylium Salts and Their Thio and Benzo-Fused Analogues 639

14.5.1 Synthesis of Product Class 5 ... 640
14.5.1.1 Method 1: By Condensation of an α,β-Unsaturated Ketone and an α-Acyloxy Ketone 640
14.5.1.2 Method 2: By Deacylation of 3-(Acyloxy)pyrylium or 3-(Acyloxy)thiopyrylium Salts 640
14.5.1.3 Method 3: By Oxidation of Thiopyran-3-ones ... 641
14.5.1.4 Method 4: By Oxidation of Thiabenzenes with Molecular Oxygen ... 641

14.5.2 Applications of Product Class 5 in Organic Synthesis ... 642
14.5.2.1 Method 1: [3 + 2]-Cycloaddition Reactions of 3-Oxidopyrylium Salts ... 642
14.5.2.1.1 Variation 1: In Situ Generation of the 3-Oxidopyrylium Salt from a 6-(Acyloxy)-2H-pyran-3(6H)-one 643
14.5.2.1.2 Variation 2: In Situ Generation of the 3-Oxidopyrylium Salt from Methyl 2-(Diazoacetyl)benzoate 644
14.5.2.1.3 Variation 3: In Situ Generation of the 3-Oxidopyrylium Salt by Migration of a Silyl Group 644

14.5.2.2 Method 2: Dimerization of 3-Oxidopyrylium and 3-Oxidothiopyrylium Salts by [3 + 3] Cycloaddition 645

14.6 Product Class 6: Thiopyrylium Salts .. 649

14.6.1 Synthesis by Ring-Closure Reactions .. 652
14.6.1.1 Method 1: Reaction of Methyl Ketones with Triethyl Orthoformate and Hydrogen Sulfide 652
14.6.1.2 Method 2: Reaction of 3-Aryl-3-chloroprop-2-eniminium Salts with Cyanoacetic Acid Derivatives and Sulfur Transfer Reagents 653

14.6.1.3 Method 3: By Formation of Two S–C Bonds .. 655
14.6.1.3.1 Method 1: Reaction of 1,5-Diketones with Sulfur Transfer Reagents .. 655
14.6.1.3.2 Variation 1: With Phosphorus Pentasulfide .. 656

14.6.1.3.3 Variation 2: With Hydrogen Sulfide in the Presence of Acid .. 657
14.6.1.3.4 Variation 3: With Hydrogen Sulfide in the Presence of Hydride Acceptors .. 659
14.6.1.3.5 Variation 4: With Hydrogen Sulfide in the Presence of a Lewis Acid .. 659

14.6.1.3.6 Variation 5: From Unsaturated 1,5-Diketones with Hydrogen Sulfide .. 660
14.6.1.4 Method 5: By Formation of One S–C and One C–C Bond .. 661
14.6.1.1 Method 1: Condensation of 3-Aminoprop-2-enethiones and
Cyanoacetic Acid Derivatives .. 661
14.6.1.2 Method 2: Reaction of 3-Aminoprop-2-enethiones with
N-(1-Chloroalkylidine)formamidinium Perchlorates 661
14.6.1.3 Method 3: Reaction of Thiophene-2- or Thiophene-3-thiols with
1,3-Diketones .. 662
14.6.1.4 Method 4: Reaction of 1,3-Dihydro-2H-indole-2-thiones with
1,3-Diketones .. 662
14.6.1.5 Method 5: Reaction of 3-Aryl-3-chloroprop-2-eniminium Salts with
Thioacetamides .. 663
14.6.1.6 Method 6: Reaction of Buta-1,3-dienes with Thiophosgene 663
14.6.1.5.1 Method 1: Reaction of Bis-hetaryl Sulfides with
Dichloromethyl Methyl Ether .. 664
14.6.1.6 By Formation of One S–C Bond .. 665
14.6.1.6.1 Method 1: Reaction of 6-Sulfanylhexa-3,5-dien-2-ones in the Presence of
Phosphoryl Chloride .. 665
14.6.1.6.2 Method 2: Reaction of 5-(Dimethylamino)penta-2,4-dienethioamides
with Perchloric Acid .. 665
14.6.2 Synthesis by Ring Transformation .. 666
14.6.2.1 Ring Enlargement .. 666
14.6.2.1.1 Method 1: Rearrangement of a 2-Thiabicyclo[3.1.0]hex-3-ene 666
14.6.2.2 Formal Exchange of Ring Members with Retention of Ring Size 667
14.6.2.2.1 Method 1: From Pyrylium Salts .. 667
14.6.2.2.2 Method 2: From 4H-Pyrans .. 671
14.6.3 Aromatization .. 671
14.6.3.1 By Elimination .. 671
14.6.3.1.1 Method 1: Dehydration–Hydride Abstraction of Fused Dihydro-
thiopyranols or Tetrahydrothiopyranols 671
14.6.3.1.2 Method 2: Reaction of 4H-Thiopyran-4-ones with Grignard Reagents and
Subsequent Elimination ... 674
14.6.3.1.3 Method 3: Reduction of Thiopyranones with Hydrides and
Subsequent Elimination ... 677
14.6.3.1.4 Method 4: Reformatsky Reaction of 4H-Thiopyran-4-ones 678
14.6.3.1.5 Method 5: Reaction of Tetrahydro-4H-thiopyran-4-ones with
Grignard Reagents and Subsequent Dehydration–Dehydro-
genation .. 679
14.6.3.1.6 Method 6: Reaction of 2H-Thiopyran-2-thiones with Peroxyacetic Acid 680
14.6.3.2 By Dehydrogenation ... 680
14.6.3.2.1 Method 1: Dehydrogenation of Dihydrothiopyranones 681
14.6.3.2.2 Method 2: Dehydrogenation of Fused Hydrothiopyrans 681
14.6.3.2.3 Method 3: Dehydrogenation of 2H-Thiopyrans 682
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.6.3.2.4</td>
<td>Method 4</td>
<td>Dehydrogenation of 4H-Thiopyrans</td>
<td>686</td>
</tr>
<tr>
<td>14.6.3.2.5</td>
<td>Method 5</td>
<td>Disproportionation of 2H- or 4H-Thiopyrans or Dihydrothiopyrans</td>
<td>689</td>
</tr>
<tr>
<td>14.6.3.3</td>
<td>By O-Alkylation</td>
<td></td>
<td>690</td>
</tr>
<tr>
<td>14.6.3.3.1</td>
<td>Method 1</td>
<td>O-Alkylation of 4H-Thiopyran-4-ones</td>
<td>690</td>
</tr>
<tr>
<td>14.6.3.4</td>
<td>By S-Alkylation or S-Acylation</td>
<td></td>
<td>690</td>
</tr>
<tr>
<td>14.6.3.4.1</td>
<td>Method 1</td>
<td>S-Alkylation of Thiopyranthiones</td>
<td>690</td>
</tr>
<tr>
<td>14.6.3.4.2</td>
<td>Method 2</td>
<td>S-Acylation of Thiopyranthiones</td>
<td>694</td>
</tr>
<tr>
<td>14.6.3.5</td>
<td>By O- or S-Functionalization and Substitution</td>
<td></td>
<td>694</td>
</tr>
<tr>
<td>14.6.3.5.1</td>
<td>Method 1</td>
<td>O-Functionalization and Substitution of 4H-Thiopyran-4-ones with Thionyl Chloride or Phosgene</td>
<td>694</td>
</tr>
<tr>
<td>14.6.3.5.2</td>
<td>Method 2</td>
<td>O-Functionalization and Substitution of 2H-Thiopyran-2-ones with Oxalyl Halides or Phosphorus Pentachloride</td>
<td>695</td>
</tr>
<tr>
<td>14.6.3.5.3</td>
<td>Method 3</td>
<td>O-Functionalization and Substitution of 4H-Thiopyran-4-ones with Chlorosulfonyl Isocyanate</td>
<td>696</td>
</tr>
<tr>
<td>14.6.3.5.4</td>
<td>Method 4</td>
<td>S-Functionalization and Substitution of 2H-Thiopyran-2-thiones with Oxalyl Halides or Phosphorus Pentachloride</td>
<td>697</td>
</tr>
<tr>
<td>14.6.3.6</td>
<td>By N-Protonation or N-Alkylation</td>
<td></td>
<td>698</td>
</tr>
<tr>
<td>14.6.3.6.1</td>
<td>Method 1</td>
<td>N-Protonation or N-Alkylation of Thiopyranimines</td>
<td>698</td>
</tr>
<tr>
<td>14.6.3.7</td>
<td>By Protonation of Alkylidenethiopyrans</td>
<td></td>
<td>699</td>
</tr>
<tr>
<td>14.6.3.7.1</td>
<td>Method 1</td>
<td>Protonation of Alkylidenethiopyrans and Their Derivatives</td>
<td>699</td>
</tr>
<tr>
<td>14.6.4</td>
<td>Synthesis by Substituent Modification</td>
<td></td>
<td>700</td>
</tr>
<tr>
<td>14.6.4.1</td>
<td>Substitution of Existing Substituents</td>
<td></td>
<td>700</td>
</tr>
<tr>
<td>14.6.4.1.1</td>
<td>Of Hydrogen</td>
<td></td>
<td>700</td>
</tr>
<tr>
<td>14.6.4.1.1.1</td>
<td>Method 1</td>
<td>Reaction with C-Nucleophiles</td>
<td>700</td>
</tr>
<tr>
<td>14.6.4.1.1.2</td>
<td>Method 2</td>
<td>Reaction with P-Nucleophiles</td>
<td>702</td>
</tr>
<tr>
<td>14.6.4.1.2</td>
<td>Of Heteroatoms</td>
<td></td>
<td>702</td>
</tr>
<tr>
<td>14.6.4.1.2.1</td>
<td>Method 1</td>
<td>Substitution of Halogen with C-Nucleophiles</td>
<td>702</td>
</tr>
<tr>
<td>14.6.4.1.2.2</td>
<td>Method 2</td>
<td>Substitution of Halogen by Oxygen, Sulfur, and Nitrogen Groups</td>
<td>703</td>
</tr>
<tr>
<td>14.6.4.1.2.3</td>
<td>Method 3</td>
<td>Substitution of Oxygen and Sulfur Groups</td>
<td>705</td>
</tr>
<tr>
<td>14.6.4.2</td>
<td>Modification of Substituents</td>
<td></td>
<td>706</td>
</tr>
<tr>
<td>14.6.4.2.1</td>
<td>Method 1</td>
<td>Condensation of Methyl Groups with Electrophiles</td>
<td>706</td>
</tr>
<tr>
<td>14.6.4.2.2</td>
<td>Method 2</td>
<td>Reactions of Substituents Other than Alkyl Groups</td>
<td>710</td>
</tr>
</tbody>
</table>
Product Class 7: Benzothiopyrylium Salts
W.-D. Rudorf

Product Subclass 1: 1-Benzothiopyrylium Salts

Synthesis by Ring-Closure Reactions

By Annulation to an Arene

By Formation of One S—C and One C—C Bond

Method 1: Cyclization of Benzenethiols with 1,3-Diketones
Method 2: Cyclization of Benzenethiols with Alkynals
Method 3: Cyclization of Benzenethiols with Haloalkenones
Method 4: Condensation of Benzenethiols with (2Z)-2-(Hydroxymethylene)cyclohexanones

By Formation of Two C—C Bonds

Method 1: Reaction of Diarylsulfanes with 1,1-Dichlorodimethyl Ether
Method 2: Intramolecular Condensation of (Arylsulfanyl)ketones and Subsequent Intermolecular Disproportionation
Method 2: Intramolecular Condensation of (Arylsulfanyl)ketones in the Presence of Trityl Chloride/Perchloric Acid

Aromatization

By Elimination

Method 1: From 2H-1-Benzothiopyrans
Method 2: From 4H-1-Benzothiopyrans
Method 3: From 4-Hydroxy-3,4-dihydro-2H-1-benzothiopyran S-Oxides
Method 4: From 1-Benzothiopyran-4(4H)-ones with Phosphoryl Chloride
Method 5: From 2-Hydroxy-2H-1-benzothiopyrans
Method 6: From 4-Hydroxy-4H-1-benzothiopyrans
Method 7: From 4-Hydroxy-3,4-dihydro-2H-1-benzothiopyrans

By Dehydrogenation

Method 1: From 2H-1-Benzothiopyrans
Method 2: From 4H-1-Benzothiopyrans
Method 3: From 3,4-Dihydro-2H-1-benzothiopyrans

By Reduction or Grignard Addition and Dehydration

Method 1: Grignard Addition and Dehydration of 1-Benzothiopyran-4(4H)-ones
Method 2: Reduction–Dehydration of 1-Benzothiopyran-4(4H)-ones
Method 1: From 1-Benzothiopyran-2(2H)- or 1-Benzothiopyran-4(4H)-ones

By Oxidation
14.7.1.2.5.1 Method 1: From 4-Alkylidene-4H-1-benzothiopyrans
14.7.1.3 Synthesis by Substituent Modification
14.7.1.3.1 Of Hydrogen
14.7.1.3.1.1 Method 1: Reaction with 1-Benzothiopyrylium Perchlorate
14.7.1.3.1.2 Method 2: Reaction with N,N-Dialkylanilines
14.7.1.3.1.3 Method 3: Oxidative Addition of Malonic Acid
14.7.1.3.2 Substitution of Heteroatoms
14.7.1.3.2.1 Method 1: Replacement of Halogen by Amines
14.7.2 Product Subclass 2: 2-Benzothiopyrylium Salts
14.7.2.1 Synthesis by Ring Transformation
14.7.2.1.1 By Formal Exchange of Ring Members with Retention of Ring Size
14.7.2.1.1.1 Method 1: Synthesis from Condensed Benzopyrylium Salts
14.7.2.2 Aromatization
14.7.2.2.1 By Elimination
14.7.2.2.1.1 Method 1: From 4-Hydroxy-3,4-dihydro-1H-2-benzothiopyrans
14.7.2.2.1.2 Method 2: Reaction of 1-Methyl-3-phenyl-2-benzopyrylium Salt with 1H-2-Benzothiopyran-1-thione
14.7.2.2.2 By Dehydrogenation
14.7.2.2.2.1 Method 1: From 1H-2-Benzothiopyrans
14.7.2.2.3 By Hydrolysis and Decarboxylation
14.7.2.2.3.1 Method 1: Cleavage of 1-(2,2-Dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)-3-phenyl-1H-2-benzothiopyran
14.7.2.2.4 By O-Functionalization
14.7.2.2.4.1 Method 1: Reaction of 1H-2-Benzothiopyran-4(3H)-ones with Triphenylcarbenium Perchlorate
14.7.3 Product Subclass 3: Dibenzo[b,d]thiopyrylium Salts
14.7.3.1 Aromatization
14.7.3.1.1 By Dehydrogenation
14.7.3.1.1.1 Method 1: From 6H-Dibenzo[b,d]thiopyrans with Sulfuryl Chloride/Perchloric Acid or Trifluoromethanesulfonic Acid
14.7.3.1.1.2 Method 2: From 6H-Dibenzo[b,d]thiopyrans with Triphenylcarbenium Perchlorate
14.7.3.1.2 By Elimination
14.7.3.1.2.1 Method 1: From 6H-Dibenzo[b,d]thiopyran 5-Oxides with Perchloric Acid
14.7.3.1.2.2 Method 2: From 6-Hydroxy-6H-dibenzo[b,d]thiopyrans with Perchloric Acid
14.7.4 Product Subclass 4: Dibenzo[b,e]thiopyrylium Salts
14.7.4.1 Synthesis by Ring-Closure Reactions
14.7.4.1 By Formation of Two S—C Bonds ... 760
14.7.4.1.1 Method 1: From Diarylmethanes and Sulfur 760
14.7.4.1.2 By Formation of Two C—C Bonds ... 760
14.7.4.1.2.1 Method 1: From Diarylsulfanes and 1,1-Dichlorodimethyl Ether 760
14.7.4.1.2.2 Method 2: From Diarylsulfanes and an Acid Chloride 761
14.7.4.2 Aromatization ... 762
14.7.4.2.1 By Elimination ... 762
14.7.4.2.2 By Dehydrogenation ... 764
14.7.4.2.2.1 Method 1: From 10-Hydroxy-10H-dibenzo[b,e]thiopyrans 762
14.7.4.2.2.2 By Reduction or Grignard Addition and Dehydration 765
14.7.4.2.3 By Reduction or Grignard Addition and Dehydration 765

14.8 Product Class 8: Thiopyranones and Thiopyranthiones
S. Faulkner, R. C. Whitehead, and R. J. Aarons

14.8 Product Class 8: Thiopyranones and Thiopyranthiones 771
14.8.1 Product Subclass 1: 2H-Thiopyran-2-ones .. 771
14.8.1.1 Synthesis by Ring-Closure Reactions .. 771
14.8.1.1.1 By Formation of One S—C and One C—C Bond 771
14.8.1.1.1.1 Method 1: Cyclization of Ester Enolates with Unsaturated Thiocarbonyl Compounds .. 771
14.8.1.1.1.1.1 Variation 1: Using Acyclic Thiocarbonyl Compounds 771
14.8.1.1.1.1.2 Variation 2: Using Cyclic Thiocarbonyl Compounds 772
14.8.1.1.2 By Formation of One S—C Bond ... 773
14.8.1.1.2.1 Method 1: Cyclization of 2,3,4,5-Tetrachloro-5-(methylsulfanyl)-penta-2,4-dienoyl Chloride .. 773
14.8.1.2 Synthesis by Ring Transformation .. 773
14.8.1.2.1 Method 1: Rearrangement of 2H-Pyran-2-thiones 773
14.8.1.2.1.1 Variation 1: Thermal Rearrangement by Reversible Electroyclic Ring Opening .. 773
14.8.1.2.1.2 Variation 2: Hydrolytic Ring Opening Followed by Ring Closure 774
14.8.1.3 Synthesis by Substituent Modification .. 775
14.8.1.3.1 Method 1: Transchalcogenation of 2H-Thiopyran-2-thiones 775
14.8.1.3.1.1 Variation 1: Lewis-Acid Mediated Hydrolysis 775
14.8.1.3.1.2 Variation 2: Oxidation Using the Nitronium Ion 775
14.8.2 Product Subclass 2: 2H-Thiopyran-2-thiones 776
14.8.2.1 Synthesis by Ring-Closure Reactions ... 776
14.8.2.1.1 By Formation of One S—C and Two C—C bonds .. 776
14.8.2.1.1.1 Method 1: Reaction of Enamines with Carbon Disulfide 776
14.8.3 Product Subclass 3: 4H-Thiopyran-4-ones ... 776
14.8.3.1 Synthesis by Ring-Closure Reactions ... 777
14.8.3.1.1 By Formation of One S—C and Two C—C Bonds 777
14.8.3.1.1.1 Method 1: Cyclization of Ketones with Thiocarbonyl Compounds 777
14.8.3.1.1.1.1 Variation 1: Base-Mediated Cyclization with Carbon Disulfide 777
14.8.3.1.1.1.2 Variation 2: Sequential Thio-Claisen Reactions 778
14.8.3.1.1.1.3 Variation 3: Reaction of 2-Acylketene Dithioacetals with Aryl Isothiocyanates .. 778
14.8.3.1.2 By Formation of Two S—C Bonds ... 779
14.8.3.1.2.1 Method 1: Addition of Hydrogen Sulfide, or its Equivalent, to Dialkynyl Ketones ... 779
14.8.3.1.2.1.1 Variation 1: Addition of Hydrogen Sulfide in Ethanol 780
14.8.3.1.2.1.2 Variation 2: Addition of Thioureas ... 780
14.8.3.1.2.1.3 Variation 3: Addition of Hydrogen Sulfide under Basic Conditions 781
14.8.3.2 Aromatization .. 781
14.8.3.2.1 Method 1: Dehydrogenation of Tetrahydrothiopyran-4-ones 781
14.8.3.2.1.1 Variation 1: With Phosphorus Pentachloride ... 781
14.8.3.2.1.2 Variation 2: With 2,3-Dichloro-5,6-dicyanobenzo-1,4-quinone 782
14.8.3.2.1.3 Variation 3: Dehydrogenation via an Intermediate Dihydrothiopyran-4-one ... 783
14.8.3.3 Synthesis by Substituent Modification .. 784
14.8.3.3.1 Method 1: Transchalcogenation of 4H-Thiopyran-4-thiones 784
14.8.4 Product Subclass 4: 4H-Thiopyran-4-thiones ... 784
14.8.4.1 Synthesis by Substituent Modification .. 784
14.8.4.1.1 Method 1: Transchalcogenation of Thiopyran-4-thiones 784
14.8.5 Product Subclass 5: 3-Hydroxythiopyrylium Salts .. 785
14.8.5.1 Aromatization .. 785
14.8.5.1.1 Method 1: Hydride Abstraction from Dihydrothiopyran-3-ones 785

14.9 Product Class 9: Benzothiopyranones and Benzothiopyranthiones
A. Nelson

14.9 Product Class 9: Benzothiopyranones and Benzothiopyranthiones 787
14.9.1 Product Subclass 1: 2H-1-Benzothiopyran-2-ones and 2H-1-Benzothiopyran-2-thiones ... 787
14.9.1.1 Synthesis by Ring-Closure Reactions ... 788
14.9.1.1.1 By Formation of One Heteroatom—Carbon and One C—C Bond 788
14.9.1.1.1 Method 1: Synthesis of 4-Hydroxy-2H-1-benzothiopyran-2-ones by Condensation of Benzenethiols with Malonic Acid Derivatives 788
14.9.1.1.2 Method 2: Synthesis of 4-Hydroxy-2H-1-benzothiopyran-2-ones by Claisen Condensation of a 2-Sulfanylbenzoate Ester with an Acetate Ester 788
14.9.1.1.3 Method 3: Synthesis of 4-Hydroxy-2H-1-benzothiopyran-2-thiones by Condensation of 2-Chlorophenyl Ketones with Carbon Disulfide 789

14.9.1.2 By Formation of One Heteroatom—Carbon Bond 790
14.9.1.2.1 Method 1: Cyclization of 3-(2-Sulfanylphenyl)prop-2-enoate Esters and Related Compounds 790
14.9.1.2.1.1 Variation 1: Cyclization of 3-(2-Sulfanylphenyl)prop-2-enoic Acids 790
14.9.1.2.1.2 Variation 2: Cyclization of 3-[2-(tert-Butylsulfanyl)phenyl]prop-2-enitriles and Related Compounds 790

14.9.1.3 By Formation of One C—C Bond 791
14.9.1.3.1 Method 1: Cyclization of Substituted S-Aryl Prop-2-enethioate Esters 791
14.9.1.3.1.1 Variation 1: Cyclization of an S-Aryl 3-Phenylprop-2-enethioate Ester 791
14.9.1.3.1.2 Variation 2: Cyclization of an S-Aryl 3-Methoxyprop-2-enethioate Ester 792
14.9.1.3.2 Method 2: Cyclization of an S-Aryl β-Oxo Thioate Ester 792
14.9.1.3.3 Method 3: Intramolecular Aldol Reactions 793
14.9.1.3.4 Method 4: Synthesis of 2H-1-Benzothiopyran-2-thiones by Rearrangement of Allyl Phenyl Sulfoxide and Oxidation 794

14.9.1.4 Aromatization 794
14.9.1.4.1 Method 1: Oxidation of a 3,4-Dihydro-2H-1-benzothiopyran-2-one 794

14.9.1.5 Synthesis by Substituent Modification 795
14.9.1.5.1 Modification of Heteroatoms 795
14.9.1.5.1.1 Method 1: Synthesis of 2H-1-Benzothiopyran-2-thiones by Reaction of 2H-1-Benzothiopyran-2-ones with Phosphorus Pentasulfide 795

14.9.2 Product Subclass 2: 4H-1-Benzothiopyran-4-ones and 4H-1-Benzothiopyran-4-thiones 795

14.9.2.1 Synthesis by Ring-Closure Reactions 796

14.9.2.2 By Formation of One Heteroatom—Carbon and Two C—C Bonds 796
14.9.2.2.1 Method 1: Coupling of 2-Iodobenzenethiol, an Allene, and Carbon Monoxide 796
14.9.2.2.2 By Formation of One Heteroatom—Carbon and One C—C Bond 797
14.9.2.2.2.1 Method 1: Condensation of a Benzenethiol Derivative with a β-Oxo Ester 797
14.9.2.2.2.2 Method 2: Condensation of a 2-Sulfanylbenzoic Acid with a β-Diketone 798
14.9.2.2.2.3 Method 3: Condensation of a 2-Sulfanylbenzoate Ester with a Penta-2,3-dienedioate 798
14.9.2.2.3 By Formation of Two C—C Bonds 799
14.9.2.2.3.1 Method 1: Reaction of Phosphorus Ylides with a 2-(Benzoylsulfanyl)benzoate Derivative 799
14.9.2.1.4 By Formation of One Heteroatom—Carbon Bond .. 800
14.9.2.1.4.1 Method 1: Cyclization of 2-(Methylsulfanyl)phenyl Alkynyl Ketones 800
14.9.2.1.4.2 Method 2: Cyclization of an 2-[2-(Acetylsulfanyl)benzoyl]-3-oxobutanoate .. 800
14.9.2.1.5 By Formation of One C—C Bond .. 801
14.9.2.1.5.1 Method 1: Base-Catalyzed Cyclization of S-(2-Acetylsulfanyl)Dialkylthiocarbamate Esters .. 801
14.9.2.2 Synthesis by Ring Transformation ... 801
14.9.2.2.1 Method 1: Tautomerization of a 4-Hydroxy-2H-1-benzothiopyran-2-thione .. 801
14.9.2.3 Aromatization ... 802
14.9.2.3.1 Method 1: Oxidation of a 2,3-Dihydro-4H-1-benzothiopyran-4-one 802
14.9.2.4 Synthesis by Substituent Modification ... 802
14.9.2.4.1 Method 1: Aldol Reaction and Isomerization ... 802
14.9.2.4.2 Method 2: Synthesis of 4H-1-Benzothiopyran-4-thiones by Reaction of 4H-1-Benzothiopyran-4-ones with Phosphorus Pentasulfide .. 803
14.9.3 Product Subclass 3: 1H-2-Benzothiopyran-1-ones and 1H-2-Benzothiopyran-1-thiones ... 803
14.9.3.1 Synthesis by Ring-Closure Reactions ... 804
14.9.3.1.1 By Formation of One Heteroatom—Carbon and Two C—C Bonds 804
14.9.3.1.1.1 Method 1: From 2-Chlorobenzoic Acid Derivatives by Halogen–Metal Exchange and Reaction with Carbon Disulfide and Iodomethane .. 804
14.9.3.1.2 By Formation of One Heteroatom—Carbon and One C—C Bond 805
14.9.3.1.2.1 Method 1: From N,N-Diethyl-2-methylbenzamide by Lithiation and Reaction with an O-Alkyl Benzenecarbothioate .. 805
14.9.3.1.3 By Formation of One Heteroatom—Carbon Bond 805
14.9.3.1.3.1 Method 1: By Hydrolysis and Cyclization of a Rhodanine Derivative 805
14.9.3.2 Aromatization ... 806
14.9.3.2.1 Method 1: From 4-Bromo-3,4-dihydro-1H-2-benzothiopyran-1-ones by Elimination .. 806
14.9.4 Product Subclass 4: 6H-Dibenzo[b,d]thiopyran-6-ones and 6H-Dibenzo[b,d]thiopyran-6-thiones ... 807
14.9.4.1 Synthesis by Ring-Closure Reactions ... 807
14.9.4.1.1 By Formation of One Heteroatom—Carbon and One C—C Bond 807
14.9.4.1.1.1 Method 1: Synthesis of 6H-Dibenzo[b,d]thiopyran-6-ones from Dibenzo[b,d]thiophene by Reductive Cleavage, Condensation with Carbon Dioxide, and Cyclization .. 807
14.9.4.1.2 By Formation of One Heteroatom—Carbon Bond 807
14.9.4.1.2.1 Method 1: Synthesis of 6H-Dibenzo[b,d]thiopyran-6-ones by Intramolecular Acylation ... 807
14.9.4.1.3 By Formation of One C—C Bond ... 808
14.9.4.1.3.1 Method 1: Synthesis of 6H-Dibenzo[b,d]thiopyran-6-thiones by Intramolecular Friedel–Crafts Reaction of a Chlorido-dithiocarbonate ... 808
14.9.5 Product Subclass 5: 10H-Dibenzo[b,e]thiopyran-10-ones and 10H-Dibenzo[b,e]thiopyran-10-thiones .. 808
14.9.5.1 Synthesis by Ring-Closure Reactions .. 809
14.9.5.1.1 By Formation of Two Heteroatom—Carbon Bonds 809
14.9.5.1.1.1 Method 1: From Diaryl Ketones by Reaction with Methanethiol Under Basic Conditions ... 809
14.9.5.1.2 By Formation of One Heteroatom—Carbon and One C—C Bond 810
14.9.5.1.2.1 Method 1: Condensation of a 2-Sulfanylbenzoic Acid with an Arene 810
14.9.5.1.2.2 Method 2: Condensation of a 2-Sulfanylbenzoate Derivative with a Benzyne ... 810
14.9.5.1.3 By Formation of Two C—C Bonds ... 811
14.9.5.1.3.1 Method 1: Diels–Alder Reactions of 3-Vinyl-4H-1-benzothiopyran-4-ones 811
14.9.5.1.4 By Formation of One C—C Bond .. 812
14.9.5.1.4.1 Method 1: Cyclization of 2-(Arylsulfanyl)benzoic Acids 812
14.9.5.2 Aromatization ... 812
14.9.5.2.1 Method 1: Oxidation of a 10H-Dibenzo[b,e]thiopyran 812
14.9.5.3 Synthesis by Substituent Modification ... 813
14.9.5.3.1 Modification of Heteroatoms ... 813
14.9.5.3.1.1 Method 1: Conversion of 10H-Dibenzo[b,e]thiopyran-10-ones into 10H-Dibenzo[b,e]thiopyran-10-thiones ... 813

14.10 Product Class 10: Selenopyrylium and Benzoselenopyrylium Salts
P. J. Murphy

14.10 Product Class 10: Selenopyrylium and Benzoselenopyrylium Salts 817
14.10.1 Product Subclass 1: Selenopyrylium Salts ... 818
14.10.1.1 Synthesis by Ring-Closure Reactions .. 818
14.10.1.1.1 By Formation of Two Heteroatom—Carbon Bonds 818
14.10.1.1.1.1 Method 1: By Reaction of 1,5-Diketones with Hydrogen Selenide 818
14.10.1.1.2 Method 2: By Reaction of 5-Chloropenta-2,4-dienenitriles with Sodium Hydrogen Selenide ... 820
14.10.1.1.2 Method 2: By Formation of One Heteroatom—Carbon and One C—C Bond 820
14.10.1.2 Method 1: From 2-Aminovinyl Selenoketones and Active Methylene Compounds .. 820
14.10.1.2 Aromatization .. 820
14.10.1.2.1 Method 1: By Aromatization of Selenopyrans ... 820
14.10.1.2.2 Method 2: By Dehydration of 4-Hydroxyselepyrans ... 823
14.10.1.3 Synthesis by Substituent Modification .. 824
14.10.1.3.1 Substitution of Existing Substituents ... 825
14.10.1.3.2 Modification of Substituents .. 825
14.10.1.3.2.1 Of Carbon Functionalities ... 825
14.10.1.3.2.1.1 Method 1: By Protonation of 4-Methylene-4-H-selenopyrans 825
14.10.1.3.2.1.2 Method 2: From 4-Methylene-4-H-selenopyrans by Modification of Remote Functions .. 826
14.10.1.3.2.1.3 Method 3: Condensation of 2- and 4-Alkylselepyrylium Salts with Carbonyl Compounds .. 826
14.10.1.3.2.1.4 Method 4: Condensation of 4-Alkylselepyrylium Salts with Ethyl N-Phenylformimidate .. 833
14.10.1.3.2.2 Of Oxygen Functionalities .. 835
14.10.1.3.2.2.1 Method 1: By Condensation of Selenopyran-4-ones with 4-Methyl-2,6-diorganotelluropyrylium Salts 835
14.10.1.3.2.2.2 Method 2: By Chlorination of Selenopyran-4-ones Using Oxalyl Chloride 835
14.10.1.4 Miscellaneous Reactions ... 836
14.10.2 Product Subclass 2: Benzo- and Dibenzo-Selepyrylium Salts .. 836
14.10.2.1 Synthesis by Ring-Closure Reactions .. 836
14.10.2.1.1 By Formation of Two Heteroatom—Carbon Bonds .. 836
14.10.2.1.1.1 Method 1: From N,N,N’,N’-Tetramethyl-4,4’-methyleneedianiline and Selenious Acid .. 836
14.10.2.1.2 By Formation of One Heteroatom—Carbon Bond .. 836
14.10.2.1.2.1 Method 1: From Bis-selenocyanates ... 836
14.10.2.2 Aromatization ... 837
14.10.2.2.1 Method 1: By Aromatization of Benzo- and Dibenzo-Selepyrylium Salts 837
14.10.2.2.2 Method 2: By Decarbonylation or Decarboxylation of Dibenzo-Selepyrylium Salts .. 840
14.10.2.2.3 Method 3: By Elimination of N-Methyltoluenesulfonamide from Arylsulfonylselenimines .. 840
14.10.2.2.4 Method 4: By Dehydration of 4-Hydroxyselepyrylium Salts 841
14.10.2.3 Synthesis by Substituent Modification .. 843
14.10.2.3.1 Substitution of Existing Substituents ... 843

Science of Synthesis Original Edition Volume 14
© Georg Thieme Verlag KG
14.10.2.3.1.1 Of Hydrogen ... 843
14.10.2.3.1.2 Of Heteroatoms .. 844
14.10.2.3.2 Modification of Substituents .. 844
14.10.2.3.2.1 Of Carbon Functionalities ... 844
14.10.2.3.2.1.1 Method 1: By Condensation of 4-Alkyl-1-benzoselenopyrylium and 10-Alkyl dibenzoselenopyrylium Salts with Aldehydes 844
14.10.2.3.2.1.2 Method 2: By Condensation of 4-Alkyl-1-benzo- and 10-Alkyl dibeno[b,e]selenopyrylium Salts with Formamides 847
14.10.2.3.2.1.3 Method 3: By Condensation of 4-Alkyl-1-benzoselenopyrylium Salts with Ethyl N-Phenylformimidate 848
14.10.2.3.2.1.4 Method 4: By Condensation of 4-Alkyl-1-benzoselenopyrylium Salts with Thiazolium Betaines 849
14.10.2.3.2.1.5 Method 5: By Condensation of 10H-Dibenzo[b,e]selenopyran-10-ylidene- acetaldehyde with Active Methyl Compounds 849
14.10.2.3.2.2 Of Oxygen Functionalities .. 850
14.10.2.3.2.2.1 Method 1: By Methylation of Selenopyran-4-ones 850
14.10.2.3.2.2.2 Of Oxygen Functionalities .. 850
14.11 Product Class 11: Selenopyranones and Benzoselenopyranones

14.11.1 Product Subclass 1: 2H-Selenopyran-2-ones and 4H-Selenopyran-4-ones

14.11.1.1 Synthesis by Ring-Closure Reactions ... 856
14.11.1.1.1 Method 1: 4H-Selenopyran-4-ones by Addition of Dibasic Selenide to Diethynyl Ketones 856
14.11.1.1.2 By Formation of One Se—C and One C—C Bond 858
14.11.1.1.2.1 Method 1: 2H-Selenopyran-2-ones from 2-Aminovinyl Selenoketones 858
14.11.1.2 Synthesis by Substituent Modification 858
14.11.1.2.1 Substitution of Existing Substituents 858
14.11.1.2.1.1 Of Hydrogen ... 858
14.11.1.2.1.1.1 Method 1: Lithiation of 4H-Selenopyran-4-ones 858
14.11.1.2.1.1.2 Method 2: 4H-Selenopyran-4-ones by Oxidation of 4H-Selenopyrans 859
14.11.1.2.1.1.3 Method 3: 4H-Selenopyran-4-ones by Oxidation of 1-Methyl-1\(\alpha^4\)-selenopyrans 859
14.11.1.2.1.2 Of Metals ... 860
14.11.1.2.1.2.1 Of Lithium ... 860
14.11.1.2.1.2.1.1 Method 1: Reaction of (2,6-Di-tert-butyl-4-oxo-4H-selenopyran-3-yl)- lithium with Electrophiles 860
14.11.1.2.1.3 Of Carbon Functionalities ... 860
14.11.2.1.3.1 Method 1: 4H-Selenopyran-4-ones by Oxidation of 4-Methylene-4H-selenopyrans 860
14.11.2.1.2 Method 1: 4H-Selenopyran-4-thiones from 4H-Selenopyran-4-ones 861
14.11.2 Product Subclass 2: Benzo- and Dibenzoselenopyranones .. 862
14.11.2.1 Synthesis by Ring-Closure Reactions .. 862
14.11.2.1.1 By Annulation to an Arene ... 862
14.11.2.1.1.1 Method 1: By Reaction of 2-Bromophenyl Ethynyl Ketones with Sodium Hydrogen Selenide ... 862
14.11.2.1.1.2 By Formation of One Se—C Bond ... 863
14.11.2.1.1.2.1 Method 1: By the Simonis Reaction .. 863
14.11.2.1.1.2.2 Method 2: From 2-(Chloroselanyl)benzoyl Chloride via Electrophilic Aromatic Substitution ... 863
14.11.2.1.1.2.3 Method 3: By Reaction of Se-Lithiated Selenosalicylamide Derivatives with Benzyne ... 864
14.11.2.1.1.2.4 Method 4: By Photochemical Rearrangement of Aryl Selenoesters 865
14.11.2.1.1.3 By Formation of One Se—C Bond ... 865
14.11.2.1.1.3.1 Method 1: By Cyclization of Ethynyl 2-(Methylselanyl)phenyl Ketones 865
14.11.2.1.1.3.2 Method 2: By Cyclization of Phenyl Selenocinnamates .. 866
14.11.2.1.1.3.3 Method 3: By Electrophilic Cyclization of Methyl Selenides 866
14.11.2.1.1.3.4 Method 4: By Selenolactonization .. 868
14.11.2.1.1.4 By Formation of One C—C Bond ... 868
14.11.2.1.1.4.1 Method 1: By Aromatic Electrophilic Substitution ... 868
14.11.2.2 Synthesis by Ring Transformation .. 872
14.11.2.2.1 Method 1: By Rearrangement of Substituted Benzo[b]selenophen-3(2H)-ones 872
14.11.2.2.3 Aromatization ... 872
14.11.2.3.1 Method 1: By Dehydrogenation of 2,3-Dihydro-4H-1-benzoselenopyran-4-ones 872
14.11.2.3.2 Method 2: Oxidation of Benzoselenopyrans .. 873
14.11.2.4 Synthesis by Substituent Modification ... 873
14.11.2.4.1 Substitution of Existing Substituents ... 873
14.11.2.4.1.1 Of Hydrogen ... 874
14.11.2.4.1.1.1 Method 1: Lithiation of 4H-1-Benzoselenopyran-4-ones .. 874
14.11.2.4.1.1.2 Method 2: Electrophilic Alkylation of 4-Hydroxy-2H-1-benzoselenopyran-2-one 874
14.11.2.4.1.1.3 Method 3: Oxidation of Dibenzoselenopyrylium Salts .. 875
14.11.2.4.1.2 Of Carbon Functionalities ... 875
14.11.2.4.1.2.1 Method 1: Decarboxylation .. 875
14.11.2.4.1.3 Of Oxygen ... 875
14.11.2.4.1.3.1 Method 1: Preparation of a 10H-Dibenzo[b,e]selenopyran-10-one Ylide 875
14.11.2.4.2 Addition Reactions .. 876
14.11.2.4.2.1 Method 1: Oxidation of the Selenium Atom 876
14.11.2.4.2.2 Method 2: Addition of Dihalogen to the Selenium Atom 876
14.11.2.4.3 Modification of Substituents .. 876
14.11.2.4.3.1 Method 1: Preparation of Benzo- and Dibenzoselenopyranthiones 877
14.11.2.4.3.2 Method 2: By Condensation of 2-Methyl-4H-1-benzoselenopyran-4-one with a Thiazolium Betaine 877

14.12 Product Class 12: Telluropyrylium and Benzotelluropyrylium Salts
P. J. Murphy

14.12.1 Product Class 12: Telluropyrylium and Benzotelluropyrylium Salts 881
14.12.1.1 Aromatization ... 882
14.12.1.1.1 Method 1: By Aromatization of Telluropyrans 882
14.12.1.1.2 Method 2: By Dehydration of Telluropyran-4-ols 882
14.12.1.2 Synthesis by Substituent Modification 884
14.12.1.2.1 By Modification of Carbon Functionalities 884
14.12.1.2.1.1 Method 1: By Isomerization of 4-Methylenetelluropyrans 884
14.12.1.2.1.2 Method 2: By Hydrolysis of 4-Methylenetelluropyrans 884
14.12.1.2.1.3 Method 3: By Condensation of 4-Alkyltelluropyrylium Salts with Carbonyl and Thiocarbonyl Compounds 885
14.12.1.2.1.4 Method 4: By Condensation of 4-(Formylmethylene)telluropyran with 4-Alkyl-2,6-diorganochalcogenopyrylium Salts 888
14.12.1.2.2 By Modification of Oxygen Functionalities 889
14.12.1.2.2.1 Method 1: By Alkylation of 4H-Telluropyran-4-ones 889
14.12.2 Product Subclass 2: Benzo- and Dibenzotelluropyrylium Salts 890
14.12.2.1 Aromatization ... 890
14.12.2.1.1 Method 1: By Aromatization of Benzo- and Dibenzotelluropyrans 890
14.12.2.1.2 Method 2: By Dehydration of Benzotelluropyran-4-ols 891
14.12.2.2 Synthesis by Substituent Modification 893
14.12.2.2.1 By Modification of Carbon Functionalities 893
14.12.2.2.1.1 Method 1: By Condensation of 2-Methylbenzotelluropyrylium Salts with Carbonyl Compounds 893
14.12.2.2.2 By Modification of Oxygen Functionalities 894
14.12.2.2.2.1 Method 1: By Alkylation of Benzotelluropyran-4-ones 894
14.12.2.2.2.2 Method 2: By Reaction with Fluorides 894
14.13 Product Class 13: Telluropyranones and Benzotelluropyranones
P. J. Murphy

14.13.1 Product Subclass 1: 2H-Telluropyran-2-ones and 4H-Telluropyran-4-ones

14.13.1.1 Synthesis by Ring-Closure Reactions

14.13.1.1.1 By Formation of Two Te—C Bonds

14.13.1.1.1 Method 1: By Addition of Sodium/Lithium Telluride to Diethynyl Ketones

14.13.1.1.2 Synthesis by Substituent Modification

14.13.1.2.1 Substitution of Existing Substituents

14.13.1.2.1.1 Of Hydrogen

14.13.1.2.1.1 Method 1: Lithiation of 4H-Telluropyran-4-ones

14.13.1.2.1.2 Of Metals

14.13.1.2.1.2.1 Of Lithium

14.13.1.2.1.2.1 Method 1: Telluration of (2,6-Di-tert-butyl-4-oxo-4H-telluropyran-3-yl)-lithium

14.13.1.2.1.2.2 Method 2: Reaction of (2,6-Di-tert-butyl-4-oxo-4H-telluropyran-3-yl)-lithium with Benzaldehyde

14.13.1.2.1.3 Of Carbon Functionalities

14.13.1.2.1.3.1 Method 1: Oxidation of 4-Methylene-4H-telluropyrans

14.13.1.2.2 Addition Reactions

14.13.1.2.2.1 Method 1: Addition of Dihalogen to the Tellurium Atom

14.13.1.2.2.2 Method 2: Formation of Te,Te-Diacetates

14.13.1.2.3 Modification of Substituents

14.13.1.2.3.1 Method 1: 4H-Telluropyran-4-thiones from 4H-Telluropyran-4-ones

14.13.2 Product Subclass 2: Benzo- and Dibenzotelluropyranones

14.13.2.1 Synthesis by Ring-Closure Reactions

14.13.2.1.1 By Annulation to an Arene

14.13.2.1.1.1 By Formation of Two Te—C Bonds

14.13.2.1.1.1 Method 1: By Reaction of 2-Bromophenyl Ethynyl Ketones with Sodium Hydrogen Telluride

14.13.2.1.1.2 Method 2: Preparation of 10H-Dibenzo[b,e]telluropyran-10-one from a Bis-diazonium Salt

14.13.2.1.1.2 By Formation of One Te—C and One C—C Bond

14.13.2.1.2.1 Method 1: By Photochemical Rearrangement of Phenyl Telluroesters

14.13.2.1.3.1 Method 1: 4H-1-Benzotelluropyran-4-ones by Cyclization of Benzenetellurenyl Bromides

14.13.2.1.3.2 Method 2: By Electrophilic Cyclization of Methyl Tellurides
14.13.2.1.4 By Formation of One C—C Bond .. 906
14.13.2.1.4.1 Method 1: By Cyclization of Carboxyvinyl Phenyl Tellurides 906
14.13.2.2 Synthesis by Substituent Modification ... 908
14.13.2.2.1 Substitution of Existing Substituents ... 908
14.13.2.2.1.1 Of Hydrogen ... 908
14.13.2.2.1.1.1 Method 1: Lithiation of 4H-1-Benzotelluropyran-4-one 908
14.13.2.2.1.1.2 Method 2: Oxidation of Dibenzotelluropyrans 908
14.13.2.2.1.1.3 Method 3: Hydrolysis of Benzotelluropyrylium Salts 909
14.13.2.2.2 Addition Reactions ... 909
14.13.2.2.2.1 Method 1: Addition of Dihalogen to the Tellurium Atom 909
14.13.2.2.2.2 Method 2: Formation of Te,Te-Diacetates .. 910
14.13.2.2.3 Modification of Substituents ... 910
14.13.2.2.3.1 Method 1: Preparation of Benzo- and Dibenzotelluropyranthiones
Using Lawesson’s Reagent ... 910
14.13.2.2.3.2 Method 2: Reduction of Te,Te-Dihalo- and Te,Te-Bis(acetyloxy)-
dibenzo[telluropyranones .. 911
14.13.2.2.3.3 Method 3: Hydrolysis of Benzotelluropyrylium Salts 912

Keyword Index ... 915

Author Index ... 959

Abbreviations ... 1005
Table of Contents

Volume 15: Six-Membered Hetarenes with One Nitrogen or Phosphorus Atom

Preface ... V
Volume Editor’s Preface ... VII
Table of Contents .. XI

Introduction
D. StC. Black .. 1

15.1 Product Class 1: Pyridines
D. Spitzner ... 11

15.2 Product Class 2: Pyridinones and Related Systems
P. A. Keller .. 285

15.3 Product Class 3: Quinolines
R. D. Larsen and D. Cai .. 389

15.4 Product Class 4: Quinolinones
R. D. Larsen ... 551

15.5 Product Class 5: Isoquinolines
M. Álvarez and J. A. Joule .. 661

15.6 Product Class 6: Isoquinolinones
M. Álvarez and J. A. Joule .. 839

15.7 Product Class 7: Quinolizinium Salts and Benzo Analogues
H. Ihmels ... 907

15.8 Product Class 8: Naphthyridines
P.-W. Phuan and M. C. Kozlowski 947

15.9 Product Class 9: Acridines
R. H. Prager and C. M. Williams 987

15.10 Product Class 10: Acridin-9(10H)-ones and Related Systems
R. H. Prager and C. M. Williams 1029

15.11 Product Class 11: Phenanthridines
P. A. Keller .. 1065

15.12 Product Class 12: Phenanthroindolines and Related Systems
P. A. Keller .. 1089

15.13 Product Class 13: 1\^3-Phosphinines
F. Mathey and P. Le Floch 1097
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.14</td>
<td>Product Class 14: (\lambda^5)-Phosphinines</td>
<td>R. Streubel</td>
<td>1157</td>
</tr>
<tr>
<td>15.15</td>
<td>Product Class 15: Benzo-Fused And Other Annulated Phosphinines</td>
<td>U. Bergsträßer</td>
<td>1181</td>
</tr>
<tr>
<td></td>
<td>Keyword Index</td>
<td></td>
<td>1191</td>
</tr>
<tr>
<td></td>
<td>Author Index</td>
<td></td>
<td>1249</td>
</tr>
<tr>
<td></td>
<td>Abbreviations</td>
<td></td>
<td>1315</td>
</tr>
</tbody>
</table>
Table of Contents

Introduction
D. StC. Black

15.1 Product Class 1: Pyridines
D. Spitzner

15.1 Product Class 1: Pyridines .. 11
15.1.1 Product Subclass 1: Pyridines .. 11
15.1.1.1 Synthesis by Ring-Closure Reactions 13
15.1.1.1.1 By Formation of Two N—C and Two C—C Bonds 13
15.1.1.1.1.1 Fragments C—C, C—C, N, and C .. 13
15.1.1.1.1.1.1 Method 1: From 1,3-Diketones or β-Oxo Esters, Aldehydes, and Ammonia, with Subsequent Oxidation (Hantzsch Pyridine Synthesis) 13
15.1.1.1.1.1.1 Variation 1: An Abnormal Ring Closure 14
15.1.1.1.1.1.1 Variation 2: From β-Oxo Cyanides, Aldehydes, and Ammonium Salts 15
15.1.1.1.1.1.1 Variation 3: Alkyl- and Arylpyridines from Aldehydes and Ammonium Salts (Tschitschibabin Synthesis) .. 15
15.1.1.1.1.1.1 Variation 4: From Ketones, Iminium Compounds, and Ammonium Salts .. 16
15.1.1.1.2 By Formation of One N—C Bond and Three C—C Bonds 16
15.1.1.1.2.1 Fragments N—C, C—C, C, and C ... 16
15.1.1.1.2.1 Method 1: From Aldehydes, Nitriles, and Methylphosphonates 17
15.1.1.1.3 By Formation of Two N—C Bonds and One C—C Bond 18
15.1.1.1.3.1 Fragments C—C—C, C—C, and N ... 18
15.1.1.1.3.1.1 Method 1: From Enamines, α,β-Unsaturated Carbonyl Compounds, and Hydroxylamine or Ammonium Salts 18
15.1.1.1.3.1.1 Variation 1: From Enamines, α,β-Unsaturated Aldehydes, and Hydroxylamine ... 18
15.1.1.1.3.1.2 Variation 2: From Acyl Enamines, Ketones, and Ammonium Salts 18
15.1.1.1.3.1.2 Variation 3: From Ketones, α,β-Unsaturated Aldehydes or Ketones, and Ammonium Salts .. 19
15.1.1.1.3.1.2 Method 2: From Acylketene Dithioacetals, Ketones, and Ammonium Salts 21
15.1.1.1.3.1.3 Method 3: From Sulfonium Salts or Sulfur Ylides, α,β-Unsaturated Carbonyl Compounds, and Ammonium Salts 22
15.1.1.1.3.1.4 Method 4: From 1-(2-Oxoalkyl)pyridinium (or Quinolinium/Isoquinolinium) Compounds, α,β-Unsaturated Carbonyl Compounds, and Ammonium Salts .. 23
15.1.1.1.3.1.4 Variation 1: Cyclization of Ketones with Mannich Salts in the Presence of Ammonium Salts .. 24
15.1.1.1.3.1.5 Method 5: From Propynols, Enamines, and Ammonium Salts by a Four-Component, One-Pot Procedure 25
Variation 1: From Propynols, Ketones, and Ammonium Salts

By Formation of One N—C Bond and Two C—C Bonds

Fragments N—C, C—C, and C—C

Method 1: From Nitriles and Alkynes

Variation 1: From Nitriles and Alkynes by Catalyzed [2+2+2] Cycloaddition

Method 2: From Hydrazones and Alkynes

Method 3: From Imines and Aldehydes

Method 4: From 1-Substituted Phthalazines and Ynamines

Fragments N—C—C, C—C, and C

Method 1: From Malononitrile, Aldehydes, and Nucleophiles

Variation 1: From Malononitrile, Aldehydes, Ketones, and Ammonium Salts

Variation 2: From Malononitrile and 1,1-Diethoxy-N,N-dimethylalkanamines or Orthoformates

Method 2: From Lithiated Dimethylhydrazones, α,β-Unsaturated Ketones, and α-Oxo Cyanides

Method 3: From Enamines, Aldehydes, and 1,3-Dicarbonyl Compounds (Hantzsch Variation)

Method 4: From [(Diphenylphosphoryl)imino]ethanes and Aromatic Aldehydes

Method 5: From [(Triphenylphosphoranylidene)amino]alkenes, Isocyanates, and Enamines

Fragments C—C—C, N—C, and C

Method 1: Pyridin-3-ols from (2-Azaallenyl)pentacarbonylchromium Complexes, Alkynes, and Carbon Monoxide

By Formation of Three C—C Bonds

Fragments C—N—C, C—C, and C

Method 1: Pyridin-3-ols from (2-Azaallenyl)pentacarbonylchromium Complexes, Alkynes, and Carbon Monoxide

By Formation of Two N—C Bonds

Fragments C—C—C—C—C and N

Method 1: From 1,5-Dioxo Compounds and Hydroxylamine

Variation 1: From Partially or Fully Protected 1,5-Dioxo Compounds and Hydroxylamine

Variation 2: From Penta-2,4-dienals and Hydroxylamine

Method 2: From 1,5-Dioxo Compounds and Ammonia or Ammonium Salts

Variation 1: From Hydroxy- or Halo-1,5-dioxa Compounds and Ammonia or Ammonium Salts

Variation 2: From α,β-Unsaturated 1,5-Dioxo Compounds (or Partially Protected Compounds) and Ammonia or Ammonium Salts

Method 3: From Pentamethinammonium Salts and Ammonium Salts
By Formation of One N—C and One C—C Bond .. 44

Fragments N—C—C—C and C—C .. 44

Method 1: From (Alkoxymethylene)malononitriles, Enamines, and Ammonia .. 44

Variation 1: From Aryldienemalononitriles and Ketones 45

Method 2: From Malononitrile and Alkyl Halides under Lewis Acid Catalysis 46

Variation 1: From N-Alklycyanooacetamides or N,N-Dialklycyanooacetamides in the Presence of Phosphoryl Chloride 47

Method 3: From 3-Aminopropanals and Ketones or 1,3-Dicarbonyl Compounds ... 48

Method 4: From 1-Aza-1,3-dienes and Alkenes or Alkynes 48

Variation 1: From Aryldienemalononitriles and Ketones 49

Variation 2: From 1-Alkoxybuta-1,3-dienes and Activated Nitriles 51

Variation 3: Cyclization of an Intermediate 1-(Dimethylamino)-1-aza-1,3,5-triene .. 51

Variation 4: From 1-Aza-1,3-dienes and Alkenes or Alkynes 52

Variation 5: From 3-[(Triphenylphosphoranylidene)amino]propenals and Acetylenic Esters .. 53

Variation 6: From 1-Aza-1,3-dienes (Fischer Carbene Complexes) and Alkynes ... 55

Method 5: From Acrylonitrile and 2,2-Dichlorinated Aldehydes 55

Method 6: From β-Oxo Carbonyl Compounds and Enaminonitriles 57

Fragments C—C—C—C and N—C .. 58

Method 1: From Alkylidenemalononitriles and Activated Nitriles 58

Method 2: From Lithiated α,β-Unsaturated Aldimines and Nitriles 59

Method 3: From Bicyclic Acetals and Nitriles 60

Method 4: From Hetero-[4 + 2] Cycloaddition of Dienes with Nitriles 60

Variation 1: From Push–Pull "Captodative" Activated 1,3-Dienes and Nitriles 61

Variation 2: From 1-Alkoxybuta-1,3-dienes and Activated Nitriles 61

Variation 3: Intramolecular Hetero-[4 + 2] Cycloaddition of Dienes with (Hydroxyimino)malonates ... 62

Variation 4: Hetero-[4 + 2] Cycloaddition of Dienes with N-(Sulfonyloxy)imines ... 62

Fragments N—C—C and C—C—C .. 63

Method 1: From α-Halogenated Cyanides and α,β-Unsaturated Aldehydes 63

Variation 1: From α-(1H-1,2,3-Benzotriazol-1-yl)-Substituted Cyanides and α,β-Unsaturated Ketones .. 64
15.1.1.7.3.2 Method 2: From Malonamide Derivatives and Unsaturated Compounds

15.1.1.7.3.2.1 Variation 1: From Malononitrile and Unsaturated Compounds in the Presence of a Nucleophile

15.1.1.7.3.3 Method 3: From Enamines and α,β-Unsaturated Cyanides

15.1.1.7.3.4 Method 4: From Enamines or Imines and [3-(Dimethylamino)allylidene]-ammonium Salts

15.1.1.7.3.5 Method 5: From Acyl Enamines and α,β-Unsaturated Carbonyl Compounds

15.1.1.7.3.5.1 Variation 1: From Functionalized Enamines and Alkynes (Bohlmann–Rahtz Synthesis)

15.1.1.7.3.5.2 Variation 2: From Functionalized Enamines and α,β-Unsaturated Carbonyl Compounds

15.1.1.7.3.5.3 Variation 3: From Enaminonitriles and 1,3-Diketone Enol Ethers (Guareschi–Thorpe-Type Reaction)

15.1.1.7.3.5.4 Variation 4: From Enaminonitriles and 1,3-Diketone Enol Ethers

15.1.1.7.3.5.5 Variation 5: From N,N-Bis(silylated) Enamines and α,β-Unsaturated Carbonyl Compounds

15.1.1.7.3.5.6 Variation 6: From 3-Oxoalkanimidamides or Acyl Enamines and 1,1,3,3-Tetraalkoxypropanes

15.1.1.7.3.5.7 Variation 7: From 3-Oxoalkanimidamides or Acyl Enamines and 1,1,3,3-Tetraalkoxypropanes

15.1.1.7.3.5.8 Variation 8: From 3-Oxoalkanimidamides or Acyl Enamines and 1,1,3,3-Tetraalkoxypropanes

15.1.1.7.3.5.9 Variation 9: From Enaminonitriles and α,β-Unsaturated Carbonyl Compounds

15.1.1.7.3.6 Method 6: From Enaminonitriles and Alkynyl Ortho Amides

15.1.1.7.3.7 Method 7: From Lithiated Imines and α,β-Unsaturated Carbonyl Compounds

15.1.1.7.3.8 Method 8: From (Vinylimino)phosphoranes and α,β-Unsaturated Carbonyl Compounds (Aza-Wittig Reaction)

15.1.1.7.3.9 Variation 1: From [Diphenylphosphoryl]imino]alkanes and α,β-Unsaturated Aldehydes or Ketones

15.1.1.7.4 Fragments N—C—C—C and C—C

15.1.1.7.4.1 Method 1: From Iminophosphoranes and Isocyanates by a Domino Aza-Wittig Electrocyclization Reaction

15.1.1.7.4.2 Method 2: From Alkylidenemalononitriles

15.1.1.7.4.3 Method 3: From 1-Amino-4-nitro-1,3-dienes and Orthoformates or Acetic Anhydride

15.1.1.8 By Formation of Two C—C Bonds

15.1.1.8.1 Fragments C—N—C—C and C—C

15.1.1.8.1.1 Method 1: From N-Vinylcarbodiimides and Alkynes

15.1.1.8.1.2 Method 2: From 2-Azabuta-1,3-dienes and Alkynes

15.1.1.8.1.2.1 Variation 1: From 2-Aza-1,3-dienes and Enamines
Variation 2: Intramolecular Reaction of Neutral 2-Aza-1,3-dienes with Alkynes or Alkenes .. 84

Method 3: From Vinyl Isocyanides and Alkynes 85

Fragments C—N—C and C—C—C .. 85

Method 1: From 2-Azaallyl Anions and 2-(Iodomethyl)-3-(trimethylsilyl)prop-1-ene ... 85

Method 2: From Nitrile Ylides and Methylenecyclopropenes 85

Method 3: From 2-Azapropenylium Salts and Enamines 86

Fragments C—C—N—C—C and C .. 86

Method 1: From 3-Azapenta-1,3-dienes by Carbonylation 86

Method 2: From 3-Azapenta-1,3-dienes and Aldehydes or Imines 87

By Formation of One N—C Bond .. 87

Fragment N—C—C—C—C—C .. 87

Method 1: Cyclization of 2-Substituted Pentanedinitriles with Nucleophiles .. 87

Variation 1: Cyclization of 1,1,3,3-Tetracyanopropenide Salts with Nucleophiles .. 88

Variation 2: Cyclization of Pentanedinitriles with Carbon Nucleophiles 89

Method 2: From Halogenated 5-Oxoalkanenitriles (or Their Acetals) 90

Variation 1: Cyclization of 3-Hydroxy-5,5-bis(methylsulfanyl)pent-4-enenitriles with Acid .. 90

Variation 2: Cyclization of 4-Oxopentane-1,1,2,2-tetracarbonitrile with Nucleophiles .. 91

Method 3: From Push–Pull Alka-2,4-dienenitriles 91

Method 4: From Alka-2,4-dienal Oximes (1-Hydroxy-1-azahexa-1,3,5-trienes) ... 92

Variation 1: Selenium-Induced Cyclization of Alk-4-enone Oximes 94

Variation 2: Cyclization of 5-Aminoalk-4-enal Oximes 94

Method 5: From Pentane-1,5-dione Mono(dimethylhydrazone) Equivalents .. 95

Variation 1: From Pentane-1,5-dione Mono- or Dioximes 95

Variation 2: From Oxo Imidates ... 96

Method 6: From Tri-O-acetylated Sugar Diamides 97

Method 7: From 5-(Hydroxyimino)alkanenitriles 97

Method 8: From 4-Amino-1-aza-1,3,5-trienes (3-Amino-2,4-dienone Imines) ... 98

Variation 1: Thermal Condensation of Alka-2,4-dienal Dimethylhydrazones [1-(Dimethylamino)-1-aza-1,3,5-trienes] 98

Method 9: Cyclization of Iminoalkenynes in Polyphosphoric Acid 99

By Formation of One C—C Bond .. 99

Fragment C—N—C—C—C—C .. 99

Method 1: From N-(Buta-1,3-dienyl)carbodiimides 99

Method 2: From N-Acylbuta-1,3-dien-1-amines 100

Method 3: From 2-Azahexa-1,3,5-trienes 100

Fragment C—C—N—C—C—C .. 100
15.1.1.10.2.1 Method 1: From O-Allyloximes by Thermal Rearrangement, Followed by Cyclization .. 100
15.1.1.10.2.2 Method 2: By Amino-Claisen Rearrangement 101
15.1.1.10.2.3 Method 3: From 3-Azahepta-1,3,5-trienes 101
15.1.1.10.2.3.1 Variation 1: Model for Prebiotic Pyridine Synthesis 102
15.1.1.10.2.4 Method 4: From 3-Azahepta-1,3-dien-5-yne................. 102
15.1.1.10.2.5 Method 5: From [(2-(Pyrrolidin-1-yl)prop-1-enyl]iminomalononitriles ... 103
15.1.1.10.2.6 Method 6: Oxidative Cyclization of Hydroxy Enaminones 103
15.1.1.10.2.3.1 Variation 1: Model for Prebiotic Pyridine Synthesis 102
15.1.1.10.2.4 Method 4: From 3-Azahepta-1,3-dien-5-yne................. 102
15.1.1.10.2.5 Method 5: From [(2-(Pyrrolidin-1-yl)prop-1-enyl]iminomalononitriles ... 103
15.1.1.10.2.6 Method 6: Oxidative Cyclization of Hydroxy Enaminones 103
15.1.1.10.3 Synthesis by Ring Transformation .. 103
15.1.1.10.3.1 Method 1: From 2,2-Dichlorocyclopropanecarbaldehydes 103
15.1.1.10.3.2 Method 2: From 2,2-Dihydroazetes 106
15.1.1.10.3.3 Method 3: From 2,3-Dihydroazete 1-Oxides 106
15.1.1.10.3.4 Method 4: From Dewar Pyridines 107
15.1.1.10.3.5 Method 5: From 2-Acylfurans and Ammonium Salts 110
15.1.1.10.3.6 Method 6: From 2-Alkoxy-3,4-dihydro-2H-pyrans and Hydroxylamine ... 116
15.1.1.10.4 By Formal Exchange of Ring Members with Retention of the Ring Size 114
15.1.1.10.4.1 Method 1: From Cyclopenadienones and Nitriles 107
15.1.1.10.4.2 Method 2: From Furan-2-ones .. 108
15.1.1.10.4.3 Method 3: From Furfurylamines 108
15.1.1.10.4.4 Variation 2: From 2-Azido-2H-thiopyrans 110
15.1.1.10.4.5 Method 4: From Isoxazoles .. 111
15.1.1.10.4.6 Method 5: From Oxazoles .. 111
15.1.1.10.4.7 Method 6: From Dihydrooxazolones 113
15.1.1.10.4.8 Method 7: From Oxazoles and Malononitrile 113
15.1.1.10.4.9 Method 8: From Sulfoxy-3,4-dihydro-2H-pyrans and Hydroxylamine ... 116
15.1.1.10.4.10 Method 9: From 1,n-Oxazines 119
15.1.1.10.5 By Formal Exchange of Ring Members with Retention of the Ring Size 114
15.1.1.10.5.1 Method 1: From Pyrylium Salts and Ammonium Salts 114
15.1.1.10.5.2 Method 2: From 2-Acetylfuran-2-ones or 4H-Pyrans and Ammonium Salts 115
15.1.1.10.5.3 Method 3: From 2-Acetylfuran-4-ones and Ammonium Salts 115
15.1.1.10.5.4 Method 4: From Pyridinium Compounds or Pyridinones 117
15.1.1.10.5.5 Method 5: From Pyridinium Compounds by an S_N(ANRORC) Mechanism . 117
15.1.1.10.5.6 Method 6: From Pyridin-2(1H)-ones, Ketones or Enamines, and Ammonia 118
15.1.1.10.5.7 Method 7: From 1,n-Oxazines 119
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1.2.2.4.1</td>
<td>Method 1:</td>
<td>From 6-(2-Oxoalkyl)-6H-1,2-oxazines by Base-Catalyzed Rearrangement</td>
<td>119</td>
</tr>
<tr>
<td>15.1.2.2.4.2</td>
<td>Method 2:</td>
<td>Cycloaddition of 6-Alkoxy-6H-1,2-oxazines with Alkynes</td>
<td>120</td>
</tr>
<tr>
<td>15.1.2.2.4.2.1</td>
<td>Variation 1:</td>
<td>From 6H-1,3-Oxazin-6-ones by [4 + 2] Cycloaddition</td>
<td>120</td>
</tr>
<tr>
<td>15.1.2.2.4.2.2</td>
<td>Variation 2:</td>
<td>From 2H-1,3-Oxazin-2-ones by [4 + 2] Cycloaddition</td>
<td>121</td>
</tr>
<tr>
<td>15.1.2.2.4.2.3</td>
<td>Variation 3:</td>
<td>From 2H-1,4-Oxazin-2-ones by [4 + 2] Cycloaddition</td>
<td>121</td>
</tr>
<tr>
<td>15.1.2.2.5</td>
<td>From 1,n-Diazines</td>
<td></td>
<td>122</td>
</tr>
<tr>
<td>15.1.2.2.5.1</td>
<td>Method 1:</td>
<td>From Pyridazines by [4 + 2] Cycloaddition</td>
<td>122</td>
</tr>
<tr>
<td>15.1.2.2.5.2</td>
<td>Method 2:</td>
<td>From Pyrimidines or Pyrimidinium Compounds</td>
<td>123</td>
</tr>
<tr>
<td>15.1.2.2.5.2.1</td>
<td>Variation 1:</td>
<td>By [4 + 2] Cycloaddition</td>
<td>123</td>
</tr>
<tr>
<td>15.1.2.2.5.2.2</td>
<td>Variation 2:</td>
<td>By an S_N(ANRORC) Mechanism</td>
<td>124</td>
</tr>
<tr>
<td>15.1.2.2.5.3</td>
<td>Method 3:</td>
<td>From Pyrimidinones or Pyrimidinethiones</td>
<td>125</td>
</tr>
<tr>
<td>15.1.2.2.5.4</td>
<td>Method 4:</td>
<td>From Pyrazines or Pyrazin-2(1H)-ones by [4 + 2] Cycloaddition</td>
<td>127</td>
</tr>
<tr>
<td>15.1.2.2.6</td>
<td>From 1,n,m-Triazines</td>
<td></td>
<td>127</td>
</tr>
<tr>
<td>15.1.2.2.6.1</td>
<td>Method 1:</td>
<td>From 1,2,3-Triazines by [4 + 2] Cycloaddition</td>
<td>127</td>
</tr>
<tr>
<td>15.1.2.2.6.2</td>
<td>Method 2:</td>
<td>From 1,2,4-Triazines by [4 + 2] Cycloaddition</td>
<td>128</td>
</tr>
<tr>
<td>15.1.2.3</td>
<td>By Ring Contraction</td>
<td></td>
<td>130</td>
</tr>
<tr>
<td>15.1.2.3.1</td>
<td>Of Seven-Membered Heterocycles</td>
<td></td>
<td>130</td>
</tr>
<tr>
<td>15.1.2.3.1.1</td>
<td>Method 1:</td>
<td>From 3H-Azepines</td>
<td>130</td>
</tr>
<tr>
<td>15.1.2.3.1.2</td>
<td>Method 2:</td>
<td>From 1,n-Oxazepines</td>
<td>130</td>
</tr>
<tr>
<td>15.1.2.3.2</td>
<td>Of Eight-Membered Heterocycles</td>
<td></td>
<td>130</td>
</tr>
<tr>
<td>15.1.2.3.2.1</td>
<td>Method 1:</td>
<td>From Azocines</td>
<td>130</td>
</tr>
<tr>
<td>15.1.2.3.2.2</td>
<td>Method 2:</td>
<td>From 1,2-Diazocines</td>
<td>131</td>
</tr>
<tr>
<td>15.1.3</td>
<td>Aromatization</td>
<td></td>
<td>131</td>
</tr>
<tr>
<td>15.1.3.1</td>
<td>By Isomerization</td>
<td></td>
<td>131</td>
</tr>
<tr>
<td>15.1.3.1.1</td>
<td>Method 1:</td>
<td>Isomerization of 1-Acyl-4-benzylidene-1,4-dihydropyridines and 1-Amino-4-methylene-1,4-dihydropyridines</td>
<td>131</td>
</tr>
<tr>
<td>15.1.3.2</td>
<td>By Dehydrogenation</td>
<td></td>
<td>132</td>
</tr>
<tr>
<td>15.1.3.2.1</td>
<td>Method 1:</td>
<td>Oxidation (Dehydrogenation) of 1,2-, 1,4-, 3,4-, and 2,5-Dihydropyridines</td>
<td>132</td>
</tr>
<tr>
<td>15.1.3.2.1.1</td>
<td>Variation 1:</td>
<td>Oxidation of Hantzsch Esters</td>
<td>133</td>
</tr>
<tr>
<td>15.1.3.2.2</td>
<td>Method 2:</td>
<td>Dehydrogenation of Tetrahydropyridines</td>
<td>134</td>
</tr>
<tr>
<td>15.1.3.3</td>
<td>By Elimination from Dihydropyridines or Tetrahydropyridines</td>
<td></td>
<td>135</td>
</tr>
<tr>
<td>15.1.3.3.1</td>
<td>Method 1:</td>
<td>From 1-(Alkoxycarbonyl)-1,4- or 1-(Alkoxycarbonyl)-1,2-dihydropyridines and Carbonyl Compounds</td>
<td>135</td>
</tr>
<tr>
<td>15.1.3.3.1.1</td>
<td>Variation 1:</td>
<td>From 1,4-Bis(trimethylsilyl)-1,4-dihydropyridine and Carbonyl Compounds</td>
<td>136</td>
</tr>
<tr>
<td>15.1.3.3.2</td>
<td>Method 2:</td>
<td>From Tetrahydropyridines</td>
<td>137</td>
</tr>
<tr>
<td>15.1.3.3.2.1</td>
<td>Variation 1:</td>
<td>From 2,3,4,5-Tetrahydropyridines by Chlorination–Elimination</td>
<td>138</td>
</tr>
<tr>
<td>15.1.3.3.3</td>
<td>Method 3:</td>
<td>From 2-Azabicyclo[2.2.2]octa-2,5-dienes</td>
<td>138</td>
</tr>
<tr>
<td>15.1.3.3.3.1</td>
<td>Variation 1:</td>
<td>From Dewar Pyridines</td>
<td>139</td>
</tr>
<tr>
<td>15.1.3.3.4</td>
<td>Method 4:</td>
<td>From Piperidine-2,6-diones</td>
<td>139</td>
</tr>
<tr>
<td>15.1.4</td>
<td>Synthesis by Substituent Modification</td>
<td></td>
<td>140</td>
</tr>
</tbody>
</table>
15.1.1.4.1 Substitution of Existing Substituents .. 140
15.1.1.4.1.1 Of Hydrogen ... 140
15.1.1.4.1.1.1 Method 1: Base-Induced Hydrogen–Deuterium Exchange .. 140
15.1.1.4.1.1.2 Method 2: Hydrogen–Deuterium Exchange Using Heterogeneous Catalysis 140
15.1.1.4.1.1.2 By Metals .. 141
15.1.1.4.1.1.2.1 Method 1: By Alkali Metals 141
15.1.1.4.1.1.2.2 Method 2: By Mercury .. 142
15.1.1.4.1.1.2.3 Method 3: By Silicon ... 142
15.1.1.4.1.1.2.4 Method 4: By Tin .. 143
15.1.1.4.1.1.3 By a Carbon Functionality .. 144
15.1.1.4.1.1.3.1 Method 1: Radical Aminocarbonylation, Alkoxy carbonylation (Minisci Method), and Acylation .. 144
15.1.1.4.1.1.3.2 Method 2: Acylation via Metalation 144
15.1.1.4.1.1.3.3 Method 3: Alkylation and Arylation via Metalation .. 145
15.1.1.4.1.1.3.3.1 Variation 1: Hydroxyalkylation 145
15.1.1.4.1.1.3.3.2 Variation 2: Reaction with Organomagnesium Compounds (Deprotonation vs Addition) 146
15.1.1.4.1.1.3.3.3 Variation 3: Radical Alkylations and Arylations 146
15.1.1.4.1.1.3.3.4 Variation 4: Dihalomethylation of Nitropyridines (Vicarious Nucleophilic Substitution) 147
15.1.1.4.1.1.3.4 Method 4: Intramolecular Ring Closure via Hetarynes .. 148
15.1.1.4.1.1.4 By a Halogen ... 148
15.1.1.4.1.1.4.1 Method 1: Direct Halogenation 148
15.1.1.4.1.1.4.2 Method 2: Halogenation via Lithiation 150
15.1.1.4.1.1.5 By Oxygen ... 151
15.1.1.4.1.1.5.1 Method 1: Oxidation with Acetyl Hypofluorite 151
15.1.1.4.1.1.5.2 Method 2: Oxidation via Boronates 151
15.1.1.4.1.1.6 By Sulfur or Selenium ... 152
15.1.1.4.1.1.6.1 Method 1: Sulfonation .. 152
15.1.1.4.1.1.6.2 Method 2: Alkyl- or Arylthiolation 153
15.1.1.4.1.1.6.3 Method 3: Arylselenation .. 153
15.1.1.4.1.1.7 By Nitrogen ... 153
15.1.1.4.1.1.7.1 Method 1: Nitration .. 153
15.1.1.4.1.1.7.2 Method 2: Direct Amination or Alkylamination with Alkali Amides (Tschitschibabin Reaction) 154
15.1.1.4.1.1.7.2.1 Variation 1: Amination of Nitropyridines (Vicarious Nucleophilic Substitution) 154
15.1.1.4.1.1.7.2.2 Variation 2: Acylamination in the Presence of Fluorine .. 155
15.1.1.4.1.1.7.3 Method 3: Alkylamination via Hetarynes 156
15.1.1.4.1.1.8 By Phosphorus .. 156
15.1.1.4.1.1.8.1 Method 1: Phosphorylation 156
15.1.4.1.2 Of Metals ... 157
15.1.4.1.2.1 By a Carbon Functionality .. 157
15.1.4.1.2.1.1 Method 1: Replacement of Silicon 157
15.1.4.1.2.1.2 Method 2: Replacement of Tin 158
15.1.4.1.2.1.3 Method 3: Replacement of Boron 159
15.1.4.1.3 Of Carbon Functionalities ... 159
15.1.4.1.3.1 By Hydrogen .. 159
15.1.4.1.3.1.1 Method 1: Decarboxylation 159
15.1.4.1.3.2 By Another Carbon Functionality 160
15.1.4.1.3.2.1 Method 1: The Hammick Reaction 160
15.1.4.1.3.3 By a Halogen .. 160
15.1.4.1.3.3.1 Method 1: Borodin–Hundsdiecker-Type Halogenation 160
15.1.4.1.3.4 By Nitrogen .. 161
15.1.4.1.3.4.1 Method 1: Curtius Rearrangement 161
15.1.4.1.4 Of Halogens ... 162
15.1.4.1.4.1 By Deuterium or Hydrogen 162
15.1.4.1.4.1.1 Method 1: Reduction ... 162
15.1.4.1.4.1.2 Method 2: Deuteration via Metalation 162
15.1.4.1.4.2 By Metals .. 162
15.1.4.1.4.2.1 Method 1: By Lithium or Magnesium 162
15.1.4.1.4.2.2 Method 2: By Mercury, Arsenic, Silicon, Tin, or Boron 163
15.1.4.1.4.3 By a Carbon Functionality .. 164
15.1.4.1.4.3.1 Method 1: Cyanation ... 164
15.1.4.1.4.3.2 Method 2: Palladium-Catalyzed Aminocarbonylation, Formylation, or Alkoxycarbonylation .. 165
15.1.4.1.4.3.3 Method 3: Palladium-Catalyzed Coupling with Alkynes and Alkenes 166
15.1.4.1.4.3.4 Method 4: Metal-Catalyzed Aryl–Hetaryl or Hetaryl–Hetaryl Coupling 167
15.1.4.1.4.3.4.1 Variation 1: Palladium-Catalyzed Coupling with a 2-Pyridylboronate Generated In Situ 168
15.1.4.1.4.3.5 Method 5: Alkylation ... 169
15.1.4.1.4.3.5.1 Variation 1: Via Photochemical Substitution 170
15.1.4.1.4.4 By a Different Halogen .. 170
15.1.4.1.4.4.1 Method 1: Halogen Exchange under Lewis Acid Catalysis 170
15.1.4.1.4.4.2 By Oxygen .. 171
15.1.4.1.4.5.1 Method 1: Reaction with Oxygen Nucleophiles 171
15.1.4.1.4.6 By Sulfur .. 172
15.1.4.1.4.6.1 Method 1: Reaction with Sulfur Nucleophiles 172
15.1.4.1.4.6.2 Method 2: Introduction of a Sulfinyl Group via Metalation 173
15.1.4.1.4.7 By Selenium or Tellurium 173
15.1.4.1.4.7.1 Method 1: Reaction with Selenium or Tellurium Nucleophiles 173
By Nitrogen ... 174

15.1.1.4.1.4.8.1 Method 1: Reaction with Nitrogen Nucleophiles 174
15.1.1.4.1.4.8.1.1 Variation 1: Palladium-Catalyzed Bromine–Nitrogen Exchange 174
15.1.1.4.1.4.8.1.2 Variation 2: Alkylation under High Pressure 175

By Phosphorus ... 175

15.1.1.4.1.4.9 Method 1: Direct Phosphorylation 175
15.1.1.4.1.4.9.2 Method 2: Phosphorylation via Metalation 176
15.1.1.4.1.4.9.2.1 Variation 1: Photochemical Phosphorylation 176

Of Oxygen or Sulfur ... 177

By Hydrogen ... 177

15.1.1.4.1.4.10 Method 1: Desulfurization 177
15.1.1.4.1.4.10.2 Method 2: Deoxygenation 177

By a Carbon Functionality ... 178

15.1.1.4.1.4.10.2.1 Method 1: Displacement with Carbon Nucleophiles 178
15.1.1.4.1.4.10.2.2 Method 2: Exchange via Diazotization 182

15.1.1.4.2 Addition Reactions .. 183
15.1.1.4.3 Rearrangement of Substituents 183

15.1.1.4.3.1 Method 1: Isomerization 183
15.1.1.4.3.2 Method 2: Rearrangement of Halogens 183

Modification of Substituents ... 184

15.1.1.4.4 Method 1: From Annulated Pyridines by Selective Degradation 184
15.1.1.4.4.1 Method 1: From Quinolines or Isoquinolines 184
15.1.1.4.4.1.1 Variation 1: Oxidation of Quinolines 184
15.1.1.4.4.1.1.2 Variation 2: Oxidation of Isoquinolines 185
15.1.1.4.4.1.1.3 Variation 3: Partial Hydrogenation of Quinolines 185
15.1.1.4.4.1.1.4 Variation 4: Partial Hydrogenation or Reduction of Isoquinolines 186
15.1.1.4.4.1.1.5 Variation 5: Ionic Hydrogenation of Quinolines or Isoquinolines 186
15.1.1.4.4.1.2 Method 2: From 1H-1,2,3-Triazol[1,5-a]pyridines 187
15.1.1.4.4.1.2.1 Variation 1: From 1H-1,2,3-Triazol[4,5-c]pyridin-1-amine 188
15.1.1.4.4.1.3 Method 3: From Quinolizinium Salts 189
15.1.1.4.4.1.4 Method 4: From Furo[2,3-c]pyridines 189
15.1.1.4.4.2 Method 4: From Pyridine 1-Oxides by Deoxygenation 190
15.1.4.4.2.1 Method 1: Reduction .. 190
15.1.4.4.2.2 Method 2: Reaction with Acid Chlorides or Phosphoryl Chloride 191
15.1.4.4.2.3 Method 3: Reaction with Acid Anhydrides [Deoxygenation and Side-Chain Substitution (The Boekelheide Reaction)] 192
15.1.4.4.2.3.1 Variation 1: Deoxygenation and Side-Chain Halogenation 192
15.1.4.4.2.4 Method 4: Addition–Elimination Reactions 193
15.1.4.4.2.4.1 Variation 1: Decarboxylation–Substitution Reactions 194
15.1.4.4.3 From Pyridinium Compounds ... 194
15.1.4.4.3.1 Method 1: Addition–Elimination Reactions 194
15.1.4.4.4 By Addition to Existing Substituents 195
15.1.4.4.4.1 Method 1: Aromatization of Pyridinones and Pyridinethiones by Alkylation, Acylation, or Silylation 195
15.1.4.4.4.2 Method 2: Oxidative Aromatization of Pyridinethiones 197
15.1.4.4.5 By Modification of Side Chains .. 197
15.1.4.4.5.1 Method 1: Oxidation of (Hydroxymethyl)pyridines 197
15.1.4.4.5.2 Method 2: Deprotonation of Alkylpyridines 197
15.1.4.4.5.2.1 Variation 1: Deuteration of Alkyl Groups 198
15.1.4.4.5.2.2 Variation 2: Deprotonation with Strong Bases, Followed by Alkylation or Silylation .. 198
15.1.4.4.5.3 Method 3: Side-Chain Deoxygenation 199
15.1.4.4.5.4 Method 4: Formation of o-Quinodimethanes by Dehalogenation 199
15.1.2 Product Subclass 2: Pyridine 1-Oxides 200
15.1.2.1 Synthesis by Ring-Closure Reactions 201
15.1.2.1.1 By Formation of Two N—C Bonds and One C—C Bond 201
15.1.2.1.1.1 Fragments C—C—C, C—C, and N .. 201
15.1.2.1.1.1 Method 1: From Vinylogous Amidinium Salts, Ketones, and Hydroxylamine ... 201
15.1.2.1.1.2 By Formation of Two N—C Bonds .. 202
15.1.2.1.1.2 Fragments C—C—C—C and N .. 202
15.1.2.1.1.1 Method 1: From 1,5-Dioxopent-2-enes and Hydroxylamine 202
15.1.2.1.1.1 Variation 1: From Acyl Dienamines or Masked 1,5-Dioxo Compounds and Hydroxylamine .. 202
15.1.2.1.1.1.1 Variation 2: From 1,1-Dicyanobutadienes and Hydroxylamine ... 203
15.1.2.1.1.1.1 Variation 3: From 5,5-Dichloropentadienals and Hydroxylamine .. 204
15.1.2.1.1.1.3 By Formation of One N—C and One C—C Bond 204
15.1.2.1.1.1.3 Fragments C—C—C—C and N—C .. 204
15.1.2.1.1.1.1 Method 1: From Ethylidenemalononitriles and N-Hydroxybenzimidoyl Chlorides .. 204
15.1.2.1.1.4 By Formation of One N—C Bond .. 205
15.1.2.1.1.4 Fragment N—C—C—C—C .. 205
15.1.2.1.1.1 Method 1: Cyclization of Pentadienal Oximes 205
15.1.2.1.1.1.1 Method 2: Cyclization of Enynal Oximes 205

Science of Synthesis Original Edition Volume 15
© Georg Thieme Verlag KG
15.1.2.2 Synthesis by Ring Transformation ... 206
15.1.2.2.1 By Ring Enlargement ... 206
15.1.2.2.1.1 Method 1: From Isoxazoles ... 206
15.1.2.2.1.1.1 Variation 1: From 4,5-Dihydroisoxazoles 206
15.1.2.2.2 By Formal Exchange of Ring Members with Retention of the Ring Size 207
15.1.2.2.2.1 Method 1: From Pyrylium Salts and Hydroxylamine 207
15.1.2.2.2.2 Method 2: From Pyridinium Salts and Hydroxylamine 207
15.1.2.2.2.3 Method 3: From 3-Acyl-6-alkoxy-5,6-dihydro-4H-1,2-oxazines 208
15.1.2.3 Synthesis by Substituent Modification .. 208
15.1.2.3.1 Substitution of Existing Substituents ... 208
15.1.2.3.1.1 Of Hydrogen .. 208
15.1.2.3.1.1.1 By Metals ... 208
15.1.2.3.1.1.1.1 Method 1: Intermediate Lithiation 208
15.1.2.3.1.1.2 By a Carbon Functionality ... 209
15.1.2.3.1.1.2.1 Method 1: Mannich Reaction .. 209
15.1.2.3.1.1.2.2 Method 2: Alkylation and Acylation via Metalation 209
15.1.2.3.1.1.3 By a Halogen ... 210
15.1.2.3.1.1.3.1 Method 1: Bromination ... 210
15.1.2.3.1.1.3.1.1 Variation 1: Bromination via Metalation 211
15.1.2.3.1.1.4 By Nitrogen .. 211
15.1.2.3.1.1.4.1 Method 1: Nitration .. 211
15.1.2.3.1.2 Of Carbon Functionalities .. 212
15.1.2.3.1.2.1 By Hydrogen ... 212
15.1.2.3.1.2.1.1 Method 1: Decarboxylation and Deacylation 212
15.1.2.3.1.2.2 By Nitrogen .. 212
15.1.2.3.1.2.2.1 Method 1: Curtius Rearrangement 212
15.1.2.3.1.3 Of a Halogen .. 213
15.1.2.3.1.3.1 By Hydrogen ... 213
15.1.2.3.1.3.1.1 Method 1: Protonation via Metalation 213
15.1.2.3.1.3.2 By a Carbon Functionality .. 213
15.1.2.3.1.3.2.1 Method 1: Metal-Catalyzed Aryl–Hetaryl or Hetaryl–Hetaryl Coupling .. 213
15.1.2.3.1.3.2.1.1 Variation 1: Stille Coupling ... 214
15.1.2.3.1.3.2.1.2 Variation 2: Suzuki–Miyaura-Type Coupling 214
15.1.2.3.1.3.2.1.3 Variation 3: Zinc-Promoted Coupling 215
15.1.2.3.1.3.3 By Oxygen ... 215
15.1.2.3.1.3.3.1 Method 1: Reaction with Oxygen Nucleophiles 215
15.1.2.3.1.3.4 By Nitrogen ... 216
15.1.2.3.1.3.4.1 Method 1: Reaction with Amino Compounds 216
15.1.2.3.1.4 Of Nitrogen ... 216
15.1.2.3.1.4.1 By a Halogen ... 216
15.1.2.3.1.4.1.1 Method 1: Replacement of a Nitro Group by Reaction with Acetyl Halides 216
15.1.2.3.1.4.2 By Oxygen ... 217
15.1.2.3.1.4.2.1 Method 1: Replacement of a Nitro Group by Reaction with Oxygen Nucleophiles ... 217
15.1.2.3.1.4.3 By Another Nitrogen 218
15.1.2.3.1.4.3.1 Method 1: Replacement of a Nitro Group by Reaction with Ammonia ... 218
15.1.2.3.2 Addition Reactions .. 218
15.1.2.3.2.1 Method 1: N-Oxidation of Pyridines 218
15.1.2.3.3 Modification of Substituents 219
15.1.2.3.3.1 Method 1: Alkylation and Acylation of Alkyl Substituents 219
15.1.2.3.3.2 Method 2: Oxidation of Side Chains 220
15.1.2.3.3.3 Method 3: Reduction of Acyl Substituents 220
15.1.3 Product Subclass 3: Pyridinium Salts 221
15.1.3.1 Synthesis by Ring-Closure Reactions 222
15.1.3.1.1 By Formation of Two N—C Bonds and One C—C Bond 222
15.1.3.1.1.1 Fragments C—C—C, C—C, and N 222
15.1.3.1.1.1.1 Method 1: From α,β-Unsaturated Ketones, Amines, and a Michael Donor 222
15.1.3.1.1.1.2 Method 2: From α-Bromo Ketones and Primary Amines 223
15.1.3.1.1.2 Fragments C—C—C—C, C, and N 224
15.1.3.1.1.2.1 Method 1: From an α,β-Unsaturated Aldehyde, a Primary Amine, and an Aldehyde 224
15.1.3.1.1.2 By Formation of Two N—C Bonds 224
15.1.3.1.1.2.1 Fragments C—C—C—C and N 224
15.1.3.1.2 Method 1: From Protected or Free 1,5-Dioxo Compounds and Primary Amines .. 224
15.1.3.1.2.2 Method 2: 1-Aminopyridinium Compounds from Oxonium Salts and Hydrazides .. 225
15.1.3.1.2.3 Method 3: From 2H-1,2-Thiazine-6-carbaldehyde 1,1-Dioxides and Primary Amines .. 226
15.1.3.1.2.4 Method 4: From Acyl Enynes and Primary Amines 226
15.1.3.1.3 By Formation of One N—C and One C—C Bond 227
15.1.3.1.3.1 Fragments N—C—C—C and C—C 227
15.1.3.1.3.1.1 Method 1: From [β-(Monoalkylamino)vinyl]carbene–Chromium Complexes and Alkynes .. 227
15.1.3.1.3.1.2 Method 2: Cyclization of Enamino Iminium Salts with 1,3-Dicarbonyl Compounds .. 227
15.1.3.1.3.2 Fragments C—C—C—C and N—C 228
15.1.3.1.3.2.1 Method 1: From β,γ-Unsaturated Ketones and Imines 228
15.1.3.1.3.2.2 Method 2: From 1,3-Diketones and Formanilides 228
15.1.3.3 Fragments N—C—C and C—C—C ... 229
15.1.3.3.1 Method 1: From α-(Aminomethylene) Carbonyl Compounds and Methyl Imines ... 229
15.1.3.3.1.1 Variation 1: From 1,3-Dicarbonyl Compounds and Methyl Imines 230
15.1.3.3.2 Method 2: From N-Alkyl-2-cyanoacetamides in the Presence of Phosphoryl Chloride ... 230
15.1.3.4 By Formation of One N—C Bond ... 231
15.1.3.4.1 Fragment N—C—C—C—C—C .. 231
15.1.3.4.1.1 Method 1: Cyclization of 1-Aza-1,3,5-trienes 231
15.1.3.5 By Formation of One C—C Bond ... 231
15.1.3.5.1 Fragment C—C—N—C—C—C .. 231
15.1.3.5.1.1 Method 1: Cyclization of 3-Alkyl-1,5-dioxo-3-azahexanes 231
15.1.3.5.1.2 Method 2: Cyclization of Diethyl 2-[(Alkylamino)methylene]succinates 232
15.1.3.6 Synthesis by Ring Transformation .. 233
15.1.3.6.1 By Ring Enlargement ... 233
15.1.3.6.1.1 Method 1: From Furans ... 233
15.1.3.6.1.1.1 Variation 1: From 5-(Hydroxymethyl)furan-2-carbaldehyde and Amino Compounds ... 234
15.1.3.6.2 By Formal Exchange of Ring Members with Retention of the Ring Size 234
15.1.3.6.2.1 From Pyrylium Compounds ... 234
15.1.3.6.2.1.1 Method 1: From Pyrylium Compounds and Primary Amines 234
15.1.3.6.2.1.2 Method 2: Formation of 1-Aminopyridinium Compounds from Pyrylium Salts and Hydrazines ... 235
15.1.3.6.2.1.3 Method 3: From Pyrylium Compounds and Methyl Imines 236
15.1.3.6.2.2 From 4H-Pyran-4-ones ... 237
15.1.3.6.2.2.1 Method 1: From 4H-Pyran-4-ones and Primary Amines 237
15.1.3.6.2.2.3 From Other Pyridinium Compounds ... 237
15.1.3.6.2.2.3.1 Method 1: From Pyridinium Compounds and Primary Amines or Hydrazines by an S_n(ANRORC) Mechanism 237
15.1.3.7 Aromatization .. 238
15.1.3.7.1 Method 1: Oxidation of 1-Alkyl- or 1-Aryl-1,4-dihydropyridines 238
15.1.3.7.2 Method 2: Oxidation of 1-Substituted Tetrahydropyridines 239
15.1.3.7.3 Method 3: Elimination from 4-Substituted Dihydropyridines 240
15.1.3.8 Synthesis by Substituent Modification ... 241
15.1.3.8.1 Substitution of Existing Substituents .. 241
15.1.3.8.1.1 Of Hydrogen ... 241
15.1.3.8.1.1.1 By Metals .. 241
15.1.3.8.1.1.1.1 Method 1: Lithiation ... 241
15.1.3.8.1.1.2 By a Carbon Functionality .. 241
15.1.3.8.1.1.2.1 Method 1: Alkylation and Arylation 241
15.1.3.4.1.1.3 By Phosphorus .. 242
15.1.3.4.1.1.3.1 Method 1: Phosphorylation ... 242
15.1.3.4.1.2 Of Halogens .. 243
15.1.3.4.1.2.1 By a Carbon Functionality .. 243
15.1.3.4.1.2.1.1 Method 1: Reaction with Enamines .. 243
15.1.3.4.1.2.1.2 Method 2: Stille Coupling .. 244
15.1.3.4.1.2.2 By Sulfur .. 245
15.1.3.4.1.2.2.1 Method 1: Reaction with Sulfur Nucleophiles 245
15.1.3.4.1.2.3 By Nitrogen ... 245
15.1.3.4.1.2.3.1 Method 1: Reaction with Nitrogen Nucleophiles 245
15.1.3.4.1.3 Of Oxygen .. 246
15.1.3.4.1.3.1 By a Halogen ... 246
15.1.3.4.1.3.1.1 Method 1: Chlorination of N-Substituted Pyridinones 246
15.1.3.4.2 Addition Reactions .. 246
15.1.3.4.2.1 Method 1: Protonation of 4-Ylidene-1,4-dihydropyridines 246
15.1.3.4.2.2 Method 2: N-Silylation of Pyridines .. 247
15.1.3.4.2.3 Method 3: N-Alkylation of Pyridines .. 248
15.1.3.4.2.3.1 Variation 1: N-Halomethylation with Formaldehyde and Thiophyl Halides 249
15.1.3.4.2.3.2 Variation 2: N-Arylation with Electrophilic Aryl or Hetaryl Groups 249
15.1.3.4.2.3.3 Variation 3: N-Acylation with Acyl Halides 250
15.1.3.4.2.4 Method 4: N-Fluorination of Pyridines 250
15.1.3.4.2.5 Method 5: N-Sulfonylation of Pyridines 250
15.1.3.4.2.6 Method 6: N-Amination and N-Nitration of Pyridines 251
15.1.3.4.2.7 Method 7: N-Phosphorylation of Pyridines 252
15.1.3.4.3 Modification of Substituents ... 252
15.1.3.4.3.1 Method 1: Alkylation of Alkyl Substituents 252
15.1.3.4.3.2 Method 2: Reduction of Acyl Substituents 253
15.1.3.4.3.3 Method 3: O-Alkylation or O-Acylation of Pyridine 1-Oxides 253
15.1.3.4.3.4 Method 4: O-Alkylation of N-Substituted Pyridinones 254
15.1.3.4.3.5 Method 5: S-Alkylation or S-Acylation of N-Substituted Pyridinelhiones 255

15.2 Product Class 2: Pyridinones and Related Systems
P. A. Keller

15.2 Product Class 2: Pyridinones and Related Systems 285
15.2.1 Product Subclass 1: Pyridin-2(1H)-ones 285
15.2.1.1 Synthesis by Ring-Closure Reactions .. 285
15.2.1.1.1 By Formation of Two N—C and Two C—C Bonds 286
15.2.1.1.1.1 Fragments C—C, C—C, C, and N ... 286
15.2.1.1.1.1.1 Method 1: From an Aldehyde, a Ketone, an Active Methylene Ester, and an Ammonium Salt .. 286
15.2.1.5
By Formation of One N—C Bond

<table>
<thead>
<tr>
<th>Fragment N—C—C—C—C—C</th>
<th>308</th>
</tr>
</thead>
</table>

15.2.1.5.1
Method 1: Acid-Catalyzed Cyclization of Oxoamides

15.2.1.5.1.1
Variation 1: Hydrolysis of 5-Amino-3-oxopent-4-enenitriles

15.2.1.5.1.2
Method 2: Resin-Supported Ring-Closing Reactions of Diesters with Amines

15.2.1.5.1.3
Method 3: Zinc Reduction of Nitroso-Diels–Alder Adducts

15.2.1.5.1.4
Method 4: Cyclization of Ketene Dithioacetals

15.2.1.6
By Formation of One C—C Bond

<table>
<thead>
<tr>
<th>Fragment C—N—C—C—C—C</th>
<th>312</th>
</tr>
</thead>
</table>

15.2.1.6.1
Method 1: Intramolecular Cyclization of an In Situ Generated Diene Isocyanate

15.2.1.6.1.2
Method 2: Intramolecular Cyclization of Alka-1,3-dienyl Isocyanates

15.2.1.6.1.3
Method 3: Insertion of Amines into Diketones

15.2.1.6.2
Fragment C—C—N—C—C—C

15.2.1.6.2.1
Method 1: Thermal Cyclization of Ketene Dithioacetals

15.2.1.2
Aromatization

Method 1: By Utilization of an Exocyclic Alkene	317
Method 2: By Elimination of Two Hydrogen Atoms Using Nitrous Acid	318
Variation 1: By Oxidation of 3,4-Dihydropyridin-2(1H)-ones Using Nitrosylsulfuric Acid	318
Variation 2: By Oxidation of 6-Hydroxytetrahydropyridin-2(1H)-ones Using Thionyl Chloride and Pyridine	319

15.2.1.2.3
Variation 3: By Oxidation Using 2,3-Dichloro-5,6-dicyanobenzo-1,4-quinone

15.2.1.2.4
Variation 4: By Dehydrogenation under Alcoholic Basic Conditions

15.2.1.2.5
Variation 5: By Controlled Use of Nitrous Acid

15.2.1.3
Synthesis by Substituent Modification

Method 1: By Intramolecular Oxygen-Transfer Reactions	321
Variation 1: By Alkyl Elimination from 2-Ethoxypyridinium Oxide	322
Method 2: By Oxidation of Pyridines	323
Variation 1: By Oxidation of 1-Aminopyridinium Salts	324
Variation 2: By Oxidation of 1-Alkylpyridinium Salts	325
Method 3: By Oxidation of 2-Methylpyridinium Salts	326
Method 4: By Displacement from Pyridinium Salts	327
Variation 1: By Methoxy Substitution of 2-Chloropyridines	328
Variation 2: By Nucleophilic Substitution of 2-(Methylsulfonyl)pyridines	329
Variation 3: By Substitution and Subsequent Rearrangement	329
Variation 4: By Resin-Supported Conversion of 2-Halopyridines	330
Variation 5: By Oxidative Demethylation of Methylpyridinium Cations	331
Method 5: By Rearrangement of 2-Allylopyridines	332
Method 6: By Oxidation of Pyridine-2(1H)-thiones	334

15.2.1.3.1
Method 1: By Intramolecular Oxygen-Transfer Reactions

15.2.1.3.1.1
Variation 1: By Alkyl Elimination from 2-Ethoxypyridinium Oxide

15.2.1.3.2
Method 2: By Oxidation of Pyridines

15.2.1.3.2.1
Variation 1: By Oxidation of 1-Aminopyridinium Salts

15.2.1.3.2.2
Variation 2: By Oxidation of 1-Alkylpyridinium Salts

15.2.1.3.3
Method 3: By Oxidation of 2-Methylpyridinium Salts

15.2.1.3.4
Method 4: By Displacement from Pyridinium Salts

15.2.1.3.4.1
Variation 1: By Methoxy Substitution of 2-Chloropyridines

15.2.1.3.4.2
Variation 2: By Nucleophilic Substitution of 2-(Methylsulfonyl)pyridines

15.2.1.3.4.3
Variation 3: By Substitution and Subsequent Rearrangement

15.2.1.3.4.4
Variation 4: By Resin-Supported Conversion of 2-Halopyridines

15.2.1.3.4.5
Variation 5: By Oxidative Demethylation of Methylpyridinium Cations

15.2.1.3.5
Method 5: By Rearrangement of 2-Allylopyridines

15.2.1.3.6
Method 6: By Oxidation of Pyridine-2(1H)-thiones

15.2.2
Product Subclass 2: Pyridin-4(1H)-ones

| Method 1: Synthesis by Ring-Closure Reactions | 335 |

Science of Synthesis Original Edition Volume 15 © Georg Thieme Verlag KG
15.2.2.1.1 By Formation of Two N—C Bonds and One C—C Bond .. 335
15.2.2.1.1.1 Fragments C—C—C, C, and N ... 335
15.2.2.1.2 Method 1: In Situ Acylation of Enaminone Anions with Cyclization 335
15.2.2.1.2.1 By Formation of One N—C and Two C—C Bonds 337
15.2.2.1.2.1.1 Fragments C—C—C, N—C, and C ... 337
15.2.2.1.1.1 Method 1: Addition of an N-Silyl-1-azaallyl Anion to Alkoxyalkenes 337
15.2.2.1.3 By Formation of One N—C and Two C—C Bonds 337
15.2.2.1.3.1 Fragments C—C—C, N—C, and C ... 337
15.2.2.1.3.1.1 Method 1: Addition of an N-Silyl-1-azaallyl Anion to Alkoxyalkenes 337
15.2.2.1.3.1.2 Method 2: Ring Closure of Triketones 338
15.2.2.1.3.1.3 Method 3: Cyclization of 5-Methoxypent-4-en-1-ones Followed by Amination with Hydroxylamine Hydrochloride ... 339
15.2.2.1.4 By Formation of One N—C and One C—C Bond .. 341
15.2.2.1.4.1 Fragments C—C—C, C, and N ... 341
15.2.2.1.4.1.1 Method 1: Addition of β-Cyano Ketones to Cyclic Imines 341
15.2.2.1.4.1.2 Method 2: Solid-Phase Synthesis of Dihydropyridinones 341
15.2.2.1.4.2 Fragments N—C—C and C—C—C .. 343
15.2.2.1.4.2.1 Method 1: Thermal Cyclization of Enaminones with Ketenes 343
15.2.2.1.4.2.2 Method 2: Claisen Addition of Pyridylacetonitriles to Alk-2-ynoates 344
15.2.2.1.5 By Formation of Two C—C Bonds ... 346
15.2.2.1.5.1 Fragments C—C—N—C—C and C ... 346
15.2.2.1.5.1.1 Method 1: Carboxylation of 2-Aza-1,3-dienes 346
15.2.2.1.6 By Formation of One N—C Bond ... 346
15.2.2.1.6.1 Fragment N—C—C—C—C ... 346
15.2.2.1.6.1.1 Method 1: Cyclization with Nitrogen Nucleophiles onto Cyano Electrophiles ... 346
15.2.2.1.6.1.2 Method 2: Metal Carbonyl Induced Cleavage of Isoxazoles 347
15.2.2.1.7 By Formation of One C—C Bond ... 348
15.2.2.1.7.1 Fragment C—C—N—C—C ... 348
15.2.2.1.7.1.1 Method 1: Addition of Amines to α,β-Unsaturated Esters 348
15.2.2.2 Synthesis by Ring Transformation ... 349
15.2.2.2.1 Method 1: By Heteroatom Exchange in Pyran-4-ones Using Amines 349
15.2.2.2.1.1 Variation 1: By Heteroatom Exchange Using Pyranones and Ammonia ... 351
15.2.2.2.1.2 Variation 2: By Heteroatom Exchange Using Hydroxylactones 352
15.2.2.2.2 Method 2: By Cyclic Nitrone Cycloaddition to Acetylenes 353
15.2.2.2.3 Aromatization .. 353
15.2.2.2.3.1 Method 1: By Michael Addition to Cyclic Diones 353
15.2.2.2.3.2 Method 2: By Formation of Diselenides Followed by Oxidation 354
15.2.2.2.3.3 Method 3: By the Generation of Imines from Dihydropyridin-4(1H)-ones 355
15.2.2.4 Synthesis by Substituent Modification ... 355
15.2.4.1 Method 1: By Substitution and Subsequent Rearrangement 355
15.2.4.2 Method 2: By Rearrangement of 2-Substituted 4-Methoxypyridines 356
15.2.4.3 Method 3: From Pyridin-2(1H)-ones by Functional Group Transformations 357
15.2.4.4 Method 4: By Oxidative Demethylation of Methylpyridinium Cations 358
15.2.4.5 Method 5: Via Metalation of Dichloropyridines 359
15.2.4.6 Method 6: By Oxidative Addition to Halopyridines 359
15.2.4.7 Method 7: By Substitution of 4-Nitropyridine 1-Oxides 360
15.2.4.7.1 Variation 1: By Methoxy Substitution of Nitropyridines 361
15.2.3 Product Subclass 3: Pyridine-2(1H)-thiones 362
15.2.3.1 Synthesis by Ring-Closure Reactions 362
15.2.3.1.1 By Formation of One N—C and One C—C Bond 363
15.2.3.1.1.1 Fragments C—C—C—C and N—C 363
15.2.3.1.1.1 Method 1: By Reaction of the Glutacondialdehyde Anion with Isothiocyanates .. 363
15.2.3.1.2 Fragments N—C—C and C—C—C ... 363
15.2.3.1.2.1 Method 1: Addition of Activated Methylene Compounds to α,β- Unsaturated Ketones in the Absence of Base 363
15.2.3.1.2.1.1 Variation 1: Addition of Activated Methylene Compounds to α,β- Unsaturated Ketones in the Presence of Base 364
15.2.3.1.2.2 Method 2: Addition of Activated Methylene Compounds to α,β-Unsaturated Aldehydes .. 365
15.2.3.1.2.3 Method 3: Addition of Thioamide–Cyano Activated Methylene Groups to β-Dicarbonyls ... 365
15.2.3.1.2.4 Method 4: Addition of Thioamide–Amide Activated Methylene Groups to β-Diketones .. 366
15.2.3.1.2.5 Method 5: Addition of Thioamide–Cyano Activated Methylene Groups to α,β-Unsaturated Dicyanides 366
15.2.3.1.2.6 Method 6: Addition of Thioamide–Cyano Activated Methylene Groups to α,β-Unsaturated α-Cyano Esters 367
15.2.3.2 Synthesis by Substituent Modification .. 368
15.2.3.2.1 Method 1: Substitution of 2-Halopyridines with Hydrogen Sulfide or Thiourea .. 368
15.2.3.2.2 Method 2: Reactions of Dihydropyridin-2(1H)-ones with Phosphorus Pentasulfide .. 369
15.2.3.2.3 Method 3: Rearrangement of Thio Salts of 1-Oxidopyridine-2(1H)-thione 369
15.2.3.2.4 Method 4: By Reaction of 1-Alkylpyridinium Salts with Sodium Sulfide 370
15.2.4 Product Subclass 4: Pyridine-4(1H)-thiones 371
15.2.4.1 Synthesis by Ring Transformation ... 371
15.2.4.1.1 Method 1: By Heteroatom Exchange in Pyran-4-thiones Using Amines 371
15.2.4.1.1.1 Variation 1: By Methyamine Exchange with 4H-Pyran-4-thiones 372
15.2.4.2 Synthesis by Substituent Modification 373
15.2.4.2.1 Method 1: Reaction of Pyridin-4(1H)-ones with Phosphorus Pentasulfide 373
15.2.5 Product Subclass 5: Pyridine-2(1H)-selones and Pyridine-2(1H)-tellones . 374
15.2.5.1 Synthesis by Ring-Closure Reactions ... 374
15.2.5.1.1 By Formation of One N—C and One C—C Bond 374
15.2.5.1.1.1 Fragments C—C—C—C—C and N—C .. 374
15.2.5.1.1.1 Method 1: Reaction of the Glutacondialdehyde Anion with Isoselenocyanates .. 374
15.2.5.1.2 Fragments N—C—C and C—C—C ... 375
15.2.5.1.2.1 Method 1: Addition of Cyanoselenoacetamide to \(\alpha,\beta \)-Unsaturated Ketones .. 375
15.2.5.1.2.2 Method 2: Addition of Cyanoselenoacetamide to \(\beta \)-Diketones 378
15.2.5.1.2.3 Method 3: Addition of Selenoamide–Cyano Activated Methylene Groups to \(\alpha,\beta \)-Unsaturated Dicyanides .. 378
15.2.5.1.2 By Formation of One N—C Bond ... 379
15.2.5.1.2.1 Fragment N—C—C—C—C—C .. 379
15.2.5.1.2.1 Method 1: Addition of Hydrogen Selenide to 1-Aryl-4,4-dicyanobutan-1-ones .. 379
15.2.5.2 Synthesis by Substituent Modification ... 380
15.2.5.2.1 Method 1: By Substitution of 2-Halopyridines with Selenium Reagents 380
15.2.6 Product Subclass 6: Pyridine-4(1\(H \))-selones and Pyridine-4(1\(H \))-tellones 382
15.2.6.1 Synthesis by Substituent Modification ... 383
15.2.6.1.1 Method 1: By Heteroatom Exchange from Pyridine-4(1\(H \))-thiones 383
15.3 Product Class 3: Quinolines
R. D. Larsen and D. Cai

15.3 Product Class 3: Quinolines .. 389
15.3.1 Product Subclass 1: Quinolines .. 389
15.3.1.1 Synthesis by Ring-Closure Reactions ... 391
15.3.1.1.1 By Annulation to an Arene .. 391
15.3.1.1.1 By Formation of One N—C and Two C—C Bonds 391
15.3.1.1.1.1 With Formation of the 1—2, 2—3, and 4—4a Bonds 391
15.3.1.1.1.1 Method 1: From Arylamines .. 391
15.3.1.1.1.1 Variation 1: Reaction with an In Situ Generated Enal or Enone (The Doebner–von Miller Reaction) .. 391
15.3.1.1.1.1 Variation 2: Reaction with Pyruvic Acid and an Aldehyde (The Doebner Reaction) .. 392
15.3.1.1.1.1 Variation 3: Metal-Mediated Three-Component Coupling 393
15.3.1.1.1.2 Method 2: From Nitroarenes .. 394
15.3.1.1.1.2 With Formation of the 1—2, 3—4, and 4—4a Bonds 394
15.3.1.1.1.2 Method 1: From Arylamines .. 394
15.3.1.1.1.3 With Formation of the 1—8a Bond and Two C—C Bonds 395
15.3.1.1.1.3 Method 1: From Aryl Ketoximes .. 395
Table of Contents

15.3.1.1.2 By Formation of Two N—C Bonds ... 396
15.3.1.1.2.1 Method 1: From 1-(2-Haloaryl)allyl Acetates .. 396
15.3.1.1.3 By Formation of One N—C and One C—C Bond ... 396
15.3.1.1.3.1 With Formation of the 1—2 and 2—3 Bonds .. 396
15.3.1.1.3.1.1 Method 1: From (2-Alkenyaryl)amines ... 396
15.3.1.1.3.1.2 Method 2: From (2-Acylaryl)amines .. 397
15.3.1.1.3.2 With Formation of the 1—2 and 3—4 Bonds .. 398
15.3.1.1.3.2.1 Method 1: From 2-Acylarylamines .. 398
15.3.1.1.3.2.1.1 Variation 1: Friedländer Synthesis .. 398
15.3.1.1.3.2.1.2 Variation 2: Oximino Derivatives of Aldehydes and Ketones 400
15.3.1.1.3.2.1.3 Variation 3: Reaction with Alkynes or Allenes 401
15.3.1.1.3.2.1.4 Variation 4: Reaction with Vinyl Sulfides .. 402
15.3.1.1.3.2.2 Method 2: From Isatins (The Pfitzinger Reaction) 402
15.3.1.1.3.2.3 Method 3: From N-(2-Aminobenzylidene)-p-toluidines (The Borsche Modification of the Friedländer Synthesis) 404
15.3.1.1.3.2.4 Method 4: From 2-(Perfluoroalkyl)arylamines ... 405
15.3.1.1.3.3 With Formation of the 1—2 and 4—4a Bonds .. 406
15.3.1.1.3.3.1 Method 1: From Arylamines .. 406
15.3.1.1.3.3.1.1 Variation 1: Reaction with Glycerol (The Skraup Reaction) 406
15.3.1.1.3.3.1.2 Variation 2: Reaction with Propenal Derivatives; Modified Skraup and Doebner–von Miller Reactions .. 408
15.3.1.1.3.3.1.3 Variation 3: Reaction with α,β-Unsaturated Ketones 410
15.3.1.1.3.3.1.4 Variation 4: Reaction with β-Heterosubstituted α,β-Unsaturated Aldehydes and Ketones .. 411
15.3.1.1.3.3.1.5 Variation 5: Ruthenium-Catalyzed Cyclization with Propane-1,3-diol or 1-Aminopropan-3-ol .. 413
15.3.1.1.3.3.1.6 Variation 6: From Cyclopropyl Building Blocks 414
15.3.1.1.3.3.1.7 Variation 7: Reaction with Malonic Acid ... 415
15.3.1.1.3.3.2 Method 2: From Nitroarenes ... 415
15.3.1.1.3.3.2.1 Variation 1: Reaction with Allyl Aryl Sulfones ... 415
15.3.1.1.3.3.2.2 Variation 2: Smiles Rearrangement of 3-(2-Nitrobenzoyl)pentane-2,4-dione .. 416
15.3.1.1.3.3.3 Method 3: From (2-Haloaryl)amines .. 417
15.3.1.1.3.3.4 Method 4: From (2-Sulfanylaryl)amines .. 417
15.3.1.1.3.4 With Formation of the 1—8a and 4—4a Bonds .. 418
15.3.1.1.3.4.1 Method 1: From Quinones and Azadienes .. 418
15.3.1.1.4 By Formation of Two C—C Bonds ... 419
15.3.1.1.4.1 With Formation of the 2—3 and 4—4a Bonds .. 419
15.3.1.1.4.1.1 Method 1: From Arylidene N-Arylamines ... 419
15.3.1.1.4.1.1.1 Variation 1: Reaction with Alkenes .. 419
15.3.1.1.4.1.1.2 Variation 2: Reaction with Vinyl Ethers .. 420
15.3.1.1.4.1.1.3 Variation 3: Reaction with Alkynes .. 420
15.3.1.1.4.1.1.4 Variation 4: Cross Coupling with Allylamines .. 421
15.3.1.1.4.1.2 Method 2: From N-Arylimidates ... 422
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.3.1.1.4.1.3</td>
<td>Method 3: From Aryl Isocyanides</td>
<td>423</td>
</tr>
<tr>
<td>15.3.1.1.4.1.4</td>
<td>Method 4: From N-Arylnitriilium Salts</td>
<td>424</td>
</tr>
<tr>
<td>15.3.1.1.4.1.5</td>
<td>Method 5: From (Anilinomethyl)phosphonates</td>
<td>425</td>
</tr>
<tr>
<td>15.3.1.1.4.1.6</td>
<td>Method 6: From 3-(2-Acylaminophenylsulfanyl)cyclohex-2-enones</td>
<td>425</td>
</tr>
<tr>
<td>15.3.1.1.4.2.2</td>
<td>With Formation of the 3—4 and 4—4a Bonds</td>
<td>426</td>
</tr>
<tr>
<td>15.3.1.1.4.2.1</td>
<td>Method 1: From Anilides</td>
<td>426</td>
</tr>
<tr>
<td>15.3.1.1.4.2.2</td>
<td>Method 2: From N-Arylimines (Enamines)</td>
<td>426</td>
</tr>
<tr>
<td>15.3.1.1.5</td>
<td>By Formation of One N—C Bond</td>
<td>428</td>
</tr>
<tr>
<td>15.3.1.1.5.1</td>
<td>With Formation of the 1—2 Bond</td>
<td>428</td>
</tr>
<tr>
<td>15.3.1.1.5.1.1</td>
<td>Method 1: From 2-(3-Hydroxyprop-1-ynyl)acetanilides</td>
<td>428</td>
</tr>
<tr>
<td>15.3.1.1.5.1.2</td>
<td>Method 2: From β-(2-Aminoaryl)-α,β-ynones</td>
<td>429</td>
</tr>
<tr>
<td>15.3.1.1.5.1.3</td>
<td>Method 3: From β-(2-Aminoaryl)-α,β-enones</td>
<td>430</td>
</tr>
<tr>
<td>15.3.1.1.5.1.4</td>
<td>Method 4: From 2-Alkylarylamines</td>
<td>430</td>
</tr>
<tr>
<td>15.3.1.1.5.1.5</td>
<td>Method 5: From β-(2-Nitroaryl)-α,β-enones</td>
<td>431</td>
</tr>
<tr>
<td>15.3.1.1.5.1.6</td>
<td>Method 6: From β-(2-Nitroaryl)acrylates or (2-Nitroaryliden)(acetates</td>
<td>432</td>
</tr>
<tr>
<td>15.3.1.1.5.1.7</td>
<td>Method 7: From (2-Nitroaryl)hydropicinamid Derivatives</td>
<td>433</td>
</tr>
<tr>
<td>15.3.1.1.5.1.8</td>
<td>Method 8: From 2-Azidophenyl α,β-Unsaturated Carbonyl Compounds</td>
<td>433</td>
</tr>
<tr>
<td>15.3.1.1.5.2</td>
<td>With Formation of the 1—8a Bond</td>
<td>434</td>
</tr>
<tr>
<td>15.3.1.1.5.2.1</td>
<td>Method 1: From 3-Arylallylamines</td>
<td>434</td>
</tr>
<tr>
<td>15.3.1.1.5.2.2</td>
<td>Method 2: From Oximes of β-Aryl-α,β-enones and β-Arylalkanones</td>
<td>434</td>
</tr>
<tr>
<td>15.3.1.1.6</td>
<td>By Formation of One C—C Bond</td>
<td>435</td>
</tr>
<tr>
<td>15.3.1.1.6.1</td>
<td>With Formation of the 2—3 Bond</td>
<td>435</td>
</tr>
<tr>
<td>15.3.1.1.6.1.1</td>
<td>Method 1: From 2-Alkenylarylamines</td>
<td>435</td>
</tr>
<tr>
<td>15.3.1.1.6.1.1.1</td>
<td>Variation 1: Activation of Azomethine Derivatives</td>
<td>435</td>
</tr>
<tr>
<td>15.3.1.1.6.1.1.2</td>
<td>Variation 2: Activation of Amide Derivatives</td>
<td>436</td>
</tr>
<tr>
<td>15.3.1.1.6.1.3</td>
<td>Variation 3: Cyclization via Isocyanides</td>
<td>437</td>
</tr>
<tr>
<td>15.3.1.1.6.1.2</td>
<td>Method 2: From 2-Alkynylanilides</td>
<td>438</td>
</tr>
<tr>
<td>15.3.1.1.6.1.3</td>
<td>Method 3: From 2-Alkynylphenyl Isocyanides</td>
<td>438</td>
</tr>
<tr>
<td>15.3.1.1.6.2</td>
<td>With Formation of the 3—4 Bond</td>
<td>439</td>
</tr>
<tr>
<td>15.3.1.1.6.2.1</td>
<td>Method 1: From (2-Alkylphenyl)aminoethenes</td>
<td>439</td>
</tr>
<tr>
<td>15.3.1.1.6.2.2</td>
<td>Method 2: From (2-Acylphenyl)aminoethenes</td>
<td>439</td>
</tr>
<tr>
<td>15.3.1.1.6.3</td>
<td>With Formation of the 4—4a Bond</td>
<td>440</td>
</tr>
<tr>
<td>15.3.1.1.6.3.1</td>
<td>Method 1: From β-(Arylamino)-α,β-unsaturated Ketones and Aldehydes; the Beyer–Combes Synthesis</td>
<td>440</td>
</tr>
<tr>
<td>15.3.1.1.6.3.2</td>
<td>Method 2: 3-(Arylamino)alk-2-enimines</td>
<td>443</td>
</tr>
<tr>
<td>15.3.1.1.6.3.3</td>
<td>Method 3: From Malonanilides and β-(Arylamino)methylene Malonates</td>
<td>443</td>
</tr>
<tr>
<td>15.3.1.1.6.3.4</td>
<td>Method 4: From 3-Arylamino Ketones and Aldehydes</td>
<td>444</td>
</tr>
<tr>
<td>15.3.1.1.6.3.5</td>
<td>Method 5: From α,β-Unsaturated N-Arylimines</td>
<td>444</td>
</tr>
<tr>
<td>15.3.1.1.6.3.6</td>
<td>Method 6: From 3-Aryl-2-oxo-1,3-diazabicyclo[2.2.0]hex-5-enes</td>
<td>445</td>
</tr>
<tr>
<td>15.3.1.1.6.3.7</td>
<td>Method 7: From N-Allyl-2-iodoanilines</td>
<td>446</td>
</tr>
<tr>
<td>15.3.1.1.2</td>
<td>By Annulation to the Heterocyclic Ring</td>
<td>446</td>
</tr>
<tr>
<td>15.3.1.1.2.1</td>
<td>By Formation of Two C—C Bonds</td>
<td>446</td>
</tr>
<tr>
<td>15.3.1.1.2.1.1</td>
<td>With Formation of the 5—6 and 7—8 Bonds</td>
<td>446</td>
</tr>
</tbody>
</table>
15.3.1.2.1.1 Method 1: From Dimethyl Pyridine-2,3-Dicarboxylate 446
15.3.1.2.1.2 With Formation of the 4—4a and 8—8a Bonds 447
15.3.1.2.1.2.1 Method 1: From 2,3-Dihalopyridines .. 447
15.3.1.2.2 By Formation of One C—C Bond ... 447
15.3.1.2.2.1 With Formation of the 5—6 Bond .. 447
15.3.1.2.2.1.1 Method 1: From Ethyl 3-(1-Ethoxyethoxy)-2-([3-[(phenylsulfonyl)methyl]-2-pyridyl]methyl)butanoate ... 447
15.3.1.2.2.2 With Formation of the 8—8a Bond ... 448
15.3.1.2.2.2.1 Method 1: From Azastilbenes ... 448
15.3.1.2 Synthesis by Ring Transformation .. 449
15.3.1.2.1 By Ring Enlargement ... 449
15.3.1.2.1.1 Method 1: From Indoles .. 449
15.3.1.2.1.2 Method 2: From 2,1-Benzisoxazole ... 449
15.3.1.2.1.3 Method 3: From Indazoles ... 450
15.3.1.2.2 Formal Exchange of Ring Members with Retention of the Ring Size 451
15.3.1.2.2.1 Method 1: From Benzotriazines .. 451
15.3.1.2.2.2 Method 2: From Benzoxazines ... 451
15.3.1.2.3 By Ring Contraction ... 452
15.3.1.3 Aromatization .. 452
15.3.1.3.1 Method 1: By Dehydrogenation .. 452
15.3.1.3.1.1 Variation 1: Air Oxidation ... 452
15.3.1.3.1.2 Variation 2: Oxidation with Quinone Reagents 453
15.3.1.3.1.3 Variation 3: Oxidation with Iodine Reagents 454
15.3.1.3.1.4 Variation 4: Metal-Mediated Oxidations 455
15.3.1.3.1.5 Variation 5: Dehydrogenation ... 457
15.3.1.3.2 Method 2: By Elimination Reactions ... 457
15.3.1.4 Synthesis by Elimination Modification ... 459
15.3.1.4.1 Substitution of Existing Substituents .. 459
15.3.1.4.1.1 Of Hydrogen .. 459
15.3.1.4.1.1.1 Method 1: Metalation .. 459
15.3.1.4.1.1.2 Method 2: Acylation .. 459
15.3.1.4.1.1.2.1 Variation 1: Reaction with Acyl Radicals 459
15.3.1.4.1.1.2.2 Variation 2: Electrophilic Acylation 461
15.3.1.4.1.1.3 Method 3: Alkylation and Arylation 462
15.3.1.4.1.1.3.1 Variation 1: Addition of Alkyl Radicals 462
15.3.1.4.1.1.3.2 Variation 2: Addition of Organometallic Compounds 463
15.3.1.4.1.1.3.3 Variation 3: Nucleophilic Addition 464
15.3.1.4.1.1.4 Method 4: Halogenation ... 465
15.3.1.4.1.1.5 Method 5: Sulfonylation ... 467
15.3.1.4.1.1.6 Method 6: Nitration .. 468
15.3.1.4.1.1.7 Method 7: Oxidation .. 469
15.3.1.4.1.2 Of Metals .. 470
15.3.1.4.1.1 Method 1: Metal-Mediated Reductions of Heteroatoms .. 470
15.3.1.4.1.2 Method 2: Substitution of Metalated Quinolines ... 472
15.3.1.4.1.3 Method 3: Metal-Catalyzed Cross Coupling .. 474
15.3.1.4.2 Of Carbon Functionalities ... 478
15.3.1.4.3 Of Heteroatoms ... 479
15.3.1.4.3.1 Method 1: From Quinoline 1-Oxides ... 479
15.3.1.4.3.2 Variation 1: Deoxygenation to Quinolines ... 479
15.3.1.4.3.3 Variation 2: Substitution with Concomitant Deoxygenation 480
15.3.1.4.3.4 Method 2: Substitution of Heteroatoms in the 2- or 4-Position 483
15.3.1.4.3.5 Variation 1: Halogenation of Quinolinones ... 483
15.3.1.4.3.6 Variation 2: Halogen Exchange ... 484
15.3.1.4.4 Method 3: General Displacement Reactions .. 488
15.3.1.4.5 Rearrangement of Substituents ... 490
15.3.1.4.6 Modification of Substituents .. 490
15.3.1.4.6.1 Of C-Carbon Functionalities .. 490
15.3.1.4.6.2 Modification of Alkyl Groups ... 490
15.3.1.4.6.2.1 Method 1: Alkylation ... 490
15.3.1.4.6.2.2 Method 2: Halogenation of Alkyl Groups .. 492
15.3.1.4.6.2.3 Method 3: Preparation of Oxidized Carbon Functionalities 493
15.3.1.4.6.2.3.1 Variation 1: Oxidation of Methyl-Substituted Quinolines 493
15.3.1.4.6.2.4 Of C-Heteroatom Functionalities ... 495
15.3.1.4.6.2.4.1 Method 1: Reactions of C-Oxygen Groups ... 495
15.3.1.4.6.2.4.2 Variation 1: Alkylation of Quinolinones .. 495
15.3.1.4.6.2.4.3 Variation 2: Oxidation of Heterosubstituted Quinolines to the Quinolinediones ... 495
15.3.1.4.6.2.4.4 Method 2: Reactions of C-Sulfur Groups .. 496
15.3.2 Product Subclass 2: Quinoline 1-Oxides .. 496
15.3.2.1 Synthesis by Ring-Closure Reactions ... 497
15.3.2.1.1 By Annulation to an Arene .. 497
15.3.2.1.1.1 By Formation of One N—C and One C—C Bond .. 497
15.3.2.1.1.1.1 With Formation of the 1—2 and 3—4 Bonds ... 497
15.3.2.1.1.1.1.1 Method 1: From 2-Nitrobenzaldehydes ... 497
15.3.2.1.1.1.1.2 Method 2: From 2-Nitrobenzyl Sulfones ... 498
15.3.2.1.1.1.2 By Formation of One N—C Bond ... 498
15.3.2.1.1.1.2.1 With Formation of the 1—2 Bond .. 498
15.3.2.1.1.1.2.1.1 Method 1: From 2'-Nitrocinnamoyl Derivatives 498
15.3.2.1.1.1.2.1.2 Method 2: From (2-Nitrobenzoyl)acetates ... 499
Method 3: From 1-(2-Nitrophenyl)allylic Alcohols (Baylis–Hillman Adducts) .. 500
Method 4: From 1-(2-Nitrophenyl)propenes 500
With Formation of the 1—8a Bond .. 501
Method 1: From Oximes and Alkoxyamines 501
Synthesis by Ring Transformation .. 502
Aromatization .. 503
Synthesis by Substituent Modification .. 503
Substitution of Existing Substituents ... 503
Of Hydrogen .. 503
Method 1: Metalation .. 503
Method 2: Alkylation .. 503
Method 3: Halogenation ... 504
Method 4: Nitration ... 504
Method 5: Oxidation ... 505
Of Heteroatoms ... 506
Method 1: Substitution of 4-Heterosubstituted Quinoline 1-Oxides 506
Addition Reactions ... 508
Method 1: N-Oxidation ... 508
Modification of Substituents ... 509
Of N-Heteroatom Functionalities .. 509
Method 1: O-Alkylation of Quinoline 1-Oxide 509
Product Subclass 3: 1-Alkyl- and 1-Arylquinolinium Salts 510
Synthesis by Ring-Closure Reactions ... 511
By Annulation to an Arene ... 511
By Formation of One N—C and Two C—C Bonds 511
Method 1: From 1-Aryl- or 1-Alkylanilines 511
By Formation of One N—C and One C—C Bond 512
With Formation of the 1—2 and 4—4a Bonds 512
Method 1: From N-Aryl- or N-Alkylarylamines 512
By Formation of Two C—C Bonds ... 513
With Formation of the 2—3 and 4—4a Bonds 513
Method 1: From N-Alkylanilides ... 513
Method 2: From N-Alkyl-(benzotriazol-1-ylmethyl)arylamines 513
With Formation of the 3—4 and 4—4a Bonds 514
Method 1: From N-Arylenamines ... 514
By Formation of One C—C Bond .. 515
Method 1: From β-Arylamino Ketones .. 515
15.3.2 Synthesis by Ring Transformation ... 515
15.3.3 Aromatization ... 516
15.3.4 Synthesis by Substituent Modification 517
15.3.4.1 Substitution of Existing Substituents 517
15.3.4.1.1 Of Metal ... 517
15.3.4.1.2 Of Carbon Functionalities ... 517
15.3.4.1.3 Of Heteroatoms .. 517
15.3.4.1.3.1 Method 1: From Quinoline 1-Oxides 517
15.3.4.1.3.2 Method 2: From 2- or 4-Heterosubstituted Quinolinium Intermediates .. 517
15.3.4.2 Addition Reactions ... 518
15.3.4.2.1 Method 1: N-Alkylation ... 518
15.3.4.3 Modification of Substituents ... 519
15.3.4.3.1 Of C-Carbon Functionalities .. 519
15.3.4.3.1.1 Method 1: Alkylation Reactions 519
15.4 Product Class 4: Quinolinones .. R. D. Larsen
15.4.1 Product Class 4: Quinolinones ... 551
15.4.1.1 Product Subclass 1: Quinolin-2(1H)-ones 551
15.4.1.1.1 Synthesis by Ring-Closure Reactions 553
15.4.1.1.1.1 By Annulation to an Arene 553
15.4.1.1.1.1.1 By Formation of One N—C and One C—C Bond 553
15.4.1.1.1.1.2 With Formation of the 1—2 and 2—3 Bonds 553
15.4.1.1.1.1.1.2 Method 1: From 2-Aminostyrenes 553
15.4.1.1.1.1.1.2.1 Variation 1: Reaction with Acetates: The Friedländer Quinolinone Synthesis ... 554
15.4.1.1.1.1.1.2.1.1 Method 2: From (2-Acylaryl)amines 554
15.4.1.1.1.1.1.2.1.2 Variation 2: Reaction with Diethoxyphosphorylketenes ... 555
15.4.1.1.1.1.1.2.1.2.1 Method 2: From Anils of 2-Aminobenzaldehydes .. 555
15.4.1.1.1.1.1.2.1.2.2 Method 3: From Anthranilates or 2-Aminobenzonitriles ... 556
15.4.1.1.1.1.1.2.1.2.3 Method 4: From 2-Tolylformamides 557
15.4.1.1.1.1.1.2.1.2.4 Method 1: From Arylamines 557
15.4.1.1.1.1.1.1.1 Method 1: From (2-Haloaryl)amines 557
15.4.1.1.1.1.1.1.2 Method 1: From 2-Halobenzaldehydes 559
15.4.1.1.1.1.1.1.3 Method 1: From 2-Halobenzaldehydes 559
15.4.1.1.1.1.1.1.3.1 Method 1: From 2-Halobenzaldehydes 559
15.4.1.1.1.1.1.1.1 By Formation of Two C—C Bonds 559
15.4.1.1.1.1.1.1.1.1 Method 1: From 2-Halobenzaldehydes 559
With Formation of the 2—3 and 4—4a Bonds

Method 1: From Aryl Isocyanates

Variation 1: Reaction with Alkynes

Variation 2: Reaction with Triphenylphosphonium Malonate

With Formation of the 3—4 and 4—4a Bonds

Method 1: From N-Acylarylamines

By Formation of One N—C Bond

With Formation of the 1—2 Bond

Method 1: From 2-Aminocinnamates

Method 2: From a 3-(2-Acylaminophenyl)-3-hydroxypropanoate

Method 3: From 3-{2-[2-(Alkoxycarbonyl)amino]phenyl}-3-hydroxyacrylates

Method 4: From 2-Nitrocinnamates

Method 5: From Methyl 2-[(Acetyloxy)(2-nitrophenyl)methyl]acrylate

Method 6: From 2-Nitrobenzoylacetates

By Annulation to the Heterocyclic Ring

Synthesis by Ring Transformation

By Ring Enlargement

Method 1: From Isatin

Method 2: From Indoles

Formal Exchange of Ring Members with Retention of the Ring Size

Method 1: From Isatoic Anhydrides (Benzoxazinones)

By Ring Contraction

Aromatization
15.4.1.3.1 Method 1: By Dehydrogenation .. 578
15.4.1.3.2 Method 2: Elimination Reactions 579
15.4.1.4 Synthesis by Substituent Modification 579
15.4.1.4.1 Substitution of Existing Substituents 579
15.4.1.4.1.1 Of N-Hydrogen ... 579
15.4.1.4.1.2 Of C-Hydrogen ... 580
15.4.1.4.1.2.1 Method 1: By Metals .. 580
15.4.1.4.1.2.2 Method 2: By Alkyl Groups 580
15.4.1.4.1.2.3 Method 3: By Halogens ... 581
15.4.1.4.1.2.4 Method 4: By Hydroxy Groups 581
15.4.1.4.1.2.5 Method 5: Sulfanylation ... 582
15.4.1.4.1.2.6 Method 6: Nitration .. 582
15.4.1.4.1.3 Of Metals ... 583
15.4.1.4.1.4 Of Carbon ... 584
15.4.1.4.1.5 Of Heteroatoms ... 584
15.4.1.4.1.5.1 Method 1: From Quinoline N-Oxides 584
15.4.1.4.1.5.2 Method 2: Reactions at the 2-Position To Generate Quinolinones 585
15.4.1.4.1.5.3 Method 3: Substitution of 4-Heterosubstituted Quinolin-2-ones 585
15.4.1.4.2 Modification of Substituents 586
15.4.1.4.2.1 Of C-Carbon Functionalities 586
15.4.1.4.2.2 Of C-Heteroatom Functionalities 586
15.4.2 Product Subclass 2: Quinolin-4(1H)-ones 587
15.4.2.1 Synthesis by Ring-Closure Reactions 588
15.4.2.1.1 By Annulation to an Arene 588
15.4.2.1.1.1 By Formation of One N—C and Two C—C Bonds 588
15.4.2.1.1.1.1 With Formation of the 1—2, 3—4, and 4—4a Bonds 588
15.4.2.1.1.1.1.1 Method 1: From 2-Haloarylamines 588
15.4.2.1.1.1.2 By Formation of One N—C and One C—C Bond 588
15.4.2.1.1.2.1 With Formation of the 1—2 and 2—3 Bonds 588
15.4.2.1.1.2.1.1 Method 1: From (2-Acylaryl)amines 588
15.4.2.1.1.2.2 With Formation of the 1—2 and 3—4 Bonds 589
15.4.2.1.1.2.2.1 Method 1: From 2-Aminobenzaldehydes 589
15.4.2.1.1.2.2.2 Method 2: From Anthranilates 590
15.4.2.1.1.2.2.2.1 Variation 1: Reaction with Ketones (The Niementowski Reaction) 590
15.4.2.1.1.2.2.2.2 Variation 2: Reaction with Ketene Equivalents 591
15.4.2.1.1.2.3 With Formation of the 1—2 and 4—4a Bonds 592
15.4.2.1.1.2.3.1 Method 1: From Arylamines 592
15.4.2.1.1.3 By Formation of Two C—C Bonds 593
15.4.2.1.1.3.1 With Formation of the 2—3 and 3—4 Bonds 593
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.4.1.2.1.1</td>
<td>Method 1:</td>
<td>From 2-Isocyanobenzoates</td>
<td>593</td>
</tr>
<tr>
<td>15.4.1.2.1.2</td>
<td>Method 2:</td>
<td>From 2-Phthalimidobenzoic Acid</td>
<td>593</td>
</tr>
<tr>
<td>15.4.1.2.1.3.1</td>
<td>Method 1:</td>
<td>From Anilides or N-Arylenamines</td>
<td>595</td>
</tr>
<tr>
<td>15.4.1.2.1.3.2</td>
<td>Method 2:</td>
<td>From N-(2-Haloaryl)enamines</td>
<td>595</td>
</tr>
<tr>
<td>15.4.1.2.1.3.3</td>
<td>Method 1:</td>
<td>From Formanilides</td>
<td>595</td>
</tr>
<tr>
<td>15.4.1.2.1.4</td>
<td>Method 1:</td>
<td>From (2-Aminobenzoyl)alkanes or (2-Aminobenzoyl)alkenes</td>
<td>596</td>
</tr>
<tr>
<td>15.4.1.2.1.4.1</td>
<td>Method 2:</td>
<td>From (2-Nitrobenzoyl)alkanes or (2-Nitrobenzoyl)alkenes</td>
<td>596</td>
</tr>
<tr>
<td>15.4.1.2.1.4.1.1</td>
<td>Method 1:</td>
<td>From 2-Acylanilides</td>
<td>597</td>
</tr>
<tr>
<td>15.4.1.2.1.4.2</td>
<td>Method 2:</td>
<td>From N-[2-(Alkoxycarbonyl)aryl]enamines</td>
<td>599</td>
</tr>
<tr>
<td>15.4.1.2.1.5</td>
<td>Method 1:</td>
<td>From β-(Arylamino)acrylates: The Conrad–Limpach Synthesis (Gould–Jacobs Modification)</td>
<td>601</td>
</tr>
<tr>
<td>15.4.1.2.1.5.1</td>
<td>Method 1:</td>
<td>From 2-Acylanilides</td>
<td>599</td>
</tr>
<tr>
<td>15.4.1.2.1.5.1.1</td>
<td>Method 1:</td>
<td>From 2-Acylanilides</td>
<td>599</td>
</tr>
<tr>
<td>15.4.1.2.1.5.2</td>
<td>Method 1:</td>
<td>From N-[2-(Alkoxycarbonyl)aryl]enamines</td>
<td>599</td>
</tr>
<tr>
<td>15.4.1.2.1.5.2.1</td>
<td>Method 1:</td>
<td>From N-[2-(Alkoxycarbonyl)aryl]enamines</td>
<td>600</td>
</tr>
<tr>
<td>15.4.1.2.1.5.3</td>
<td>Method 1:</td>
<td>From β-(Arylamino)acrylates: The Conrad–Limpach Synthesis (Gould–Jacobs Modification)</td>
<td>601</td>
</tr>
<tr>
<td>15.4.1.2.1.5.3.1</td>
<td>Method 1:</td>
<td>From β-(Arylamino)acrylates: The Conrad–Limpach Synthesis (Gould–Jacobs Modification)</td>
<td>603</td>
</tr>
<tr>
<td>15.4.1.2.1.5.3.2</td>
<td>Method 2:</td>
<td>From N-Aryketenimines</td>
<td>603</td>
</tr>
<tr>
<td>15.4.1.2.1.5.3.3</td>
<td>Method 3:</td>
<td>From N-Aryl Heterocycles</td>
<td>603</td>
</tr>
<tr>
<td>15.4.1.2.1.5.3.4</td>
<td>Method 3:</td>
<td>From N-Aryl Heterocycles</td>
<td>603</td>
</tr>
<tr>
<td>15.4.1.2.2</td>
<td>Synthesis by Ring Transformation</td>
<td>604</td>
<td></td>
</tr>
<tr>
<td>15.4.1.2.2.1</td>
<td>By Ring Enlargement</td>
<td>604</td>
<td></td>
</tr>
<tr>
<td>15.4.1.2.2.2</td>
<td>Formal Exchange of Ring Members with Retention of the Ring Size</td>
<td>604</td>
<td></td>
</tr>
<tr>
<td>15.4.1.2.3</td>
<td>Aromatization</td>
<td>605</td>
<td></td>
</tr>
<tr>
<td>15.4.1.2.3.1</td>
<td>Method 1:</td>
<td>Dehydrogenation of Dihydroquinolin-4(1H)-ones</td>
<td>605</td>
</tr>
<tr>
<td>15.4.1.2.3.2</td>
<td>Method 2:</td>
<td>Elimination Reactions</td>
<td>606</td>
</tr>
<tr>
<td>15.4.1.2.4</td>
<td>Synthesis by Substituent Modification</td>
<td>607</td>
<td></td>
</tr>
<tr>
<td>15.4.1.2.4.1</td>
<td>Substitution of Existing Substituents</td>
<td>607</td>
<td></td>
</tr>
<tr>
<td>15.4.1.2.4.1.1</td>
<td>Of N-Hydrogen</td>
<td>607</td>
<td></td>
</tr>
<tr>
<td>15.4.1.2.4.1.2</td>
<td>Of C-Hydrogen</td>
<td>608</td>
<td></td>
</tr>
<tr>
<td>15.4.1.2.4.1.2.1</td>
<td>Method 1:</td>
<td>By Metals</td>
<td>608</td>
</tr>
<tr>
<td>15.4.1.2.4.1.2.2</td>
<td>Method 2:</td>
<td>By Alkyl Groups</td>
<td>608</td>
</tr>
<tr>
<td>15.4.1.2.4.1.2.3</td>
<td>Method 3:</td>
<td>By Halogens</td>
<td>609</td>
</tr>
<tr>
<td>15.4.1.2.4.1.2.4</td>
<td>Method 4:</td>
<td>Hydroxylation</td>
<td>609</td>
</tr>
<tr>
<td>15.4.1.2.4.1.2.5</td>
<td>Method 5:</td>
<td>Nitration</td>
<td>610</td>
</tr>
</tbody>
</table>
15.4.2.4.1.3 Of Metals ... 610
15.4.2.4.1.4 Of Carbon Functionalities 611
15.4.2.4.1.5 Of Heteroatoms ... 612
15.4.2.4.1.5.1 Method 1: Hydrolysis of 4-Heterosubstituted Quinolines 612
15.4.2.4.1.5.2 Method 2: Substitution of 7-Haloquinolin-4(1H)-ones 613
15.4.2.4.2 Modification of Substituents 614
15.4.2.4.2.1 Of C-Heteroatom Functionalities 614
15.4.2.4.2.1.1 Method 1: Of C-Oxygen Quinolines 614
15.4.2.4.2.1.1.1 Variation 1: Dealkylation of 4-Alkoxyquinolines 614
15.4.2.4.2.1.1.2 Variation 2: Oxidation of 5,8-Dihydroxyquinolin-4(1H)-one to Quinoline-4,5,8(1H)-trione 614
15.4.3 Product Subclass 3: Quinoline-2(1H)-thiones and Quinoline-4(1H)-thiones 614
15.4.3.1 Synthesis by Ring-Closure Reactions 615
15.4.3.1.1 By Annulation to an Arene 615
15.4.3.1.1.1 By Formation of One N—C and One C—C Bond 615
15.4.3.1.1.1.1 Method 1: From (2-Alkenylaryl)amines 615
15.4.3.1.1.2 By Formation of One C—C Bond 616
15.4.3.1.1.2.1 With Formation of the 4—4a Bond 616
15.4.3.1.1.2.1.1 Method 1: From Diethyl (Anilinocarbonothioyl)malonates 616
15.4.3.2 Synthesis by Ring Transformation 616
15.4.3.2.1 Formal Exchange of Ring Members with Retention of the Ring Size 616
15.4.3.2.2 By Ring Contraction .. 616
15.4.3.3 Synthesis by Substituent Modification 617
15.4.3.3.1 Substitution of Existing Substituents 617
15.4.3.3.1.1 Of Metals .. 617
15.4.3.3.1.2 Of Heteroatoms ... 617
15.4.3.3.1.2.1 Method 1: Conversion of 2- or 4-Heterosubstituted Quinolines into Quinolinethiones ... 617
15.4.4 Product Subclass 4: Amine Derivatives of Quinolinones 618
15.4.4.1 Synthesis by Ring-Closure Reactions 619
15.4.4.1.1 By Annulation to an Arene 619
15.4.4.1.1.1 By Formation of One N—C and Two C—C Bonds 619
15.4.4.1.1.1.1 With Formation of the 1—2, 3—4, and 4—4a Bonds 619
15.4.4.1.1.1.1.1 Method 1: From N-Aryl Isocyanates, N-Arylcarbodiimides, or N-Arylthioureas ... 619
15.4.4.1.1.2 By Formation of One N—C and One C—C Bond 619
15.4.4.1.1.2.1 With Formation of the 1—2 and 2—3 Bonds 619
15.4.1.1.2.1.1 Method 1: From 2-Acylaryl Azides ... 619
15.4.1.1.2.1.2 Method 2: From (2-Alkynylaryl)amines 620
15.4.1.1.2.2 With Formation of the 1—2 and 3—4 Bonds 621
15.4.1.1.2.2.1 Method 1: From (2-Acylaryl)amines 621
15.4.1.1.2.2.1.1 Variation 1: Reaction with Alkylcarbonitriles 621
15.4.1.1.2.2.1.2 Variation 2: Reaction with Amide Derivatives 621
15.4.1.1.2.2.2 Method 2: From 2-(Perfluoroalkyl)anilines 622
15.4.1.1.2.2.3 Method 3: From Anthranilates ... 623
15.4.1.1.2.2.4 Method 4: From (2-Cyanoaryl)amines 623
15.4.1.1.2.2.5 Method 5: From (2-Acylaryl)azides 624
15.4.1.1.2.2.6 Method 6: From 2-(Perfluoroalkyl)anilines 625
15.4.1.1.2.3 With Formation of the 1—2 and 4—4a Bonds 625
15.4.1.1.2.3.1 Method 1: From Arylamines ... 625
15.4.1.1.2.3.2 Method 2: From N-Arylhydroxylamines 625
15.4.1.1.2.4 By Formation of Two C—C Bonds ... 626
15.4.1.1.2.4.1 With Formation of the 2—3 and 4—4a Bonds 626
15.4.1.1.2.4.1.1 Method 1: From N-Arylketenimines 626
15.4.1.1.2.4.1.2 Method 2: From N-Arylimidoylphosphoranes 627
15.4.1.1.2.5 By Formation of One N—C Bond .. 627
15.4.1.1.2.5.1 With Formation of the 1—2 Bond ... 627
15.4.1.1.2.5.1.1 Method 1: From N-(2-Alkenylphenyl)-N¢-arylcarbodiimides 627
15.4.1.1.2.5.1.2 Method 2: From N-(2-Vinylaryl)ureas 630
15.4.1.1.2.5.1.3 Method 3: From 2-Alkynylphenyl isocyanates 631
15.4.1.1.2.5.2 With Formation of the 3—4 Bond .. 631
15.4.1.1.2.5.2.1 Method 1: From N-(2-Acylaryl)imidates/Amidines 631
15.4.1.1.2.5.2.2 Method 2: From N-Acetylanthranilates 632
15.4.1.1.2.5.2.3 Method 3: From 2-(Ethylideneamino)benzonitriles 632
15.4.1.1.2.5.2.4 Method 4: From N-(2-Perfluoroalkyl)phenylketimines 633
15.4.1.1.2.5.3 With Formation of the 4—4a Bond .. 634
15.4.1.1.2.5.3.1 Method 1: From Bis(arylamo) Enones and Acrylates 634
15.4.1.1.2.5.3.2 Method 2: From 3-(Arylamino)acrylonitriles or 3-(Arylamino)acrylamides 635
15.4.1.1.2.5.3.3 Method 3: From Propynimidamides 635
15.4.1.1.2.6 By Annulation to the Heterocyclic Ring 636
15.4.1.2.1 By Formation of Two C—C Bonds ... 636
15.4.1.2.1.1 Method 1: From 2-Amino-6-methylpyridine-3,4,5-tricarbonitrile 636
15.4.2 Synthesis by Ring Transformation ... 637
15.4.2.1 By Ring Enlargement .. 637
15.4.2.2 Formal Exchange of Ring Members with Retention of the Ring Size 637
15.4.2.3 By Ring Contraction .. 638
15.4.3 Synthesis by Substituent Modification .. 638
15.4.3.1 Substitution of Existing Substituents .. 638
15.4.3.1.1 Of Hydrogen .. 638
15.4.3.1.1.1 Method 1: Amination (The Chichibabin Reaction) 638
15.4.3.1.2 Of Metals ... 639
15.4.3.1.3 Of Carbon Functionalities .. 639
15.4.3.1.4 Of Heteroatoms ... 640
15.4.3.1.4.1 Method 1: From Quinoline 1-Oxides 640
15.4.3.1.4.2 Method 2: Substitution of Heteroatoms in the 2- or 4-Position 640
15.4.3.2 Rearrangement of Substituents .. 642

15.5 Product Class 5: Isoquinolines
M. Álvarez and J. A. Joule

15.5 Product Class 5: Isoquinolines ... 661
15.5.1 Product Subclass 1: Isoquinolines ... 661
15.5.1.1 Synthesis by Ring-Closure Reactions 664
15.5.1.1.1 By Annulation to an Arene .. 665
15.5.1.1.1.1 Method 1: From 1,5-Dicarbonyl Compounds 665
15.5.1.1.1.1.1 Variation 1: From 2-Formylbenzylcarbonyl Compounds 665
15.5.1.1.1.1.2 Variation 2: From 1,5-Diketones 666
15.5.1.1.1.1.3 Variation 3: From 2-[(Cyclohexylimino)methyl]benzyl Ketones ... 667
15.5.1.1.1.1.2 By Formation of One N—C and One C—C Bond 668
15.5.1.1.1.2.1 With Formation of the 2—3 and 1—8a Bonds 668
15.5.1.1.1.2.1.1 Method 1: From Arylacetic Acids and Derivatives 668
15.5.1.1.1.2.1.1.1 Variation 1: From Arylacetic Esters 668
15.5.1.1.1.2.1.1.2 Variation 2: From Arylacetamides 668
15.5.1.1.1.2.1.1.2 Method 2: From 1-Aryl-2-bromoalkenes and a Nitrile 670
15.5.1.1.1.2.1.3 Method 3: From 3-Arylprop-1-enes and a Nitrile 670
15.5.1.1.1.2.1.4 Method 4: From Benzyl Ketones 671
15.5.1.1.1.2.1.4.1 Variation 1: By Gatterman Reaction 671
15.5.1.1.1.2.1.4.2 Variation 2: Via ortho Lithiation 672
15.5.1.1.2.2 With Formation of the 2—3 and 4—4a Bonds ... 672
15.5.1.1.2.2.1 Method 1: From 2-Iodobenzylamine ... 672
15.5.1.1.2.2.2 Method 2: From N-Acetyl-2-iodobenzylamine 673
15.5.1.1.2.2.3 Method 3: From 1-(2-Iodoaryl)alkan-1-imines 673
15.5.1.1.2.2.3.1 Variation 1: From N-tert-Butyl-2-iodoaryl-methanimines and Alkynes 673
15.5.1.1.2.2.3.2 Variation 2: From 1-(2-Iodophenyl)alkan-1-imines and Allenes 674
15.5.1.1.2.2.4 Method 4: From 1-Arylalkan-1-imines .. 675
15.5.1.1.2.3 With Formation of the 1—2 and 1—8a Bonds ... 676
15.5.1.1.2.3.1 Method 1: From Arylacetonitriles ... 676
15.5.1.1.2.3.1.1 Variation 1: Synthesis of 1,3-Dichloroisoquinolines Using Phosgene 676
15.5.1.1.2.3.1.2 Variation 2: Synthesis of 3-Chloroisoquinolines Using a Vilsmeier Reaction 676
15.5.1.1.2.3.2 Method 2: Synthesis of 1,2,3,4-Tetrahydroisoquinolines: The Pictet–Spengler Synthesis ... 677
15.5.1.1.2.3.2.1 Variation 1: Pictet–Spengler Synthesis Using a Superacid 679
15.5.1.1.2.3.2.2 Variation 2: Using an Acyl Chloride ... 680
15.5.1.1.2.3.2.3 Variation 3: Using 2-Aryl-N-(arylsulfonyl)ethylamines 680
15.5.1.1.2.3.2.4 Variation 4: Using 2-Aryl-N-(phenylsulfonyl)ethylamines with Ethyl Chloro(methylsulfanyl)- or Chloro(phenylselenyl)acetates 681
15.5.1.1.2.3.2.5 Variation 5: Using N-Acyl- or N-(Alkoxy-carbonyl)-2-arylethylamines 682
15.5.1.1.2.3.2.6 Variation 6: Using Carboxyl Component Synthons 684
15.5.1.1.2.3.2.7 Variation 7: Generation of Intermediates Using Aza-Wittig Reactions 686
15.5.1.1.2.3.3 Method 3: From 2-Arylethylamines, Carboxylic Acids, and Polyphosphoric Acid .. 688
15.5.1.1.2.3.4 Method 4: Stereo- and Enantioselective Pictet–Spengler-Type Syntheses of 1,2,3,4-Tetrahydroisoquinolines .. 688
15.5.1.1.2.4 With Formation of the 1—2 and 3—4 Bonds ... 691
15.5.1.1.2.4.1 Method 1: From 1,2-Diacylarenes ... 692
15.5.1.1.2.4.1.1 Variation 1: Using Diethyl [(Triphenylphosphoranylidene)amino]methylphosphonate ... 692
15.5.1.1.2.4.1.2 Variation 2: From 1,2-Diacylarenes and an Iminophosphorane Generated In Situ ... 692
15.5.1.1.2.4.2 Method 2: From ortho-Substituted Arenecarbonitriles and Arenecarboxamides ... 693
15.5.1.1.2.4.2.1 Variation 1: From (2-Cyanophenyl)acetoneitrile 693
15.5.1.1.2.4.2.2 Variation 2: From 2-Methylbenzonitriles ... 693
15.5.1.1.2.4.2.3 Variation 3: From 3-(2-Cyanophenyl)acrylamide 694
15.5.1.1.2.4.2.4 Variation 4: From 2-Methylbenzamides ... 694
15.5.1.1.3 By Formation of Two C—C Bonds ... 694
15.5.1.1.3.1 With Formation of the 1—8a and 4—4a Bonds .. 694
15.5.1.1.3.1.1 Method 1: From 2-Aza-1,3-dienes ... 694
15.5.1.1.3.1.2 Method 2: From Heterocyclic 2-Aza-1,3-dienes 695
15.5.1.1.4 By Formation of One N—C Bond ... 696
15.5.1.1.4.1 With Formation of the 1—2 Bond ... 696
15.5.1.1.4.1.1 Method 1: From (2-Formylphenyl)acetoneitrile 696
Method 2: From 3-(2-Acylphenyl)-2-azidoacrylates with Phosphorus(III) Reagents: Intramolecular Aza-Wittig Reactions

Method 3: From 2-(2-Acylaryl)ethylamines

Method 1: From 1-{2-[t(ert-Butylimino)methyl]phenyl}alk-1-ynes

Variation 1: With Proton, Iodine, Sulfur, or Selenium Electrophiles

Variation 2: With Carbon Monoxide and an Electrophile

Variation 3: Vinylation by the Heck Reaction

Variation 4: With Addition of Aryl or Alkyl Halides

Method 2: Palladium(0)-Catalyzed Cyclization of 2-Allylbenzaldehyde O-(Pentafluorobenzoyl)oximes

Method 3: Electrocyclization of 2-Vinylbenzaldehyde Oximes

Method 4: From N-Acetyl-2-(2-acylaryl)ethylamines

Method 5: From 2-(1-Cyano-2-phenylvinyl)benzonitrile

Method 6: From 2-(2,2-Difluorovinyl)benzonitriles

Method 7: From (2-Cyanophenyl)acetonitriles

Method 8: From 2-(Cyanomethyl)benzoic Acids

Method 9: From 2-Vinylbenzaldehyde Imines

Method 10: From Sulfinamides

Method 11: From Chiral 2-[Tosylamino)methyl]phenylacetaldehyde Acetals

Method 12: From a Protected 2-(2-Oxoalkyl)benzonitrile

By Formation of One C–C Bond

With Formation of the 4–4a Bond

Method 1: From 2,2-Dialkoxy-N-benzylideneeethylamine: The Pomeranz–Fritsch Synthesis

Variation 1: From 1-Arylalkylamines and Glyoxal Monoacetal

Variation 2: Pomeranz–Fritsch Syntheses Using Alternative Acids for the Cyclizations

Variation 3: Pomeranz–Fritsch Synthesis Using Ethyl Chloroformate/Trialkyl Phosphite Followed by Titanium(IV) Chloride

Variation 4: From 2,2-Dialkoxy-N-benzylylethylamines in the Presence of an Aldehyde

Variation 5: From 2,2-Dialkoxy-N-(1-Arylalkyl)ethylamines Using Chlorosulfonic Acid

Variation 6: From 2,2-Dialkoxy-N-benzyl-N-tosylethylamines

Variation 7: From 2,2-Dialkoxy-N-(1-arylalkyl)-N-(benzylsulfonyl)ethylamines

Variation 8: From N-Acetyl-2,2-dialkoxy-N-benzylylethylamines

Variation 9: From (Benzylamino)acetates

Method 2: Stereo- and Enantioselective Syntheses of 1,2,3,4-Tetrahydroisoquinolines with Formation of the 4–4a Bond

With Formation of the 1–8a Bond

Method 1: From N-Acyl-2-arylethylamines: The Bischler–Napieralski Synthesis
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.5.1.1.5.2.1.1</td>
<td>Variation 1: From N-Acyl-2-aryl-2-hydroxyethylamines: Pictet–Gams Modification of the Bischler–Napieralski Synthesis</td>
</tr>
<tr>
<td>15.5.1.1.5.2.1.2</td>
<td>Variation 2: From 5-Aryl-4,5-dihydrooxazoles</td>
</tr>
<tr>
<td>15.5.1.1.5.2.1.3</td>
<td>Variation 3: From 3-Arylpropanone Oximes</td>
</tr>
<tr>
<td>15.5.1.1.5.2.1.4</td>
<td>Variation 4: From N-Acyl-2-arylvinylamines</td>
</tr>
<tr>
<td>15.5.1.1.5.2.1.5</td>
<td>Variation 5: Photolysis of N-Acyl-2-arylvinylamines</td>
</tr>
<tr>
<td>15.5.1.1.5.2.1.6</td>
<td>Variation 6: From 4-Arylbut-3-en-2-one Oximes</td>
</tr>
<tr>
<td>15.5.1.1.5.2.1.7</td>
<td>Variation 7: From 2-Aryl-N-(thioacetyl)ethy lamines</td>
</tr>
<tr>
<td>15.5.1.1.5.2.2</td>
<td>Method 2: From N-Substituted N’-(1,2-Diarylvinyl)carbodiimides</td>
</tr>
<tr>
<td>15.5.1.1.5.2.3</td>
<td>Method 3: From 2-Arylethyl Isocyanides</td>
</tr>
<tr>
<td>15.5.1.1.5.2.4</td>
<td>Method 4: Synthesis of Enantiomerically Pure 1,2,3,4-Tetrahydroisoquinolines via Bischler–Napieralski Closure</td>
</tr>
<tr>
<td>15.5.1.1.5.2.5</td>
<td>Method 5: Synthesis from 1</td>
</tr>
<tr>
<td>15.5.1.1.5.2.6</td>
<td>Method 6: From an Isoquinoline-1,3(2H) Dione Monooximes</td>
</tr>
<tr>
<td>15.5.1.1.5.2.7</td>
<td>Method 7: From 1,4-Benzothiazepines</td>
</tr>
<tr>
<td>15.5.1.1.5.2.8</td>
<td>Method 8: From Furo[3,4-c]pyridines</td>
</tr>
<tr>
<td>15.5.1.1.5.2.9</td>
<td>Method 9: From [1,2,3]Triazolo[5,1-a]isoquinolines</td>
</tr>
<tr>
<td>15.5.1.1.5.2.10</td>
<td>Method 10: From Zirconacyclopentadienes</td>
</tr>
</tbody>
</table>

Science of Synthesis Original Edition Volume 15
© Georg Thieme Verlag KG
Table of Contents

15.5.1.3 Synthesis by Substituent Modification .. 744
15.5.1.3.1 Substitution of Existing Substituents ... 744
15.5.1.3.1.1 Of Hydrogen .. 744
15.5.1.3.1.1.1 Method 1: Protonation/Deuteration .. 744
15.5.1.3.1.1.2 Method 2: Metalation ... 745
15.5.1.3.1.1.3 Method 3: Acylation ... 745
15.5.1.3.1.1.3.1 Variation 1: Reaction with Acyl Radicals 745
15.5.1.3.1.1.3.2 Variation 2: Electrophilic Acylation 746
15.5.1.3.1.1.4 Method 4: Alklyation and Arylation .. 746
15.5.1.3.1.1.4.1 Variation 1: Reaction with Radicals 746
15.5.1.3.1.1.4.2 Variation 2: Electrophilic Alkylation 747
15.5.1.3.1.1.4.3 Variation 3: Nucleophilic Alkylation/Arylation 748
15.5.1.3.1.1.4.4 Variation 4: By Rearrangement ... 752
15.5.1.3.1.1.5 Method 5: Halogenation .. 752
15.5.1.3.1.1.6 Method 6: Sulfonylation and Seleninylation 754
15.5.1.3.1.1.7 Method 7: Nitration and Nitrosation .. 755
15.5.1.3.1.1.7.1 Variation 1: Electrophilic Substitution 755
15.5.1.3.1.1.7.2 Variation 2: Nucleophilic Substitution 757
15.5.1.3.1.1.8 Method 8: Diazoc Coupling ... 758
15.5.1.3.1.1.9 Method 9: Amination ... 758
15.5.1.3.1.1.10 Method 10: Hydroxylation ... 759
15.5.1.3.1.1.11 Method 11: Oxidation ... 760
15.5.1.3.1.1.12 Method 12: Using Reissert Compounds 764
15.5.1.3.1.1.12.1 Variation 1: Synthesis of 1-Alkylisoquinolines 766
15.5.1.3.1.1.12.2 Variation 2: Synthesis of 1-(Hydroxyalkyl)isoquinolines 769
15.5.1.3.1.1.12.3 Variation 3: Synthesis of Isoquinoline-1-carbonitriles 770
15.5.1.3.1.1.12.4 Variation 4: Synthesis of 1-Hetarylisoquinolines 771
15.5.1.3.1.1.12.5 Variation 5: Synthesis of 1-Benzoylisoquinoline 771
15.5.1.3.1.1.12.6 Variation 6: Synthesis of 1-Pyrrol-2-ylisoquinolines 772
15.5.1.3.1.1.12.7 Variation 7: Synthesis of Phenyl 1-Allyl-1,2-dihydroisoquinoline-2-carboxylates .. 772
15.5.1.3.1.1.13 Method 13: Using N-Oxides .. 773
15.5.1.3.1.1.13.1 Variation 1: Synthesis of Isoquinolines 773
15.5.1.3.1.1.13.2 Variation 2: Synthesis of 1-Haloisoquinolines 773
15.5.1.3.1.1.13.3 Variation 3: Synthesis of 1-Acetoxyisoquinolines and Isoquinolin-1(2H)-ones .. 774
15.5.1.3.1.1.13.4 Variation 4: Synthesis of Isoquinoline-1-carbonitriles 775
15.5.1.3.1.1.13.5 Variation 5: Introduction of Carbon Acids at C1 776
15.5.1.3.1.1.13.6 Variation 6: Reaction with Dichloroketene 778
15.5.1.3.1.1.13.7 Variation 7: Reaction with Diketene 779
15.5.1.3.1.1.13.8 Variation 8: Conversion into 1-Benzoylisoquinolines 779
15.5.1.3.1.1.13.9 Variation 9: Introduction of 1-Nitrogen Substituents 780
15.5.1.3.1.1.13.10 Variation 10: Using 2-(Acylimino)isoquinolinium Salts 782
15.5.1.3.1.1.13.11 Variation 11: Using 2-(2,6-Dimethyl-4-oxo-1,4-dihydro-1-pyridyl)isoquinolinium Salts .. 782
15.5.1.3.1.1.13.12 Variation 12: Using Isoquinolinium Salts and Ethyl (Trimethylsilyl)acetate or (Trimethylsilyl)acetonitrile 783

Science of Synthesis Original Edition Volume 15
© Georg Thieme Verlag KG
15.5.1.3.1.2 Of Metals .. 783
Method 1: Substitution of Metalated Isoquinolines 783
Method 2: Metal-Catalyzed Cross Coupling 785
15.5.1.3.1.3 Of Carbon Functionalities 786
15.5.1.3.1.4 Of Halogens .. 788
Method 1: Nucleophilic Substitutions 788
Method 2: Hydrogenolysis of C-Halo Groups 794
Method 3: Exchange of C-Halo Groups 795
Method 4: Metal-Catalyzed Cross Coupling 795
15.5.1.3.1.5 Of Oxygen .. 800
Method 1: Modification of Isoquinolin-1(2H)-ones 800
Method 2: Of Hydroxy or Alkoxy Groups 802
Method 3: Of 4-Toluenesulfonates 803
15.5.1.3.1.6 Of Sulfur .. 803
Method 1: Of Sulfonic Acids ... 803
15.5.1.3.1.7 Of Nitrogen .. 804
15.5.1.3.2 Modification of Substituents 805
15.5.1.3.2.1 Of C-Carbon Substituents 805
Method 1: Carboxy and Related Functional Groups 805
Method 2: Aldehyde, Ketone, and Related Groups 806
Method 3: Alkyl and Hydroxyalkyl Groups 808
15.5.1.3.2.2 Of C-Oxygen Substituents 813
15.5.1.3.2.3 Of C-Nitrogen Substituents 814
15.5.2 Product Subclass 2: Isoquinoline 2-Oxides 815
15.5.2.1 Synthesis by Ring-Closure Reactions 815
15.5.2.1.1 By Annulation to an Arene 815
15.5.2.1.1.1 By Formation of One N—C Bond 815
15.5.2.1.1.1.1 With Formation of the 2—3 Bond 815
15.5.2.1.1.1.1 Method 1: From 2-Alk-1-ynylbenzaldehyde Oximes 815
15.5.2.2 Synthesis by Ring Transformation 816
15.5.2.3 Synthesis by Substituent Modification 817
15.5.2.3.1 Substitution of Existing Substituents 817
15.5.2.3.1.1 Of Hydrogen .. 817
15.5.2.3.1.1.1 Method 1: Nitration 817
15.5.2.3.1.2 Of C-Halogen Substituents 817
15.5.2.3.1.3 Of N-Oxygen Substituents 817
15.5.3 Product Subclass 3: Isoquinolinium Salts 817
15.5.3.1 Synthesis by Ring-Closure Reactions 818
15.5.3.1.1 By Annulation to an Arene 818
15.5.3.1.1 By Formation of Two N—C Bonds .. 818
15.5.3.1.1.1 With Formation of the 1—2 and 2—3 Bonds .. 818
15.5.3.1.1.1 Method 1: From 1,5-Diketones .. 818
15.5.3.1.2 By Formation of One N—C and One C—C Bond 819
15.5.3.1.2.1 With Formation of the 2—3 and 4—4a Bonds 819
15.5.3.1.1.1 With Formation of the 1—2 and 2—3 Bonds .. 820
15.5.3.1.3 By Formation of One N—C Bond ... 820
15.5.3.1.3.1 With Formation of the 1—2 Bond .. 820
15.5.3.1.4 By Formation of One C—C Bond ... 820
15.5.3.1.4.1 With Formation of the 1—8a Bond .. 820
15.5.3.2 Synthesis by Ring Transformation .. 820
15.5.3.2.1 Method 1: From Isoquinolines ... 820
15.5.3.2.2 Method 2: From 2-Benzopyrylium Salts ... 823
15.5.3.2.3 Method 3: From 2-Alkyl-1,2-dihydro- and 2-Alkyl-1,2,3,4-tetrahydro-isoquinolines ... 824
15.5.3.2.4 Method 4: From 5H-2,3-Benzodiazipines .. 824
15.5.3.2.5 Method 5: From 1a,6a-Dihydroinden[1,2-b]azirin-6(1H)-ones 825
15.5.3.3 Synthesis by Substituent Modification ... 825
15.5.3.3.1 Substitution of Existing Substituents ... 825
15.5.3.3.1.1 Of Hydrogen .. 825
15.5.3.3.1.1 Method 1: Oxidation ... 825
15.5.3.3.2 Modification of Substituents .. 825
15.5.3.3.2.1 Of C-Carbon Substituents ... 825
15.5.3.3.2.2 Of C-Oxygen Substituents ... 826
15.5.3.3.2.3 Of N-Carbon Substituents ... 826
15.5.3.3.2.4 Of N-Nitrogen Substituents .. 827
15.6 Product Class 6: Isoquinolinones
 M. Álvarez and J. A. Joule

15.6.1 Product Class 6: Isoquinolinones ... 839
15.6.1.1 Product Subclass 1: Isoquinolin-1(2H)-ones 841
15.6.1.1.1 Synthesis by Ring-Closure Reactions .. 841
15.6.1.1.1 By Annulation to an Arene .. 841
15.6.1.1.1 By Formation of One N—C and One C—C Bond 841
15.6.1.1.1.1 With Formation of the 1—2 and 3—4 Bonds 841
15.6.1.1.1.1 Method 1: From 2-Acylbenzoates ... 841
15.6.1.1.1.2 Method 2: From N,N-Diethyl-2-methylbenzamides and Imines 842
15.6.1.1.1.3 Method 3: Self-Condensation of Potassium 2-(Cyanomethyl)benzoate . 843
15.6.1.1.1.2 With Formation of the 2—3 and 3—4 Bonds 844
15.6.1.1.1.2 Method 1: From (2-Alkylaryl)carboxamides 844
15.6.1.1.1.1 Variation 1: From 2-Methylbenzamides 844
15.6.1.1.1.1.2 Variation 2: From O-Methyl-2-alkylbenzohydroxamates 845
15.6.1.1.1.1.2.1 Method 2: From 2-Methylisophthalonitrile 845
15.6.1.1.1.1.2.1.1 Method 3: From 2-Alkynylbenzonitriles 846
15.6.1.1.1.1.2.4 Method 4: From 2-Methylbenzoic Acid Hydrazides 846
15.6.1.1.1.1.3 With Formation of the 2—3 and 4—4a Bonds 847
15.6.1.1.1.1.3.1 Method 1: From N-Methylbenzamide 847
15.6.1.1.1.1.4 By Formation of One N—C Bond 848
15.6.1.1.1.1.4.1 With Formation of the 1—2 Bond 848
15.6.1.1.1.1.4.1.1 Method 1: From 2-(Cyanomethyl)benzoates 848
15.6.1.1.1.1.4.1.2 Method 2: From Methyl 2-(Oxazol-5-yl)benzoates 848
15.6.1.1.1.1.4.1.3 Method 3: From 2-[2-(Hydroxyimino)ethyl]benzoic Acid 849
15.6.1.1.1.1.4.1.4 Method 4: From Chiral 2-(2-Aminoethyl)benzamides 849
15.6.1.1.1.1.4.1.5 Method 5: From Alkyl 2-(2-Aminoethyl)benzoates 850
15.6.1.1.1.1.4.2 With Formation of the 2—3 Bond 850
15.6.1.1.1.1.4.2.1 Method 1: From 2-(1-Cyano-2-phenylvinyl)benzonitrile 850
15.6.1.1.1.1.4.2.2 Method 2: From Azidocinnamates with Phosphorus(III) Reagents: Intramolecular Aza-Wittig Reactions ... 851
15.6.1.1.1.1.4.2.3 Method 3: From 2-[2-(Dimethylamino)vinyl]isophthalonitrile 852
15.6.1.1.1.1.4.2.4 Method 4: From 2-(2-Ethoxyvinyl)benzonitrile 852
15.6.1.1.1.1.4.2.5 Method 5: From Benzamides 853
15.6.1.1.1.1.4.2.5.1 Variation 1: From 2-Halobenzamides 853
15.6.1.1.1.1.4.2.5.2 Variation 2: From 2-Cyanobenzyl Ketones 853
15.6.1.1.1.1.4.2.6 Method 6: From 2-Bromobenzamide 854
15.6.1.1.1.1.4.2.7 Method 7: From 2-Chloro-5-nitrobenzonitrile 854
15.6.1.1.1.1.4.2.8 Method 8: From 2-(2-Phenylvinyl)benzamide and N-(Phenylselenyl)succinimide 855
15.6.1.1.1.1.4.2.9 Method 9: From 2-(2-Hydroxyethyl)benzamides 855
15.6.1.1.1.5 By Formation of One C—C Bond ... 856
15.6.1.1.1.5.1 With Formation of the 1—8a Bond 856
15.6.1.1.1.5.1.1 Method 1: From the Acyl Azide of a Cinnamic Acid 856
15.6.1.1.1.5.1.2 Method 2: From 2-Phenylvinyl Isothiocyanates 858
15.6.1.1.1.5.1.3 Method 3: From 2-Arylethanamine Carbamates 858
15.6.1.1.1.5.2 With Formation of the 3—4 Bond 858
15.6.1.1.1.5.2.1 Method 1: From Phosphorylated 2-Aroylbenzamides 858
15.6.1.1.1.5.2.2 Method 2: From N-Acylbenzamides 859
15.6.1.1.1.5.2.3 Method 3: From N-Alkyl-N-(silylmethyl)benzamides 860
15.6.1.1.1.5.3 With Formation of the 4—4a Bond 860
15.6.1.1.1.5.3.1 Method 1: From Allenes ... 860
15.6.1.1.1.5.3.2 Method 2: From N-(2,2-Dimethoxyethyl)benzamides 861
15.6.1.1.2 By Annulation to a Pyridine ... 861
15.6.1.1.2.1 By Formation of Two C—C Bonds 861
15.6.1.1.2.1.1 With Formation of the 4a—5 and 8—8a Bonds 861
<table>
<thead>
<tr>
<th>Method/Variant</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 1</td>
<td>From Isoquinolines</td>
<td>862</td>
</tr>
<tr>
<td>Method 2</td>
<td>From Isoquinoline 2-Oxides</td>
<td>863</td>
</tr>
<tr>
<td>Method 3</td>
<td>From Isoquinolinium Salts</td>
<td>864</td>
</tr>
<tr>
<td>Method 4</td>
<td>From Isoquinolin-1-amines</td>
<td>865</td>
</tr>
<tr>
<td>Method 5</td>
<td>From Partially Reduced Isoquinolin-1(2H)-ones</td>
<td>866</td>
</tr>
<tr>
<td>Method 6</td>
<td>From Homophthalic Anhydrides and Homophthalimides</td>
<td>867</td>
</tr>
<tr>
<td>Variation 1</td>
<td>Conversion of Homophthalic Anhydrides into Imides</td>
<td>868</td>
</tr>
<tr>
<td>Variation 2</td>
<td>Condensation of Homophthalic Anhydride with Trimethyl Orthoformate Followed by Reaction with Ammonia or Amines</td>
<td>869</td>
</tr>
<tr>
<td>Variation 3</td>
<td>From Arylidenehomophthalimides</td>
<td>870</td>
</tr>
<tr>
<td>Variation 4</td>
<td>From Homophthalic Anhydride and Aromatic Aldehydes</td>
<td>871</td>
</tr>
<tr>
<td>Method 7</td>
<td>From 1H-2-Benzopyran-1-ones</td>
<td>872</td>
</tr>
<tr>
<td>Method 8</td>
<td>From Isobenzofuran-1(3H)-ones</td>
<td>873</td>
</tr>
<tr>
<td>Variation 1</td>
<td>By Lithiation of Isobenzofuran-1(3H)-ones</td>
<td>874</td>
</tr>
<tr>
<td>Variation 2</td>
<td>From 3-(Hydroxymethyl)isobenzofuran-1(3H)-ones</td>
<td>875</td>
</tr>
<tr>
<td>Method 9</td>
<td>From 1-Haloisoquinolines</td>
<td>876</td>
</tr>
<tr>
<td>Method 10</td>
<td>From 2-(Carboxymethyl)benzoic Acids</td>
<td>877</td>
</tr>
<tr>
<td>Method 11</td>
<td>Synthesis from Indanones</td>
<td>878</td>
</tr>
<tr>
<td>Method 12</td>
<td>From Isoindolones</td>
<td>879</td>
</tr>
<tr>
<td>Method 13</td>
<td>Synthesis from 1-(Allyloxy)isoquinoline</td>
<td>880</td>
</tr>
<tr>
<td>Method 14</td>
<td>Synthesis from a Naphthalene</td>
<td>881</td>
</tr>
<tr>
<td>Method 15</td>
<td>From Benzopyrancarbonitriles</td>
<td>882</td>
</tr>
<tr>
<td>Method 1</td>
<td>From 2-Oxo-1,2-dihydropyridine-4-carbonitriles</td>
<td>883</td>
</tr>
<tr>
<td>Method 2</td>
<td>With 2-/3-Methoxybuta-1,3-dienes</td>
<td>884</td>
</tr>
<tr>
<td>Method 3</td>
<td>With 2-/3-Methoxybuta-1,3-dienes</td>
<td>885</td>
</tr>
<tr>
<td>Method 4</td>
<td>From 2-Oxo-1,2-dihydropyridine-4-carbonitriles</td>
<td>886</td>
</tr>
<tr>
<td>Method 5</td>
<td>From 2-Oxo-1,2-dihydropyridine-4-carbonitriles</td>
<td>887</td>
</tr>
<tr>
<td>Method 6</td>
<td>From 2-Oxo-1,2-dihydropyridine-4-carbonitriles</td>
<td>888</td>
</tr>
<tr>
<td>Method 7</td>
<td>From 2-Oxo-1,2-dihydropyridine-4-carbonitriles</td>
<td>889</td>
</tr>
<tr>
<td>Method 1</td>
<td>From 2-Oxo-1,2-dihydropyridine-4-carbonitriles</td>
<td>890</td>
</tr>
<tr>
<td>Method 2</td>
<td>From 2-Oxo-1,2-dihydropyridine-4-carbonitriles</td>
<td>891</td>
</tr>
<tr>
<td>Method 3</td>
<td>From 2-Oxo-1,2-dihydropyridine-4-carbonitriles</td>
<td>892</td>
</tr>
<tr>
<td>Method 4</td>
<td>From 2-Oxo-1,2-dihydropyridine-4-carbonitriles</td>
<td>893</td>
</tr>
<tr>
<td>Method 5</td>
<td>From 2-Oxo-1,2-dihydropyridine-4-carbonitriles</td>
<td>894</td>
</tr>
<tr>
<td>Method 6</td>
<td>From 2-Oxo-1,2-dihydropyridine-4-carbonitriles</td>
<td>895</td>
</tr>
<tr>
<td>Method 7</td>
<td>From 2-Oxo-1,2-dihydropyridine-4-carbonitriles</td>
<td>896</td>
</tr>
<tr>
<td>Method 1</td>
<td>From 2-Oxo-1,2-dihydropyridine-4-carbonitriles</td>
<td>897</td>
</tr>
<tr>
<td>Method 2</td>
<td>From 2-Oxo-1,2-dihydropyridine-4-carbonitriles</td>
<td>898</td>
</tr>
<tr>
<td>Method 3</td>
<td>From 2-Oxo-1,2-dihydropyridine-4-carbonitriles</td>
<td>899</td>
</tr>
<tr>
<td>Method 4</td>
<td>From 2-Oxo-1,2-dihydropyridine-4-carbonitriles</td>
<td>900</td>
</tr>
<tr>
<td>Method 5</td>
<td>From 2-Oxo-1,2-dihydropyridine-4-carbonitriles</td>
<td>901</td>
</tr>
<tr>
<td>Method 6</td>
<td>From 2-Oxo-1,2-dihydropyridine-4-carbonitriles</td>
<td>902</td>
</tr>
<tr>
<td>Method 7</td>
<td>From 2-Oxo-1,2-dihydropyridine-4-carbonitriles</td>
<td>903</td>
</tr>
<tr>
<td>Method 1</td>
<td>From 2-Oxo-1,2-dihydropyridine-4-carbonitriles</td>
<td>904</td>
</tr>
<tr>
<td>Method 2</td>
<td>From 2-Oxo-1,2-dihydropyridine-4-carbonitriles</td>
<td>905</td>
</tr>
<tr>
<td>Method 3</td>
<td>From 2-Oxo-1,2-dihydropyridine-4-carbonitriles</td>
<td>906</td>
</tr>
<tr>
<td>Method 4</td>
<td>From 2-Oxo-1,2-dihydropyridine-4-carbonitriles</td>
<td>907</td>
</tr>
<tr>
<td>Method 5</td>
<td>From 2-Oxo-1,2-dihydropyridine-4-carbonitriles</td>
<td>908</td>
</tr>
<tr>
<td>Method 6</td>
<td>From 2-Oxo-1,2-dihydropyridine-4-carbonitriles</td>
<td>909</td>
</tr>
<tr>
<td>Method 7</td>
<td>From 2-Oxo-1,2-dihydropyridine-4-carbonitriles</td>
<td>910</td>
</tr>
</tbody>
</table>

Method 1: Protonation/Deuteration 875

Method 2: Acylation 876

Method 3: Alkylation at Carbon 877

Method 4: Alkylation at Nitrogen 878

Method 5: Halogenation 879

Method 6: Nitration 880

Method 7: Oxidation 881

Method 8: Using Copper Salts 882

Method 9: By Lithiation of Isobenzofuran-1(3H)-ones 883

Method 10: From 1-(Trimethylsiloxy)isoquinolines 884

Method 11: Synthesis from 1-(Allyloxy)isoquinoline 885

Method 12: From Isoindolones 886

Method 13: Synthesis from Indanones 887

Method 14: From 2-(Carboxymethyl)benzoic Acids 888

Method 15: From Benzopyrancarbonitriles 889
Method 2: Metal-Catalyzed Cross Coupling .. 884
Of Oxygen .. 885
Method 1: Reduction of 2-Hydroxyisoquinolin-1(2H)-ones 885
Method 2: Conversion into Isoquinolin-1(2H)-thiones 885
Modification of Substituents ... 886
Of C-Carbon Substituents ... 886
Method 1: Modification of Carboxyl and Related Functional Groups 886
Method 2: Modification of Carbonyl and Related Groups 886
Method 3: Modification of Alkyl and Hydroxyalkyl Groups 886
Of C-Oxygen Substituents ... 887
Method 1: Modification of a 4-Hydroxy Substituent 887
Of C-Nitrogen Substituents ... 887
Product Subclass 2: Isoquinolin-3-ones and Isoquinolin-3-ols 888
Synthesis by Ring-Closure Reactions .. 888
By Annulation to an Arene ... 888
By Formation of Two N—C Bonds .. 888
With Formation of the 1—2 and 2—3 Bonds .. 888
Method 1: From 1,5-Dicarbonyl Compounds 888
Variation 1: From Alkyl (2-Acylphenyl)acetates 888
Variation 2: From 2-(2-Formylphenyl)-N,N-dimethylacetamides 889
Variation 3: From Homophthalic Acids .. 889
By Formation of One N—C and One C—C Bond 890
With Formation of the 1—8a and 2—3 Bonds 890
Method 1: From Phenylacetyl Chlorides and Imidoyl Chlorides 890
With Formation of the 1—8a and 1—2 Bonds 890
Method 1: From Phenylacetamides and Hexamethylenetetramine 890
By Formation of Two C—C Bonds .. 891
With Formation of the 4—4a and 1—8a Bonds 891
Method 1: From Benzo-1,4-quinones .. 891
By Formation of One N—C Bond ... 892
With Formation of the 2—3 Bond ... 892
Method 1: From (2-Cyanoaryl)acetyl Chlorides 892
Method 2: From Methyl (2-Cyanoaryl)acetates 893
By Formation of One C—C Bond ... 893
With Formation of the 4—4a Bond .. 893
Method 1: From N-Benzyl-2,2-diethoxyacetamides 893
Method 2: From N-Benzyl-2-hydroxy-2-phenylacetamide 894
Method 3: From N-Benzyl-N-tert-butyl-2-(2-sulfinylphenyl)acetamides .. 895
15.6.2.1.2 From Acyclic Precursors ... 895
15.6.2.1.2.1 By Formation of Two C—C bonds ... 895
15.6.2.1.2.1.1 With Formation of the 4a—8a and 7—8 Bonds 895
15.6.2.1.2.1.1.1 Method 1: From N-Prop-2-ynylhexadienlamides 895
15.6.2.2 Synthesis by Ring Transformation .. 896
15.6.2.2.1 Method 1: From Isoquinolin-3-amines .. 896
15.6.2.2.2 Method 2: From Benzo[c]pyrylium Salts 896
15.6.2.2.3 Method 3: By Dehydrogenation of 1,4-Dihydroisoquinolin-3(2H)-ones . 897
15.6.2.2.3.1 Variation 1: Without Incorporating Other Substituents 897
15.6.2.2.3.2 Variation 2: With Incorporation of a 4-Alkyl Group 898
15.6.2.2.3.3 Variation 3: With Incorporation of a 4-Halogen 899
15.6.2.2.3.4 Variation 4: With Incorporation of a 4-Oxygen 900
15.6.2.3 Synthesis by Substituent Modification .. 900
15.6.2.3.1 Substitution of Existing Substituents ... 900
15.6.2.3.1.1 Of Hydrogen .. 900
15.6.2.3.1.1.1 Method 1: Halogenation .. 900
15.6.2.3.1.1.2 Method 2: Nitrification and Nitrosation 901
15.6.2.3.2 Modification of Substituents .. 901
15.6.2.3.2.1 Of C-Oxygen Substituents ... 901
15.6.2.3.2.2 Of C-Nitrogen Substituents ... 902

15.7 Product Class 7: Quinolizinium Salts and Benzo Analogues
H. Ihmels

15.7.1 Product Class 7: Quinolizinium Salts and Benzo Analogues 907
15.7.1.1 Product Subclass 1: Quinolizinium Salts 909
15.7.1.1.1 Synthesis by Ring-Closure Reactions .. 909
15.7.1.1.1.1 By Annulation to an Arene ... 909
15.7.1.1.1.1.1 By Formation of One N—C and One C—C Bond 909
15.7.1.1.1.1.1 Method 1: From 2-Pyridylacetonitrile and β-Dicarbonyl Derivatives 909
15.7.1.1.1.1.2 Method 2: From Ethyl 2-Pyridylacetate and 3-Ethoxyprop-2-en-1-one Derivatives .. 909
15.7.1.1.1.2 By Formation of Two C—C Bonds ... 910
15.7.1.1.1.2.1 Method 1: From 1,2-Dialkylpyridinium Salts and 1,2-Diketones 910
15.7.1.1.1.3 By Formation of One N—C Bond .. 911
15.7.1.1.1.3 Method 1: Cyclization of Hydroxy-Substituted 1-Oxo-4-(2-pyridyl)butane Derivatives ... 911
15.7.1.1.1.3.1 Variation 1: Cyclization of 4-Alkoxy-1-(2-pyridyl)pent-3-en-2-ol Derivatives 911
15.7.1.1.1.3.2 Variation 2: Cyclization of 4,4-Dialkoxy-1-(2-pyridyl)butan-2-ol Derivatives 912
15.7.1.1.1.3.3 Variation 3: From 8-[(Dimethylamino)methylene]-5H-pyrano[4,3-b]pyridine-5,7(8H)-dione 913
Method 2: Cyclization of 4,4-Bis(methylsulfanyl)-1-(2-pyridyl)but-3-en-2-ol Derivatives ... 914

By Formation of One C—C Bond .. 915

Method 1: Cyclization of 2-(1,3-Dioxolan-2-yl)-1-(2-oxopropyl)pyridinium Derivatives ... 915

Method 2: Cyclization of 2-Acetyl-1-(2-oxoethyl)pyridinium Derivatives .. 915

Aromatization ... 916

Method 1: Of 1-Oxo-1,2,3,4-tetrahydroquinolizinium Derivatives .. 916

Method 2: Of 2H-Quinolizin-2-one ... 917

Method 3: Of Dihydroquinolizine and Tetrahydroquinolizinium Derivatives .. 917

Synthesis by Substituent Modification ... 919

Substitution of Existing Substituents .. 919

Of Hydrogen ... 919

Method 1: Introduction of Bromine ... 919

Method 2: Introduction of Nitrogen Substituents 919

Of Carbon Functionalities ... 920

Method 1: Cleavage of C—C Bonds ... 920

Of Heteroatoms .. 920

Method 1: Stille Coupling of Bromoquinolizinium Derivatives .. 920

Method 2: Replacement of a Diazonium Group by Bromine 921

Method 3: Replacement of Halogens .. 922

Modification of Substituents ... 922

Method 1: Oxidation of Methyl Groups .. 922

Method 2: Oxidation of Benzo[b]quinolizinium Derivatives 923

Method 3: Reduction of Methoxycarbonyl Groups 923

Method 4: Knoevenagel-Type Condensation of Methylquinolizinium Derivatives .. 923

Product Subclass 2: Benzo[b]quinolizinium Salts 924

Synthesis by Ring-Closure Reactions ... 924

By Annulation to an Arene .. 924

By Formation of One N—C and One C—C Bond 924

Method 1: From 2-Benzylpyridine Derivatives and Acylating Reagents .. 924

Method 2: From 2-Benzylpyridine Derivatives and Alkynes 924

By Formation of One N—C Bond .. 925

Method 1: Cyclization of 2-(2-Pyridylmethyl)benzaldehyde Oxime Derivatives .. 925

Method 2: Cyclization of 2-(2-Pyridylmethyl)benzonitrile Derivatives .. 926

Method 3: Cyclization of [2-(Chloromethyl)phenyl][2-pyridyl]methanol Derivatives .. 927

By Formation of One C—C Bond .. 928
15.7.2.1.3.1 Method 1: Cyclization of 1-Benzyl-2-formylpyridinium Derivatives .. 928

15.7.2.2 Method 1: Aromatization ... 930

15.7.2.2.1 Method 1: Of 7,8-Dioxo-7,8-dihydrobenzo[b]quinolizinium Derivatives .. 930

15.7.2.2.2 Method 2: Of 1-Oxo-1,2,3,4-tetrahydrobenzo[b]quinolizinium Derivatives .. 930

15.7.2.2.3 Method 3: Of 6H-Benzo[b]quinolizine-6-carbonitrile Derivatives .. 931

15.7.2.2.4 Method 4: Of 7,8,9,10-Tetrahydro-7,8,9,10-tetrahydrobenzo[b]quinolizinium Derivatives .. 932

15.7.2.3 Method 1: Synthesis by Substituent Modification .. 932

15.7.2.3.1 Method 2: Substitution of Existing Substituents .. 932

15.7.2.3.1.1 Method 1: Of Hydrogen ... 932

15.7.2.3.1.1.1 Method 1: Introduction of Bromine ... 932

15.7.2.3.1.1.2 Method 2: Introduction of Nitrogen Substituents .. 933

15.7.2.3.1.1.3 Method 3: Introduction of Sulfur Substituents .. 934

15.7.3 Product Subclass 3: Benzo[c]quinolizinium Salts .. 934

15.7.3.1 Method 1: Synthesis by Ring-Closure Reactions .. 934

15.7.3.1.1 Method 1: By Annulation to an Arene .. 934

15.7.3.1.1.1 Method 1: By Formation of One N—C and One C—C Bond .. 934

15.7.3.1.1.1.1 Method 1: Condensation between Pyrylium Salts and 2-Aminobenzaldehyde .. 934

15.7.3.1.1.1.2 Method 1: By Formation of One N—C Bond .. 935

15.7.3.1.1.2 Method 1: Cyclization of 2-[2-(2-Chlorophenyl)vinyl]pyridine Derivatives .. 935

15.7.3.1.1.2.1 Method 2: Cyclization of 1-(2-Chlorophenyl)-2-(2-pyridyl)ethanone Derivatives .. 936

15.7.3.2 Method 1: Aromatization ... 936

15.7.3.2.1 Method 1: Of 4-Oxo-1,2,3,4-tetrahydropyridobenzo[c]quinolizinium Derivatives .. 936

15.7.3.3 Method 1: Synthesis by Substituent Modification .. 937

15.7.3.3.1 Method 1: Substitution of Existing Substituents .. 937

15.7.3.3.1.1 Method 1: Of Hydrogen ... 937

15.7.3.3.1.1.1 Method 1: Introduction of Nitrogen Substituents .. 937

15.7.3.3.1.1.2 Method 2: Introduction of Sulfur Substituents .. 938

15.7.3.3.2 Method 1: Modification of Substituents .. 938

15.7.3.3.2.1 Method 1: Knoevenagel-Type Condensation of Methylbenzo[c]quinolinizinium Derivatives .. 938

15.7.4 Product Subclass 4: Benzo[a]quinolizinium Salts .. 938

15.7.4.1 Method 1: Synthesis by Ring-Closure Reactions .. 938

15.7.4.1.1 Method 1: By Annulation to an Arene .. 938

15.7.4.1.1.1 Method 1: By Formation of One N—C and One C—C Bond .. 938
15.7.1.1.1 Method 1: From N-Alkylated 1-Alkylisoquinolinium Salts and 1,2-Diketones .. 938
15.7.1.1.2 By Formation of Two C—C Bonds ... 939
15.7.1.1.2.1 Method 1: From Isoquinolinium Salts and Mesityl Oxide 939
15.7.1.1.3 By Formation of One C—C Bond .. 939
15.7.1.1.3.1 Method 1: Cyclization of 1-(2-Oxoalkyl)-2-phenylpyridinium Derivatives · 939
15.7.1.1.3.2 Method 2: Cyclization of 1-Styrylpyridinium Derivatives 940
15.7.2 Synthesis by Ring Transformation .. 941
15.7.2.1 Method 1: Ring Contraction of Pyrido[2,1-b][1,3]benzothiazepinium Derivatives .. 941
15.7.3 Aromatization ... 941
15.7.3.1 Method 1: Of 1-Oxo-1,2,3,4-tetrahydrobenzo[a]quinolizinium Derivatives .. 941
15.7.4 Synthesis by Substituent Modification .. 942
15.7.4.1 Substitution of Existing Substituents .. 942
15.7.4.1.1 Of Hydrogen .. 942
15.7.4.1.1.1 Method 1: Introduction of Nitrogen Substituents 942

15.8 Product Class 8: Naphthyridines
P.-W. Phuan and M. C. Kozlowski

15.8 Product Class 8: Naphthyridines .. 947
15.8.1 Synthesis by Ring-Closure Reactions ... 949
15.8.1.1 By the Direct Formation of Naphthyridine Rings 949
15.8.1.1.1 Method 1: Friedel–Crafts Tetraacylation of 2-Methylpropene 949
15.8.1.1.2 By Formation of Two N—C Bonds .. 951
15.8.1.1.2.1 Method 1: Multiple Iminoalkylation of Alkenes with the Vilsmeier Reagent, Followed by Cyclization 951
15.8.1.1.2.2 Method 2: Conversion of a Pyranylideneiminium Salt 952
15.8.1.2 By Annulation to the Heterocyclic Ring 952
15.8.1.2.1 By Formation of Two N—C Bonds .. 952
15.8.1.2.1.1 Method 1: The Sonogashira Reaction 952
15.8.1.2.1.1.1 Variation 1: Electrophilic Ring Closure of Iminoalkynes 955
15.8.1.2.2 By Formation of One N—C and One C—C Bond 956
15.8.1.2.2.1 Method 1: The Skraup Reaction ... 956
15.8.1.2.2.2 Method 2: Ethoxymethylenemalonic Ester Condensation 959
15.8.1.2.2.3 Method 3: The Heck Reaction .. 964
15.8.1.2.2.4 Method 4: The Suzuki and Stille Reactions 966
15.8.1.2.2.4.1 Variation 1: Synthesis of Thieno-Fused Naphthyridines via a Suzuki Coupling ... 966
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.8.1.2.2.4.2</td>
<td>Variation 2: Synthesis of Benzo-Fused Naphthyridines via a Suzuki Coupling</td>
<td>967</td>
</tr>
<tr>
<td>15.8.1.2.2.4.3</td>
<td>Variation 3: Synthesis of Thieno-Fused Naphthyridines via a Stille Coupling</td>
<td>968</td>
</tr>
<tr>
<td>15.8.1.2.2.4.4</td>
<td>Variation 4: Synthesis of Benzo-Fused Naphthyridines via a Stille Coupling</td>
<td>970</td>
</tr>
<tr>
<td>15.8.1.2.2.5</td>
<td>Method 5: The Friedländer Reaction</td>
<td>970</td>
</tr>
<tr>
<td>15.8.1.2.2.5.1</td>
<td>Variation 1: A Highly Regioselective Reaction Using β-Oxo Phosphonates</td>
<td>974</td>
</tr>
<tr>
<td>15.8.1.2.2.6</td>
<td>Method 6: The Niementowski Condensation</td>
<td>975</td>
</tr>
<tr>
<td>15.8.1.2.3</td>
<td>By Formation of One N—C Bond</td>
<td>975</td>
</tr>
<tr>
<td>15.8.1.2.3.1</td>
<td>By Homologation of o-Methylpyridinecarbonitriles, Followed by Cyclization</td>
<td>975</td>
</tr>
<tr>
<td>15.8.1.2.3.1.1</td>
<td>Method 1: Formation of Enamines, Followed by Cyclization</td>
<td>976</td>
</tr>
<tr>
<td>15.8.1.2.3.1.2</td>
<td>Method 2: Condensation of o-Methylpyridinecarbonitriles with Dialkyl Oxalates, Followed by Cyclization</td>
<td>977</td>
</tr>
<tr>
<td>15.8.1.2.3.2</td>
<td>By the Cyclization of Dinitriles</td>
<td>978</td>
</tr>
<tr>
<td>15.8.1.2.3.2.1</td>
<td>Method 1: Ring Closure with Hydrogen Bromide</td>
<td>979</td>
</tr>
<tr>
<td>15.8.1.2.3.2.2</td>
<td>Method 2: Ring Closure with an Alkoxide</td>
<td>980</td>
</tr>
<tr>
<td>15.8.2</td>
<td>Synthesis by Ring Transformation</td>
<td>981</td>
</tr>
<tr>
<td>15.8.2.1</td>
<td>By Ring Enlargement</td>
<td>981</td>
</tr>
<tr>
<td>15.8.2.1.1</td>
<td>Method 1: Ring Opening, Followed by Ring Condensation</td>
<td>981</td>
</tr>
<tr>
<td>15.8.2.1.2</td>
<td>Method 2: Carbene Insertion</td>
<td>982</td>
</tr>
<tr>
<td>15.8.2.1.3</td>
<td>Method 3: By the Ring Expansion of Cyclic Imides</td>
<td>982</td>
</tr>
<tr>
<td>15.8.2.2</td>
<td>By Formal Exchange of Ring Members with Retention of the Ring Size</td>
<td>983</td>
</tr>
<tr>
<td>15.8.2.2.1</td>
<td>Method 1: Conversion of Pyrido[2,3-d]pyrimidine and Its 3-Oxide into 2,3-Disubstituted 1,8-Naphthyridines</td>
<td>983</td>
</tr>
<tr>
<td>15.9</td>
<td>Product Class 9: Acridines</td>
<td>987</td>
</tr>
<tr>
<td>15.9.1</td>
<td>Product Subclass 1: Acridines</td>
<td>987</td>
</tr>
<tr>
<td>15.9.1.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>988</td>
</tr>
<tr>
<td>15.9.1.1.1</td>
<td>By Formation of One N—C and One C—C Bond</td>
<td>988</td>
</tr>
<tr>
<td>15.9.1.1.1.1</td>
<td>Method 1: Acridines from 2-Aminophenylcarbonyl Compounds and Phenols</td>
<td>988</td>
</tr>
<tr>
<td>15.9.1.1.1.2</td>
<td>Method 2: Electrocyclic Reactions</td>
<td>994</td>
</tr>
<tr>
<td>15.9.1.1.2.1</td>
<td>Variation 1: From Quinomethane Precursors</td>
<td>994</td>
</tr>
<tr>
<td>15.9.1.1.2.2</td>
<td>Variation 2: From Benzynes and Imines</td>
<td>995</td>
</tr>
<tr>
<td>15.9.1.1.2.3</td>
<td>Variation 3: From Nitroarenes</td>
<td>996</td>
</tr>
<tr>
<td>15.9.1.1.2</td>
<td>By Formation of Two C—C Bonds</td>
<td>997</td>
</tr>
<tr>
<td>15.9.1.1.2.1</td>
<td>Method 1: Synthesis from Diphenylamines and Carboxylic Acids: The Bernthsen Reaction</td>
<td>997</td>
</tr>
<tr>
<td>15.9.1.1.2.2</td>
<td>Method 2: Radical Reactions of Quinones</td>
<td>998</td>
</tr>
<tr>
<td>15.9.1.1.2.3</td>
<td>Method 3: Aza-Diels–Alder Reactions</td>
<td>999</td>
</tr>
</tbody>
</table>
15.9.1.1.4 Method 4: Cyclization of Bis(aminooaryl)methanes 1002

15.9.1.4 By Formation of One C—C Bond .. 1002

15.9.1.4.1 Method 1: Electrocyclic Reactions .. 1002

15.9.1.4.2 Method 2: Synthesis from Diarylamines 1003

15.9.1.4.2.1 Variation 1: From 2-(Arylamino)benzaldehydes 1005

15.9.1.4.2.2 Variation 2: By the McFadyen–Stevens Reaction 1007

15.9.1.4.2.3 Variation 3: From (2-Arylamino)acetophenones 1008

15.9.1.4.2.4 Variation 4: From 2-Anilinobenzoic Acids 1010

15.9.1.4.3 Method 3: Synthesis from Enamines and Imines 1011

15.9.1.2 Synthesis by Ring Transformation .. 1011

15.9.1.2.1 By Ring Enlargement .. 1011

15.9.1.2.2 By Ring Contraction ... 1012

15.9.1.3 Aromatization ... 1012

15.9.1.3.1 Method 1: Dehydrogenation of Dihydroacridines and Tetrahydroacridines .. 1012

15.9.1.4 Synthesis by Substituent Modification ... 1013

15.9.1.4.1 Substitution of Existing Substituents .. 1013

15.9.1.4.1.1 Of Hydrogen ... 1013

15.9.1.4.1.2 Of C9 Substituents ... 1015

15.9.1.4.2 Modification of Substituents .. 1019

15.9.1.4.2.1 Method 1: Reduction of Acridinones 1019

15.9.2 Product Subclass 2: Acridine 10-Oxides ... 1021

15.9.3 Product Subclass 3: Acridinium Salts ... 1022

15.10 Product Class 10: Acridin-9(10H)-ones and Related Systems
R. H. Prager and C. M. Williams

15.10 Product Class 10: Acridin-9(10H)-ones and Related Systems 1029

15.10.1 Product Subclass 1: Acridin-9(10H)-ones 1031

15.10.1.1 Synthesis by Ring-Closure Reactions 1031

15.10.1.1.1 Method 1: Reaction of 2,2′-Dinitrobenzophenones with Aromatic Amines .. 1031

15.10.1.1.2 By Formation of One N—C and One C—C Bond 1031

15.10.1.2 Method 1: Reaction of 2-Aminobenzoic Acids and Phenols 1031

15.10.1.2.2 Method 2: Reaction of 2-Aminobenzoic Acids and Benzynes 1032
Method 3: Reaction of Isatoic Anhydrides and Cyclohexenones

Method 1: Lithiation of Quinolinones
Method 2: Synthesis from Quinolin-4-ones and 4-Alkoxyquinolinium Salts
Method 3: Electrocyclic Reactions

Method 1: Lithiation of Quinolinones
Method 2: Synthesis from Quinolin-4-ones and 4-Alkoxyquinolinium Salts
Method 3: Electrocyclic Reactions

Method 1: Nucleophilic Substitution
Variation 1: Intramolecular Substitution of Fluoroarenes
Variation 2: Intramolecular Addition to Benzynes
Variation 3: Chapman Rearrangement

Method 2: Photochemical and Pyrolytic Methods

Method 1: Synthesis from 2-Anilinobenzoic Acids:
The Ullmann–Jourdan Procedure
Variation 1: Reaction of 2-Halobenzoic Acids
Variation 2: Reaction of 2-Aminobenzoic Acids and Haloarenes
Variation 3: Directed Metalation
Variation 4: Reaction of 2-(Phenyliodonio)benzoates

Method 2: Reaction of 2-Aminobenzamides and Ketones

Method 3: Intramolecular Cycloaddition
Variation 1: From 2-Styrylquinolin-4(1H)-ones
Variation 2: From 3-Styrylquinolin-4(1H)-ones

Method 4: Synthesis from Quinolin-4(1H)-ones by Acylation at C3

Method 5: Synthesis from Ketene Intermediates

Aromatization

Method 1: Dehydrogenation of Dihydroacridinones and Tetrahydroacridinones
Method 2: Oxidation of Acridines and Acridinium Salts
Synthesis by Substituent Modification

Product Subclass 2: Acridine-9(10H)-thiones
Product Subclass 3: Acridine-9(10H)-selones

Product Class 11: Phenanthridines
P. A. Keller
By Formation of Two C—C Bonds .. 1067
Method 1: Tandem [4 + 2] Cycloadditions and Cyclization 1067
By Formation of One N—C Bond ... 1067
Method 1: Generation of an Imine .. 1067
By Formation of One C—C Bond ... 1068
Method 1: Palladium-Based Couplings 1068
Method 2: The Use of Pschorr Ring-Closure Reactions 1069
Method 3: Photochemical Conditions 1070
Variation 1: Oxidative Photochemical Reactions 1071
Method 4: By Elimination–Addition .. 1072
Method 5: From 1,2,3-Benzotriazines with the Elimination of Nitrogen Gas 1073
By Ring Closure To Form the Heterocycle 1073
Method 1: Using the Pschorr Cyclization 1073
Method 2: Using Oxidative Photochemical Reactions 1076
By Ring Enlargement .. 1077
Method 1: From 9H-Fluoren-9-ols .. 1077
Method 2: By Ring Contraction ... 1077
Method 1: From Thiazepines .. 1077
Method 2: From 1,4-Diazocines .. 1078
Method 3: From Azepines ... 1079
Aromatization .. 1079
Method 1: Oxidation of 5,6-Dihydrophenanthridines 1079
Synthesis by Substituent Modification .. 1079
Method 1: Reduction of Phenanthridine 5-Oxides 1079
Modification of Substituents .. 1080
Reduction of Phenanthridinones ... 1080
Method 1: By Reduction of the Corresponding Thioxo Compound 1080
Variation 1: By O-Substitution ... 1081
Variation 2: By Halogenation of Carbonyls 1082
Product Subclass 2: Phenanthridine 5-Oxides 1082
Synthesis by Ring-Closure Reactions .. 1082
By Annulation to Arene ... 1082
By Formation of One N—C Bond .. 1082
15.11.2.1.1.1 Method 1: Cyclization of Nitrobiphenyls .. 1082
15.11.2.2 Synthesis by Substituent Modification ... 1083
15.11.2.2.1 Addition to Hetarenes .. 1083
15.11.2.2.1.1 Method 1: Oxidation of Phenanthridines 1083
15.11.3 **Product Subclass 3: Phenanthridinium Salts** .. 1084
15.11.3.1 Synthesis by Ring-Closure Reactions .. 1084
15.11.3.1.1 By Annulation to an Arene .. 1084
15.11.3.1.1.1 By Formation of One N—C Bond .. 1084
15.11.3.1.1.1.1 Method 1: Phosphoryl Chloride Induced Cyclization 1084
15.11.3.2 Synthesis by Substituent Modification .. 1084
15.11.3.2.1 Addition of Organic Groups ... 1084
15.11.3.2.1.1 Method 1: Alkylation of Phenanthridines 1084
15.11.3.2.2 Modification of Substituents .. 1085
15.11.3.2.2.1 Method 1: De-ethoxylation of 5-Methylbenzo[c]phenanthridine 1085

15.12 **Product Class 12: Phenanthridinones and Related Systems**
P. A. Keller

15.12 **Product Class 12: Phenanthridinones and Related Systems** 1089
15.12.1 **Product Subclass 1: Phenanthridinones** ... 1089
15.12.1.1 Synthesis by Ring-Closure Reactions .. 1089
15.12.1.1.1 By Annulation to an Arene .. 1089
15.12.1.1.1.1 By Formation of Two C—C Bonds .. 1089
15.12.1.1.1.1.1 Method 1: Thermal Tandem Cyclization of an Allene-1,1-dicarboxanilide 1089
15.12.1.1.2 By Formation of One N—C Bond .. 1090
15.12.1.1.2.1 Method 1: Radical Cyclization of 2-(Formylamino)biaryls 1090
15.12.1.1.2.1.1 Variation 1: Photochemically Induced Cyclization 1090
15.12.1.1.3 By Formation of One C—C Bond .. 1091
15.12.1.1.3.1 By Formation of the Biaryl Bond .. 1091
15.12.1.1.3.1.1 Method 1: Palladium-Based Couplings 1091
15.12.1.2 Synthesis by Ring Transformation ... 1092
15.12.1.2.1 By Ring Enlargement .. 1092
15.12.1.2.1.1 Method 1: By Acid-Catalyzed Ring Expansion of Fluorenone Oximes 1092
15.12.1.3 Synthesis by Substituent Modification .. 1092
15.12.1.3.1 Method 1: Photochemical Rearrangement of Phenanthridine 5-Oxides 1092
15.12.1.3.1.1 Variation 1: Oxidation of Phenanthridinium Salts 1093
15.12.1.3.1.2 Variation 2: Oxidation of Phenanthridines 1094
15.12.2 **Product Subclass 2: Phenanthridinethiones** 1094
15.12.2.1 Synthesis by Ring-Closure Reactions ... 1095
15.12 By Annulation to an Arene

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.12.2.1</td>
<td>By Annulation to an Arene</td>
<td>1095</td>
</tr>
<tr>
<td>15.12.2.1.1</td>
<td>Formation of One C—C Bond</td>
<td>1095</td>
</tr>
<tr>
<td>15.12.2.1.1.1</td>
<td>Method 1: Cyclization of Isothiocyanates</td>
<td>1095</td>
</tr>
</tbody>
</table>

15.13 Product Class 13: 1λ₃-Phosphinines

F. Mathey and P. Le Floch

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.13.1</td>
<td>Product Subclass 1: 1λ₃-Phosphinines</td>
<td>1100</td>
</tr>
<tr>
<td>15.13.1.1</td>
<td>Synthesis by Ring Transformation</td>
<td>1102</td>
</tr>
<tr>
<td>15.13.1.1.1</td>
<td>Ring Enlargement</td>
<td>1102</td>
</tr>
<tr>
<td>15.13.1.1.1.1</td>
<td>Method 1: From 1,2-Dihydrophosphetes</td>
<td>1102</td>
</tr>
<tr>
<td>15.13.1.1.1.2</td>
<td>Method 2: From Five-Membered Phosphorus Heterocycles</td>
<td>1103</td>
</tr>
<tr>
<td>15.13.1.1.2</td>
<td>Formal Exchange of Ring Members with Retention of the Ring Size</td>
<td>1107</td>
</tr>
<tr>
<td>15.13.1.1.2.1</td>
<td>Method 1: Tin–Phosphorus Exchange from 1,1-Dibutyl-1,4-dihydrostannines</td>
<td>1107</td>
</tr>
<tr>
<td>15.13.1.1.2.2</td>
<td>Method 2: Oxygen–Phosphorus Exchange from Pyrylium Salts</td>
<td>1108</td>
</tr>
<tr>
<td>15.13.1.1.2.3</td>
<td>Method 3: From Aza- and Diazaphosphinines</td>
<td>1110</td>
</tr>
<tr>
<td>15.13.1.2</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>1119</td>
</tr>
<tr>
<td>15.13.1.2.1</td>
<td>By Formation of One P—C and One C—C Bond</td>
<td>1119</td>
</tr>
<tr>
<td>15.13.1.2.1.1</td>
<td>Fragments P—C and C—C—C—C</td>
<td>1119</td>
</tr>
<tr>
<td>15.13.1.2.1.1.1</td>
<td>Method 1: From Phosphaalkynes</td>
<td>1119</td>
</tr>
<tr>
<td>15.13.1.2.1.2</td>
<td>Method 2: From Phosphaalkenes</td>
<td>1122</td>
</tr>
<tr>
<td>15.13.1.3</td>
<td>Aromatization</td>
<td>1124</td>
</tr>
<tr>
<td>15.13.1.3.1</td>
<td>Method 1: From 1λ₅-Phosphinines</td>
<td>1124</td>
</tr>
<tr>
<td>15.13.1.3.2</td>
<td>Method 2: From Dihydro-1λ₃- phosphinines</td>
<td>1125</td>
</tr>
<tr>
<td>15.13.1.3.3</td>
<td>Method 3: From Dihydrophosphinine Oxides and Sulfides</td>
<td>1126</td>
</tr>
<tr>
<td>15.13.1.4</td>
<td>Synthesis by Substituent Modification</td>
<td>1128</td>
</tr>
<tr>
<td>15.13.1.4.1</td>
<td>Method 1: Nucleophilic Aromatic Substitution</td>
<td>1128</td>
</tr>
<tr>
<td>15.13.1.4.2</td>
<td>Method 2: By Transformation of 2-Metalated Phosphinines</td>
<td>1128</td>
</tr>
<tr>
<td>15.13.1.4.2.1</td>
<td>Variation 1: Lithium and Magnesium Derivatives</td>
<td>1128</td>
</tr>
<tr>
<td>15.13.1.4.2.2</td>
<td>Variation 2: Zinc Derivatives</td>
<td>1129</td>
</tr>
<tr>
<td>15.13.1.4.2.3</td>
<td>Variation 3: Zirconium(IV) Derivatives</td>
<td>1130</td>
</tr>
<tr>
<td>15.13.1.4.2.4</td>
<td>Variation 4: Metal-Catalyzed Cross-Coupling Reactions with</td>
<td>1134</td>
</tr>
<tr>
<td></td>
<td>2-Halophosphinines</td>
<td></td>
</tr>
<tr>
<td>15.13.1.4.3</td>
<td>Method 3: Reactions at the P=O Bond</td>
<td>1136</td>
</tr>
<tr>
<td>15.13.1.4.3.1</td>
<td>Variation 1: Bromination of the Ring</td>
<td>1136</td>
</tr>
<tr>
<td>15.13.1.4.3.2</td>
<td>Variation 2: Phosphination and Ethylation of the Ring</td>
<td>1136</td>
</tr>
<tr>
<td>15.13.1.4.4</td>
<td>Methods 4: Miscellaneous Transformations</td>
<td>1138</td>
</tr>
</tbody>
</table>

15.13.2 Product Subclass 2: 1λ₃-Phosphinine Complexes

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.13.2.1</td>
<td>α-Complexes</td>
<td>1140</td>
</tr>
<tr>
<td>15.13.2.1.1</td>
<td>Method 1: By Ligand Displacement with 1λ₃-Phosphinines</td>
<td>1141</td>
</tr>
</tbody>
</table>
Product Class 14: $1\lambda^5$-Phosphinines

R. Streubel

Method 1: By Ligand Displacement with $1\lambda^3$-Phosphinines

Product Class 14: $1\lambda^5$-Phosphinines

Synthesis by Ring Transformation

Method 1: Reaction of Primary Phosphines with Pyrylium Salts in the Presence of Nucleophiles

Method 2: Oxidation of $1\lambda^3$-Phosphinines to $1\lambda^5$-Phosphinines

Variation 1: Consecutive Reaction of $1\lambda^3$-Phosphinines with Nucleophiles and Electrophiles

Variation 2: Addition of Radicals to $1\lambda^3$-Phosphinines

Variation 3: Consecutive Reaction of $1\lambda^3$-Phosphinines with Electrophiles and Nucleophiles

Variation 4: Oxidative Addition of Protic Nucleophiles

Variation 5: Reaction of $1\lambda^3$-Phosphinine Dianions with Electrophiles

Method 3: Thermal Ring Contraction of a 1-Phosphacyclonona-2,4,8-triene

Aromatization

Method 1: Dehydrobromination of a 1,1-Diphenylphosphinanium Bromide

Method 2: Reaction of 1,2,3,4-Tetrahydro- and 1,2- and 1,4-Dihydro-$1\lambda^5$-phosphinine 1-Oxides with Alkylating Agents in the Presence of Base

Method 3: Reaction of 1,2,5,6-Tetrahydro-$1\lambda^5$-phosphinine 1-Oxides with Phosphorus Pentachloride

Method 4: Rearrangement of 1,2- and 1,4-Dihydro-$1\lambda^3$-phosphinines

Variation 1: Acid-Catalyzed Rearrangement

Variation 2: Thermal Rearrangement

Synthesis by Substituent Modification

Substitution of Existing Substituents

Method 1: C2 Acylation of 4-Aryl-Substituted $1\lambda^5$-Phosphinines

Method 2: Transformation of 4-Methyl- into 4-(Arylazo)-$1\lambda^5$-phosphinines

Method 3: Substitution of P-Substituents of $1\lambda^5$-Phosphinines

Variation 1: Substitution of Halogen Substituents

Variation 2: Substitution of Other Functional Groups

Decomplexation of (2,3,4,5,6-η)-$1\lambda^5$-Phosphinine Complexes

Product Subclass 2: (2,3,4,5,6-η)-$1\lambda^5$-Phosphinine Complexes

Synthesis by Complexation of $1\lambda^5$-Phosphinines
Method 1: Reaction of 1\(\lambda^2\)-Phosphinines with Metal(0)–Carbonyl Complexes .. 1175

Synthesis by Reaction of \(\eta^1\)-1\(\lambda^3\)-Phosphinine Complexes 1176

Method 1: Consecutive Reaction of 1\(\lambda^3\)-Phosphinine Complexes with Nucleophiles and Electrophiles 1176

Product Class 15: Benzo-Fused And Other Annulated Phosphinines
U. Bergsträßer

Product Class 15: Benzo-Fused And Other Annulated Phosphinines 1181

Product Subclass 1: Phosphinolines .. 1182

Synthesis by Ring-Closure Reactions .. 1182

By Formation of One P—C and One C—C Bond 1182

Method 1: From a Phosphaalkyne ... 1182

Synthesis by Ring Transformation .. 1182

Formal Exchange of Ring Members with Retention of the Ring Size 1182

Method 1: Oxygen–Phosphorus Exchange from a Naphthopyrylium Salt 1182

Aromatization ... 1183

Method 1: From a 1,2-Dihydrophosphinoline .. 1183

Synthesis by Substituent Modification ... 1183

Method 1: Substitution of Hydrogen .. 1183

Product Subclass 2: Isophosphinolines .. 1184

Synthesis by Ring-Closure Reactions .. 1184

By Formation of One P—C and One C—C Bond 1184

Method 1: From Phosphaalkenes and Phosphaalkynes 1184

Synthesis by Ring Transformation .. 1186

By Ring Contraction .. 1186

Method 1: From Polycyclic Phosphaalkenes ... 1186

Aromatization ... 1186

Method 1: Desulfuration of a 1,2-Dihydroisophosphinoline 2-Sulfide 1186

Method 2: Dehydrohalogenation of 2-Chloro-1,2-dihydroisophosphinolines ... 1187

Product Subclass 3: Acidophosphines .. 1188

Aromatization ... 1188

Method 1: From 5-Chloro-5,10-dihydroacridophosphines 1188

Product Subclass 4: Benzo[c]phosphinolines 1189

Aromatization ... 1189

Method 1: From 5,6-Dihydrobenzo[c]phosphinolines 1189
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyword Index</td>
<td>1191</td>
</tr>
<tr>
<td>Author Index</td>
<td>1249</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>1315</td>
</tr>
</tbody>
</table>
Volume 16:
Six-Membered Hetarenes with
Two Identical Heteroatoms

Introduction
Y. Yamamoto .. 1

16.1 Product Class 1: 1,2-Dioxins and Benzo- and Dibenzo-Fused Derivatives
M. Matsumoto ... 13

16.2 Product Class 2: 1,4-Dioxins and Benzo- and Dibenzo-Fused Derivatives
M. Matsumoto ... 15

16.3 Product Class 3: 1,2-Dithiins
R. Sato ... 39

16.4 Product Class 4: 1,4-Dithiins
R. Sato ... 57

16.5 Product Class 5: 1,2-Diselenins
R. Sato ... 95

16.6 Product Class 6: 1,4-Diselenins
R. Sato ... 103

16.7 Product Class 7: 1,4-Ditellurins
R. Sato ... 119

16.8 Product Class 8: Pyridazines
N. Haider and W. Holzer ... 125

16.9 Product Class 9: Cinnolines
N. Haider and W. Holzer ... 251

16.10 Product Class 10: Phthalazines
N. Haider and W. Holzer ... 315

16.11 Product Class 11: Pyridazino[1,2-α]pyridazines
N. Haider and W. Holzer ... 373

16.12 Product Class 12: Pyrimidines
S. von Angerer .. 379

16.13 Product Class 13: Quinazolines
D. Kikelj ... 573

16.14 Product Class 14: Pyrazines
N. Sato ... 751
| 16.15 | **Product Class 15: Quinoxalines**
S. Gobec and U. Urleb | 845 |
| 16.16 | **Product Class 16: Phenazines**
U. Urleb and S. Gobec | 913 |
| 16.17 | **Product Class 17: Purines**
F. Seela, N. Ramzaeva, and H. Rosemeyer | 945 |
| 16.18 | **Product Class 18: Pyridopyridazines**
M. Sako | 1109 |
| 16.19 | **Product Class 19: Pyridopyrimidines**
M. Sako | 1155 |
| 16.20 | **Product Class 20: Pyridopyrazines**
M. Sako | 1269 |
| 16.21 | **Product Class 21: Pteridines and Related Structures**
T. Ishikawa | 1291 |
| 16.22 | **Product Class 22: Other Diazinodiazines**
T. Ishikawa | 1337 |
| 16.23 | **Product Class 23: Diphosphinines**
M. Yoshifuji and S. Ito | 1399 |

Keyword Index
1411

Author Index
1465

Abbreviations
1563
Table of Contents

Introduction
Y. Yamamoto

1. Introduction .. 1

16.1 Product Class 1: 1,2-Dioxins and Benzo- and Dibenzo-Fused Derivatives
M. Matsumoto

16.1 Product Class 1: 1,2-Dioxins and Benzo- and Dibenzo-Fused Derivatives
. 13

16.2 Product Class 2: 1,4-Dioxins and Benzo- and Dibenzo-Fused Derivatives
M. Matsumoto

16.2 Product Class 2: 1,4-Dioxins and Benzo- and Dibenzo-Fused Derivatives
. 15

16.2.1 Synthesis by Ring-Closure Reactions
. 18

16.2.1.1 By Formation of Two O—C Bonds
. 18

16.2.1.1.1 Fragments O—C—C—O and C—C
. 18

16.2.1.1.1 Method 1: 1,4-Benzodioxins by Condensation of Benzene-1,2-diols with an Unsaturated Dielectricphile
. 18

16.2.1.1.2 Method 2: Dibenzo[b,e][1,4]dioxins by Base-Induced Coupling of Benzene-1,2-diols with Activated Chlorobenzenes
. 19

16.2.1.1.3 Method 3: Dibenzo[b,e][1,4]dioxins from Benzene-1,2-diols and 1,2-Dichlorobenzenes Activated by Complexation with Metals
. 20

16.2.1.1.2 Fragments O—C—C and O—C—C
. 21

16.2.1.2.1 Method 1: Dibenzo[b,e][1,4]dioxins from 2-(2-Halophenoxy)phenolates
. 21

16.2.2 Aromatization
. 23

16.2.2.1 Method 1: 1,4-Dioxins by Elimination of Halogens or Hydrogen Halides from Polyhalo-1,4-dioxanes
. 23

16.2.2.2 Method 2: 1,4-Dioxins by Elimination of Methanol from 2,5-Dimethoxy-1,4-dioxanes
. 24

16.2.2.3 Method 3: 1,4-Benzodioxins by Elimination of Bromine or Hydrogen Bromide from 2,3-Dibromo-2,3-dihydro-1,4-benzodioxins
. 25

16.2.2.4 Method 4: 1,4-Benzodioxins by Elimination of Water from 2-Hydroxy-2,3-dihydro-1,4-benzodioxins
. 26
16.2.3 Synthesis by Substituent Modification ... 27
16.2.3.1 Substitution of Existing Substituents ... 27
16.2.3.1.1 Of Hydrogen ... 27
16.2.3.1.1.1 Method 1: Friedel–Crafts Acylation of 1,4-Benzodioxins Bearing
an Electron-Withdrawing Substituent at the 2-Position 27
16.2.3.1.1.2 Method 2: Friedel–Crafts Acylation of Dibenzo[\textit{b,e}][1,4]dioxins
... 27
16.2.3.1.1.3 Method 3: Lewis Acid Catalyzed Acylation of 2-(Trimethylsilyl)1,4-benzodioxin ... 28
16.2.3.1.1.4 Method 4: Polyhalogenated Dibenzo[\textit{b,e}][1,4]dioxins by Direct
Halogenation of Dibenzo[\textit{b,e}][1,4]dioxins with Chlorine or
Bromine ... 28
16.2.3.1.1.4.1 Variation 1: Halogenation with Inorganic Chlorides or Bromides .. 29
16.2.3.1.1.5 Method 5: Nitration of Dibenzo[\textit{b,e}][1,4]dioxins 30
16.2.3.1.2 Of Metals .. 30
16.2.3.1.2.1 Method 1: 2-Substituted 1,4-Benzodioxins from 2-Lithio-1,4-benzodioxins
... 30
16.2.3.1.2.2 Method 2: 1-Monosubstituted and 1,9-Disubstituted Dibenzo[\textit{b,e}][1,4]-
dioxins from 1-Lithio- or 1,9-Dilithiodibenzo[\textit{b,e}][1,4]dioxin 32
16.2.3.1.2.3 Method 3: 5-Substituted 1,4-Benzodioxins via Lithiation of
\textit{n}1-Chromium(0) Complexes of 1,4-Benzodioxins 33
16.2.3.1.2.4 Method 4: Metal-Catalyzed Coupling of 1,4-Benzodioxin-2-ylmagnesium
Bromide with Halides ... 33
16.2.3.1.3 Of Heteroatoms .. 33
16.2.3.1.3.1 Method 1: Metal-Catalyzed Coupling of 2-Bromo-1,4-benzodioxin with
Organometallics ... 33
16.2.3.1.3.2 Method 2: Sandmeyer Reaction of Polychlorodibenzo[\textit{b,e}][1,4]-
dioxinamines ... 34
16.2.3.2 Modification of Substituents .. 35
16.2.3.2.1 Method 1: Dibenzo[\textit{b,e}][1,4]dioxinamines by Reduction of
Nitrodibenzo[\textit{b,e}][1,4]dioxins ... 35
16.2.3.2.2 Method 2: 1,4-Dioxins by Isomerization of Exocyclic Double Bonds of
Substituted 1,4-Dioxanes ... 35
16.2.3.2.3 Method 3: Diels–Alder Addition of 2,3-Bis(methylene)-2,3-dihydro-
1,4-dioxin with Dienophiles ... 36
16.3 Product Class 3: 1,2-Dithiins
R. Sato
16.3 Product Class 3: 1,2-Dithiins ... 39
16.3.1 Synthesis by Ring-Closure Reactions ... 41
16.3.1.1 By Formation of One S—S Bond ... 41
16.3.1.1.1 Method 1: Ring Closure of Butan-1,3-diene-1,4-dithiol 41
16.3.1.1.1.1 Variation 1: Synthesis of 1,2-Dithiin 41
16.3.1.1.1.2 Variation 2: Synthesis of a Substituted 1,2-Dithiin 41
16.3.1.1.1.3 Variation 3: Synthesis of 1,2-Dithiin-3,6-diyldimethanol 42
16.3.1.1.4 Variation 4: Synthesis of Thiarubrine A 43
16.3.1.1.2 Method 2: Synthesis from 1,1’-Binaphthalene-2,2’-dithiol 44
16.3.1.1.3 Method 3: Synthesis from Biphenyl-2,2’,6,6’-tetrol 45
16.3.1.1.4 Method 4: Ring Closure with Sulfur Monochloride 45
16.3.1.1.5 Method 5: Synthesis via the Thermolysis or Photolysis of 1,9-Bis(methylsulfanyl)dibenzo[b,d]thiophene 46
16.3.1.1.6 Method 6: Synthesis of 1,4-Dihydro-2,3-benzodithiin 46
16.3.1.1.7 Method 7: Synthesis of 1,4-Diphenyl-1,4-dihydro-2,3-benzodithiin 47
16.3.2 Synthesis by Ring Transformation 48
16.3.2.1 Method 1: Synthesis from 1,2,3-Benzothiadiazole 48
16.3.2.2 Method 2: Synthesis of [1]Benzothieno[2,3-b]:5,6[1,2]dithiino[4,3-b][1]-benzothiophene 48
16.3.3 Synthesis by Other Methods .. 49
16.3.3.1 Method 1: Reaction of Diphenylmethanethione with Tetracyanoethene 49
16.3.4 Synthesis by Substituent Modification 50
16.3.4.1 Addition of Heteroatoms .. 50
16.3.4.1.1 Formation of a Sulfonium Salt 50
16.3.4.1.1.1 Method 1: Synthesis of 3-(Methylsulfanyl)dinaphtho[1,2-e:2’,1’-c][1,2]-dithiin-3-ium Salt 50
16.3.4.1.2 Oxidation of the Dithiin Ring 50
16.3.4.1.2.1 Method 1: Oxidation of Dibenzo[c,e][1,2]dithiin with (+)-Percamphoric Acid 50
16.3.4.1.2.2 Method 2: Oxidation with 3-Chloroperoxybenzoic Acid 51
16.3.4.1.2.2.1 Variation 1: Oxidation of 1,2-Dithiin 51
16.3.4.1.2.2.2 Variation 2: Oxidation of 1,4-Diphenyl-1,4-dihydro-2,3-benzodithiin 52

16.4 Product Class 4: 1,4-Dithiins
R. Sato

16.4 Product Class 4: 1,4-Dithiins .. 57
16.4.1 Synthesis by Ring-Closure Reactions 62
16.4.1.1 By Formation of Four S—C Bonds 62
16.4.1.1.1 Fragments C—C, C—C and Two S Fragments 62
16.4.1.1.1.1 Method 1: From 2,3-Dihaloquinones 62
16.4.1.1.1.2 Method 2: From a 1,2-Dihalobenzene 63
16.4.1.1.1.3 Method 3: From 2-Chloro-1,3-dinitro-5-(trifluoromethyl)benzene 64
16.4.1.1.1.4 Method 4: From Alkynes or Aryne Precursors and Sulfur 65
16.4.1.1.1.5 Method 5: From Arenes 66
16.4.1.1.1.5.1 Variation 1: With Sulfur Monochloride 66
16.4.1.1.1.6 Method 6: From 1,2-Dilithioheteroarenes and Sulfur(II) Compounds 66
16.4.1.2 By Formation of Two S—C Bonds and One C—C Bond 67
16.4.1.2.1 Fragments S—C, S—C, and C—C 67
16.4.1.1 Method 1: Formation of 2,3-Diphenyl-1,4-dithin 67
16.4.1.2 By Formation of Two S—C Bonds ... 68
16.4.1.3 Method 1: Fragments C—C—S—C—C and S 68
16.4.1.4 Method 1: From Bis(3-bromoquinolin-4-yl) Sulfide with Sodium Sulfide 68
16.4.1.5 Method 2: From Bis(2-oxoalkyl) Sulfides 68
16.4.1.6 Method 3: From Dialkynyl Sulfides with Sodium Sulfide 69
16.4.1.7 Method 4: From Bis(2-lithioaryl) Sulfides 70
16.4.1.8 Method 5: By Arylsulfanyl Migration .. 70
16.4.1.9 Method 1: Formation of Two S—C Bonds 71
16.4.1.10 Method 1: From Benzopentathiepins and Arenes 71
16.4.1.11 Method 2: From 1,2-Dithiones .. 71
16.4.1.12 Method 3: From 1,2-Dithiones and Alkynes 72
16.4.1.13 Method 4: From 1,2-Dithiones and Alkenes 73
16.4.1.14 Method 5: From 1,2-Dihalo Compounds 74
16.4.1.15 Method 6: From Arene-1,2-dithiols and Substituted Acetyl Halides 76
16.4.1.16 Method 1: From 4,5-Disulfanyl-3H-1,2-dithiole-3-thione 77
16.4.1.17 Method 2: From Substituted Sodium Thiosulfates 77
16.4.1.18 Method 3: From Two Halosulfanylarenes 78
16.4.1.19 Method 4: Pyrolysis of an Isoxazole .. 80
16.4.1.20 Method 5: Photolysis and Thermolysis of Benzothiodiazoles 81
16.4.1.21 Method 1: From Substituted Propynyl Sulfides 81
16.4.1.22 By Formation of One S—C and One C—C Bond 81
16.4.1.23 Method 1: Fragments C—C—S—C and C—S 81
16.4.1.24 Method 1: From 1-Ethyl-1,2-diphenyldisulfan-1-ium 83
16.4.1.25 By Ring Enlargement .. 83
16.4.1.26 Method 1: From 1,2-Benzodithiole Sulfoxide 83
16.4.1.27 Method 2: From a Bisfulvene Tetraester 84
16.4.1.28 By Ring Contraction ... 84
16.4.1.29 Method 1: By Photolysis of 1,2,5,6-Tetrathiocins 84
16.4.1.30 Aromatization ... 85
16.4.1.31 Method 1: Oxidation of 1,4-Dithianes 85
16.4.1.32 Method 2: Aromatization Using 2,3-Dichloro-5,6-dicyanobenzo-1,4-quinone 86
16.4 Synthesis by Substituent Modification

16.4.1 Addition Reactions

16.4.1.1 Addition of Heteroatoms

16.4.1.1.1 Method 1: Oxidation Using Benzenediazonium Salts

16.4.1.1.2 Method 2: Oxidation Using 3-Chloroperoxybenzoic Acid

16.4.1.1.3 Method 3: Oxidation Using Hydrogen Peroxide

16.4.1.1.4 Method 4: Asymmetric Oxidation Using the Sharpless Reagent

16.4.1.1.5 Method 5: Formation of a Tetraone

16.4.2 Modification of Substituents

16.4.2.1 Method 1: Reaction of 1,4-Dithiin-2,3,5,6-tetracarbonitrile with Sulfur

16.4.2.2 Method 2: Diels–Alder Reaction with Dimethylacetylene Dicarboxylate

16.4.5 Formation of Radical Cations

16.4.5.1 Method 1: With Sulfuric Acid

16.4.5.2 Method 2: Oxidation with Antimony(V) Fluoride

16.4.5.3 Method 3: Oxidation with Nitrosonium Hexafluorophosphate

16.5 Product Class 5: 1,2-Diselenins

16.6 Product Class 6: 1,4-Diselenins
16.6.1.1 Fragments C—C, C—C, and Two Se Fragments ... 103
16.6.1.1.1 Method 1: From Benzylene and Elemental Selenium 103
16.6.1.1.2 Method 2: From 1,2-Dimethoxybenzene and a Selenium Reagent 104
16.6.1.1.2.1 Variation 1: Cyclization with Selenium Dioxide 104
16.6.1.1.2.2 Variation 2: Cyclization with Dimethyl Diselenide 104
16.6.1.1.3 Method 3: From 1,2,3,4-Tetrafluoro-5,6-diiodobenzene and Selenium 105
16.6.1.1.4 Method 4: From 2,3-Dichloronaphthoquinone and Sodium Selenide 105
16.6.1.1.5 Method 5: From Selenium and an Organometallic Compound 105
16.6.1.2 By Formation of Two Se—C Bonds .. 107
16.6.1.2.1 Fragments C—C—Se—C and Se .. 107
16.6.1.2.1.1 Method 1: From a Diaryl Selenide and Selenium Dioxide 107
16.6.1.2.2 Fragments Se—C—C—Se and C—C ... 107
16.6.1.2.2.1 Method 1: Diels–Alder Reaction of a 1,2-Diselone 107
16.6.1.2.2.2 Method 2: From Zinc Selenolates ... 108
16.6.1.2.3 Fragments C—C—Se and C—C—Se ... 109
16.6.1.2.3.1 Method 1: Thermolysis of Selenadiazoles ... 109
16.6.1.2.3.2 Method 2: Oxidative Coupling of 2-Chloroetheneselenol Derivatives 110
16.6.1.2.3.3 Method 3: From a Selenide and Selenourea 111
16.6.1.2.3.4 Method 4: From Diphenyl Selenide with Potassium Amide 111
16.6.2 Synthesis by Ring Transformation .. 112
16.6.2.1 By Ring Enlargement .. 112
16.6.2.1.1 Method 1: Transformation of a 1,3-Diselenol-1-ium Salt 112
16.6.3 Synthesis by Substituent Modification ... 113
16.6.3.1 Method 1: Formation of Metal Complexes with 1,4-Diselenins 113
16.6.3.2 Method 2: Formation of a Charge-Transfer Complex 114
16.6.3.3 Method 3: Oxidation of the Selenium Atoms in Selenanthrene 115
16.6.3.3.1 Variation 1: With Nitric Acid .. 115
16.6.3.3.2 Variation 2: With Sulfuryl Chloride .. 115

16.7 Product Class 7: 1,4-Ditellurins
R. Sato

16.7.1 Synthesis by Ring-Closure Reactions ... 119
16.7.1.1 By Formation of Four Te—C Bonds ... 119
16.7.1.1.1 Fragments C—C, C—C, and Two Te Fragments 119
16.7.1.1.1.1 Method 1: 1,4-Ditellurin from Acetylene and Elemental Tellurium 119
16.7.1.1.1.2 Method 2: Telluranthrenes from 1,2-Diiodobenzene Derivatives and Tellurium ... 120
16.7.1.1.1.2.1 Variation 1: From 1,2,3,4-Tetrafluoro-5,6-diiodobenzene and Tellurium 120
16.7.1.1.1.2.2 Variation 2: From 1,2-Diiodo-4-nitrobenzene and a Tellurium–Copper Reagent ... 121
16.7.1.1.3 Method 3: A 1,4-Ditellurin from a Tetrathiafulvalene and a Bis(alkynyl) Telluride .. 121
16.7.1.1.4 Method 4: Telluranthrene from Tellurium and an Organomercury Compound ... 122

16.7.1.2 By Formation of Two Te—C Bonds 123
16.7.1.2.1 Fragments C—C—Te—C—C and Te 123
16.7.1.2.1.1 Method 1: Telluranthrene from Diaryl Telluride and Tellurium .. 123

16.8 Product Class 8: Pyridazines
N. Haider and W. Holzer

16.8 Product Class 8: Pyridazines .. 125
16.8.1 Synthesis by Ring-Closure Reactions 130
16.8.1.1 By Formation of Two N—C Bonds and One C—C Bond 130
16.8.1.1.1 Fragments N—N, C—C, and C—C 130
16.8.1.1.1 Method 1: Condensation of 1,2-Diketones with Cyanoacetic Acid Derivatives and Hydrazine 130
16.8.1.1.1.2 Method 2: Reaction of 1-Aryl-2-nitroprop-1-enes with Acetoacetic Acid Derivatives and Hydrazine 131
16.8.1.2 By Formation of Two N—C Bonds .. 132
16.8.1.2.1 Fragments C—C—C and N—N .. 132
16.8.1.2.1.1 Method 1: Condensation of 4-Oxo Acids and Derivatives with Hydrazine ... 132
16.8.1.2.1.1.1 Variation 1: From Saturated 4-Oxo Acids and Derivatives, with Subsequent Oxidation 133
16.8.1.2.1.1.2 Variation 2: From 2-Hydroxy-4-oxo Acids 134
16.8.1.2.1.2 Method 2: Condensation of 3-Formyl Acids with Hydrazine .. 136
16.8.1.2.1.3 Method 3: Condensation of Maleic Acids or Derivatives with Hydrazine .. 136
16.8.1.2.1.4 Method 4: Condensation of 1,4-Dicarbonyl Compounds with Hydrazine .. 137
16.8.1.3 By Formation of One N—C and One C—C Bond 138
16.8.1.3.1 Fragments N—N—C—C and C—C 138
16.8.1.3.1 Method 1: Reaction of Methylene-Activated Acid Hydrazides with 1,2-Dicarbonyl Compounds 138
16.8.1.3.1.1 Method 2: Reaction of 1,2-Dicarbonyl Monohydradzones with Methylene-Activated Compounds 139
16.8.1.3.1.3 Method 3: Hetero-Diels–Alder Reactions of Electron-Rich Alkenes .. 141
16.8.1.3.1.3.1 Variation 1: With 1,2-Diaza-1,3-dienes 141
16.8.1.3.1.3.2 Variation 2: With Halogen-Substituted 1,2-Diaza-1,3-dienes .. 142
16.8.1.3.1.4 Method 4: Reaction of Alkyl 3-(Carbamoyldiazenyl)but-2-enoates with Alkyl 2-Acetylacetoacetates and Similar Compounds .. 145
16.8.1.4 By Formation of One N—N Bond .. 148
16.8.1.4.1 Fragment N—C—C—C—C—N .. 148
Chapter 16: Synthesis of Pyridazines

16.8.1.1 Method 1: Oxidative Cyclization of Unsaturated 1,4-Dioximes into Pyridazine 1,2-Dioxides
16.8.1.5 By Formation of One N–C Bond
16.8.1.5.1 Fragment N–N–C–C=C
16.8.1.5.1.1 Method 1: Cyclization of Hydrazones of 4-Oxoalkenoic Acid Derivatives
16.8.1.5.1.2 Method 2: Reductive Cyclization of Diazovinylmethanes Bearing a Carbonyl Group
16.8.1.6 By Formation of One C–C Bond
16.8.1.6.1 Fragment C–C=N–N–C=C
16.8.1.6.1.1 Method 1: Cyclization of N-Chloroacetyl Derivatives of 1,2-Dicarbonyl Monophenylhydrazones

Chapter 16: Synthesis by Ring Transformation

16.8.2 Synthesis by Ring Transformation
16.8.2.1 By Ring Enlargement
16.8.2.1.1 Method 1: From Furan Derivatives
16.8.2.1.2 Method 2: By Addition of Diazooalkanes to Bromocyclopropenes
16.8.2.2 Formal Exchange of Ring Members with Retention of the Ring Size
16.8.2.2.1 Method 1: By [4 + 2]-Cycloaddition Reactions of 1,2,4,5-Tetrazines
16.8.2.2.1.1 Variation 1: With Dienophiles Containing a C=C Bond
16.8.2.2.1.2 Variation 2: With Dienophiles Containing a C≡C Bond
16.8.2.2.2 Method 2: By Rearrangement of 1,2,4-Triazines
16.8.2.3 By Ring Contraction
16.8.2.3.1 Method 1: From 1,2-Diazepines
16.8.2.3.2 Method 2: From Seven-Membered Rings Containing an Additional Heteroatom

Chapter 16: Aromatization

16.8.3 Aromatization
16.8.3.1 Method 1: Oxidation of Dihydro Compounds
16.8.3.2 Method 2: Elimination Reactions

Chapter 16: Synthesis by Substituent Modification

16.8.4 Synthesis by Substituent Modification
16.8.4.1 Substitution of Existing Substituents
16.8.4.1.1 Of Hydrogen
16.8.4.1.1.1 At a Ring Nitrogen Atom of a Pyridazinone
16.8.4.1.1.1.1 Method 1: N-Alkylation
16.8.4.1.1.1.1.1 Variation 1: Via a Pyridazinone Anion
16.8.4.1.1.1.1.2 Variation 2: Via an Alkyl or Silyl Lactim Ether (The Hilbert–Johnson Reaction)
16.8.4.1.1.1.2 At a Ring Carbon Atom
16.8.4.1.1.1.2.1 Method 1: By Lithiation
16.8.4.1.1.1.2.2 Method 2: By Radical Substitution Reactions
16.8.4.1.1.1.2.2.1 Variation 1: Introduction of Carboxylic Acid Functionalities
16.8.4.1.1.1.2.2.2 Variation 2: Introduction of Acyl and Aroyl Groups
16.8.4.1.1.1.2.3 Variation 3: Introduction of Alkyl and Other Groups

Table of Contents

16.8.1.4.1.1 Method 1: Oxidative Cyclization of Unsaturated 1,4-Dioximes into Pyridazine 1,2-Dioxides
16.8.1.5 By Formation of One N–C Bond
16.8.1.5.1 Fragment N–N–C–C=C
16.8.1.5.1.1 Method 1: Cyclization of Hydrazones of 4-Oxoalkenoic Acid Derivatives
16.8.1.5.1.2 Method 2: Reductive Cyclization of Diazovinylmethanes Bearing a Carbonyl Group
16.8.1.6 By Formation of One C–C Bond
16.8.1.6.1 Fragment C–C=N–N–C=C
16.8.1.6.1.1 Method 1: Cyclization of N-Chloroacetyl Derivatives of 1,2-Dicarbonyl Monophenylhydrazones

16.8.2 Synthesis by Ring Transformation
16.8.2.1 By Ring Enlargement
16.8.2.1.1 Method 1: From Furan Derivatives
16.8.2.1.2 Method 2: By Addition of Diazooalkanes to Bromocyclopropenes
16.8.2.2 Formal Exchange of Ring Members with Retention of the Ring Size
16.8.2.2.1 Method 1: By [4 + 2]-Cycloaddition Reactions of 1,2,4,5-Tetrazines
16.8.2.2.1.1 Variation 1: With Dienophiles Containing a C=C Bond
16.8.2.2.1.2 Variation 2: With Dienophiles Containing a C≡C Bond
16.8.2.2.2 Method 2: By Rearrangement of 1,2,4-Triazines
16.8.2.3 By Ring Contraction
16.8.2.3.1 Method 1: From 1,2-Diazepines
16.8.2.3.2 Method 2: From Seven-Membered Rings Containing an Additional Heteroatom

16.8.3 Aromatization
16.8.3.1 Method 1: Oxidation of Dihydro Compounds
16.8.3.2 Method 2: Elimination Reactions

16.8.4 Synthesis by Substituent Modification
16.8.4.1 Substitution of Existing Substituents
16.8.4.1.1 Of Hydrogen
16.8.4.1.1.1 At a Ring Nitrogen Atom of a Pyridazinone
16.8.4.1.1.1.1 Method 1: N-Alkylation
16.8.4.1.1.1.1.1 Variation 1: Via a Pyridazinone Anion
16.8.4.1.1.1.1.2 Variation 2: Via an Alkyl or Silyl Lactim Ether (The Hilbert–Johnson Reaction)
16.8.4.1.1.1.2 At a Ring Carbon Atom
16.8.4.1.1.1.2.1 Method 1: By Lithiation
16.8.4.1.1.1.2.2 Method 2: By Radical Substitution Reactions
16.8.4.1.1.1.2.2.1 Variation 1: Introduction of Carboxylic Acid Functionalities
16.8.4.1.1.1.2.2.2 Variation 2: Introduction of Acyl and Aroyl Groups
16.8.4.1.1.1.2.3 Variation 3: Introduction of Alkyl and Other Groups
16.8.4.1.2.3 Method 3: Introduction of Cyano Groups by the Reissert Reaction

16.8.4.1.2.4 Method 4: Direct Cyanation of Electron-Deficient Pyridazinones

16.8.4.1.2.5 Method 5: Vicarious Nucleophilic Substitution

16.8.4.1.2.6 Method 6: Direct Amination

16.8.4.1.2.7 Method 7: Electrophilic Substitution Reactions

Variation 1: Vilsmeier Formylation of Pyridazinones

Variation 2: Introduction of Hetero Substituents

16.8.4.1.2.8 Of Metals

Method 1: Replacement of Stannyl or Silyl Groups by Carbon Substituents

Method 2: Replacement of Magnesium Halide in Pyridazinyl Grignard Compounds

16.8.4.1.2.9 Of Carbon Functionalities

Method 1: By Decarboxylation

Method 2: By Hofmann or Curtius Degradation of Appropriate Carboxylic Acid Derivatives

16.8.4.1.2.10 Of Heteroatoms

Method 1: By Hydrogen

Variation 1: Reductive Dehalogenation of Halopyridazines

Variation 2: Oxidative Dehydrazination of Hydrazinopyridazines

Method 2: By Metal–Halogen Exchange

Method 3: By Carbon Nucleophiles via Nucleophilic Substitution

Method 4: By Carbon Substituents via Cross-Coupling Reactions

Variation 1: Introduction of Ester Groups

Variation 2: Introduction of Aryl Groups

Variation 3: Introduction of Alkynyl Groups

Method 5: By Hetero Nucleophiles via Nucleophilic Substitution

Variation 1: Introduction of Halogen Substituents

Variation 2: Introduction of Oxygen Substituents

Variation 3: Introduction of Sulfur Substituents

Variation 4: Introduction of Nitrogen Substituents

Method 6: Deoxygenation of N-Oxides

Addition Reactions

Method 1: N-Alkylation (Quaternization)

Addition of Heteroatoms

Method 1: N-Oxidation

Method 2: N-Amination

Modification of Substituents

Method 1: Modification of Carboxylic Acids and Derivatives

Method 2: Modification of Ketones, Aldehydes, and Derivatives

Method 3: Modification of Hydroxyalkyl and Similar Substituents

Method 4: Modification of Alkyl Substituents

Table of Contents XIX
16.8.4.1.4.1 Variation 1: Oxidation .. 220
16.8.4.1.4.2 Variation 2: Condensation Reactions 221
16.8.4.2 Of Heteroatom Substituents .. 223
16.8.4.2.1 Method 1: Modification of Hydroxy Groups 223
16.8.4.2.1.1 Variation 1: Acylation .. 223
16.8.4.2.1.2 Variation 2: Alkylation ... 223
16.8.4.2.2 Method 2: Modification of Sulfur-Containing Groups 224
16.8.4.2.2.1 Variation 1: Alkylation of Sulfanyl Groups 224
16.8.4.2.2.2 Variation 2: Oxidation of Sulfanyl and Alkylsulfanyl Groups 225
16.8.4.2.3 Method 3: Reduction of Nitro Groups 226
16.8.4.2.4 Method 4: Modification of Azido Groups 227
16.8.4.2.5 Method 5: Reduction of Hydrazino Groups 227
16.8.4.2.6 Method 6: Modification of Amino Groups 228
16.8.4.2.6.1 Variation 1: Acylation .. 228
16.8.4.2.6.2 Variation 2: Alkylation ... 229
16.8.4.3 Ring Opening of Bicyclic Pyridazines 231
16.8.4.3.1 Method 1: Oxidative Cleavage of Benzo-1,2-diazines 231
16.8.4.3.2 Method 2: Oxidative or Reductive Cleavage of Isoxazolopyridazines 231
16.8.4.3.3 Method 3: Reductive Cleavage of [1,2,5]Oxadiazolopyridazines 232
16.8.4.3.4 Method 4: Cleavage of Tetrazolopyridazines with Phosphines (The Staudinger Reaction) .. 233

16.9 Product Class 9: Cinnolines
N. Haider and W. Holzer

16.9.1 Synthesis by Ring-Closure Reactions 251
16.9.1.1 By Annulation to an Arene .. 253
16.9.1.1.1 By Formation of Two N—C Bonds 253
16.9.1.1.1.1 Fragments Arene—C—C and N—N 253
16.9.1.1.1.1 Method 1: By Reaction of Cyclopentadienyliron Complexes of 2-Chlorobenzyl Ketones with Hydrazine 253
16.9.1.1.2 By Formation of One N—N Bond 254
16.9.1.1.2.1 Fragment N—Arene—C—C—N 254
16.9.1.1.2.1 Method 1: Cyclization of Aminohetarenes Containing a 2-Nitrophenyl Substituent .. 254
16.9.1.1.3 By Formation of One N—C Bond 256
16.9.1.1.3.1 Fragment N—N—Arene—C—C 256
16.9.1.1.3.1 Method 1: Cyclization of Diazotized 2-(Alken-1-yl)anilines (The Widman–Stoermer Synthesis) 256
16.9.1.1.3.1.2 Method 2: Cyclization of Diazotized 2-Acylanilines (The Borsche Synthesis) .. 257
Method 3: Cyclization of (2-Hydrazinophenyl)(hydroxy)acetic Acids (The Neber–Bossel Synthesis) .. 260
Method 4: Cyclization of Diazotized 2-Alkynylanilines (The Richter Synthesis) ... 260
Method 5: Cyclization of (2-Ethynylphenyl)triazenes .. 261

By Formation of One C–C Bond ... 262

Fragment Arene—N—N—C—C .. 262

Method 1: Cyclization of Phenylhydrazones .. 262
Variation 1: Cyclization of Oxomalonic Acid Derivatives 263
Variation 2: Cyclization of Aryltrifluoromethyl Ketone Derivatives 266
Variation 3: Synthesis of 3-Aroylcinnolines from Aryl Methyl Ketones 267
Variation 4: Synthesis of 3-Arylcinnoline-4-carbonitriles by Reaction of Acetophenone Methyl(phenyl)hydrazones and Tetracyanoethene .. 268

Fragment C—N—N—Arene—C .. 268

Method 1: Cyclization of Benzaldehyde [2-(Trifluoromethyl)phenyl]-hydrazones .. 268
Method 2: Cyclization of Hydrazones Derived from Diazotized 2-Formyl- or 2-Acetylanilines .. 270

Synthesis by Ring Transformation .. 271
By Ring Enlargement ... 271
Method 1: From Isatin and Isatogen Derivatives ... 271
Method 2: From 1H-Indol-1-amines ... 272
Aromatization ... 273
Method 1: Oxidation of Dihydrocinnolines .. 273

Synthesis by Substituent Modification .. 274
Substitution of Existing Substituents ... 274
Of Hydrogen .. 274
Method 1: By Lithiation .. 274
Method 2: By Halogenation .. 275
Method 3: By Nitration .. 276
Method 4: By Amination .. 276

Of Metals ... 277
Method 1: Replacement of a Silyl Substituent by Hydrogen 277

Of Carbon Functionalities ... 278
Method 1: By Decarboxylation ... 278
Method 2: By Nucleophilic Displacement of Nitrile Groups 279

Of Heteroatoms .. 279
Method 1: By Hydrogen .. 279
Variation 1: Reductive Dehalogenation of Halocinnolines 279
Variation 2: Oxidative Dehydrazination of Hydrazinocinnolines 281
Method 2: By Halogen–Metal Exchange .. 281
16.9.4.3 Method 3: By Carbon Nucleophiles via Nucleophilic Substitution 282
16.9.4.4 Method 4: By Carbon Substituents via Cross-Coupling Reactions 284
16.9.4.5 Method 5: By Heteroatom Nucleophiles via Nucleophilic Substitution 286
16.9.4.5.1 Variation 1: Introduction of Halogen Substituents 286
16.9.4.5.2 Variation 2: Introduction of Chalcogen Substituents 287
16.9.4.5.3 Variation 3: Introduction of Nitrogen Substituents 289
16.9.4.6 Method 6: Deoxygenation of \(\text{N-Oxides} \) 292

16.9.4.2 Addition Reactions 293
16.9.4.2.1 Addition of Organic Groups 293
16.9.4.2.1.1 Method 1: N-Alkylation (Quaternization) 293
16.9.4.2.2 Addition of Heteroatoms 296
16.9.4.2.2.1 Method 1: N-Oxidation 296

16.9.4.3 Modification of Substituents 296
16.9.4.3.1 Of Carbon Substituents 296
16.9.4.3.1.1 Method 1: Of Carboxylic Acids and Derivatives 296
16.9.4.3.1.2 Method 2: Of Ketones, Aldehydes, and Derivatives 297
16.9.4.3.1.3 Method 3: Of Hydroxyalkyl and Similar Substituents 299
16.9.4.3.1.4 Method 4: Of Alkyl Substituents 300
16.9.4.3.2 Of Heteroatom Substituents 303
16.9.4.3.2.1 Method 1: Of Hydroxy, Alkoxy, and Aryloxy Groups 303
16.9.4.3.2.2 Method 2: Of Sulfur-Containing Groups 304
16.9.4.3.2.3 Method 3: Of Nitro Groups 305
16.9.4.3.2.4 Method 4: Of Amino Groups 306

16.10 Product Class 10: Phthalazines
N. Haider and W. Holzer

16.10 Synthesis by Ring-Closure Reactions 318
16.10.1 By Annulation to an Arene 318
16.10.1.1 By Formation of Two N—C Bonds 318
16.10.1.1.1 Fragments C—Arene—C and N—N 318
16.10.1.1.1.1 Method 1: Condensation of Phthalic Acid Derivatives with Hydrazine 318
16.10.1.1.1.2 Method 2: Condensation of 2-Acyl- and 2-Formylbenzoic Acid Derivatives with Hydrazine 322
16.10.1.1.1.3 Method 3: Condensation of 1,2-Diacetylbenzenes and Phthalaldehyde Derivatives with Hydrazine 325
16.10.1.1.2 By Formation of One N—C and One C—C Bond 327
16.10.1.1.2.1 Fragments Arene—C and N—N—C 327
16.10.1.1.2.1.1 Method 1: Reaction of 2-(Alkoxycarbonyl)quinones with Methylglyoxal 1-Methylhydrazone 327
16.10.1.1.3 By Formation of Two C—C Bonds 327
16.10.1.1.3.1 Fragments Arene and C—N—N—C 327
16.10.1.1.3.1.1 Method 1: [4 + 2]-Cycloaddition Reactions of 1,2,4,5-Tetrazines with Benzyne ... 327
16.10.1.1.4 By Formation of One N—C Bond ... 328
16.10.1.1.4.1 Fragment N—N—C—Arene—C ... 328
16.10.1.1.4.1.1 Method 1: Cyclization of Arylhydrazones of 2-Acyl- and 2-Formylbenzoic Acid Derivatives 328
16.10.1.1.5 By Formation of One C—C Bond ... 329
16.10.1.1.5.1 Fragment C—N—N—C—Arene ... 329
16.10.1.1.5.1.1 Method 1: Acid-Promoted Cyclization of Azines 329
16.10.1.1.5.1.1.1 Variation 1: Cyclization of 2-Amino-2-(arylhydrazono)ethyl Aryl Ethers .. 330
16.10.1.1.5.1.1.2 Variation 2: Cyclization of 1-Aroyl-2-benzylidenehydrazines 331
16.10.1.2 By Annulation to the Heterocyclic Ring 332
16.10.1.2.1 Method 1: Condensation Reactions of 4,5-Disubstituted Pyridazines 332
16.10.1.2 Synthesis by Ring Transformation .. 333
16.10.1.2.1 By Ring Enlargement .. 333
16.10.1.2.1.1 Method 1: From Benzofuran Derivatives 333
16.10.1.2.1.2 Method 2: From Isoindole Derivatives 335
16.10.1.2.1.3 Method 3: From Indane-1,3-dione Derivatives 338
16.10.1.2.2 Formal Exchange of Ring Members with Retention of the Ring Size 338
16.10.1.2.2.1 Method 1: By [4 + 2]-Cycloaddition Reactions of Pyridazino[4,5-d]-pyridazines with Electron-Rich C—C Dienophiles 338
16.10.1.3 Aromatization .. 340
16.10.1.3.1 Method 1: Oxidation of Dihydrophthalazines 340
16.10.1.4 Synthesis by Substituent Modification 341
16.10.1.4.1 Substitution of Existing Substituents 341
16.10.1.4.1.1 Of Hydrogen .. 341
16.10.1.4.1.1.1 At a Ring Nitrogen Atom of a Phthalazinone 341
16.10.1.4.1.1.1.1 Method 1: N-Acylation ... 341
16.10.1.4.1.1.1.2 Method 2: N-Arylation ... 342
16.10.1.4.1.1.1.3 Method 3: N-Alkylation ... 342
16.10.1.4.1.1.2 At a Ring Carbon Atom .. 343
16.10.1.4.1.1.2.1 Method 1: By Lithiation .. 343
16.10.1.4.1.1.2.2 Method 2: Introduction of Cyano Groups by the Reissert Reaction ... 344
16.10.1.4.1.1.2.3 Method 3: Nitration ... 345
16.10.1.4.1.1.2 Of Carbon Functionalities ... 346
16.10.1.4.1.1.2.1 Method 1: By N-Dealkylation 346
16.10.1.4.1.1.3 Of Heteroatoms ... 346
16.10.1.4.1.1.3.1 Method 1: By Hydrogen ... 346
16.10.1.4.1.1.3.1.1 Variation 1: Reductive Dehalogenation of Halophthalazines 346
16.10.4.1.3.2 Variation 2: Oxidative Dehydrazination of Hydrazinophthalazines 347
16.10.4.1.3.2 Method 2: By Carbon Nucleophiles via Nucleophilic Substitution 348
16.10.4.1.3.3 Method 3: By Hetero Nucleophiles via Nucleophilic Substitution 350
16.10.4.1.3.3.1 Variation 1: Introduction of Halogen Substituents 350
16.10.4.1.3.3.2 Variation 2: Introduction of Chalcogen Substituents 352
16.10.4.1.3.3.3 Variation 3: Introduction of Nitrogen Substituents 353
16.10.4.1.3.4 Method 4: Deoxygenation of N-Oxides 355
16.10.4.2 Addition Reactions 356
16.10.4.2.1 Addition of Organic Groups 356
16.10.4.2.1.1 Method 1: N-Alkylation (Quaternization) 356
16.10.4.2.2 Addition of Heteroatoms 357
16.10.4.2.2.1 Method 1: N-Oxidation 357
16.10.4.3 Modification of Substituents 358
16.10.4.3.1 Of Carbon Substituents 358
16.10.4.3.1.1 Method 1: Modification of Carboxylic Acids and Derivatives 358
16.10.4.3.2 Method 3: Modification of Alkyl Substituents 359
16.10.4.3.2 Of Heteroatom Substituents 360
16.10.4.3.2.1 Method 1: Modification of Hydroxy Groups 360
16.10.4.3.2.2 Method 2: Modification of Sulfur-Containing Groups 361
16.10.4.3.2.3 Method 3: Modification of Amino Groups 362

16.11 Product Class 11: Pyridazino[1,2-a]pyridazines
N. Haider and W. Holzer

16.11.1 Product Class 11: Pyridazino[1,2-a]pyridazines 373
16.11.1 Synthesis by Ring-Closure Reactions 373
16.11.1.1 By Formation of Four N-C Bonds 374
16.11.1.1.1 Fragments C-C-C-C, C-C-C-C, and N-N 374
16.11.1.1.1 Method 1: By Condensation of Succinonitrile with Hydrazine 374
16.11.1.2 By Formation of Two N-C Bonds 375
16.11.1.2.1 Fragments Hetarene and C-C-C-C 375
16.11.1.2.1 Method 1: By Cycloaddition Reactions of Pyridazine-3,6-diones 375

16.12 Product Class 12: Pyrimidines
S. von Angerer

16.12 Product Class 12: Pyrimidines 379
16.12.1 Synthesis by Ring-Closure Reactions 384
16.12.1.1 By Formation of Four N-C Bonds and One C-C Bond 384
16.12.1.1.1 Fragments C-C, N, N, C, and C 384
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.12.1.1</td>
<td>Method 1: Reaction of 1(2-Oxoethyl)pyridinium Bromides with 4-Nitrobenzaldehyde and Ammonia</td>
</tr>
<tr>
<td>16.12.1.2</td>
<td>By Formation of Four N—C Bonds</td>
</tr>
<tr>
<td>16.12.1.2.1</td>
<td>Method 1: Reaction of β-Dicarbonyl Derivatives with Benzaldehyde and Ammonia</td>
</tr>
<tr>
<td>16.12.1.2.1.1</td>
<td>Method 1: Reaction of β-Dicarbonyl Derivatives with Formamide</td>
</tr>
<tr>
<td>16.12.1.2.1.1.1</td>
<td>Variation 1: Reaction of 1,3-Diketones</td>
</tr>
<tr>
<td>16.12.1.2.1.1.2</td>
<td>Variation 2: Reaction of 4,4-Dimethoxybutan-2-one</td>
</tr>
<tr>
<td>16.12.1.2.1.3</td>
<td>Variation 3: Reaction of Malonaldehyde Diacetals</td>
</tr>
<tr>
<td>16.12.1.2.1.4</td>
<td>Variation 4: Reaction of 3-Heterosubstituted Propenals and Propenones</td>
</tr>
<tr>
<td>16.12.1.2.1.5</td>
<td>Method 2: Reaction of Malonyl Chlorides with Nitriles</td>
</tr>
<tr>
<td>16.12.1.2.1.6</td>
<td>Method 3: Reaction of β-Diketones with Cyanamide</td>
</tr>
<tr>
<td>16.12.1.3</td>
<td>By Formation of Three N—C Bonds</td>
</tr>
<tr>
<td>16.12.1.3.1</td>
<td>Method 1: Reaction of Malonamides with Ethyl Formate</td>
</tr>
<tr>
<td>16.12.1.3.1.1</td>
<td>Method 1: Reaction of a Polymer-Bound Thiouronium Salt with Phosgene</td>
</tr>
<tr>
<td>16.12.1.3.1.2</td>
<td>Method 1: Reaction of Vinylamines with Benzoyl Isocyanate</td>
</tr>
<tr>
<td>16.12.1.3.1.3</td>
<td>Method 1: Reaction of Acetonitriles with Phosgene</td>
</tr>
<tr>
<td>16.12.1.3.1.4</td>
<td>Method 1: Trimerization of Nitriles</td>
</tr>
<tr>
<td>16.12.1.3.1.5</td>
<td>Method 5: Reaction of 1(2-Oxoethyl)pyridinium Bromides with Benzaldehydes</td>
</tr>
<tr>
<td>16.12.1.3.2</td>
<td>Method 2: Reaction of Malonyl Chlorides with Nitriles</td>
</tr>
<tr>
<td>16.12.1.3.3</td>
<td>Method 3: Reaction of Vinylamines with Benzoyl Isocyanate</td>
</tr>
<tr>
<td>16.12.1.3.4</td>
<td>Method 4: Reaction of Diethyl Malonate with Trifluoroacetanilide</td>
</tr>
<tr>
<td>16.12.1.3.5</td>
<td>Method 6: Reaction of Acetonitriles with Aryl Cyanates</td>
</tr>
<tr>
<td>16.12.1.3.6</td>
<td>Method 7: Reaction of a Polymer-Bound Thiouronium Salt with Ethyl Cyanoacetate and Benzaldehydes</td>
</tr>
<tr>
<td>16.12.1.4</td>
<td>By Formation of Two N—C Bonds and One C—C Bond</td>
</tr>
<tr>
<td>16.12.1.4.1</td>
<td>Method 1: Trimerization of Nitriles</td>
</tr>
<tr>
<td>16.12.1.4.1.1</td>
<td>Method 2: Reaction of Alkynes with Nitriles</td>
</tr>
<tr>
<td>16.12.1.4.1.2</td>
<td>Method 3: Reaction of Alkyne Precursors with Nitriles</td>
</tr>
<tr>
<td>16.12.1.4.1.3</td>
<td>Method 4: Reaction of Enol Trifluoromethanesulfonates</td>
</tr>
<tr>
<td>16.12.1.4.1.4</td>
<td>Method 5: Reaction of Ketones Activated with Acid Anhydrides</td>
</tr>
<tr>
<td>16.12.1.4.1.5</td>
<td>Method 6: Reaction of Malonaldehyde Diacetal</td>
</tr>
<tr>
<td>16.12.1.4.1.6</td>
<td>Method 7: Reaction of Heterosubstituted Alkenes</td>
</tr>
<tr>
<td>16.12.1.4.2</td>
<td>Method 8: Reaction of 3-Heterosubstituted Propenals and Propenones</td>
</tr>
<tr>
<td>16.12.1.4.3</td>
<td>Method 9: Reaction of 4,4-Dimethoxybutan-2-one</td>
</tr>
<tr>
<td>16.12.1.4.4</td>
<td>Method 10: Reaction of 3-Heterosubstituted Propenals and Propenones</td>
</tr>
<tr>
<td>16.12.1.4.5</td>
<td>Method 11: Reaction of 1,3-Diketones</td>
</tr>
<tr>
<td>16.12.1.4.6</td>
<td>Method 12: Reaction of Malonamides with Ethyl Formate</td>
</tr>
</tbody>
</table>

Science of Synthesis Original Edition Volume 16
© Georg Thieme Verlag KG
Method 2: Reaction of Amidinoacetamides with Formamide 399

Method 3: Reaction of Malonimide Esters with Acid Chlorides 399

Method 4: Reaction of Malonimidamides with Esters 400

Method 5: Reaction of 3-Aminoaacrylamides with Acid Derivatives 400

Method 6: Reaction of 3-Amino-2-cyanoacrylamides with Anhydrides 401

Method 1: Reaction of N-Acylacrylamides with Ammonia 402

Method 2: Reaction of N,2-Diacylvinylamines with Formamide 403

Method 1: Reaction of 3-Chloroacrylonitriles with Nitriles 404

Method 3: Reaction of 3,3-Bis(methylsulfanyl)acrylonitrile with Amides 404

Method 3: Reaction of 3-Aminoacrylates 405

Variation 1: Reaction with Amides 406

Variation 2: Reaction with Benzimidate 406

Variation 3: Reaction with Nitriles 407

Method 5: Reaction of 1,3-Diketimines with Benzonitrile 408

Method 6: Reaction of 3-Aminopropenals with Formamide 409

Method 7: Reaction of 3-Aminoaacrylonitriles with Nitriles 410

Method 1: Reaction of 3-Chloroaacrylonitriles with Nitriles 410

Method 2: Reaction of 3,3-Bis(methylsulfanyl)acrylonitrile with Amides 410

Method 3: Reaction of 3-Aminoacrylates 405

Variation 1: Reaction with Amides 406

Variation 2: Reaction with Benzimidate 406

Variation 3: Reaction with Nitriles 407

Method 5: Reaction of 1,3-Diketimines with Benzonitrile 408

Method 6: Reaction of 3-Aminopropenals with Formamide 409

Method 7: Reaction of 3-Aminoaacrylonitriles with Nitriles 410

Fragments N—C—N and C—C—C ... 410

Fragments C—С—N and N—C ... 404

Fragments C—С—N and N—C ... 404

Method 1: Reaction of 3-Chloroaacrylonitriles with Nitriles 404

Method 2: Reaction of 3,3-Bis(methylsulfanyl)acrylonitrile with Amides 404

Method 3: Reaction of 3-Aminoacrylates 405

Variation 1: Reaction with Amides 406

Variation 2: Reaction with Benzimidate 406

Variation 3: Reaction with Nitriles 407

Method 5: Reaction of 1,3-Diketimines with Benzonitrile 408

Method 6: Reaction of 3-Aminopropenals with Formamide 409

Method 7: Reaction of 3-Aminoaacrylonitriles with Nitriles 410

Fragments N—C—N and C—C—C ... 410

Method 1: Reaction of β-Diketones with Amidine Derivatives 410

Variation 1: Reaction with Guanidines 410

Variation 2: Reaction with O-Methyluronium Salts 411

Variation 3: Reaction with Urea 412

Method 2: Reaction of Prop-2-yn-1-ones with Amidine Derivatives 413

Method 3: Reaction of α-Formyl Esters or Equivalents with Amidine Derivatives 413

Method 4: Reaction of 3-Alkoxyacrylates with Amidine Derivatives or Cyanamide 414

Method 5: Reaction of β-Oxo Esters with Amidine Derivatives 417

Method 6: Reaction of β-Dialdehydes or Equivalents with Amidine Derivatives 418

Variation 1: Reaction of Malonaldehydes 418

Variation 2: Reaction of Sodium 3,3-Dimethoxy-2-(methoxycarbonyl)-prop-1-en-1-olate with Amides 419

Variation 3: Reactions of Malonaldehyde Diacetals 420

Variation 4: Reaction of 3-Heterosubstituted Propenals with Amidine Derivatives 421

Method 7: Reaction of 3,3-Dialkoxypropan-1-ones with Amidine Derivatives 423

Method 8: Reaction of 3-Heterosubstituted Prop-2-en-1-ones with Amidine Derivatives 424

Variation 1: Reaction of 3-Alkoxy-Substituted Prop-2-en-1-ones 424

Variation 2: Reaction of 3-Sulfanyl-Substituted Prop-2-en-1-ones 425

Variation 3: Reaction of 3-Amino-Substituted Prop-2-en-1-ones 425
16.12.1.5.4.9 Method 9: Reaction of 3,3-Disulfanylprop-2-en-1-ones with Amidine Derivatives .. 426
16.12.1.5.4.10 Method 10: Reaction of 3,3-Diaminoprop-2-en-1-one Derivatives with Amidine Derivatives .. 427
16.12.1.5.4.11 Method 11: Reaction of 1,1-Difluoroprop-2-enes with Amidine Derivatives .. 428
16.12.1.5.4.12 Method 12: Reaction of Vinamidinium Salts with Amidine Derivatives .. 428
16.12.1.5.4.13 Method 13: Reaction of Prop-2-ynoates and Alka-2,3-dienoates with Amidine Derivatives .. 429
16.12.1.5.4.14 Method 14: Reaction of 3-Heterosubstituted Acrylonitriles with Amidine Derivatives .. 430
16.12.1.5.4.14.1 Variation 1: 3-Haloacrylonitriles .. 430
16.12.1.5.4.14.2 Variation 2: 3-Alkoxy- and 3,3-Dialkoxyacrylonitriles .. 431
16.12.1.5.4.14.3 Variation 3: 3-(Methylsulfonyl)- and 3,3-Bis(Methylsulfonyl)acrylonitriles .. 433
16.12.1.5.4.14.4 Variation 4: 3-Aminoacrylonitriles .. 434
16.12.1.5.4.14.5 Variation 5: Propynenitriles and Buta-2,3-dienenitriles .. 435
16.12.1.5.4.15 Method 15: Reaction of Malonates with Amidine Derivatives .. 436
16.12.1.5.4.16 Method 16: Reaction of 3,3-Diheterosubstituted Acrylates with Amidine Derivatives .. 437
16.12.1.5.4.16.1 Variation 1: Reaction of 3,3-Dialkoxyacrylates with Amidine Derivatives .. 437
16.12.1.5.4.16.2 Variation 2: Reaction of 3,3-Bis(methylsulfonyl)acrylates with Amidine Derivatives .. 438
16.12.1.5.4.16.3 Variation 3: Reaction of 3-Amino-3-(methylsulfonyl)acrylates with Guanidine and Thiourea .. 438
16.12.1.5.4.17 Method 17: Reaction of Cyanoacetates with Amidine Derivatives .. 439
16.12.1.5.4.18 Method 18: Reaction of Malononitriles with Amidine Derivatives .. 439
16.12.1.5.4.19 Method 19: Reaction of 3-Arylprop-2-en-1-ones with Amidine Derivatives .. 440
16.12.1.5.4.20 Method 20: Reaction of 3-Arylacrylonitriles with Amidine Derivatives .. 441
16.12.1.5.4.21 Method 21: Reaction of Resin-Bound 3-Arylacrylates with Amidine Derivatives .. 442
16.12.1.5.4.22 Method 22: Reaction of 2-Bromoacrylates with Benzimidamide .. 443
16.12.1.6 By Formation of One N—C and One C—C Bond .. 443
16.12.1.6.1 Fragments N—C—N—C and C—C .. 443
16.12.1.6.1.1 Method 1: Reaction of 3-Cyano-2-methylisothiourea or 2-Cyanoguanidine with Ketones .. 443
16.12.1.6.1.2 Method 2: Reaction of 1,3-Diazabuta-1,3-dienes with Alkynes .. 444
16.12.1.6.1.2.1 Variation 1: Reaction of 4,4-Bis(methylsulfonyl)-1,3-diazabuta-1,3-diene .. 444
16.12.1.6.1.2.2 Variation 2: Reaction of 4-(Dimethylamino)-1,3-diazabuta-1,3-dienes .. 445
16.12.1.6.2 Fragments C—C—N—C and N—C .. 446
16.12.1.6.2.1 Method 1: Reaction of Azapropenylidium Perchlorates with 1,1,3,3-Tetramethylguanidine .. 446
16.12.1.6.2.2 Method 2: Reaction of 2-Azabuta-1,3-dienes with Nitriles .. 447
16.12.1.6.2.3 Method 3: Reaction of Ethyl (Cyanoacetyl)carbamate with Trifluoroacetonitrile .. 448
16.12.1.6.2.4 Method 4: Dimerization of N-Cyanothioacetimidate .. 449
16.12.1.6.3 Fragments N—C—C and C—N—C .. 449
16.12.1.6.3.1 Method 1: Reaction of Enamines with \(N\)-(Dichloromethylene)-trichloromethylamine .. 449
16.12.1.6.3.2 Method 2: Reaction of Enamines with Acyl Isothiocyanates 450
16.12.1.6.3.3 Method 3: Reaction of Cyanothioacetamide with Benzoyl Isothiocyanate 451
16.12.1.6.3.4 Method 4: Reaction of Enamines with [Bis(methylsulfanyl)methylene]-cyanamide .. 451
16.12.1.6.3.5 Method 5: Reaction of Acetonitriles with \(N\)-(Dichloromethylene)-trichloromethylamine .. 451
16.12.1.6.3.6 Method 6: Reaction of Acetamides with \(N\)-Cyanoimidates or \(N\)-Acylimidates .. 452

16.12.1.7 By Formation of One \(N\)-\(C\) Bond .. 453
16.12.1.7.1 Fragment \(N\)-\(C\)-\(C\)-\(C\)-\(N\)-\(C\) .. 453
16.12.1.7.1.1 Method 1: Cyclization of 3-(Acamino)but-2-enamides 453
16.12.1.7.1.2 Method 2: Cyclization of 3-Amino-\(N\)-acylthioacrylamides 454
16.12.1.7.1.3 Method 3: Cyclization of 3-Amino-\(N\)-cyano-3-methoxyacrylimidate 455
16.12.1.7.1.4 Method 4: Cyclization of 3-(Acamino)-2-cyano- and 2-Cyano-3-(thioacrylamino)acrylates .. 456
16.12.1.7.1.5 Method 5: Cyclization of \(N\)-(2-Cyanovinyl)imidamides 457
16.12.1.7.1.6 Method 6: Cyclization of 1-(Dimethylamino)-5-(dimethyliminio)-2-azapenta-1,3-dienes .. 458
16.12.1.7.1.7 Method 7: Cyclization of 3-(Vinylamino)but-2-enamide 458
16.12.1.7.2 Fragment \(N\)-\(C\)-\(C\)-\(N\)-\(C\)-\(N\)-\(C\) .. 459
16.12.1.7.2.1 Method 1: Cyclization of 1-Acetyl-3-cyanoura 458
16.12.1.7.2.2 Method 2: Cyclization of 3-Ureidoacrylates 459
16.12.1.7.2.3 Method 3: Cyclization of \(N\)-[2-(Methoxycarbonyl)ethylidene]ureas 461
16.12.1.7.2.4 Method 4: Cyclization of 3-Ureidoacrylonitriles 461
16.12.1.7.2.5 Method 5: Cyclization of \(N\)-(2-Cyanovinyl)imidamides 462
16.12.1.7.2.6 Method 6: Cyclization of 1-(Cyanocetyl)-2-methylisoureas 463
16.12.1.7.2.7 Method 7: Cyclization of 3-(Cyaanoamino)acrylonitriles 463
16.12.1.7.2.8 Method 8: Cyclization of (Cyanocetyl)cyanamides and Equivalents 464

16.12.1.8 By Formation of One \(C\)-\(C\) Bond .. 466
16.12.1.8.1 Fragment \(C\)-\(C\)-\(N\)-\(C\)-\(C\)-\(N\) .. 466
16.12.1.8.1.1 Method 1: Cyclization of 1-Acetyl-3-cyanoura 466
16.12.1.8.1.2 Method 2: Cyclization of \(N\)-[2-Carbamoyl-\(N\)\(^\prime\)-vinylbenzimidamides 467

16.12.2 Synthesis by Ring Transformation .. 467
16.12.2.1 By Ring Enlargement .. 467
16.12.2.1.1 Of Three-Membered Carbocycles 467
16.12.2.1.1.1 Method 1: Reaction of Cyclopropanones with Amidoximes 467
16.12.2.1.2 Of Four-Membered Heterocycles 468
16.12.2.1.2.1 Method 1: Reaction of Azetes with Nitriles 468
16.12.2.1.2.2 Method 2: Reaction of Azetidine with Imidates 468
16.12.2.1.3 Of Five-Membered Heterocycles 469
16.12.2.1.3.1 Method 1: Reaction of Furans 469
16.12.2.1.3.2 Method 2: Reaction of 3-Acyl-2-oxo-tetrahydrothiophenes with Amidine Derivatives .. 470
16.12.2.1.3.3 Method 3: Reaction of 2,3,4,5-Tetraphenylpyrrole with Sulfenamides .. 471
16.12.2.1.3.4 Method 4: Reaction of Isoxazoles .. 471
16.12.2.1.3.4.1 Variation 1: Rearrangement of 5-(Acylamino)isoxazoles ... 471
16.12.2.1.3.4.2 Variation 2: Rearrangement of N-(Isoxazol-4-ylcarbonyl)urea and N\(^1\)-(Isoxazol-4-ylcarbonyl)benzimidamide .. 472
16.12.2.1.3.5 Method 5: Reaction of Oxazoles .. 472
16.12.2.1.3.6 Method 6: Reaction of Pyrazoles .. 473
16.12.2.1.3.7 Method 7: Reaction of Imidazoles .. 474
16.12.2.1.3.7.1 Variation 1: Rearrangement of 5-(Acylamino)isoxazoles ... 474
16.12.2.1.3.7.2 Variation 2: Rearrangement of \(N\)-(Isoxazol-4-ylcarbonyl)urea and \(N\(^1\)-(Isoxazol-4-ylcarbonyl)benzimidamide .. 475
16.12.2.1.3.7.3 Variation 3: Reaction with Acetylenes .. 475
16.12.2.1.3.7.4 Variation 4: Reaction with Chloroform .. 476
16.12.2.1.3.8 Method 8: Reaction of Isoxazoles ... 476
16.12.2.1.3.9 Method 9: Reaction of Isoxazoles .. 477
16.12.2.2 Formal Exchange of Ring Members With Retention of the Ring Size ... 478
16.12.2.2.1 Method 1: Reaction of Pyran-2-ones with Amidine Derivatives ... 478
16.12.2.2.2 Method 2: Reaction of Pyran-4-ones with Amidine Derivatives ... 480
16.12.2.2.3 Method 3: Reaction of 1,3-Oxazines .. 481
16.12.2.2.3.1 Variation 1: Reaction of 1,3-Oxazin-4-ones with Ammonia .. 481
16.12.2.2.3.2 Variation 2: Rearrangement of 2-Amino-1,3-oxazin-4-one ... 481
16.12.2.2.3.3 Variation 3: Reaction of 1,3-Oxazin-4-ones with Thiocarbamides .. 482
16.12.2.2.3.4 Variation 4: Reaction of 1,3-Oxazin-6-ones with Ammonia ... 482
16.12.2.2.3.5 Variation 5: Rearrangement of 1,3-Oxazine-5-carboxamide .. 483
16.12.2.2.3.6 Variation 6: Reaction of 1,3-Oxazinonium Perchlorates with Ammonia .. 483
16.12.2.2.4 Method 4: Reaction of 1,3-Thiazinones or 1,4-Benzothiazines ... 483
16.12.2.2.5 Method 5: Reaction of Pyrimidinones .. 485
16.12.2.2.6 Method 6: Rearrangement of 1,2,4-Oxadiazines .. 486
16.12.2.2.7 Method 7: Rearrangement of 3,5-Oxadiazinium or 3,5-Thiadiazinium Salts .. 486
16.12.2.2.8 Method 8: Rearrangement of 2-(Acylimethyl)-1,3,5-triazines .. 487
16.12.2.2.9 Method 9: Rearrangement of N,N-Diethylprop-1-ynamine ... 487
16.12.2.2.10 Method 10: Rearrangement of 1,3,5-Triazines with Active Methylene Compounds .. 491
16.12.2.2.11 Method 11: Rearrangement of 2-(Acylimethyl)-1,3,5-triazines .. 491
16.12.2.2.12 Method 12: Rearrangement of 2-Alkyl-1,2-dihydro-1,3,5-triazines .. 492
16.12.2.2.13 Method 13: Rearrangement of 1,3,5-Triazinediones ... 492
16.12.2.2.14 Method 14: Rearrangement of 1,2,3,5-Oxathiadiazine 2,2-Dioxide with Active Methylene Compounds ... 492
16.12.2.3 By Ring Contraction ... 493
16.12.2.4 Aromatization .. 494
16.12.2.4.1 By Oxidation .. 494
16.12.2.4.1 Method 1: Rearrangement of 1,3,5-Triazines with Active Methylene Compounds .. 494
16.12.2.5 Aromatization .. 494
16.12.2.5.1 Method 1: Rearrangement of 1,3,5-Triazines with Active Methylene Compounds .. 494
16.12.3.1.2 Method 2: By Dehydrogenation of Tetrahydropyrimidines 495
16.12.3.1.3 Method 3: Pyrimidinones by Dehydrogenation 496
16.12.3.2 By Elimination .. 497
16.12.3.2.1 Method 1: Acid-Catalyzed Elimination of Water 497
16.12.3.2.2 Method 2: Base-Catalyzed Elimination of HX 497
16.12.4 Synthesis by Substituent Modification .. 499
16.12.4.1 Substitution of Existing Substituents .. 499
16.12.4.1.1 Method 1: Hydrogen/Deuterium Exchange 499
16.12.4.1.2 Method 2: Metalation ... 499
16.12.4.1.3 Method 3: Silylation .. 500
16.12.4.1.4 Method 4: C-Acylation ... 501
16.12.4.1.4.1 Variation 1: Formylation .. 501
16.12.4.1.4.2 Variation 2: Acylation by Radicals ... 501
16.12.4.1.4.3 Variation 3: Carboxylation ... 502
16.12.4.1.5 Method 5: Cyanation ... 503
16.12.4.1.6 Method 6: Hydroxyalkylation and Related Reactions 504
16.12.4.1.7 Method 7: C-Alkylation .. 504
16.12.4.1.8 Method 8: Halogenation ... 505
16.12.4.1.9 Method 9: Nitration .. 507
16.12.4.1.10 Method 10: Nitrosation ... 508
16.12.4.1.11 Method 11: Amination .. 508
16.12.4.1.2 Substitution of (Trialkylstannyl)pyrimidines with Acid Chlorides and Aryl Halides .. 509
16.12.4.1.3 Of Carbon Functionalities .. 510
16.12.4.1.3.1 Method 1: Decarboxylation ... 510
16.12.4.1.3.2 Method 2: N-Deacylation .. 511
16.12.4.1.3.3 Method 3: N-Dealkylation .. 511
16.12.4.1.3.4 Method 4: Removal of Protecting Groups 512
16.12.4.1.3.4.1 Variation 1: Benzyloxymethyl Group 512
16.12.4.1.3.4.2 Variation 2: Cyanoethyl Group ... 513
16.12.4.1.3.4.3 Variation 3: Benzyl Group .. 513
16.12.4.1.4 Of Heteroatoms ... 514
16.12.4.1.4.1 Dehalogenation .. 514
16.12.4.1.4.1.1 Method 1: Dehalogenation with Palladium on Carbon 514
16.12.4.1.4.1.2 Method 2: Dechlorination by Zinc Dust 515
16.12.4.1.4.1.3 Method 3: Dechlorination of 3-Chloropyrimidines with Tosylhydrazine ... 515
16.12.4.1.4.2 Halogen-Exchange Reactions ... 516
16.12.4.1.4.2.1 Method 1: Exchange of Chlorine for Fluorine 516
16.12.4.1.4.2.2 Method 2: Exchange of Chlorine for Iodine 516
16.12.4.1.4.3 Substitution of Halogen by Oxygen Functions 517
16.12.4.1.3.1 Method 1: Exchange of Halogen for Alkoxides .. 517
16.12.4.1.3.2 Method 2: Hydrolysis of Halopyrimidines ... 520
16.12.4.1.4 Substitution of Halogens by Sulfur Functionalities 520
16.12.4.1.4.1 Method 1: Reaction of Halopyrimidines with Thiolates 520
16.12.4.1.4.2 Method 2: Conversion of Halopyrimidines into Thiols 521
16.12.4.1.4.5 Substitution of Halogens by Nitrogen Functionalities 523
16.12.4.1.4.5.1 Method 1: Aminolysis of Halopyrimidines ... 523
16.12.4.1.4.5.2 Method 2: Substitution of Halogens by Hydrazine 527
16.12.4.1.4.5.3 Method 3: Substitution of Halogens by Azide 528
16.12.4.1.4.6 Substitution of Halogens by Carbofunctional Groups 528
16.12.4.1.4.6.1 Method 1: Reaction with Carbonyl Compounds via Lithiated Intermediates ... 528
16.12.4.1.4.6.2 Method 2: Palladium-Catalyzed Cross Coupling with Alkenes and Alkynes (Heck-Type Reactions) 530
16.12.4.1.4.6.2.1 Variation 1: Coupling with Alkenes ... 530
16.12.4.1.4.6.2.2 Variation 2: Coupling with Alkynes ... 531
16.12.4.1.4.6.3 Method 3: Palladium-Catalyzed Cross Coupling with Organostannanes (Stille Reaction) .. 533
16.12.4.1.4.6.4 Method 4: Reaction with Grignard Reagents .. 536
16.12.4.1.4.6.5 Method 5: Reaction with Arylboronic Acids (Suzuki Coupling) 537
16.12.4.1.4.6.6 Method 6: Reaction with Active Methylene Compounds 537
16.12.4.1.4.6.7 Method 7: Reaction with Perfluoroalkyl Iodides 538
16.12.4.1.4.7 Substitution of Oxygen Functions .. 539
16.12.4.1.4.7.1 Method 1: Exchange of Hydroxy for Halogen ... 539
16.12.4.1.4.7.1.1 Variation 1: Introduction of Chlorine .. 539
16.12.4.1.4.7.1.2 Variation 2: Introduction of Bromine .. 540
16.12.4.1.4.7.2 Method 2: Exchange of Oxygen for Sulfur ... 540
16.12.4.1.4.8 Desulfurization ... 542
16.12.4.1.4.8.1 Method 1: Of Pyrimidinethiols with Raney Nickel 542
16.12.4.1.4.8.2 Method 2: Detosylation ... 542
16.12.4.1.4.9 Substitution of Sulfur Functions by Hydroxy and Alkoxy Groups 543
16.12.4.1.4.9.1 Method 1: Conversion of (Alkylsulfonyl)pyrimidines into Pyrimidinones 543
16.12.4.1.4.10 Substitution of Sulfur Functions for Amines ... 543
16.12.4.1.4.10.1 Method 1: Aminolysis of Sulfur-Containing Functional Groups 543
16.12.4.1.4.11 Substitution of Sulfur by Carbofunctional Groups 546
16.12.4.1.4.11.1 Method 1: Sulfur Extrusion from [(Acylmethyl)sulfanyl]pyrimidines 546
16.12.4.1.4.12 Substitution of Amino Groups by Halogens and Hydroxy Groups 546
16.12.4.2 Addition Reactions .. 547
16.12.4.2.1 Addition of Organic Groups .. 547
16.12.4.2.1.1 Method 1: N-Alkylations ... 547
16.12.4.2.1.2 Method 2: C-Alkylations ... 547
16.12.4.2.2 Addition of Heteroatoms .. 548
16.12.4.2.2.1 Method 1: Generation of N-Oxides 548
16.12.4.3 Rearrangement of Substituents 550
16.12.4.3.1 Method 1: Dimroth Rearrangement 550
16.12.4.3.2 Method 2: Conversion of 3-Phenyl-2H-isoxazolo[2,3-a]pyrimidin-2-ones into 2-Benzoylpyrimidines 552
16.12.4.3.3 Method 3: Conversion of a 3H-[1,2,4]Thiazolo[4,3-c]pyrimidin-3-one into Pyrimidin-4-ylcarbamate and Related Examples 552
16.12.4.4 Modification of Substituents .. 552
16.12.4.4.1 Method 1: O-Alkylation .. 553
16.12.4.4.2 Method 2: O-Acylation ... 553
16.12.4.4.3 Method 3: O-Silylation .. 554
16.12.4.4.4 Method 4: S-Oxidation ... 554
16.12.4.4.5 Method 5: S-Alkylation ... 555

16.13 Product Class 13: Quinazolines
D. Kikelj

16.13 Product Class 13: Quinazolines .. 573
16.13.1 Synthesis by Ring-Closure Reactions 581
16.13.1.1 By Annulation to an Arene .. 581
16.13.1.1.1 By Formation of Three N—C Bonds 581
16.13.1.1.1.1 Fragments Arene—C, N—C, and N 581
16.13.1.1.1.1 Method 1: From 2-Hydroxybenzoyl or 2-Chlorobenzoyl Chlorides and Carboxamides .. 581
16.13.1.1.2 By Formation of Two N—C Bonds 582
16.13.1.1.2.1 Fragments Arene—C and N—C—N 582
16.13.1.1.2.1 Method 1: From 2-Halobenzonitriles or 2-Alkoxybenzonitriles and Guanidine .. 582
16.13.1.1.2.1.2 Method 2: From 2-Fluorophenyl Ketones and Guanidine .. 582
16.13.1.1.2.1.3 Method 3: From 2-Fluorobenzaldehydes and Amidines .. 583
16.13.1.1.2.1.4 Method 4: From Acetates of 6-Acyl-o-quinol and Amidines, Guanidine, 2-Alkylisoureas, or 2-Alkylisothioureas .. 583
16.13.1.1.2.1.5 Methods 5: Additional Methods 584
16.13.1.1.2.2 Fragments N—Arene—C and N—C 584
16.13.1.1.2.2 Method 1: From Anthranilic Acid Derivatives and Cyanates, Thiocyanates, Urea, or Carbamates .. 584
16.13.1.1.2.2.2 Method 2: From Anthranilic Acid Derivatives and Guanidine, Imidates, or Formimidamides .. 585
16.13.1.1.2.2.3 Method 3: From Anthranilic Acid Derivatives and Nitriles .. 586
16.13.1.1.2.2.4 Method 4: From Anthranilic Acid Derivatives and Amides or Thioamides (Niementowski’s Synthesis) .. 588
Method 5: From Anthranilic Acid Derivatives and Other N—C Synthons
(1,3,5-Triazine, Gold’s Reagent, Activated Nitriles) 589

Method 6: From 2-Aminobenzonitriles and Chlorosulfonyl Isocyanate,
Urea, or Thiourea 590

Method 7: From 2-Aminobenzonitriles and Guanidines, Imidates,
or Formimidamides .. 591

Method 8: From 2-Aminobenzonitriles and Nitriles 592

Method 9: From 2-Aminobenzonitriles and Formamide or 1,3,5-Triazine
or Thiocyanates ... 594

Method 10: From 2-Aminophenyl Ketones and Cyanates, Isocyanates,
Urea, Carbamates, Guanidine, Imidates, or Carboxamides 595

Method 11: From 2-Aminophenyl Ketones or 2-Aminobenzaldehydes and
Urea, Carbamates, Guanidine, Imidates, or Carboxamides 596

Methods 12: Additional Methods .. 597

Method 1: From 2-(Azidomethyl)benzenediazonium Tetrafluoroborate
and Nitriles .. 597

Method 1: From N-(2-Alkoxycarbonylphenyl)- or N-(2-Cyanophenyl)carbodiimides,
N-(2-Cyanophenyl-S-methylisothioureas, or -isocyanates and Ammonia, Ammonium Chloride,
or Hydroxylamine .. 597

Method 2: From 2-(Acylamino)benzoic Acid Derivatives and Ammonia ... 599

Method 3: From N'-[2-(Trifluoromethyl)phenyl]carboximidamides 601

Method 4: From 2-(Acylamino)benzaldehydes or 2-(Acylamino)phenyl
Ketones and Ammonia (Bischler’s Synthesis) 602

Methods 5: Additional Methods .. 604

Method 1: From 2-Nitrobenzonitrile and Alcohols 605

Method 2: From 2-Aminobenzohydroxamic Acids and Formic Acid or
Carboxylic Acid Derivatives 606

Method 3: From 2-Aminobenzamides or 2-Aminothiobenzamides and
Carbon Monoxide, Carbon Disulfide, Alkyl Chloroformates,
Chlorocarbonylsulfenyl Chloride, or Chloroformamidine
Hydrochloride ... 606

Method 4: From 2-Aminobenzamides and Carboxylic Acids, Esters,
Ortho Esters, or Carboxamides 607

Method 5: From 2-Aminobenzamides and Aldehydes 609

Method 6: From 2-Aminobenzamides and Other One-Carbon-Unit
Transfer Reagents .. 609
16.13.1.1.2.6.7 Method 7: From 2-Aminobenzonitriles and Carbon Dioxide, Carbon Monoxide, Carbon Disulfide, or Potassium O-Ethyl Dithiocarbonate 611

16.13.1.1.2.6.8 Method 8: From 2-Aminobenzonitriles and Formic Acid 612

16.13.1.1.2.6.9 Method 9: From 2-Aminobenzonitriles and Thioamides or Thioacetic Acid 613

16.13.1.1.2.6.10 Method 10: From 2-Aminobenzonitriles, Grignard Reagents, and Carbonyl Compounds or Phosgene Iminium Chlorides 614

16.13.1.1.2.6.11 Method 11: From 2-Aminobenzonitriles and Formic Acid 612

16.13.1.1.2.6.12 Method 12: From Oximes of 2-Aminobenzonitriles and One-Carbon-Unit Transfer Reagents 615

16.13.1.1.2.6.13 Methods 13: Additional Methods 616

16.13.1.1.3 By Formation of One N—C and One C—C Bond 617

16.13.1.1.3.1 Fragments N—C—N—C and Arene 617

16.13.1.1.3.1.1 Method 1: From Pentachlorophenyllithium and Aryl Nitriles 617

16.13.1.1.3.2 Fragments C—N—Arene and N—C 618

16.13.1.1.3.2.1 Method 1: From Phenyl Isothiocyanates and Dialkylcyanamides 618

16.13.1.1.3.2.2 Method 2: From N-Arylcarbodiimides or N-Arylketenimines and Ethyl Aminocarbonylcarbamate or N,N-Disubstituted Cyanamides 618

16.13.1.1.3.2.3 Method 3: From Anilides and Carbamates, Isocyanates, or N,N-Disubstituted Cyanamides 619

16.13.1.1.3.2.4 Method 4: From N-Arylnitrilium Salts, N-Arylimidoyl Chlorides, or N-Arylimidates and Nitriles (Meerwein’s Quinazoline Synthesis) 621

16.13.1.1.3.2.5 Method 5: From N-(α-Alkoxyalkyl)benzotriazoles and Nitriles 623

16.13.1.1.3.2.6 Methods 6: Additional Methods 623

16.13.1.1.3.3 Fragments N—Arene and C—N—C 623

16.13.1.1.3.3.1 Method 1: From Arenediazonium Salts and Nitriles 623

16.13.1.1.3.3.2 Method 2: From Anilines and N-(Chlorocarbonyl) Isocyanate, 1,3,3-Trichloro-2-azapropenes, N-Vinylformimidamides, or N-Vinylbenzimidoyl Chlorides 624

16.13.1.1.3.3.3 Methods 3: Additional Methods 625

16.13.1.1.3.4 Fragments N—C—N—Arene and C 626

16.13.1.1.3.4.1 Method 1: From N-Aryguanidines, N-Arylbenzimidamides, or N-Arylisothioureas and Aryl Isothiocyanates, 4-Tosylcarbonimidic Dichloride, Phosgene, Alkyl Chloroformates, or Carbon Monoxide 626

16.13.1.1.3.4.2 Method 2: From N-Aryl-N′-ylidenebenzimidamides and Enamines, Aldehydes, or Ketenes 627

16.13.1.1.4 By Formation of One N—C Bond 628

16.13.1.1.4.1 Fragment N—C—N—Arene—C 628

16.13.1.1.4.1.1 Method 1: From 2-Ureidobenzoic Acids or Derivatives 628

16.13.1.1.4.1.2 Method 2: From 2-Ureidobenzonitriles 629

16.13.1.1.4.1.3 Method 3: From 2-Ureidophenyl Ketones or N-(2-Acylphenyl)amidines 630
16.13.1.1.4.4 Method 6: From 2-
[(4-Chloro-5H-1,2,3-dithiazol-5-ylidene)amino]benzonitrile
(Riedel's Synthesis) ... 643
16.13.1.1.4.7 Method 7: From 2-(Vinylamino)benzamides 643
16.13.1.1.4.8 Method 8: From N-[2-(1-Amino-3-oxoalk-1-enyl)phenyl]acetonitriles ... 644
16.13.1.1.4.9 Methods 9: Additional Methods .. 645
16.13.1.1.5 By Formation of One C—C Bond 645
16.13.1.1.5.1 Fragment C—N—C—N—C .. 645
16.13.1.1.5.11 Method 1: From Carbamimidoyl Isothiocyanates 645
16.13.1.1.5.12 Method 2: From Imidoyl Isocyanates, Imidoyl Isothiocyanates,
Imidoylcarbodiimides, or Imidoylketenimines 646
16.13.1.1.5.13 Method 3: From 1-Acyl-3-phenylureas 647
16.13.1.1.5.14 Method 4: From N'-Substituted N-Arylimidamides or N-Arylisothioureas 648
16.13.1.1.5.15 Method 5: From N-Aryl-N'-[(dimethylaminomethylene)guanidines or
N-Aryl-N'-[(dimethylaminomethylene)imidamides 649
16.13.1.1.5.16 Methods 6: Additional Methods 650
16.13.1.2 By Annulation to the Heterocyclic Ring 650
16.13.1.2.1 Method 1: From 6-Methylpyrimidine-5-carboxylates and
Alkynes or Alkenes .. 650
16.13.1.2.2 Method 2: From 4-Methyl-6-thioxo-1,6-dihydropyrimidine-5-carbonitriles
and 2-Ylidenemalononitriles .. 651
16.13.1.2.3 Method 3: From Annulated Pyrimidine-2,4-diones and Dimethyl Acetylenedicarboxylate .. 651

16.13.1.2.4 Method 4: From 3H-1,2,3-Triazolo[4,5-d]pyrimidin-3-amines and 2,3,4,5-Tetraarylcyclopentadienone .. 651

16.13.1.2.5 Methods 5: Additional Methods .. 652

16.13.2 Synthesis by Ring Transformation .. 652

16.13.2.1 By Ring Enlargement .. 652

16.13.2.1.1 Method 1: From Isoindole Derivatives .. 652

16.13.2.1.2 Method 2: From Indole Derivatives .. 653

16.13.2.1.3 Method 3: From Benzisothiazole Derivatives 655

16.13.2.1.4 Method 4: From Benzisoxazole Derivatives 655

16.13.2.1.5 Method 5: From Indazole Derivatives .. 655

16.13.2.2 Formal Exchange of Ring Members with Retention of the Ring Size .. 656

16.13.2.2.1 Method 1: From Quinolines ... 656

16.13.2.2.2 Method 2: From 3,1-Benzoxazinium Salts 658

16.13.2.2.3 Method 3: From 2H-3,1-Benzoxazine-2,4(1H)-diones (Isatoic Anhydrides) .. 658

16.13.2.2.4 Method 4: From 4H-3,1-Benzoxazin-4-ones, 4H-3,1-Benzothiazin-4-ones, and 4H-3,1-Benzothiazine-4-thiones .. 661

16.13.2.2.5 Method 5: From 2H-3,2,1-Benzothiazidine-2,4(1H)-dione 663

16.13.2.2.6 Method 6: From Cinnolines ... 664

16.13.2.2.7 Method 7: From Phthalazines ... 664

16.13.2.2.8 Method 8: From 1,2,3-Benzotriazin-4(3H)-ones 664

16.13.2.3 By Ring Contraction .. 665

16.13.2.3.1 Method 1: Of 4,1-Benzoxazepine-2,5(1H,3H)-diones 665

16.13.2.3.2 Method 2: Of 4,1-Benzodiazepines .. 665

16.13.2.3.3 Method 3: Of 1,3,4-Benzotriazepines .. 668

16.13.2.3.4 Method 4: Of 4,1,5-Benzoxadiazocines .. 669

16.13.2.3.5 Method 5: Of 1,5-Benzodiazocines .. 669

16.13.3 Aromatization ... 670

16.13.3.1 Of the Heterocyclic Ring .. 670

16.13.3.1.1 Method 1: Oxidation of Hydro Precursors .. 670

16.13.3.1.2 Method 2: Removal of Carbofunctional Groups from Hydro Precursors .. 673

16.13.3.1.3 Method 3: Removal of Heterofunctional Groups 675

16.13.3.2 Of the Carbocyclic Ring ... 676

16.13.3.2.1 Method 1: Oxidation of Hydro Precursors .. 676

16.13.3.2.2 Method 2: Removal of Heterofunctional Groups from Hydro Precursors .. 677

16.13.4 Synthesis by Substituent Modification .. 678

16.13.4.1 Substitution of Existing Substituents .. 678

16.13.4.1.1 Of Hydrogen ... 678

16.13.4.1.1.1 Method 1: By Deuterium or Metals .. 678

16.13.4.1.1.2 Method 2: By Carbofunctional Groups .. 679

16.13.4.1.1.3 Method 3: By Heterofunctional Groups .. 683

16.13.4.1.1.3.1 Variation 1: Halogenation ... 683
Variation 2: Introduction of an Oxygen Functionality
Variation 3: Introduction of a Sulfur Functionality
Variation 4: Introduction of a Nitrogen Functionality

Of Metals
Of Carbon Functionalities
Of Heteroatoms

Method 1: Reduction of Quinazoline N-Oxides
Method 2: By Hydrogen
Method 3: By Deuterium or Metals
Method 4: By Heterofunctional Groups

Variation 1: Oxo Group Transformations
Variation 2: Thioxo Group Transformations
Variation 3: Alkoxy, Aryloxy, Alkylsulfanyl, and Arylsulfanyl Group Transformations
Variation 4: Amino Group Transformations
Variation 5: Halogen Group Transformations

Addition Reactions
Protonation
Addition of Carbofunctional Groups
Method 1: Quaternization
Method 2: N-Alkylation
Addition of Heteroatoms
Method 1: N-Oxidation
Rearrangement of Substituents
Modification of Substituents
O/S-Functional Group Modification
Nitro Group Modification
Methyl Group Modification

Product Class 14: Pyrazines
N. Sato

Synthesis by Ring-Closure Reactions
By Formation of Four N–C Bonds
Fragments C–C, C–C, and Two N Fragments
Method 1: From a 1,2-Bifunctional Compound and Ammonia or Ammonium
By Formation of Two N–C and Two C–C Bonds
Fragments N–C, N–C, and Two C Fragments
<table>
<thead>
<tr>
<th>16.14.1.2.1</th>
<th>Method 1: From Four Equivalents of a Nitrile</th>
<th>757</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.14.1.3</td>
<td>By Formation of Three $N-C$ Bonds</td>
<td>758</td>
</tr>
<tr>
<td>16.14.1.3.1</td>
<td>Fragments $N-C-C$, $C-C$, and N</td>
<td>758</td>
</tr>
<tr>
<td>16.14.1.4</td>
<td>By Formation of Two $N-C$ Bonds</td>
<td>758</td>
</tr>
<tr>
<td>16.14.1.4.1</td>
<td>Fragments $N-C-C-N$ and $C-C$</td>
<td>758</td>
</tr>
<tr>
<td>16.14.1.4.1.1</td>
<td>Method 1: From Alkane-1,2-diamines</td>
<td>758</td>
</tr>
<tr>
<td>16.14.1.4.1.2</td>
<td>Method 2: From Alkene-1,2-diamines</td>
<td>760</td>
</tr>
<tr>
<td>16.14.1.4.1.3</td>
<td>Method 3: From α-Amino Amides</td>
<td>763</td>
</tr>
<tr>
<td>16.14.1.4.1.4</td>
<td>Method 4: From α-Amino Oximes</td>
<td>766</td>
</tr>
<tr>
<td>16.14.1.4.1.5</td>
<td>Method 5: From 1,4-Diazabutadienes</td>
<td>766</td>
</tr>
<tr>
<td>16.14.1.4.1.6</td>
<td>Method 6: From Cyanogen</td>
<td>767</td>
</tr>
<tr>
<td>16.14.1.4.2</td>
<td>Fragments $N-C-C$ and $N-C-C$</td>
<td>768</td>
</tr>
<tr>
<td>16.14.1.4.2.1</td>
<td>Method 1: By Cyclodimerization of Azirines or 3-Azaallyl 1,3-Diradicals</td>
<td>768</td>
</tr>
<tr>
<td>16.14.1.4.2.2</td>
<td>Method 2: By Self-Condensation</td>
<td>768</td>
</tr>
<tr>
<td>16.14.1.4.2.3</td>
<td>Method 3: By Condensation of Two Different α-Amino Ketones or Cyanides</td>
<td>771</td>
</tr>
<tr>
<td>16.14.1.4.3</td>
<td>Fragments $C-C-N-C-C$ and N</td>
<td>773</td>
</tr>
<tr>
<td>16.14.1.4.3.1</td>
<td>Method 1: From β-β'-Difunctional Secondary Amines (or Amides) and Ammonia</td>
<td>773</td>
</tr>
<tr>
<td>16.14.1.5</td>
<td>By Formation of One $N-C$ and One $C-C$ Bond</td>
<td>774</td>
</tr>
<tr>
<td>16.14.1.5.1</td>
<td>Fragments $N-C-C-N-C$ and C</td>
<td>774</td>
</tr>
<tr>
<td>16.14.1.5.1.1</td>
<td>Method 1: From a 2,3-Diaminoacrylonitrile and an Aldehyde or Ortho Ester</td>
<td>774</td>
</tr>
<tr>
<td>16.14.1.6</td>
<td>By Formation of Two $C-C$ Bonds</td>
<td>775</td>
</tr>
<tr>
<td>16.14.1.6.1</td>
<td>Fragments $C-N-C$ and $C-N-C$</td>
<td>775</td>
</tr>
<tr>
<td>16.14.1.6.1.1</td>
<td>Method 1: Dimerization of a 2-Azapropene or a Ketoxime</td>
<td>775</td>
</tr>
<tr>
<td>16.14.1.7</td>
<td>By Formation of One $N-C$ Bond</td>
<td>776</td>
</tr>
<tr>
<td>16.14.1.7.1</td>
<td>Fragment $N-C-C-N-C-C$</td>
<td>776</td>
</tr>
<tr>
<td>16.14.1.7.1.1</td>
<td>Method 1: Intramolecular Cyclization of a $N-C-C-N-C-C$ Fragment</td>
<td>776</td>
</tr>
<tr>
<td>16.14.1.8</td>
<td>By Formation of One $C-C$ Bond</td>
<td>778</td>
</tr>
<tr>
<td>16.14.1.8.1</td>
<td>Fragment $C-N-C-C-N-C$</td>
<td>778</td>
</tr>
<tr>
<td>16.14.1.8.1.1</td>
<td>Method 1: Intramolecular Cyclization of a $C-N-C-C-N-C$ Fragment</td>
<td>778</td>
</tr>
<tr>
<td>16.14.1.9</td>
<td>Synthesis by Ring Transformation</td>
<td>779</td>
</tr>
<tr>
<td>16.14.1.9.1</td>
<td>Method 1: Ring Transformation of Pyridazines, 1,2,4-Triazines, or 1,2,5-Oxadiazines</td>
<td>779</td>
</tr>
<tr>
<td>16.14.1.10</td>
<td>Aromatization</td>
<td>780</td>
</tr>
<tr>
<td>16.14.1.10.1</td>
<td>Method 1: Dehydrogenation of Dihydropyrazines and Oxidative Chlorination of Piperazine-2,5-diones</td>
<td>780</td>
</tr>
<tr>
<td>16.14.1.11</td>
<td>Synthesis by Substituent Modification</td>
<td>783</td>
</tr>
<tr>
<td>16.14.1.12</td>
<td>Substitution of Existing Substituents</td>
<td>783</td>
</tr>
</tbody>
</table>
16.14.4.1.1 Of Hydrogen ... 783
16.14.4.1.1.1 Method 1: Replacement of Hydrogen by Deuterium 783
16.14.4.1.1.2 Method 2: Metalation .. 783
16.14.4.1.1.3 Method 3: Acylation, Amidation, and Alkylation 784
16.14.4.1.1.3.1 Variation 1: Homolytic Acylation 784
16.14.4.1.1.3.2 Variation 2: Homolytic Alkoxy carbonylation and Amidation 785
16.14.4.1.1.3.3 Variation 3: Alkylation ... 786
16.14.4.1.1.4 Method 4: Deoxidative Cyanation of Pyrazine N-Oxides 787
16.14.4.1.1.5 Method 5: Halogenation .. 788
16.14.4.1.1.5.1 Variation 1: Direct Chlorination 788
16.14.4.1.1.5.2 Variation 2: Halogenation of Pyrazinamines 788
16.14.4.1.1.5.3 Variation 3: Halogenation of Pyrazinols 791
16.14.4.1.1.5.4 Variation 4: Deoxidative Chlorination of Pyrazine N-Oxides 791
16.14.4.1.1.6 Method 6: Hydroxylation and Alkoxylation 793
16.14.4.1.1.7 Method 7: Deoxidative Acetoxylation of Pyrazine N-Oxides . 794
16.14.4.1.1.8 Method 8: Deoxidative Sulfanylation of Pyrazine N-Oxides .. 796
16.14.4.1.1.9 Method 9: Substitution with Nitrogen Functionalities 796
16.14.4.1.2 Of Metals .. 797
16.14.4.1.3 Of Carbon Functionalities ... 799
16.14.4.1.4 Of Halogens ... 802
16.14.4.1.4.1 Method 1: Reduction ... 802
16.14.4.1.4.2 Method 2: Metalation .. 803
16.14.4.1.4.3 Method 3: Alkylation, Arylation, and Related Reactions 804
16.14.4.1.4.4 Method 4: Carboxylation and Cyanation 807
16.14.4.1.4.5 Method 5: Halogenation .. 809
16.14.4.1.4.6 Method 6: Hydroxylation, Alkoxylation, and Sulfanylation . 810
16.14.4.1.4.7 Method 7: Amination, Hydrazination, and Azidation 812
16.14.4.1.5 Of Oxygen and Sulfur Functionalities 814
16.14.4.1.5.1 Method 1: Deoxygenation of N-Oxides 814
16.14.4.1.5.2 Method 2: Halogenation .. 815
16.14.4.1.5.3 Method 3: Sulfanylation .. 817
16.14.4.1.5.4 Method 4: Miscellaneous Reactions 817
16.14.4.1.6 Of Nitrogen Functionalities ... 818
16.14.4.1.6.1 Method 1: Halopyrazines and Pyrazinols from Amino- or Nitropyrazines 818
16.14.4.2 Addition Reactions .. 820
16.14.4.2.1 Method 1: N-Alkylation .. 820
16.14.4.2.2 Method 2: N-Oxidation .. 822
16.14.4.3 Rearrangement of Substituents ... 826
16.14.4.3.1 Method 1: Hofmann or Curtius Rearrangement 826
16.14.4.4 Modification of Substituents .. 828
16.14.4.4.1 Method 1: Degradation of Condensed Pyrazines 828
16.14.4.4.1.1 Variation 1: Pyrazines from Quinoxalines and Phenazines ... 828
16.14.4.4.1.2 Variation 2: From Pteridines 829
16.14.4.4.1.3 Variation 3: From [1,2,5]Oxadiazolo- and [1,2,5]Thiadiazolo[3,4-b]-pyrazines .. 830
16.14.4.4.2 Method 2: Modification of Carbon Substituents 830
16.14.4.4.3 Method 3: Modification of Nitrogen and Chalcogen Substituents 833

16.15 Product Class 15: Quinoxalines
S. Gobec and U. Urleb

16.15 Product Class 15: Quinoxalines .. 845
16.15.1 Synthesis by Ring-Closure Reactions 847
16.15.1.1 By Annulation to an Arene .. 847
16.15.1.1.1 By Formation of Two N—C Bonds 847
16.15.1.1.1.1 Fragments N—Arene—N and C—C 847
16.15.1.1.1.2 Method 1: From 2-Nitrosoanilines 847
16.15.1.1.1.2.1 Variation 1: From Benzene-1,2-diamine and 1,4-Dioxane-2,3-diol 849
16.15.1.1.1.3 Method 3: From Benzene-1,2-diamines and 1,2-Diketones 849
16.15.1.1.1.3.1 Variation 1: Synthesis of Quinoxalinium Salts from N-Substituted Benzene-1,2-diamines and Biacetyl 850
16.15.1.1.1.4 Method 4: From Benzene-1,2-diamines and α-Oxo Acids and Derivatives (The Hinsberg Reaction) .. 850
16.15.1.1.1.5 Method 5: From Benzene-1,2-diamines and Oxalic Acid Derivatives 851
16.15.1.1.1.6 Method 6: From Benzene-1,2-diamines and Ethyl Ethoxy(imino)acetate 852
16.15.1.1.1.7 Method 7: From Benzene-1,2-diamines and Diiminosuccinonitrile 852
16.15.1.1.1.8 Method 8: From Benzene-1,2-diamines and Prop-2-yn-1-ols 852
16.15.1.1.1.9 Method 9: From Benzene-1,2-diamines and 2-Oxopropanal Oxime 853
16.15.1.1.1.10 Method 10: From Benzene-1,2-diamines and α-Oxo Imino Compounds 853
16.15.1.1.1.11 Method 11: From Benzene-1,2-diamines and Aryl(arylimino)acetonitriles 854
16.15.1.1.1.12 Method 12: From Benzene-1,2-diamines and 2,2-Bis(trifluoromethyl)-oxazol-5(2H)-ones .. 854
16.15.1.1.1.13 Method 13: From Benzene-1,2-diamine and α-Methylsulfinyl Ketones 855
16.15.1.1.1.14 Method 14: From Benzene-1,2-diamines and 3-Arylisoxazol-5(4H)-ones 855
16.15.1.1.1.15 Method 15: From Benzene-1,2-diamines and α-Azido Carbonyl Compounds .. 855
16.15.1.1.1.16 Method 16: From Benzene-1,2-diamines and Epoxides 856
16.15.1.1.1.16.1 Variation 1: From Benzene-1,2-diamine and Epoxides by a Bismuth-Catalyzed Coupling .. 856
16.15.1.1.1.16.2 Variation 2: From Benzene-1,2-diamine and Chlorocyanohydrins Obtained from Epoxides .. 857
16.15.1.1.1.17 Method 17: Solid-Phase Synthesis from a Polymer-Bound Benzene-1,2-diamine and α-Bromo Ketones 857
16.15.1.1.1.2 Fragments N—C—C—N and C—C (Arene) 857
16.15.1.1.1.2.1 Method 1: From Ethane-1,2-diamine and Benzo-1,4-quinones 857
16.15.1.1.1.3 Fragments N—Arene and N—C—C 858
16.15.1.1.1.3.1 Method 1: From 1-Halo-2-nitroarenes and Phenylacetimidamides 858
16.15.1.1.4 Fragments Arene—N—C—C and N 858

16.15.1.1.4.1 Method 1: 2-Chloroquinoxalines from Anilides under Vilsmeier Conditions 858

16.15.1.1.2 By Formation of One N—C and One C—C Bond .. 858

16.15.1.1.2.1 Fragments N—Arene—N—C and C .. 858

16.15.1.1.2.1.1 Method 1: Cyclization of N-(2-Nitrobenzylidene)benzene-1,2-diamine with Potassium Cyanide .. 858

16.15.1.1.3 By Formation of One N—C Bond .. 859

16.15.1.1.3.1 Fragment N—Arene—N—C .. 859

16.15.1.1.3.1.1 Method 1: Intramolecular Cyclization of N-(2-Nitrobenzylidene)benzene-1,2-diamine with Potassium Cyanide .. 858

16.15.1.1.3.1.2 Method 2: Intramolecular Cyclization of Enamino Ketones .. 859

16.15.1.1.3.1.3 Method 3: Intramolecular Cyclization of N-(2-Nitrophenyl)acetamides .. 860

16.15.1.1.3.1.4 Method 4: Intramolecular Cyclization of N-(2-Nitro-4-substituted phenyl)-3-oxobutanamides .. 861

16.15.1.1.3.1.5 Method 5: Intramolecular Reductive Cyclization of DL-N-(4-Bromo-2-nitrophenyl)alanine .. 861

16.15.1.1.3.1.6 Method 6: Intramolecular Reductive Cyclization of N-(3,5-Dimethoxy-2-nitrophenyl)-2-oxo-2-phenylacetamide .. 862

16.15.1.1.3.1.7 Method 7: Intramolecular Cyclization of 4-Nitro-N'-prop-2-ynylbenzene-1,2-diamine .. 862

16.15.1.1.3.1.8 Method 8: Intramolecular Cyclization of 3-[(2-Aminophenyl)amino]-2-chlorobut-2-enenitrile .. 862

16.15.1.1.3.1.9 Method 9: Intramolecular Cyclization of [(2-Aminophenyl)amino]acetanitrile .. 863

16.15.1.1.3.1.10 Method 10: Intramolecular Cyclization of N-(3-Arylprop-2-ynyl)-N,N'-1,2-phenylenebis(4-toluenesulfonamides) through Copper Catalysis .. 863

16.15.1.1.3.2 Fragment Arene—N—C—C—N .. 864

16.15.1.1.3.2.1 Method 1: Intramolecular Cyclization of (Phenylimino)acetaldehyde O-Acetyloxime Derivatives .. 864

16.15.1.1.3.2.1.1 Variation 1: 2,3-Diphenylquinoxaline 1-Oxides by Oxidative Cyclization of 2-(Arylimino)-1,2-diphenylethanone Oximes .. 865

16.15.1.1.2 By Annulation to the Heterocyclic Ring .. 865

16.15.1.1.2.1 By Formation of Two C—C Bonds .. 865

16.15.1.1.2.1.1 Fragments C—Hetaren—C and C—C .. 865

16.15.1.1.2.1.1.1 Method 1: Cycloaddition of 2,3-Bis(bromomethylene)-2,3-dihydropyrazine to Electron-Rich Dienophiles .. 865

16.15.1.2 Synthesis by Ring Transformation .. 866

16.15.1.2.1 By Ring Enlargement .. 866

16.15.1.2.1.1 Method 1: Quinoxaline 1,4-Dioxides from Benzofuroxan Derivatives and Enamines or Ynamines .. 866

16.15.1.2.1.2 Method 2: Quinoxaline 1,4-Dioxides from Benzofuroxan and Enolate Anions Prepared In Situ .. 867
16.15.2.1.3 Method 3: Quinoxaline 1,4-Dioxides from Benzofuroxan and Dienamines 868
16.15.2.1.4 Method 4: 3-(2-Hydroxyaryl)quinoxaline 1-Oxides from Benzofuroxan and Benzo[b]furan-3(2H)-ones 869
16.15.2.1.5 Methods 5: Additional Methods 869
16.15.2.2 By Ring Contraction 870
16.15.2.2.1 Method 1: 2-Acrylquinazolines by Oxidative Ring Contraction of 2,4-Disubstituted 1,5-Benzodiazepines 870
16.15.3 Aromatization 871
16.15.3.1 Method 1: Oxidation of 1,2,3,4-Tetrahydroquinazolines 871
16.15.3.2 Method 2: Oxidation of 1,2-Dihydroquinazolizine Derivatives 871
16.15.3.3 Method 3: Oxidation of Quinoxaline-2,3(1H,4H)-dione Derivatives 872
16.15.3.4 Method 4: Oxidation of 3,4-Dihydroquinazolin-2(1H)-one Derivatives 872
16.15.4 Synthesis by Substituent Modification 874
16.15.4.1 Substitution of Existing Substituents 874
16.15.4.1.1 Of Hydrogen 874
16.15.4.1.1.1 Method 1: Hydrogen–Deuterium Exchange 874
16.15.4.1.1.2 Method 2: Alkylation 874
16.15.4.1.1.3 Method 3: Acylation 875
16.15.4.1.1.4 Method 4: Cyanation 877
16.15.4.1.1.5 Method 5: Halogenation 878
16.15.4.1.1.6 Method 6: Sulfonation and Chlorosulfonation 879
16.15.4.1.1.7 Method 7: Oxidation 879
16.15.4.1.1.8 Method 8: Nitration 879
16.15.4.1.1.9 Method 9: Amination 881
16.15.4.1.2 Of Carbon Functionalities 882
16.15.4.1.2.1 Method 1: By Hydrogen 882
16.15.4.1.2.2 Method 2: By Heterofunctional Groups 882
16.15.4.1.3 Of Heteroatoms 883
16.15.4.1.3.1 Reduction of Quinoxaline N-Oxides 883
16.15.4.1.3.1.1 Method 1: Deoxygenation of Quinoxaline 1-Oxides and Quinoxaline 1,4-Dioxides 883
16.15.4.1.3.2 By Hydrogen 885
16.15.4.1.3.3 By Carbofunctional Groups 885
16.15.4.1.3.3.1 Method 1: Substitution of Halogen 885
16.15.4.1.3.3.2 Method 2: Substitution of an Oxygen Functionality 888
16.15.4.1.3.3.3 Method 3: Substitution of a Sulfur Functionality 888
16.15.4.1.3.4 By Heterofunctional Groups 889
16.15.4.1.3.4.1 Substitution of Halogen 889
16.15.4.1.3.4.1.1 Method 1: With Halogens 889
16.15.4.1.3.4.1.2 Method 2: With O-Nucleophiles 889
16.15.4.1.3.4.1.3 Method 3: With S-Nucleophiles 891
16.15.4.1.3.4.1.4 Method 4: With N-Nucleophiles 891
16.15.4.1.3.4.2 Substitution of an Oxygen Functionality .. 892
16.15.4.1.3.4.2.1 Method 1: Haloquinoxalines from the Corresponding Oxo Derivatives • 892
16.15.4.1.3.4.2.2 Method 2: Quinoxalinethiones from the Corresponding Oxo Derivatives 893
16.15.4.1.3.4.3 Substitution of a Sulfur Functionality .. 894
16.15.4.1.3.4.4 Substitution of a Nitrogen Functionality .. 894
16.15.4.2 Addition Reactions .. 895
16.15.4.2.1 Protonation .. 895
16.15.4.2.2 Addition of Carbofunctional Groups ... 896
16.15.4.2.2.1 Method 1: N-Alkylation .. 896
16.15.4.2.2.2 Method 2: Synthesis of Onium Salts ... 896
16.15.4.2.2.3 Cycloaddition Reactions .. 897
16.15.4.2.2.4 Additions of Grignard Reagents .. 898
16.15.4.2.3 N-Oxidation .. 898
16.15.4.3 Modification of Substituents .. 899
16.15.4.3.1 Method 1: Alkylation of an α-Methyl Substituent 899
16.15.4.3.2 Method 2: Oxidation of Alkyl Groups to Aldehydes 901
16.15.4.3.3 Method 3: Bromination .. 901
16.15.4.3.4 Method 4: O-Methylation and O-Demethylation 901
16.15.4.5 Method 5: Reduction of a Nitro Group ... 902

16.16 Product Class 16: Phenazines
U. Urleb and S. Gobec

16.16.1 Product Class 16: Phenazines .. 913
16.16.1.1 Synthesis by Ring-Closure Reactions .. 915
16.16.1.1.1 By Annulation to an Arene .. 915
16.16.1.1.1.1 By Formation of Two N─C Bonds .. 915
16.16.1.1.1.1.1 Fragments N─Arene─N and Arene .. 915
16.16.1.1.1.1.1 Method 1: From Benzene-1,2-diamines and Benzo-1,2-quinones • 915
16.16.1.1.1.1.2 Method 2: Oxidation of Benzene-1,2-diamine 916
16.16.1.1.1.1.3 Method 3: From Benzene-1,2-diamine and 1-Nitroso-2-naphthol • 916
16.16.1.1.1.1.4 Method 4: Electrochemical Reduction of Benzo-1,2-quinone Dioxime • 916
16.16.1.1.1.2 Fragments N─Arene and N─Arene .. 917
16.16.1.1.1.2.1 Method 1: Phenazine 5-Oxides by Oxidative Condensation of Anilines and Substituted Nitrobenzenes .. 917
16.16.1.1.1.2.2 Method 2: Condensation of 2-Halonitrobenzenes 918
16.16.1.1.1.2.3 Method 3: Cyclodimerization of 4-Substituted Nitrobenzenes • 918
16.16.1.1.1.2.4 Method 4: Oxidation of 4-Substituted Benzenesulfenanilides • 918
16.16.1.1.2 By Formation of One N─C Bond .. 919
16.16.1.1.2.1 Fragment N─Arene─N─Arene ... 919
16.16.1.1.2.1.1 Method 1: Cyclization of N,N-Bis(nitrophenyl)amines 919
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.16.1.2.1.2</td>
<td>Method 2</td>
<td>Cyclization of N,N-Bis(aminophenyl)amines</td>
</tr>
<tr>
<td>16.16.1.2.1.3</td>
<td>Method 3</td>
<td>Reductive Cyclization of N-(2-Nitrophenyl)-N-phenylamines</td>
</tr>
<tr>
<td>16.16.1.2.1.4</td>
<td>Method 4</td>
<td>Cyclization of N,N-Bis(aminophenyl)amines</td>
</tr>
<tr>
<td>16.16.1.2.1.5</td>
<td>Method 5</td>
<td>Phenazine 5-Oxides by Cyclization of 2-Nitrosodiphenylamines</td>
</tr>
<tr>
<td>16.16.1.2.1.6</td>
<td>Method 6</td>
<td>Cyclization of N-(2-Aminophenyl)-N-phenylamines</td>
</tr>
<tr>
<td>16.16.1.2.1.7</td>
<td>Method 7</td>
<td>Cyclization of 2-Aminoindophenols</td>
</tr>
<tr>
<td>16.16.2</td>
<td>Method 1</td>
<td>By Ring Enlargement of Benzofurazan 1-Oxides</td>
</tr>
<tr>
<td>16.16.2.1.1</td>
<td>Variation 1</td>
<td>Phenazin-1-ol 10-Oxides and 5,10-Dioxides from Benzofurazan 1-Oxides and Cyclohexane-1,2-dione</td>
</tr>
<tr>
<td>16.16.2.1.2</td>
<td>Variation 2</td>
<td>Phenazin-2-ol 5,10-Dioxides from Benzofurazan 1-Oxides and Phenolates</td>
</tr>
<tr>
<td>16.16.2.1.3</td>
<td>Variation 3</td>
<td>From Benzofurazan 1-Oxides and Benzo-1,4-quinone</td>
</tr>
<tr>
<td>16.16.2.1.4</td>
<td>Variation 4</td>
<td>From Benzofurazan 1-Oxide and Benzene-1,4-diol Derivatives Catalyzed by Molecular Sieves</td>
</tr>
<tr>
<td>16.16.3</td>
<td>Method 1</td>
<td>Dehydrogenation of 1,2,3,4-Tetrahydrophenazines</td>
</tr>
<tr>
<td>16.16.3.1.1</td>
<td>Variation 1</td>
<td>Aromatization of 1,1,4-Trichloro-1,2,3,4-tetrahydrophenazine by 2,6-Dimethylpyridine to 1-Chlorophenazine Derivatives</td>
</tr>
<tr>
<td>16.16.3.2</td>
<td>Method 2</td>
<td>Dehydrogenation of 1,2,3,4,6,7,8,9-Octahydrophenazine</td>
</tr>
<tr>
<td>16.16.3.3</td>
<td>Method 3</td>
<td>Oxidation of Diethyl 5,10-Dihydrophenazine-1,4-dicarboxylate</td>
</tr>
<tr>
<td>16.16.4</td>
<td>Method 1</td>
<td>Iron(II)-Catalyzed C-Alkylation</td>
</tr>
<tr>
<td>16.16.4.1</td>
<td>Method 1</td>
<td>Decarboxylation</td>
</tr>
<tr>
<td>16.16.4.2</td>
<td>Method 1</td>
<td>Deamination</td>
</tr>
<tr>
<td>16.16.4.3</td>
<td>Method 1</td>
<td>Chlorination</td>
</tr>
<tr>
<td>16.16.4.4</td>
<td>Method 1</td>
<td>Bromination</td>
</tr>
<tr>
<td>16.16.4.5</td>
<td>Method 1</td>
<td>Nitration Using Nitric(V) Acid and Sulfuric Acid</td>
</tr>
<tr>
<td>16.16.4.6</td>
<td>Method 1</td>
<td>Nitration of Phenazine 5-Oxides</td>
</tr>
<tr>
<td>16.16.4.7</td>
<td>Method 1</td>
<td>Using Hydroxylamine Hydrochloride</td>
</tr>
<tr>
<td>16.16.4.8</td>
<td>Method 1</td>
<td>Using Amines</td>
</tr>
<tr>
<td>16.16.4.9</td>
<td>Method 1</td>
<td>Of Carbon Functionalities</td>
</tr>
<tr>
<td>16.16.5</td>
<td>Method 1</td>
<td>Elimination Reactions</td>
</tr>
</tbody>
</table>
16.16.4.2.1 Method 1: Deoxygenation of Phenazine 5-Oxides by Noncatalytic Reactions ... 935
16.16.4.2.2 Method 2: Deoxygenation of Phenazine 5,10-Dioxide by Catalytic Reductions ... 935
16.16.4.3 Addition Reactions ... 935
16.16.4.3.1 N-Acylation .. 935
16.16.4.3.2 N-Alkylation .. 936
16.16.4.3.2.1 Method 1: Addition of Grignard Reagents 936
16.16.4.3.2.2 Method 2: Using Iodomethane 936
16.16.4.3.2.3 Method 3: Synthesis of Onium Salts 936
16.16.4.3.3 N-Oxidation .. 937
16.16.4.3.3.1 Method 1: Synthesis of Phenazine 5-Oxides 937
16.16.4.3.3.2 Method 2: Synthesis of Phenazine 5,10-Dioxides 937
16.16.4.4 Modification of Substituents .. 938
16.16.4.4.1 Oxidation and Reduction of Carbofunctional Groups 938
16.16.4.4.2 Of Heterofunctional Groups .. 938
16.16.4.4.2.1 O-Alkylation and O-Dealkylation 938
16.16.4.4.2.2 Modification of a Nitro Group 939
16.17 Product Class 17: Purines
F. Seela, N. Ramzaeva, and H. Rosemeyer

16.17.1 Synthesis by Ring-Closure Reactions 945
16.17.1.1 From Acyclic Precursors ... 945
16.17.1.1.1 Method 1: Synthesis of Purine from Formamide 945
16.17.1.1.2 Method 2: Synthesis of 7-Substituted Purines 946
16.17.1.1.3 Method 3: Synthesis of Adenine 946
16.17.1.1.4 Method 4: Synthesis of Hypoxanthine 946
16.17.1.2 From Pyrimidine-4,5-diamines (Traube Synthesis) 946
16.17.1.2.1 Method 1: Cyclization with Acids 946
16.17.1.2.1.1 Variation 1: Cyclization with Formic Acid 946
16.17.1.2.1.2 Variation 2: Cyclization with Trifluoroacetic Acid 946
16.17.1.2.1.3 Variation 3: Cyclization with Glycolic Acid 946
16.17.1.2.1.4 Variation 4: Cyclization with Sulfocinnamic Acid 946
16.17.1.2.2 Method 2: Cyclization with Ortho Esters and Diethoxymethyl Acetate .. 946
16.17.1.2.2.1 Variation 1: Cyclization with an Ortho Ester Alone 946
16.17.1.2.2.2 Variation 2: Cyclization with an Ortho Ester/Acid Mixture .. 946
16.17.1.2.2.3 Variation 3: Cyclization with an Ortho Ester/Acid Anhydride Mixture 946
16.17.1.2.2.4 Variation 4: Cyclization with Diethoxymethyl Acetate 946
16.17.1.2.3 Method 3: Cyclization with Aldehydes 946
16.17.1.2.3.1 Variation 1: Oxidative Cyclization with Iodine/1,2-Dimethoxyethane .. 946
16.17.1 Variation 2: Oxidative Cyclization with Iron(III) Chloride/Ethanol 976
16.17.1 Variation 3: Oxidative Cyclization with Air 977
16.17.1.3 From Other Disubstituted Pyrimidines 977
16.17.1.3.1 Method 1: Syntheses from 5-Nitrosopyrimidin-4-amines 977
16.17.1.3.2 Method 2: Synthesis from 5-Diazenylypyrimidin-4-amines 980
16.17.1.3.3 Method 3: Synthesis from 5-Substituted Pyrimidin-4-amines ... 981
16.17.1.4 From Imidazole Precursors .. 983
16.17.1.4.1 Method 1: From 4(5)-Aminoimidazole-5(4)-carboxamides 983
16.17.1.4.2 Method 2: From 5-Amino-1H-imidazole-4-carboxamide Riboside and Related Compounds ... 985
16.17.1.4.3 Method 3: From 4(5)-Aminoimidazole-5(4)-carbonitriles 988
16.17.1.4.4 Method 4: From 5-Aminoimidazole-4-carbonitrile Riboside or 2'-Deoxyriboside ... 989
16.17.1.4.5 Method 5: From 4(5)-Aminoimidazole-5(4)-carboxylates and Related Compounds ... 991
16.17.1.4.6 Method 6: From 4(5)-Aminoimidazole-5(4)-carbaldehydes 992
16.17.1.4.7 Method 7: From 4(5)-Aminoimidazole-5(4)-carbothioamides ... 993
16.17.1.4.8 Method 8: From 4-[Cyano(imino)methyl]imidazol-5-amines 994
16.17.1.4.9 Method 9: Syntheses from 5-Aminoimidazole-4-carboximidamide Derivatives ... 995
16.17.2 Synthesis by Ring Transformation .. 996
16.17.2.1 From Pyrimidine-Containing Heterocycles 996
16.17.2.1.1 Method 1: From Thiazolo- or Oxazolo[5,4-d]pyrimidines 996
16.17.2.1.2 Method 2: From Furazano[3,4-d]pyrimidines 996
16.17.3 Synthesis by Substituent Modification 997
16.17.3.1 By Introduction of Substituents Using Oxidation 997
16.17.3.1.1 Method 1: Oxidation with Peracids 997
16.17.3.1.2 Method 2: Enzymatic Oxidation 999
16.17.3.2 By Removal of Substituents .. 1000
16.17.3.2.1 Method 1: Dehalogenation ... 1000
16.17.3.2.2 Method 2: Desulfurization .. 1002
16.17.3.3 By Introduction of Substituents (Exchange of Hydrogen) 1003
16.17.3.3.1 Method 1: By Deuteration and Tritiation 1003
16.17.3.3.2 Method 2: By Halogenation ... 1004
16.17.3.3.2.1 Variation 1: By Fluorination 1005
16.17.3.3.2.2 Variation 2: By Chlorination 1005
16.17.3.3.2.3 Variation 3: By Bromination 1007
16.17.3.3.2.4 Variation 4: By Iodination .. 1009
16.17.3.3.3 Method 3: By Nitration .. 1010
16.17.3.3.4 Method 4: By C-Alkylation .. 1011
16.17.3.3.4.1 Variation 1: By Photochemical Reaction 1011
16.17.3.3.4.2 Variation 2: By Free-Radical Reaction Catalyzed by Iron(II) Ions . 1013
16.17.3.3.4.3 Variation 3: By Addition of Grignard Reagents 1014
16.17.3.3.4.4 Variation 4: By Lithiation-Based Electrophilic Substitution . 1015
Table of Contents

16.17.3.4.5 Variation 5: By Electrochemical Approach ... 1017
16.17.3.4.5 Method 5: By N-Alklylation ... 1018
16.17.3.4.5 Variation 1: By Base-Induced Coupling .. 1018
16.17.3.4.5 Variation 2: By Phase-Transfer Catalysis .. 1020
16.17.3.4.5 Variation 3: From Preformed Purine Salts ... 1021
16.17.3.4.5 Variation 4: By Transpurination .. 1023
16.17.3.4.5 Variation 5: By Michael Addition .. 1024
16.17.3.4.5 Variation 6: By Mitsunobu Reaction ... 1025
16.17.3.4.5 Variation 7: By Palladium-Catalyzed Coupling ... 1026
16.17.3.4.5 Variation 8: By Microwave-Assisted Methods ... 1027
16.17.3.4.6 Method 6: By N-Glycosylation ... 1027
16.17.3.4.6 Variation 1: By the Fusion Reaction ... 1028
16.17.3.4.6 Variation 2: By the Metal Salt Procedure .. 1029
16.17.3.4.6 Variation 3: By Nucleobase Anion Glycosylation 1030
16.17.3.4.6 Variation 4: By the Silyl-Hilbert–Johnson Reaction 1034
16.17.3.4.6 Variation 5: By Transglycosylation ... 1037
16.17.3.4.7 By Exchange of Substituents ... 1038
16.17.3.4.8 Halopurines ... 1039
16.17.3.4.8 Method 1: By Halogen Exchange .. 1039
16.17.3.4.8 Variation 1: By Exchange of Chlorine for Fluorine 1039
16.17.3.4.8 Variation 2: By Exchange of Chlorine for Iodine .. 1041
16.17.3.4.8 Method 2: From Hydroxypurines ... 1041
16.17.3.4.8 Variation 1: Chlorination with Phosphoryl Chloride 1042
16.17.3.4.8 Variation 2: Chlorination with the Vilsmeier Reagent 1043
16.17.3.4.8 Variation 3: Chlorination with Thionyl Chloride/Dimethylformamide 1043
16.17.3.4.8 Method 3: From Sulfanylpurines .. 1045
16.17.3.4.8 Method 4: From Aminopurines ... 1046
16.17.3.4.8 Variation 1: By Diazotization/Fluorination ... 1046
16.17.3.4.8 Variation 2: By Diazotization/Chlorination .. 1047
16.17.3.4.8 Variation 3: By Diazotization/Iodination or Bromination 1048
16.17.3.4.9 Hydroxypurines ... 1049
16.17.3.4.9 Method 1: From Halopurines ... 1050
16.17.3.4.9 Method 2: From Alkoxypurines ... 1051
16.17.3.4.9 Method 3: From Sulfanyl- and (Alkylsulfanyl)purines 1053
16.17.3.4.9 Method 4: From Aminopurines ... 1054
16.17.3.4.9 Variation 1: Diazotization/Replacement .. 1054
16.17.3.4.9 Variation 2: Deamination by Adenosine Deaminase 1055
16.17.3.4.9 Alkoxypurines ... 1056
16.17.3.4.9 Method 1: From Halopurines ... 1056
16.17.3.4.9 Variation 1: With Sodium Alkoxides ... 1056
16.17.3.4.9 Variation 2: Under Phase-Transfer Conditions .. 1057
16.17.3.4.9 Method 2: From Hydroxypurines ... 1058
16.17.3.4.9 Method 3: From (Methylsulfanyl)- and Mesylpurines 1059
16.17.3.4.9 Method 4: From Ammonium Salts ... 1060
16.17.3.4.9 Sulfanylpurines ... 1061
<table>
<thead>
<tr>
<th></th>
<th>Method</th>
<th>Sub-method</th>
<th>Sub-sub-method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.17.3.4.4.1</td>
<td>Method 1:</td>
<td>From Halopurines</td>
<td></td>
<td>1061</td>
</tr>
<tr>
<td>16.17.3.4.4.2</td>
<td>Method 2:</td>
<td>From Hydroxypurines</td>
<td></td>
<td>1062</td>
</tr>
<tr>
<td>16.17.3.4.5</td>
<td>Aminopurines</td>
<td></td>
<td></td>
<td>1063</td>
</tr>
<tr>
<td>16.17.3.4.5.1</td>
<td>Method 1:</td>
<td>From Halopurines</td>
<td></td>
<td>1063</td>
</tr>
<tr>
<td>16.17.3.4.5.1.1</td>
<td>Variation 1:</td>
<td>By Direct Amination</td>
<td></td>
<td>1064</td>
</tr>
<tr>
<td>16.17.3.4.5.1.2</td>
<td>Variation 2:</td>
<td>By the Solid-Phase Approach</td>
<td></td>
<td>1065</td>
</tr>
<tr>
<td>16.17.3.4.5.1.3</td>
<td>Variation 3:</td>
<td>By Palladium-Catalyzed Synthesis</td>
<td></td>
<td>1067</td>
</tr>
<tr>
<td>16.17.3.4.5.2</td>
<td>Method 2:</td>
<td>From Alkoxypurines or (Trimethylsiloxy)purines</td>
<td></td>
<td>1068</td>
</tr>
<tr>
<td>16.17.3.4.5.3</td>
<td>Method 3:</td>
<td>From Sulfanylpurines</td>
<td></td>
<td>1071</td>
</tr>
<tr>
<td>16.17.3.4.6</td>
<td>C-Alkyl-, C-Alkenyl-, and C-Alkynylpurines</td>
<td></td>
<td></td>
<td>1072</td>
</tr>
<tr>
<td>16.17.3.4.6.1</td>
<td>Method 1:</td>
<td>Synthesis with Active Methylene Compounds</td>
<td></td>
<td>1072</td>
</tr>
<tr>
<td>16.17.3.4.6.2</td>
<td>Method 2:</td>
<td>With Cyanides</td>
<td></td>
<td>1073</td>
</tr>
<tr>
<td>16.17.3.4.6.3</td>
<td>Method 3:</td>
<td>With Grignard Reagents</td>
<td></td>
<td>1075</td>
</tr>
<tr>
<td>16.17.3.4.6.4</td>
<td>Method 4:</td>
<td>By Sulfur Extrusion</td>
<td></td>
<td>1076</td>
</tr>
<tr>
<td>16.17.3.4.6.5</td>
<td>Method 5:</td>
<td>By Radical Photochemical Reactions</td>
<td></td>
<td>1076</td>
</tr>
<tr>
<td>16.17.3.4.6.6</td>
<td>Method 6:</td>
<td>With Boronic Acids</td>
<td></td>
<td>1077</td>
</tr>
<tr>
<td>16.17.3.4.6.7</td>
<td>Method 7:</td>
<td>With Trialkylaluminum</td>
<td></td>
<td>1078</td>
</tr>
<tr>
<td>16.17.3.4.6.8</td>
<td>Method 8:</td>
<td>With Alkylcuprates</td>
<td></td>
<td>1078</td>
</tr>
<tr>
<td>16.17.3.4.6.9</td>
<td>Method 9:</td>
<td>With Organostannanes</td>
<td></td>
<td>1080</td>
</tr>
<tr>
<td>16.17.3.4.6.9.1</td>
<td>Variation 1:</td>
<td>From Halopurines</td>
<td></td>
<td>1080</td>
</tr>
<tr>
<td>16.17.3.4.6.9.2</td>
<td>Variation 2:</td>
<td>From Trifluoromethanesulfonates or 4-Toluenesulfonates</td>
<td></td>
<td>1081</td>
</tr>
<tr>
<td>16.17.3.4.6.10</td>
<td>Method 10:</td>
<td>With Organozinc Reagents</td>
<td></td>
<td>1083</td>
</tr>
<tr>
<td>16.17.3.4.6.11</td>
<td>Method 11:</td>
<td>With Terminal Alkynes</td>
<td></td>
<td>1084</td>
</tr>
<tr>
<td>16.17.4</td>
<td>Oxidation of Purines with Destruction of the Aromatic System</td>
<td></td>
<td></td>
<td>1086</td>
</tr>
<tr>
<td>16.17.4.1</td>
<td>Method 1:</td>
<td>By Thiation</td>
<td></td>
<td>1086</td>
</tr>
<tr>
<td>16.17.4.2</td>
<td>Method 2:</td>
<td>By Halogenation</td>
<td></td>
<td>1086</td>
</tr>
<tr>
<td>16.17.4.3</td>
<td>Method 3:</td>
<td>Oxidation with Other Acid Reagents</td>
<td></td>
<td>1087</td>
</tr>
<tr>
<td>16.17.4.4</td>
<td>Method 4:</td>
<td>Oxidation Under Alkaline or Neutral Conditions</td>
<td></td>
<td>1087</td>
</tr>
<tr>
<td>16.17.4.5</td>
<td>Method 5:</td>
<td>Oxidation of Theophylline Derivatives with Lead(IV) Acetate</td>
<td></td>
<td>1088</td>
</tr>
<tr>
<td>16.17.5</td>
<td>Reduction of Purines with Destruction of the Aromatic System</td>
<td></td>
<td></td>
<td>1088</td>
</tr>
<tr>
<td>16.17.5.1</td>
<td>Purines Reduced in the Pyrimidine Ring</td>
<td></td>
<td></td>
<td>1088</td>
</tr>
<tr>
<td>16.17.5.1.1</td>
<td>Method 1:</td>
<td>By Electrochemical Reduction</td>
<td></td>
<td>1088</td>
</tr>
<tr>
<td>16.17.5.1.2</td>
<td>Method 2:</td>
<td>By Catalytic Hydrogenation</td>
<td></td>
<td>1089</td>
</tr>
<tr>
<td>16.17.5.1.3</td>
<td>Method 3:</td>
<td>By Reduction with Sodium Borohydride</td>
<td></td>
<td>1089</td>
</tr>
<tr>
<td>16.17.5.1.4</td>
<td>Method 4:</td>
<td>By Direct Synthesis</td>
<td></td>
<td>1090</td>
</tr>
<tr>
<td>16.17.5.2</td>
<td>Purines Reduced in the Imidazole Ring</td>
<td></td>
<td></td>
<td>1090</td>
</tr>
<tr>
<td>16.17.5.2.1</td>
<td>Method 1:</td>
<td>By Reduction with Sodium Nitrite</td>
<td></td>
<td>1090</td>
</tr>
<tr>
<td>16.17.5.2.2</td>
<td>Method 2:</td>
<td>By Traube Reaction of Pyrimidine-4,5-diamine with Glyoxal</td>
<td></td>
<td>1090</td>
</tr>
<tr>
<td>16.17.6</td>
<td>Addition Reactions to Purine Double Bonds</td>
<td></td>
<td></td>
<td>1091</td>
</tr>
</tbody>
</table>
Product Class 18: Pyridopyridazines

M. Sako

Product Subclass 1: Pyrido[2,3-c]pyridazines

Synthesis by Ring-Closure Reactions

By Formation of Two N—C Bonds and One C—C Bond

Method 1: Intermolecular Cyclizations of Malononitrile Dimer and
Hydrazones, or Acetonitriles and Pyridazinediones

By Formation of Two N—C Bonds

Method 1: Cycloamination with Diazenes and Hydrazines

By Formation of One N—C and One C—C Bond

Method 1: Condensation of Enamines, Acetamide Acetals,
and Acetoacetates with Suitably Activated Pyridazines

By Formation of One N—C Bond

Method 1: Intramolecular Cyclization of Suitably Modified
Diazocompounds, Hydrazones, Azides, and Hydrazides

By Formation of One C—C Bond

Method 1: Intramolecular Cyclizations Induced by Base Treatment of
Active Methylene and Methine Compounds

Synthesis by Ring Transformation

Formal Exchange of Ring Members with Retention of the Ring Size

Method 1: Intramolecular [4 + 2] Cycloaddition of
3-(Alkynylamino)-1,2,4,5-tetrazines

Aromatization

Synthesis by Substituent Modification

Substitution of Existing Substituents

Addition Reactions

Product Subclass 2: Pyrido[2,3-d]pyridazines

Synthesis by Ring-Closure Reactions

By Formation of Two N—C Bonds and One C—C Bond

Method 1: Condensation of Hydrazones with Malononitriles

By Formation of Two N—C Bonds

Method 1: Condensation of Pyridine-2,3-dicarbonyl Compounds with
Hydrazines

By Formation of One N—C and One C—C Bond

Method 1: Condensation of 5-Chloropyridazine-4-carbonyl Chloride
with Enamines

Method 2: Condensation of 5-Acylpyridazin-4-amines with Acetals
16.18.2.1.3.3 Method 3: Condensation of 5-Aminopyridazin-3(2H)-ones with Malonates .. 1122

16.18.2.1.4 By Formation of One N—C Bond .. 1123

16.18.2.1.4.1 Method 1: Intramolecular Cyclization of Hydrazides and Hydrazones .. 1123

16.18.2.1.5 By Formation of One C—C Bond .. 1124

16.18.2.1.5.1 Method 1: Intramolecular Cyclization of 5-Acylpyridazin-4-amines ... 1124

16.18.2.2 Synthesis by Ring Transformation .. 1125

16.18.2.2.1 By Ring Enlargement .. 1125

16.18.2.2.1.1 Method 1: Condensation of 5,7-Dihydrofuro[3,4-b]pyridines with Hydrazines .. 1125

16.18.2.2.1.2 Method 2: Of Pyrrolo[3,4-b]pyridinones ... 1126

16.18.2.2.2 Formal Exchange of Ring Members with Retention of the Ring Size .. 1127

16.18.2.2.2.1 Method 1: Intermolecular [4 + 2] Cyclization of 1,2,4,5-Tetrazines ... 1127

16.18.2.3 Aromatization ... 1128

16.18.2.4 Synthesis by Substituent Modification .. 1129

16.18.2.4.1 Substitution of Existing Substituents .. 1129

16.18.2.4.2 Addition Reactions .. 1129

16.18.2.4.3 Modification of Substituents .. 1129

16.18.2.4.3.1 Method 1: Oxidation of Pyridazino[4,5-b]quinoline .. 1129

16.18.3 Product Subclass 3: Pyrido[3,2-c]pyridazines ... 1129

16.18.3.1 Synthesis by Ring-Closure Reactions .. 1129

16.18.3.1.1 By Formation of Two N—C and Two C—C Bonds .. 1129

16.18.3.1.1.1 Method 1: Cyclocondensation of Arylhydrazones with Malononitrile .. 1129

16.18.3.1.2 By Formation of One N—N and One N—C Bond ... 1130

16.18.3.1.2.1 Method 1: Diazotization of 2-Vinylpyridin-3-amines ... 1130

16.18.3.1.3 By Formation of Two N—C Bonds .. 1131

16.18.3.1.3.1 Method 1: Hetero-Diels–Alder Reactions of 2-Vinylpyridines ... 1131

16.18.3.1.4 By Formation of One N—C and One C—C Bond ... 1132

16.18.3.1.4.1 Method 1: Cyclocondensation of 4-Amino-6-methylpyridazine-3-carbaldehyde with Ketones 1132

16.18.3.1.4.2 Method 2: Cyclocondensation of 4-Chloropyridazine-3-carbonyl Chloride with Enamines 1132

16.18.3.1.5 By Formation of One N—C Bond .. 1133

16.18.3.1.5.1 Method 1: Intramolecular Cyclization of 2-Substituted 3-Hydrazone-pyridines 1133

16.18.3.2 Aromatization ... 1133

16.18.3.3 Synthesis by Substituent Modification .. 1133
Product Subclass 4: Pyrido[3,4-c]pyridazines

Synthesis by Ring-Closure Reactions

By Formation of One N—N and One N—C Bond

Method 1: Cyclization of 4-Vinylpyridin-3-amines by Diazotization

By Formation of Two N—C Bonds

Method 1: Hetero-Diels–Alder Reactions of 4-Vinylpyridine with Diazones

Method 2: Cycloamination of 4-Vinylpyridazine-3-carboxylates

By Formation of One N—C and One C—C Bond

Method 1: Cycloamination of 3-Hydrazonopyridines with Aldehydes

Method 2: Cyclocondensation of Pyridazine-3-carbohydrazides with Aldehydes

By Formation of One C—C Bond

Method 1: Intramolecular Cyclization of 3-Pyridylhydrazones

Product Subclass 5: Pyrido[3,4-d]pyridazines

Synthesis by Ring-Closure Reactions

By Formation of Two N—C Bonds

Method 1: Cycloamination of Pyridine-3,4-dicarboxylates with Hydrazines

Method 2: Cycloamination of 4-Carbofunctional 5-Vinylpyridazines

By Formation of One N—C and One C—C Bond

Method 1: Condensation of 4,5-Dicarbofunctional Pyridazines with Amines

Method 2: Condensation of 4-(Iminomethyl)pyridazines with Enolates

By Formation of One C—C Bond

Method 1: Intramolecular Cyclization of 3-Pyridylhydrazones

Synthesis by Ring Transformation

By Ring Enlargement

Method 1: Reaction of Furo[3,4-c]pyridine-1,3-diones with Hydrazines

Method 2: Reaction of 1H-Pyrrolo[3,4-c]pyridine-1,3(2H)-diones with Hydrazines

Formal Exchange of Ring Members with Retention of the Ring Size

Method 1: Reaction of 8-Phenyl-5H-pyrido[3,4-d]pyridazin-5-one with Amines

Method 2: Intermolecular [4 + 2] Cycloaddition of 1,2,4,5-Tetrazines

By Ring Contraction

Method 1: Of 2H-1,2,4-Triazepines

Aromatization
16.18.4 Synthesis by Substituent Modification .. 1145
16.18.6 Product Subclass 6: Pyrido[4,3-c]pyridazines 1145
16.18.6.1 Synthesis by Ring-Closure Reactions 1145
16.18.6.1.1 By Formation of Two N—C Bonds 1145
16.18.6.1.1 Method 1: Cyclocondensation of 4-Oxopiperidine-3-acetates with Hydrazines .. 1145
16.18.6.1.1.2 Method 2: Hetero-Diels–Alder Reactions of 2-Methyl-5-vinylpyridine with Diazenes .. 1145
16.18.6.1.1.3 Method 3: Cycloamination of 3-Vinylpyrazine-4-carboxylates 1146
16.18.6.1.2 By Formation of One N—C and One C—C Bond 1146
16.18.6.1.2.1 Method 1: Condensation of 1,2,3,6-Tetrahydropyridine-4-amines with Semicarbazones ... 1146
16.18.6.2 Synthesis by Ring Transformation ... 1147
16.18.6.2.1 By Ring Enlargement .. 1147
16.18.6.2.1.1 Method 1: Reaction of Furo[3,2-c]pyridines with Hydrazine 1147
16.18.6.3 Aromatization .. 1147

16.19 Product Class 19: Pyridopyrimidines
M. Sako

16.19.1 Product Class 19: Pyridopyrimidines .. 1155
16.19.1.1 Product Subclass 1: Pyrido[2,3-d]pyrimidines 1158
16.19.1.1 Synthesis by Ring-Closure Reactions 1158
16.19.1.1.1 By Formation of Three N—C Bonds and One C—C Bond 1158
16.19.1.1.1.1 Method 1: Cyclization of Arylidenedialmononitriles or Enamines with Isothiocyanates or Isocyanates 1158
16.19.1.1.1.2 Method 2: Cyclization of Pyridin-2-amines with Carbon Dioxide 1158
16.19.1.1.1.2 By Formation of Three N—C Bonds 1159
16.19.1.1.1.2.1 Method 1: Condensation of 2-Aminonicotinic Acids with Acid Anhydrides and Ammonia .. 1159
16.19.1.1.3 By Formation of Two N—C Bonds and One C—C Bond 1159
16.19.1.1.3.1 Method 1: Cyclization of N',2-Dicyanoamidethanimide and 1,3-Diketones ... 1159
16.19.1.1.4 By Formation of One N—C and Two C—C Bonds 1160
16.19.1.1.4.1 Method 1: Condensation of 6-Aminouracils with Aldehydes and Acetoacetates ... 1160
16.19.1.1.5 By Formation of Two N—C Bonds 1160
16.19.1.1.5.1 Method 1: Cycloamination of 2-Halonicotinamides 1160
16.19.1.1.5.2 Method 2: Cycloamination of N-Substituted 2-Aminonicotinates 1161
16.1.5 Method 3: Cyclization of 2-Aminonicotinamides and 2-Aminonicotinonitriles by Carbonates .. 1163
16.1.5.4 Method 4: Cyclization of Nicotinamides .. 1167
16.1.5.5 Method 5: Cyclization of 2-Aminonicotinates with Carboxamides or Ureas ... 1168
16.1.5.6 Method 6: Condensation of 2-Halonicotinates with Ureas and Amidines .. 1174
16.1.5.7 Method 7: Cycloamination of (4-Halopyrimidin-5-yl)propanoates 1175
16.1.6 By Formation of One N—C and One C—C Bond .. 1176
16.1.6.1 Method 1: Cyclization of 5-Acetylpyrimidin-4-amines or 5-Vinylpyrimidin-4-amines with Active Carbonyl Compounds .. 1176
16.1.6.2 Method 2: Condensation of 5-Formyl- or 5-Carboxypyrimidin-4-amines with Malonates .. 1176
16.1.6.3 Method 3: Condensation of 5-Carbo-Functionalized Pyrimidines with Enamines, Acetamides, or Acetonitriles .. 1178
16.1.6.4 Method 4: Condensation of Pyrimidin-4-amines with a Three-Carbon Synthon .. 1180
16.1.6.5 Method 5: Base-Catalyzed Cyclization of Uracils with Nitriles 1191
16.1.7 By Formation of Two C—C Bonds .. 1192
16.1.7.1 Method 1: Cyclization of 6-(Acylamino)pyrimidines with a One-Carbon Synthon .. 1192
16.1.7.2 Method 2: Hetero-Diels–Alder Reaction of 6-(Methyleneamino)pyrimidines with Alkenes .. 1192
16.1.8 By Formation of One N—C Bond .. 1193
16.1.8.1 Method 1: Intramolecular Cyclization of N-(Aminocarbonothioyl)-2-chloronicotinamides .. 1193
16.1.8.2 Method 2: Intramolecular Cyclization of 3-(Acylamidino)-pyridin-2-amines .. 1194
16.1.8.3 Method 3: Intramolecular Cyclization of 2-(Acylamino)nicotinamides or 2-(Acylamino)nicotinonitriles .. 1194
16.1.8.4 Method 4: Intramolecular Cyclization of Ethyl 2-[(Anilinocarbonyl)-amino]nicotinates or 2-[(Anilinocarbonothioyl)amino]nicotinates .. 1197
16.1.8.5 Method 5: Intramolecular Cyclization of 6-Amino-5-(cyanoacetyl)uracils or 6-Amino-5-propenyluracils .. 1198
16.1.8.6 Method 6: Intramolecular Cyclization of [(Pyrimidin-5-yl)methylene]malononitriles .. 1202
16.1.9 By Formation of One C—C Bond .. 1202
16.1.9.1 Method 1: Intramolecular Cyclization of [(Pyrimidin-4-yl)amino-methylene]malonates .. 1202
16.1.9.2 Method 2: Intramolecular Cyclization of Ethyl N-[5-(2-Ethoxy-2-oxoethyl)pyrimidin-4-yl]-N-ethyl-β-alaninates .. 1204
16.1.9.3 Method 3: Intramolecular Cyclization of [(4-Arylmethylamino)-pyrimidin-5-yl)methylene]malonates .. 1205
16.1.10 Synthesis by Ring Transformation .. 1205
16.1.10.1 By Ring Enlargement .. 1205
16.19.1.2.1 Method 1: Of [1,2,4]Thiazolo[2,3-a]pyridines

16.19.1.2.2 Formal Exchange of Ring Members with Retention of the Ring Size

16.19.1.2.2.1 Method 1: From Pyrans or Pyrylium Salts

16.19.1.2.2.2 Method 2: From Oxazinones or Thiazinones

16.19.1.2.2.3 Method 3: From Oxazinones or Thiazinones

16.19.1.2.2.4 Method 4: From 1,2,4-Triazines

16.19.1.2.2.5 Method 5: From Pyrimidines

16.19.1.2.2.6 Method 6: From Pyrido[4,3-d]pyrimidines

16.19.1.2.2.7 Method 7: From Other Pyrido[2,3-d]pyrimidines

16.19.1.2.2.8 Method 8: From 1,3,5-Triazines

16.19.1.2.3 By Ring Contraction

16.19.1.2.3.1 Method 1: Of Pyrimido[4,5-c][1,2]diazepines

16.19.1.3 Aromatization

16.19.1.3.1 Method 1: Of Pyrido[2,3-d]pyrimidines with a Hydrogenated Pyrimidine Ring

16.19.1.3.2 Method 2: Of Pyrido[2,3-d]pyrimidines with a Hydrogenated Pyridine Ring

16.19.1.4 Synthesis by Substituent Modification

16.19.1.4.1 Substitution of Existing Substituents

16.19.1.4.2 Addition Reactions

16.19.1.4.3 Rearrangement of Substituents

16.19.2.1 Synthesis by Ring-Closure Reactions

16.19.2.1.1 By Formation of Two N—C Bonds

16.19.2.1.1.1 Method 1: Cyclization of 3-Aminopyridine-2-carboxamides with Acetals

16.19.2.1.1.2 Method 2: Cycloamination of 3-Isothiocyanatopyridine-2-carboxylates

16.19.2.1.1.3 Method 3: Condensation of (3-Chloro-2-pyridyl)(phenyl)methanimines with Nitriles

16.19.2.1.1.4 Method 4: Condensation of 3-Aminopyridine-2-carboxylates with Isocyanates

16.19.2.1.2 By Formation of One N—C and One C—C Bond

16.19.2.1.2.1 Method 1: Condensation of 5-Amino(or 5-Nitro)-4-methylpyrimidines with Esters or Aldehydes

16.19.2.1.2.2 Method 2: Condensation of Pyrimidin-5-amines with But-2-enal

16.19.2.1.3 By Formation of One N—C Bond

16.19.2.1.3.1 Method 1: Intramolecular Cyclization of 3-(Acetylamino)pyridine-2-carboxamides or 3-(Acetylamino)-2-pyridyl Oximes

16.19.2.1.3.2 Method 2: Intramolecular Cyclization of 3-[(Aminocarbonyl)amino]-pyridine-2-carboxylates

16.19.2.1.3.3 Method 3: Intramolecular Cyclization of 6-(3-Oxoalkyl)pyrimidin-5-amines
16.19.2.1.4 By Formation of One C—C Bond .. 1220
16.19.2.1.4.1 Method 1: Electrocyclization of 5-(Methyleneamino)-6-vinylpyrimidines 1220
16.19.2.1.4.2 Method 2: Intramolecular Cyclization of 6-Methyl-5-(methyleneamino)pyrimidines 1220
16.19.2.1.4.3 Method 3: Intramolecular Cyclization of 5-(Methyleneamino)pyrimidines 1220

16.19.2.2 Synthesis by Ring Transformation .. 1222
16.19.2.2.1 By Ring Enlargement .. 1222
16.19.2.2.1.1 Method 1: Of Quinolinimides via Rearrangement or Ring Opening and Cyclization 1222
16.19.2.2.1.1.1 Variation 1: Of N-[(Phenylsulfonyl)oxy]quinolinimide .. 1223
16.19.2.2.1.2 Method 2: Of 6-Phenylisoselenazolo[4,3-d]pyrimidin-7(6H)-one 1223
16.19.2.2.1.3 Method 3: Intermolecular [4 + 2] Cycloadditions of 1,2,4-Triazines with Imidazoles .. 1224
16.19.2.2.2 Formal Exchange of Ring Members with Retention of the Ring Size 1224
16.19.2.2.2.1 Method 1: From 1,3-Oxazines .. 1224
16.19.2.2.2.2 Method 2: From 1,2,4-Triazines .. 1224
16.19.2.2.2.3 Method 3: From 1,5-Naphthyridines .. 1225
16.19.2.2.3 Aromatization ... 1225
16.19.2.4 Synthesis by Substituent Modification .. 1225
16.19.3 Product Subclass 3: Pyrido[3,4-d]pyrimidines 1225
16.19.3.1 Synthesis by Ring-Closure Reactions ... 1225
16.19.3.1.1 By Formation of Two N—C Bonds and One C—C Bond 1225
16.19.3.1.1.1 Method 1: Condensation of 3-Nitropyridines or 4-Pyridyllithiums with Nitriles 1225
16.19.3.1.2 By Formation of Two N—C Bonds .. 1226
16.19.3.1.2.1 Method 1: Cyclization of 3-Aminopyridine-4-carboxamides or 3-Aminopyridine-4-carbonitriles .. 1226
16.19.3.1.2.2 Method 2: Cyclization of 3-Aminopyridine-4-carboxylates with a N—C Unit 1227
16.19.3.1.2.3 Method 3: Cyclization of 3-Oxopiperidine-4-carboxylates and Related Compounds with Ureas or Amidines 1227
16.19.3.1.2.4 Method 4: Cycloamination of 5-Ethynylpyrimidine-4-carboxylates 1228
16.19.3.1.3 By Formation of One N—C and One C—C Bond 1228
16.19.3.1.3.1 Method 1: Condensation of Appropriately Modified Pyrimidine-5-carbaldehydes with Amines 1228
16.19.3.1.4 By Formation of One N—C Bond .. 1229
16.19.3.1.4.1 Method 1: Intramolecular Cyclization of Ethyl 3-[[Benzoylaminocarbonothioyl]amino]pyridine-4-carboxylates 1229
16.19.3.1.4.2 Method 2: Intramolecular Cyclization of 3-(Acylamino)pyridine-4-carboxamides 1230
16.1.9.3.1.4.3 Method 3: Intramolecular Cyclization of Pyridine-3,4-dicarboxamides via Rearrangement .. 1230

16.1.9.3.1.4.5 By Formation of One C—C Bond .. 1231

16.1.9.3.1.5.1 Method 1: Intramolecular Cyclization of [(Pyridylamino)methylene]-
carbamates .. 1231

16.1.9.3.2 Synthesis by Ring Transformation .. 1231

16.1.9.3.2.1 Method 1: From N-(1,3-Oxazol-5-yl)ureas .. 1231

16.1.9.3.2.2 Formal Exchange of Ring Members with Retention of the Ring Size 1232

16.1.9.3.2.2.1 Method 1: From 4H-Pyrido[3,4-d][1,3]oxazin-4-ones 1232

16.1.9.3.2.2.2 Method 2: From Fused Lactones or Thiolactones 1232

16.1.9.3.2.2.3 Method 3: From 1,7-Naphthyridines ... 1232

16.1.9.3.3 Aromatization .. 1233

16.1.9.3.4 Synthesis by Substituent Modification .. 1233

16.1.9.4 Product Subclass 4: Pyrido[4,3-d]pyrimidines 1233

16.1.9.4.1 Synthesis by Ring-Closure Reactions .. 1233

16.1.9.4.1.1 Method 1: Cycloamination of Malononitrile Dimers 1233

16.1.9.4.1.2 By Formation of Two N—C and Two C—C Bonds 1233

16.1.9.4.1.2.1 Method 1: Cyclization of 6-Methyl-3,4-dihydropyrimidine-2(1H)-thiones Using the Mannich Reaction 1233

16.1.9.4.1.3 By Formation of Three N—C Bonds ... 1234

16.1.9.4.1.3.1 Method 1: Cyclization of 4-Aminonicotinic Acids with Acid Anhydrides and Ammonia .. 1234

16.1.9.4.1.4 By Formation of Two N—C Bonds .. 1234

16.1.9.4.1.4.1 Method 1: Condensation of 3-(Aminomethyl)pyridin-4-amines with a One-Carbon Donor ... 1234

16.1.9.4.1.4.2 Method 2: Cycloamination of 4-(Acylamino)pyridine-3-carboxylates,
-3-carbaldehydes, or -3-carbonitriles .. 1235

16.1.9.4.1.4.3 Method 3: Cycloamination of 4-Vinylpyrimidine-5-carbaldehydes or 4-Ethynlypyrimidine-5-carboxylates 1236

16.1.9.4.1.4.4 Method 4: Cyclization of 4-Aminonicotinates or 4-Aminonicotinonitriles with a N—C Donor .. 1237

16.1.9.4.1.4.5 Method 5: Cyclization of 4-Sulfanylnicotinonitriles or 4-Oxopiperidine-3-carboxylates with Amidines 1238

16.1.9.4.1.5 By Formation of One N—C and One C—C Bond 1239

16.1.9.4.1.5.1 Method 1: Cyclization of 4-Methylpyrimidine-5-carboxamides or 4-Methylpyrimidine-5-carbonitriles with a One-Carbon Donor ... 1239

16.1.9.4.1.5.2 Method 2: Cyclization of 4-Methylpyrimidine-5-carboxylates with a N—C Donor ... 1239
<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.19.4.1.5.3</td>
<td>Method 3: Cyclization of Piperidones with a N—C—N—C Donor</td>
<td>1240</td>
</tr>
<tr>
<td>16.19.4.1.6</td>
<td>By Formation of One N—C Bond</td>
<td>1240</td>
</tr>
<tr>
<td>16.19.4.1.6.1</td>
<td>Method 1: Intramolecular Cyclization of 4-(Acylamino)nicotinamides or 4-(Methyleneamino)nicotinonitriles</td>
<td>1240</td>
</tr>
<tr>
<td>16.19.4.1.6.2</td>
<td>Method 2: Cyclization of Pyridine-3,4-dicarboxamides with Rearrangement</td>
<td>1241</td>
</tr>
<tr>
<td>16.19.4.1.6.3</td>
<td>Method 3: Intramolecular Cyclization of 4-(Cyanomethyl)pyrimidine-5-carbonitriles</td>
<td>1242</td>
</tr>
<tr>
<td>16.19.4.1.7</td>
<td>By Formation of One C—C Bond</td>
<td>1242</td>
</tr>
<tr>
<td>16.19.4.1.7.1</td>
<td>Method 1: Intramolecular Cyclization of 4-Methylpyrimidine-5-carboxamides</td>
<td>1242</td>
</tr>
<tr>
<td>16.19.4.2</td>
<td>Synthesis by Ring Transformation</td>
<td>1242</td>
</tr>
<tr>
<td>16.19.4.2.1</td>
<td>Formal Exchange of Ring Members with Retention of the Ring Size</td>
<td>1242</td>
</tr>
<tr>
<td>16.19.4.2.1.1</td>
<td>Method 1: From 2H-1,3-Oxazine-2,4(3H)diones</td>
<td>1242</td>
</tr>
<tr>
<td>16.19.4.2.1.2</td>
<td>Method 2: From 2-Methyl-4H-pyrido[4,3-d][1,3]oxazin-4-one</td>
<td>1243</td>
</tr>
<tr>
<td>16.19.4.2.1.3</td>
<td>Method 3: From Pyranopyrimidines</td>
<td>1243</td>
</tr>
<tr>
<td>16.19.4.2.1.4</td>
<td>Method 4: From 1,6-Naphthyridines</td>
<td>1244</td>
</tr>
<tr>
<td>16.19.4.3</td>
<td>Aromatization</td>
<td>1244</td>
</tr>
<tr>
<td>16.19.4.4</td>
<td>Synthesis by Substituent Modification</td>
<td>1244</td>
</tr>
</tbody>
</table>

16.20 Product Class 20: Pyridopyrazines

M. Sako

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.20</td>
<td>Product Class 20: Pyridopyrazines</td>
<td>1269</td>
</tr>
<tr>
<td>16.20.1</td>
<td>Product Subclass 1: Pyrido[2,3-b]pyrazines</td>
<td>1271</td>
</tr>
<tr>
<td>16.20.1.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>1271</td>
</tr>
<tr>
<td>16.20.1.1.1</td>
<td>By Formation of Two N—C Bonds</td>
<td>1271</td>
</tr>
<tr>
<td>16.20.1.1.1.1</td>
<td>Method 1: Condensation of 2-Halopyridin-3-amines with 2-Haloethanamines</td>
<td>1271</td>
</tr>
<tr>
<td>16.20.1.1.1.2</td>
<td>Method 2: Condensation of Pyridine-2,3-diamines with a Two Carbon Atom Donor</td>
<td>1271</td>
</tr>
<tr>
<td>16.20.1.1.1.3</td>
<td>Method 3: Condensation of 2,3-Dihalopyridines with Ethylenediamines</td>
<td>1274</td>
</tr>
<tr>
<td>16.20.1.1.2</td>
<td>By Formation of One N—C and One C—C Bond</td>
<td>1274</td>
</tr>
<tr>
<td>16.20.1.1.2.1</td>
<td>Method 1: Condensation of 3-Aminopyrazine-2-carboxylates and 3-Aminopyrazine-2-carbonitriles with Active Methylene Compounds</td>
<td>1274</td>
</tr>
<tr>
<td>16.20.1.1.3</td>
<td>By Formation of One N—C Bond</td>
<td>1275</td>
</tr>
<tr>
<td>16.20.1.1.3.1</td>
<td>Method 1: Cyclization of (3-Nitropyridin-2-yl)aminocacetates and Related Compounds</td>
<td>1275</td>
</tr>
<tr>
<td>16.20.1.1.3.2</td>
<td>Method 2: Cyclization of 3-(Cyanomethylamino)pyridin-2-amines</td>
<td>1277</td>
</tr>
<tr>
<td>16.20.1.1.3.3</td>
<td>Method 3: Cyclization of 3-(3-Aminopyrazin-2-yl)propenenitriles and Related Compounds</td>
<td>1277</td>
</tr>
</tbody>
</table>
Method 4: Cyclization of Diethyl [(Pyrazin-2-ylamino)methylene]-
malonates and Related Compounds 1278

Synthesis by Ring Transformation 1279

Method 1: Of Pteridines ... 1279
Method 2: By Ring Enlargement of Oxadiazoles or Thiazoles 1279

Aromatization .. 1280

Synthesis by Substituent Modification 1280

Product Subclass 2: Pyrido[3,4-b]pyrazines 1281

Synthesis by Ring-Closure Reactions 1281

By Formation of Two N—C Bonds 1281

Method 1: Condensation of Pyridine-3,4-diamines with \(\alpha \)-Ketones .. 1281

By Formation of One N—C Bond 1282

Method 1: Cyclization of \([4-(Aminopyridin-3-yl)amino] \)(oxo)acetic Acid 1282

Method 2: Reductive Cyclization of (3-Nitropyridin-4-yl)aminoacetates 1283

Method 3: Reductive Cyclization of (6-Aminopyrazin-2-yl)malonitriles 1285

Aromatization ... 1285

Synthesis by Substituent Modification 1285

Product Class 21: Pteridines and Related Structures
T. Ishikawa

Synthesis by Ring-Closure Reactions 1291

By Annulation to the Pyrimidine Ring 1293

By Formation of Two N—C Bonds and One C—C Bond 1293

Fragment N—C—C—N and Two C Fragments 1293

From Pyrimidine-4,5-diamines 1293

Method 1: With Two One-Carbon Carbonyl Fragments or
Their Equivalents ... 1293

By Formation of Two N—C Bonds 1295

Fragments N—C—C—N and C—C 1295

From Pyrimidine-4,5-diamines 1295

Method 1: With Symmetrical 1,2-Dicarbonyl Systems 1295

Variation 1: Use of Glyoxal and Its Equivalents 1295

Variation 2: Use of Diketones 1296

Variation 3: Use of Oxalic Acid Derivatives 1297

Method 2: With Unsymmetrical 1,2-Dicarbonyl Systems ... 1297

Variation 1: Use of 2-Oxo Aldehydes and Their Equivalents ... 1297

Variation 2: Use of 2-Oxo Esters and Their Equivalents .. 1299

Method 3: With Modified 1,2-Dicarbonyl Systems 1301
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.21.1.2.1.2 From 5-Nitrosopyrimidin-4-amines</td>
<td>1304</td>
</tr>
<tr>
<td>16.21.1.2.1.2.1 Method 1: Reaction with a Methylene carbonyl or Related</td>
<td>1304</td>
</tr>
<tr>
<td>Compound (Timmis Synthesis)</td>
<td></td>
</tr>
<tr>
<td>16.21.1.2.1.2.1.1 Variation 1: Reaction with a Methylene carbonyl or</td>
<td>1306</td>
</tr>
<tr>
<td>Related Compound in the Presence of Cyanide Ions (Pachter Modification)</td>
<td></td>
</tr>
<tr>
<td>16.21.1.2.1.3 From Other 4,5-Disubstituted Pyrimidines</td>
<td>1307</td>
</tr>
<tr>
<td>16.21.1.2.1.3.1 Method 1: Pteridines from Other 4,5-Disubstituted</td>
<td>1307</td>
</tr>
<tr>
<td>Pyrimidines</td>
<td></td>
</tr>
<tr>
<td>16.21.1.2.1.2 Fragments N—C—C and N—C—C</td>
<td>1308</td>
</tr>
<tr>
<td>16.21.1.2.1.2.1 Method 1: From 4-Chloro-5-nitropyrimidines and α-</td>
<td>1308</td>
</tr>
<tr>
<td>Aminocarbonyl Compounds (Polonovski–Boon Reaction)</td>
<td></td>
</tr>
<tr>
<td>16.21.1.2 By Annulation to the Pyrazine Ring</td>
<td>1309</td>
</tr>
<tr>
<td>16.21.1.2.1 By Formation of Two N—C Bonds</td>
<td>1310</td>
</tr>
<tr>
<td>16.21.1.2.1.1 Fragments N—C—C and N—C</td>
<td>1310</td>
</tr>
<tr>
<td>16.21.1.2.1.1.1 Method 1: From 3-Aminopyrazine-2-carbonitriles or</td>
<td>1310</td>
</tr>
<tr>
<td>-2-carboxylates and Guanidine, Amidines, or Isocyanates (Taylor</td>
<td></td>
</tr>
<tr>
<td>Synthesis</td>
<td></td>
</tr>
<tr>
<td>16.21.1.2.1.2 Fragments N—C—N and C—C—C</td>
<td>1311</td>
</tr>
<tr>
<td>16.21.1.2.1.2.1 Method 1: From 3-Chloropyrazine-2-carboxylates and</td>
<td>1311</td>
</tr>
<tr>
<td>Guanidine or Synthetic Equivalents</td>
<td></td>
</tr>
<tr>
<td>16.21.1.2.1.3 Fragments N—C—C—N and C</td>
<td>1312</td>
</tr>
<tr>
<td>16.21.1.2.1.3.1 Method 1: From 2,3-Disubstituted Pyrazines and One-</td>
<td>1312</td>
</tr>
<tr>
<td>Carbon Units</td>
<td></td>
</tr>
<tr>
<td>16.21.1.2.1.4 Fragments C—N—C—C and N</td>
<td>1313</td>
</tr>
<tr>
<td>16.21.1.2.1.4.1 Method 1: From 2,3-Disubstituted Pyrazines and</td>
<td>1313</td>
</tr>
<tr>
<td>Ammonia Derivatives</td>
<td></td>
</tr>
<tr>
<td>16.21.1.2.2 By Formation of One N—C Bond</td>
<td>1314</td>
</tr>
<tr>
<td>16.21.1.2.2.1 Fragment N—C—C—N—C</td>
<td>1314</td>
</tr>
<tr>
<td>16.21.1.2.2.1.1 Method 1: Intramolecular Cyclization of Substituted</td>
<td>1314</td>
</tr>
<tr>
<td>Pyrazines</td>
<td></td>
</tr>
<tr>
<td>16.21.2 Synthesis by Ring Transformation</td>
<td>1315</td>
</tr>
<tr>
<td>16.21.2.1 Method 1: Synthesis from an Oxadiazole Ring</td>
<td>1315</td>
</tr>
<tr>
<td>16.21.2.2 Method 2: Synthesis by Ring Expansion of Purine Derivatives</td>
<td>1315</td>
</tr>
<tr>
<td>16.21.2.3 Method 3: Synthesis from a Pyrimidooxadiazinetrione</td>
<td>1316</td>
</tr>
<tr>
<td>16.21.3 Synthesis by Substituent Modification</td>
<td>1317</td>
</tr>
<tr>
<td>16.21.3.1 Substitution of Existing Substituents</td>
<td>1317</td>
</tr>
<tr>
<td>16.21.3.1.1 Substitution of Hydrogen</td>
<td>1317</td>
</tr>
<tr>
<td>16.21.3.1.1.1 Method 1: N-Alkylation of Pteridinones or Their Derivatives</td>
<td>1317</td>
</tr>
<tr>
<td>16.21.3.1.1.2 Method 2: Pteridinone Formation by Hydrolysis of N-Oxides</td>
<td>1318</td>
</tr>
<tr>
<td>16.21.3.1.1.3 Method 3: Amination</td>
<td>1318</td>
</tr>
<tr>
<td>16.21.3.1.1.4 Method 4: Chlorination</td>
<td>1319</td>
</tr>
<tr>
<td>16.21.3.1.1.5 Method 5: Direct Introduction of Substituents by</td>
<td>1319</td>
</tr>
<tr>
<td>Electrophilic Reactions</td>
<td></td>
</tr>
<tr>
<td>16.21.3.1.1.6 Method 6: Direct Introduction of Substituents by</td>
<td>1319</td>
</tr>
<tr>
<td>Nucleophilic Reactions</td>
<td></td>
</tr>
<tr>
<td>16.21.3.1.2 Substitution of Carbon Functionalities</td>
<td>1321</td>
</tr>
</tbody>
</table>
16.21.3.1.2.1 Method 1: Decarboxylation ... 1321
16.21.3.1.3 Substitution of Heteroatoms .. 1321
16.21.3.1.3.1 Method 1: Substitution by Alkoxy or Siloxy Groups 1321
16.21.3.1.3.2 Method 2: Hydrolysis and Alcoholysis 1322
16.21.3.1.3.3 Method 3: Amination .. 1323
16.21.3.1.3.4 Method 4: Chlorination ... 1324
16.21.3.1.3.5 Method 5: Thiation ... 1325
16.21.3.1.3.6 Method 6: Alkylation ... 1325
16.21.3.1.3 Addition of Heteroatoms ... 1326
16.21.3.1.3.1 Method 1: Substitution by Alkoxy or Siloxy Groups 1326
16.21.3.1.3.2 Method 2: Hydrolysis and Alcoholysis 1327
16.21.3.1.3.3 Method 3: Amination .. 1327
16.21.3.1.3.4 Method 4: Chlorination ... 1328
16.21.3.1.3.5 Method 5: Thiation ... 1328
16.21.3.1.3.6 Method 6: Alkylation ... 1328
16.21.3.2 Addition of Hydrogen ... 1326
16.21.3.2.1 Method 1: Reduction ... 1326
16.21.3.2.2 Method 2: Removal of Substituents by Reduction 1327
16.21.3.2.3 Method 3: N-Alkylation of Pteridinamines 1327
16.21.3.2.4 Method 5: Oxidation of Alkyl Substituents 1328
16.21.3.2.3 Substitution of Heteroatoms ... 1328
16.21.3.2.3.1 Method 1: N-Oxidation .. 1328
16.21.3.3 Modification of Substituents ... 1328
16.21.3.3.1 Method 1: Modification of Thioxo Groups 1328
16.21.3.3.2 Method 2: Modification of Amine Substituents 1329
16.21.3.3.3 Method 3: Oxidation of Alkyl Substituents 1329
16.22 Product Class 22: Other Diazinodiazines
T. Ishikawa
16.22 Product Class 22: Other Diazinodiazines ... 1337
16.22.1 Product Subclass 1: Pyridazinopyridazines 1338
16.22.1.1 Synthesis by Ring-Closure Reactions .. 1340
16.22.1.1.1 By Annulation to an Arene ... 1340
16.22.1.1.1.1 By Formation of Two N—C Bonds .. 1340
16.22.1.1.1.1 Method 1: From Dissubstituted Pyridazines 1340
16.22.1.1.1.1 Variation 1: From 3,4-Disubstituted Pyridazines 1340
16.22.1.1.1.2 Variation 2: From 4,5-Disubstituted Pyridazines 1340
16.22.1.1.2 By Cycloaddition Reactions ... 1341
16.22.1.1.2.1 By Formation of Four N—C Bonds .. 1341
16.22.1.1.2.1 Method 1: From Tetracarbonyl-Substituted Ethene 1341
16.22.1.1.2.2 By Formation of One N—C and One C—C Bond 1341
16.22.1.1.2.2 Method 1: By Michael-Type Reactions 1341
16.22.1.1.2 Synthesis by Substituent Modification .. 1342
16.22.1.1.2.1 Method 1: By Reductive Cleavage of Substituents 1342
16.22.1.1.2.2 Method 2: By Substitution of Chlorine 1343
16.22.1.2.3 Method 3: By Substitution of Hydroxy Groups .. 1344
16.22.1.2.4 Method 4: By Substitution of Sulfur-Containing Groups 1345
16.22.1.2.5 Method 5: By Alkylation .. 1346

16.22.2 Product Subclass 2: Pyrimidopyridazines .. 1346
16.22.2.1 Synthesis by Ring-Closure Reactions ... 1348
16.22.2.1.1 By Annulation to an Arene ... 1348
16.22.2.1.1.1 By Formation of Two N—C Bonds ... 1348
16.22.2.1.1.1 Method 1: From Substituted Pyridazines .. 1348
16.22.2.1.1.2 Method 2: From Substituted Pyrimidines .. 1350
16.22.2.1.1.2 By Formation of One N—C and One C—C Bond 1351
16.22.2.1.1.2.1 Method 1: From a 1,2-Dicarbonyl Compound 1351
16.22.2.1.1.3 By Formation of One N—C Bond ... 1351
16.22.2.1.1.3.1 Method 1: From a 2,4,5-Trisubstituted Pyrimidine 1351
16.22.2.2 Synthesis by Ring Transformation .. 1352
16.22.2.2.1 Method 1: By Ring Enlargement .. 1352
16.22.2.2.2 Method 2: By Exchange of Sulfur for Nitrogen 1352
16.22.2.3 Synthesis by Substituent Modification ... 1352
16.22.2.3.1 Substitution of Existing Substituents .. 1352
16.22.2.3.1.1 Method 1: By Substitution of Chlorine .. 1352
16.22.2.3.1.2 Method 2: By Substitution of Hydroxy Groups 1354
16.22.2.3.1.3 Method 3: By Substitution of a Sulfur-Containing Group 1355
16.22.2.3.2 Addition Reactions .. 1356
16.22.2.3.2.1 Addition of Organic Groups ... 1356
16.22.2.3.2.1.1 Method 1: Addition of an Aryl Group .. 1356
16.22.2.3.2.1.2 Method 2: Addition of an Alkyl Group ... 1356
16.22.2.3.2.2 Addition of Heteroatoms .. 1357
16.22.2.3.2.2.1 Method 1: Addition of Chlorine .. 1357
16.22.2.3.2.2.2 Method 2: N-Oxidation .. 1358
16.22.2.3.3 Rearrangement of Substituents .. 1358
16.22.2.3.3.1 Method 1: The Hofmann Rearrangement .. 1358

16.22.3 Product Subclass 3: Pyrazinopyridazines ... 1359
16.22.3.1 Synthesis by Ring-Closure Reactions .. 1360
16.22.3.1.1 By Annulation to an Arene .. 1360
16.22.3.1.1.1 By Formation of Two N—C Bonds .. 1360
16.22.3.1.1.1 Method 1: From 2,3-Disubstituted Pyrazines 1360
16.22.3.1.1.1.2 Method 2: From 3,4-Dihalopyridazines ... 1361
16.22.3.1.1.1.3 Method 3: From 1,2-Dicarbonyl Compounds 1362
16.22.3.1.2 By Cycloaddition Reactions ... 1363
16.22.3.1.2.1 By Formation of One N—C and One C—C Bond 1363
<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.22.3.1.2.1</td>
<td>Method 1: By 1,3-Dipolar Cycloaddition</td>
<td>1363</td>
</tr>
<tr>
<td>16.22.3.1.2.2</td>
<td>By Formation of Two C–C Bonds</td>
<td>1363</td>
</tr>
<tr>
<td>16.22.3.1.2.2.1</td>
<td>Method 1: By Diels–Alder Cyclization</td>
<td>1363</td>
</tr>
<tr>
<td>16.22.3.1.3</td>
<td>Method 1: Cyclization with Potassium Cyanide</td>
<td>1364</td>
</tr>
<tr>
<td>16.22.3.2.2.1</td>
<td>Method 1: By Diels–Alder Cyclization</td>
<td>1363</td>
</tr>
<tr>
<td>16.22.3.3.1</td>
<td>Method 1: Cyclization with Potassium Cyanide</td>
<td>1364</td>
</tr>
<tr>
<td>16.22.4</td>
<td>Product Subclass 4: Pyrimidopyrimidines</td>
<td>1367</td>
</tr>
<tr>
<td>16.22.4.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>1368</td>
</tr>
<tr>
<td>16.22.4.1.1</td>
<td>By Annulation to an Arene</td>
<td>1368</td>
</tr>
<tr>
<td>16.22.4.1.1.1</td>
<td>Method 1: From 2,4,5-Trisubstituted Pyrimidines</td>
<td>1368</td>
</tr>
<tr>
<td>16.22.4.1.1.1.1</td>
<td>Variation 1: With Ammonium Hydroxide</td>
<td>1368</td>
</tr>
<tr>
<td>16.22.4.1.1.1.2</td>
<td>Variation 2: On Solid Support</td>
<td>1368</td>
</tr>
<tr>
<td>16.22.4.1.1.1.3</td>
<td>Variation 3: With Guanidine</td>
<td>1369</td>
</tr>
<tr>
<td>16.22.4.1.1.1.4</td>
<td>Variation 4: With Formamide</td>
<td>1370</td>
</tr>
<tr>
<td>16.22.4.1.1.1.5</td>
<td>Variation 5: With Diethoxymethyl Acetate</td>
<td>1370</td>
</tr>
<tr>
<td>16.22.4.1.1.1.2</td>
<td>Method 2: From 2,4,5,6-Tetrasubstituted Pyrimidines</td>
<td>1370</td>
</tr>
<tr>
<td>16.22.4.1.1.1.2.1</td>
<td>Variation 1: From 5-Amino-2,6-dihydroxypyrimidine-4-carboxylic Acid</td>
<td>1370</td>
</tr>
<tr>
<td>16.22.4.1.1.1.2.2</td>
<td>Variation 2: From 2,6-Disubstituted 4-Aminopyrimidine-5-carboxamides</td>
<td>1371</td>
</tr>
<tr>
<td>16.22.4.1.1.1.2.3</td>
<td>Variation 3: With Guanidine</td>
<td>1372</td>
</tr>
<tr>
<td>16.22.4.1.1.1.2.4</td>
<td>Variation 4: With an Amidine</td>
<td>1373</td>
</tr>
<tr>
<td>16.22.4.1.1.1.2.5</td>
<td>Variation 5: With Sulfur</td>
<td>1374</td>
</tr>
<tr>
<td>16.22.4.1.1.2</td>
<td>Method 3: From 2,4,6-Trisubstituted Pyrimidines</td>
<td>1376</td>
</tr>
<tr>
<td>16.22.4.1.1.2.1</td>
<td>Method 1: From 4,5-Disubstituted Pyrimidines</td>
<td>1374</td>
</tr>
<tr>
<td>16.22.4.1.1.2.1.1</td>
<td>Variation 1: From 4-(Acylamino)pyrimidine-5-carbonitrile</td>
<td>1374</td>
</tr>
<tr>
<td>16.22.4.1.1.2.1.2</td>
<td>Variation 2: From 4-Aminopyrimidine-5-carbonitrile</td>
<td>1375</td>
</tr>
<tr>
<td>16.22.4.1.1.2.2</td>
<td>Method 2: From 2,4,5-Trisubstituted Pyrimidines</td>
<td>1375</td>
</tr>
<tr>
<td>16.22.4.1.1.2.2.1</td>
<td>Variation 1: From 4-Amino-(N^2)-benzoyl-2-propylpyrimidine-5-carboximidamide</td>
<td>1375</td>
</tr>
<tr>
<td>16.22.4.1.1.2.2.2</td>
<td>Variation 2: From 4-[(Hydroxyimino)methyl]amino-2-(methylsulfanyl)pyrimidine-5-carbonitrile</td>
<td>1376</td>
</tr>
<tr>
<td>16.22.4.1.1.2.3</td>
<td>Method 3: From 2,4,6-Trisubstituted Pyrimidines</td>
<td>1376</td>
</tr>
</tbody>
</table>
16.22.4.1.2.3.1 Variation 1: From 2,6-Disubstituted Pyrimidin-4-amines 1376
16.22.4.1.2.4 Method 4: From 2,4,5,6-Tetrasubstituted Pyrimidines 1377
16.22.4.2 Synthesis from Non-heterocyclic Substrates .. 1378
16.22.4.2.1 By Formation of Four N—C Bonds .. 1378
16.22.4.2.1.1 Method 1: From Malononitrile and Guanidine 1378
16.22.4.2.1.2 Method 2: From Cyanide and Ammonia 1378
16.22.4.3 Synthesis by Ring Transformation .. 1379
16.22.4.3.1 By Ring Enlargement ... 1379
16.22.4.3.1.1 Method 1: From Purine Nucleosides ... 1379
16.22.4.4 Aromatization .. 1379
16.22.4.4.1 Method 1: With Potassium Hexacyanoferrate(III) 1379
16.22.4.5 Synthesis by Substituent Modification .. 1380
16.22.4.5.1 Substitution of Existing Substituents ... 1380
16.22.4.5.1.1 Method 1: By Reductive Cleavage of Chlorine 1380
16.22.4.5.1.2 Method 2: By Substitution of Chlorine 1380
16.22.4.5.1.3 Method 3: By Substitution of Hydroxy Groups 1384
16.22.4.5.1.4 Method 4: By Reductive Cleavage of Nitrogen 1385
16.22.4.5.2 Addition Reactions ... 1386
16.22.4.5.2.1 Addition of Organic Groups .. 1386
16.22.4.5.2.1.1 Method 1: Addition of Carbon Nucleophiles 1386
16.22.4.6 Rearrangement of Substituents .. 1387
16.22.4.6.1 Method 1: The Hofmann Rearrangement 1387
16.22.4.6.2 Method 2: Rearrangement of Oxygen and Sulfur 1387
16.22.4.6.3 Method 3: Via an Aza-Wittig-Type Reaction 1388
16.22.5 Product Subclass 5: Pyrazinopyrazines .. 1389
16.22.5.1 Synthesis by Ring-Closure Reactions .. 1389
16.22.5.1.1 By Formation of Two N—C Bonds ... 1389
16.22.5.1.1.1 Method 1: From 5,6-Dichloropyrazine-2,3-dicarbonitrile 1389
16.22.5.1.2 By Formation of One N—C Bond ... 1390
16.22.5.1.2.1 Method 1: From 1,2-Dicarbonyl Compounds 1390
16.22.5.2 Synthesis by Ring Transformation .. 1390
16.22.5.2.1 Method 1: By Ring Enlargement ... 1390
16.22.5.2.2 Method 2: By Reduction .. 1391
16.22.5.3 Synthesis by Substituent Modification ... 1391
16.22.5.3.1 Method 1: By Substitution of Halogen Atoms 1391
16.22.5.3.2 Method 2: By Substitution of Cyano Groups 1392
<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.23</td>
<td>Product Class 23: Diphosphinines</td>
<td>M. Yoshifuji and S. Ito</td>
<td>1399</td>
</tr>
<tr>
<td>16.23.1</td>
<td>Product Subclass 1: 1,2-Diphosphinines</td>
<td></td>
<td>1400</td>
</tr>
<tr>
<td>16.23.1.1</td>
<td>Method 1: Synthesis by Ring-Closure Reactions</td>
<td></td>
<td>1400</td>
</tr>
<tr>
<td>16.23.1.1</td>
<td>Method 1: Synthesis of a 1,2-Diphosphininium Derivative</td>
<td></td>
<td>1400</td>
</tr>
<tr>
<td>16.23.1.2</td>
<td>Aromatization</td>
<td></td>
<td>1401</td>
</tr>
<tr>
<td>16.23.1.2.1</td>
<td>Method 1: Aromatization of a 1,2-Diphosphininium Derivative</td>
<td></td>
<td>1401</td>
</tr>
<tr>
<td>16.23.2</td>
<td>Product Subclass 2: 1,3-Diphosphinines</td>
<td></td>
<td>1401</td>
</tr>
<tr>
<td>16.23.2.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td></td>
<td>1401</td>
</tr>
<tr>
<td>16.23.2.1.1</td>
<td>Method 1: By Decomplexation</td>
<td></td>
<td>1401</td>
</tr>
<tr>
<td>16.23.2.1.2</td>
<td>Method 2: By Elimination</td>
<td></td>
<td>1403</td>
</tr>
<tr>
<td>16.23.2.1.3</td>
<td>Method 3: By [4+2] Cycloaddition</td>
<td></td>
<td>1404</td>
</tr>
<tr>
<td>16.23.2.2</td>
<td>Synthesis by Ring Transformation</td>
<td></td>
<td>1405</td>
</tr>
<tr>
<td>16.23.2.2.1</td>
<td>Method 1: Ring Transformation of 1(\lambda^5,3\lambda^5)-Diphosphetes</td>
<td></td>
<td>1405</td>
</tr>
<tr>
<td>16.23.2.3</td>
<td>Aromatization</td>
<td></td>
<td>1407</td>
</tr>
<tr>
<td>16.23.2.3.1</td>
<td>Method 1: Aromatization of a Diphosphonium Salt</td>
<td></td>
<td>1407</td>
</tr>
<tr>
<td>16.23.3</td>
<td>Product Subclass 3: 1,4-Diphosphinines</td>
<td></td>
<td>1407</td>
</tr>
<tr>
<td>16.23.3.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td></td>
<td>1407</td>
</tr>
<tr>
<td>16.23.3.1.1</td>
<td>Method 1: Synthesis of a 1(\lambda^5,4\lambda^5)-Diphosphinine by a [4+2]-Cyclization Reaction</td>
<td></td>
<td>1407</td>
</tr>
<tr>
<td>16.23.3.2</td>
<td>Aromatization</td>
<td></td>
<td>1408</td>
</tr>
<tr>
<td>16.23.3.2.1</td>
<td>Method 1: Aromatization of a Diphosphabicyclo[2.2.2]octa-2,5-diene</td>
<td></td>
<td>1408</td>
</tr>
</tbody>
</table>

Keyword Index | 1411

Author Index | 1465

Abbreviations | 1563
Volume 17:
Six-Membered Hetarenes with Two Unlike or More than Two Heteroatoms and Fully Unsaturated Larger-Ring Heterocycles

Preface .. V

Table of Contents .. VII

Introduction .. 1

17.1 Product Class 1: Six-Membered Hetarenes with Two Unlike Heteroatoms

17.1.1 Product Subclass 1: Two Unlike Oxygen, Sulfur, Selenium, or Tellurium Atoms
S. Yamazaki and K. Yamamoto ... 19

17.1.2 Product Subclass 2: One Oxygen and One Nitrogen or Phosphorus Atom
H. Ulrich .. 55

17.1.3 Product Subclass 3: One Sulfur, Selenium, or Tellurium Atom and One Nitrogen or Phosphorus Atom
H. Ulrich .. 117

17.2 Product Class 2: Six-Membered Hetarenes with Three Heteroatoms

17.2.1 Product Subclass 1: 1,2,3-Triazines and Phosphorus Analogues
H. Döpp and D. Döpp .. 223

17.2.2 Product Subclass 2: 1,2,4-Triazines
C. W. Lindsley and M. E. Layton ... 357

17.2.3 Product Subclass 3: 1,3,5-Triazines and Phosphorus Analogues
S. von Angerer .. 449

17.3 Product Class 3: Six-MemberedHetarenes with More Than Three Heteroatoms
M. Bohle .. 585

17.4 Product Class 4: Seven-Membered Hetarenes with One Heteroatom

17.4.1 Product Subclass 1: Oxepins
S. von Angerer .. 627

17.4.2 Product Subclass 2: Benzoxepins
S. von Angerer .. 653

17.4.3 Product Subclass 3: Thiepins and Selenium Analogues
A. L. Schwan .. 705
<table>
<thead>
<tr>
<th>Section</th>
<th>Product Description</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4.4</td>
<td>Product Subclass 4: Benzothiepins and Selenium/Tellurium Analogues</td>
<td>A. L. Schwan</td>
<td>717</td>
</tr>
<tr>
<td>17.4.5</td>
<td>Product Subclass 5: Azepines, Cyclopentazepines, and Phosphorus Analogues</td>
<td>M. D. Surman and R. H. Hutchings</td>
<td>749</td>
</tr>
<tr>
<td>17.4.6</td>
<td>Product Subclass 6: Benzazepines and Their Group 15 Analogues</td>
<td>J.-P. K. Meigh</td>
<td>825</td>
</tr>
<tr>
<td>17.5</td>
<td>Product Class 5: Seven-Membered Hetarenes with Two or More Heteroatoms</td>
<td>R. J. Herr</td>
<td>929</td>
</tr>
<tr>
<td>17.6</td>
<td>Product Class 6: Eight- and Nine-Membered Hetarenes and Heteroannulenes with One or More Heteroatoms</td>
<td>R. M. Borzilleri</td>
<td>979</td>
</tr>
<tr>
<td>17.7</td>
<td>Product Class 7: Cyclazines</td>
<td>Y. Tominaga</td>
<td>1025</td>
</tr>
<tr>
<td>17.8</td>
<td>Product Class 8: Porphyrins and Related Compounds</td>
<td>K. M. Smith and M. G. H. Vicente</td>
<td>1081</td>
</tr>
<tr>
<td>17.9</td>
<td>Product Class 9: Phthalocyanines and Related Compounds</td>
<td>N. B. McKeown</td>
<td>1237</td>
</tr>
</tbody>
</table>

Keyword Index ... 1369

Author Index ... 1417

Abbreviations ... 1495
Table of Contents

Introduction
S. M. Weinreb and Y. R. Mahajan

17.1 Product Class 1: Six-Membered Hetarenes with Two Unlike Heteroatoms

17.1.1 Product Subclass 1: Two Unlike Oxygen, Sulfur, Selenium, or Tellurium Atoms
S. Yamazaki and K. Yamamoto

17.1.1 Product Subclass 1: Two Unlike Oxygen, Sulfur, Selenium, or Tellurium Atoms

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1.1.1</td>
<td>1,4-Oxathiins</td>
<td>21</td>
</tr>
<tr>
<td>17.1.1.1.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>21</td>
</tr>
<tr>
<td>17.1.1.1.1.1</td>
<td>Method 1: Reaction of Sulfur Dichloride with Divinyl Ether</td>
<td>21</td>
</tr>
<tr>
<td>17.1.1.1.2</td>
<td>Synthesis by Ring Transformation</td>
<td>22</td>
</tr>
<tr>
<td>17.1.1.1.2.1</td>
<td>Method 1: Rearrangement of 1,3-Oxathiolanes</td>
<td>22</td>
</tr>
<tr>
<td>17.1.1.1.3</td>
<td>Aromatization</td>
<td>22</td>
</tr>
<tr>
<td>17.1.1.1.3.1</td>
<td>Method 1: Dehydrochlorination</td>
<td>22</td>
</tr>
<tr>
<td>17.1.1.1.3.2</td>
<td>Method 2: Pummerer Reaction</td>
<td>22</td>
</tr>
<tr>
<td>17.1.1.1.4</td>
<td>Synthesis by Substituent Modification</td>
<td>23</td>
</tr>
<tr>
<td>17.1.1.1.4.1</td>
<td>Addition of Heteroatoms</td>
<td>23</td>
</tr>
<tr>
<td>17.1.1.1.4.1.1</td>
<td>Method 1: Oxidation of a Ring Sulfur</td>
<td>23</td>
</tr>
<tr>
<td>17.1.1.1.4.2</td>
<td>Modification of Substituents</td>
<td>24</td>
</tr>
<tr>
<td>17.1.1.1.4.2.1</td>
<td>Method 1: Condensation Reaction of the Carboxy Group with Aniline Derivatives</td>
<td>24</td>
</tr>
<tr>
<td>17.1.1.2</td>
<td>Annulated 1,4-Oxathiins</td>
<td>24</td>
</tr>
<tr>
<td>17.1.1.2.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>24</td>
</tr>
<tr>
<td>17.1.1.2.1.1</td>
<td>By Annulation to an Arene</td>
<td>24</td>
</tr>
<tr>
<td>17.1.1.2.1.1.1</td>
<td>By Formation of Three Heteroatom—Carbon Bonds</td>
<td>24</td>
</tr>
<tr>
<td>17.1.1.2.1.1.1.1</td>
<td>Fragments O—C—C, C—C, and S</td>
<td>24</td>
</tr>
<tr>
<td>17.1.1.2.1.1.1.1.1</td>
<td>Method 1: Reaction of Monoimines with Phosphorus Pentasulfide</td>
<td>24</td>
</tr>
<tr>
<td>17.1.1.2.1.2</td>
<td>By Formation of Two Heteroatom—Carbon Bonds</td>
<td>25</td>
</tr>
<tr>
<td>17.1.1.2.1.2.1</td>
<td>Fragments S—C—C—O and C—C</td>
<td>25</td>
</tr>
<tr>
<td>17.1.1.2.1.2.1.1</td>
<td>Method 1: Reactions Involving Nucleophilic Sulfur and Oxygen</td>
<td>25</td>
</tr>
<tr>
<td>17.1.1.2.1.2.1.2</td>
<td>Method 2: Cycloaddition Reactions</td>
<td>27</td>
</tr>
<tr>
<td>17.1.1.2.1.2.2</td>
<td>Fragments S—C—C and O—C—C</td>
<td>28</td>
</tr>
</tbody>
</table>
Table of Contents

17.1.2.1.1.2.1 Method 1: Reaction of Spiroepoxyhexadienones with Pentahalobenzenethiols .. 28
17.1.2.1.1.2.2 Method 2: Autocondensation Reaction of a Sulfonated α-Tetralone Derivative ... 29
17.1.2.1.1.2.3 Fragments C—C—O—C—C and S .. 30
17.1.2.1.1.2.3.1 Method 1: Reaction of Diaryl Ether with Sulfur (The Ferrario Reaction) .. 30
17.1.2.1.1.2.3.1.1 Variation 1: Reaction of Diaryl Ether with Sulfur Dichloride .. 31
17.1.2.1.1.2.3.1.2 Variation 2: Reaction of Diaryl Ether with Sulfur Dication .. 31
17.1.2.1.1.2.3.1.3 Method 1: Cyclization of a 1,2-S,O-Substituted Diaryl Ether .. 32
17.1.2.1.1.2.3.2 Fragment O—C—C—S—C—C .. 33
17.1.2.1.1.2.3.2.1 Method 1: Alkylative Cyclization of 2-(Arylsulfonyl)ethanone .. 33
17.1.2.1.1.2.3.2.2 Method 2: Cyclization of Diaryl Sulfides and Sulfoxides .. 34
17.1.2.1.1.2.4 Fragments C—C—S—C—C and O .. 31
17.1.2.1.1.2.4.1 Method 1: Reaction of Bis(chloroaryl) Sulfide with Oxygen Divalent Nucleophiles .. 31
17.1.2.1.1.2.4.2 Method 2: Reaction of Bis(dihydroxyphenyl) Sulfone with Oxidant .. 32
17.1.2.1.1.2.4.3 By Formation of One Heteroatom—Carbon Bond .. 32
17.1.2.1.1.2.4.3.1 Fragment S—C—C—O—C—C .. 32
17.1.2.1.1.2.4.3.1.1 Method 1: Cyclization of a 1,2-S,O-Substituted Diaryl Ether .. 32
17.1.2.1.1.2.4.3.1.2 Method 2: Cyclization of Diaryl Sulfides and Sulfoxides .. 34
17.1.2.1.1.2.4.3.1.3 Method 1: Alkylative Cyclization of 2-(Arylsulfonyl)ethanone .. 33
17.1.2.1.1.2.4.3.1.4 Method 2: Cyclization of Diaryl Sulfides and Sulfoxides .. 34
17.1.2.1.1.2.4.4 By Annulation to the Heterocyclic Ring .. 35
17.1.2.1.1.2.4.4.1 Method 1: Annulation of Heterocycles .. 35
17.1.2.1.1.2.4.4.2 Method 2: Annulation of Carbocycles .. 36
17.1.2.1.1.2.4.4.3 Synthesis by Ring Transformation .. 36
17.1.2.1.1.2.4.4.3.1 Method 1: Ring Enlargement .. 36
17.1.2.1.1.2.4.4.3.2 Method 2: Formal Exchange of Ring Members with Retention of the Ring Size .. 38
17.1.2.1.1.2.4.4.4 Aromatization .. 38
17.1.2.1.1.2.4.4.4.1 Method 1: Elimination from 2,3-Dihydro-1,4-benzoxathiins .. 38
17.1.2.1.1.2.4.4.4.2 Synthesis by Substituent Modification .. 39
17.1.2.1.1.2.4.4.4.3 Substitution of Existing Substituents .. 39
17.1.2.1.1.2.4.4.4.4 Of Hydrogen .. 39
17.1.2.1.1.2.4.4.4.4.1 Method 1: C-Formylation of 1,4-Benzoxathiins .. 39
17.1.2.1.1.2.4.4.4.4.2 Method 2: Electrophilic Substitution of Phenoxathiin .. 39
17.1.2.1.1.2.4.4.4.4.3 Of Metals .. 42
17.1.2.1.1.2.4.4.4.4.3.1 Method 1: Substitution Reactions Involving Organolithium Derivatives .. 42
17.1.2.1.1.2.4.4.4.4.3.2 Method 2: Substitution Reactions Involving Transition-Metal Complexes .. 45
17.1.2.1.1.2.4.4.4.4.3.3 Of Carbon Functionalities .. 45
17.1.2.1.1.2.4.4.4.4.3.3.1 Method 1: Reactions Involving Rearrangement of Nitrogen onto an Annulated Ring Carbon .. 45
17.1.2.1.1.2.4.4.4.4.3.3.2 Method 2: Reactions Involving Decarboxylation at an Annulated Ring Carbon .. 46
<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1.2.4.1.3.3</td>
<td></td>
<td>Method 3:</td>
<td>Reactions Involving Dealkylation at the Ring Sulfur</td>
<td>46</td>
</tr>
<tr>
<td>17.1.2.4.1.4</td>
<td></td>
<td>Of Heteroatoms</td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>17.1.2.4.1.4.1</td>
<td></td>
<td>Method 1:</td>
<td>Replacement of Heteroatoms on an Annulated Ring Carbon</td>
<td>46</td>
</tr>
<tr>
<td>17.1.2.4.1.4.2</td>
<td></td>
<td>Method 2:</td>
<td>Removal of Oxygen from the Ring Sulfur or from an Annulated Ring Nitrogen</td>
<td>47</td>
</tr>
<tr>
<td>17.1.2.4.2</td>
<td></td>
<td>Addition Reactions</td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>17.1.2.4.2.1</td>
<td></td>
<td>Method 1:</td>
<td>Reactions of Phenoxathiins with Alkylating Reagents</td>
<td>48</td>
</tr>
<tr>
<td>17.1.2.4.2.2</td>
<td></td>
<td>Method 2:</td>
<td>Reactions Involving Phenoxathiin Cation Radical</td>
<td>49</td>
</tr>
<tr>
<td>17.1.2.4.2.3</td>
<td></td>
<td>Method 3:</td>
<td>Oxidation of a Ring Sulfur</td>
<td>49</td>
</tr>
<tr>
<td>17.1.2.4.3</td>
<td></td>
<td>Rearrangement of Substituents</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>17.1.2.4.3.1</td>
<td></td>
<td>Method 1:</td>
<td>Reactions Involving Benzene</td>
<td>50</td>
</tr>
<tr>
<td>17.1.2.4.4</td>
<td></td>
<td>Modification of Substituents</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>17.1.2.4.4.1</td>
<td></td>
<td>Method 1:</td>
<td>Reactions Involving Acyl Groups</td>
<td>51</td>
</tr>
</tbody>
</table>

Product Subclass 2: One Oxygen and One Nitrogen or Phosphorus Atom

H. Ulrich

<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1.2.1</td>
<td></td>
<td>1,4-Oxazines</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>17.1.2.1.1</td>
<td></td>
<td>Synthesis by Ring-Closure Reactions</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>17.1.2.1.1.1</td>
<td></td>
<td>By Formation of One O—C and One N—C Bond</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>17.1.2.1.1.1.1</td>
<td></td>
<td>Method 1:</td>
<td>From N-Phenacylideneaniline</td>
<td>55</td>
</tr>
<tr>
<td>17.1.2.1.1.1.2</td>
<td></td>
<td>By Formation of One O—C Bond</td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>17.1.2.1.1.2.1</td>
<td></td>
<td>Method 1:</td>
<td>From N,N-Diphenacylaniline</td>
<td>56</td>
</tr>
<tr>
<td>17.1.2.1.1.2.2</td>
<td></td>
<td>Method 2:</td>
<td>From α-Aminocarboxylic Acid Derivatives</td>
<td>56</td>
</tr>
<tr>
<td>17.1.2.1.1.3</td>
<td></td>
<td>By Formation of One N—C Bond</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>17.1.2.1.1.3.1</td>
<td></td>
<td>Method 1:</td>
<td>From Bis(β-oxoethyl) Ethers and Related Compounds</td>
<td>57</td>
</tr>
<tr>
<td>17.1.2.1.2</td>
<td></td>
<td>Synthesis by Ring Transformation</td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>17.1.2.1.2.1</td>
<td></td>
<td>Method 1:</td>
<td>From 1,4-Dioxanes</td>
<td>58</td>
</tr>
<tr>
<td>17.1.2.2</td>
<td></td>
<td>1,4-Benzoxazines</td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>17.1.2.2.1</td>
<td></td>
<td>Synthesis by Ring-Closure Reactions</td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>17.1.2.2.1.1</td>
<td></td>
<td>By Formation of One O—C and One N—C Bond</td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>17.1.2.2.1.1.1</td>
<td></td>
<td>Method 1:</td>
<td>From Sulfinylamines and Ynamines</td>
<td>59</td>
</tr>
<tr>
<td>17.1.2.2.1.1.2</td>
<td></td>
<td>Method 2:</td>
<td>From Benzo-1,2-quinone Imines and Ynamines</td>
<td>60</td>
</tr>
<tr>
<td>17.1.2.2.1.1.3</td>
<td></td>
<td>Method 3:</td>
<td>From Aminophenols and α-Carbonyl Compounds</td>
<td>61</td>
</tr>
<tr>
<td>17.1.2.2.1.1.3.1</td>
<td></td>
<td>Variation 1:</td>
<td>From α-Halo Esters</td>
<td>61</td>
</tr>
<tr>
<td>17.1.2.2.1.1.3.2</td>
<td></td>
<td>Variation 2:</td>
<td>From α-Halo Ketones</td>
<td>62</td>
</tr>
<tr>
<td>17.1.2.2.1.1.3.3</td>
<td></td>
<td>Variation 3:</td>
<td>From Maleic Anhydride</td>
<td>63</td>
</tr>
<tr>
<td>17.1.2.2.1.1.3.4</td>
<td></td>
<td>Variation 4:</td>
<td>From Ynones, Dimethyl 3-Methoxy-2-oxobutane-1,4-dioate, or Ethyl Ethoxy(imino)acetate</td>
<td>63</td>
</tr>
<tr>
<td>17.1.2.2.1.1.3.5</td>
<td></td>
<td>Variation 5:</td>
<td>From α-Carbonyl Compounds</td>
<td>64</td>
</tr>
</tbody>
</table>
17.1.2.1.2 By Formation of One O—C Bond ... 65
17.1.2.1.2.1 Method 1: From 6,7,8-Trifluoroquinoline-1-acetaldehydes 66
17.1.2.1.2.2 Method 2: By Ring Closure of N-Substituted 2-Aminophenols 66
17.1.2.1.3 By Formation of One N—C Bond ... 67
17.1.2.1.3.1 Method 1: By Ring Closure of O-Substituted 2-Aminophenols 67
17.1.2.1.3.2 Method 2: Reductive Cyclization of 2-Nitrophenols 69
17.1.2.2 Synthesis by Ring Transformation ... 72
17.1.2.2.1 Method 1: By Ring Enlargement ... 72
17.1.2.2.2 Method 2: Heterocyclic Ring Size Retained 73
17.1.2.2.3 Aromatization ... 73
17.1.2.2.3.1 Method 1: By Dehydrogenation ... 73
17.1.2.2.3.1.1 Variation 1: By Oxidation of Dihydro-1,4-benzoxazines 74
17.1.2.2.3.1.2 Variation 2: By Aromatization of 1,4-Benzoxazin-3-ones 74
17.1.2.2.3.2 Method 2: By Elimination .. 75
17.1.2.2.4 Synthesis by Substituent Modification 75
17.1.2.2.4.1 Substitution of Existing Substituents 75
17.1.2.2.4.1.1 Of Hydrogen ... 75
17.1.2.2.4.1.1.1 Method 1: By Alkylation or Acetylation 75
17.1.2.2.4.1.1.2 Method 2: By Bromine ... 76
17.1.2.2.4.1.1.3 Method 3: By Oxygen .. 76
17.1.2.2.4.2 Synthesis by Reduction of 1,4-Benzoxazines 77
17.1.2.2.4.2.1 Method 1: By Hydrogenation ... 77
17.1.2.2.4.2.2 Method 2: By Electrochemical and Chemical Reduction 77
17.1.2.3 Phenoxazines .. 78
17.1.2.3.1 Synthesis by Ring-Closure Reactions ... 79
17.1.2.3.1.1 By Formation of One O—C and Two N—C Bonds 80
17.1.2.3.1.1.1 Method 1: From Nitrosoarenes and 2,5-Dihydroxybenzo-1,4-quinones ... 80
17.1.2.3.1.1.2 Method 2: Nitration of 3-Methoxyphenol 80
17.1.2.3.1.2 By Formation of One O—C and One N—C Bond 80
17.1.2.3.1.2.1 Method 1: From 2-Aminophenols 80
17.1.2.3.1.2.1.1 Variation 1: By Oxidation .. 81
17.1.2.3.1.2.1.2 Variation 2: By Self-Condensation 82
17.1.2.3.1.2.1.3 Variation 3: By Reactions with 2-Chloronitrobenzenes 82
17.1.2.3.1.2.1.4 Variation 4: By Reactions with Pyrocatechol 84
17.1.2.3.1.2.1.5 Variation 5: By Reactions with 2-Hydroxy- or 2-Halobenzo-1,4-quinones ... 85
17.1.2.3.1.2.1.6 Variation 6: By Reactions with Indazole-4,7-diones 92
17.1.2.3.1.2.1.7 Variation 7: By Reactions with Dimethyl 2-Amino-3-oxophenoxazine-1,9-dicarboxylate ... 92
17.1.2.3.1.2.2 Method 2: From Phenols and 1-Nitroso-2-naphthol 93
17.1.2.3.1.2.3 Method 3: From N-Chlorobenzoquinone Imines and Phenols 94
17.1.2.3.1.2.4 Method 4: From Nitrosoanilines and Phenols 95
17.1.2.3.1.3 By Formation of One O—C Bond .. 96
17.1.2.3.1.3.1 Method 1: From (2-Hydroxyaryl)(2-nitroaryl)amines 96
17.1.2.3.1.3.2 Method 2: From Bis(2-alkoxyaryl)amines 96
17.1.2.3.1.3.3 Method 3: From 2,5-Dianilinobenzo-1,4-quinones 97
17.1.2.3.1.4 By Formation of One N—C Bond .. 99
17.1.2.3.1.4.1 Method 1: From Diaryl Ethers .. 99
17.1.2.3.1.4.1.1 Variation 1: By Cyclization of 2-Aminoaryl 2-Haloaryl Ethers 99
17.1.2.3.1.4.1.2 Variation 2: By Cyclization of 2-Aminoaryl 2-Nitroaryl Ethers 101
17.1.2.3.1.4.1.3 Variation 3: By Cyclization of 2-Aminoaryl or 2-Nitroaryl Aryl Ethers 101
17.1.2.3.2 Synthesis by Substituent Modification 102
17.1.2.3.2.1 Substitution of Existing Substituents 102
17.1.2.3.2.1.1 Of Hydrogen ... 102
17.1.2.3.2.1.1.1 Method 1: By Metalation .. 102
17.1.2.3.2.1.1.2 Method 2: By Friedel–Crafts Acylation, Halogenation, or Nitration 103
17.1.2.3.2.1.1.3 Method 3: By Oxidative Substitution 104
17.1.2.3.2.1.2 Of Alkyl Groups ... 105
17.1.2.3.2.1.2.1 Method 1: Demethylation .. 105
17.1.2.3.2.1.3 Of Halogen ... 105
17.1.2.3.2.1.3.1 Method 1: Reductive Dehalogenation 105
17.1.2.3.2.2 Modification of Substituents ... 105
17.1.2.3.2.2.1 Method 1: Reductive O-Methylation of Phenoxazin-3-one 105
17.1.2.4 1,4-Oxaphosphinines and Phenoxaphosphines 106
17.1.2.4.1 Synthesis by Ring-Closure Reactions 106
17.1.2.4.1.1 By Formation of Two O—C Bonds 106
17.1.2.4.1.1.1 Method 1: From Phosphorylethenamines 106
17.1.2.4.1.1.2 Method 2: From Bis(2-oxo-2-phenylethyl)phosphinic acid 106
17.1.2.4.1.2 By Formation of One O—C and One P—C Bond 107
17.1.2.4.1.2.1 Method 1: From Alkynylphosphines and Bromo Ketones 107
17.1.2.4.1.2.2 Method 2: From 1-Phenyl-2-(triphenylphosphonio)ethenolate 107
17.1.2.4.1.3 By Formation of Two P—C Bonds 108
17.1.2.4.1.3.1 Method 1: From Diaryl Ethers .. 108
17.1.2.4.1.3.1.1 Variation 1: From Bis(2-lithiophenyl) Ether 108
17.1.2.4.1.3.1.2 Variation 2: With Phosphorus Chlorides and Aluminum Trichloride 108
17.1.2.4.1.3.1.3 Variation 3: From Diaryl Ether 2-Diazonium Salts 109
17.1.2.4.2 Synthesis by Substituent Modification 110
17.1.2.4.2.1 Substitution of Existing Substituents 110
17.1.2.4.2.1.1 Of Heteroatoms ... 110
17.1.2.4.2.1.1.1 Method 1: By Reduction of 4-Substituted Oxaphosphinines 4-Oxides 110
Product Subclass 3: One Sulfur, Selenium, or Tellurium Atom and One Nitrogen or Phosphorus Atom

H. Ulrich

17.1.3.1 1,4-Thiazines

17.1.3.1.1 Synthesis by Ring-Closure Reactions

17.1.3.1.1.1 Method 1: From Ketones, Aziridine, and Sulfur

17.1.3.1.1.2 Method 2: From β-Aminoacrylates and Sulfur Dichloride or Sulfur Monochloride

17.1.3.1.2 By Formation of One S—C and One N—C Bond

17.1.3.1.2.1 Method 1: From 2-Sulfanylacetamides and 2-Halocarbonyl Compounds

17.1.3.1.2.2 Method 2: From 2-Aminoethanethiols

17.1.3.1.2.3 Method 3: From 1-Aza-4-thiabutadienes and Alkynes or Alkenes

17.1.3.1.2.4 Method 4: From α-Sulfanyl Ketones and Aziridine

17.1.3.1.3 By Formation of Two N—C Bonds

17.1.3.1.3.1 Method 1: From Bis(2-oxoalkyl) Sulfides

17.1.3.1.4 By Formation of One S—C and One C—C Bond

17.1.3.1.4.1 Method 1: From Alkyl [(3-Phenyl-2-propynoyl)anilino]acetates and Aryl Isothiocyanates

17.1.3.1.5 By Formation of Two C—C Bonds

17.1.3.1.5.1 Method 1: From Cyanodithioimidocarbonates and Dimethyloxosulfonium Methyldide

17.1.3.1.6 By Formation of One N—C Bond

17.1.3.1.6.1 Method 1: From (Acetonylsulfanyl)acetamides

17.1.3.2 Synthesis by Ring Transformation

17.1.3.2.1 By Ring Enlargement

17.1.3.2.1.1 Method 1: From 1,3-Thiazoles

17.1.3.2.1.2 Method 2: From 2-Oxazolidinones and Thioglycolates

17.1.3.2.2 Formal Exchange of Ring Members with Retention of the Ring Size

17.1.3.2.2.1 Method 1: From 1,4-Oxathiin-3-carboxamides

17.1.3.2.2.2 Method 2: From 2,5-Diphenyl-1,4-dithiin 1,1,4,4-Tetroxide and Sodium Azide

17.1.3.3 Aromatization

17.1.3.3.1 Method 1: By Deprotonation and S-Alkylation of 2H-1,4-Thiazines

17.1.3.4 Synthesis by Substituent Modification

17.1.3.4.1 Method 1: By Deamination of 3,4-Dihydro-2H-1,4-thiazin-4-amines

17.1.3.4.2 Method 2: By Dealkoxylation of Pyrrolothiazines
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1.3.2 1,4-Benzothiazines and Related Compounds</td>
<td>127</td>
</tr>
<tr>
<td>17.1.3.2.1 Synthesis by Ring-Closure Reactions</td>
<td>127</td>
</tr>
<tr>
<td>17.1.3.2.1.1 Annulation to an Arene or a Hetarene</td>
<td>127</td>
</tr>
<tr>
<td>17.1.3.2.1.1.1 By Formation of One S—C and One N—C Bond</td>
<td>127</td>
</tr>
<tr>
<td>17.1.3.2.1.1.1.1 Method 1: From Benzoquinone Derivatives and 2-Aminoethanethiols</td>
<td>128</td>
</tr>
<tr>
<td>17.1.3.2.1.1.1.1 Variation 1: From Benzo-1,4-quinone Diimines</td>
<td>128</td>
</tr>
<tr>
<td>17.1.3.2.1.1.1.2 Variation 2: From Benzo-1,2-quinones</td>
<td>128</td>
</tr>
<tr>
<td>17.1.3.2.1.1.2 Method 2: From 2-Aminobenzenethiols and a Two-Carbon Component</td>
<td>128</td>
</tr>
<tr>
<td>17.1.3.2.1.1.2.1 Variation 1: From 2-Aminobenzenethiols and Alkynes or Alkenes</td>
<td>129</td>
</tr>
<tr>
<td>17.1.3.2.1.1.2.2 Variation 2: From 2-Aminobenzenethiols and 1,3-Dioxo Compounds</td>
<td>130</td>
</tr>
<tr>
<td>17.1.3.2.1.1.2.3 Variation 3: From 2-Aminobenzenethiols and α-Halo Carbonyl Compounds or Alkynes</td>
<td>131</td>
</tr>
<tr>
<td>17.1.3.2.1.1.2 By Formation of One S—C Bond</td>
<td>137</td>
</tr>
<tr>
<td>17.1.3.2.1.1.2.1 Method 1: From 2-(Acylamino)- or 2-(Alkylideneamino)benzenethiols</td>
<td>137</td>
</tr>
<tr>
<td>17.1.3.2.1.1.2.2 Method 2: From Anilinoquinone-2-thiolates</td>
<td>138</td>
</tr>
<tr>
<td>17.1.3.2.1.1.3 By Formation of One N—C Bond</td>
<td>138</td>
</tr>
<tr>
<td>17.1.3.2.1.1.3.1 Method 1: From α-[(2-Nitrophenvl)sulfanyl] Anhydrides, Acids, and Ketones</td>
<td>138</td>
</tr>
<tr>
<td>17.1.3.2.1.1.3.2 Method 2: Synthesis from (2-Aminophenyl)acetic Acids, (2-Aminophenyl)acetonitriles, and Related Compounds</td>
<td>142</td>
</tr>
<tr>
<td>17.1.3.2.1.1.4 By Formation of One C—C Bond</td>
<td>143</td>
</tr>
<tr>
<td>17.1.3.2.1.1.4.1 Method 1: From 2-(Acylamino)aryl Sulfides</td>
<td>143</td>
</tr>
<tr>
<td>17.1.3.2.1.1.4.2 Method 2: Cyclization of 2-[1-(1,4-Thiazin-3-ylamin0)ethylidene]malononitriles</td>
<td>144</td>
</tr>
<tr>
<td>17.1.3.2.2 Synthesis by Ring Transformation</td>
<td>144</td>
</tr>
<tr>
<td>17.1.3.2.2.1 By Ring Enlargement</td>
<td>144</td>
</tr>
<tr>
<td>17.1.3.2.2.1.1 Method 1: From 2,3-Dihydrobenzothiazoles</td>
<td>144</td>
</tr>
<tr>
<td>17.1.3.2.2.1.2 Method 2: From 1,2,3-Benzodithiazoles</td>
<td>147</td>
</tr>
<tr>
<td>17.1.3.2.2.2 Formal Exchange of Ring Members with Retention of the Ring Size</td>
<td>147</td>
</tr>
<tr>
<td>17.1.3.2.2.2.1 Method 1: From 1,4-Benzoxazines</td>
<td>147</td>
</tr>
<tr>
<td>17.1.3.2.2.3 By Ring Contraction</td>
<td>148</td>
</tr>
<tr>
<td>17.1.3.2.2.3.1 Method 1: From 3,4-Dihydro-2H-1,6-benzothiazocines</td>
<td>148</td>
</tr>
<tr>
<td>17.1.3.2.3 Synthesis by Substituent Modification</td>
<td>148</td>
</tr>
<tr>
<td>17.1.3.2.3.1 Substitution of Existing Substituents</td>
<td>148</td>
</tr>
<tr>
<td>17.1.3.2.3.1.1 Of Hydrogen</td>
<td>148</td>
</tr>
<tr>
<td>17.1.3.2.3.1.1.1 Method 1: By Metals</td>
<td>148</td>
</tr>
<tr>
<td>17.1.3.2.3.1.1.2 Method 2: By Carbon Electrophiles</td>
<td>149</td>
</tr>
<tr>
<td>17.1.3.2.3.1.1.2.1 Variation 1: Acylation</td>
<td>149</td>
</tr>
</tbody>
</table>
17.1.2.3.1.2 Of Halogens ... 152
17.1.2.3.1.3 Method 1: Direct Halogenation 153
17.1.2.3.2 Addition Reactions .. 154
17.1.2.3.2.1 Of Hydrogen .. 154
17.1.2.3.3 Rearrangement of Substituents 157
17.1.2.3.3.1 Method 1: Of an Acetoxy Group 157
17.1.2.3.3.2 Method 2: Of an Alkoxy carbonyl Group 157
17.1.2.3.3.3 Method 3: Of a Methyl Group 158
17.1.2.3.3.4 Method 4: Of an Allyl Group 158
17.1.2.3.3.5 Method 5: Configurational Isomerization 158
17.1.2.3.4 Modification of Substituents 159
17.1.2.3.4.1 Method 1: By Aldolization 159
17.1.2.3.4.2 Method 2: By Lithiation and Electrophilic Attack 159
17.1.3.3 Phenothiazines ... 160
17.1.3.3.1 Synthesis by Ring-Closure Reactions 163
17.1.3.3.1.1 Annulation to an Arene or a Hetarene 163
17.1.3.3.1.1.1 By Formation of Two S—C Bonds 163
17.1.3.3.1.1.1 Method 1: From S-[2-Amino-5-(dimethylamino)phenyl] Hydrogen Thiosulfate and N,N-Dimethylanilinilne 163
17.1.3.3.1.1.2 Method 2: From Arylamines and Sulfur 164
17.1.3.3.1.1.2.1 Variation 1: From Diarylamines and Sulfur 164
17.1.3.3.1.1.2.2 Variation 2: From Oligomeric Diphenylamines and Related Compounds .. 168
17.1.3.3.1.1.2.3 Variation 3: From Hetarylamines 170
17.1.3.3.1.1.2.4 Variation 4: From Diarylamines and Sulfur Dichloride, Thionyl Chloride, or Sulfur Dichloride 171
17.1.3.3.1.1.2.5 Variation 5: From (Arylamino)-1,4-quinones and Sodium Sulfide 172
17.1.3.3.1.1.2 By Formation of One S—C and One N—C Bond 172
17.1.3.3.1.1.2.1 Method 1: From Arylamines and 1-(Anilinosulfanyl)-2-nitrobenzenes ... 172
17.1.3.3.1.1.2.2 Method 2: From Aminoarenethiols 173
17.1.3.3.1.1.2.2.1 Variation 1: From 2-Aminoarenethiols and Quinones 173
17.1.3.3.1.1.2.2.2 Variation 2: From Heterocyclic Quinones 175
17.1.3.3.1.2.3 Variation 3: From 4,8-Bis(alkylamino)naphtho-1,5-quinones 177
17.1.3.3.1.2.4 Variation 4: From 1,3-Diketones and Related Compounds 177
17.1.3.3.1.2.5 Variation 5: From Polycyclic Quinones 178
17.1.3.3.1.2.3 Method 3: From Zinc Aminoarenethiolates and Haloquinones .. 178
17.1.3.3.1.2.3.1 Variation 1: From Chlorohydroquinones 178
17.1.3.3.1.2.3.2 Variation 2: From Haloquinones 179
17.1.3.3.1.3 By Formation of One N—C Bond 183
17.1.3.3.1.3.1 Method 1: From Diaryl Sulfides and Related Compounds 183
17.1.3.3.1.3.1.1 Variation 1: From 2-Azidophenyl Phenyl Sulfides 183
17.1.3.3.1.3.1.2 Variation 2: From 2-Nitrophenyl Phenyl Sulfides 184
17.1.3.3.1.3.1.3 Variation 3: From 2-Aminophenyl 2-Nitrophenyl Sulfides or
 2-(Acylamino)phenyl 2-Nitrophenyl Sulfides 185
17.1.3.3.1.3.1.4 Variation 4: From 2-Aminophenyl 2-Nitrophenyl Sulfides via
 2-Aminobenzenethiol and Halodinitrobenzenes 187
17.1.3.3.1.3.1.5 Variation 5: From 2-Aminophenyl 2-Halophenyl Sulfides 189
17.1.3.3.1.3.1.6 Variation 6: From 2-Aminophenyl and 2-Aminohetaryl 2-Halodiazinyl
 Sulfides .. 192
17.1.3.3.1.3.1.7 Variation 7: From 5-[(2-Aminoaryl)sulfanyl]pyrimidin-4-ol, or from
 6-[(2-Acetylaminophenyl)sulfanyl]-1,3-dimethyluracil 195
17.1.3.3.1.4 Miscellaneous Ring-Closure Reactions 196
17.1.3.3.1.4.1 Method 1: By Thermolysis of 1,2,4-Triazines 196
17.1.3.3.2 Synthesis by Ring Transformation ... 197
17.1.3.3.2.1 By Ring Enlargement ... 197
17.1.3.3.2.1.1 Method 1: Of 2,3-Dihydrobenzothiazoles with N-Bromosuccinimide
 .. 197
17.1.3.3.2.1.2 Method 2: Of 2,3-Dihydrobenzothiazoles with Sulfuryl Chloride .. 197
17.1.3.3.2.1.3 Method 3: Of 1,2,3-Benzothiadiazole 198
17.1.3.3.2.2 Formal Exchange of Ring Members with Retention of the Ring Size 198
17.1.3.3.2.2.1 Method 1: From 10-Chloro-5,10-dihydrophenarsenazine and Sulfuryl
 Chloride ... 198
17.1.3.3.2.3 By Ring Contraction .. 198
17.1.3.3.2.3.1 Method 1: Of Pyrimido[1,5]benzothiazepines 198
17.1.3.3.3 Synthesis by Substituent Modification .. 199
17.1.3.3.3.1 Substitution of Existing Substituents 199
17.1.3.3.3.1.1 Of Hydrogen .. 199
17.1.3.3.3.1.1.1 Method 1: By Metals ... 199
17.1.3.3.3.1.1.2 Method 2: By Acylation or Alkylation 200
17.1.3.3.3.1.1.3 Method 3: By Halogenation .. 201
17.1.3.3.3.1.1.4 Method 4: By Nitration .. 202
17.1.3.3.3.1.1.2 Of Halogen .. 202
17.1.3.3.3.1.2 Method 1: By Metals .. 202
17.1.3.3.3.1.2.2 Method 2: By Hydrogen ... 203
17.1.3.3.3.2 Addition Reactions ... 203

Table of Contents XIX

Science of Synthesis Original Edition Volume 17
© Georg Thieme Verlag KG
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1.3.3.2.1</td>
<td>Of Oxygen</td>
<td>203</td>
</tr>
<tr>
<td>17.1.3.3.3</td>
<td>Modification of Substituents</td>
<td>204</td>
</tr>
<tr>
<td>17.1.3.3.3.1</td>
<td>Method 1: Oxidation of Phenothenazin-3-ols and Related Compounds</td>
<td>204</td>
</tr>
<tr>
<td>17.1.3.3.3.2</td>
<td>Method 2: Reduction of Phenothenazinones and Phenothenazine 5-Oxides</td>
<td>205</td>
</tr>
<tr>
<td>17.1.3.3.3.3</td>
<td>Modification of Substituents</td>
<td>206</td>
</tr>
<tr>
<td>17.1.3.3.3.3.1</td>
<td>Method 1: Oxidation of Phenothiazin-3-ols and Related Compounds</td>
<td>206</td>
</tr>
<tr>
<td>17.1.3.3.3.3.2</td>
<td>Method 2: Reduction of Phenothiazinones and Phenothiazine 5-Oxides</td>
<td>207</td>
</tr>
<tr>
<td>17.1.3.3.4</td>
<td>1,4-Selenazines and Related Compounds</td>
<td>208</td>
</tr>
<tr>
<td>17.1.3.4.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>208</td>
</tr>
<tr>
<td>17.1.3.4.1.1</td>
<td>By Formation of Two Se—C Bonds and One N—C Bond</td>
<td>209</td>
</tr>
<tr>
<td>17.1.3.4.1.1.1</td>
<td>Method 1: From Pentan-3-one, Aziridine, and Selenium</td>
<td>209</td>
</tr>
<tr>
<td>17.1.3.4.1.2</td>
<td>By Formation of Two Se—C Bonds</td>
<td>209</td>
</tr>
<tr>
<td>17.1.3.4.1.2.1</td>
<td>Method 1: From Diarylamines and Selenium Dichloride</td>
<td>209</td>
</tr>
<tr>
<td>17.1.3.4.1.3</td>
<td>By Formation of One Se—C and One N—C Bond</td>
<td>210</td>
</tr>
<tr>
<td>17.1.3.4.1.3.1</td>
<td>Method 1: From 2-Aminoareneselenols</td>
<td>210</td>
</tr>
<tr>
<td>17.1.3.4.1.3.2</td>
<td>Method 2: From 3,3¢-Diselane-1,2-diylbis(6-methylaniline) and N,N-Dimethyl-4-nitrosoaniline</td>
<td>210</td>
</tr>
<tr>
<td>17.1.3.5</td>
<td>1,4-Tellurazines</td>
<td>211</td>
</tr>
<tr>
<td>17.1.3.5.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>211</td>
</tr>
<tr>
<td>17.1.3.5.1.1</td>
<td>By Formation of Two Te—C Bonds</td>
<td>211</td>
</tr>
<tr>
<td>17.1.3.5.1.1.1</td>
<td>Method 1: From Diallylamine and Tellurium Tetrabromide</td>
<td>211</td>
</tr>
<tr>
<td>17.1.3.5.1.1.2</td>
<td>Method 2: From Diarylamines</td>
<td>211</td>
</tr>
<tr>
<td>17.1.3.5.6</td>
<td>1,4-Thiaphosphinines</td>
<td>212</td>
</tr>
<tr>
<td>17.1.3.5.6.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>212</td>
</tr>
<tr>
<td>17.1.3.5.6.1.1</td>
<td>By Formation of Two S—C Bonds</td>
<td>212</td>
</tr>
<tr>
<td>17.1.3.5.6.1.1.1</td>
<td>Method 1: From Dialkynylphosphine Oxides and Sodium Sulfide</td>
<td>212</td>
</tr>
<tr>
<td>17.1.3.5.6.1.1.2</td>
<td>Method 2: From Diacylphosphine Oxides and Phosphorus Pentasulfide</td>
<td>212</td>
</tr>
<tr>
<td>17.1.3.5.6.1.2</td>
<td>By Formation of Two P—C Bonds</td>
<td>212</td>
</tr>
<tr>
<td>17.1.3.5.6.1.2.1</td>
<td>Method 1: From Diaryl Sulfides with Phosphorus Trichloride and Aluminum Trichloride</td>
<td>212</td>
</tr>
<tr>
<td>17.1.3.5.6.1.2.2</td>
<td>Method 2: From Bis(2-dilithiophenyl) Sulfone and Ethyl Dichloridophosphate</td>
<td>212</td>
</tr>
<tr>
<td>17.1.3.7</td>
<td>1,4-Selenaphosphinines</td>
<td>213</td>
</tr>
<tr>
<td>17.1.3.7.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>213</td>
</tr>
<tr>
<td>17.1.3.7.1.1</td>
<td>By Formation of Two Se—C Bonds</td>
<td>213</td>
</tr>
<tr>
<td>17.1.3.7.1.1.1</td>
<td>Method 1: From Dialkynylphosphine Oxides and Disodium Diselenide</td>
<td>213</td>
</tr>
<tr>
<td>17.1.3.8</td>
<td>1,4-Telluraphosphinines</td>
<td>214</td>
</tr>
<tr>
<td>17.1.3.8.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>214</td>
</tr>
<tr>
<td>17.1.3.8.1.1</td>
<td>By Formation of Two Te—C Bonds</td>
<td>214</td>
</tr>
<tr>
<td>17.1.3.8.1.1.1</td>
<td>Method 1: From Dialkynylphosphine Oxides and Sodium Telluride</td>
<td>214</td>
</tr>
</tbody>
</table>
Product Class 2: Six-Membered Hetarenes with Three Heteroatoms

Product Subclass 1: 1,2,3-Triazines and Phosphorus Analogues
H. Döpp and D. Döpp

Monocyclic 1,2,3-Triazines

Synthesis by Ring-Closure Reactions

By Formation of One N—N and One N—C Bond

Method 1: Condensations of 3-Diazo-2-oxopropanoic Acid Derivatives with Hydrazine Hydrate or Hydroxylamine

By Formation of Two N—C Bonds

Method 1: Cyclization of Triazenes with (Chloroformyl)ketenes

By Formation of One N—N Bond

Method 1: Cyclization of \(N\)-Benzyl-3-diazo-2-oxopropanamide

Synthesis by Ring Transformation

By Ring Enlargement

Method 1: From 2-Chloro-2,3-diphenyl-2\(H\)-azirine with Diazomethane

Variation 1: From 4-Methyl-\(N\)¢-[aryl(3-arylaziridin-2-yl)methylene]-benzenesulfonylhydrazides

Method 2: From Tetrahalocyclopropenes and Trimethylsilyl Azide

Method 3: By Rearrangement of Cyclopropenyl Azides

Method 4: By Oxidation of Pyrazol-1-amines

Variation 1: From Pyrazol-1-amines by Oxidation and Halogenation

Method 5: Reactions of Substituted 1,2,3-Triazole 1-Oxides with Dialkyl Acetylenedicarboxylates

Variation 1: By Thermal Rearrangement of Pyrrolo[2,3-\(d\)][1,2,3]triazoles

Aromatization

Method 1: Dehydrogenation and Oxidation of 2,5-Dihydro-1,2,3-triazines

Substitution of Existing Substituents

Of Hydrogen

Method 1: Metalation

Method 2: Introduction of Amide Functions at C5

Method 3: Vicarious Nucleophilic Substitution

Method 4: C-Alkylation with Silyl Enol Ethers or Ketene Silyl Acetals in the Presence of 1-Chloroethyl Chloroformate

Variation 1: C-Alkylation (Arylation) of 2-Methyl-1,2,3-triazinium Iodides

Method 5: Halogenation

Method 6: Hydroxylation and Oxidation

Of Metals
17.2.1.1.4.2.
Method 1: Protonation of 1,2,3-Triazines by Tetrafluoroboric Acid 253
Method 2: N-Acylation, N-Alkylation, and N-Arylation 254
Method 3: N-Methylation 256
Method 4: Demethylation and Demethylation 256
Method 5: Oxidation to N-Oxides 256
Method 6: N-Amination 257
Method 7: Reduction of 1,2,3-Triazine N-Oxides 258
Method 8: Diazotization of 2-Amino-4,6-dimethyl-1,2,3-triazinium 258
Method 9: Modification of Substituents 258
Method 10: Oxidation of α-Hydroxy-Substituted Benzyl Groups 258
Method 11: Acylation of 4,6-Disubstituted 2-Amino-1,2,3-triaziniums 259
17.2.1.2.
Annulated 1,2,3-Triazines 260
17.2.1.2.1.
Synthesis by Ring-Closure Reactions 260
17.2.1.2.1.1.
By Formation of Two N—N Bonds 260
17.2.1.2.1.1.1.
Method 1: Reaction of (2-Aminophenyl)arylimines with Nitrous Acid 260
Variation 1: Reaction of 2-Aminoaryl Oximes with Nitrous Acid 260
Variation 2: Reaction of 2-Aminobenzamides and Aminohetarencarboxamides with Nitrous Acid 260
17.2.1.2.1.1.2.
Method 2: Reaction of 2-Aminobenzonitriles and Related Compounds with Nitric Acid 261
17.2.1.2.1.1.2.1.
Variation 1: Reaction of 2-Aminoarenehydroxamic Acids and 2-Aminoarencarbohydrazides with Nitrous Acid 265
Variation 2: Reaction of 2-Aminothiobenzamides and Aminohetarencarbothioamides with Nitrous Acid 266
Variation 3: Reaction of 2-Aminobenzonitriles and Related Compounds with Nitrous Acid 267
Variation 4: Reaction of Aminohetarencarbonitriles with Nitrous Acid and Hydrochloric Acid 268
Variation 5: Reaction of Aminohetarencarbonitriles with Nitrous Acid and Hydrochloric Acid 268
17.2.1.2.1.1.3.
Method 3: Cyclization of 2-Aminobenzonitriles and Related Compounds with Nitric Acid 269
17.2.1.2.1.1.4.
Method 4: Diazotization of Naphthalene-1,8-diamines 270
Variation 1: Diazotization of (Aminohetaryl)razoles 271
17.2.1.2.1.1.4.2.
Variation 2: Diazotization of 2-(2-Aminophenyl)pyridines 274
17.2.12.1.1.4.3 Variation 3: Diazotization of 2-(2-Aminophenyl)quinazolin-4-amines and 2-(2-Aminophenyl)-1,3,5-triazine-4,6-diamines 275

17.2.12.1.1.2 By Formation of One N—N and One N—C Bond 275

17.2.12.1.1.2.1 Method 1: Diazotization of Ethyl Aminohetarenecarboxylates and Alkyl 2-Aminobenzacarboxylates/Cyclization with Ammonia and Primary Amines 275

17.2.12.1.1.2.1.1 Variation 1: Diazotization of 2-Aminobenzonitrile or Aminohetarencarbonitriles/Cyclization with Primary Amines 279

17.2.12.1.1.2.2 Method 2: Nitrosation of Methylhetarenamines 280

17.2.12.1.1.2.2.1 Variation 1: Nitrosation of Ethyl (1-Methylindol-2-yl)acetate 282

17.2.12.1.1.3 By Formation of Two N—C Bonds 282

17.2.12.1.1.3.1 Method 1: Cyclization of Pyrazol-1-amines and 1,2,3-Triazol-N-arnines with C—C—C Fragments 282

17.2.12.1.1.4 By Formation of One N—N Bond 284

17.2.12.1.1.4.1 Method 1: Oxidation of 2-(Aminophenyl) Ketone Hydrazones 284

17.2.12.1.1.4.2 Method 2: Oxidation of 2-Nitrobenzaldehyde Hydrazones 284

17.2.12.1.1.4.3 Method 3: Cyclization of N-Aroyl-2-azidobenzamides 285

17.2.12.1.1.4.4 Method 4: Cyclization of Diazaoazolecarboxamides 286

17.2.12.1.1.4.4.1 Variation 1: Cyclization of 5-Diazoimidazole-4-carbonitrile 288

17.2.12.1.1.5 By Formation of One N—C Bond 288

17.2.12.1.1.5.1 Method 1: Cyclization of Azidohetarenecarbonyl Compounds 288

17.2.12.1.1.5.2 Method 2: Cyclization of Pyrazol-1-ylaminomethylene Meldrum Acid 289

17.2.12.1.1.6 By Formation of One C—C Bond 289

17.2.12.1.1.6.1 Method 1: Cyclization of 1-Aryl-3,3-dialkyltriazenes 289

17.2.12.1.2 By Annulation to the 1,2,3-Triazine Ring 290

17.2.12.1.2.1 Method 1: Annulation with (Chlorocarbonyl)phenylketene 290

17.2.12.1.2.2 Method 2: Cyclization of Annulated N-(2-Nitrophenyl)-1,2,3-triazines 290

17.2.12.1.2.3 Method 3: Reaction of 1,2,3-Benzotriazin-4(3H)-one or 1,2,3-Benzotriazine-4(3H)-thione with α-Halo Ketones 290

17.2.12.1.2.4 Method 4: Cyclization of 4-(ω-Chloroalkylamino)pyrimido[5,4-d]-[1,2,3]triazines 291

17.2.12.1.2.5 Method 5: Condensation Reactions of Annulated 4-Hydrizin-1,2,3-triazines 291

17.2.12.1.2.6 Method 6: Thermolysis of 1,2,3-Benzotriazin-4(3H)-one 292

17.2.12.1.2.7 Method 7: Condensation Reactions of 4-Aroyl-5-ethoxy-1,2,3-triazines 292

17.2.12.2 Synthesis by Ring Transformation 293

17.2.12.2.1 Method 1: From 3-(Aryldiazenyl)-2,1-benzisoxazoles 293

17.2.12.2.2 Method 2: From Annulated Pyrazol-N-arnines 293

17.2.12.2.3 Method 3: From Annulated 1,2,3-Triazolium-1-arylimides 295

17.2.12.2.4 Method 4: From Imidazo[4,5-d][1,2,3]thiadiazin-4-imines 296

17.2.12.2.5 Method 5: From N-Aminoquinazolin-2-ones and Related Compounds 296

17.2.12.3 Aromatization 297

17.2.12.4 Synthesis by Substituent Modification 298
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.2.1.2.4.1</td>
</tr>
<tr>
<td>17.2.1.2.4.1.1</td>
</tr>
<tr>
<td>17.2.1.2.4.1.1.1</td>
</tr>
<tr>
<td>17.2.1.2.4.1.1.2</td>
</tr>
<tr>
<td>17.2.1.2.4.1.1.3</td>
</tr>
<tr>
<td>17.2.1.2.4.1.1.4</td>
</tr>
<tr>
<td>17.2.1.2.4.1.1.5</td>
</tr>
<tr>
<td>17.2.1.2.4.1.1.6</td>
</tr>
<tr>
<td>17.2.1.2.4.1.1.7</td>
</tr>
<tr>
<td>17.2.1.2.4.1.2</td>
</tr>
<tr>
<td>17.2.1.2.4.1.2.1</td>
</tr>
<tr>
<td>17.2.1.2.4.1.3</td>
</tr>
<tr>
<td>17.2.1.2.4.1.3.1</td>
</tr>
<tr>
<td>17.2.1.2.4.1.3.1.1</td>
</tr>
<tr>
<td>17.2.1.2.4.1.3.1.2</td>
</tr>
<tr>
<td>17.2.1.2.4.1.3.2</td>
</tr>
<tr>
<td>17.2.1.2.4.1.3.2.1</td>
</tr>
<tr>
<td>17.2.1.2.4.1.3.2.2</td>
</tr>
<tr>
<td>17.2.1.2.4.1.3.3</td>
</tr>
<tr>
<td>17.2.1.2.4.1.3.4</td>
</tr>
<tr>
<td>17.2.1.2.4.1.3.5</td>
</tr>
<tr>
<td>17.2.1.2.4.1.3.6</td>
</tr>
<tr>
<td>17.2.1.2.4.2</td>
</tr>
<tr>
<td>17.2.1.2.4.2.1</td>
</tr>
<tr>
<td>17.2.1.2.4.2.2</td>
</tr>
<tr>
<td>17.2.1.2.4.2.3</td>
</tr>
<tr>
<td>17.2.1.2.4.3</td>
</tr>
<tr>
<td>17.2.1.2.4.3.1</td>
</tr>
<tr>
<td>17.2.1.2.4.3.2</td>
</tr>
<tr>
<td>17.2.1.2.4.4</td>
</tr>
<tr>
<td>17.2.1.2.4.4.1</td>
</tr>
<tr>
<td>17.2.1.2.4.4.2</td>
</tr>
<tr>
<td>17.2.1.2.4.4.3</td>
</tr>
<tr>
<td>17.2.1.2.4.4.4</td>
</tr>
<tr>
<td>17.2.1.2.4.4.5</td>
</tr>
<tr>
<td>17.2.1.2.4.4.6</td>
</tr>
<tr>
<td>17.2.1.3</td>
</tr>
<tr>
<td>17.2.1.3.1</td>
</tr>
</tbody>
</table>
17.2.1.3.1.1 By Formation of One P—C and One C—C Bond .. 317
17.2.1.3.1.1 Method 1: Reaction of N-Phosphino-C-thiophosphoranylnitrilimine with Dimethyl Acetylenedicarboxylate .. 317
17.2.1.4 Annulated 1,2,3\(\lambda^3\)-Diazaphosphinines ... 318
17.2.1.4.1 Synthesis by Ring-Closure Reactions ... 318
17.2.1.4.1.1 By Formation of One N—P and One P—C Bond ... 318
17.2.1.4.1.1.1 Method 1: Cyclization of Hetarencarbaldehyde Phenylhydrazones with Phosphorus Bromides ... 318
17.2.1.5 Monocyclic 1,3,2\(\lambda^3\)-Diazaphosphinines and 1,3,2-Diazaphosphinines 320
17.2.1.5.1 Synthesis by Ring-Closure Reactions ... 320
17.2.1.5.1.1 By Formation of Two N—P Bonds .. 320
17.2.1.5.1.1.1 Method 1: From Malononitriles and Phosphorus Pentachloride 320
17.2.1.5.1.1.1 Variation 1: From Malononitrile and Tetrachlorophosphoranes 321
17.2.1.5.1.2 Method 2: From Substituted 3-Aminopropenenitriles and Tetra- or Trichlorophosphorane ... 322
17.2.1.5.1.3 Method 3: From Substituted 1-Azabutadien-4-amines and Various Phosphorus Chlorides ... 323
17.2.1.5.1.2 By Formation of One N—P and One C—C Bond ... 324
17.2.1.5.1.2.1 Method 1: From (1,1-Dichloroalkyl)phosphorimidic Acid Trichlorides and Alkynitriles or Propenenitrile .. 324
17.2.1.5.1.3 By Formation of One N—P Bond .. 325
17.2.1.5.1.3.1 Method 1: Cyclization of (2-Cyanoalk-1-enyl)phosphorimidic Acid Trichlorides ... 325
17.2.1.5.2 Synthesis by Ring Transformation ... 326
17.2.1.5.2.1 Method 1: From 1,3,2-Diazatitanacyclohexadienes with Phosphorus Trichloride ... 326
17.2.1.5.3 Synthesis by Substituent Modification ... 326
17.2.1.5.3.1 Substitution of Existing Substituents .. 326
17.2.1.5.3.1.1 Of Hydrogen ... 326
17.2.1.5.3.1.1 Method 1: By Chlorination ... 326
17.2.1.5.3.1.2 Of Heteroatoms .. 327
17.2.1.5.3.1.2 Method 1: Replacement of Chloro Substituents by Oxygen Functionalities ... 327
17.2.1.5.3.1.2 Method 2: Replacement of Chloro Substituents by Amino Groups 329
17.2.1.5.6 Annulated 1,3,2\(\lambda^3\)-Diazaphosphinines ... 330
17.2.1.6.1 Synthesis by Ring-Closure Reactions ... 330
17.2.1.6.1.1 By Annulation to a Heterocycle or Carbocycle ... 330
17.2.1.6.1.1 By Formation of Two N—P Bonds .. 330

Table of Contents
17.2.1.6.1.1.1 Method 1: Cyclization of Aminohetarenecarboxamides, Aminohetarenecarbothioamides, 2-Aminobenzamides, and Related Compounds with Phosphorus(V) Reagents 330
17.2.1.6.1.1.1 Variation 1: Cyclization of Aminohetarenecarbonitriles with Lawesson’s Reagent 331
17.2.1.6.1.2 Method 2: Cyclization of 2-Aminobenzamides with Phosphorus Trichloride 332
17.2.1.6.1.2.1 Variation 1: Cyclization of 2-[(ω-Hydroxyalkyl)amino]benzamides with Tris(diethylamino)phosphine 334
17.2.1.6.1.3 Method 3: Cyclization of Naphthalene-1,8-diamine with Phosphorus(V) Dichlorides 334
17.2.1.6.1.2 By Formation of One N—P Bond 335
17.2.1.6.1.2.1 Method 1: Cyclization of \(N\)-(2-Cyanophenyl)phosphinimidic Acid Chlorides 335
17.2.1.6.1.3 By Formation of One N—C Bond 336
17.2.1.6.1.3.1 Method 1: Cyclization of \(N\)-(Trimethylsilyl)-\(N\)-(phosphoranyl)benzamides 336
17.2.1.6.2 By Annulation to the 1,3,2\(\lambda^5\)-Diazaphosphinine Ring 337
17.2.1.6.2.1 Method 1: Cyclization of 1- or 3-(ω-Haloalkyl)-1,3,2\(\lambda^5\)-benzodiazaphosphinines 337
17.2.1.6.2.2 Method 2: Cyclization of 4-Chloro-1,3,2\(\lambda^5\)-diazaphosphinine-5-carbonitriles with Hydrazines 338
17.2.1.6.2 Synthesis by Substituent Modification 338
17.2.1.6.2.1 Substitution of Existing Substituents 338
17.2.1.6.2.1.1 Of Hydrogen 338
17.2.1.6.2.1.1 Method 1: Substitution at Phosphorus with Carbon Functional Groups 338
17.2.1.6.2.1.2 Of Heteroatoms 339
17.2.1.6.2.1.2.1 Method 1: Replacement of Chloro Substituents by Amino Groups 339
17.2.1.6.2.1.2.2 Method 2: Replacement of Alkylsulfanyl Substituents by Alkyl, Alkoxy, or Amino Groups 340
17.2.1.6.2.2 Modification of Substituents 340
17.2.1.6.2.2.1 Method 1: Alkylation of Sulfanyl and Thioxo Groups 340
17.2.1.7 Monocyclic 1,2\(\lambda^5\),6\(\lambda^5\)-Azadiphosphinines 341
17.2.1.7.1 Synthesis by Ring-Closure Reactions 341
17.2.1.7.1.1 By Formation of Two P—C Bonds 341
17.2.1.7.1.1 Method 1: Cyclization of Propenes with Diphosphazanes 341
17.2.1.8 Monocyclic 1\(\lambda^5\),2,3\(\lambda^5\)-Triphosphinines 343
17.2.1.8.1 Synthesis by Ring-Closure Reactions 343
17.2.1.8.1.1 By Formation of Two P—P Bonds 343
17.2.1.8.1.1 Method 1: Cyclization of 3-(Diphenylphosphino)-2-[(diphenylphosphino)-methyl]prop-1-ene with Phosphorus Trichloride 343
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Subsection</th>
<th>Method</th>
<th>Reactions</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.2.2</td>
<td>Product Subclass 2: 1,2,4-Triazines</td>
<td>C. W. Lindsley and M. E. Layton</td>
<td>Monocyclic 1,2,4-Triazines</td>
<td></td>
<td>357</td>
</tr>
<tr>
<td>17.2.2.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td></td>
<td></td>
<td></td>
<td>361</td>
</tr>
<tr>
<td>17.2.2.1.1</td>
<td>By Formation of Three N—C Bonds</td>
<td></td>
<td></td>
<td></td>
<td>361</td>
</tr>
<tr>
<td>17.2.2.1.1.1</td>
<td>Method 1: Fragments N—N—C, C—C, and N</td>
<td></td>
<td></td>
<td></td>
<td>361</td>
</tr>
<tr>
<td>17.2.2.1.1.1.1</td>
<td>Variation 1: Microwave-Assisted Reactions of Phenacyl Halides with Acylhydrazides</td>
<td></td>
<td></td>
<td></td>
<td>362</td>
</tr>
<tr>
<td>17.2.2.1.1.2</td>
<td>Method 2: Condensation of 1,2-Dicarbonyl Compounds with Acylhydrazides and Ammonium Acetate</td>
<td></td>
<td></td>
<td></td>
<td>363</td>
</tr>
<tr>
<td>17.2.2.1.1.2.1</td>
<td>Variation 1: Microwave-Assisted Condensation of 1,2-Dicarbonyl Compounds, Acylhydrazides, and Ammonium Acetate</td>
<td></td>
<td></td>
<td></td>
<td>364</td>
</tr>
<tr>
<td>17.2.2.1.2</td>
<td>By Formation of Two N—C Bonds</td>
<td></td>
<td></td>
<td></td>
<td>365</td>
</tr>
<tr>
<td>17.2.2.1.2.1</td>
<td>Fragments N—N—C—N and C—C</td>
<td></td>
<td></td>
<td></td>
<td>365</td>
</tr>
<tr>
<td>17.2.2.1.2.1.1</td>
<td>Method 1: Reactions of 1,2-Dicarbonyl Compounds with Amidrazones</td>
<td></td>
<td></td>
<td></td>
<td>365</td>
</tr>
<tr>
<td>17.2.2.1.2.1.1.1</td>
<td>Variation 1: Reactions of 1,2-Dicarbonyl Compounds with Semicarbazides, Thiosemicarbazides, or Selenosemicarbazides</td>
<td></td>
<td></td>
<td></td>
<td>367</td>
</tr>
<tr>
<td>17.2.2.1.2.1.1.2</td>
<td>Variation 2: Reactions of 1,2-Dicarbonyl Compounds with Guanidin-2-amines or Guanidine-1,2-diamines</td>
<td></td>
<td></td>
<td></td>
<td>368</td>
</tr>
<tr>
<td>17.2.2.1.2.1.2</td>
<td>Method 2: Cyclization of Hydroxyamidrazones with 1,2-Diketones</td>
<td></td>
<td></td>
<td></td>
<td>368</td>
</tr>
<tr>
<td>17.2.2.1.2.1.3</td>
<td>Method 3: Cyclization of Bis(arylidene)- or Bis(alkylidene)acetone Diaminomethylenehydrazones</td>
<td></td>
<td></td>
<td></td>
<td>369</td>
</tr>
<tr>
<td>17.2.2.1.2.1.4</td>
<td>Method 4: Reactions of Guanidin-2-amines with 1,2-Dicarbonyl Equivalents</td>
<td></td>
<td></td>
<td></td>
<td>369</td>
</tr>
<tr>
<td>17.2.2.1.2.1.4.1</td>
<td>Variation 1: Cyclization of 1,2-Diketone Monooximes with Amidrazones and Related Compounds</td>
<td></td>
<td></td>
<td></td>
<td>370</td>
</tr>
<tr>
<td>17.2.2.1.2.1.5</td>
<td>Method 5: Reactions of Acyl Nitriles with Amidrazones or Guanidin-2-amines</td>
<td></td>
<td></td>
<td></td>
<td>371</td>
</tr>
<tr>
<td>17.2.2.1.2.1.6</td>
<td>Method 6: Synthesis from Phenacyl Bromides and 3-Methylisothiosemicarbazides</td>
<td></td>
<td></td>
<td></td>
<td>371</td>
</tr>
<tr>
<td>17.2.2.1.2.1.7</td>
<td>Method 7: Reactions of Diazo-1,2-diazoles and Electron-Rich Dipolarophiles</td>
<td></td>
<td></td>
<td></td>
<td>371</td>
</tr>
<tr>
<td>17.2.2.1.2.1.7.1</td>
<td>Variation 1: From Activated Methylene Compounds</td>
<td></td>
<td></td>
<td></td>
<td>372</td>
</tr>
<tr>
<td>17.2.2.1.2.2</td>
<td>Fragments C—N—N—N and C—N</td>
<td></td>
<td></td>
<td></td>
<td>373</td>
</tr>
<tr>
<td>17.2.2.1.2.2.1</td>
<td>Method 1: Reactions of 2-Hydrazono Ketones with Amides and Imidates</td>
<td></td>
<td></td>
<td></td>
<td>373</td>
</tr>
<tr>
<td>17.2.2.1.2.2.2</td>
<td>Method 2: Cyclization of Nitrones with Hydrazine, then Oxidation</td>
<td></td>
<td></td>
<td></td>
<td>374</td>
</tr>
<tr>
<td>17.2.2.1.2.2.4</td>
<td>Fragments N—C—N—N and C</td>
<td></td>
<td></td>
<td></td>
<td>374</td>
</tr>
</tbody>
</table>
Method 1: Reactions of Ethanedial Hydrazone Oximes with Ortho Esters or Related One-Carbon Donors

Variation 1: Condensation of Hydrazono(phenyl)acetaldehyde Oxime with Aldehydes

Method 2: Synthesis of [1,2,3]Triazolo[5,1-f][1,2,4]triazine

Method 3: Cyclization of 4-Hydrazonepyrazol-3(4H)-amines with Acyl Nitriles

Method 4: Reactions of Iminophosphoranes with Isocyanates

Fragments C—C—N—N—C and N

Method 1: Cyclization of 2-Acylhydrazone Ketones with Ammonia or Ammonium Acetate

Variation 1: Cyclization of (N,N-Dimethylamino)ethylenehydrazones and Related Compounds with Ammonium Acetate

Method 2: Cyclization of 1,2-Diketone Monohydrazones with Hydroxylamine

Method 3: Reactions of 3,5-Disubstituted 4-Nitrosopyrazoles with Phosphorus Pentachloride

Method 4: Cyclization of Uracil Hydrazones with Potassium Nitrate

Variation 1: Microwave Reactions of 2-Hydrazinoquinolines with Nitrous Acid

Method 5: Reaction of 1-Phenyl-3-(pyrrol-1-yl)pyrazol-4-amine with Nitrous Acid

By Formation of One N—C Bond

Fragment C—C—N—N—C

Method 1: Photolysis of 1,2-Bis(2-diazido-1-phenylethylidene)diazine

Method 2: Cyclization of N-(1-Phenylethylidene)guanidin-2-amines

Method 3: Cyclization of 1-Cyanoalkanone 1-Aminoalkylidenehydrazones

Method 1: Cyclization of \(\alpha-\{1,2\text{-Bis(ethoxycarbonyl)hydrazino}\}-\alpha-\{\text{ethoxycarbonyl}\}\)acetimidamide

Variation 1: Cyclization of 3-(Acylhydrazino)pyridin-2-amines

Annulation by the Formation of a Second Heterocyclic Ring

Method 1: From 1,2,4-Triazine-5,6-diamines

Method 2: From 3-Hydrazino-1,2,4-triazines

Variation 1: Synthesis of 1,2,4-Triazolo[3,4-c][1,2,4]triazine 7-Oxide

Method 3: Synthesis of Pyrazino[2,3-e][1,2,4]triazines

Method 4: Cyclization of 5-Acyl-1,2,4-triazines with Arylhydrazines

Method 5: Cyclization of 3-Allylamino-1,2,4-triazine with Bromine

Synthesis by Ring Transformation

Method 1: Oxidation of Imidazole-1,2-diamines

Method 2: Acidic Rearrangement of 2-(Hydroxyimino)imidazol-5-imines
Method 3: Reactions of Pyrazolo[3,4-e][1,2,4]oxadiazine with Amines .. 387

Method 4: Reactions of 1,2,4,5-Tetrazines with Imidates or Thioimidates .. 387

Variation 1: Reactions of 1,2,4,5-Tetrazines with Cyanimides .. 388

Method 5: Intramolecular Cycloaddition of Cyano-1,2,4,5-tetrazines ... 389

Method 6: Reactions of 1,2,4,5-Tetrazines with N-(Trimethylsilyl)aldimines Followed by Oxidation ... 389

Variation 1: Reactions of 1,2,4,5-Tetrazines with Benzaldehyde O-Methyloximes .. 390

Method 7: Reactions of 1,2,4,5-Tetrazines with Dimethylamine .. 390

Aromatization .. 390

Method 1: Conversion of 1,2,4-Triazin-5(2H)-ones or 1,2,4-Triazine-5(2H)-thiones into 1,2,4-Triazines ... 391

Synthesis by Substituent Modification .. 392

Substitution of Existing Substituents ... 392

Of Hydrogen .. 392

Method 1: Lithiation ... 392

Method 2: Reactions with Grignard Reagents .. 393

Variation 1: Reactions with Enolate Anions ... 394

Variation 2: Reactions with Nitroalkanes and Base .. 395

Variation 3: Reactions with Chloromethyl Phenyl Sulfone and Base ... 395

Method 3: Reactions with Hydrogen Cyanide .. 396

Method 4: Vicarious Nucleophilic Substitution .. 396

Method 5: Dimerization to 5,5'-Bi(1,2,4-triazines) .. 398

Method 6: Coupling with Arenes and Indoles .. 398

Method 7: Electrophilic Halogenation of 1,2,4-Triazine N-Oxides .. 399

Method 8: By Nucleophilic Substitution with Ammonia, Amines, and Related Nucleophiles 399

Variation 1: Other Chichibabin-Type Reactions ... 400

Variation 2: Reactions with Hydrazine ... 401

Variation 3: C3-Amination of 1,2,4-Triazine 4-Oxides .. 401

Of Carbon Functionalities .. 402

Method 1: Decarboxylation of 1,2,4-Triazine-3-carboxylic Acid ... 402

Method 2: Reactions of 3-Trichloromethyl-1,2,4-triazines with Nucleophiles .. 402

Method 3: Reactions of 1,2,4-Triazinecarbonitriles with Nucleophiles .. 402

Of Heteroatoms ... 403

Method 1: Reactions of Chloro-1,2,4-triazines with Nucleophiles ... 403

Variation 1: Reactions of 3-Bromo-1,2,4-triazine 2-Oxides with Nucleophiles .. 404

Variation 2: Reactions of Alkoxy-1,2,4-triazines with Nucleophiles .. 404

Variation 3: Reactions of 3-Substituted 1,2,4-Triazine N-Oxides with Nucleophiles 405
17.2.1.5.1.3.1.4 Variation 4: Reactions of 3-(Methylsulfonyl)-1,2,4-triazines with Nucleophiles .. 405
17.2.1.5.1.3.1.5 Variation 5: Reactions of 3-(Alkylsulfonyl)-1,2,4-triazines with Nucleophiles .. 405
17.2.1.5.1.3.2 Method 2: Suzuki Coupling Reactions with 3-(Alkylsulfonyl)-1,2,4-triazines .. 406
17.2.1.5.1.3.3 Method 3: By Diazotization .. 407
17.2.1.5.2 Addition Reactions ... 407
17.2.1.5.2.1 Method 1: Synthesis of 1,2,4-Triazine N-Oxides from 1,2,4-Triazines .. 407
17.2.1.5.2.2 Method 2: Alkylation of 1,2,4-Triazine N-Oxides .. 408
17.2.1.5.3 Modification of Substituents .. 409
17.2.1.5.3.1 Method 1: C—C Bond Formation at a Methyl Group .. 409
17.2.1.5.3.2 Method 2: Oxidation of 3-Hydrazino-1,2,4-triazine 1-Oxides .. 409
17.2.2 1,2,4-Benzotriazines and Related Compounds .. 410
17.2.2.1 Synthesis by Ring-Closure Reactions .. 410
17.2.2.1.1 By Formation of One N—N and One N—C Bond .. 410
17.2.2.1.1.1 Fragments N—C—C—N and N—C .. 410
17.2.2.1.1.1.1 Method 1: Reaction of 2-Nitroaniline with Cyanamide .. 410
17.2.2.1.1.2 Fragments N—C—N and N—C—C .. 411
17.2.2.1.1.2.1 Method 1: Reactions of 2-Nitroarenes with Guanidines .. 411
17.2.2.1.1.2.2 Method 2: Reactions of Nitronaphthalenes with Guanidine .. 412
17.2.2.1.1.3 Fragments N—C—N—C—C and N .. 413
17.2.2.1.1.3.1 Method 1: Reactions of Arylbenzamidoximes with Nitrile Oxides .. 413
17.2.2.1.2 By Formation of Two N—C Bonds .. 414
17.2.2.1.2.1 Fragments N—N—C—N and C—C .. 414
17.2.2.1.2.1.1 Method 1: Reactions of Cycloalkane-1,2-diones with Amidrazones .. 414
17.2.2.1.2.1.2 Method 2: Cycloaddition of N-(Phenylmethylene)aniline and Diethyl Azodicarboxylate .. 415
17.2.2.1.2.2 Fragments N—N—C and N—C—C .. 415
17.2.2.1.2.2.1 Method 1: Reactions of 6-Nitroquinoline with Aldehyde Hydrazones .. 415
17.2.2.1.2.3 Fragments N—C—C—N—N and C .. 416
17.2.2.1.2.3.1 Method 1: Cyclization of 3,4-Dihydronaphthalene-1,2-dione 1-Hydrazone 2-Oxime with Ortho Esters .. 416
17.2.2.1.3 By Formation of One N—N Bond .. 417
17.2.2.1.3.1 Fragment N—C—N—C—C—N .. 417
17.2.2.1.3.1.1 Method 1: Cyclization of (2-Nitronaphthyl)thioureas .. 417
17.2.2.1.3.1.1.1 Variation 1: Cyclization of 2-(2-Nitrophenyl)pyrazol-3-amines .. 417
17.2.2.1.4 By Formation of One N—C Bond .. 418
17.2.2.1.4.1 Fragment N—N—C—N—C—C .. 418
17.2.2.1.4.1.1 Method 1: Oxidation of N-Phenylsulfonylbenzimidrazones 418
17.2.2.1.4.1.2 Method 2: Cyclization of N1-Isopropylidene-N3-arylamidrazones ... 419
17.2.2.1.4.1.1 Method 1: Reactions of 1,2-Dicarbonyl Compounds with Amidrazones and Related Compounds .. 420
17.2.2.1.4.2 Variation 2: Cyclization of (2-Nitrophenyl)hydrazones .. 421
17.2.2.1.4.2.1 Method 2: Cyclization of Formazans ... 420
17.2.2.1.4.2.2 Variation 1: Cyclization of 1-(2-Nitrophenyl)-2-[nitro(phenyl)methylene]-hydrazines .. 422
17.2.2.1.4.3 Fragment C—C—N—N—C—N ... 419
17.2.2.1.4.3.1 Method 1: Cyclization of 1-(2-Nitrophenyl)-2-[nitro(phenyl)methylene]-hydrazines .. 422
17.2.2.1.4.3.1.1 Variation 1: Cyclization of N-(2-Nitrophenyl)benzenecarboxyhydrasonoyl Bromide .. 422
17.2.2.1.4.3.1.2 Variation 2: Cyclization of (2-Nitrophenyl)hydrazones .. 423
17.2.2.1.4.3.2 Method 2: Cyclization of N2-(2-Aminophenyl)acetohydrazide 424
17.2.2.1.4.3.2.1 Variation 1: Cyclization of Ethyl 2-(2-aminophenyl)hydrazinecarboxylate .. 424
17.2.2.2 Annulation by Formation of a Benzenoid Ring .. 425
17.2.2.2.1 Method 1: Cycloaddition of 5,6-Bis(bromomethylene)-1,2,4-triazine with a Dieneophile .. 425
17.2.2.2.2 Method 2: Photocyclization of 1-Methyl-3,5,6-triphenyl-1,2,4-triazinium Iodide .. 426
17.2.2.2.3 Synthesis by Ring Transformation .. 426
17.2.2.2.3.1 Method 1: Cyclization of 3-(2-Acylaminophenyl)sydrones with Hydrogen Cyanide .. 426
17.2.2.2.3.2 Method 2: Ring Enlargement of 2,1,3-Benzoxadiazole 1-Oxide with Diethylamine .. 427
17.2.2.2.3.3 Method 3: Reactions of [1,2,5]-Oxadiazolo[3,4-b]quinoxaline 1-Oxides with Nitrile Oxides .. 427
17.2.2.2.3.4 Method 4: Ring Scission of N2-(2-1\textsubscript{H}-1,2,3-Benzotriazol-1-yl)ethylidene]-4-methylbenzenesulfonohydrazides .. 428
17.2.2.2.3.5 Method 5: Flash-Vacuum Pyrolysis of α-(1-Benzotriazolyl)-β-oxotributylphosphorus Ylides .. 428
17.2.2.2.3.6 Method 6: Oxidation of Benzimidazole-1,2-diamines .. 429
17.2.2.2.3.7 Method 7: Oxidation of 1-Amino-2-quinoxalones ... 429
17.2.2.2.4 Aromatization .. 430
17.2.2.2.4.1 Method 1: By Oxidation of 1,2-Dihydro-1,2,4-benzotriazines 430
17.2.2.2.4.2 Method 2: Aromatization of 5,6,7,8-Tetrahydro-1,2,4-benzothiazines 430
17.2.2.2.4.3 Method 3: Conversion of 1,2,4-Benzotriazinones into 3-Halo-1,2,4-benzotriazines .. 430
17.2.2.2.5 Synthesis by Substituent Modification ... 431
17.2.2.2.5.1 Substitution of Existing Substituents ... 431
17.2.2.2.5.1.1 Of Carbon .. 431
17.2.2.2.5.1.2 Of Heteroatoms ... 432
17.2.2.2.5.1.2.1 Method 1: Substitution of Halogens .. 432
17.2.2.2.5.1.2.2 Method 2: Deoxygenation of N-Oxides .. 433
17.2.2.5.1.2.3 Method 3: Displacement of Alkoxy Substituents 434
17.2.2.5.1.2.4 Method 4: Substitution of Sulfanyl and Sulfonyl Substituents 434
17.2.2.5.1.2.5 Method 5: Substitution of Amino Groups by Diazotization 435
17.2.2.5.2 Method 4: Substitution of Sulfanyl and Sulfonyl Substituents 434
17.2.2.5.2.1 Method 1: O-Alkylation of 1,2,4-Benzotriazin-3(4H)-one 1-Oxides 435
17.2.2.5.2.2 Method 2: Alkylation of 3-Sulfanylphenanthro[9,10-e][1,2,4]triazine 436
17.2.2.5.2.3 Method 3: N-Alkylation of 1,2,4-Benzotriazin-3-amine 1-Oxide 437
17.2.2.5.2.4 Method 4: Oxidation of 1,2,4-Benzotriazines 437
17.2.2.5.2.4.1 Variation 1: Oxidation of 1,2,4-Benzotriazine 1-Oxides to 1,2,4-Benzotriazine 1,4-Dioxides 438
17.2.2.5.3 Method 4: Substitution of Amino Groups by Diazotization 435
17.2.2.5.3.1 Method 1: Oxidation of 3-Ethyl-1,2,4-benzotriazine to 3-Acetyl-1,2,4-benzotriazine 438
17.2.2.5.3.2 Method 2: Oxidation of 3-Methylsulfanyl-1,2,4-benzotriazine 439
17.2.2.5.3.3 Method 3: Oxidation of 3-Hydrazinyl-1,2,4-benzotriazine 439
17.2.2.5.3.4 Method 4: Reduction of 3-Azido-1,2,4-benzotriazine 440
17.2.2.5.3.5 Method 5: Reaction of 3-Hydrazinyl-1,2,4-benzotriazines 440
17.2.3 Product Subclass 3: 1,3,5-Triazines and Phosphorus Analogues
S. von Angerer
17.2.3 Product Subclass 3: 1,3,5-Triazines and Phosphorus Analogues 449
17.2.3.1 1,3,5-Triazines 452
17.2.3.1.1 Synthesis by Ring-Closure Reactions 452
17.2.3.1.1.1 By Formation of Three N–C Bonds 452
17.2.3.1.1.1.1 Method 1: Trimerization of Nitriles 453
17.2.3.1.1.1.1.1 Variation 1: Synthesis of Unsubstituted 1,3,5-Triazine 453
17.2.3.1.1.1.1.2 Variation 2: Synthesis of 2,4,6-Trialkyl-1,3,5-triazines 453
17.2.3.1.1.1.1.3 Variation 3: Synthesis of 2,4,6-Triaryl-1,3,5-triazines 455
17.2.3.1.1.1.1.4 Variation 4: Synthesis of 2,4,6-Trihalo-1,3,5-triazines 457
17.2.3.1.1.1.1.5 Variation 5: Trimerization of 1,3,5-Triazine-2,4,6(1H,3H,5H)-trione and Derivatives 458
17.2.3.1.1.1.1.6 Variation 6: Synthesis of 1,3,5-Triazine-2,4,6-triamines 459
17.2.3.1.1.1.1.7 Variation 7: Synthesis of Disubstituted Cyanamides with Formamides 460
17.2.3.1.1.1.1.8 Variation 8: Cotrimerization of Two Nitriles with Guanidine 462
17.2.3.1.1.1.1.9 Variation 9: Cotrimerization of Two Cyanates with 2-Alkyl- or 2-Arylisothiourea 463
17.2.3.1.1.1.1.10 Variation 10: Synthesis of Two Cyanates with 2-Alkyl- or 2-Arylisothiourea 463
17.2.3.1.1.1.1.11 Method 1: Trimerization of Nitriles 464
17.2.3.1.1.1.1.12 Method 2: Trimerization of Imidates 464
17.2.3.1.1.1.1.13 Method 3: Trimerization of Amidines 465
17.2.3.1.1.1.1.14 Method 4: Trimerization of Urea 467
17.2.3.1.1.1.1.15 Method 5: Cyclocondensation of Imidates with Amidines 467
17.2.3.1.1.1.1.16 Fragments N–C–N, N–C, and C 469
17.2.3.1.1.2.1	Method 1:	Reaction of 2-Alkylisothiouronium Salts with Formic Acid Derivatives	469
17.2.3.1.1.2.2	Method 2:	Reaction of Substituted Guanidines with Dimethylformamide Acetals	470
17.2.3.1.1.2.3	Method 3:	Reaction of Amidines with Carboxylates	471
17.2.3.1.1.2.4	Method 4:	Reaction of Amidines with Phosgene	472
17.2.3.1.1.2.5	Method 5:	Reaction of Urea with Benzonitriles	473
17.2.3.1.1.3.1	Method 1:	One-Pot Tandem Reaction of Aldehydes with Ammonia and Guanidine-1-carbonitrile	473
17.2.3.1.1.2.1.1	Method 1:	Reaction of Dimethyl Cyanodithioimidocarbonate with Amides	474
17.2.3.1.1.2.1.2	Method 2:	Reaction of 2-Arylisourea-1-carbonitriles with Aryl Cyanates	475
17.2.3.1.1.2.1.3	Method 3:	Reaction of Guanidine-1-carbonitrile with Cyanamide	475
17.2.3.1.1.2.1.4	Method 4:	Reaction of Imidodicarbonimidates with Aryl Cyanates	477
17.2.3.1.1.2.1.5	Method 5:	Reaction of Guanidine-2-carbaldehydes with \(N\)-Formylformimidamide	478
17.2.3.1.1.2.1.6	Method 6:	Reactions of Guanidine-2-carbaldehydes with \(N\)-Acylguanidines with Nitriles	478
17.2.3.1.1.2.2.1	Method 1:	Reaction of Cyanodithioimidocarbonates with Amidine Derivatives	479
17.2.3.1.1.2.2.2	Method 2:	Reaction of 2-Phenylisourea-3-carbonitriles with Amidines	481
17.2.3.1.1.2.2.3	Method 3:	Reaction of \(N\)-Cyanoimidates with Amidine Derivatives	481
17.2.3.1.1.2.2.4	Method 4:	Reaction of \(N\)-Functionalized Imidoyl Chlorides with Amidine Derivatives	482
17.2.3.1.1.2.2.4.1	Variation 1:	Reaction of \(N\)-1-Chloroalkylidenecarbamoyl Chlorides	482
17.2.3.1.1.2.2.4.2	Variation 2:	Reaction of \(N\)-Polychloroalkyl-Substituted Imidoyl Chlorides	483
17.2.3.1.1.2.2.4.3	Variation 3:	Reaction of \(N\)-(Trichlorovinyl)benzimidoyl Chlorides	484
17.2.3.1.1.2.2.4.4	Variation 4:	Reaction of \(N\)-Acylchloroformimidates	485
17.2.3.1.1.2.2.4.5	Variation 5:	Reaction of \(N\)-Acylchloroformimidamides	485
17.2.3.1.1.2.2.4.6	Variation 6:	Reaction of 1,3-Diamino-1-chloro-2-azapropenylum Salts with Amidines	486
17.2.3.1.1.2.2.5	Method 5:	Reaction of Imidodicarbonates with \(N\)'-tert-Butyl-Substituted Amidines	487
17.2.3.1.1.2.2.6	Method 6:	Reaction of Acylthioimidocarbonates with Amidine Derivatives	488
17.2.3.1.1.2.2.7	Method 7:	Reaction of \(N\)-Acyl-1H-benzo[d]thiazole-1-carboximidamides with Urea or Thiourea	489
17.2.3.1.1.2.2.8	Method 8:	Reaction of \(N\)-Acylimidates or \(N\)-Acylthioimidates with Amidine Derivatives	489
17.2.3.1.1.2.2.9	Method 9:	Reaction of \(N\)-Acylamidines with Amidine Derivatives	491
17.2.3.1.1.2.2.10	Method 10:	Reaction of Acyl Isothiocyanates with Amidine Derivatives	493
17.2.3.1.1.2.2.11	Method 11:	Reaction of \(N\)-Acylthioamides with Amidine Derivatives	493
Method 12: Reaction of \([1-(Acylamino)-2-chlorovinyl]triphenylphosphonium\) Chlorides with Benzimidamides

Method 13: Reaction of \(N-(2,2-Dicyanovinyl)thioimidates\) with Amidine Derivatives

Fragments \(N—C—N—C—N\) and \(C—N\)

Method 1: Reaction of \(N^2\)-Cyanoamidine Derivatives with Chloromethaniminium Salts

Method 2: Reaction of Biuret with Carboxylic Acid Derivatives

Method 3: Reaction of Imidodicarbonimidates with \(C_1\) Fragments

Method 4: Reaction of 2-Alkylisourea-1-carboximidamide and Its Thio Analogues or Thiourea-1-carboximidamide with Carboxylic Acid Derivatives

Method 5: Reaction of Sodium Dicyanamide or Guanidine-1-carbonitrile with Acid Derivatives

Method 6: Reaction of Biguanides with Carboxylic Acid Derivatives

Method 7: Reaction of 1-Carboximidoylguanidines with Carboxylic Acid Derivatives

Fragments \(C—N—C—N—C\) and \(N\)

Method 1: Reaction of \(N_1,N_2\)-Dicyanoamidines with Hydroxylamine

By Formation of One \(N—C\) Bond

Fragment \(N—C—N—C—N—C\)

Method 1: Cyclization of Guanidine-1,2-dicarbonitriles and Their Salts

Variation 1: With Hydrogen Halides

Variation 2: With Hydrogen Sulfide

Variation 3: With Amines

Method 2: Cyclization of 3-Acylguanidine-1-carbonitriles

Method 3: Cyclization of \(N_1,N_2\)-Diacylamidine Derivatives

Method 4: Cyclization of 1,3,5-Triazahexa-1,4-dienylium Perchlorates

Synthesis by Ring Transformation

By Ring Enlargement

Method 1: From 2-(Cyanoimino)thiazolidines and Amines

Method 2: From Imidazoles

Method 3: Thermolysis of 3-Phenyl-1,2,4-oxadiazol-5-amines

Method 4: Electroreduction of 3,4-Diphenyl-1,2,5-thiadiazole 1-Oxide

Formal Exchange of Ring Members with Retention of the Ring Size

Method 1: Reaction of 4\(H\)-1,3-Benzoxazin-4-ones with Amidine Derivatives

Method 2: Rearrangement of Pyrimidine Derivatives

Variation 1: Conversion of 5-Nitrosopyrimidin-4-amines into 1,3,5-Triazine-2-carbonitriles

Variation 2: Reaction of 4-Chloropyrimidines with Potassium Amide

Variation 3: Oxidation of Pyrimidinediamines

Method 3: Conversion of 1,3,5-Oxadiazines and Their Salts into 1,3,5-Triazines
17.2.3.2.4 Method 4: Conversion of 1,2,4-Triazines into 1,3,5-Triazines
17.2.3.2.5 Method 5: Conversion of 1,2,3,5-Oxathiadiazine 2,2-Dioxides into 1,3,5-Triazines
17.2.3.2.6 Method 6: Conversion of 1,2,3,5-Tetrazines into 1,3,5-Triazines
17.2.3.2.7 Method 7: Conversion of 1,3,5,2\underline{1},4\underline{1},6\underline{1},5-Triazatriphosphinines into 1,3,5-Triazines
17.2.3.1.3 Aromatization
17.2.3.3.1 Synthesis by Substituent Modification
17.2.3.3.1.1 Method 1: Reaction of 1,3,5-Triazinyllithium with Ketones
17.2.3.4.1 Substitution of Existing Substituents
17.2.3.4.1.1 Of Hydrogen
17.2.3.4.1.1.1 Method 1: Cyanation
17.2.3.4.1.1.2 Method 2: C-Alkylation
17.2.3.4.1.1.2.1 Variation 1: Reaction of 2,4-Diphenyl-1,3,5-triazine with Active Methylene Compounds
17.2.3.4.1.1.2.2 Variation 2: Reaction of 1,3,5-Triazine with Amidines and Imidates
17.2.3.4.1.1.2.3 Variation 3: Dimroth Rearrangements
17.2.3.4.1.1.2.4 Method 4: Amination
17.2.3.4.1.2 Of Metals
17.2.3.4.1.2.1 Method 1: Reaction of 1,3,5-Triazinylithium with Ketones
17.2.3.4.1.3 Of Carbon Functionalities
17.2.3.4.1.3.1 Method 1: Decarboxylation
17.2.3.4.1.3.2 Method 2: Substitution of Trichloromethyl Groups
17.2.3.4.1.3.3 Method 3: Substitution of Trinitromethyl Groups
17.2.3.4.1.4 Of Heteroatoms
17.2.3.4.1.4.1 Dehalogenation
17.2.3.4.1.4.1.1 Method 1: Reductive Dechlorination
17.2.3.4.1.4.2 Substitution of Halogens by Carbon Functionalities
17.2.3.4.1.4.2.1 Method 1: Reaction with Organolithium Reagents
17.2.3.4.1.4.2.2 Method 2: Reaction with Grignard Reagents
17.2.3.4.1.4.2.3 Method 3: Reaction with Arylboronic Acids (Suzuki Coupling)
17.2.3.4.1.4.2.4 Method 4: Reaction with Perfluoroalkysilanes
17.2.3.4.1.4.2.5 Method 5: Reaction with Organotin Reagents
17.2.3.4.1.4.2.6 Method 6: Friedel–Crafts Reactions
17.2.3.4.1.4.2.7 Method 7: Reaction with Active Methylene Compounds
17.2.3.4.1.4.2.8 Method 8: Reaction with Cyanide
17.2.1.4.1.4.9 Method 9: Reaction with Diazomethane 535
17.2.1.4.1.4.10 Method 10: Reaction with Pyrroles and Indoles 536
17.2.1.4.1.4.11 Method 11: Addition to Perfluoropropene 537
17.2.1.4.1.4.12 Halogen-Exchange Reactions .. 537
17.2.1.4.1.4.13 Method 1: Exchange of Chlorine for Fluorine 537
17.2.1.4.1.4.14 Substitution of Halogens by Oxygen Functionalities 538
17.2.1.4.1.4.15 Method 1: Exchange of Halogen for Alkoxide and Aryloxide 538
17.2.1.4.1.4.16 Variation 1: Exchange of Chlorine in 2,4,6-Trichloro-1,3,5-triazine 538
17.2.1.4.1.4.17 Variation 2: Exchange of Chlorine in Substituted Chloro-1,3,5-triazines 539
17.2.1.4.1.4.18 Variation 3: Exchange of Chlorine for an Acyloxy Group 540
17.2.1.4.1.4.19 Variation 4: Exchange of Chlorine for Peroxides 540
17.2.1.4.1.4.20 Method 2: Hydrolysis of Chloro-1,3,5-triazines 541
17.2.1.4.1.4.21 Substitution of Halogens by Sulfur Functionalities 542
17.2.1.4.1.4.22 Method 1: Reaction of Chloro-1,3,5-triazines with Sulfur and Dimethyl Sulfate .. 542
17.2.1.4.1.4.23 Method 2: Exchange of Chlorine for an Alkylsulfanyl Group 542
17.2.1.4.1.4.24 Method 3: Conversion of 2,4,6-Trichloro-1,3,5-triazine into 1,3,5-Triazine-2,4,6(1H,3H,5H)-trithione 543
17.2.1.4.1.4.25 Substitution of Halogens by Nitrogen Functionalities 543
17.2.1.4.1.4.26 Method 1: Reaction of 2,4,6-Trifluoro-1,3,5-triazine with Amines 544
17.2.1.4.1.4.27 Method 2: Reaction of 2,4,6-Trichloro-1,3,5-triazine with Amines 544
17.2.1.4.1.4.28 Variation 1: Monosubstitution .. 545
17.2.1.4.1.4.29 Variation 2: Disubstitution .. 546
17.2.1.4.1.4.30 Variation 3: Trisubstitution .. 546
17.2.1.4.1.4.31 Method 3: Reaction of 2,4-Dichloro-1,3,5-triazines with Amines 547
17.2.1.4.1.4.32 Method 4: Reaction of 2-Chloro-1,3,5-triazines with Amines 549
17.2.1.4.1.4.33 Substitution of Halogens by Phosphorus Functionalities 550
17.2.1.4.1.4.34 Method 1: Reaction of 2,4,6-Trichloro-1,3,5-triazine with Trialkyl Phosphites .. 550
17.2.1.4.1.4.35 Method 2: Reaction of 2,4,6-Trichloro-1,3,5-triazine with Diphenylphosphine .. 551
17.2.1.4.1.4.36 Generation of 1,3,5-Triazine Libraries by Substitution of Chlorine by Oxygen or Nitrogen Functionalities .. 551
17.2.1.4.1.4.37 Method 1: Parallel Synthesis in Solution 551
17.2.1.4.1.4.38 Method 2: Parallel Synthesis on Solid Support 553
17.2.1.4.1.4.39 Substitution of Oxygen Functionalities 554
17.2.1.4.1.4.40 Method 1: Reaction of 2-Methoxy-1,3,5-triazines with Active Methylene Compounds .. 554
17.2.1.4.1.4.41 Method 2: Reaction of 2-Methoxy-1,3,5-triazines with Hydrazine 554
17.2.1.4.1.4.42 Substitution of Sulfur Functionalities 555
17.2.1.4.1.4.43 Method 1: Reaction of (Methylsulfanyl)- and (Alkylsulfanyl)-1,3,5-triazines with Amines .. 555
17.2.3.1.4.11 Substitution of Nitrogen Functionalities .. 556

17.2.3.1.4.11.1 Method 1: Reaction of (1,3,5-Triazin-2-yl)trimethylammonium Chloride with Nucleophiles .. 556

17.2.3.1.4.11.2 Method 2: Reaction of 2-(Pyrrozol-2-yl)-1,3,5-triazine with Amines 557

17.2.3.1.4.12 Substitution of Phosphorus Functionalities 557

17.2.3.1.4.12.1 Method 1: Reaction of 2,4,6-Tris(diethoxyphosphoryl)-1,3,5-triazines with Amines .. 557

17.2.3.1.4.2 Addition Reactions .. 558

17.2.3.1.4.2.1 Method 1: Preparation of N-Oxides .. 558

17.2.3.1.4.3 Rearrangement of Substituents .. 559

17.2.3.1.4.3.1 Method 1: Smiles Rearrangement .. 559

17.2.3.1.4.3.2 Method 2: Photo-Fries Rearrangement 560

17.2.3.1.4.4 Modification of Substituents .. 560

17.2.3.1.4.4.1 Method 1: O-Alkylation ... 560

17.2.3.1.4.4.2 Method 2: S-Alkylation .. 561

17.2.3.1.4.4.3 Method 3: S-Oxidation .. 562

17.2.3.1.4.4.4 Method 4: Modification at the α-Carbon 563

17.2.3.1.4.4.4.1 Variation 1: Reduction of Halomethyl Groups 563

17.2.3.1.4.4.4.2 Variation 2: Conversion of Methyl Groups into Aldoximes and Aldehydes 563

17.2.3.1.4.4.4.3 Variation 3: Substitution Reactions of 2,4,6-Tris[tert-butoxyphosphoryl]methyl]-1,3,5-triazines .. 564

17.2.3.2 1,3,5-Diazaphosphinines ... 566

17.2.3.2.1 Synthesis by Ring Transformation .. 566

17.2.3.2.1.1 Method 1: 2,4,6-Triaryl-1,3,5-diazaphosphinines from 2,4,6-Triaryl-1,3,5-oxadiazin-1-ium Tetrafluoroborates .. 566

17.2.3.3 1λ5,3λ5,5λ5-Triphosphinines ... 566

17.2.3.3.1 Synthesis by Ring-Closure Reactions ... 566

17.2.3.3.1.1 By Formation of Three P—C Bonds .. 566

17.2.3.3.1.1.1 Fragments P—C, P—C, and P—C .. 566

17.2.3.3.1.1.1.1 Method 1: Reaction of Bis(dimethylamino)(difluoro)methylphosphorane with Butyllithium .. 566

17.2.3.4 1λ5,3λ5,5-Triphosphinines ... 567

17.2.3.4.1 Synthesis by Ring-Closure Reactions ... 567

17.2.3.4.1.1 By Formation of Two P—C Bonds .. 567

17.2.3.4.1.1.1 Fragments P—C—P—C and P—C .. 567

17.2.3.4.1.1.1.1 Method 1: Cycloaddition of 1λ5,3λ5-Diposphetres with Phosphaalkynes 567

17.2.3.5 1,3,5-Triphosphinines ... 567

17.2.3.5.1 Synthesis by Ring-Closure Reactions ... 567

17.2.3.5.1.1 By Formation of Three P—C Bonds .. 567
17.2.3.5.1.1 Fragments P—C, P—C, and P—C ... 567
17.2.3.5.1.1.1 Method 1: Transition-Metal-Catalyzed Cyclotrimerization of Phosphaalkynes ... 567
17.2.3.5.2 Aromatization ... 570
17.2.3.5.2.1 Method 1: Dehalogenation of 1,3,5-Trichloro-1,3,5-triphosphinanes 570

17.3 Product Class 3: Six-Membered Hetarenes with More Than Three Heteroatoms
M. Bohle

17.3.1 Product Subclass 1: 1,2,3,4-Tetrazines ... 585
17.3.1.1 Method 1: Synthesis of 1,2,3,4-Tetrazine N-Oxides 586
17.3.1.1.1 Variation 1: Via Diazotization .. 586
17.3.1.1.2 Variation 2: Via Nitration ... 588

17.3.2 Product Subclass 2: 1,2,3,5-Tetrazines ... 588

17.3.3 Product Subclass 3: 1,2,4,5-Tetrazines ... 589
17.3.3.1 Synthesis by Ring-Closure Reactions .. 592
17.3.3.1.1 By Formation of Four N—C Bonds .. 593
17.3.3.1.1.1 Fragments N—N, N—N, and Two C Fragments 593
17.3.3.1.1.1 Method 1: Dimerization of Activated Hydrazidic Acid Derivatives 593
17.3.3.1.1.1.1 Variation 1: From Nitriles .. 593
17.3.3.1.1.1.2 Variation 2: From Carboxylic Acid Derivatives 594
17.3.3.1.1.1.3 Variation 3: From Carbonyl Compounds 596
17.3.3.1.1.1.4 Variation 4: From Alkenes (Masked Carbonyl Compounds) 597
17.3.3.1.2 By Formation of Two N—C Bonds ... 598
17.3.3.1.2.1 Fragments C—N—N—C and N—N 598
17.3.3.1.2.1.1 Method 1: Oxidation of Dihydrotetrazines 598
17.3.3.1.2.1.1 Method 1: Dimerization of Diazo Compounds 600
17.3.3.1.2.2 Method 2: Dimerization of Nitrile Imines 602
17.3.3.1.2.3 Method 2: Fragments N—N—C—N—N and C 602
17.3.3.1.2.3.1 Method 1: From Hydrazonohydrazides 602
17.3.3.1.2.3.2 Method 2: From Guanidine-1,2,3-triamine 603
17.3.3.1.2.3.3 Method 3: From Carbohydrazides 604
17.3.3.1.2.3.4 Method 4: From Thiocarbohydrazides and Related Compounds 605
17.3.3.1.3 By Formation of One N—C Bond .. 606
17.3.3.1.3.1 Fragment C—N—N—C—N—N ... 606
17.3.3.1.3.1 Method 1: By Cyclization of Tetrazolylguanidines 606
17.3.2 Synthesis by Ring Transformation ... 607
17.3.3 Aromatization ... 608
17.3.4 Synthesis by Substituent Modification 608
17.3.4.1 Substitution of Existing Substituents 608
17.3.4.1.1 Of Hydrogen .. 608
17.3.4.1.2 Of Carbon Functionalities ... 609
17.3.4.1.3 Of Heteroatoms .. 610
17.3.4.1.3.1 Method 1: Substitution of Halogen Substituents 610
17.3.4.1.3.2 Method 2: Substitution of Oxygen Substituents 612
17.3.4.1.3.3 Method 3: Substitution of Sulfur Substituents 613
17.3.4.1.3.4 Method 4: Substitution of Nitrogen Substituents 614
17.3.4.2 Addition of Heteroatoms (N-Oxidation) 615
17.3.4.3 Modification of Substituents ... 616

17.4 Product Class 4: Seven-Membered Heterenes with One Heteroatom

17.4.1 Product Subclass 1: Oxepins
S. von Angerer

17.4.1 Product Subclass 1: Oxepins ... 627
17.4.1.1 Synthesis by Ring-Closure Reactions 630
17.4.1.1.1 By Formation of One O—C and One C—C Bond 630
17.4.1.1.1 Method 1: From Cyclopropenes and Alk-1-ynes 630
17.4.1.1.2 By Formation of One O—C Bond 631
17.4.1.1.2 Method 1: Synthesis from Acyclic Precursors 631
17.4.1.2 Synthesis by Ring Transformation 631
17.4.1.2.1 Method 1: Valence Isomerization of 3-Oxatricycloheptenes ... 631
17.4.1.2.2 Method 2: Valence Isomerization of 3-Oxaquadricyclanes 632
17.4.1.2.3 Method 3: Valence Isomerization of 7-Oxanorbornadienes 636
17.4.1.2.4 Method 4: Ring Enlargement of Cyclohexa-1,4-diienes 638
17.4.1.2.5 Method 5: Ring Enlargement of 4H-Pyrans 639
17.4.1.3 Aromatization .. 640
17.4.1.3.1 Method 1: By Dehydrohalogenation 640
17.4.1.3.2 Method 2: By Dehalogenation 646
17.4.1.3.3 Method 3: By Decarboxylation 647
17.4.1.4 Synthesis by Substituent Modification 648
17.4.1.4.1 Substitution of Existing Substituents 648
17.4.1.4.1 Of Hydrogen ... 648
17.4.1.4.2 Of Bromine .. 648
17.4.2 **Product Subclass 2: Benzoxepins**
S. von Angerer

17.4.2 **Product Subclass 2: Benzoxepins** .. 653
17.4.2.1 Synthesis by Ring-Closure Reactions 656
17.4.2.1.1 By Formation of One O—C and One C—C Bond 656
17.4.2.1.1.1 Method 1: From Pyridazine 1-Oxide and Benzyne 656
17.4.2.1.1.2 Method 2: From Resorcinol and Ethyl (2-Oxocyclohexyl)acetate 657
17.4.2.1.1.3 Method 3: Synthesis of Napth[1,8-b,c]oxepinium Salts 657
17.4.2.1.2 By Formation of Two C—C Bonds 658
17.4.2.1.2.1 Method 1: Reaction of Phthalaldehydes with C—H Acidic Ethers 658
17.4.2.1.2.1.1 Variation 1: Reaction of Phthalaldehydes and Diglycolic Acid Diester 658
17.4.2.1.2.1.2 Variation 2: Reaction of Phthalaldehyde and Bis(phosphonium) Salts 659
17.4.2.1.2.2 Method 2: Friedel–Crafts Reaction of 2-(Chloromethyl)phenyl Chloroformate with Benzene 659
17.4.2.1.3 Method 3: Insertion of Acetylenes into Cobaltaxanthenes 660
17.4.2.1.3 By Formation of One C—C Bond 661
17.4.2.1.3.1 Method 1: Base-Catalyzed Condensations (Including the Wittig Reaction) ... 661
17.4.2.1.3.1.1 Variation 1: Of Methyl 4-(2-Formylphenoxy)but-2-enoate 661
17.4.2.1.3.1.2 Variation 2: Of N-[2-(3-Phenylprop-2-ynyloxy)benzylidene]isopropylamine 661
17.4.2.1.3.1.3 Variation 3: Of [2-Hydroxy-3-(2-formylphenoxy)propyl]triphenylphosphonium Bromide ... 662
17.4.2.1.3.2 Method 2: Oxidative Coupling 662
17.4.2.1.3.3 Method 3: Synthesis of Dibenz[b,f]oxepins by Electrophilic Aromatic Substitution (Intramolecular Arylation) 664
17.4.2.1.3.3.1 Variation 1: Of 1-(2-Phenoxyphenyl)-2-phenylacetylenes 664
17.4.2.1.3.3.2 Variation 2: Of 2-Phenoxybromostilbenes 665
17.4.2.1.3.3.3 Variation 3: Of (2-Phenoxyphenyl)-2-oxopropanoic Acids 666
17.4.2.1.3.3.4 Variation 4: Of 2-Phenoxyphenylacetic Acids 667
17.4.2.1.3.3.5 Variation 5: Of 2-Phenoxybenzaldehyde and Hippuric Acid 668
17.4.2.1.3.4 Method 4: Synthesis of Dibenz[b,e]oxepin-11(6H)-ones by Electrophilic Aromatic Substitution (Intramolecular Arylation) 669

17.4.2 Synthesis by Ring Transformation ... 672
17.4.2.1 Valence Isomerization ... 672
17.4.2.1.1 Method 1: Of 3-Oxa-4,5-benzotricycloheptenes 672
17.4.2.1.2 Method 2: Of Phenanthrene Oxide and Related Compounds 672
17.4.2.1.3 Method 3: Of Naphthalene 1,4-Oxides 674
17.4.2.1.4 Method 4: Of Cyclobutabenzoferans 674
17.4.2.2 By Ring Enlargement .. 675
17.4.2.2.1 Method 1: Of Benzofurans ... 675
17.4.2.2.1.1 Variation 1: With Dimethyl Acetylenedicarboxylate 676
17.4.2.2.1.2 Variation 2: With 1-Phenyl-2-pyrrolidin-1-ylacetylene 676
Table of Contents

17.4.2.2.2 Method 2: Of 2-Benzofuran-1(3\(H\))-ones .. 677
17.4.2.2.3 Method 3: Of 1,4-Dihydropthalene .. 677
17.4.2.2.4 Method 4: Of 1-Acetoxy-2,4-dibromotetrahydronaphthalenes 678
17.4.2.2.5 Method 5: Of 2H-Benzopyrans ... 678
17.4.2.2.6 Method 6: Of Xanthenes .. 680
17.4.2.2.6.1 Variation 1: By Addition of Diazomethane .. 680
17.4.2.2.6.2 Variation 2: By Dehydration ... 680
17.4.2.3 Aromatization ... 680
17.4.2.3.1 Method 1: By Dehydrohalogenation ... 681
17.4.2.3.2 Method 2: By Dehalogenation ... 683
17.4.2.3.3 Method 3: By Dehydration .. 683
17.4.2.3.3.1 Variation 1: Of Secondary Alcohols .. 683
17.4.2.3.3.2 Variation 2: Of Tertiary Alcohols .. 685
17.4.2.3.4 Method 4: By Deamination ... 686
17.4.2.3.4.1 Variation 1: Of Quaternary Ammonium Salts (Hofmann Degradation) .. 686
17.4.2.3.4.2 Variation 2: Of N-Oxides (Cope Elimination) 687
17.4.2.3.4.3 Variation 3: Of Acetylamines ... 687
17.4.2.3.5 Method 5: By Decarbonylation ... 688
17.4.2.4 Synthesis by Substituent Modification .. 688
17.4.2.4.1 Substitution of Existing Substituents ... 688
17.4.2.4.1.1 Of Hydrogen ... 688
17.4.2.4.1.1.1 Method 1: By Deuteration or by Nitration .. 688
17.4.2.4.1.2 Of Carbon Functionalities ... 689
17.4.2.4.1.2.1 Method 1: By Decarboxylation ... 689
17.4.2.4.1.3 Of Heteroatoms .. 689
17.4.2.4.1.3.1 Method 1: Substitution of Halogen .. 689
17.4.2.4.1.3.1.1 Variation 1: Of Bromine ... 689
17.4.2.4.1.3.1.2 Variation 2: Of Amino Groups .. 691
17.4.2.4.1.3.1.3 Variation 3: Of Hydroxy Groups .. 691
17.4.2.4.2 Addition Reactions ... 694
17.4.2.4.2.1 Of Benzoepinones and Benzoxepindiones .. 694
17.4.2.4.2.1.1 By O-Alkylation .. 694
17.4.2.4.2.1.1.1 Method 1: O-Methylation of 1-Benzoxepin-3(2\(H\))-ones and 1-Benzoxepin-5(4\(H\))-ones ... 694
17.4.2.4.2.1.2 Method 2: O-Methylation of 1-Benzoxepin-3,5(2\(H\),4\(H\))-diones 695
17.4.2.4.2.1.3 Method 3: O-Ethylation of Dibenzo[b,f]oxepin-10(11\(H\))-ones 696
17.4.2.4.2.1.4 Method 4: O-Methylation of 11-Hydroxydibenzo[b,f]oxepin-10(11\(H\))-one 697
17.4.2.4.2.1.2 By O-Acetylation ... 697
17.4.2.4.2.1.2.1 Method 1: O-Acetylation of 2,3-Dihydro-1-benzoxepin-3-ones and 2,5-Dihydro-1-benzoxepin-5-ones ... 697
17.4.2.4.2.1.2.2 Method 2: O-Acetylation of Benzoxepindiones and Dibenzoepindiones 698
17.4.3 Product Subclass 3: Thiepins and Selenium Analogues
A. L. Schwan

17.4.3.1 Thiepins ... 705

17.4.3.1.1 Synthesis by Ring Transformation 706

17.4.3.1.1.1 Method 1: Using One-Carbon Ring Expansions 706
17.4.3.1.1.1.1 Variation 1: Ring Expansion of Exocyclic Diazo Compounds 706
17.4.3.1.1.1.2 Variation 2: Ring Expansion via a Carbocation 708
17.4.3.1.1.2 Method 2: Using Two-Carbon Ring Expansions 709
17.4.3.1.1.2.1 Variation 1: By Michael Addition of Electron-Rich Thiophenes and Electron-Poor Alkynes .. 709
17.4.3.1.1.2.2 Variation 2: Diels–Alder Reactions of Highly Substituted Thiophenes ... 709

17.4.3.1.2 Synthesis by Substituent Modification 710

17.4.3.1.2.1 Method 1: Organometallic Capture, Reduction, and Stabilization 710

17.4.3.2 Thiepin 1-Oxides and 1,1-Dioxides 711

17.4.3.2.1 Synthesis by Ring Transformation 711

17.4.3.2.1.1 Method 1: Through Pericyclic Reactions and Sulfur Dioxide Introduction 711
17.4.3.2.1.1.1 Variation 1: Cheletropic Introduction of Sulfur Dioxide 711
17.4.3.2.1.1.2 Variation 2: Electrocyclic Chemistry 712
17.4.3.2.1.2 Method 2: Using Two-Carbon Ring Expansions 713
17.4.3.2.1.2.1 Variation 1: Using Organometallic Capture and Stabilization 713
17.4.3.2.1.2.2 Variation 2: Photochemical Ring Expansion 714

17.4.3.2.2 Synthesis by Substituent Modification 714

17.4.3.2.2.1 Method 1: Oxidation of Thiepins 714

17.4.3.3 Selenepins .. 715

17.4.3.3.1 Synthesis by Ring Transformation 715

17.4.3.3.1.1 Method 1: Using One-Carbon Ring Expansions 715

17.4.4 Product Subclass 4: Benzothiepins and Selenium/Tellurium Analogues
A. L. Schwan

17.4.4.1 1-Benzothiepins and Their S-Oxides 717

17.4.4.1.1 Synthesis by Ring-Closure Reactions 718

17.4.4.1.1.1 By Formation of Two Heteroatom—Carbon Bonds 719
17.4.4.1.1.1.1 Method 1: Using Organometallic Methods 719
17.4.4.1.1.1.1.1 Variation 1: Stepwise Formation of Two S—C Bonds 719
17.4.4.1.1.1.1.2 Variation 2: Simultaneous Formation of Two S—C Bonds 719

17.4.4.1.2 Synthesis by Ring Transformation 720

17.4.4.1.2.1 Method 1: One-Carbon Ring Expansions 720
17.4.4.1.2.2 Method 2: Two-Carbon Ring Expansion of Benzothiophenes 721
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>722</td>
<td>17.4.4.1.2.3</td>
<td>Method 3: Isomerization of Tricyclic Valence Isomers</td>
</tr>
<tr>
<td>722</td>
<td>17.4.4.1.3</td>
<td>Aromatization</td>
</tr>
<tr>
<td>722</td>
<td>17.4.4.1.3.1</td>
<td>Method 1: Elimination of Water and/or HX Equivalents from Dihydro-1-benzothiepins</td>
</tr>
<tr>
<td>723</td>
<td>17.4.4.1.3.2</td>
<td>Method 2: Conversion of Benzothiepindiones into Enol Derivatives</td>
</tr>
<tr>
<td>724</td>
<td>17.4.4.1.3.3</td>
<td>Method 3: Conversion of Benzothiepinones into Enol Derivatives</td>
</tr>
<tr>
<td>726</td>
<td>17.4.4.1.3.1</td>
<td>Method 1: Elimination of Water and/or HX Equivalents from Dihydro-1-benzothiepins</td>
</tr>
<tr>
<td>726</td>
<td>17.4.4.1.3.2</td>
<td>Method 2: Conversion of Benzothiepindiones into Enol Derivatives</td>
</tr>
<tr>
<td>726</td>
<td>17.4.4.1.3.3</td>
<td>Method 3: Conversion of Benzothiepinones into Enol Derivatives</td>
</tr>
<tr>
<td>726</td>
<td>17.4.4.2</td>
<td>3-Benzothiepins and Their S-Oxides</td>
</tr>
<tr>
<td>726</td>
<td>17.4.4.2.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
</tr>
<tr>
<td>726</td>
<td>17.4.4.2.1.1</td>
<td>Method 1: Formation through Double Condensation Reactions</td>
</tr>
<tr>
<td>726</td>
<td>17.4.4.2.1.2</td>
<td>Method 2: Using Organometallic Methods</td>
</tr>
<tr>
<td>726</td>
<td>17.4.4.3</td>
<td>1-Benzoselenepins and 1-Benzotellurepins</td>
</tr>
<tr>
<td>726</td>
<td>17.4.4.3.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
</tr>
<tr>
<td>726</td>
<td>17.4.4.3.1.1</td>
<td>Method 1: Using Organometallic Methods</td>
</tr>
<tr>
<td>726</td>
<td>17.4.4.3.1.1</td>
<td>Variation 1: Stepwise Formation of Two Heteroatom—Carbon Bonds</td>
</tr>
<tr>
<td>726</td>
<td>17.4.4.3.1.1.1</td>
<td>Variation 2: Using a 1,6-Dilithium Intermediate</td>
</tr>
<tr>
<td>726</td>
<td>17.4.4.3.1.1.2</td>
<td>Variation 3: Using a 1-Benzostannepin</td>
</tr>
<tr>
<td>727</td>
<td>17.4.4.4</td>
<td>3-Benzoselenepins and 3-Benzotellurepins and Their Derivatives</td>
</tr>
<tr>
<td>727</td>
<td>17.4.4.4.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
</tr>
<tr>
<td>727</td>
<td>17.4.4.4.1.1</td>
<td>Method 1: Using Organometallic Methods</td>
</tr>
<tr>
<td>727</td>
<td>17.4.4.4.1.2</td>
<td>Method 2: Using Heteroatom Nucleophiles</td>
</tr>
<tr>
<td>727</td>
<td>17.4.4.5</td>
<td>Dibenzo[b,f]thiepins</td>
</tr>
<tr>
<td>727</td>
<td>17.4.4.5.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
</tr>
<tr>
<td>727</td>
<td>17.4.4.5.1.1</td>
<td>Method 1: Electrophilic Ring Closure of Diaryl Sulfides</td>
</tr>
<tr>
<td>727</td>
<td>17.4.4.5.1.1</td>
<td>Variation 1: Intramolecular Cyclization</td>
</tr>
<tr>
<td>727</td>
<td>17.4.4.5.1.1</td>
<td>Variation 2: Intermolecular Incorporation of a Two-Carbon Unit</td>
</tr>
<tr>
<td>730</td>
<td>17.4.4.5.2</td>
<td>Aromatization</td>
</tr>
<tr>
<td>730</td>
<td>17.4.4.5.2.1</td>
<td>Method 1: Using Titanium(IV) Chloride</td>
</tr>
<tr>
<td>730</td>
<td>17.4.4.5.2.2</td>
<td>Method 2: Using 4-Toluenesulfonic Acid</td>
</tr>
<tr>
<td>731</td>
<td>17.4.4.5.2.3</td>
<td>Method 3: Conversion into Enol Thioether Forms of Dibenzo[b,f]thiepin-10(11H)-ones</td>
</tr>
</tbody>
</table>

Science of Synthesis Original Edition Volume 17
© Georg Thieme Verlag KG
17.4.5.2.4 Method 4: Conversion of Dibenzo\[b,f\]thiepin-10(11H)-ones into Alcohols and Elimination of Water or Its Equivalents 736
17.4.5.2.4.1 Variation 1: By Organometallic Addition to the Carbonyl and Elimination of Water ... 736
17.4.5.2.4.2 Variation 2: By Reduction of the Carbonyl Function and Elimination of Water ... 738
17.4.5.3 Synthesis by Ring Transformation ... 739
17.4.5.3.1 Method 1: Acid-Mediated One-Carbon Ring Expansions .. 740
17.4.6 Dibenzo\[b,f\]thiepin S-Oxides and S-Imines .. 740
17.4.6.1 Synthesis by Substituent Modification ... 740
17.4.6.1.1 Method 1: Oxidation of Dibenzo\[b,f\]thiepins to Oxides of Sulfur ... 740
17.4.6.1.2 Method 2: Sulfur Imination of Dibenzo\[b,f\]thiepins ... 741
17.4.6.7 Dibenzo\[b,f\]selenepins .. 742
17.4.6.7.1 Aromatization .. 742
17.4.6.7.1.1 Method 1: Conversion into Enamine Forms of Dibenzo\[b,f\]selenepin-10(11H)-ones Using Titanium(IV) Chloride 742
17.4.6.8 Tribenzo\[b,d,f\]thiepins and Their S-Oxides .. 743
17.4.6.8.1 Synthesis by Construction of a Fused Ring ... 743
17.4.6.8.1.1 Method 1: From Dibenzo\[b,f\]thiepin-10-yne .. 743
17.4.6.8.1.2 Method 2: From Dibenzo\[b,f\]thiepin-10,11-dione .. 744

17.4.5 Product Subclass 5: Azepines, Cyclopentazepines, and Phosphorus Analogues
M. D. Surman and R. H. Hutchings

17.4.5 Product Subclass 5: Azepines, Cyclopentazepines, and Phosphorus Analogues ... 749
17.4.5.1 Synthesis by Ring-Closure Reactions ... 750
17.4.5.1.1 By Formation of Two N—C Bonds ... 750
17.4.5.1.1.1 Fragments C—C—C—C—C and N ... 750
17.4.5.1.1.1.1 Method 1: From 2,6-Bifunctional Fulvenes and Ammonia .. 750
17.4.5.1.2 By Formation of One N—C and One C—C Bond ... 751
17.4.5.1.2.1 Fragments N—C—C—C—C and C—C ... 751
17.4.5.1.2.1.1 Method 1: Condensation of 4-Hydroxy-2,3,4-triphenylcyclopent-2-enone with Pyrrolidine .. 751
17.4.5.1.2.1.2 Method 2: Condensation of 2-Vinyl-2H-azirines with Dimethyl Acetylenedicarboxylate .. 752
17.4.5.1.2.2 Fragments N—C—C and C—C—C ... 753
17.4.5.1.2.2.1 Method 1: Annulation of Fischer Carbenes with Azadienes ... 753
17.4.5.1.2.2.2 Method 2: Condensation of 3-Phenyl-2H-azirine-2-carbaldehyde with Methyl 4-(Triphenylphosphorylidyne)but-2-enolate ... 754
17.4.5.1.2.3 Fragments C—C—C—C and N—C—C

17.4.5.1.2.3.1 Method 1: Condensation of 2,6-Bifunctional Fulvenes with Amidines

17.4.5.1.2.3.2 Method 2: Condensation of (Vinylimino)phosphoranes with 6-(Dimethylamino)fulvene-2-carbaldehyde

17.4.5.1.2.3.3 Method 3: Cycloaddition of Cyclopentadienones with 2H-Azirines

17.4.5.1.3 By Formation of Two C—C Bonds

17.4.5.1.3.1 Fragments C—N—C—C—C and C—C—C

17.4.5.1.3.2 Fragments C—N—C—C and C—C—C

17.4.5.1.4 By Formation of One N—C Bond

17.4.5.1.4.1 Fragment N—C—C—N—C—C—C

17.4.5.1.5 By Formation of One C—C Bond

17.4.5.1.5.1 Fragment C—C—C—P—C—C—C

17.4.5.2 Synthesis by Ring Transformation

17.4.5.2.1 By Ring Enlargement

17.4.5.2.1.1 Of Three-Membered Heterocycles

17.4.5.2.1.1.1 Method 1: From 7-Azabicyclo[4.1.0]hept-3-enes

17.4.5.2.1.1.2 Method 2: Thermolysis of 2-Ethynyl-3-vinylaziridines

17.4.5.2.1.2 Of Four-Membered Heterocycles

17.4.5.2.1.2.1 Method 1: Base-Induced Rearrangement of 4-Tolyl 1,3,4,5-Tetraphenyl-6-azabicyclo[3.2.0]hept-3-ene-6-sulfonate

17.4.5.2.1.3 Of Five-Membered Heterocycles

17.4.5.2.1.3.1 Method 1: Thermal Isomerization of 3-Azaquadricyclanes

17.4.5.2.1.3.2 Method 2: Pyrolysis of 2-Azabicyclo[3.2.0]hepta-2,6-dienes

17.4.5.2.1.3.3 Method 3: From 2-Azabicyclo[3.2.0]heptane-3,4-diones

17.4.5.2.1.3.4 Method 4: Photolysis of 2,1-Benzisoxazoles

17.4.5.2.1.3.5 Method 5: Addition of Dichlorocarbene to 2,5-Dihydro-1H-phosphole 1-Oxides

17.4.5.2.1.4 Of Six-Membered Heterocycles

17.4.5.2.1.4.1 Method 1: Base-Induced Rearrangement of Pyridinium Salts

17.4.5.2.1.4.2 Method 2: Base-Induced Rearrangement of Dihydropyridines

17.4.5.2.1.4.3 Method 3: Base-Induced Rearrangement of Dihydropyridinium Salts
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4.5.2.1.5</td>
<td>Of Six-Membered Arenes</td>
<td>776</td>
</tr>
<tr>
<td>17.4.5.2.1.5.1</td>
<td>Method 1: Intramolecular Insertion of Arylnitrenes</td>
<td>776</td>
</tr>
<tr>
<td>17.4.5.2.1.5.1.1</td>
<td>Variation 1: Thermal Decomposition of Aryl Azides</td>
<td>776</td>
</tr>
<tr>
<td>17.4.5.2.1.5.1.12</td>
<td>Variation 2: Photolytic Decomposition of Aryl Azides</td>
<td>778</td>
</tr>
<tr>
<td>17.4.5.2.1.5.1.13</td>
<td>Variation 3: Deoxygenation of Nitrosoarenes</td>
<td>783</td>
</tr>
<tr>
<td>17.4.5.2.1.5.1.14</td>
<td>Variation 4: Deoxygenation of Nitroarenes</td>
<td>784</td>
</tr>
<tr>
<td>17.4.5.2.1.5.1.15</td>
<td>Variation 5: Thermal Decomposition of N-Phenyl-N,O-bis(trimethylsilyl)hydroxyamine</td>
<td>787</td>
</tr>
<tr>
<td>17.4.5.2.1.5.2</td>
<td>Method 2: From the Insertion of Nitrenes into Arenes</td>
<td>787</td>
</tr>
<tr>
<td>17.4.5.2.1.5.2.1</td>
<td>Variation 1: Thermolysis of Azidoformates</td>
<td>788</td>
</tr>
<tr>
<td>17.4.5.2.1.5.2.2</td>
<td>Variation 2: Pyrolysis of 2-Haloindan-1-yl Azidoformates</td>
<td>790</td>
</tr>
<tr>
<td>17.4.5.2.1.5.2.3</td>
<td>Variation 3: Photolysis of Azidoformates</td>
<td>791</td>
</tr>
<tr>
<td>17.4.5.2.1.5.2.4</td>
<td>Variation 4: Decomposition of N-[(4-Nitrophenyl)sulfonyloxy]carbamates</td>
<td>792</td>
</tr>
<tr>
<td>17.4.5.2.1.5.2.5</td>
<td>Variation 5: Thermolysis of Arenesulfonyle Azides</td>
<td>792</td>
</tr>
<tr>
<td>17.4.5.2.1.5.2.6</td>
<td>Variation 6: Reaction of Phthalimidonitrene with Activated Benzenes</td>
<td>796</td>
</tr>
<tr>
<td>17.4.5.2.1.5.2.7</td>
<td>Variation 7: Thermolysis of Cyanogen Azide</td>
<td>796</td>
</tr>
<tr>
<td>17.4.5.2.1.5.2.8</td>
<td>Variation 8: Deoxygenation of Nitrobenzenes and Nitrosoformates</td>
<td>797</td>
</tr>
<tr>
<td>17.4.5.2.1.5.2.9</td>
<td>Variation 9: Photolysis of 2-Azido-1,3,5-triazines</td>
<td>798</td>
</tr>
<tr>
<td>17.4.5.2.1.5.3</td>
<td>Method 3: From Anilides</td>
<td>798</td>
</tr>
<tr>
<td>17.4.5.3</td>
<td>Aromatization</td>
<td>800</td>
</tr>
<tr>
<td>17.4.5.3.1</td>
<td>Method 1: Isomerization with Meerwein’s Reagent</td>
<td>800</td>
</tr>
<tr>
<td>17.4.5.3.1.1</td>
<td>Variation 1: Of 1,5-Dihydro-2H-azepin-2-ones</td>
<td>800</td>
</tr>
<tr>
<td>17.4.5.3.1.2</td>
<td>Variation 2: Of 1,2-Dihydro-3H-azepin-3-ones</td>
<td>801</td>
</tr>
<tr>
<td>17.4.5.3.2</td>
<td>Method 2: Bromination–Dehydrobromination of 4-Ethoxy-1,2,6,7-tetrahydrocyclopent[d]azepine</td>
<td>801</td>
</tr>
<tr>
<td>17.4.5.3.3</td>
<td>Method 3: Dehydrobromination of 3,6-Dibromo-1-phenyl-2,3,6,7-tetrahydro-1H-phosphepin 1-Oxide</td>
<td>802</td>
</tr>
<tr>
<td>17.4.5.4</td>
<td>Synthesis by Substituent Modification</td>
<td>803</td>
</tr>
<tr>
<td>17.4.5.4.1</td>
<td>Substitution of Existing Substituents</td>
<td>803</td>
</tr>
<tr>
<td>17.4.5.4.1.1</td>
<td>Of Hydrogen</td>
<td>803</td>
</tr>
<tr>
<td>17.4.5.4.1.1.1</td>
<td>Method 1: Tautomerization</td>
<td>803</td>
</tr>
<tr>
<td>17.4.5.4.1.1.1.1</td>
<td>Variation 1: Rearrangement of 1H- to 3H-Azepines</td>
<td>803</td>
</tr>
<tr>
<td>17.4.5.4.1.1.1.2</td>
<td>Variation 2: Rearrangement of 2H- to 3H-Azepines</td>
<td>804</td>
</tr>
<tr>
<td>17.4.5.4.1.1.1.3</td>
<td>Variation 3: Rearrangement of 4H- to 3H-Azepines</td>
<td>805</td>
</tr>
<tr>
<td>17.4.5.4.1.1.1.4</td>
<td>Variation 4: Rearrangement of 3H- to 3H-Azepines</td>
<td>805</td>
</tr>
<tr>
<td>17.4.5.4.1.1.2</td>
<td>Method 2: Metallation</td>
<td>807</td>
</tr>
<tr>
<td>17.4.5.4.1.1.3</td>
<td>Method 3: C-Acylation</td>
<td>807</td>
</tr>
<tr>
<td>17.4.5.4.1.1.4</td>
<td>Method 4: C-Alkylation</td>
<td>808</td>
</tr>
<tr>
<td>17.4.5.4.1.1.5</td>
<td>Method 5: C-Halogenation</td>
<td>810</td>
</tr>
<tr>
<td>17.4.5.4.1.1.6</td>
<td>Method 6: C-Thiolation</td>
<td>811</td>
</tr>
<tr>
<td>17.4.5.4.1.1.7</td>
<td>Method 7: C-Amination</td>
<td>811</td>
</tr>
<tr>
<td>17.4.5.4.1.1.8</td>
<td>Method 8: N-Substitution</td>
<td>812</td>
</tr>
<tr>
<td>17.4.5.4.1.2</td>
<td>Of Carbon Functionalities</td>
<td>812</td>
</tr>
<tr>
<td>17.4.5.4.1.2.1</td>
<td>Method 1: N-Decarboxylation</td>
<td>812</td>
</tr>
<tr>
<td>17.4.5.4.1.3</td>
<td>Of Heteroatoms</td>
<td>813</td>
</tr>
</tbody>
</table>
17.4.5.4.1.3.1 Method 1: Of Alkoxy Groups .. 813
17.4.5.4.1.3.2 Method 2: Of Sulfur or Silyl on the Ring Nitrogen 814
17.4.5.4.1.3.3 Method 3: Of Amino Groups .. 814
17.4.5.4.2 Method 1: Preparation of Azepine–Metal Complexes 815
17.4.5.4.2.1 Method 2: N-Oxidation .. 816
17.4.5.4.3 Method 1: Condensation Reactions 816
17.4.5.4.3.1 Method 2: Hydrolysis of Esters and Nitriles 817
17.4.5.4.3.2 Method 3: Oxidations .. 818
17.4.5.4.3.3 Method 4: Reductions .. 818

17.4.6 Product Subclass 6: Benzazepines and Their Group 15 Analogues
J.-P. K. Meigh

17.4.6 Product Subclass 6: Benzazepines and Their Group 15 Analogues 825
17.4.6.1 1H-1-Benzazepines .. 831
17.4.6.1.1 Synthesis by Ring-Closure Reactions 831
17.4.6.1.1.1 By Formation of One N—C and One C—C Bond 831
17.4.6.1.1.1.1 Method 1: From N-Methylaniline and Levulinic Acid 831
17.4.6.1.1.1.2 Method 2: Lewis Acid Catalyzed Dimerization of Pentafluoroaniline .. 831
17.4.6.1.1.2 By Formation of Two C—C Bonds 832
17.4.6.1.1.2.1 Method 1: By Thermal Cycloaddition of Dimethyl Acetylenedicarboxylate with 1-Methylindole .. 832
17.4.6.1.1.2.1.1 Variation 1: By Thermal Cycloaddition of Acetylene Esters with 1-Acetyl-3-piperidin-1-yl-1H-indole .. 834
17.4.6.1.1.2.1.2 Variation 2: By Photocycloaddition of Dimethyl Acetylenedicarboxylate with 1-Methylindole .. 835
17.4.6.1.1.2.2 Method 2: From the Reaction of 2-Substituted Quinoline Oxides with Dimethyl Acetylenedicarboxylate .. 836
17.4.6.1.1.3 By Formation of One C—C Bond 837
17.4.6.1.1.3.1 Method 1: By Intramolecular Aldol Condensation 837
17.4.6.1.2 Synthesis by Ring Transformation 838
17.4.6.1.2.1 By Ring Enlargement .. 838
17.4.6.1.2.1.1 Method 1: Thermolysis of 2a,7b-Dihydro-3H-cyclobut[b]indoles .. 838
17.4.6.1.2.1.1.1 Variation 1: By Thermal Valence Isomerization of 2a,7b-Dihydro-3H-cyclobut[b]indoles .. 839
17.4.6.1.3 Aromatization .. 840
17.4.6.1.3.1 Method 1: By Electrochemical Oxidation of 2,5-Dihydro-1H-1-benzazepines .. 840
17.4.6.1.3.2 Method 2: By Chemical Oxidation of 5a,9a-Dihydro-1H-1-benzazepines 840
17.4.6.1.3.3 Method 3: By Chlorination–Dehydrochlorination of Phenyl-2,3,4,5-tetrahydro-1H-benzazepin-2-ones 841
17.4.6.1.4 Synthesis by Substituent Modification .. 843
17.4.6.1.4.1 Substitution of Existing Substituents .. 843
17.4.6.1.4.1.1 Method 1: Bromination of 1H-1-Benzazepines 843
17.4.6.1.4.1.2 Method 2: Acetylation of 1H-1-Benzazepine 843
17.4.6.2 2-Benzazepines .. 844
17.4.6.2.1 Synthesis by Ring-Closure Reactions ... 844
17.4.6.2.1.1 By Formation of One N–C and One C–C Bond 844
17.4.6.2.1.1.1 Method 1: From (Z)-3-(Tributylstannyl)allylamine and Aryl Bromides 844
17.4.6.2.1.1.2 Method 2: From 1,3-Monoazabisylides and Phthalaldehyde 844
17.4.6.2.1.1.3 Method 3: From Cycloaddition of Inden-2-one and 2H-Azirines 845
17.4.6.2.1.2 By Formation of One N–C Bond ... 846
17.4.6.2.1.2.1 Method 1: By Partial Reduction of Acetylenic Benzophenones 846
17.4.6.2.1.3 By Formation of One C–C Bond .. 847
17.4.6.2.1.3.1 Method 1: By Photoisomerization of 3-Phenyl-2-[(Z)-2-phenylvinyl]-2H-azirene .. 847
17.4.6.2.1.3.2 Method 2: By 1,7-Electrocyclization of Diene-Conjugated Nitrile Ylides 847
17.4.6.2.2 Synthesis by Ring Transformation ... 848
17.4.6.2.2.1 By Ring Enlargement .. 848
17.4.6.2.2.1.1 Method 1: Base-Mediated Ring Expansion of 1,4-Dihydro-4-(hydroxymethyl)[c]isoquinolines 848
17.4.6.2.2.1.2 Method 2: By Thermolysis of Dihydrocyclopropa[c]isoquinolines 849
17.4.6.2.2.1.2.1 Variation 1: From 1,4-Dihydro-4-(hydroxymethyl)[c]isoquinolines and Silver(I) Trifluoroacetate .. 850
17.4.6.2.2.1.3 Method 3: Deoxygenation of Nitroarenes 850
17.4.6.2.2.1.4 Method 4: Photolysis of Aryl Azides .. 851
17.4.6.2.3 Aromatization .. 852
17.4.6.2.3.1 Method 1: By syn-Dehydrobromination 852
17.4.6.2.4 Synthesis by Substituent Modification ... 853
17.4.6.2.4.1 Substitution of Existing Substituents ... 853
17.4.6.2.4.1.1 Of Hydrogen .. 853
17.4.6.2.4.1.1.1 Method 1: By an Oxygen Functionality 853
17.4.6.2.4.1.1.2 Method 2: By Tautomerism .. 853
17.4.6.2.4.1.2 Of Heteroatoms .. 853
17.4.6.2.4.1.2.1 Method 1: Palladium(0)-Catalyzed Carboalkoxylation of 5-Bromo-5H-2-benzazepines .. 853
17.4.6.2.4.2 Addition Reactions .. 854
17.4.6.2.4.2.1 Of Hydrogen .. 854
17.4.6.2.4.2.2 Of Organic Groups .. 854
17.4.6.2.2.3 Of Heteroatoms .. 855
17.4.6.2.4.2.3.1 Method 1: Of Bromine .. 855
17.4.6.2.4.2.3.2 Method 2: N-Oxidation .. 855
17.4.6.2.4.2.3.3 Method 3: Formation of an Annulated Benzazepine 855
17.4.6.3 3H-3-Benzazepines .. 856
17.4.6.3.1 Synthesis by Ring-Closure Reactions 856
17.4.6.3.1.1 By Formation of Two N—C Bonds 856
17.4.6.3.1.1.1 Method 1: From 1,2-Phenylenediacetyl Chloride 856
17.4.6.3.1.2 By Formation of Two C—C Bonds 857
17.4.6.3.1.2.1 Method 1: From Phthalaldehyde 857
17.4.6.3.1.2.1.1 Variation 1: From 1,2-Dibenzoylbenzene with N,N-Bis(cyanomethyl)isopropylamine 857
17.4.6.3.1.3 By Formation of One N—C Bond 858
17.4.6.3.1.3.1 Method 1: By Halogen Acid Induced Cyclization of Benzene-1,2-diacetonitrile 858
17.4.6.3.1.3.2 Method 2: Thermolysis of Vinyl Azides 858
17.4.6.3.1.4 By Formation of One C—C Bond 860
17.4.6.3.1.4.1 Method 1: From Phenylacetimidates 860
17.4.6.3.1.5 By Annulation to the Heterocyclic Ring 861
17.4.6.3.1.5.1 Method 1: By [4 + 2] Cycloaddition of Methyl 2-Pyrene-5-carboxylate with Ethyl 1H-Azepine-1-Carboxylate 861
17.4.6.3.2 Synthesis by Ring Transformation 862
17.4.6.3.2.1 By Ring Enlargement ... 862
17.4.6.3.2.1.1 Method 1: From 2,3-Benzo-7-azabicyclo[2.2.1]hepta-2,5-dienes 862
17.4.6.3.2.1.2 Method 2: From Azirino[2,1-a]isoquinolines 862
17.4.6.3.2.1.3 Method 3: From 2-(1a,2,7,7a-Tetrahydro-1H-naphtho[2,3-b]aziren-1-yl)-1H-isoindole-1,3(2H)-dione .. 863
17.4.6.3.3 Aromatization .. 864
17.4.6.3.3.1 Method 1: By Oxidation (Dehydrogenation) of 7,8-Dimethoxy-5-phenyl-1,3,4,5-tetrahydro-2H-3-benzazepin-2-one 864
17.4.6.3.4 Synthesis by Substituent Modification 864
17.4.6.3.4.1 Substitution of Existing Substituents 864
17.4.6.3.4.1.1 Of Hydrogen ... 864
17.4.6.3.4.1.1.1 Method 1: Nitration of 1H-3-Benzazepin-2-amine 864
17.4.6.3.4.1.2 Method 2: C1-Methylation of 2,7,8-Trimethoxy-1H-3-benzazepine 865
17.4.6.3.4.2 Of Heteroatoms .. 865
17.4.6.3.4.2.1 Method 1: Debromination with Palladium on Charcoal 865
17.4.6.3.4.2.2 Method 2: Formation of 2-Ethoxy-7,8-dimethoxy-5-phenyl-1H-3-benzazepine 866
17.4.6.3.4.2.3 Method 3: By ipso-Substitution of 2-Alkoxy Substituents 866
17.4.6.3.5 Addition Reactions ... 867
17.4.6.3.5.1 Of Hydrogen .. 867
17.4.6.3.5.1.1 Method 1: By Reduction of 3-Acetyl-3H-3-benzazepine 867
17.4.6.3.5.2 Of Organic Groups ... 867
17.4.6.3.5.2.1 Method 1: Quaternization of 1H-3-Benzazepin-2-amine with Iodomethane .. 867
17.4.6.3.6 Modification of Substituents ... 867
17.4.6.3.6.1 Method 1: Acetylation of 4-Bromo-1H-3-benzazepin-2-amine 867
17.4.6.4 5H-Dibenz[b,d]azepines .. 868
17.4.6.4.1 Synthesis by Ring-Closure Reactions .. 868
17.4.6.4.1.1 Method 1: By Intramolecular Cyclization under Friedel–Crafts Conditions 868
17.4.6.4.2 Aromatization .. 869
17.4.6.4.2.1 Method 1: Manganese(IV) Oxide Oxidation of 5,6-Dihydro-7H-dibenz[b,d]azepin-7-ones ... 869
17.4.6.4.2.1.1 Variation 1: Lead(IV) Acetate Oxidation of 5,6-Dihydro-7H-dibenz[b,d]azepin-7-ones ... 869
17.4.6.4.3 Synthesis by Substituent Modification ... 870
17.4.6.5 11H-Dibenz[b,e]azepines .. 870
17.4.6.5.1 Synthesis by Ring-Closure Reactions .. 871
17.4.6.5.1.1 By Formation of One N—C and One C—C Bond 871
17.4.6.5.1.1.1 Method 1: By the Thermal Decomposition of Diphenylmethane-2-diazonium Tetrafluoroborates 871
17.4.6.5.1.2 By Formation of One N—C Bond ... 871
17.4.6.5.1.2.1 Method 1: Reduction–Cyclodehydration of 2-(2-Nitrophenyl)benzophenones ... 871
17.4.6.5.1.3 By Formation of One C—C Bond ... 872
17.4.6.5.1.3.1 Method 1: By Bischler–Napieralski Cyclodehydration 872
17.4.6.5.2 Synthesis by Ring Transformation .. 872
17.4.6.5.2.1 By Ring Enlargement ... 872
17.4.6.5.2.1.1 Method 1: By Beckmann Rearrangement of 10H-Anthracen-9-one Oximes .. 872
17.4.6.5.2.1.2 Method 2: By the Schmidt Reaction of Anthraquinones 873
17.4.6.5.3 Aromatization .. 874
17.4.6.5.3.1 Method 1: By Dehydrogenation of 1,4-Dimethyl-6,11-dihydro-5H-dibenz[b,e]azepine ... 874
17.4.6.5.3.2 Method 2: From 6H-Dibenz[b,e]azepin-6-ones 875
17.4.6.5.4 Synthesis by Substituent Modification ... 875
17.4.6.5.4.1 Substitution of Existing Substituents .. 875
17.4.6.5.4.1.1 Method 1: By Displacement of 2-Halo Substituents 875
17.4.6.5.4.2 Addition Reactions ... 876
17.4.6.5.4.2.1 Of Hydrogen .. 876
17.4.6.5.4.2.1.1 Method 1: Reduction without Ring Opening 876
17.4.6.5.4.2.2 Of Heteroatoms .. 876
17.4.6.5.4.2.2.1 Method 1: Formation of N-Oxides 876
17.4.6.5.4.3 Modification of Substituents 877
17.4.6.5.4.3.1 Method 1: Substitution of 6-Chloromethyl-11H-dibenz[b,e]azepine 877
17.4.6.6 5H-Dibenzo[c,e]azepines .. 877
17.4.6.6.1 Synthesis by Ring-Closure Reactions 877
17.4.6.6.1.1 By Formation of Two N—C Bonds 877
17.4.6.6.1.1.1 Method 1: By Acid-Mediated Cyclization of 2’-(Aminoalkyl)biphenyl-2-carbaldehydes ... 877
17.4.6.6.1.1.1 Variation 1: By Acid-Mediated Cyclization of 2’-[2’-(1,3-Dioxolan-2-yl)-1,1’-biphenyl-2-yl]-4,4-dimethyl-4,5-dihydro-1,3-oxazole 878
17.4.6.6.1.1.2 Method 2: From 2’-Biphenyldicarboxaldehyde 879
17.4.6.6.1.1.3 Method 3: Ring Closure of 2’-(Bromomethyl)biphenyl-2-carbaldehyde with Arylamines under Acidic Conditions 880
17.4.6.6.1.1.3.1 Variation 1: Ring Closure of 2’-(1-Bromoalkyl)biphenyl-2-carbaldehydes under Basic Conditions 880
17.4.6.6.1.1.3.2 Variation 2: Ring Closure of [2’-(Bromomethyl)-4-chloro-1,1’-biphenyl-2-yl](2-fluorophenyl)methanone 880
17.4.6.6.1.2 By Formation of One N—C Bond 881
17.4.6.6.1.2.1 Method 1: By 1,7-Electrocyclization of Diene-Conjugated Nitrile Ylides · 881
17.4.6.6.2 Aromatization ... 883
17.4.6.6.2.1 Method 1: By Elimination from an N-Substituted 6,7-Dihydro-5H-dibenzo[c,e]azepine .. 883
17.4.6.6.2.2 Method 2: By Dehydrochlorination 884
17.4.6.6.2.3 Method 3: Oxidation with Mercury(II) Oxide 884
17.4.6.6.2.4 Method 4: Via Dibenzo[c,e]azepinium Salts 885
17.4.6.6.3 Synthesis by Substituent Modification 885
17.4.6.6.3.1 Substitution of Existing Substituents 885
17.4.6.6.3.1.1 Of Hydrogen .. 885
17.4.6.6.3.1.1 Method 1: Deprotonation of 5H-Dibenzo[c,e]azepines with Lithium Diisopropylamide .. 885
17.4.6.6.3.1.1.2 Method 2: Aerial Oxidation under Phase-Transfer Conditions .. 886
17.4.6.6.3.1.2 Of Heteroatoms .. 887
17.4.6.6.3.1.2.1 Method 1: Introduction of Carbofunctional Groups by the Suzuki Reaction .. 887
17.4.6.6.7 5H-Dibenzo[b,f]azepines .. 887
17.4.6.6.7.1 Synthesis by Ring-Closure Reactions 887
17.4.6.7.1 By Formation of Two C—C Bonds ... 888
17.4.6.7.1.1 Method 1: From 2,2'-Bis(bromomethyl)diphenylamine 888
17.4.6.7.1.1.1 Variation 1: From Bis(2'-formylphenyl)amine .. 888
17.4.6.7.2 Synthesis by Ring Transformation ... 888
17.4.6.7.2.1 By Ring Enlargement ... 888
17.4.6.7.2.1.1 Method 1: From 2,2¢-Bis(bromomethyl)diphenylamine 888
17.4.6.7.2.1.2 Method 2: From 9,10-Dihydroacridin-9-ylmethanol 890
17.4.6.7.2.1.2.1 Variation 1: From 9-(Hydroxymethyl)-9,10-dihydroacridine and Sulfuric Acid .. 891
17.4.6.7.2.1.2.2 Variation 2: Base-Promoted Ring Expansion of Acridine Methanesulfonates .. 892
17.4.6.7.3 Aromatization .. 893
17.4.6.7.3.1 Method 1: Bromination–Dehydrobromination .. 893
17.4.6.7.3.2 Method 2: Catalytic Dehydrogenation .. 893
17.4.6.7.4 Synthesis by Substituent Modification ... 894
17.4.6.7.4.1 Substitution of Existing Substituents ... 894
17.4.6.7.4.1.1 Of Hydrogen .. 894
17.4.6.7.4.1.1.1 Method 1: Nitration of 5H-Dibenz[b,f]azepines 894
17.4.6.7.4.1.1.2 Method 2: Friedel–Crafts Acylation of 5-Acyl-5H-dibenz[b,f]azepines 895
17.4.6.7.4.1.1.3 Method 3: N-Alkylation of 5H-Dibenz[b,f]azepines 895
17.4.6.7.4.1.1.3.1 Variation 1: By Phase-Transfer Catalysis 896
17.4.6.7.4.1.1.3.2 Variation 2: By Reductive Amination ... 896
17.4.6.7.4.1.1.4 Method 4: N-Acylation of 5H-Dibenz[b,f]azepines 897
17.4.6.7.4.1.1.5 Method 5: Chlorocarbonylation of 5H-Dibenz[b,f]azepines with Phosgene Equivalents .. 897
17.4.6.7.4.1.1.5.1 Variation 1: Reaction with Cyanogen Bromide 898
17.4.6.7.4.2 Of Metals .. 898
17.4.6.7.4.2.1 Method 1: Directed ortho-Metalation .. 898
17.4.6.7.4.3 Of Heteroatoms .. 899
17.4.6.7.4.3.1 Method 1: By Halogen–Lithium Exchange ... 899
17.4.6.7.4.3.2 Method 2: Nucleophilic Displacement of Bromide 900
17.4.6.7.4.3.2.1 Variation 1: Nucleophilic Displacement of Bromide by Nitrogen Nucleophiles (Aminodebromination) 900
17.4.6.7.4.4 Addition Reactions .. 901
17.4.6.7.4.4.1 Reduction Reactions ... 901
17.4.6.7.4.4.1.1 Method 1: Reduction at the C10—C11 Double Bond 901
17.4.6.7.4.4.2 Of Heteroatoms ... 901
17.4.6.7.4.4.2.1 Method 1: Halogenation .. 901
17.4.6.7.4.4.3 Oxidation Reactions ... 902
17.4.6.7.4.4.3.1 Method 1: Formation of N-Oxides ... 902
17.4.6.7.4.4.3.2 Method 2: Formation of Epoxides ... 902
Cycloadditions .. 903

Method 1: Cyclopropanation by the Simmons–Smith Reaction 903

Method 2: 1,3-Dipolar Cycloaddition with Diarylnitrilimines 904

Method 4: [4 + 2] Cycloaddition of Dibenzazepynes 905

Method 1: Cyclopropanation with Dichlorocarbene 904

Variation 1: Cyclopropanation with Dichlorocarbene 904

Method 2: 1,3-Dipolar Cycloaddition with Diarylnitrilimines 904

Method 4: [4 + 2] Cycloaddition of Dibenzazepynes 905

Method 1: From N,N-Diphenyl-1,1'-biphenyl-2,2'-diamine 906

Method 1: From 5-Acetyl-10-bromo-5H-dibenz[b,f]azepine and Furan ... 907

Method 1: From 5-Acetyl-10-bromo-5H-dibenz[b,f]azepine and Cyclohexa-1,3-diene ... 908

Synthesis by Substituent Modification .. 909

Other Group 15 Benzoheteroepins ... 910

1H-1-Benzoheteroepins .. 910

Synthesis by Ring-Closure Reactions ... 911

Method 1: Thermal Valence Isomerization of Dihydrocyclobut[b]hetero-
indoles ... 911

Method 2: From [(1Z,3Z)-1-Bromo-4-(2-bromophenyl)buta-1,3-
dien-1-yl](trimethyl)silane ... 912

3-Benzoheteroepins .. 914

Synthesis by Ring-Closure Reactions ... 914

Method 1: Potassium Hydroxide/18-Crown-6 Catalyzed Addition of
Phenylphosphine to 1,2-Diethynylbenzene 914

Method 2: From (Z,Z)-2-Bis(β-bromovinyl)benzene 914

Dibenz[b,d]heteroepins .. 916

Synthesis by Ring-Closure Reactions ... 916

Method 1: From [(Z)-1-Bromo-2-(2'-bromophenyl-1,1'-biphenyl-
2-yl)vinyl](trimethyl)silane ... 916

Dibenz[b,f]heteroepins .. 917

Synthesis by Ring-Closure Reactions ... 917

Method 1: From 1-Bromo-2-[(Z)-2-(2-bromophenyl)vinyl]benzene 917

Tribenzo[b,d,f]heteroepins .. 918

Synthesis by Ring-Closure Reactions ... 918

Method 1: Transition-Metal-Catalyzed Trimerization of Phenyl[bis[2-
(phenylethynyl)phenyl]]phosphate Oxide 918

Reactions of Other Group 15 Benzoheteroepins 920
Product Class 5: Seven-Membered Heteroaromatics with Two or More Heteroatoms

Product Subclass 1: 1,2-Diazepines

Synthesis by Ring-Closure Reactions

By Formation of Two N—C Bonds

Method 1: Tosylhydrazine Condensation with α,β-γ,δ-Unsaturated Ketones

Method 2: Hydrazine Condensation with Oxo Esters and Oxo Acids

By Formation of One N—N Bond

Method 1: Azo Formation from Linked Bis(nitroaromatics)

Method 2: Diazooalkane Formation from Tosylhydrazones

By Formation of One C—C Bond

Method 1: 1,7-Dipolar Cyclization of Nitrile Imines

Product Subclass 2: 1,3-Diazepines

Synthesis by Ring-Closure Reactions

Method 1: Cyclization Reactions of 2,2'-Diaminobiphenyls with Imidates, Thioimidates, and Ortho Esters

Method 2: Formation of 6H-Dibenzo[d,f][1,3]diazpin-6-ones and Derivatives

Synthesis by Ring Transformation
17.5.2.1 Method 1: Photolysis Reaction of Azidopyridines with Nucleophiles 948
17.5.2.2 Method 2: Photochemical Conversion of N-Imides into 1,3-Diazepines 948
17.5.2.3 Synthesis by Substituent Modification 949
17.5.2.3.1 Method 1: N,N'-Diacylation of 6H-Dibenzo[d,f][1,3]diazepin-6-ones 949
17.5.2.3.2 Method 2: Displacement of Isothioureas 950
17.5.3 Product Subclass 3: 1,4-Diazepines 951
17.5.3.1 Synthesis by Ring-Closure Reactions 952
17.5.3.1.1 By Formation of Two N—C Bonds 952
17.5.3.1.1.1 Method 1: Reaction of Benzene-1,2-diamines with 1,3-Diketones 952
17.5.3.1.1.2 Method 2: Reaction of Benzene-1,2-diamines with 2-Halobenzoic Acids 954
17.5.3.1.1.3 Method 3: Reaction of Benzene-1,2-diamines with 2-Chloronicotinic Acids 954
17.5.3.1.1.4 Method 4: Reaction of 2-Aminobenzoic Acids with 2-Halonitrobenzenes 956
17.5.3.1.1.5 Method 5: Reaction of 2-Aminobenzoic Acids with 2-Chloro-3-pyridinamines 957
17.5.3.1.2 By Formation of Two N—C Bonds and One C—C Bond 958
17.5.3.1.2.1 Method 1: Intramolecular Ring Closures Using Dimethylformamide Dimethyl Acetal 958
17.5.3.1.2.2 Method 2: Intramolecular Ring Closures through Imino Chlorides 959
17.5.3.2 Synthesis by Ring Transformation 960
17.5.3.2.1 Method 1: Intramolecular Nitrene Insertion Reactions of Azidopyridines 960
17.5.3.2.2 Method 2: Intramolecular Nitrene Insertion Reactions of Azidoquinolines 960
17.5.3.3 Synthesis by Substituent Modification 962
17.5.3.3.1 By Replacement of Hydrogen 962
17.5.3.3.1.1 Method 1: N-Acylation of 1,4-Diazepines 962
17.5.3.3.1.2 Method 2: C3 Substitution of 1,5-Benzodiazepines by Direct Alkylation 964
17.5.3.3.1.3 Method 3: C3 Substitution of 1,4-Benzodiazepines by Rearrangement 966
17.5.3.3.2 1,4-Diazepine Amidines from 1,4-Diazepinones 968
17.5.3.3.2.1 Method 1: Lewis Acid Mediated Formation from Dihydro-1,4-diazepinones 968
17.5.3.3.2.2 Method 2: Imino Chloride Mediated Formation from Dihydrodibenzo[1,4]diazepinones 969
17.5.3.3.2.3 Method 3: 1,5-Benzodiazepine Amidines from Dihydro-1,5-benzodiazepine-2-thiones 970
17.5.3.3.2.4 Method 4: 1,4-Benzodiazepine Amidines from Dihydro-1,4-benzodiazepine-2-thiones 972
17.6 Product Class 6: Eight- and Nine-Membered Hetarenes and Heteroannulenes with One or More Heteroatoms

R. M. Borzilleri

17.6.1 Product Subclass 1: Azocines

17.6.1.1 Synthesis by Ring Transformation

17.6.1.1.1 Valence Isomerization

17.6.1.1.1 Method 1: From 2-Azabicyclo[4.2.0]octa-2,4,7-triene via Diazabasketene

17.6.1.1.2 Method 2: From Substituted Methoxyazabicyclo[4.2.0]octa-3,7-dienes

17.6.1.1.3 Method 3: Photocycloaddition of Benzonitriles and Phenols

17.6.1.1.4 Method 4: Cycloaddition of 2-Phenylbenzazetes

17.6.1.1.5 Method 5: Photocyclodimerization of Pyridines

17.6.1.1.6 Method 6: Thermolysis of Tricyclo[4.2.2.02,5]deca-3,7,9-trienes and 1,2,4-Triazines

17.6.1.1.2 By Rearrangement

17.6.1.1.2.1 Method 1: Of Benzocycloheptatriene Azides

17.6.1.2 Aromatization

17.6.1.2.1 Method 1: Bromination/Dehydrobromination of Dihydroazocines

17.6.1.3 Synthesis by Substituent Modification

17.6.1.3.1 Modification of Substituents

17.6.1.3.1.1 Method 1: O-Methylation of Dihydroazocinones with Meerwein’s Reagent

17.6.2 Product Subclass 2: Diazocines and Diheterocines

17.6.2.1 Synthesis by Ring-Closure Reactions

17.6.2.1.1 By Formation of Two N—C Bonds

17.6.2.1.1.1 Method 1: 1,2-Diazocines by Condensation of Biphenyl Dicarbonyl Compounds with Hydrazines

17.6.2.1.1.2 Method 2: 1,4-Diazocines by Condensations of Diones with Diamines

17.6.2.1.1.2.1 Variation 1: Condensations of 1,2-Diones with Biphenyl-2,2’-diamines

17.6.2.1.1.2.2 Variation 2: By Condensations of 1,4-Diones with Benzene-1,2-diamines

17.6.2.1.1.3 Method 3: Annulated 1,5-Diazocines by Self-Condensation of 2-(Trimethoxymethyl)aniline

17.6.2.1.1.4 Method 4: 1,5-Diazocines by Bimolecular Condensation of 2-Aminobenzophenones

17.6.2.1.1.4.1 Variation 1: From the Acid-Catalyzed Intermolecular Condensation of 2-Aminobenzophenones

17.6.2.1.1.4.2 Variation 2: Condensation of 2-Aminobenzophenones or 2-Aminothio-benzophenones Derived from Benz[c]isoxazoles or Benz[c]isothiazoles
Variation 3: Condensation of Imines Derived from 2-Aminobenzophenones 994

Synthesis by Ring Transformation ... 994

Valence Isomerization of Diazabicyclo[4.2.0]octatriene Systems 994

Method 1: 1,2-Diazocine from a Polycyclic Azoalkane 994
Method 2: Annulated Diazocines by Cycloaddition of Fused Pyridazines and Pyrimidines with Electron-Rich Ynamines .. 995

Variation 1: Synthesis of Bicyclic 1,2-Diazocines .. 995
Variation 2: Synthesis of Bicyclic 1,3-Diazocines .. 996
Variation 3: Synthesis of Bicyclic 1,5-Diazocines .. 997
Method 3: Annulated 1,5-Diazocines by Photolysis of 1,2,3-Triazines 998

Valence Isomerization of Diazasemibullvalenes .. 999

Method 1: 1,5-Diazocines by Thermolysis of 2,6-Diazasemibullvalenes 999

Valence Isomerization of syn-o-Homobenzene Derivatives 999

Method 1: 1,4-Dioxocins by Thermolysis of syn-Benzene Dioxides 999
Method 2: 1,4-Oxazocines by Thermolysis of 3-Oxa-8-azatricyclo[5.1.0.0²⁴]oct-5-enes .. 1000

By Thermal Rearrangement .. 1002

Method 1: 1,4-Oxathiocins from Thiophenium Methylides 1002

Aromatization .. 1002

Method 1: Halogenation/Dehydrohalogenation of Dihydro-1,2-diazocines 1002

Synthesis by Substituent Modification .. 1003

Substitution of Existing Substituents ... 1003

Method 1: Substitution of Chlorine Atoms .. 1003
Variation 1: Bonded to 1,2-Diazocines ... 1003
Variation 2: Bonded to 1,5-Diazocines ... 1004
Method 2: Substitution of Methanesulfonyl and Other Groups Bonded to the Nitrogen Atoms of 1,4-Dihydro-1,4-diazocines .. 1005

Product Subclass 3: Triazocines and Tetrazocines .. 1006

Synthesis by Ring-Closure Reactions .. 1007

By Formation of Two N—C Bonds ... 1007

Method 1: 1,3,5-Triazocines by Condensation of Biguanides with β-Diketones 1007

Synthesis by Ring Transformation ... 1007

Valence Isomerization of Azabicyclo[4.2.0]octatriene 1007
Method 1: 1,2,4-Triazocines by Cycloaddition of 2-Phenyldiazocenes with Tetrazines .. 1007

Valence Isomerization of Tetraazasemibullvalene .. 1008

Method 1: 1,3,5,7-Tetrazocines by Oxidation of Tetraazapentalenes 1008
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.6.3.3</td>
<td>Synthesis by Substituent Modification</td>
<td>1009</td>
</tr>
<tr>
<td>17.6.3.3.1</td>
<td>Substitution of Existing Substituents</td>
<td>1009</td>
</tr>
<tr>
<td>17.6.3.3.1.1</td>
<td>Method 1: Substitution of Alkoxy Groups Bonded to 1,3,5,7-Tetrazocines</td>
<td>1009</td>
</tr>
<tr>
<td>17.6.4</td>
<td>Product Subclass 4: Heteronines and Oligoheteronines</td>
<td>1010</td>
</tr>
<tr>
<td>17.6.4.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>1010</td>
</tr>
<tr>
<td>17.6.4.1.1</td>
<td>By Formation of Two C—C Bonds</td>
<td>1010</td>
</tr>
<tr>
<td>17.6.4.1.1.1</td>
<td>Method 1: Oxonins and Thionins by Condensation of Dialdehydes with Symmetrical Bis(phosphonium) Salts</td>
<td>1010</td>
</tr>
<tr>
<td>17.6.4.2</td>
<td>Synthesis by Ring Transformation</td>
<td>1011</td>
</tr>
<tr>
<td>17.6.4.2.1</td>
<td>Valence Isomerization of Heterobicyclo[6.1.0]nona-2,4,6-trienes and Related Compounds</td>
<td>1011</td>
</tr>
<tr>
<td>17.6.4.2.1.1</td>
<td>Method 1: By Photolysis of Oxa- or Azabicyclo[6.1.0]nona-2,4,6-trienes</td>
<td>1011</td>
</tr>
<tr>
<td>17.6.4.2.1.2</td>
<td>Method 2: By Cycloaddition/Cycloreversion of Oxa- or Azabicyclo[6.1.0]nona-2,4,6-trienes with 3,6-Diphenyltetrazine, Followed by Oxidation</td>
<td>1012</td>
</tr>
<tr>
<td>17.6.4.2.1.3</td>
<td>Method 3: By Cycloaddition/Cycloreversion of Azabicyclo[5.2.0]nona-trienes with Pyranones, Followed by Dehydrogenation</td>
<td>1012</td>
</tr>
<tr>
<td>17.6.4.2.2</td>
<td>Valence Isomerization of syn-α-Homobenzene Systems</td>
<td>1013</td>
</tr>
<tr>
<td>17.6.4.2.2.1</td>
<td>Method 1: Synthesis of Trioxonins and Triazonines by Cycloreversion Reactions</td>
<td>1013</td>
</tr>
<tr>
<td>17.6.4.2.2.2</td>
<td>Method 2: By Thermolysis of 1,2,3,4,5,6-Hexamethyl-9-phenyl-7,8,9-triazatricyclo[4.3.0.0²,5]nona-3,7-diene</td>
<td>1014</td>
</tr>
<tr>
<td>17.6.5</td>
<td>Product Subclass 5: Heteroannulenes</td>
<td>1015</td>
</tr>
<tr>
<td>17.6.5.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>1015</td>
</tr>
<tr>
<td>17.6.5.1.1</td>
<td>By Formation of Two C—C Bonds</td>
<td>1015</td>
</tr>
<tr>
<td>17.6.5.1.1.1</td>
<td>Method 1: Heteroannulenes, Bridged Heteroannulenes, and Benzofused Bridged Heteroannulenes by Cyclization of Dialdehydes with Symmetrical Bis(phosphonium) Salts</td>
<td>1015</td>
</tr>
<tr>
<td>17.6.5.1.2</td>
<td>By Formation of One C—C Bond</td>
<td>1017</td>
</tr>
<tr>
<td>17.6.5.1.2.1</td>
<td>Method 1: Bridged Aza[10]annulenes by Cyclization of Cycloheptatrienyl Isocyanates</td>
<td>1017</td>
</tr>
<tr>
<td>17.6.5.2</td>
<td>Synthesis by Ring Transformation</td>
<td>1017</td>
</tr>
<tr>
<td>17.6.5.2.1</td>
<td>Beckmann Rearrangement</td>
<td>1017</td>
</tr>
<tr>
<td>17.6.5.2.1.1</td>
<td>Method 1: Methanoaza[10]- and Methanoaza[12]annulenes from Bridged Tricyclic Oximes</td>
<td>1017</td>
</tr>
<tr>
<td>17.6.5.2.2</td>
<td>Valence Isomerization of Tetracyclopolyenes</td>
<td>1018</td>
</tr>
<tr>
<td>17.6.5.2.2.1</td>
<td>Method 1: Oxa[n]annulenes and Aza[n]annulenes (n = 13–18) by Photolysis of Tetracyclic Epoxides, Aziridines, and Related Compounds</td>
<td>1018</td>
</tr>
<tr>
<td>17.6.5.2.2.1.1</td>
<td>Variation 1: By Photolysis of 11-Oxatetracyclo[6.5.0.0¹,3,0¹,0¹,13,0¹,0¹,12]trideca-2,4,6-triene and Similar Compounds</td>
<td>1018</td>
</tr>
</tbody>
</table>
Variation 2: By Photolysis of 1a,3a,3b,9a,9b,11a-Hexahydrocyclocta[3’,4’]-cyclobuta[1’,2’;5,6]cycloocta[1,2-b]oxirene and Similar Compounds ... 1019

17.7 Product Class 7: Cyclazines

Product Class 7: Cyclazines .. 1025

Product Subclass 1: [2.2.2]Cyclazine (Pyrrolo[2,1,5-cd]pyrrolizine) 1025

Product Subclass 2: [2.2.3]Cyclazines (Pyrrolo[2,1,5-cd]indolizines) and Related Compounds ... 1026

[2.2.3]Cyclazines (Pyrrolo[2,1,5-cd]indolizines) 1027

Synthesis by Ring-Closure Reactions 1027

By Formation of Two C—C Bonds .. 1027

Method 1: [8π+2π]-Cycloaddition Reactions 1027

Method 2: From Methyl Indolizines via Intramolecular Cyclization of Indolizine Carboxyaldehydes .. 1030

Method 3: Addition of Vilsmeier Salts to Nitromethane 1031

Method 4: Reaction of 3H-Pyrrolizine with Vinyleanimidinium Salt 1031

By Formation of One C—C Bond .. 1032

Method 1: Intramolecular Cyclization of Hexahydroindolizinone Followed by Dehydrogenation .. 1032

Synthesis by Substituent Modification 1033

Substitution of Existing Substituents 1033

Of Hydrogen .. 1033

Method 1: Friedel–Crafts Acylation of [2.2.3]Cyclazine 1033

Method 2: Nitration of [2.2.3]Cyclazine Followed by Reductive Ayclation of Nitrocyclazine .. 1033

Of Carbon Functionalities .. 1034

Method 1: Hydrolysis of Dimethyl Pyrrolo[2,1,5-cd]indolizine-1,2-dicarboxylate .. 1034

Benzo- and Dibenzo[2.2.3]cyclazines 1035

Synthesis by Ring-Closure Reactions 1035

By Formation of Two C—C Bonds .. 1035

Method 1: [8π+2π]-Cycloaddition Reactions 1035

Aza- and Diaza[2.2.3]cyclazines .. 1037

Synthesis by Ring-Closure Reactions 1038

By Formation of Two N—C Bonds .. 1038

Method 1: Reaction of a Pyrrolizinium Perchlorate with Ammonia ... 1038

By Formation of Two C—C Bonds .. 1039
17.7.2.3.1.2 Method 1: \([8\pi + 2\pi]\)-Cycloaddition Reactions 1039
17.7.2.3.1.2.2 Method 2: Reaction of Imidazo[2,1-\(a\)]pyridine with Dimethylformamide .. 1039
17.7.2.3.1.3 By Formation of One N–C Bond ... 1040
17.7.2.3.1.3.1 Method 1: Cyclization of Ethyl 5-Aminoimidazo[1,2-\(a\)]pyridine-3-carboxylate Followed by Reduction 1040
17.7.2.3.2 Synthesis by Substituent Modification ... 1041
17.7.2.3.2.1 Substitution of Existing Substituents .. 1041
17.7.2.3.2.1.1 Of Hydrogen ... 1041
17.7.2.3.2.1.1.1 Method 1: Oxidation of Methyl 3-Aryl-5,6-dihydro-4-\(H\)-pyrrolizino[2,3,4,5-\(i\)-\(j\)]quinoline-1-carboxylate 1041
17.7.2.3.2.1.2 Of Carbon Functionalities .. 1042
17.7.2.3.2.1.2.1 Method 1: Decarboxylation of Dimethyl 2-(Methylsulfanyl)imidazo [5,1,2-\(cd\)]indolizine-3,4-dicarboxylate 1042
17.7.2.3.2.1.2.2 Method 2: Oxidation of Imidazo[5,1,2-\(cd\)]indolizine-4-carbaldehyde ... 1043
17.7.2.3.2.1.3 Of Heteroatoms .. 1043
17.7.2.3.2.1.3.1 Method 1: Reduction of 2-(Methylsulfanyl)imidazo[5,1,2-\(cd\)]indolizine Using Raney Nickel ... 1043
17.7.2.3.2.1.3.1.1 Variation 1: Reduction of 2-(Methylsulfanyl)benzo[\(f\)]imidazo[5,1,2-\(cd\)]indolizine Using Raney Nickel .. 1044
17.7.2.3.3 Cyclazines (Pyrrolo[2,1,5-de]quinolizines) and Related Compounds ... 1044
17.7.3.1 \([2.3.3]\)Cyclazinylium (Pyrrolo[2,1,5-de]quinolizinium) and Benzo[2.3.3]cyclazinylium Salts .. 1045
17.7.3.1.1 Synthesis by Ring-Closure Reactions ... 1045
17.7.3.1.1.1 By Formation of Two C–C Bonds ... 1045
17.7.3.1.1.1.1 Method 1: Reaction of a Benzo[\(a\)][2.3.3]cyclazinylium Salt with Glyoxal ... 1045
17.7.3.1.2 Aromatization ... 1046
17.7.3.1.2.1 Method 1: Reaction of a Cyclazinone with Phosphorus Pentasulfide ... 1046
17.7.3.1.2.2 Method 2: Reaction of a Cyclazinone with Phosphoryl Bromide ... 1047
17.7.3.1.3 Synthesis by Substituent Modification ... 1047
17.7.3.1.3.1 Substitution of Existing Substituents .. 1047
17.7.3.1.3.1.1 Of Carbon Functionalities .. 1047
17.7.3.1.3.1.1.1 Method 1: Hydrolysis of 1-(Ethoxycarbonyl)pyrrolo[2,1,5-de]quinolininium Using Hydrochloric Acid .. 1047
17.7.3.1.3.1.2 Of Heteroatoms .. 1048
17.7.3.1.3.1.2.1 Method 1: Reduction of 1-(Methylsulfanyl)pyrrolo[2,1,5-de]quinolininium Using Raney Nickel ... 1047
17.7.3.1.3.1.2.2 Method 2: Reduction of 3-Bromopyrrolo[2,1,5-de]quinolininium Using Palladium ... 1048
17.7.3.2 [2.3.3]Cyclazinones .. 1049

17.7.3.2.1 Synthesis by Ring-Closure Reactions 1049

17.7.3.2.1.1 By Formation of Two C—C Bonds 1049

17.7.3.2.1.1.1 Method 1:
[8π + 3π]-Cycloaddition Reaction of a Pyrrolo[1,2-c]pyrimidine
with 1,3-Dibromo-1,3-diphenylacetone 1049

17.7.3.2.1.1.2 Method 2:
Cycloaddition of 3-Hydroxyquinolizinium Bromide with
Acetylene Derivatives .. 1050

17.7.3.2.1.2 By Formation of One C—C Bond 1050

17.7.3.2.1.2.1 Method 1:
Intramolecular Condensation of an Indolizine 1050

17.7.3.2.1.2.2 Method 2:
Hydrolysis of an Indolizine with Hydrochloric Acid Followed by
Treatment with Alumina ... 1051

17.7.3.2.1.2.3 Method 3:
Intramolecular Cyclization of a Quinolizine Ester Followed by
De-ethoxycarbonylation ... 1052

17.7.3.2.2 Synthesis by Substituent Modification 1053

17.7.3.2.2.1 Substitution of Existing Substituents 1053

17.7.3.2.2.1.1 Of Carbon Functionalities 1053

17.7.3.2.2.1.1.1 Method 1:
Hydrolysis of a Pyrroloquinolizine Using Hydrochloric Acid
Followed by Decarboxylation Using Copper(I) Oxide 1053

17.7.3.3 Benzo-Fused [2.3.3]Cyclazines 1053

17.7.3.3.1 Synthesis by Ring-Closure Reactions 1054

17.7.3.3.1.1 By Formation of Two C—C Bonds 1054

17.7.3.3.1.1.1 Method 1:
From N-[2,6-Bis(2-phenyl-1,3-dithian-2-yl)phenyl]-1H-pyrrole
Using Mercury(II) Chloride ... 1054

17.7.3.3.1.2 By Formation of One C—C Bond 1054

17.7.3.3.1.2.1 Method 1:
Reaction of a Formamide with Polyphosphoric Acid 1054

17.7.3.4 Polyheteroaza[2.3.3]cyclazines 1055

17.7.3.4.1 Synthesis by Ring-Closure Reactions 1056

17.7.3.4.1.1 By Formation of Three N—C Bonds 1056

17.7.3.4.1.1.1 Method 1:
Reaction of a Cyanoacrylate with Formic Acid 1056

17.7.3.4.1.2 By Formation of One N—C and One C—C Bond 1056

17.7.3.4.1.2.1 Method 1:
Reaction of a Diacetamide with Phosphoryl Chloride 1056

17.7.4 Product Subclass 4: [3.3.3]Cyclazines (Pyrido[2,1,6-de]quinolizines)
and Related Compounds ... 1057

17.7.4.1 [3.3.3]Cyclazine (Pyrido[2,1,6-de]quinolizine) 1058

17.7.4.1.1 Synthesis by Ring-Closure Reactions 1058

17.7.4.1.1.1 By Formation of Two C—C Bonds 1058

17.7.4.1.1.1.1 Method 1:
Reaction of Quinolizin-4-ylideneacetate with an
Acetylenecarboxylate ... 1058
<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.7.4.1.1.2</td>
<td>Method 2: Reaction of Cyclopenta[c]quinolizine with Dimethyl Acetylenedicarboxylate</td>
</tr>
<tr>
<td>17.7.4.1.2</td>
<td>Synthesis by Ring Transformation</td>
</tr>
<tr>
<td>17.7.4.1.2.1</td>
<td>Method 1: Using Diels–Alder Reaction of Acetylenedicarboxylate</td>
</tr>
<tr>
<td>17.7.4.1.3</td>
<td>Synthesis by Substituent Modification</td>
</tr>
<tr>
<td>17.7.4.1.3.1</td>
<td>Substitution of Existing Substituents</td>
</tr>
<tr>
<td>17.7.4.1.3.1.1</td>
<td>Method 1: Nitration Using Copper(II) Nitrate</td>
</tr>
<tr>
<td>17.7.4.1.3.1.2</td>
<td>Of Carbon Functionalities</td>
</tr>
<tr>
<td>17.7.4.1.3.1.2.1</td>
<td>Method 1: Thermolysis of a Pyrido[2,1,6-de]quinolizine-4,5-dicarboxylate</td>
</tr>
<tr>
<td>17.7.4.1.3.1.2.2</td>
<td>Method 2: Decarboxylation of Dimethyl Cyclopenta[1j]pyrido[2,1,6-de]quinolizine-4,5-dicarboxylate</td>
</tr>
<tr>
<td>17.7.4.2</td>
<td>Aza- and Polyaza[3,3,3]cyclazines</td>
</tr>
<tr>
<td>17.7.4.2.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
</tr>
<tr>
<td>17.7.4.2.1.1</td>
<td>By Formation of Three N—C Bonds</td>
</tr>
<tr>
<td>17.7.4.2.1.1.1</td>
<td>Method 1: By Using Ethoxymethylene Compounds</td>
</tr>
<tr>
<td>17.7.4.2.1.1.1.1</td>
<td>Variation 1: By Using Methoxymethylene Compounds</td>
</tr>
<tr>
<td>17.7.4.2.1.1.2</td>
<td>Method 2: By Condensation with Acid Anhydrides</td>
</tr>
<tr>
<td>17.7.4.2.1.2</td>
<td>By Formation of One N—C and Two C—C Bonds</td>
</tr>
<tr>
<td>17.7.4.2.1.2.1</td>
<td>Method 1: By Using Ethoxymethylene Compounds</td>
</tr>
<tr>
<td>17.7.4.2.1.3</td>
<td>By Formation of One N—C and One C—C Bond</td>
</tr>
<tr>
<td>17.7.4.2.1.3.1</td>
<td>Method 1: By Condensation with Acid Anhydrides</td>
</tr>
<tr>
<td>17.7.4.2.1.3.2</td>
<td>Method 2: By Condensation of a Dihydro-4H-quinolizin-4-imine with an Acid Anhydride</td>
</tr>
<tr>
<td>17.7.4.2.1.4</td>
<td>By Formation of Two C—C Bonds</td>
</tr>
<tr>
<td>17.7.4.2.1.4.1</td>
<td>Method 1: Cycloaddition of Imino Compounds with Dimethyl Acetylenedicarboxylate</td>
</tr>
<tr>
<td>17.7.4.2.2</td>
<td>Synthesis by Ring Transformation</td>
</tr>
<tr>
<td>17.7.4.2.2.1</td>
<td>Method 1: Using Diels–Alder Reaction of Dimethyl Acetylenedicarboxylate</td>
</tr>
<tr>
<td>17.7.4.2.2.2</td>
<td>Method 2: By Dehydrogenation Using Palladium on Carbon</td>
</tr>
<tr>
<td>17.7.5</td>
<td>Product Subclass 5: [2.2.4]Cyclazines (Azipino[2,1,7-cd]pyrrolizines)</td>
</tr>
<tr>
<td>17.7.5.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
</tr>
<tr>
<td>17.7.5.1.1</td>
<td>By Formation of Two C—C Bonds</td>
</tr>
<tr>
<td>17.7.5.1.1.1</td>
<td>Method 1: Reaction of a Saturated Compound with a Perchlorate</td>
</tr>
<tr>
<td>17.7.5.1.2</td>
<td>Synthesis by Substituent Modification</td>
</tr>
<tr>
<td>17.7.5.1.2.1</td>
<td>Substitution of Existing Substituents</td>
</tr>
<tr>
<td>17.7.5.1.2.1.1</td>
<td>Of Hydrogen</td>
</tr>
</tbody>
</table>
Method 1: The Vilsmeier Reaction of a [2.2.4]Cyclazine with Dimethylformamide 1070
Method 2: Nitration with Tetranitromethane 1071

Product Subclass 6: [2.3.4]Cyclazines (Azepino[2,1,7-cd]indolizines) 1071
Synthesis by Ring-Closure Reactions .. 1072
By Formation of Two C—C Bonds ... 1072
Method 1: Wittig Reaction of an Aldehyde Followed by Intramolecular Cyclization of an Oxo Diester 1072

Product Subclass 7: Annulenes Bridged by Two Nitrogen Atoms 1072
Aromatization .. 1073
Method 1: From 3,4,7,8-Tetrahydro-8b,8c-diazacyclopenta[fg]acenaphthylene .. 1073

Product Class 8: Porphyrins and Related Compounds
K. M. Smith and M. G. H. Vicente

Product Class 8: Porphyrins and Related Compounds 1081
Product Subclass 1: Porphyrins .. 1085
Syntheses of Intermediates Used in Porphyrin Syntheses 1087
Dipyrrroles ... 1088
Method 1: Dipyrrromethenes .. 1088
Variation 1: Condensation of 2-Formyl-1H-pyrroles with 2-Unsubstituted 1H-Pyrroles ... 1088
Variation 2: Reaction of 2-(Bromomethyl)-1H-pyrroles with 2-Bromo-1H-pyrroles .. 1089
Variation 3: Self-Condensation of Monopyrroles 1090
Variation 4: Oxidation of Dipyrrromethanes 1091
Method 2: Dipyrrromethanes ... 1091
Variation 1: Unsymmetrically Substituted Dipyrrromethanes by Reaction of 2-Substituted 1H-Pyrroles with 2-Unsubstituted 1H-Pyrroles ... 1091
Variation 2: Unsymmetrically Substituted Dipyrrromethanes by Reduction of Dipyrrromethenes 1093
Variation 3: Symmetrically Substituted Dipyrrromethanes by Self-Condensation of 2-Substituted 1H-Pyrroles 1094
Variation 4: Symmetrically Substituted Dipyrrromethanes from 2-Unsubstituted 1H-Pyrroles 1095
Method 3: Dipyrraketones ... 1096
Method 4: Bipyrroles .. 1098
Tripyrroles ... 1100
Method 1: The [2 + 1] Approach to Tripyrranes 1100
Method 2: The [1]+[1]2 Approach to Symmetrical Tripyrranes 1102
Open-Chain Tetrapyrrolic Intermediates 1103
17.8.1.3.1 Method 1: Oxobilanes .. 1104
17.8.1.3.1.1 Variation 1: a-Oxobilanes ... 1104
17.8.1.3.1.2 Variation 2: b-Oxibilanes ... 1105
17.8.1.3.2 Method 2: b-Bilenes .. 1106
17.8.1.3.2.1 Variation 1: 1,19-Dimethyl-b-bilenes 1106
17.8.1.3.2.2 Variation 2: b-Bilene-1,19-dicarboxylates 1107
17.8.1.3.3 Method 3: a,c-Biladienes .. 1108
17.8.1.3.3.1 Variation 1: Symmetrical 1,19-Dimethyl-a,c-biladiene Salts 1108
17.8.1.3.3.2 Variation 2: Unsymmetrical 1,19-Dimethyl-a,c-biladiene Salts 1110
17.8.1.3.3.3 Variation 3: 1-Bromo-19-methyl-a,c-biladiene Salts 1115

17.8.1.2 Syntheses of Porphyrins .. 1116
17.8.1.2.1 Method 1: From Monopyrrole Tetramerization 1116
17.8.1.2.2 Method 2: From Dipyrryl Intermediates: The [2 + 2] Routes 1124
17.8.1.2.2.1 Variation 1: Using Dipyrrymethenes 1126
17.8.1.2.2.2 Variation 2: Using Dipyrrymethanes 1129
17.8.1.2.2.3 Variation 3: Using Dipyrryketones 1135
17.8.1.2.2.4 Method 3: From Tripyrryl Intermediates: The [3 + 1] Route 1138
17.8.1.2.2.5 Variation 1: Using a Tripyrrane and a 2,5-Diformyl-1H-pyrrole 1139
17.8.1.2.2.6 Variation 2: Using a Tripyrrane and a 2,5-Bis[(dimethylamino)methyl]-1H-pyrrole 1141
17.8.1.2.4 Method 4: From Open-Chain Tetrapyrryl Intermediates 1143
17.8.1.2.4.1 Variation 1: Using a-Oxobilanes 1145
17.8.1.2.4.2 Variation 2: Using b-Oxibilanes 1147
17.8.1.2.4.3 Variation 3: Using 1,19-Dimethyl-b-bilenes 1148
17.8.1.2.4.4 Variation 4: Using b-Bilene-1,19-diesters 1149
17.8.1.2.4.5 Variation 5: Using Other b-Bilenes 1150
17.8.1.2.4.6 Variation 6: Using 1,19-Dimethyl-a,c-biladienes 1151
17.8.1.2.4.7 Variation 7: Using 1-Bromo-19-methyl-a,c-biladienes 1159
17.8.1.2.4.8 Variation 8: Using Other a,c-Biladienes 1159

17.8.2 Product Subclass 2: Reduced Porphyrins 1161
17.8.2.1 Chlorins (β,β'-Dihydroporphyrins) 1161
17.8.2.1.1 Method 1: By Ring Synthesis .. 1161
17.8.2.1.2 Method 2: By Reduction of Porphyrins or Metal Porphyrinates 1165
17.8.2.1.3 Method 3: By Oxidation of Porphyrins or Metal Porphyrinates 1171
17.8.2.2 Bacteriochlorins and Isobacteriochlorins (β,β',β'',β'''-Tetrahydroporphyrins) 1173
17.8.2.3 Syntheses of Benzoporphyrins ... 1174
17.8.2.3.1 Method 1: Tetrabenzoporphyrins 1175
17.8.2.3.2 Method 2: Monobenzoporphyrins, Dibenzoporphyrins, and Benzoporphyrin Derivatives 1178

17.8.3 Product Subclass 3: Isomeric, Contracted, and Expanded Porphyrin Systems 1180
17.8.3.1 Syntheses of [18]Porphyrin (1,1,1,1) Isomers 1180
17.8.3.1.1 Method 1: Porphycene ([18]Porphyrin (2,0,2,0)) 1180
17.8.3.1.2 Method 2: Corrphycene (Porphycerin) ([18]Porphyrin (2,1,0,1)) 1181
Contracted Porphyrins: Syntheses of Corroles

17.8.3.2

Method 1: From Monopyrroles

Variation 1: Using 2-Substituted 1H-Pyrroles

Variation 2: Using 2,5-Di-unsubstituted 1H-Pyrroles and Aldehydes

Method 2: From Dipyroles

Method 3: From a,c-Biladiene Salts

Method 4: By Porphyrin Ring Contraction

17.8.3.3

Expanded Porphyrins

17.8.3.3.1

Method 1: Syntheses of Sapphyrins

Variation 1: The [3 + 2] Approach

Variation 2: The [3 + (1)²] Approach

Variation 3: The [4 + 1] Approach

Variation 4: The [1]² Approach

Method 2: Syntheses of Pentaphyrins

17.8.4

Reactions around the Porphyrin Periphery

17.8.4.1

Method 1: Electrophilic Substitution Reactions

Variation 1: Halogenation

Variation 2: Nitration

Variation 3: Formylation and Acylation

Variation 4: Peripheral Metalation

Variation 5: Reactions with Carbenes and Nitrenes

Method 2: Reactions with Nucleophiles

Method 3: Oxidation Reactions

Method 4: Cycloaddition Reactions

Variation 1: Intermolecular Reactions

Variation 2: Intramolecular Reactions

17.9

Product Class 9: Phthalocyanines and Related Compounds

N. B. McKeown

17.9.1

Product Class 9: Phthalocyanines and Related Compounds

Product Subclass 1: Metal-Free Phthalocyanine

Method 1: From Phthalonitrile

Variation 1: From Generation and Demetalation of a Labile Metal Complex

Method 2: From Isoindolinediimine

Product Subclass 2: Metal–Phthalocyanine Complexes

Method 1: From Phthalonitrile

Method 2: From Phthalic Anhydride

Method 3: From Phthalimide

Method 4: From Isoindolinediimine

Method 5: From 2-Cyanobenzamide

Method 6: From Phthalocyanine

Method 7: Metal Exchange of Dilithium or Disodium Complex
17.9.3 Product Subclass 3: 1,8(11),15(18),22(25)-Tetrasubstituted Phthalocyanines and 1:25,11:15-Bridged Phthalocyanines

17.9.3.1 Method 1: From Phthalonitriles

17.9.3.1.1 Variation 1: Regioselective Preparation of 1,8,15,22-Tetrasubstituted Phthalocyanines from Phthalonitriles

17.9.3.1.2 Variation 2: Side-Strapped 1:25,11:15-Tetrasubstituted Phthalocyanines from bis(phthalonitriles)

17.9.3.2 Method 2: From Phthalic Acids

17.9.3.3 Method 3: From Phthalic Anhydrides

17.9.3.4 Method 4: From Phthalimides

17.9.3.5 Method 5: From Isoindolinediimines

17.9.3.6 Method 6: From the Modification of Preformed Phthalocyanines

17.9.4 Product Subclass 4: 2,9(10),16(17),23(24)-Tetrasubstituted Phthalocyanines and 1:24,10:16-Bridged Phthalocyanines

17.9.4.1 Method 1: From 4-Substituted Phthalonitriles

17.9.4.1.1 Variation 1: Side-Strapped 2:24,10:16-Bridged Phthalocyanines from 4,4′-Substituted Bis(phthalonitriles)

17.9.4.2 Method 2: From 4-Substituted Phthalic Acids

17.9.4.3 Method 3: From 4-Substituted Phthalic Anhydrides

17.9.4.4 Method 4: From 4-Substituted Phthalimides

17.9.4.5 Method 5: From 5-Substituted Isoindolinediimines

17.9.4.6 Method 6: From 4-Substituted 1,2-Dibromobenzenes

17.9.4.7 Method 7: From 1-Imino-3-methylthioisoindolene

17.9.4.8 Method 8: From 3(4)-Substituted 2-Cyanobenzamides

17.9.4.9 Method 9: From the Modification of Preformed Phthalocyanines

17.9.5 Product Subclass 5: 1,2,8,9(10,11),15,16(17,18),22,23(24,25)-Octasubstituted Phthalocyanines

17.9.5.1 Method 1: From 3,4-Disubstituted Phthalonitriles

17.9.5.2 Method 2: From 3,4-Disubstituted Phthalic Anhydrides

17.9.6 Product Subclass 6: 1,3,8,10(9,11),15,17(16,18),22,24(23,25)-Octasubstituted Phthalocyanines

17.9.6.1 Method 1: From 3,5-Disubstituted Phthalonitriles

17.9.6.2 Method 2: From 3,5-Disubstituted Phthalic Acids

17.9.6.3 Method 3: From 3,5-Disubstituted Phthalic Anhydrides

17.9.6.4 Method 4: From 3,5-Disubstituted 1,2-Dibromobenzenes

17.9.6.5 Method 5: By Reaction of Substituents

17.9.7 Product Subclass 7: 1,4,8,11,15,18,22,25-Octasubstituted Phthalocyanines

17.9.7.1 Method 1: From 3,6-Disubstituted Phthalonitriles

17.9.7.2 Method 2: From Phthalic Anhydrides

17.9.7.3 Method 3: From Isoindolinediimines

17.9.7.4 Method 4: By Reaction of Substituents

17.9.8 Product Subclass 8: 2,3,9,10,16,17,23,24-Octasubstituted Phthalocyanines

17.9.8.1 Method 1: From 4,5-Disubstituted Phthalonitriles

17.9.8.2 Method 2: From 4,5-Disubstituted Phthalic Anhydrides
17.9.8.3 Method 3: From 5,6-Disubstituted Isoindolinediimines 1285
17.9.8.4 Method 4: From 4,5-Disubstituted 1,2-Dibromobenzenes 1286
17.9.8.5 Method 5: By Reaction of Substituents .. 1287

17.9.9 Product Subclass 9: 2:3,9:10,16:17,23:24-Bridged Phthalocyanines 1287

17.9.9.1 Method 1: From 4:5-Bridged Phthalonitriles ... 1288
17.9.9.2 Method 2: From 5:6-Bridged Isoindolinediimines 1290
17.9.9.3 Method 3: From 4:5-Bridged 1,2-Dibromobenzenes 1291
17.9.9.4 Method 4: By Reaction of Substituents .. 1293

17.9.10 Product Subclass 10: Dodecasubstituted Phthalocyanines 1295
17.9.10.1 Method 1: From 3,4,5-Trisubstituted Phthalonitriles 1295
17.9.10.2 Method 2: From 3,4,6-Trisubstituted Phthalonitriles 1296

17.9.11 Product Subclass 11: 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-Hexadeca-
substituted Phthalocyanines, 1:2,3:4,8,9,10:11,15:16,17:18,22,23,24:25-
Bridged Phthalocyanines, and 1:2:3,4,8,9:10,11,15:16,17,18,22,23:24,25-
Bridged Phthalocyanines ... 1296

17.9.11.1 Method 1: From 3,4,5,6-Tetrasubstituted Phthalonitriles 1297
17.9.11.1.1 Variation 1: Hexadecasubstituted Phthalocyanines Possessing Two Types
of Substituents .. 1298
17.9.11.1.2 Variation 2: 1,4,8,11,15,18,22,25-Octasubstituted 2:3,9:10,16:17,23:24-
Bridged Phthalocyanines from Phthalonitriles 1299
17.9.11.1.3 Variation 3: 1:2,3:4,8,9,10:11,15:16,17:18,22:23,24:25-Bridged
Phthalocyanines from Phthalonitriles .. 1299
17.9.11.2 Method 2: From 3,4,5,6-Tetrasubstituted Phthalic Anhydrides 1300
17.9.11.2.1 Variation 1: 1:2,3:4,8,9,10:11,15:16,17:18,22:23,24:25-Bridged
Phthalocyanines from Mellitic Anhydride .. 1301
17.9.11.3 Method 3: 1,4,8,11,15,18,22,25-Octasubstituted-2:3,9:10,16:17,23:24-
bridged Phthalocyanines from 1,2-Dibromobenzenes 1301
17.9.11.4 Method 4: By Reaction of Substituents .. 1302
17.9.11.4.1 Variation 1: 1,4,8,11,15,18,22,25-Octasubstituted-2:3,9:10,16:17,23:24-
bridged Phthalocyanines by Reaction of Substituents 1302
17.9.11.4.2 Variation 2: 1:2,3:4,8,9,10:11,15:16,17:18,22:23,24:25-Bridged
Phthalocyanines by Reaction of Substituents .. 1303

17.9.12 Product Subclass 12: Tetraazaporphyrins ... 1304
17.9.12.1 Method 1: From 1,2-Disubstituted Maleonitriles 1304
17.9.12.1.1 Variation 1: 2:3,7,8,12:13,17,18-Bridged Tetraazaporphyrins from Cyclic
Maleonitriles .. 1306
17.9.12.2 Method 2: From the Modification of Preformed Tetraazaporphyrins 1307

17.9.13 Product Subclass 13: 1,2-Naphthalocyanines 1308
17.9.13.1 Method 1: From 1,2-Dicyanonaphthalenes .. 1309

17.9.14 Product Subclass 14: 2,3-Naphthalocyanines 1310
17.9.14.1 Method 1: From 2,3-Dicyanonaphthalenes .. 1310
17.9.14.2 Method 2: From Benzoisoindolinediimines ... 1312
17.9.14.3 Method 3: By Reaction of Substituents .. 1312
Product Subclass 15: 9,10-Phenanthrenocyanines .. 1313
Method 1: From 9,10-Dicyanophenanthrenes .. 1313

Product Subclass 16: 2,3-Triphenylenocyanines ... 1314
Method 1: From 2,3-Dicyanotriphenylene .. 1314

Product Subclass 17: Fluoranthenocyanine ... 1315
Method 1: From 8,9-Dicyanofluoranthenes .. 1315

Product Subclass 18: 2,3-Anthracenocyanines ... 1316
Method 1: From 2,3-Dicyanoanthracenes .. 1316

Product Subclass 19: Tetra- and Octaazaphthalocyanines 1318
Method 1: From 2,3-Dicyanopyridine .. 1318
Method 2: From Pyridine-2,3-dicarboxylic Acid .. 1319
Method 3: From Pyridine-2,3-dicarboxylic Anhydride ... 1320
Method 4: From 2(3)-Cyanopyridine-3(2)-carboxamide ... 1320
Method 5: From 2,3-Dicyanopyrazines .. 1321
Variation 1: Preparation of 2,3,11,12(13,14),20,21(22,23),29,30(31,32)-Tetrabenzo-1,6,10,15,19,24,29,33-Octaaza-2,3-naphthalocyanines from Benzo[f]quinoxaline-2,3-dicarbonitrile .. 1322
Variation 2: Preparation of 1,8,12,19,23,30,34,41-Octaaza-2,3-anthracenocyanines from Benzo[g]quinoxaline-2,3-dicarbonitrile ... 1323
Variation 3: Preparation of 1,10,14,23,27,36,40,49-Octaaza-2,3-triphenylenocyanine from 2,3-Dicyano-1,4-diazatriphenylenes .. 1324
Method 6: From 4,7-Diazaisoindolinediimine ... 1326
Method 7: By Reaction of Substituents .. 1326

Product Subclass 20: Subphthalocyanines ... 1327
Method 1: From Phthalonitriles .. 1328
Variation 1: Trisubstituted Subphthalocyanines from Phthalonitriles 1328
Variation 2: Hexasubstituted Subphthalocyanines from Phthalonitriles 1330
Method 2: By Reaction of Substituents .. 1331

Product Subclass 21: Superphthalocyanines ... 1332
Method 1: From Phthalonitriles .. 1332

Product Subclass 22: Nonuniformly Substituted Phthalocyanines 1333
Method 1: By Mixed Cyclotetramerizations ... 1333
Variation 1: The Synthesis of AAAB Nonuniformly Substituted Phthalocyanines ... 1337
Variation 2: Side-Strapped AABB-Type Phthalocyanines from Mixed Cyclotetramerizations .. 1339
Variation 3: AABBA-Type Phthalocyanines from a Dimeric Intermediate of Phthalonitrile Cyclotetramerization ... 1340
Variation 4: AAAB-Type Phthalocyanines Using a Polymer Support 1341
Method 2: AAAB-Type Phthalocyanines from the Ring Expansion of Subphthalocyanines .. 1342
17.9.22.3 Method 3: ABAB Type Phthalocyanines from Cross-Cyclotetramerization Reactions .. 1344
17.9.22.4 Method 4: Reactions of Preformed Phthalocyanines 1345

17.9.23 Product Subclass 23: Multinuclear Phthalocyanines 1347
17.9.23.1 Method 1: Dimers from Cyclotetramerization Reactions Containing a Phthalonitrile and a Bis(phthalonitrile) 1347
17.9.23.1.1 Variation 1: Tetrameric Phthalocyanine from a Mixed Cyclotetramerization Reaction of a Tetrakis(isoindolinediimine) 1349
17.9.23.1.2 Variation 2: Conjugated Fused Phthalocyanine Dimers 1350
17.9.23.2 Method 2: By Reaction of Preformed Phthalocyanines 1352

Keyword Index .. 1369

Author Index ... 1417

Abbreviations .. 1495
Volume 18: Four Carbon—Heteroatom Bonds:
\(X\equiv C\equiv X, \ X\equiv C\equiv X, \ X_2C\equiv X, \ CX_4 \)

Preface ... V

Volume Editor’s Preface .. VII

Table of Contents .. XI

Introduction
J. G. Knight .. 1

18.1 Product Class 1: Cyanogen Halides, Cyanates and Their Sulfur, Selenium, and Tellurium Analogues, Sulfinyl and Sulfonyl Cyanides, Cyanamides, and Phosphaalkynes
Y.-Q. Wu .. 17

18.2 Product Class 2: Carbon Dioxide, Carbonyl Sulfide, Carbon Disulfide, Isocyanates, Isothiocyanates, Carbodiimides, and Their Selenium, Tellurium, and Phosphorus Analogues
S. Braverman, M. Cherkinsky, and M. L. Birsa 65

18.3 Product Class 3: Carbonic Acid Halides
J.-P. G. Senet .. 321

18.4 Product Class 4: Acyclic and Cyclic Carbonic Acids and Esters, and Their Sulfur, Selenium, and Tellurium Analogues
K. W. Jung and A. S. Nagle .. 379

18.5 Product Class 5: Polymeric Carbonic Acids and Esters, and Their Sulfur Analogues
S. C. Moratti and Y. C. Charalambides 451

18.6 Product Class 6: Acyclic and Cyclic Carbamic Acids and Esters, and Their Sulfur, Selenium, Tellurium, and Phosphorus Analogues
L. Rossi ... 461

18.7 Product Class 7: Polymeric Carbamic Acids and Esters, and Their Sulfur Analogues
S. C. Moratti and Y. C. Charalambides 649

18.8 Product Class 8: Acyclic and Cyclic Ureas
G. Sartori and R. Maggi .. 665

18.9 Product Class 9: Polymeric Ureas and Their Phosphorus Analogues
G. Guichard .. 759
<table>
<thead>
<tr>
<th>Section</th>
<th>Product Class</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.10</td>
<td>Thiocarbonic Acids and Derivatives</td>
<td>S. Sato and N. Furukawa</td>
<td>821</td>
</tr>
<tr>
<td>18.11</td>
<td>Seleno- and Tellurocarbonic Acids and Derivatives</td>
<td>J. Schmidt and L. A. Silks</td>
<td>969</td>
</tr>
<tr>
<td>18.12</td>
<td>Imidic Acids and Derivatives, Isoureas and Derivatives, Sulfur and Selenium Equivalents, and Analogously Substituted Methylene phosphines</td>
<td>T. L. Gilchrist</td>
<td>1001</td>
</tr>
<tr>
<td>18.13</td>
<td>Guanidine Derivatives</td>
<td>R. G. S. Berlinck, M. H. Kossuga, and A. M. Nascimento</td>
<td>1077</td>
</tr>
<tr>
<td>18.14</td>
<td>Phosphorus Analogues of Guanidine</td>
<td>T. L. Gilchrist</td>
<td>1117</td>
</tr>
<tr>
<td>18.15</td>
<td>Tetraheterosubstituted Methanes with a Carbon–Halogen Bond</td>
<td>A. Y. Il’chenko</td>
<td>1135</td>
</tr>
<tr>
<td>18.16</td>
<td>Other Tetraheterosubstituted Methanes</td>
<td>C. M. Diaper</td>
<td>1203</td>
</tr>
</tbody>
</table>

Keyword Index: 1283
Author Index: 1335
Abbreviations: 1399
Table of Contents

Introduction
J. G. Knight

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1 Product Class 1: Cyanogen Halides, Cyanates and Their Sulfur, Selenium, and Tellurium Analogues, Sulfinyl and Sulfonyl Cyanides, Cyanamides, and Phosphaalkynes</td>
<td>17</td>
</tr>
<tr>
<td>18.1 Product Subclass 1: Cyanogen Halides</td>
<td>17</td>
</tr>
<tr>
<td>18.1.1 Method 1: By Halogenation of Cyanides</td>
<td>17</td>
</tr>
<tr>
<td>18.1.2 Applications of Product Subclass 1 in Organic Synthesis</td>
<td>19</td>
</tr>
<tr>
<td>18.1.2.1 Method 1: Cleavage of Carbon—Heteroatom Bonds</td>
<td>19</td>
</tr>
<tr>
<td>18.1.2.2 Method 2: Formation of Heterocyclic Rings</td>
<td>20</td>
</tr>
<tr>
<td>18.1.2.3 Method 3: As Cyanating Reagents</td>
<td>21</td>
</tr>
<tr>
<td>18.1 Product Subclass 2: Cyanates and Their Sulfur, Selenium, and Tellurium Analogues</td>
<td>22</td>
</tr>
<tr>
<td>18.1.2 Synthesis of Product Subclass 2</td>
<td>22</td>
</tr>
<tr>
<td>18.1.2.1 Method 1: By Nucleophilic Reactions from Cyanate Salts</td>
<td>22</td>
</tr>
<tr>
<td>18.1.2.2 Method 2: By Cyanation</td>
<td>24</td>
</tr>
<tr>
<td>18.1.2.2.1 Variation 1: Of Alcohols, Phenols, and Related Compounds with Cyanogen Halides</td>
<td>24</td>
</tr>
<tr>
<td>18.1.2.2.2 Variation 2: Of Halogenated Precursors with Cyanides</td>
<td>25</td>
</tr>
<tr>
<td>18.1.2.2.3 Variation 3: Thiocyanates from Sodium Sulfinates or Sulfonyl Chlorides</td>
<td>26</td>
</tr>
<tr>
<td>18.1.2.3 Method 3: Thiocyanates and Selenocyanates from</td>
<td>27</td>
</tr>
<tr>
<td>18.1.2.3.4 Method 4: Thiocyanates and Selenocyanates from Thiocyanogen and Selenocyanogen</td>
<td>28</td>
</tr>
<tr>
<td>18.1.2.2 Applications of Product Subclass 2 in Organic Synthesis</td>
<td>30</td>
</tr>
<tr>
<td>18.1.2.2.1 Method 1: Formation of Heterocyclic Compounds</td>
<td>30</td>
</tr>
<tr>
<td>18.1.2.2.2 Method 2: Cyanates and Thiocyanates as Cyanating Reagents</td>
<td>30</td>
</tr>
<tr>
<td>18.1.2.2.3 Method 3: Addition of Thiocyanates or Selenocyanates to Aldehydes and Alkene Double Bonds</td>
<td>31</td>
</tr>
</tbody>
</table>
18.1.3 Product Subclass 3: Sulfinyl and Sulfonyl Cyanides ... 33
 18.1.3.1 Synthesis of Product Subclass 3 .. 33
 18.1.3.1.1 Method 1: By Oxidation of Thiocyanates ... 33
 18.1.3.1.2 Method 2: By Cyanation of Sulfinate Salts and Sulfonyl Chlorides 34
 18.1.3.2 Applications of Product Subclass 3 in Organic Synthesis 34
 18.1.3.2.1 Method 1: Sulfonyl Cyanides as Cyanating Reagents 34
 18.1.3.2.2 Method 2: Formation of Heterocyclic Compounds from Sulfonyl Cyanides 35

18.1.4 Product Subclass 4: Cyanamides and Their Derivatives .. 36
 18.1.4.1 Synthesis of Product Subclass 4 .. 37
 18.1.4.1.1 Method 1: By Alkylation of Cyanamide .. 37
 18.1.4.1.2 Method 2: By Cyanation of Amines .. 37
 18.1.4.1.2.1 Variation 1: With Cyanogen Halides ... 38
 18.1.4.1.2.2 Variation 2: With Other Cyanating Reagents 38
 18.1.4.1.2.3 Variation 3: By Cyanation of Halo Amines with Cyanides 39
 18.1.4.1.3 Method 3: By Elimination from Ureas and Thioureas 40
 18.1.4.1.4 Method 4: By Rearrangement Reactions ... 40
 18.1.4.1.4.1 Variation 1: From Amidoximes by a Modified Tiemann Rearrangement 41
 18.1.4.1.4.2 Variation 2: From N,N-Disubstituted Formamides by a Curtius-like Rearrangement ... 42
 18.1.4.1.4.3 Variation 3: By Palladium-Catalyzed Coupling of Isocyanides, Allyl Carbonate, and Trimethylsilyl Azide through a Curtius-like Rearrangement 42
 18.1.4.1.5 Method 5: By Decomposition of Heterocyclic Compounds 43
 18.1.4.1.6 Method 6: Palladium-Catalyzed Formation of N,N-Diallyl Cyanamides 45
 18.1.4.1.7 Method 7: Lewis Acid Catalyzed Reactions of Carbonyl Groups with N,N′-Bis(trimethylsilyl)carbodiimide ... 46

18.1.4 Applications of Product Subclass 4 in Organic Synthesis 46
 18.1.4.2 Method 1: Formation of Heterocyclic Compounds 46
 18.1.4.2.1 Method 2: Nucleophilic and Electrophilic Additions of Cyanamides 47
 18.1.4.2.3 Method 3: The Cyanamide Group as a Protected Amine Group 49

18.1.5 Product Subclass 5: Cyanophosphines and Cyanophosphonates and Their Derivatives ... 50
 18.1.5.1 Synthesis of Product Subclass 5 .. 50
 18.1.5.1.1 Method 1: By Cyanation ... 50
 18.1.5.1.1.1 Variation 1: Of Phosphines and Phosphites with Cyanogen Halides 50
 18.1.5.1.1.2 Variation 2: Of Halophosphorus Precursors with Cyanides 51
 18.1.5.1.1.3 Variation 3: Of Halophosphorus Precursors with Trimethylsilyl Cyanide 52
 18.1.5.1.1.4 Variation 4: Of Pyrophosphites with Alkyl Thiocyanates 52
 18.1.5.2 Applications of Product Subclass 5 in Organic Synthesis 53
 18.1.5.2.1 Method 1: Diethyl Cyanophosphonate as a Coupling Reagent in Acylation Reactions ... 53
 18.1.5.2.1.1 Variation 1: Formation of Amides, Esters, and Thioesters 53
18.1.6 Product Subclass 6: Heterosubstituted Phosphaalkynes

18.1.6.1 Synthesis of Product Subclass 6

18.1.6.1.1 Method 1: By Elimination

18.1.6.1.1.1 Variation 1: α-Halide Elimination from a Phosphaalkene

18.1.6.1.1.2 Variation 2: α,β-Elimination from Alkylphosphines

18.1.6.2 Applications of Product Subclass 6 in Organic Synthesis

18.1.6.2.1 Method 1: Formation of Phosphorus-Containing Heterocycles by Cycloaddition

18.2 Product Class 2: Carbon Dioxide, Carbonyl Sulfide, Carbon Disulfide, Isocyanates, Isothiocyanates, Carbodiimides, and Their Selenium, Tellurium, and Phosphorus Analogues

S. Braverman, M. Cherkinsky, and M. L. Birsa

18.2.1 Product Subclass 1: Carbon Dioxide

18.2.1.1 Applications of Product Subclass 1 in Organic Synthesis

18.2.1.1.1 Method 1: Supercritical Carbon Dioxide as a Reaction Medium for Chemical Syntheses

18.2.1.1.2 Method 2: Reduction of Carbon Dioxide

18.2.1.1.3 Method 3: Reactions with Oxygen Nucleophiles

18.2.1.1.3.1 Variation 1: Synthesis of Organic Carbonates

18.2.1.1.3.2 Variation 2: Synthesis of Polycarbonates

18.2.1.1.4 Method 4: Reactions with Nitrogen Nucleophiles

18.2.1.1.4.1 Variation 1: Synthesis of Carbamic Acid Derivatives

18.2.1.1.4.2 Variation 2: Synthesis of Urea Derivatives

18.2.1.1.4.3 Variation 3: Synthesis of Isocyanates

18.2.1.1.4.4 Variation 4: Synthesis of Heterocycles

18.2.1.1.5 Method 5: Reactions with Carbon Nucleophiles

18.2.1.1.5.1 Variation 1: Carboxylation of Organometallic Derivatives

18.2.1.1.5.2 Variation 2: Carboxylation of Other Carbanions

18.2.1.1.6 Method 6: Carbon Dioxide as Protecting and Activating Group

18.2.1.1.7 Method 7: Reaction of Carbon Dioxide with Butadiene

18.2.1.1.8 Method 8: Carbon Dioxide in Aza-Wittig-Type Reactions

18.2.1.1.9 Methods 9: Additional Applications

18.2.2 Product Subclass 2: Carbonyl Sulfide

18.2.2.1 Synthesis of Product Subclass 2

18.2.2.1.1 Method 1: Via Thiocyanates
18.2.2 Method 2: Via Phosphorus Pentasulfide 76
18.2.2.2 Method 3: Via Carbonyl Selenide 76
18.2.2.3 Method 4: Additional Applications 79
18.2.2.4 Applications of Product Subclass 2 in Organic Synthesis 77
18.2.2.5 Method 1: Synthesis of Thiocarbonates 77
18.2.2.6 Method 2: Synthesis of Thiocarbamates 77
18.2.2.7 Method 3: Synthesis of Thiocarboxylic Acids and Derivatives 78
18.2.2.8 Method 4: Additional Applications 79
18.2.3 Product Subclass 3: Carbonyl Selenide 79
18.2.3.1 Synthesis of Product Subclass 3 80
18.2.3.2 Method 1: Acidification of Tetrahydrofuran Solutions of 80
18.2.3.3 Method 2: Synthesis of Thiocarbonates 80
18.2.3.4 Method 3: Synthesis of Thiocarbamates 80
18.2.3.5 Method 4: Synthesis of Thiocarboxylic Acids and Derivatives 80
18.2.3.6 Method 5: Synthesis of Carbonyl Selenide as a Reducing Agent 81
18.2.4 Product Subclass 4: Isocyanates 83
18.2.4.1 Synthesis of Product Subclass 4 84
18.2.4.2 Method 1: Carbonylation of Primary Amines with Phosgene 84
18.2.4.3 Method 2: Carbonylation of Amines with Carbon Dioxide 88
18.2.4.4 Variation 1: Isocyanates from Primary Amines and Carbon Dioxide; 89
18.2.4.5 Variation 2: Isocyanates from Primary Amines and Carbon Dioxide Using 89
18.2.4.6 Method 3: Carbonylation of Primary Amines with Other 90
18.2.4.7 Method 4: Carbonylation of Amine Derivatives 91
18.2.4.8 Method 5: Reductive Carbonylation of Nitro Aromatic Compounds 91
18.2.4.9 Method 6: From Organic Halides and Sulfates 91
Variation 2:	By Reaction with Metal Nitrocyranamides	109
Variation 1:	Thermal Decomposition of Carbamates	110
Variation 2:	Silane-Induced Cleavage of Carbamates	111
Variation 3:	Cleavage of Carbamates with Boron Derivatives	113
Variations 4:	Additional Variations	114
Method 8:	From Thiocarbamates	115
Variation 1:	From S-Alkyl Thiocarbamates	115
Variation 2:	From O-Alkyl Thiocarbamates	117
Method 9:	Thermolysis of Ureas	117
Method 10:	By Cleavage of Nitrogen Heterocycles	118
Variation 1:	From Three-Membered Nitrogen Heterocycles	118
Variation 2:	From Four-Membered Nitrogen Heterocycles	119
Variation 3:	From Five-Membered Nitrogen Heterocycles	120
Method 11:	From N-Substituted Trihaloacetamides	122
Method 12:	By the Addition of Isocyanic Acid and Its Derivatives to Alkenes	122
Variation 1:	Addition of Isocyanic Acid	122
Variation 2:	Addition of Iodine Isoyanate	123
Method 13:	Curtius Rearrangement	124
Variation 1:	Using Sodium Azide	125
Variation 2:	Using Trimethylsilyl Azide	130
Variation 3:	Using Diphenyl Azidophosphate	131
Method 14:	Hofmann Rearrangement	132
Method 15:	Lossen Rearrangement	133
Method 16:	From Aminimides	135
Method 17:	Sigmatropic Rearrangements	135
Method 18:	By Oxidation	138
Method 19:	Via Isomerization of Nitrile Oxides	140
Method 20:	Preparation of Functionalized Isocyanates from Other Isocyanates	141
Variation 1:	By Substitution Reactions	141
Variation 2:	By Addition to a Double Bond	144
Variation 3:	Trimethylsilyl Isocyanate in the Synthesis of Isocyanates	144
Variation 4:	Chlorocarbonyl Isocyanate	146
Variation 5:	Sulfonyl Isocyanates	147
Applications of Product Subclass 4 in Organic Synthesis	148	
Method 1:	Nucleophilic Additions	149
Variation 1:	Reactions with Heteroatom Nucleophiles	149
Variation 2:	Reactions with Carbon Nucleophiles	150
Method 2:	Cycloaddition Reactions	154
Variation 1:	[2 + 2]-Cycloaddition Reactions	154
Variation 2:	[2 + 4]-Cycloaddition Reactions	156
Variation 3:	[2 + 3]-Cycloaddition Reactions	158
Variation 4:	Cyclodimerization and Cyclotrimerization of Isocyanates	160
Method 3:	Reactions of Isocyanates with Iminophosphoranes	161
18.2.4.2.4 Method 4: Friedel–Crafts Reactions of Isocyanates

18.2.5 Product Subclass 5: 1-Oxa-3-phosphapropadienes and 1-Phospha-3-thiapropadienes

18.2.5.1 Synthesis of Product Subclass 5

18.2.5.1.1 Method 1: Phosgenation and Thiophosgenation of Disilylated Phosphines

18.2.5.2 Applications of Product Subclass 5 in Organic Synthesis

18.2.5.2.1 Method 1: Synthesis of 1-Phosphapropadiene by a Wittig-Type Reaction

18.2.5.2.2 Method 2: Synthesis of Polyphosphadienes

18.2.5.2.3 Method 3: Photochemical and Metal-Catalyzed Decarbonylation of 1-Oxa-3-phosphapropadiene

18.2.6 Product Subclass 6: Carbon Disulfide

18.2.6.1 Applications of Product Subclass 6 in Organic Synthesis

18.2.6.1.1 Method 1: Reactions with Oxygen Nucleophiles

18.2.6.1.1.1 Variation 1: Synthesis of Orthocarbonic Acid Derivatives

18.2.6.1.1.2 Variation 2: Synthesis of Dithiocarbonates

18.2.6.1.1.3 Variations 3: Additional Variations

18.2.6.1.2 Method 2: Reactions with Sulfur Nucleophiles

18.2.6.1.2.1 Variation 1: Synthesis of Trithiocarbonates

18.2.6.1.2.2 Variation 2: Synthesis of Tetrathiomalonic Acid Derivatives

18.2.6.1.3 Method 3: Reactions with Nitrogen Nucleophiles

18.2.6.1.3.1 Variation 1: Synthesis of Dithiocarbamates

18.2.6.1.3.2 Variation 2: Synthesis of Thioureas

18.2.6.1.3.3 Variation 3: Synthesis of Isothiocyanates

18.2.6.1.3.4 Variation 4: Synthesis of Heterocycles via Amine Derivatives Bearing an Additional Nucleophilic Group

18.2.6.1.4 Method 4: Reactions with Carbon Nucleophiles

18.2.6.1.4.1 Variation 1: Synthesis of Thiocarboxylic Acid Derivatives

18.2.6.1.4.2 Variation 2: Synthesis of Dithiocarboxylic Acid Derivatives

18.2.6.1.4.3 Variation 3: Synthesis of Ketene Dithioacetals

18.2.6.1.4.4 Variation 4: Synthesis of Thiocarbamates

18.2.6.1.4.5 Variation 5: Synthesis of Thioamides

18.2.6.1.6 Method 5: Reactions with Organosilicon Compounds

18.2.6.1.7 Method 6: Carbon Disulfide in Cycloaddition Reactions

18.2.6.1.8 Method 7: Carbon Disulfide in Aza-Wittig-Type Reactions

18.2.6.1.9 Method 8: Carbon Disulfide as a Protecting Group

18.2.6.1.10 Methods 10: Additional Applications

18.2.7 Product Subclass 7: Carbon Sulfide Selenide

18.2.8 Product Subclass 8: Isothiocyanates

18.2.8.1 Synthesis of Product Subclass 8

Science of Synthesis Original Edition Volume 18
© Georg Thieme Verlag KG
18.2.8.1 Method 1: By Thiocarbonylation of Primary Amines with Thiophosgene 189

18.2.8.1.1 Variation 1: In Biphasic Systems .. 189
18.2.8.1.2 Variation 2: In Organic Solvents .. 190

18.2.8.1.2 Method 2: By Thiocarbonylation of Primary Amines with Carbon Disulfide via Cleavage of Dithiocarbamate Salts or Esters 191

18.2.8.1.2.1 Variation 1: Cleavage with Heavy Metal Salts 191
18.2.8.1.2.2 Variation 2: Cleavage under Oxidative Conditions 192
18.2.8.1.2.3 Variation 3: Cleavage by Phosphorus Derivatives 193
18.2.8.1.2.4 Variation 4: Cleavage by Alkyl Chloroformates 195
18.2.8.1.2.5 Variation 5: Cleavage with Carbodiimides 196
18.2.8.1.2.6 Variation 6: Cleavage of Alkyl Esters of Dithiocarbamates 198

18.2.8.1.2.7 Variations 7: Additional Variations 199

18.2.8.1.3 Method 3: Thiocarbonylation of Primary Amines with Other Thiocarbonyl Transfer Agents ... 200

18.2.8.1.4 Method 4: Thiocarbonylation of Amine Derivatives 201

18.2.8.1.4.1 Variation 1: Thiocarbonylation of Amide Anions 202

18.2.8.1.4.2 Variation 2: Thiocarbonylation of Iminophosphoranes 203

18.2.8.1.5 Method 5: By Nucleophilic Substitution of Organic Halides with Thiocyanate Anion .. 204

18.2.8.1.5.1 Variation 1: Alkyl and Aryl Isothiocyanates 205

18.2.8.1.5.2 Variation 2: Acyl, Thioacetyl, and Imidoyl Thiocyanates ... 208

18.2.8.1.5.3 Variation 3: Sugar Isothiocyanates 210

18.2.8.1.5.4 Variation 4: Alkyl and Allenyl Isothiocyanates 211

18.2.8.1.5.5 Variation 5: Solid-Phase Synthesis 213

18.2.8.1.5.6 Variation 6: Silyl Isothiocyanates 214

18.2.8.1.6 Method 6: By the Addition of Thiocyanic Acid and Its Derivatives to Alkenes and Alkynes ... 215

18.2.8.1.6.1 Variation 1: Addition of Thiocyanic Acid and Its Derivatives to Alkenes .. 215

18.2.8.1.6.2 Variation 2: Addition of Iodine Thiocyanate and Selenyl Thiocyanates to Alkenes .. 217

18.2.8.1.6.3 Variation 3: Addition of Thiocyanic Acid and Its Derivatives to Alkynes .. 218

18.2.8.1.7 Method 7: By Cleavage of Nitrogen and Sulfur Containing Heterocycles ... 219

18.2.8.1.8 Method 8: By Cleavage of Nitrogen-Containing Heterocycles ... 222

18.2.8.1.9 Method 9: By Direct Sulfurization of Isocyanides 224

18.2.8.1.10 Method 10: Isothiocyanates from Aldehydes and Ketones 225

18.2.8.1.11 Method 11: Preparation of Functionalized Isothiocyanates from Other Isothiocyanates .. 226

18.2.8.1.11.1 Variation 1: Isothiocyanates by Substitution Reactions of Isothiocyanates .. 226

18.2.8.1.11.2 Variation 2: Alkenyl Isothiocyanates by Elimination Reactions of Isothiocyanates .. 228

18.2.8.1.11.3 Variation 3: Addition Reactions of Alkenyl Isothiocyanates ... 229

18.2.8.1.12 Methods 12: Additional Methods 230

18.2.8.2 Methods 12: Additional Methods 230
18.2.8.2.2 Method 2: Cycloaddition Reactions .. 235
18.2.8.2.2.1 Variation 1: [2 + 2]-Cycloaddition Reactions 235
18.2.8.2.2.2 Variation 2: [2 + 4]-Cycloaddition Reactions 236
18.2.8.2.2.3 Variation 3: [2 + 3]-Cycloaddition Reactions 238
18.2.8.2.3 Method 3: Synthesis of Carbodiimides by Reaction with
Iminophosphoranes ... 239
18.2.8.2.4 Method 4: Synthesis of Thioamides by Friedel–Crafts Reaction .. 240
18.2.8.2.5 Method 5: Reduction of Isothiocyanates 242
18.2.9 Product Subclass 9: Carbon Diselenide 243
18.2.9.1 Synthesis of Product Subclass 9 ... 243
18.2.9.1.1 Method 1: Reaction of Selenium with Dichloromethane 243
18.2.9.2 Applications of Product Subclass 9 in Organic Synthesis 244
18.2.9.2.1 Method 1: Synthesis of Diselenocarbonates 244
18.2.9.2.2 Method 2: Synthesis of Triselenocarbonates 244
18.2.9.2.3 Method 3: Synthesis of Diselenocarbamates 245
18.2.9.2.4 Method 4: Synthesis of Isoiselenocyanates 245
18.2.9.2.5 Method 5: Synthesis of Selenoureas 246
18.2.9.2.6 Method 6: Synthesis of Ketene Diselenocetals 246
18.2.9.2.7 Method 7: Cycloaddition Reactions Involving Carbon Diselenide .. 246
18.2.9.2.8 Method 8: Polymerization of Carbon Diselenide 247
18.2.9.2.9 Methods 9: Additional Applications 247
18.2.10 Product Subclass 10: Isoiselenocyanates 248
18.2.10.1 Synthesis of Product Subclass 10 249
18.2.10.1.1 Method 1: By Nucleophilic Substitution of Organic Halides with
Selenocyanate Anion .. 249
18.2.10.1.1.1 Variation 1: Alkyl Isoiselenocyanates 249
18.2.10.1.1.2 Variation 2: Acyl and Imidoyl Isoiselenocyanates 250
18.2.10.1.1.3 Variation 3: Isoiselenocyanates by Isomerization of Selenocyanates.
.. 251
18.2.10.1.1.4 Variation 4: Silyl Isoiselenocyanates 252
18.2.10.1.2 Method 2: By Addition Reactions of Isocyanides with Elemental Selenium 252
18.2.10.1.2.1 Variation 1: Reaction of Preformed Isocyanides with Elemental Selenium 252
18.2.10.1.2.2 Variation 2: Via “In Situ” Formation of Isocyanides 253
18.2.10.1.3 Method 3: From Primary Amines and Carbon Diselenide via
Diselenocarbamates .. 254
18.2.10.1.4 Method 4: From Imidoyl Dihalides 255
18.2.10.1.5 Methods 5: Additional Methods 256
18.2.10.2 Applications of Product Subclass 10 in Organic Synthesis 257
18.2.10.2.1 Method 1: Reactions with Nucleophiles 257
18.2.10.2.1.1 Variation 1: Reactions with Heteroatom Nucleophiles 257
18.2.10.2.1.2 Variation 2: Reactions with Carbon Nucleophiles 258
18.2.10.2.2 Method 2: Cycloaddition Reactions of Isoiselenocyanates 259
18.2.11 Product Subclass 11: Isotellurocyanates 261
18.2.12 Product Subclass 12: Carbodiimides 261
18.2.12.1 Synthesis of Product Subclass 12

<table>
<thead>
<tr>
<th>Method</th>
<th>Reagents/Compounds</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Via Imidoyl Dihalides</td>
<td>262</td>
</tr>
<tr>
<td>2</td>
<td>Via N,N’-Disubstituted Ureas, Thioureas, and Selenoureas</td>
<td>263</td>
</tr>
<tr>
<td>1.1</td>
<td>Variation 1: Using Phosphorus Reagents</td>
<td>263</td>
</tr>
<tr>
<td>1.2</td>
<td>Variation 2: Using Oxidative Reagents</td>
<td>264</td>
</tr>
<tr>
<td>1.3</td>
<td>Variation 3: Using Sulfonyl Chlorides</td>
<td>265</td>
</tr>
<tr>
<td>1.4</td>
<td>Variation 4: Using Acid Chlorides</td>
<td>265</td>
</tr>
<tr>
<td>1.5</td>
<td>Variation 5: Using Pyridine and Pyrimidine Derivatives</td>
<td>266</td>
</tr>
<tr>
<td>1.6</td>
<td>Variation 6: Using Bases and Organometallic Compounds</td>
<td>266</td>
</tr>
<tr>
<td>1.7</td>
<td>Variation 7: Using (Dichloromethylene)dimethylammonium Chloride</td>
<td>267</td>
</tr>
<tr>
<td>1.8</td>
<td>Method 3: Via Iminophosphoranes</td>
<td>268</td>
</tr>
<tr>
<td>1.9</td>
<td>Variation 1: Aza-Wittig-Type Reaction of Iminophosphoranes with Heterocumulenes</td>
<td>268</td>
</tr>
<tr>
<td>1.10</td>
<td>Variation 2: Synthesis Using Di-tert-butyl Dicarbonate</td>
<td>268</td>
</tr>
<tr>
<td>1.11</td>
<td>Method 4: Via Isocyanates</td>
<td>269</td>
</tr>
<tr>
<td>1.12</td>
<td>Variation 1: Reaction of Isocyanates with Phosphoramidates and Metal Organosilanolates</td>
<td>269</td>
</tr>
<tr>
<td>1.13</td>
<td>Variation 2: Catalytic Condensation of Isocyanates</td>
<td>270</td>
</tr>
<tr>
<td>1.14</td>
<td>Method 5: Via Isocyanides</td>
<td>270</td>
</tr>
<tr>
<td>1.15</td>
<td>Method 6: Via Rearrangements</td>
<td>271</td>
</tr>
<tr>
<td>1.16</td>
<td>Variation 1: Photochemical Rearrangement of Nitrilimines</td>
<td>271</td>
</tr>
<tr>
<td>1.17</td>
<td>Variation 2: Rearrangements of Azides</td>
<td>271</td>
</tr>
<tr>
<td>1.18</td>
<td>Variation 3: Tiemann Rearrangements of Amidoximes</td>
<td>272</td>
</tr>
<tr>
<td>1.19</td>
<td>Method 7: Synthesis of Organometallic Carbodiimides</td>
<td>273</td>
</tr>
<tr>
<td>1.20</td>
<td>Variation 1: Synthesis of Silylcarbodiimides</td>
<td>273</td>
</tr>
<tr>
<td>1.21</td>
<td>Variation 2: Synthesis of Germylcarbodiimides</td>
<td>273</td>
</tr>
<tr>
<td>1.22</td>
<td>Variation 3: Synthesis of Stannylcarbodiimides</td>
<td>274</td>
</tr>
<tr>
<td>1.23</td>
<td>Methods 8: Additional Methods</td>
<td>275</td>
</tr>
<tr>
<td>1.24</td>
<td>Applications of Product Subclass 12 in Organic Synthesis</td>
<td>275</td>
</tr>
<tr>
<td>1.25</td>
<td>Method 1: Reactions of Carbodiimides with Nucleophiles</td>
<td>275</td>
</tr>
<tr>
<td>1.26</td>
<td>Method 2: Carbodiimides in Cycloaddition Reactions</td>
<td>276</td>
</tr>
</tbody>
</table>

18.2.12.2 Applications of Product Subclass 12 in Organic Synthesis

<table>
<thead>
<tr>
<th>Method</th>
<th>Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cycloaddition reactions</td>
<td>276</td>
</tr>
<tr>
<td>2</td>
<td>Additional methods</td>
<td>275</td>
</tr>
</tbody>
</table>

18.2.13 Product Subclass 13: 1-Aza-3-phosphapropadienes

<table>
<thead>
<tr>
<th>Method</th>
<th>Reactions</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hydrolysis of 1-Aza-3-phosphapropadienes</td>
<td>279</td>
</tr>
<tr>
<td>2</td>
<td>1-Aza-3-phosphapropadienes in Cycloaddition Reactions</td>
<td>280</td>
</tr>
</tbody>
</table>

18.2.14 Product Subclass 14: 1⁺⁵,3⁺⁵-Diphosphapropadienes (Carbodiphosphoranes)

<table>
<thead>
<tr>
<th>Method</th>
<th>Reactions</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reaction of Phosphines with Carbon Tetrachloride</td>
<td>283</td>
</tr>
</tbody>
</table>

Science of Synthesis Original Edition Volume 18
© Georg Thieme Verlag KG
18.2.14.1.2 Method 2: Dehydrohalogenation of Phosphonium Salts 284
18.2.14.2 Applications of Product Subclass 14 in Organic Synthesis 286
18.2.15 Product Subclass 15: 1,3-Diphosphapropadienes ... 286
18.2.15.1 Synthesis of Product Subclass 15 ... 286
18.2.15.1.1 Method 1: Trialkylsilanolate Elimination from 1,3-Diphosphapropene 287
18.2.15.1.2 Method 2: Dehydrohalogenation of Halo-1,3-diphosphapropenes 287
18.2.15.1.3 Method 3: Dehalogenation of gem-Dihalodiphosphiranes 288
18.2.15.2 Applications of Product Subclass 15 in Organic Synthesis 289
18.2.15.2.1 Method 1: Synthesis of Sulfur-Containing Diphosphetanes and Diphospholanes .. 289
18.2.15.2.2 Methods 2: Additional Applications ... 290

18.3 Product Class 3: Carbonic Acid Halides

J.-P. G. Senet

18.3 Product Class 3: Carbonic Acid Halides ... 321
18.3.1 Product Subclass 1: Carbonic Dihalides ... 330
18.3.1.1 Synthesis of Product Subclass 1 ... 331
18.3.1.1.1 Method 1: By Halogen Exchange .. 331
18.3.1.1.2 Method 2: Through Decomposition of Perhalogenated Carbonates 332
18.3.2 Product Subclass 2: Haloformate Esters .. 334
18.3.2.1 Synthesis of Product Subclass 2 .. 334
18.3.2.1.1 Method 1: By Halogen Exchange .. 334
18.3.2.1.1.1 Variation 1: Chlorine–Fluorine Exchange .. 334
18.3.2.1.1.2 Variation 2: Chlorine–Bromine Exchange .. 335
18.3.2.1.2 Method 2: From α-C-Metalated Aldehydes and Ketones 336
18.3.2.1.3 Method 3: From Hydroxylic Compounds ... 339
18.3.2.1.3.1 Variation 1: By the Reaction of Carboxyl Difluoride 339
18.3.2.1.3.2 Variation 2: By the Reaction of Phosgene (Carbonic Dichloride) 340
18.3.2.1.3.3 Variation 3: By the Reaction of Bis(trichloromethyl) Carbonate 341
18.3.2.1.4 Method 4: From 1-Haloalkyl Carbonates by Elimination Reactions 343
18.3.2.1.5 Method 5: From Oxiranes by Phosgene Addition .. 344
18.3.2.1.6 Method 6: From Carbonyl Compounds by Addition Reactions 345
18.3.2.1.6.1 Variation 1: Reaction of Phosgene with Aldehydes 346
18.3.2.1.6.2 Variation 2: Reaction of Bis(trichloromethyl) Carbonate with Aldehydes 348
18.3.2.1.6.3 Variation 3: Zinc-Mediated Reaction of Phosgene with Carbonyl Compounds ... 349
18.3.2.1.7 Method 7: Synthesis with Retention of the Haloformic Acid Groups 351
18.3.2.1.7.1 Variation 1: By Radical Chlorination of Alkyl Chloroformate Esters 351
18.3.2.1.7.2 Variation 2: By Zinc-Induced Boord Elimination of Chlorine 353
18.3.2.1.7.3 Variation 3: Rearrangement of 1-Chloroprop-2-enyl Chloroformates 354
18.3.2.1.8 Method 8: From O,S-Disubstituted Thiocarbonates by Chlorination with Sulfuryl Chloride ... 354
18.3.3 Product Subclass 3: Chlorothioformate S-Esters ... 355
18.3.3.1 Synthesis of Product Subclass 3 ... 356
18.3.3.1.1 Method 1: By Catalytic Decomposition of Alkoxydichloromethylsulfanyl Chlorides ... 356
18.3.3.1.2 Method 2: From Sulfanyl Compounds ... 356
18.3.4 Product Subclass 4: Haloselenoformic Se-Acids .. 357
18.3.5 Product Subclass 5: Carbamoyl Halides ... 358
18.3.5.1 Synthesis of Product Subclass 5 ... 358
18.3.5.1.1 Method 1: By Halogen Exchange .. 358
18.3.5.1.2 Method 2: From N,N-Bis(C-substituted) Nitrogen Compounds 359
18.3.5.1.2.1 Variation 1: By the Reaction of Phosgene with Secondary Amines 359
18.3.5.1.2.2 Variation 2: By the Reaction of Bis(trichloromethyl) Carbonate with Secondary Amines .. 360
18.3.5.1.2.3 Variation 3: By the Reaction of Phosgene with Imines 361
18.3.5.1.2.4 Variation 4: By the Reaction of Phosgene with Formamidines 362
18.3.5.1.2.5 Variation 5: By the Reaction of Phosgene with N-Carbonyl Compounds ... 363
18.3.5.1.2.6 Variation 6: By the Reaction of Bis(trichloromethyl) Carbonate with N-Carbonyl Compounds .. 364
18.3.5.1.3 Method 3: By the Reaction of Phosgene with Hydroxylamines 365
18.3.5.1.4 Method 4: By N-Dealkylation of Tertiary Amines 366
18.3.5.1.5 Method 5: By Chlorination of N,N-Disubstituted Carbamic Acid Derivatives .. 368
18.3.5.1.5.1 Variation 1: From Carbamates Generated from Secondary Amines and Carbon Dioxide in the Presence of a Tertiary Amine Base 368
18.3.5.1.5.2 Variation 2: From N,N-Dialkylcarbamic Acid Silyl Esters Generated from N-Silyl Secondary Amines and Carbon Dioxide 369
18.3.5.1.5.3 Variation 3: From N,N-Dialkylcarbamic Acid Alkyl Esters 370
18.3.5.1.6 Method 6: From (Carbamoyl)palladium(II) Complexes Using Carbon Monoxide and Chlorine .. 370
18.3.5.1.7 Method 7: From 1-Haloalkyl Carbamates by Elimination Reactions 371
18.3.6 Product Subclass 6: P-Halocarbonyl Organophosphorus Compounds 372
18.3.6.1 Synthesis of Product Subclass 6 ... 372
18.3.6.1.1 Method 1: From Primary and Secondary Phosphines with Phosgene 372
18.3.6.1.2 Method 2: From Trialkyl Phosphites with Phosgene [or Bis(trichloromethyl) Carbonate] by the Arbuzov Reaction 373

18.4 Product Class 4: Acyclic and Cyclic Carbonic Acids and Esters, and Their Sulfur, Selenium, and Tellurium Analogues
K. W. Jung and A. S. Nagle

18.4.1 Product Subclass 1: Carbonic Acid Monoesters .. 380
18.4.1.1 Synthesis of Product Subclass 1 .. 380
18.4.2 Product Subclass 2: Organometallic Derivatives and Metal Salts of Carbonic Acid Monoesters .. 380

18.4.2.1 Synthesis of Product Subclass 2 .. 380
18.4.2.1.1 Method 1: Addition of Metal Alkoxides to Carbon Dioxide .. 380
18.4.2.2 Applications of Product Subclass 2 in Organic Synthesis .. 382
18.4.2.2.1 Method 1: Carboxylations Using Magnesium Methyl Carbonate 382

18.4.3 Product Subclass 3: Acyclic Carbonate Diesters .. 383

18.4.3.1 Synthesis of Product Subclass 3 .. 383
18.4.3.1.1 Method 1: Addition of Alcohols to Formate Derivatives 383
18.4.3.1.1.1 Variation 1: Addition of Aldehydes or Ketones 384
18.4.3.1.2 Variation 2: Synthesis Using Dialkyl Azodicarboxylates 387
18.4.3.1.2.1 Method 2: Transfer of the Carbonyl Group to Alcohols 387
18.4.3.1.2.1.1 Variation 1: Coupling Using 1,1'-Carbonyldiimidazole 388
18.4.3.1.2.2 Variation 2: Transcarbonylation Using Dimethyl or Diethyl Carbonate 389
18.4.3.1.3 Method 3: Addition to Carbon Dioxide .. 390
18.4.3.1.3.1 Variation 1: Synthesis Using Diethyl Azodicarboxylate 392
18.4.3.1.4 Method 4: Addition to Carbon Monoxide .. 392
18.4.3.1.5 Method 5: Alkylative Self-Condensation .. 393
18.4.3.1.6 Method 6: Coupling Using Urea as a Carbonyl Source 393
18.4.3.1.7 Method 7: Enzyme-Catalyzed Transcarbonylation .. 394

18.4.4 Product Subclass 4: Cyclic Carbonate Diesters .. 395

18.4.4.1 Synthesis of Product Subclass 4 .. 396
18.4.4.1.1 Method 1: Transfer of the Carbonyl Group to Diols 396
18.4.4.1.1.1 Variation 1: Coupling Using 1,1'-Carbonyldiimidazole 397
18.4.4.1.1.2 Variation 2: Transcarbonylation Using Dimethyl or Diethyl Carbonate 398
18.4.4.1.2 Method 2: Addition to Carbon Dioxide .. 399
18.4.4.1.2.1 Variation 1: Reaction with Halohydrins .. 399
18.4.4.1.2.2 Variation 2: Iodolactonization .. 400
18.4.4.1.2.3 Variation 3: Reaction with Propargylic Alcohols 400
18.4.4.1.2.4 Variation 4: Reaction with Oxiranes .. 401
18.4.4.1.3 Method 3: Addition to Carbon Monoxide .. 402
18.4.4.2 Applications of Product Subclass 4 in Organic Synthesis .. 402
18.4.4.2.1 Method 1: Oxidation of Cyclic Carbonate Diesters to Unsaturated Analogues 402

18.4.5 Product Subclass 5: Bis(trihaloalkyl) Carbonates .. 403

18.4.5.1 Synthesis of Product Subclass 5 .. 403

18.4.6 Product Subclass 6: Acyclic Carbonic Carboxylic Anhydrides .. 404

18.4.6.1 Synthesis of Product Subclass 6 .. 404
18.4.6.1.1 Method 1: Addition of Acids to Formate Derivatives 404
18.4.6.1.2 Method 2: Addition of Carbonates to Acid Chlorides 404

18.4.7 Product Subclass 7: Cyclic Carbonic Carboxylic Anhydrides .. 405

18.4.7.1 Synthesis of Product Subclass 7 .. 405
18.4.8 Product Subclass 8: Halodicarbonate Monoesters ... 406
18.4.8.1 Synthesis of Product Subclass 8 ... 406
18.4.9 Product Subclass 9: Dicarbonate Diesters ... 407
18.4.9.1 Synthesis of Product Subclass 9 ... 407
18.4.10 Product Subclass 10: Tricarbonate Diesters ... 407
18.4.10.1 Synthesis of Product Subclass 10 .. 407
18.4.11 Product Subclass 11: Dithiotricarbonate S,S-Diesters 408
18.4.11.1 Synthesis of Product Subclass 11 .. 408
18.4.12 Product Subclass 12: Carbamic Carbonic Anhydride O,N-Diesters 408
18.4.12.1 Synthesis of Product Subclass 12 .. 408
18.4.13 Product Subclass 13: Monoperoxycarbonic Acid O-Monoesters, Monoperoxycarbonate Diesters, and Peroxydicarbonate Diesters 408
18.4.13.1 Synthesis of Product Subclass 13 .. 409
18.4.14 Product Subclass 14: Carbonic Sulfonic Anhydride Esters 410
18.4.14.1 Synthesis of Product Subclass 14 .. 410
18.4.14.1.1 Method 1: Addition of Sulfonic Acids to Formate Derivatives 410
18.4.14.1.2 Method 2: Oxidation and Rearrangement of Thiocarbonates 411
18.4.15 Product Subclass 15: O-Amino Carbonate Derivatives 411
18.4.15.1 Synthesis of Product Subclass 15 .. 411
18.4.15.1.1 Method 1: Addition of Alcohols to Formate Derivatives 411
18.4.15.1.2 Method 2: Transfer of the Carbonyl Group to Hydroxylamines 413
18.4.16 Product Subclass 16: Metal Salts of Thiocarbonic Acid O-Monoesters and S-Monoesters ... 413
18.4.16.1 Synthesis of Product Subclass 16 .. 413
18.4.16.2 Applications of Product Subclass 16 in Organic Synthesis 414
18.4.16.2.1 Method 1: Synthesis of Bis(alkoxycarbonyl) Disulfides and Trisulfides 414
18.4.17 Product Subclass 17: Acyclic Thiocarbonate O,S-Diesters 414
18.4.17.1 Synthesis of Product Subclass 17 .. 415
18.4.17.1.1 Method 1: Addition of Thiols or Alcohols to Formate Derivatives 415
18.4.17.1.2 Variation 1: Addition of Metal Enolates .. 416
18.4.17.1.3 Method 2: Oxidation of Dithiocarbonate O,S-Diesters 416
18.4.17.1.3 Method 3: Rearrangement of O,O-Diaryl Thiocarbonates 417
18.4.18 Product Subclass 18: Cyclic Thiocarbonate O,S-Diesters 417
18.4.18.1 Synthesis of Product Subclass 18 .. 417
18.4.18.1.1 Method 1: Addition to Carbonyl Equivalents ... 417
18.4.18.1.1 Variation 1: Coupling Using 1,1'-Carbonyldiimidazole 418
18.4.18.1.2 Variation 2: Hydrolysis of Ammonium Salts .. 419
18.4.18.1.2 Method 2: Addition to Carbon Monoxide ... 420
18.4.18.1.3 Method 3: Rearrangements .. 420
18.4.18.1.3.1 Variation 1: Isomerization of Thiocarbonate O,O-Diesters 421
18.4.19 Product Subclass 19: Thiocarbonate O,S-Diester S-Oxides and S,S-Dioxides 421
18.4.19.1 Synthesis of Product Subclass 19 .. 421
18.4.20 Product Subclass 20: Carboxylic Thiocarbonic Anhydride S-Esters 422
18.4.20.1 Synthesis of Product Subclass 20 .. 422
18.4.20.1.1 Method 1: Addition of Acids to Chlorothioformate S-Esters 422
18.4.20.1.2 Method 2: Addition of O-Metal Thiocarbonate S-Esters to Acid Chlorides 423
18.4.20.2 Applications of Product Subclass 20 in Organic Synthesis 423
18.4.20.2.1 Method 1: Macrolactonization of Hydroxy Acids 423
18.4.21 Product Subclass 21: Carbamic Thiocarbonic Anhydride S-Esters 424
18.4.21.1 Synthesis of Product Subclass 21 .. 424
18.4.22 Product Subclass 22: O-Amino Thiocarbonate S-Esters 424
18.4.22.1 Synthesis of Product Subclass 22 .. 424
18.4.23 Product Subclass 23: S-Acyl Thiocarbonate O-Esters 425
18.4.23.1 Synthesis of Product Subclass 23 .. 425
18.4.24 Product Subclass 24: Bis(alkoxycarbonyl) Sulfides 425
18.4.24.1 Synthesis of Product Subclass 24 .. 425
18.4.25 Product Subclass 25: S-(Imidocarbonyl) Thiocarbonate O-Esters 426
18.4.25.1 Synthesis of Product Subclass 25 .. 426
18.4.26 Product Subclass 26: Alkoxycarbonyl Thiocyanates 426
18.4.26.1 Synthesis of Product Subclass 26 .. 426
18.4.27 Product Subclass 27: S-Halo Thiocarbonate O-Esters 427
18.4.27.1 Synthesis of Product Subclass 27 .. 427
18.4.27.1.1 Method 1: Addition of Alcohols to Thioformate Derivatives 427
18.4.27.1.2 Method 2: Halogenation of S-Acyl Thiocarbonate O-Esters 427
18.4.27.2 Applications of Product Subclass 27 in Organic Synthesis 428
18.4.27.2.1 Method 1: Nucleophilic Displacement of Thiol Derivatives 428
18.4.28 Product Subclass 28: S-Sulfanyl Derivatives of Thiocarbonate O-Esters 429
18.4.28.1 Synthesis of Product Subclass 28 .. 429
18.4.28.1.1 Method 1: Disulfides and Trisulfides by Addition to S-Substituted Chlorothioformates 429
18.4.28.1.2 Method 2: Addition of Sodium Thiosulfate to Chloroformates 430
18.4.28.1.3 Method 3: Oxidation of Alkoxycarbonyl Alkyl Disulfides 430
18.4.28.1.4 Method 4: Rearrangements .. 431
18.4.29 Product Subclass 29: S-Amino Thiocarbonate O-Esters 432
18.4.29.1 Synthesis of Product Subclass 29 .. 432
18.4.30 Product Subclass 30: Acyclic Dithiocarbonate S,S-Diesters 432
18.4.30.1 Synthesis of Product Subclass 30 ... 432
18.4.30.1.1 Method 1: Addition of Thiols to Chlorothioformate S-Esters 432
18.4.30.1.2 Method 2: Activation of O-Metal Thiocarbonate S-Esters 433
18.4.30.1.3 Method 3: Rearrangement of Dithiocarbonate O,S-Diesters 433
18.4.30.1.3.1 Variation 1: Isomerization Using Acids .. 434
18.4.30.1.3.2 Variation 2: Isomerization Using Bases ... 434
18.4.30.1.3.3 Variation 3: [3,3]-Sigmatropic Rearrangement 434
18.4.31 Product Subclass 31: Cyclic Dithiocarbonate S,S-Diesters 435
18.4.31.1 Synthesis of Product Subclass 31 ... 435
18.4.31.1.1 Method 1: Addition of Dithiols/Dithiones to the Carbonyl Group 435
18.4.31.1.2 Method 2: Oxidation of Cyclic Trithiocarbonates 436
18.4.31.1.2.1 Variation 1: Conversion of Thiones into Carbonyl Compounds Using Oxiranes .. 436
18.4.31.1.3 Method 3: Halocyclization of S-Allyl Dithiocarbonate O-Esters 436
18.4.31.1.4 Method 4: Acid-Catalyzed Cyclization of O-Alkyl S-(2-Oxoalkyl) Dithiocarbonates ... 437
18.4.31.1.5 Method 5: Cycloaddition of Dithiocarbonate O,S-Diesters with Alkynes ... 438
18.4.31.1.6 Method 6: Isomerization of Dithiocarbonate O,S-Diesters 438
18.4.32 Product Subclass 32: Dithiocarbonate S,S-Diester S-Oxides 438
18.4.32.1 Synthesis of Product Subclass 32 ... 438
18.4.33 Product Subclass 33: S-Acyl Dithiocarbonate S-Esters 439
18.4.33.1 Synthesis of Product Subclass 33 ... 439
18.4.34 Product Subclass 34: S,S-Bis[(dialkylamino)thiocarbonyl] Dithiocarbonates 439
18.4.34.1 Synthesis of Product Subclass 34 ... 439
18.4.35 Product Subclass 35: (Alkylsulfanyl)carbonyl Thiocyanates 440
18.4.35.1 Synthesis of Product Subclass 35 ... 440
18.4.36 Product Subclass 36: S-Sulfanyl Derivatives of Dithiocarbonate S-Esters 440
18.4.36.1 Synthesis of Product Subclass 36 ... 440
18.4.37 Product Subclass 37: Acyclic Selenocarbonate O,Se-Diesters 441
18.4.37.1 Synthesis of Product Subclass 37 ... 441
18.4.37.1.1 Method 1: Selenation of Tellurocarbonate O,Te-Diesters 441
18.4.37.1.2 Method 2: Addition of Selenols to Chloroformates 441
18.4.37.1.2.1 Variation 1: Reaction with (Arylselanyl)magnesium Bromides 442
18.4.37.1.2.2 Variation 2: Synthesis from Diselenides .. 442
18.4.37.1.2.3 Variation 3: Synthesis Using 1,1'-Carbonyldimidazole 442
18.4.37.1.3 Method 3: Palladium-Catalyzed Coupling of Selenides with Chloroformates ... 443
18.4.37.2 Applications of Product Subclass 37 in Organic Synthesis 443
18.4.37.2.1 Method 1: Formation of γ- and δ-Lactones .. 443
18.4.38 Product Subclass 38: Cyclic Selenocarbonate \(O,Se \)-Diesters 444
18.4.38.1 Synthesis of Product Subclass 38 .. 444
18.4.39 Product Subclass 39: Bis(alkoxycarbonyl) Selenides 445
18.4.39.1 Synthesis of Product Subclass 39 .. 445
18.4.40 Product Subclass 40: Cyclic Selenothiocarbonate \(S,Se \)-Diesters 445
18.4.40.1 Synthesis of Product Subclass 40 .. 445
18.4.41 Product Subclass 41: Acyclic Diselenocarbonate \(Se,Se \)-Diesters 446
18.4.41.1 Synthesis of Product Subclass 41 .. 446
18.4.42 Product Subclass 42: Cyclic Diselenocarbonate \(Se,Se \)-Diesters 446
18.4.42.1 Synthesis of Product Subclass 42 .. 446
18.4.43 Product Subclass 43: Acyclic Tellurocarbonate \(O,Te \)-Diesters 446
18.4.43.1 Synthesis of Product Subclass 43 .. 446
18.4.44 Product Subclass 44: Bis(alkoxycarbonyl) Tellurides 446
18.4.44.1 Synthesis of Product Subclass 44 .. 446

18.5 Product Class 5: Polymeric Carbonic Acids and Esters, and Their Sulfur Analogues
S. C. Moratti and Y. C. Charalambides

18.5 Product Class 5: Polymeric Carbonic Acids and Esters, and Their Sulfur Analogues 451
18.5.1 Product Subclass 1: Polycarbonates ... 451
18.5.1.1 Synthesis of Product Subclass 1 ... 452
18.5.1.1.1 Method 1: Diol Addition to Carbonic Acid Derivatives 452
18.5.1.1.1.1 Variation 1: Condensation of Phosgene and Diphenols 452
18.5.1.1.1.2 Variation 2: Condensation of Diaryls with Diaryl and Dialkyl Carbonates 453
18.5.1.1.1.3 Variation 3: Direct Condensation of Diols with Carbon Dioxide 453
18.5.1.1.4 Variation 4: Copolymerization of Epoxides with Carbon Dioxide 454
18.5.1.1.2 Method 2: Ring-Opening Polymerization 455
18.5.1.1.2.1 Variation 1: Ring-Opening Polymerization of Cyclic Carbonates 455
18.5.1.1.2.2 Variation 2: Ring-Opening Polymerization of Cyclic Spiroorthocarbonates 456
18.5.1.1.3 Method 3: Coupling of Diphenols with Carbon Monoxide 456
18.5.2 Product Subclass 2: Polythiocarbonates ... 457
18.5.2.1 Synthesis of Product Subclass 2 ... 457
18.5.2.1.1 Method 1: Condensation of Phosgene with Dithiols 457
18.5.2.1.2 Method 2: Ring-Opening Polymerization 458
Product Class 6: Acyclic and Cyclic Carbamic Acids and Esters, and Their Sulfur, Selenium, Tellurium, and Phosphorus Analogues

18.6 Product Subclass 1: Carbamic Acids and Derivatives

18.6.1 Synthesis of Product Subclass 1

18.6.1.1 Method 1: Reaction of Amines with Carbon Dioxide

18.6.1.2 Synthesis of Metal Carbamates

18.6.1.2.1 Method 1: Reaction of Ammonium Carbamates with Alkali Metals

18.6.1.2.1 Method 1: Synthesis of Amides from Alkylammonium Carbamates

18.6.1.2 Applications of Product Subclass 1 in Organic Synthesis

18.6.1.3 Synthesis of Product Subclass 2

18.6.1.3.1 Method 1: Reaction with Alcohols Using Phosgene

18.6.1.3.2 Method 2: Reaction with Carbonates

18.6.1.3.2 Variation 1: With Organic Carbonates

18.6.1.3.2 Variation 2: With Alkyl and Aryl Isopropenyl and \(\alpha \)-Methoxyvinyl Carbonates

18.6.1.3.3 Variation 3: Other Noncatalyzed Reactions with Organic Carbonates

18.6.1.3.4 Variation 4: Reaction of Aromatic Amines with Organic Carbonates

18.6.1.3.5 Variation 5: Reaction with Inorganic Carbonates

18.6.1.3.6 Variation 6: Reaction with Ammonium Carbonates and Ammonium Hydrogen Carbonates

18.6.1.3.7 Variation 7: Reaction with Organic Dicarbonates

18.6.1.3.8 Variation 8: Enzyme-Catalyzed Reactions with Organic Carbonates

18.6.1.3.9 Variation 9: Solid-Phase Reaction of Amines with Organic Carbonates

18.6.1.3.10 Method 3: Reaction with Haloformates

18.6.1.3.11 Variation 1: Reaction with In Situ Generated Haloformates

18.6.1.3.12 Variation 2: Reaction of Tertiary Amines with Haloformates

18.6.1.3.13 Method 4: Reaction with Carbon Dioxide

18.6.1.3.14 Variation 1: Base-Catalyzed Reaction with Carbon Dioxide

18.6.1.3.14 Variation 2: Base-Catalyzed Reaction with Carbon Dioxide on a Solid Phase

18.6.1.3.14 Variation 3: Metal-Catalyzed Reaction with Carbon Dioxide

18.6.1.3.14 Variation 4: Via Ammonium Carbamates by Reaction of Amines and Carbon Dioxide

18.6.1.3.14 Variation 5: Reaction with Supercritical Carbon Dioxide

18.6.1.3.14 Method 5: Reaction with Carbonyl Sulfide

18.6.1.3.14 Method 6: Reaction with Ureas and Alcohols

18.6.1.3.14 Method 7: Metal-Catalyzed Carboxylation Using Carbon Monoxide
Method 8: Oxidative Alkoxycarbonylation of Amines 496

Variation 1: Homogeneous Oxidative Alkoxycarbonylation 496

Variation 2: Heterogeneous Oxidative Alkoxycarbonylation 497

Variation 3: Oxidative Alkoxycarbonylation of Tertiary Amines 500

Method 9: Reaction with Alkoxycarbonylazoles and
Alkoxycarbonyltriazoles .. 500

Variation 1: Selective Reaction of 1,1'-Carbonyldiimidazole with
Amines and Alcohols .. 502

Method 10: Reaction of Carbamoylimidazolium Salts with
Phenols or Alcohols ... 503

Synthesis from Ureas .. 504

Method 1: Reaction with Alcohols ... 504

Variation 1: Metal-Catalyzed Reaction with Alcohols 505

Variation 2: Acid- and Base-Catalyzed Reaction with Alcohols 506

Method 2: Reaction with Carbon Monoxide 508

Method 3: Reaction with Organic Carbonates 509

Method 4: Reaction with Oxiranes .. 510

Synthesis from Cyanates and Isocyanates 511

Method 1: Reaction of Isocyanates with Alcohols 511

Variation 1: Synthesis of Unsubstituted Carbamates by Reaction of
Trichloroacetyl Isocyanates with Alcohols 514

Variation 2: Reaction of Inorganic Cyanates with Alcohols 515

Variation 3: Reaction of Triethylammonium Isocyanate with Alcohols 515

Variation 4: Reaction of Inorganic Cyanates with Alcohols and
Alkyl Halides .. 516

Variation 5: Reaction of Chlorosulfonyl Isocyanate with Allyl Ethers 518

Synthesis from Carbamoyl Halides .. 518

Method 1: Reaction with Alcohols and Derivatives 518

Synthesis from Azides .. 520

Method 1: Reaction with Organic Carbonates and Dicarbonates 520

Variation 1: Reductive Transformation of Azides to
(tert-Butoxycarbonyl)carbamates ... 520

Variation 2: Modified Staudinger Reaction of Azides 521

Method 2: Reaction with Haloformates .. 522

Synthesis from Amides .. 523

Method 1: Reaction of Aromatic Amides with Organic Carbonates 523

Method 2: Hofmann Rearrangement of Carboxamides 524

Variation 1: Hofmann Rearrangement of Carboxamides Mediated by
Bromonium Ion Equivalents ... 524

Variation 2: Hofmann Rearrangement of Carboxamides Mediated by
Other Systems .. 526

Variation 3: Electrochemically Induced Hofmann Rearrangement of
Carboxamides .. 528
18.6.2.1.7 Synthesis from Carbamates ... 529
18.6.2.1.7.1 Method 1: By Transesterification .. 529
18.6.2.1.7.1.1 Variation 1: Reaction with Alcohols ... 529
18.6.2.1.7.1.2 Variation 2: Reaction via Silyl Carbamates 532
18.6.2.1.7.1.3 Variation 3: Transesterification on a Solid Phase 533
18.6.2.1.7.2 Method 2: By N-Alkylation .. 534
18.6.2.1.7.2.1 Variation 1: Reaction with Alkyl Halides and Base 534
18.6.2.1.7.2.2 Variation 2: Reaction with Amines ... 535
18.6.2.1.7.2.3 Variation 3: Reaction with Alkenes 536
18.6.2.1.7.2.4 Variation 4: Reaction with Aldehydes and Aromatic Compounds 537
18.6.2.1.8 Synthesis by Other Methods ... 538
18.6.2.1.8.1 Method 1: Curtius Rearrangement of Carboxylic Acids and Derivatives 538
18.6.2.1.8.2 Method 2: Reductive Carbonylation of Aromatic Nitro Compounds 539
18.6.2.1.8.2.1 Variation 1: Metal-Catalyzed Reductive Carbonylation of Aromatic Nitro Compounds .. 539
18.6.2.1.8.2.2 Variation 2: Selenium-Catalyzed Carbonylation of Aromatic Nitro Compounds .. 543
18.6.2.1.8.2.3 Variation 3: Palladium-Catalyzed Reductive Carbonylation of Nitrobenzene .. 544
18.6.2.1.8.3 Method 3: Reaction of Cyanogen Chloride with Alcohols 545
18.6.2.1.8.4 Method 4: Ene Reaction of Alkenes with Diethyl Azodicarboxylate 546
18.6.2.1.8.5 Method 5: Carbamates from O-Alkyl and S-Alkyl Thiocarbamates 547
18.6.2.2 Applications of Product Subclass 2 in Organic Synthesis 549
18.6.2.2.1 Method 1: Synthesis of Isocyanates .. 549
18.6.2.2.2 Method 2: Reaction of Carbamates with Carbonyl Compounds and Derivatives .. 550
18.6.2.2.3 Method 3: Synthesis of Amines from Carbamates 551
18.6.2.2.4 Method 4: Synthesis of Ureas from Carbamates 553
18.6.2.2.4.1 Variation 1: Diiodosilane-Mediated Synthesis of Ureas from Carbamates 553
18.6.3 Product Subclass 3: Cyclic Carbamates .. 554
18.6.3.1 Synthesis of Product Subclass 3 .. 555
18.6.3.1.1 Synthesis from Amino Alcohols ... 555
18.6.3.1.1.1 Method 1: Reaction with Phosgene, Trichloromethyl Chloroformate, and Bis(trichloromethyl) Carbonate .. 555
18.6.3.1.1.2 Method 2: Reaction with Organic Carbonates 559
18.6.3.1.1.2.1 Variation 1: Reaction with Alkylammonium Carbonates 560
18.6.3.1.1.2.2 Variation 2: Reaction with Organic Dicarbonates 561
18.6.3.1.1.2.3 Variation 3: Reaction with Polymer-Supported Carbonate 562
18.6.3.1.1.3 Method 3: Reaction with Ureas .. 563
18.6.3.1.1.4 Method 4: Reaction with Carbon Dioxide 563
18.6.3.1.1.4.1 Variation 1: Electrochemical Reaction with Carbon Dioxide 564
18.6.3.1.1.5 Method 5: Reaction with Carbon Monoxide 565
18.6.3.1.1.6 Method 6: Reaction with Trihaloacetic Acid Derivatives 566
18.6.3.1.1.7 Method 7: Reaction with Isocyanates .. 567
18.6.3.1.8 Method 8: Reaction with 1,1′-Carbonyldiimidazole 568
18.6.3.1.2 Synthesis from Cyclic Carbonates .. 569
18.6.3.1.2.1 Method 1: Reaction with Isocyanates .. 569
18.6.3.1.2.2 Method 2: Reaction with Aromatic Amines ... 570
18.6.3.1.2.3 Method 3: Reaction with Formamide and with Ammonium Carbonate
and Potassium Cyanide ... 571
18.6.3.1.3 Synthesis from Oxiranes ... 571
18.6.3.1.3.1 Method 1: Reaction with Isocyanates .. 571
18.6.3.1.3.1.1 Variation 1: Reaction with 1,3,5-Triazinane-2,4,6-trione 573
18.6.3.1.3.1.2 Variation 2: Reaction with Isothiocyanates 574
18.6.3.1.3.2 Method 2: Reaction with Carbamates .. 575
18.6.3.1.3.3 Method 3: Reaction of 2-(Aminomethyl)oxiranes with Carbon Dioxide .. 575
18.6.3.1.4 Synthesis from Carbamates ... 576
18.6.3.1.4.1 Method 1: Cyclization of Carbamates .. 576
18.6.3.1.4.1.1 Variation 1: Pyrolytic Cyclization of Carbamates 576
18.6.3.1.4.1.2 Variation 2: Cyclization of Hydroxycarbamates and Derivatives 577
18.6.3.1.4.1.3 Variation 3: 4-Toluenesulfonyl Chloride Mediated Cyclization of
N-tert-Butyloxycarbonyl Derivatives of β-Amino Alcohols 578
18.6.3.1.4.1.4 Variation 4: Cyclization of N-Substituted β-Chloroethyl Carbamates .. 579
18.6.3.1.4.1.5 Variation 5: Cyclization via Silyl Carbamates 580
18.6.3.1.4.1.6 Variation 6: Cyclization of Unsaturated Carbamates 581
18.6.3.1.4.2 Method 2: Reaction with Alkenes ... 582
18.6.3.1.4.3 Method 3: Reaction with α-Halo Carbonyl Compounds 582
18.6.3.1.5 Synthesis from Unsaturated Compounds .. 583
18.6.3.1.5.1 Method 1: Reaction of Terminal Alkynyl Alcohols with Isocyanates 583
18.6.3.1.5.2 Method 2: Reaction of Terminal Alkynyl Alcohols with Amines and
Carbon Dioxide ... 584
18.6.3.1.5.3 Method 3: Reaction of Unsaturated Amines with Carbon Dioxide 585
18.6.3.1.5.3.1 Variation 1: Reaction of Allylamines and Homoallylamines with
Carbon Dioxide ... 585
18.6.3.1.5.3.2 Variation 2: Reaction of Propargylamines with Carbon Dioxide 586
18.6.3.1.6 Synthesis from Aziridines .. 587
18.6.3.1.6.1 Method 1: Reaction with Carbon Dioxide .. 587
18.6.3.1.6.2 Method 2: Reaction with Organic Dicarbonates 588
18.6.3.1.7 Synthesis by Other Methods ... 589
18.6.3.1.7.1 Method 1: One-Pot Synthesis of Oxazolidin-2-ones from Amino Acids 589
18.6.3.1.7.2 Method 2: Hofmann-Type Rearrangement of Hydroxy Amides 592
18.6.3.1.7.3 Method 3: Curtius Rearrangement of β-Hydroxy Acids 593
18.6.3.1.7.4 Method 4: Reaction of β-Aminoalkylsulfuric Acids with
Inorganic Carbonates ... 593
18.6.3.1.7.5 Method 5: Synthesis of 1,3-Oxazetidin-2-ones 594
18.6.3.1.7.5.1 Variation 1: Reaction of Halo Ketones with Isocyanates 594
18.6.3.1.7.5.2 Variation 2: Hydrolysis of Halo Isocyanates 595
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Synthesis Reaction</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.6.3.1.7.6</td>
<td>Method 6:</td>
<td>Oxidation of Oxazolidine-2-thiones</td>
<td>595</td>
</tr>
<tr>
<td>18.6.3.1.7.7</td>
<td>Method 7:</td>
<td>Reaction of Oximes with Dimethyl Carbonate</td>
<td>596</td>
</tr>
<tr>
<td>18.6.3.1.7.8</td>
<td>Method 8:</td>
<td>Intramolecular Iron-Catalyzed Chloroamination of Unsaturated Alkoxycarbonyl Azides</td>
<td>597</td>
</tr>
<tr>
<td>18.6.3.2</td>
<td>Applications of Product Subclass 3 in Organic Synthesis</td>
<td></td>
<td>598</td>
</tr>
<tr>
<td>18.6.3.2.1</td>
<td>Method 1:</td>
<td>Synthesis of N-Acyloxazolidin-2-ones</td>
<td>598</td>
</tr>
<tr>
<td>18.6.4</td>
<td>Product Subclass 4: Thiocarbamic Acids and Salts</td>
<td></td>
<td>599</td>
</tr>
<tr>
<td>18.6.4.1</td>
<td>Synthesis of Product Subclass 4</td>
<td></td>
<td>599</td>
</tr>
<tr>
<td>18.6.4.1.1</td>
<td>Method 1:</td>
<td>Reaction of Amines with Carbon Monoxide and Sulfur or with Carbonyl Sulfide</td>
<td>599</td>
</tr>
<tr>
<td>18.6.4.2</td>
<td>Applications of Product Subclass 4 in Organic Synthesis</td>
<td></td>
<td>600</td>
</tr>
<tr>
<td>18.6.4.2.1</td>
<td>Method 1:</td>
<td>Synthesis of Ammonium Thiocarbamates</td>
<td>600</td>
</tr>
<tr>
<td>18.6.5</td>
<td>Product Subclass 5: Linear Thiocarbamic Acid Esters</td>
<td></td>
<td>601</td>
</tr>
<tr>
<td>18.6.5.1</td>
<td>Synthesis of Product Subclass 5</td>
<td></td>
<td>601</td>
</tr>
<tr>
<td>18.6.5.1.1</td>
<td>Synthesis from Amines</td>
<td></td>
<td>601</td>
</tr>
<tr>
<td>18.6.5.1.1.1</td>
<td>Method 1:</td>
<td>Reaction with Carbon Monoxide and Elemental Sulfur</td>
<td>601</td>
</tr>
<tr>
<td>18.6.5.1.1.1.1</td>
<td>Variation 1:</td>
<td>Reaction of Carbamoyllithium Reagents with Elemental Sulfur</td>
<td>602</td>
</tr>
<tr>
<td>18.6.5.1.1.2</td>
<td>Variation 2:</td>
<td>Selenium-Mediated Reaction of Amines with Carbon Monoxide and Alkyl Halides</td>
<td>603</td>
</tr>
<tr>
<td>18.6.5.1.1.3</td>
<td>Variation 3:</td>
<td>Reaction with Carbon Monoxide and Organic Disulfides</td>
<td>604</td>
</tr>
<tr>
<td>18.6.5.1.1.2</td>
<td>Method 2:</td>
<td>Reaction with Carbonyl Sulfide and Alkylating Reagents</td>
<td>605</td>
</tr>
<tr>
<td>18.6.5.1.3</td>
<td>Method 3:</td>
<td>Reaction with S-Alkyl Chlorothioformates</td>
<td>606</td>
</tr>
<tr>
<td>18.6.5.1.4</td>
<td>Method 4:</td>
<td>Reaction with Thiocarbonates</td>
<td>608</td>
</tr>
<tr>
<td>18.6.5.1.2</td>
<td>Synthesis by Other Methods</td>
<td></td>
<td>608</td>
</tr>
<tr>
<td>18.6.5.1.2.1</td>
<td>Method 1:</td>
<td>Reaction of Alkylcarbamoyl Chlorides with Thiols</td>
<td>608</td>
</tr>
<tr>
<td>18.6.5.1.2.1.1</td>
<td>Variation 1:</td>
<td>Reaction of Alkylcarbamoyl Chlorides with Potassium O-Alkyl Dithiocarbonates</td>
<td>610</td>
</tr>
<tr>
<td>18.6.5.1.2.2</td>
<td>Method 2:</td>
<td>Palladium-Catalyzed Reaction of Sulfenamides with Carbon Monoxide</td>
<td>611</td>
</tr>
<tr>
<td>18.6.5.1.2.3</td>
<td>Method 3:</td>
<td>Transesterification of Thiocarbamates</td>
<td>611</td>
</tr>
<tr>
<td>18.6.5.1.2.4</td>
<td>Method 4:</td>
<td>Reaction of Thiols with Isocyanates and Derivatives</td>
<td>612</td>
</tr>
<tr>
<td>18.6.5.1.2.4.1</td>
<td>Variation 1:</td>
<td>Hydrolysis of Thiocyanates</td>
<td>613</td>
</tr>
<tr>
<td>18.6.5.1.2.5</td>
<td>Method 5:</td>
<td>Isomerization of Thiocarbamates</td>
<td>614</td>
</tr>
<tr>
<td>18.6.5.1.2.5.1</td>
<td>Variation 1:</td>
<td>Thermal Isomerization of O-Aryl Thiocarbamates</td>
<td>614</td>
</tr>
<tr>
<td>18.6.5.1.2.5.2</td>
<td>Variation 2:</td>
<td>Isomerization of O-Alkyl Thiocarbamates</td>
<td>615</td>
</tr>
<tr>
<td>18.6.5.1.2.6</td>
<td>Method 6:</td>
<td>Curtius Rearrangement of Dienoic Acids</td>
<td>617</td>
</tr>
<tr>
<td>18.6.5.1.2.7</td>
<td>Method 7:</td>
<td>Reaction of Imidazolium Salts with Thiols</td>
<td>617</td>
</tr>
<tr>
<td>18.6.5.2</td>
<td>Applications of Product Subclass 5 in Organic Synthesis</td>
<td></td>
<td>618</td>
</tr>
<tr>
<td>18.6.5.2.1</td>
<td>Method 1:</td>
<td>Synthesis of Isocyanates</td>
<td>618</td>
</tr>
<tr>
<td>18.6.5.2.2</td>
<td>Method 2:</td>
<td>Synthesis of Ureas</td>
<td>619</td>
</tr>
<tr>
<td>18.6.6</td>
<td>Product Subclass 6: Cyclic Thiocarbamates</td>
<td></td>
<td>619</td>
</tr>
<tr>
<td>18.6.6.1</td>
<td>Synthesis of Product Subclass 6</td>
<td></td>
<td>619</td>
</tr>
</tbody>
</table>
18.6.6.1 Synthesis from Amino Thiols and Derivatives

18.6.6.1.1 Method 1: Reaction with Phosgene and Derivatives

18.6.6.1.2 Method 2: Reaction with Carbon Monoxide

18.6.6.1.2.1 Variation 1: Rhodium(I)-Catalyzed Carbonylation of Thiazolidines

18.6.6.1.3 Method 3: Reaction of Amino Thiols and 1,3-Thiazolidines with Ureas

18.6.6.1.4 Method 4: Reaction with 1,1'-Carbonyldiimidazole

18.6.6.1.2 Synthesis by Other Methods

18.6.6.1.2.1 Method 1: Reaction of Amines with Carbonyl Sulfide

18.6.6.1.2.1.1 Variation 1: Reaction of Halo Amines with Carbonyl Sulfide

18.6.6.1.2.1.2 Variation 2: Reaction of Aminooxiranes with Carbonyl Sulfide

18.6.6.1.2.2 Method 2: Reaction of Amines with \(\alpha\)-(Methoxycarbonyl)sulfenylated Carbonyl Compounds

18.6.6.1.2.2.1 Variation 1: Cyclization of Amino Thiocarbonates and Dithiocarbonates

18.6.6.1.2.3 Method 3: Synthesis from Chloro(oxo)methanesulfenyl Chloride

18.6.6.1.2.4 Method 4: Palladium-Catalyzed Reaction of 2-Vinylthiiranes with Isocyanates

18.6.7 Product Subclass 7: Selenocarbamic Acid and Salts

18.6.7.1 Synthesis of Product Subclass 7

18.6.8 Product Subclass 8: Linear Selenocarbamates

18.6.8.1 Synthesis of Product Subclass 8

18.6.8.1.1 Synthesis from Amines

18.6.8.1.1.1 Method 1: Reaction with Bis(trichloromethyl) Carbonate and Selenols

18.6.8.1.1.2 Method 2: Reaction with Carbon Monoxide and Elemental Selenium

18.6.8.1.2 Synthesis from Alkylcarbamoyl Chlorides

18.6.8.1.2.1 Method 1: Reaction with Dialkyl Diselenides

18.6.8.1.2.2 Method 2: Reaction with Alkyl Halides and Elemental Selenium

18.6.8.1.2.2.1 Variation 1: Reaction of Alkylcarbamoyl Chlorides with Lithium Butaneselenolate

18.6.8.1.3 Synthesis by Other Methods

18.6.8.1.3.1 Method 1: Schmidt Rearrangement of Acyl Chlorides in the Presence of Selenols

18.6.8.1.3.2 Method 2: Reaction of Isocyanates with Lithium Aluminum Hydride Hydroselenide and Alkyl Halides

18.6.8.2 Applications of Product Subclass 8 in Organic Synthesis

18.6.8.2.1 Method 1: Synthesis of Isocyanides from Selenocarbamates

18.6.8.2.2 Method 2: Radical Cyclization of Selenocarbamates to Lactams

18.6.9 Product Subclass 9: Cyclic Selenocarbamates

18.6.9.1 Synthesis of Product Subclass 9

18.6.9.1.1 Method 1: Reaction of Selenocysteine with 1,1'-Carbonyldiimidazole

18.6.10 Product Subclass 10: Linear and Cyclic Tellurocarbamates

18.6.10.1 Synthesis of Product Subclass 10
18.6.10.1.1 Method 1: Reaction of Alkylcarbamoyl Chlorides with Alkylthiium Compounds and Elemental Tellurium 635
18.6.10.1.2 Method 2: Reduction of Bis(N,N-dimethylcarbamoyl) Ditellurides 635
18.6.10.2 Applications of Product Subclass 10 in Organic Synthesis 636
18.6.10.2.1 Method 1: Synthesis of Functionalized Amides 636

18.6.11 Product Subclass 11: Phosphinecarboxylates ... 637
18.6.11.1 Synthesis of Product Subclass 11 .. 637
18.6.11.1.1 Method 1: Reaction of Arylphosphines with Alkyl Chloroformates 637
18.6.11.1.2 Method 2: Reaction of Alkali Metal Salts of Diphenylphosphines with Carbon Dioxide ... 637

18.7 Product Class 7: Polymeric Carbamic Acids and Esters, and Their Sulfur Analogues
S. C. Moratti and Y. C. Charalambides

18.7.1 Product Subclass 1: Polycarbamates (Polyurethanes) 650
18.7.1.1 Synthesis of Product Subclass 1 .. 650
18.7.1.1.1 Method 1: Alcohol Addition to Isocyanates ... 650
18.7.1.1.1.1 Variation 1: From Alcohols and Nitrile Carbonates 651
18.7.1.1.1.2 Variation 2: From Alcohols and 1,3-Bis(4-isocyanatoaryl)-1,3-diazetidine-2,4-diones ... 652
18.7.1.1.3 Variation 3: From Latent Monomers .. 653
18.7.1.1.4 Variation 4: Through the Decomposition of Aroyl Azides 653
18.7.1.1.5 Variation 5: Polymerization of Isocyanato Alcohols 654
18.7.1.1.6 Method 2: From Amines and Carbonate Derivatives 655
18.7.1.1.7 Variation 1: By Addition of Amines to Chloroformates 656
18.7.1.1.8 Variation 2: From Amines and Trichloroacetates 656
18.7.1.1.9 Method 3: From Alcohols and Carbamic Esters 657
18.7.1.1.10 Method 4: Condensation of Alkyl Halides with Cyanates and Diols 658
18.7.1.1.11 Method 5: From Aziridines and Carbon Dioxide 659
18.7.1.1.12 Method 6: From Iminocarbonates and Alcohols 659
18.7.1.1.13 Method 7: From Iminocarbonates and Acids 661

18.7.2 Product Subclass 2: Polythiocarbamates ... 661
18.7.2.1 Synthesis of Product Subclass 2 .. 662
18.7.2.1.1 Method 1: Addition of Thiols to Isocyanates .. 662
18.7.2.1.2 Method 2: From Bis(chlorothioformates) and Diamines 662
Product Class 8: Acyclic and Cyclic Ureas
G. Sartori and R. Maggi

Product Subclass 1: Unfunctionalized Ureas

Synthesis of Product Subclass 1

Method 1: From Phosgene

Method 2: From Ureas and Thioureas

Variation 1: From Cyclic Ureas by N-Alkylation

Variation 2: From N-(ω-Functionalized) Ureas

Variation 3: Transamidation of Ureas

Variation 4: By Reaction with Bifunctional Compounds

Variation 5: Reductive N-Alkylation of Ureas

Variation 6: By Three-Component Reaction with Aldehydes and \(\beta \)-Dicarboxyl Compounds (Biginelli Reaction)

Variation 7: Transformation of Thioureas

Method 3: From Isoureas by Isomerization

Method 4: From Isocyanates

Variation 1: By Reaction with Amines or Imines

Variation 2: By Reaction with Azirines and Aziridines

Variations 3: Miscellaneous Reactions

Method 5: From Carbon Dioxide

Method 6: From Carbon Monoxide

Method 7: From Alkyl Carbonates and Dithiocarbonates

Variation 1: Reaction of Amines with Dimethyl Carbonate, Diethyl Carbonate, and Bis(4-nitrophenyl) Carbonate

Variation 2: Reaction of Amines with Di-\(\text{tert} \)-butyl Dicarbonate

Variation 3: Reaction of Amines with Bis(trichloromethyl) Carbonate (Triphosgene)

Variation 4: Reaction of Amines with Dithiocarbonates

Method 8: From Carbamates or Thio carbamates

Variation 1: By Reaction with Amines

Variation 2: By Reaction with Imines

Variations 3: Miscellaneous Reactions

Method 9: From \(\alpha \)-Aminoarenecarboxylic Acid Derivatives

Methods 10: Miscellaneous Reactions

Product Subclass 2: \(\text{N} \)-Haloureas

Synthesis of Product Subclass 2

Product Subclass 3: \(\text{N} \)-Hydroxyureas

Synthesis of Product Subclass 3

Method 1: By Reaction of Phenyl (Phenoxy carbonyloxy) carbamates with Ammonia

Method 2: From Isocyanates and Hydroxylamine Derivatives
18.8.4	**Product Subclass 4:** N-Sulfanyl-, N-Sulfonyl-, N-Acyl-N'-sulfonyl-, and N,N'-Disulfonylureas	709
18.8.4.1	Synthesis of Product Subclass 4	709
18.8.4.1.1	Method 1: From Carbamates	709
18.8.4.1.2	Method 2: From Isocyanates	710
18.8.4.1.3	Methods 3: Miscellaneous Reactions	712
18.8.5	**Product Subclass 5:** Carbamoyl Azides	713
18.8.5.1	Synthesis of Product Subclass 5	713
18.8.6	**Product Subclass 6:** Carbamoylazo, Carbazone, and Carbodiazone Compounds	714
18.8.6.1	Synthesis of Product Subclass 6	714
18.8.7	**Product Subclass 7:** N-Nitroureas	715
18.8.7.1	Synthesis of Product Subclass 7	715
18.8.8	**Product Subclass 8:** Carbonohydrazides	716
18.8.8.1	Synthesis of Product Subclass 8	716
18.8.8.1.1	Method 1: From Carbamoylazo Compounds	716
18.8.8.1.2	Method 2: From Isocyanates	720
18.8.8.1.3	Methods 3: Miscellaneous Reactions	720
18.8.8.9	**Product Subclass 9:** N-Phosphorylureas	722
18.8.8.9.1	Synthesis of Product Subclass 9	722
18.8.10	**Product Subclass 10:** N-(Alkoxyalkyl)ureas	723
18.8.10.1	Synthesis of Product Subclass 10	723
18.8.11	**Product Subclass 11:** Biurets	723
18.8.11.1	Synthesis of Product Subclass 11	723
18.8.12	**Product Subclass 12:** Triurets	724
18.8.12.1	Synthesis of Product Subclass 12	724
18.8.13	**Product Subclass 13:** N-Acyl-, N,N-Diacyl-, and N,N'-Diacylureas	726
18.8.13.1	Synthesis of Product Subclass 13	726
18.8.13.1.1	Method 1: From Ureas	726
18.8.13.1.1.1	Variation 1: By Acylation with Carboxylic Acid Derivatives	726
18.8.13.1.1.2	Variation 2: Oxidation of Pyrrolidine- and Piperidine-1-carboxamides	728
18.8.13.1.2	Method 2: From Isocyanates	729
18.8.13.1.3	Methods 3: Miscellaneous Reactions	730
18.8.14	**Product Subclass 14:** N-Organooxythiocarbonyl Ureas	732
18.8.14.1	Synthesis of Product Subclass 14	732
18.8.15	**Product Subclass 15:** N-Cyanoureas	733
18.8.15.1	Synthesis of Product Subclass 15	733
18.8.16 Product Subclass 16: N-Carbamimidoylureas .. 734
18.8.16.1 Synthesis of Product Subclass 16 .. 734
18.8.17 Product Subclass 17: N-(Iminomethyl)ureas .. 735
18.8.17.1 Synthesis of Product Subclass 17 .. 735
18.8.18 Product Subclass 18: 1,2,4-Oxadiazolidin-3-ones, 1,2,4-Thiadiazolidin-3-ones, 1,2,4-Triazolidinones, and 1,2,4-Triazolones .. 736
18.8.18.1 Synthesis of Product Subclass 18 .. 736
18.8.19 Product Subclass 19: 1,3,5-Oxadizacin-4-ones, 1,3,5-Thiazidiazin-4-ones, 1,3,5-Triazon-2-ones, and 1,2,4-Triazin-3-ones ... 741
18.8.19.1 Synthesis of Product Subclass 19 .. 741
18.8.20 Product Subclass 20: 1,3,5-Oxadizacin-4,6-diones, 1,3,5-Thiazidiazin-4,6-diones, 1,3,5-Triazon-4,6-diones, 1,2,4-Triazin-3,5-diones, and 1,2,4-Triazin-3,6-diones .. 747
18.8.20.1 Synthesis of Product Subclass 20 .. 747
18.8.21 Product Subclass 21: Tetrazinones ... 751
18.8.21.1 Synthesis of Product Subclass 21 .. 751

18.9 Product Class 9: Polymeric Ureas and Their Phosphorus Analogues
G. Guichard

18.9.1 Product Subclass 1: Polyisocyanates (1-Nylons) .. 760
18.9.1.1 Synthesis of Product Subclass 1 ... 760
18.9.1.1.1 Method 1: By Anionic Polymerization of Monoisocyanates 760
18.9.1.1.1 Variation 1: Living Anionic Polymerization 764
18.9.1.1.2 Method 2: By Living Polymerization Using Organotitanium(IV) Catalysts 765
18.9.1.1.3 Method 3: By Anionic Cyclopolymerization of Diisocyanates and Triisocyanates ... 767
18.9.1.1.3 Variation 1: Through Organotitanium(IV)-Catalyzed Cyclopolymerization of 1,2-Diisocyanates ... 769
18.9.2 Product Subclass 2: Polyisocyanurates ... 770
18.9.2.1 Synthesis of Product Subclass 2 ... 771
18.9.2.1.1 Method 1: Isocyanatoisocyanurates by Partial Trimerization of Polyisocyanates ... 771
18.9.2.1.1 Variation 1: Poly(urethane isocyanurate) Foams from Diisocyanates and Polyols ... 773
18.9.3 Product Subclass 3: Polyurylenes, Polysemicarbazides, and Polybiurets 774
18.9.3.1 Synthesis of Product Subclass 3 ... 774
18.9.3.1.1 Method 1: Polyurylenes: Reaction of Diisocyanates with Hydrazine 774
18.9.3.1.1 Variation 1: Reaction of a Diisocyanate or a Diisothiocyanate with Piperazine-1,4-diamine: Polysemicarbazides and Polythiosemicarbazides ... 774

18.9.3.1.2 Method 2: Polybiurets: Reaction of Diisocyanates with Primary Amines or O-Benzylhydroxylamine ... 775

18.9.3.1.2.1 Variation 1: Reaction of Polyisocyanates with Polyalkylene Polyureas 776

18.9.4 Product Subclass 4: Poly[4(5)-iminoimidazolidine-2,5(4)-diones] and Poly(imidazolidine-2,4,5-triones) .. 777

18.9.4.1 Synthesis of Product Subclass 4 .. 777

18.9.4.1.1 Method 1: Poly(iminoimidazolidinediones) and Poly(imidazolidine-2,4,5-triones) from Diisocyanates and Hydrogen Cyanide ... 777

18.9.4.1.1.1 Variation 1: From Diisocyanates and Bis[(cyanocarbonyl)amino] Derivatives .. 780

18.9.4.1.2 Method 2: Poly(imidazolidine-2,4,5-triones) from Diisocyanates and (Arylenediimino)bis(oxoacetate) Diesters .. 781

18.9.4.1.3 Method 3: From Polycarbodiimides and Oxalyl Chloride 782

18.9.4.1.4 Method 4: From Polyureas and Oxalyl Chloride 783

18.9.5 Product Subclass 5: Polyhydantoins and Poly(iminoimidazolidinones) 783

18.9.5.1 Synthesis of Product Subclass 5 .. 784

18.9.5.1.1 Method 1: From Diisocyanates and Bis(alkyl glycinates) 784

18.9.5.1.1.1 Variation 1: Poly(iminoimidazolidinones) from N,N'-Bis(1-cyanocycloalkyl) Diamines and Diisocyanates .. 786

18.9.5.1.2 Method 2: From Bishydantoins and Formaldehyde 787

18.9.6 Product Subclass 6: Polyhydouracils and Poly(quinazolinediones) 788

18.9.6.1 Synthesis of Product Subclass 6 .. 788

18.9.6.1.1 Method 1: Polyhydouracils by Cyclization of 2-(Methoxycarbonyl)ethyl-Substituted Polyureas ... 788

18.9.6.1.2 Method 2: Poly(quinazolinediones) from Aromatic Diisocyanates and Bisanthranilic Acids ... 789

18.9.7 Product Subclass 7: Urea–Formaldehyde Resins 790

18.9.7.1 Synthesis of Product Subclass 7 .. 791

18.9.7.1.1 Method 1: By Reaction of Urea with Formaldehyde 791

18.9.8 Product Subclass 8: Polyureas and Copolyureas 793

18.9.8.1 Synthesis of Product Subclass 8 .. 794

18.9.8.1.1 Method 1: By Polyaddition of Diamines and Diisocyanates 794

18.9.8.1.1.1 Variation 1: Hyperbranched Polymers from Diaminophenyl Isocyanate Monomers ... 797

18.9.8.1.2 Method 2: By Reaction of Diamines with Carbon Dioxide 798

18.9.8.1.2.1 Variation 1: By Reaction of Diamines with Phosgene 799

18.9.8.1.2.2 Variation 2: By Reaction of Diamines with Urea 800

18.9.8.1.2.3 Variation 3: By Reaction of Diamines with Dicarbonates 801

18.9.8.1.2.4 Variation 4: By Reaction of Diamines with Diurethanes 802
Method 3: By Reaction of Polyisocyanates with Water 802
Method 4: By Cationic Ring-Opening Polymerization of Polycyclic Pseudoureas ... 803
Method 5: Poly(N,N'-diacyureas) by Polyaddition of Diamides to Bis(N-acyl isocyanates) .. 805
Applications of Product Subclass 8 in Organic Synthesis 806
Method 1: Hydrogenation and Hydrogen-Transfer Reduction 806
Method 2: Polyurea-Encapsulated Palladium as a Catalyst 807
Product Subclass 9: Short-Chain Oligomers 808
Synthesis of Product Subclass 9 ... 808
Method 1: N,N'-Linked Oligoureas: Sequential Reaction of 1-Substituted 2-Phthalimidoethyl Isocyanates 808
Variation 1: Sequential Reaction of Activated Carbamates Derived from Monoprotected Diamines 810
Variation 2: Sequential Reaction of N-(2-Nitrobenzenesulfonyl)-imidazolidinone .. 811
Method 2: Azatides: Sequential Reaction of Activated N-Protected N-Alkylhydrazines .. 812
Product Subclass 10: Organophosphorus Polymers 814
Synthesis of Product Subclass 10 ... 814
Method 1: Condensation Reaction between Diisocyanates and Substituted Phosphines and Phosphate Oxides 814
Product Class 10: Thiocarbonic Acids and Derivatives S. Sato and N. Furukawa
Product Class 10: Thiocarbonic Acids and Derivatives 821
Product Subclass 1: Thiocarbonyl Dihalides 821
Synthesis of Product Subclass 1 ... 821
Method 1: Synthesis of Thiocarbonyl Difluoride 821
Method 2: Synthesis of Thiophosgene 822
Method 3: Synthesis of Thiocarbonyl Dibromide 823
Method 4: Synthesis of Thiocarbonyl Diiodide 824
Method 5: Synthesis of Thiocarbonyl Chloride Fluoride 824
Method 6: Synthesis of Thiocarbonyl Bromide Fluoride 825
Applications of Product Subclass 1 in Organic Synthesis 825
Product Subclass 2: Dihalosulfines (Thiocarbonyl Dihalide S-Oxides) 826
Synthesis of Product Subclass 2 ... 826
Method 1: Synthesis of Difluorosulfine 826
Method 2: Synthesis of Dichlorosulfine 826
Method 3: Synthesis of Dibromosulfine 827
Method 4: Synthesis of Chlorofluorosulfine 827
18.10.3 Product Subclass 3: Halothioformate O-Esters (Carbonohalidothioate O-Esters) ... 828
18.10.3.1 Synthesis of Product Subclass 3 .. 829
18.10.3.1.1 Method 1: From Thiocarbonyl Dihalides and Alcohols and Phenols 829
18.10.3.1.2 Method 2: From Bis(alkoxythiocarbonyl) Disulfide and Sulfuryl Chloride or Chlorine 832
18.10.3.1.3 Methods 3: Miscellaneous Methods 833
18.10.3.2 Applications of Product Subclass 3 in Organic Synthesis 834
18.10.4 Product Subclass 4: Halodithioformates and Halothioselenoformate Se-Esters .. 834
18.10.4.1 Synthesis of Product Subclass 4 ... 835
18.10.4.1.1 Method 1: From Alkali Metal Chlorodithioformates and Alkyl Iodides 835
18.10.4.1.2 Method 2: Halogen Substitution of Thiocarbonyl Dihalides with Thiolates and Selenolates 836
18.10.4.1.3 Method 3: From Carbon Disulfide 838
18.10.4.1.4 Method 4: By Halogen Exchange 839
18.10.5 Product Subclass 5: Thiocarbonate O,O-Diesters .. 839
18.10.5.1 Synthesis of Product Subclass 5 840
18.10.5.1.1 Method 1: From Thiophosgene and Alcohols and Phenols 840
18.10.5.1.1.1 Variation 1: Synthesis of Thiocarbonate O,O-Esters of Sugars 842
18.10.5.1.1.2 Variation 2: By Macrocyclization 844
18.10.5.1.2 Method 2: From Carbon Disulfide 845
18.10.5.1.3 Method 3: From Chlorothioformate O-Esters 846
18.10.5.1.4 Method 4: From 1,1'-Thiocarbonylbisdiazoles 849
18.10.5.1.4.1 Variation 1: Synthesis of Thiocarbonate O,O-Esters of Sugars and Nucleosides 852
18.10.5.1.5 Methods 5: Miscellaneous Methods 853
18.10.5.2 Applications of Product Subclass 5 in Organic Synthesis 854
18.10.5.2.1 Method 1: Intramolecular Elimination 855
18.10.5.2.2 Method 2: Application to Selected Organic Syntheses 856
18.10.6 Product Subclass 6: Dithiocarbonate O,S-Esters .. 858
18.10.6.1 Synthesis of Product Subclass 6 859
18.10.6.1.1 Method 1: From Carbon Disulfide, Alcohols, and Alkyl Halides 859
18.10.6.1.1.1 Variation 1: From Carbon Disulfide and Complex Hydroxy Compounds 861
18.10.6.1.1.2 Variation 2: Insertion Reactions of Carbon Disulfide 864
18.10.6.1.2 Method 2: From Sodium or Potassium O-Alkyl Dithiocarbonates, Alkyl Halides (or Sulfonates), and Arenomediazonium Salts 865
18.10.6.1.2.2 Variation 2: Synthesis of Arenethiols By Diazotization of Aromatic Amines 867
18.10.6.1.3 Method 3: From Thiophosgene, Chlorothioformate O-Esters, Chlorodithioformates, or 1,1'-Thiocarbonyldimidazole 869
18.10.6.1.4 Method 4: From Organometallic Reagents and Sodium or Potassium O-Alkyl Dithiocarbonates 871
Method 5: Photochemical and Radical-Initiated Addition of Dithiocarbonates O,S-Esters to Terminal Alkenes

Applications of Product Subclass 6 in Organic Synthesis

Product Subclass 7: Trithiocarbonates

Synthesis of Product Subclass 7

Method 1: From Carbon Disulfide and Hydrogen Sulfide or Thiol}s with Alkyl Halides

Variation 1: Cyclization of Oxiranes, Thiiranes, and Acetylenic Compounds with Carbon Disulfide

Variation 2: Poly-1,3-dithiole-2-thione

Method 2: From Salts of Trithiocarbonic Acid and Monoesters of Trithiocarbonic Acid

Method 3: From Thiophosgene or 1,1'-Thiocarbonyldiimidazole

Method 4: From Chlorodithioformates

Methods 5: Miscellaneous Methods

Variation 1: Thiocarbonyl as Functional Group

Applications of Product Subclass 7 in Organic Synthesis

Method 1: From 2-Thioxo-1,3-dithiole-4,5-dithiolate and Its Zinc Complex

Product Subclass 8: Thioureas

Synthesis of Product Subclass 8

Method 1: From Urea

Method 2: From Thiophosgene or Carbon Disulfide

Method 3: From Isothiocyanates

Method 4: From Thiocarbamoyl Chloride

Methods 5: Miscellaneous Methods

Product Subclass 9: Thiosemicarbazides

Synthesis of Product Subclass 9

Method 1: Using Isothiocyanates and Hydrazine Derivatives

Variation 1: [3 + 2]-Cycloaddition Reactions

Variation 2: Intramolecular Cyclization Reactions

Method 2: From Compounds Containing the Thiocarbamoyl Moiety

Methods 3: Miscellaneous Methods

Applications of Product Subclass 9 in Organic Synthesis

Method 1: Cyclization of 1-Acylthiosemicarbazides

Product Subclass 10: Thiocarbonohydrazides

Synthesis of Product Subclass 10

Method 1: From Carbon Disulfide

Method 2: From Thiophosgene
18.10.11 Product Subclass 11: Thiocarbamate O-Esters

18.10.11.1 Synthesis of Product Subclass 11

18.10.11.1.1 Method 1: From Isothiocyanates

18.10.11.1.2 Method 2: From Chlorothioformate O-Esters

18.10.11.1.3 Method 3: From N,N-Disubstituted Thiocarbamoyl Chlorides

18.10.11.1.4 Method 4: From 1,1’-Thiocarbonyldiimidazole and Related Compounds

18.10.11.1.5 Method 5: From Amino Alcohols and Carbon Disulfide and Related Methods

18.10.12 Product Subclass 12: Dithiocarbamic Acid Esters

18.10.12.1 Synthesis of Product Subclass 12

18.10.12.1.1 Method 1: From Sodium Dithiocarbamates

18.10.12.1.2 Method 2: From Carbon Disulfide

18.10.12.1.3 Method 3: From Isothiocyanates

18.10.12.1.4 Method 4: From Thiocarbamoyl Chlorides

18.10.12.1.5 Method 5: From Thiuram Disulfides

18.10.13 Product Subclass 13: Thiocarbamoyl Chlorides

18.10.13.1 Synthesis of Product Subclass 13

18.10.13.1.1 Method 1: From Thiophosgene and Primary or Secondary Amines

18.10.13.1.2 Method 2: From Thiuram Disulfides

18.10.13.1.3 Method 3: From Thioformamides

18.10.14 Product Subclass 14: Phosphinecarbothioamides

18.10.14.1 Synthesis of Product Subclass 14

18.10.14.1.1 Method 1: From Isothiocyanates

18.10.14.1.2 Method 2: From Halothioamides

18.10.14.1.3 Method 3: Thiophosphorylidithioformate

18.10.14.1.4 Methods 4: Miscellaneous Methods

18.11 Product Class 11: Seleno- and Tellurocarbonic Acids and Derivatives

J. Schmidt and L. A. Silks

18.11.1 Product Subclass 1: Selenocarbonyl Dihalides

18.11.1.1 Synthesis of Product Subclass 1

18.11.1.1.1 Method 1: Selenocarbonyl Difluoride from Bis(trifluoromethyl)selenyl)mercury(II)

18.11.1.1.2 Method 2: Selenocarbonyl Difluoride from Trimethyl[(trifluoromethyl)selenyl]stannane

18.11.1.1.3 Method 3: Selenocarbonyl Difluoride by Controlled Decomposition of Tris[(trifluoromethyl)selenyl]borane

18.11.1.1.4 Method 4: Selenocarbonyl Dichloride by Vacuum Pyrolysis of 2,2,4,4-Tetrachloro-1,3-diselenetane
18.11.2 **Product Subclass 2: Selenocarbonates** .. 973

18.11.2.1 Synthesis of Product Subclass 2 .. 973

18.11.2.1.1 Method 1: From Viehe’s Salt and Sodium Hydrogen Selenide 973

18.11.2.1.2 Method 2: Selenocarbonyls from the Reaction of Acetal Derivatives with Bis(dimethylaluminum) Selenide .. 974

18.11.2.1.3 Method 3: Selenocarbonates from Carbon Diselenide 975

18.11.2.1.4 Method 4: Selenocarbonates from Substitution Reactions with Sodium Hydrogen Selenide and Hydrogen Selenide 975

18.11.3 **Product Subclass 3: Selenocarbamates** .. 976

18.11.3.1 Synthesis of Product Subclass 3 .. 977

18.11.3.1.1 Method 1: Synthesis of Cyclic Selenocarbamates from Metalation Reactions ... 977

18.11.3.1.2 Method 2: From Addition Reactions to Isoselenocyanates 979

18.11.3.1.3 Method 3: By Addition of Alkoxides to Isoselenocyanates 979

18.11.3.1.4 Method 4: Substitution Reactions with Sodium Hydrogen Selenide or Hydrogen Selenide ... 980

18.11.3.1.5 Method 5: Addition of Carbon Diselenide to 1,2-Amino Alcohols .. 981

18.11.3.1.6 Method 6: From Lithium Aluminum Hydride Hydrodiselenide and Viehe’s Salt ... 982

18.11.3.1.7 Method 7: Te-Alkyl Selenotellurocarbamates from Organoselenocyanates ... 983

18.11.3.2 Applications of Product Subclass 3 in Organic Synthesis 984

18.11.3.2.1 Method 1: As an Analytical Tool for the Discrimination of Remotely Disposed Chiral Centers .. 984

18.11.3.2.2 Method 2: Stereoselective C—C Bond Formation via Chiral Selone Promoted Aldol Reactions .. 986

18.11.4 **Product Subclass 4: Selenosemicarbazides and Selenosemicarbazones** 986

18.11.4.1 Synthesis of Product Subclass 4 .. 986

18.11.4.1.1 Method 1: Synthesis from Isoselenocyanates and Hydrazine 986

18.11.5 **Product Subclass 5: Selenoureas** .. 987

18.11.5.1 Synthesis of Product Subclass 5 .. 988

18.11.5.1.1 Method 1: From Metalation Reactions 988

18.11.5.1.2 Method 2: From Carbon Diselenide ... 989

18.11.5.1.3 Method 3: From Substitution Reactions with Sodium Hydrogen Selenide or Hydrogen Selenide ... 990

18.11.5.1.4 Method 4: From Addition Reactions to Isoselenocyanates 991

18.11.5.1.5 Method 5: From Carbene Reactions with Selenium 991

18.11.5.1.6 Method 6: From Addition of Potassium Selenocyanate to Primary Ammonium Salts or Amines ... 992

18.11.5.1.7 Method 7: From Cyanamide and Phosphorus Pentaselenide 993

18.11.5.1.8 Method 8: From the Woollins Reagent 993
18.11.6 Product Subclass 6: Phosphorus-Substituted Selenocarbonyl Derivatives 994
18.11.6.1 Synthesis of Product Subclass 6 ... 994
18.11.6.1.1 Method 1: From Addition Reactions to Carbon Diselenide 994
18.11.7 Product Subclass 7: Tellurocarbonyl Dihalides 994
18.11.7.1 Synthesis of Product Subclass 7 .. 995
18.11.7.1.1 Method 1: Tellurocarbonyl Dihalides from
Trimethyl[(trifluoromethyl)tellanyl]stannane 995
18.11.8 Product Subclass 8: Telluroreas .. 995
18.11.8.1 Synthesis of Product Subclass 8 .. 995
18.11.8.1.1 Method 1: From Carbene Insertion Reactions with Tellurium 995
18.11.8.1.2 Method 2: Starting from Stable Carbene 996
18.11.9 Product Subclass 9: Ditellurocarbonyl and Ditellurocarbamic Acids and
Their Metal Complexes .. 997
18.11.9.1 Synthesis of Product Subclass 9 .. 997
18.11.9.1.1 Method 1: By the Uchida Method 997
18.12 Product Class 12: Imidic Acids and Derivatives, Isoureas and Derivatives,
Sulfur and Selenium Equivalents, and Analogously Substituted
Methylenephosphines
T. L. Gilchrist
18.12 Product Class 12: Imidic Acids and Derivatives, Isoureas and Derivatives,
Sulfur and Selenium Equivalents, and Analogously Substituted
Methylenephosphines .. 1001
18.12.1 Product Subclass 1: Carbonimidic Dihalides 1001
18.12.1.1 Synthesis of Product Subclass 1 .. 1002
18.12.1.1.1 Method 1: From Glyoxyllic Acid Derivatives and Halogens 1002
18.12.1.1.2 Method 2: By Halogenation of Formanilides and Isocyanates ... 1002
18.12.1.1.3 Method 3: By Halogenation of Isothiocyanates and Related Compounds 1003
18.12.1.1.3.1 Variation 1: By Halogenation of Isothiocyanates 1003
18.12.1.1.3.2 Variation 2: From Dithiocarbamates and Carbonimidodithioates 1004
18.12.1.1.3.3 Variation 3: Dihaloiminium Salts from Dithiocarbamates and Dithiurams 1005
18.12.1.1.4 Method 4: By Chlorination of N-Methylamides 1006
18.12.1.1.5 Method 5: By Reactions Involving Dichlorocarbene 1007
18.12.1.1.6 Method 6: From Tetrahalomethanes and Aromatic Amines 1008
18.12.1.1.7 Method 7: From Trihalomethylamines by Elimination 1008
18.12.1.1.8 Method 8: By Addition of Halogens to Isocyanides 1009
18.12.1.1.9 Method 9: By Addition to Cyanogen Chloride 1010
18.12.1.1.10 Method 10: From Other Carbonimidic Dihalides by Exchange of
a Halogen Atom Bonded to Carbon .. 1011
18.12.1.1.11 Method 11: From Other Carbonimidic Dihalides by Exchange or
Modification of the Nitrogen Substituent 1012
Applications of Product Subclass 1 in Organic Synthesis

Product Subclass 2: Carbonohalidimidic Acid Derivatives

Synthesis of Product Subclass 2

Method 1: From Carbonimidic Dihalides and Oxygen Nucleophiles
Method 2: By Chlorination of Carbamates
Method 3: By Addition to Aryl Cyanates

Product Subclass 3: Carbonohalidimidothioates

Synthesis of Product Subclass 3

Method 1: From Carbonimidic Dichlorides and Sulfur Nucleophiles
Method 2: By Chlorination of Isothiocyanates and Related Compounds
Variation 1: By the Addition of Chlorine to Isothiocyanates
Variation 2: By Chlorination of Thio-carbamates and Dithiocarbamates
Variation 3: From Carbonimidodithioates
Method 3: By Addition of Sulfenyl Chlorides to Isocyanides
Method 4: By Electrophilic Additions to Nitriles
Variation 1: From Thiocyanates and Electrophiles
Variation 2: From Sulfonyl Cyanides and Electrophiles

Applications of Product Subclass 3 in Organic Synthesis

Product Subclass 4: Carbamimidic Halides

Synthesis of Product Subclass 4

Method 1: From Carbonimidic Dihalides and Amines
Method 2: From Dichloroiminium Salts and Nitrogen Nucleophiles
Method 3: By Chlorination of Ureas and Thioureas
Method 4: By Addition of Acid Chlorides to Carbodiimides
Method 5: By Electrophilic Addition to Cyanamides
Method 6: From Isocyanides and 1-Chlorobenzotriazole

Product Subclass 5: Carbonimidic Halides Bearing a Phosphorus Substituent

Synthesis of Product Subclass 5

Method 1: From (Dialkoxyphosphoryl)-α-haloacetaldehydes or from [Bis(dialkylamino)phosphoryl]-α-haloacetaldehydes by Diazo Coupling or Nitrosation
Variation 1: Arylhydrazones by Diazo Coupling
Variation 2: Oximes by Nitrosation
Method 2: From Dihalo(dichlorophosphoryl)methyl Isocyanates and Alcohols

Product Subclass 6: Carbonimidic Diesters

Synthesis of Product Subclass 6

Method 1: From Carbonimidic Dihalides and Oxygen Nucleophiles
Method 2: From Tetraethyl Orthocarbonate and Related Compounds with Amino Compounds
Method 3: By the O-Alkylation of Carbamates
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.12.6.1.4</td>
<td>Method 4: By the Addition of Alcohols to Cyanogen Halides and Cyanates</td>
<td>1030</td>
</tr>
<tr>
<td>18.12.6.1.5</td>
<td>Method 5: From Other Carbonimidate Esters by Substitution on Nitrogen</td>
<td>1031</td>
</tr>
<tr>
<td>18.12.7</td>
<td>Product Subclass 7: Carbonimidothioate Diesters</td>
<td>1031</td>
</tr>
<tr>
<td>18.12.7.1</td>
<td>Synthesis of Product Subclass 7</td>
<td>1032</td>
</tr>
<tr>
<td>18.12.7.1.1</td>
<td>Method 1: From Carbonimidic Halides by Displacement of Halide Ion</td>
<td>1032</td>
</tr>
<tr>
<td>18.12.7.1.2</td>
<td>Method 2: By Nucleophilic Additions to Cyanates or Thiocyanates</td>
<td>1032</td>
</tr>
<tr>
<td>18.12.7.1.3</td>
<td>Method 3: By the S-Alkylation of O-Alkyl Thiocarbamates and Related Compounds</td>
<td>1033</td>
</tr>
<tr>
<td>18.12.7.1.3.1</td>
<td>Variation 1: By the S-Alkylation of O-Alkyl Thiocarbamates</td>
<td>1033</td>
</tr>
<tr>
<td>18.12.7.1.3.2</td>
<td>Variation 2: From Isothiocyanates, Alcohols, and Alkylating Agents</td>
<td>1034</td>
</tr>
<tr>
<td>18.12.7.1.4</td>
<td>Method 4: From Other Carbonimidothioates by Substitution on Nitrogen</td>
<td>1035</td>
</tr>
<tr>
<td>18.12.8</td>
<td>Product Subclass 8: Carbonimidoselenoic Diesters</td>
<td>1036</td>
</tr>
<tr>
<td>18.12.8.1</td>
<td>Synthesis of Product Subclass 8</td>
<td>1036</td>
</tr>
<tr>
<td>18.12.9</td>
<td>Product Subclass 9: Carbamimidic Esters (Isoureas)</td>
<td>1037</td>
</tr>
<tr>
<td>18.12.9.1</td>
<td>Synthesis of Product Subclass 9</td>
<td>1037</td>
</tr>
<tr>
<td>18.12.9.1.1</td>
<td>Method 1: From Carbamimidic Chlorides and Oxygen Nucleophiles</td>
<td>1037</td>
</tr>
<tr>
<td>18.12.9.1.2</td>
<td>Method 2: From Carbamimidic Diesters and Amines</td>
<td>1038</td>
</tr>
<tr>
<td>18.12.9.1.3</td>
<td>Method 3: By Addition of Alcohols to Carbodiimides</td>
<td>1039</td>
</tr>
<tr>
<td>18.12.9.1.4</td>
<td>Method 4: By Addition of Alcohols to Cyanamides</td>
<td>1039</td>
</tr>
<tr>
<td>18.12.9.1.5</td>
<td>Method 5: By Addition of Amines to Cyanates</td>
<td>1040</td>
</tr>
<tr>
<td>18.12.9.1.6</td>
<td>Method 6: By the O-Alkylation of Ureas</td>
<td>1040</td>
</tr>
<tr>
<td>18.12.9.1.7</td>
<td>Method 7: From Other Isoureas by Substitution on Nitrogen</td>
<td>1041</td>
</tr>
<tr>
<td>18.12.9.2</td>
<td>Applications of Product Subclass 9 in Organic Synthesis</td>
<td>1041</td>
</tr>
<tr>
<td>18.12.10</td>
<td>Product Subclass 10: Imides with an Oxygen and a Phosphorus Substituent</td>
<td>1041</td>
</tr>
<tr>
<td>18.12.10.1</td>
<td>Synthesis of Product Subclass 10</td>
<td>1041</td>
</tr>
<tr>
<td>18.12.10.1.1</td>
<td>Method 1: By the Displacement of Halides from Imidoyl Halides by Oxygen Nucleophiles</td>
<td>1041</td>
</tr>
<tr>
<td>18.12.10.1.2</td>
<td>Method 2: From (Trimethylsiloxy)phosphorus(III) Compounds and Isocyanates</td>
<td>1042</td>
</tr>
<tr>
<td>18.12.11</td>
<td>Product Subclass 11: Carbonimidodithioic Diesters</td>
<td>1042</td>
</tr>
<tr>
<td>18.12.11.1</td>
<td>Synthesis of Product Subclass 11</td>
<td>1042</td>
</tr>
<tr>
<td>18.12.11.1.1</td>
<td>Method 1: From Carbonimidic Halides and Sulfur Nucleophiles</td>
<td>1043</td>
</tr>
<tr>
<td>18.12.11.1.2</td>
<td>Method 2: By Addition of Thiols to Thiocyanates</td>
<td>1044</td>
</tr>
<tr>
<td>18.12.11.1.3</td>
<td>Method 3: By the Alkylation of Dithiocarbamates</td>
<td>1044</td>
</tr>
<tr>
<td>18.12.11.1.4</td>
<td>Method 4: From Other Carbonimidodithioates by Substitution on Nitrogen</td>
<td>1046</td>
</tr>
<tr>
<td>18.12.11.1.5</td>
<td>Method 5: λ^6-Sulfur Derivatives by S-Oxidation</td>
<td>1046</td>
</tr>
</tbody>
</table>
18.12.12 Product Subclass 12: Carbonimidodiselenoic Diesters 1047
18.12.12.1 Synthesis of Product Subclass 12 .. 1047
18.12.12.1.1 Method 1: 1,3-Thiaselenol-2-imines from 1,3-Thiaselenole-2-thiones and Azides .. 1047
18.12.12.1.2 Method 2: From Alkynethiolates or Alkyneselenolates 1047
18.12.13 Product Subclass 13: Carbamimidothioic Esters (Isothioureas) 1048
18.12.13.1 Synthesis of Product Subclass 13 .. 1048
18.12.13.1.1 Method 1: From Carbonimidic Halides by Nucleophilic Displacement of Halide Ion .. 1048
18.12.13.1.2 Method 2: From Carbonimidodithioate Diesters and Nitrogen Nucleophiles .. 1049
18.12.13.1.3 Method 3: By Addition of Thiols to Carbodiimides 1050
18.12.13.1.4 Method 4: By the S-Alkylation of Thioureas ... 1051
18.12.13.1.5 Method 5: By the Cycloaddition of Arenesulfonyl Isocyanates to Dithiocarbamates .. 1052
18.12.13.1.6 Method 6: From Other Isothioureas by N-Acylation 1052
18.12.14 Product Subclass 14: Imides with a Sulfur and a Phosphorus Substituent 1053
18.12.14.1 Synthesis of Product Subclass 14 .. 1053
18.12.14.1.1 Method 1: From Carbonimidic Halides by Nucleophilic Displacement of a Halide Ion .. 1053
18.12.14.1.2 Method 2: By Addition of Phosphorus Nucleophiles to Isothiocyanates and Related Procedures 1054
18.12.15 Product Subclass 15: Carbonimidodiselenoic Diesters 1055
18.12.15.1 Synthesis of Product Subclass 15 .. 1055
18.12.16 Product Subclass 16: Carbamimidodiselenoic Esters (Isoselenoureas) 1056
18.12.16.1 Synthesis of Product Subclass 16 .. 1056
18.12.16.1.1 Method 1: Se-Alkylation of Selenoureas .. 1056
18.12.17 Product Subclass 17: (Dihalomethylene)phosphines (Dihalophosphaalkenes) ... 1057
18.12.17.1 Synthesis of Product Subclass 17 .. 1058
18.12.17.1.1 Method 1: From Di- and Trihalomethylphosphines by Elimination 1058
18.12.17.1.1.1 Variation 1: From Dichlorophosphines and Trihalomethanes 1059
18.12.17.1.1.2 Variation 2: From Dichlorophosphines and Tetrahalomethanes 1060
18.12.17.1.1.3 Variation 3: From Monosubstituted Phosphines and Tetrachloromethane 1060
18.12.17.1.2 Method 2: From Diaryldiphosphines and Tetrahalomethanes 1061
18.12.17.2 Applications of Product Subclass 17 in Organic Synthesis 1061
18.12.18 Product Subclass 18: [Alkoxy(halo)methylene]phosphines [Alkoxy(halo)phosphaalkenes] ... 1061
18.12.18.1 Synthesis of Product Subclass 18 .. 1061
18.12.19.1 Synthesis of Product Subclass 19 .. 1062

Science of Synthesis Original Edition Volume 18
© Georg Thieme Verlag KG
18.12.20 Product Subclass 20: [Dialkylamino(halo)methylene]phosphines
[Dialkylamino(halo)phosphaalkenes] ... 1062
18.12.20.1 Synthesis of Product Subclass 20 .. 1063
18.12.21 Product Subclass 21: (Halomethylene)phosphines
[(Halo)phosphaalkenes] Bearing a Phosphorus Substituent 1063
18.12.21.1 Synthesis of Product Subclass 21 .. 1063
18.12.22 Product Subclass 22: Dioxymethylenephosphines
(Dialkoxyphosphaalkenes) .. 1064
18.12.22.1 Synthesis of Product Subclass 22 .. 1064
[Alkoxy(amino)phosphaalkenes] ... 1065
18.12.23.1 Synthesis of Product Subclass 23 .. 1065
18.12.24 Product Subclass 24: Methylene phosphines (Phosphaalkenes) with
an Oxygen and a Phosphorus Substituent 1065
18.12.24.1 Synthesis of Product Subclass 24 .. 1065
18.12.25 Product Subclass 25: Disulfanyl methylenephosphines
(Disulfanylphosphaalkenes) ... 1066
18.12.25.1 Synthesis of Product Subclass 25 .. 1066

18.13 Product Class 13: Guanidine Derivatives
R. G. S. Berlinck, M. H. Kossuga, and A. M. Nascimento

18.13 Product Class 13: Guanidine Derivatives ... 1077
18.13.1 Product Subclass 1: Substituted Guanidines 1077
18.13.1.1 Synthesis of Product Subclass 1 .. 1078
18.13.1.1.1 Method 1: Reaction of Amines with Cyanamides 1078
18.13.1.1.1.1 Variation 1: Reaction of Amines with Cyanogen Bromide 1078
18.13.1.1.2 Method 2: Reaction of Amines with Substituted Thioureas 1083
18.13.1.1.2.1 Variation 1: Reaction of Amines with Acylthioureas 1087
18.13.1.1.2.2 Variation 2: Solid-Phase Reaction of Amines with Thioureas 1089
18.13.1.1.3 Method 3: Reaction of Amines with 2-Chloro-4,5-dihydro-
1H-imidazol-3-ium Chlorides ... 1092
18.13.1.1.4 Method 4: Reaction of Amines with Chloroformimidamides 1093
18.13.1.1.5 Method 5: Reaction of Primary Amines with O-Methylisoureas .. 1094
18.13.1.1.6 Method 6: Reaction of Amines with 2-Methylisothioureas 1095
18.13.1.1.6.1 Variation 1: Solid-Phase Synthesis of Amines with Methylisothioureas 1097
18.13.1.1.7 Method 7: Reaction of Primary Amines with Alkylamino(imino)-methanesulfonic Acids ... 1099
18.13.1.1.8 Method 8: Reaction of Primary Amines with (Trifluoromethylsulfonyl)guanidines ... 1100
Method 9: Reaction of Primary Amines with 1H-Pyrazole-1-carboximidamides .. 1101

Variation 1: Reaction of Amines with Di-1H-benzotriazol-1-ylmethanimines and with Di-1H-imidazol-1-ylmethanimine 1104

Method 10: Reaction of Guanidines with Alkyl and Aryl Halides 1105

Method 11: Reaction of Guanidines with Alcohols or Activated Alcohols 1106

Method 12: Addition of Guanidine to Aldehydes, Ketones, and Esters To Give Cyclic Guanidinium Salts 1107

Method 13: Addition of 2-Methylisoureas to Aldehydes and Ketones 1109

Method 14: Addition of Guanidine to α,β-Unsaturated Aldehydes, Ketones, and Esters ... 1110

Product Class 14: Phosphorus Analogues of Guanidine
T. L. Gilchrist

Method 1: Substitution of Hydrogen on Imines .. 1117

Method 2: Displacement of a Halogen from Phosphorus-Substituted Imidoyl Halides by Nitrogen .. 1117

Method 3: Displacement of Chlorine from a Chloroformamidinium Salt by Phosphorus ... 1118

Method 4: Addition of Phosphorus Compounds to Carbodiimides 1119

Method 5: Addition of Phosphorus Compounds to Bis(dialkylamino)difluoromethanes ... 1120

Method 6: Addition of Phosphorus Compounds to Tetramethylisouronium and Tetramethylisothiouronium Salts 1121

Method 7: Exchange of Substituents on Phosphorus 1122

Product Subclass 2: Imines with Two Phosphorus Substituents 1123

Method 1: Elimination of Cyanide from Dicyanophosphines 1123

Method 2: Addition of Phosphines to Bis(dialkylamino)difluoromethanes .. 1124

Method 3: Addition of Phosphines to Tetramethylisouronium and Tetramethylisothiouronium Salts 1124

Method 4: Addition of Phosphines to Bis(dialkylamino)carbenes 1125

Method 5: Exchange of Substituents on Phosphorus 1126
Product Subclass 4: Alkylidenephosphines with One Nitrogen and One Phosphorus Substituent ... 1127

18.14.4.1 Synthesis of Product Subclass 4 1127
18.14.4.1.1 Method 1: Substitution of Carbonimidic Dichlorides Using Bis(trimethylsilyl)phosphines 1127
18.14.4.1.2 Method 2: Addition Reactions of Alkylidyne phosphines ... 1128
18.14.4.1.3 Method 3: Rearrangement Reactions 1129

Product Subclass 5: Alkylidenephosphines with Two Phosphorus Substituents ... 1130

18.14.5.1 Synthesis of Product Subclass 5 1130

Product Class 15: Tetraheterosubstituted Methanes with a Carbon—Halogen Bond
A. Y. Il’chenko

18.15

Product Class 15: Tetraheterosubstituted Methanes with a Carbon—Halogen Bond ... 1135

18.15.1 Product Subclass 1: Tetrahalomethanes ... 1135
18.15.1.1 Synthesis of Product Subclass 1 ... 1136
18.15.1.1.1 Method 1: Carbon Tetrafluoride ... 1136
18.15.1.1.2 Method 2: Chlorotrifluoromethane, Bromotrifluoromethane, and Trifluoroiodomethane ... 1137
18.15.1.1.3 Method 3: Tetrahalomethanes Containing Zero to Two Fluorides ... 1138
18.15.1.2 Applications of Product Subclass 1 in Organic Synthesis ... 1140
18.15.1.2.1 Method 1: (Trifluoromethyl)metal Reagents ... 1140
18.15.1.2.2 Method 2: Addition to Alkenes and Alkynes ... 1141
18.15.1.2.3 Method 3: Trifluoromethylation of Arenes and Hetarenes ... 1142
18.15.1.2.4 Method 4: Synthesis of Trimethyl(trifluoromethyl)silane (Ruppert’s Reagent) ... 1143

Product Subclass 2: Compounds with Carbon—Halogen and Carbon—Oxygen Bonds ... 1144

18.15.2.1 Synthesis of Product Subclass 2 ... 1145
18.15.2.1.1 Method 1: Trichloromethoxy Derivatives ... 1145
18.15.2.1.2 Method 2: (Trifluoromethoxy)benzenes from the Corresponding (Trichloromethoxy)benzenes ... 1145
18.15.2.1.3 Method 3: Trifluoromethoxy Derivatives from the Corresponding Alcohols ... 1146
18.15.2.1.4 Method 4: Trifluoromethyl Hypofluorite, Trifluoromethyl Hypochlorite, and Difluoromethylene Dihypofluorite ... 1147
18.15.2.1.5 Method 5: Trifluoromethyl Peroxides ... 1148
18.15.2.2 Applications of Product Subclass 2 in Organic Synthesis ... 1148
18.15.2.2.1 Method 1: Addition of Trifluoromethyl Hypofluorite or Hypochlorite or Chloroperoxytrifluoromethane to Alkenes and Alkynes ... 1148
Method 2: Fluorination by Trifluoromethyl Hypofluorite and Hypochlorite .. 1150

Product Subclass 3: Compounds with Carbon—Halogen and Carbon—Sulfur Bonds .. 1152

Synthesis of Product Subclass 3 .. 1152

Method 1: Trifluoromethanethiol from Bis(trifluoromethylsulfanyl)-mercury(II) and Hydrogen Chloride or Bis(trifluoromethyl) Disulfide and Hydrogen Sulfide .. 1152

Method 2: Trifluoromethyl Sulfides from the Corresponding Trichloromethyl Sulfides and Antimony(III) Fluoride 1153

Method 3: Trichloromethyl Sulfides by Chlorination of the Corresponding Methyl Sulfides .. 1154

Method 4: Phenyl Trihalomethyl Sulfides by Trihalomethylation of Benzenethiols or Benzenethiolates 1155

Method 5: Aryl or Methyl Trifluoromethyl Sulfides by Cross-Coupling Reactions between iodoarenes or iodomethane and (Trifluoromethyl)sulfanylmetal Reagents .. 1155

Method 6: Bis-, Tris-, and Tetrakis(trifluoromethylsulfanyl)methanes and Halotris(trifluoromethylsulfanyl)methanes 1156

Method 7: Trifluoro- and Trichloromethanesulfenyl Halides .. 1157

Method 8: Mono- and Bis(trifluoromethylsulfanyl)amines from Trifluromethanesulfenyl Chloride and Ammonia 1159

Method 9: Bis(trifluoromethyl) Sulfide, Disulfide, and Trisulfide .. 1159

Method 10: (Trifluoromethyl)sulfur Trifluoride, Bis(trifluoromethyl)sulfur Difluoride, and Difluorobis(trifluoro-λ₄-sulfanyl)methane .. 1160

Method 11: Trifluromethanesulfenyl Chloride and Chloride and Difluormethanedisulfenyl Fluoride .. 1161

Method 12: Trifluromethyl Sulfoxides .. 1162

Method 13: (Trifluoromethyl)sulfur Pentfluoride and (Trifluoromethyl)sulfur Chloride Tetrafluoride .. 1163

Method 14: Trifluromethanesulfinic Acid, Metal Trifluromethanesulfonates, and Difluromethanesulfinic Acid 1164

Method 15: Trifluromethanesulfonyl Fluoride from Alkanesulfonic Acid Halides or Esters .. 1165

Method 16: Difluorohalomethanesulfonyl Fluorides by Photolytic Decarboxylation of the Corresponding Difluoro(halocarbonyl)methanesulfonyl Fluorides .. 1165

Method 17: Dihalomethanesulfonyl Difluorides by Halogenation of Methanesulfonyl Difluoride .. 1165

Method 18: Halomethanesulfonyl Trifluorides from Methanesulfonyl Trifluoride .. 1166

Method 19: Trifluromethanesulfonyl Chloride .. 1166

Method 20: Trichloromethanesulfonyl Chloride by Oxidation of Trichloromethanesulfenyl Chloride .. 1167

Method 21: Trifluromethyl Trifluromethanesulfonate from Trifluromethanesulfonic Anhydride .. 1167
18.15. Method 22: Methyl Trifluoromethanesulfonate from Trifluoromethanesulfonic Acid and Dimethyl Sulfate 1168
18.15. Method 23: Phenyl Trifluoromethanesulfonate from Trifluoromethanesulfonic Anhydride or Trifluoromethanesulfonyl Fluoride 1168
18.15. Method 24: Trifluoromethanesulfonic Acid 1169
18.15. Method 25: Chlorodifluoromethanesulfonic Acid and Trichloromethanesulfonic Acid 1169
18.15. Method 26: Trifluoromethanesulfonic Anhydride from Trifluoromethanesulfonic Acid and Phosphorus Pentoxide 1170
18.15. Method 27: Trifluoromethyl Sulfones 1170
18.15. Method 28: Bis- and Tris(trifluoromethylsulfonyl)methanes 1172
18.15. Method 29: Esters of Trifluoromethanethiosulfonic S-Acid or Trifluoromethaneselenosulfonic S-Acid from Metal Trifluoromethanesulfonates and Sulfonyl or Selenyl Chlorides 1173
18.15. Method 30: Difluorohalomethanesulfonamides and Difluorohalomethanesulfonyl Azides 1174
18.15. Applications of Product Subclass 3 in Organic Synthesis 1175
18.15. Method 1: Addition of Trifluoromethanethiol or Trifluoromethanesulfenyl Fluoride or Chloride to Alkenes and Alkynes 1175
18.15. Method 2: Applications of Trifluoromethanesulfonic Acid 1177
18.15. Method 3: Applications of Alkyl Trifluoromethanesulfonates and Trifluoromethanesulfonic Anhydride 1178
18.15. Method 4: An N-(Trifluoromethylsulfonyl)sulfimide from \(N, N\)-Dichlorotrifluoromethanesulfonamide and (Trifluoromethylsulfanyl)benzene 1180
18.15. Product Subclass 4: Compounds with Carbon—Halogen and Carbon—Selenium Bonds 1180
18.15. Synthesis of Product Subclass 4 1180
18.15. Method 1: Selenium(II) Compounds 1180
18.15. Method 2: Selenium(IV) Compounds 1182
18.15. Method 3: Selenium(VI) Compounds 1182
18.15. Applications of Product Subclass 4 in Organic Synthesis 1183
18.15. Method 1: Addition of Trifluoromethaneselenenyl Chloride to Ethene 1183
18.15. Product Subclass 5: Compounds with Carbon—Halogen and Carbon—Tellurium Bonds 1183
18.15. Synthesis of Product Subclass 5 1183
18.15. Method 1: Bis(trifluoromethyl) Telluride, Bis(trifluoromethyl)tellurium Dihalides, and Tetrakis(trifluoromethyl)-\(\lambda\)-tellane 1183
18.15. Applications of Product Subclass 5 in Organic Synthesis 1184
18.15. Method 1: Trifluoromethylation Using Bis(trifluoromethyl) Telluride 1184
18.15. Product Subclass 6: Compounds with Carbon—Halogen and Carbon—Nitrogen Bonds 1184
18.15. Synthesis of Product Subclass 6 1184
18.15.6.1 Method 1: Mono-, Bis-, and Tris(trifluoromethyl)amine 1184
18.15.6.1.2 Method 2: Dimethyl(trifluoromethyl)amine from Dimethylformamide and Sulfur Tetrafluoride .. 1185
18.15.6.1.3 Method 3: N-(Trihalomethyl)anlines 1185
18.15.6.1.4 Method 4: Dichloro- and Difluoro(trifluoromethyl)amine 1186
18.15.6.1.5 Method 5: (Trifluoromethyl)imidosulfurous Difluoride from Cyanuric Fluoride and Sulfur Tetrafluoride 1186
18.15.6.1.6 Method 6: (Difluoromethylene)(trifluoromethyl)amine from Trifluoro(nitroso)methane and Tetrafluoroethylene 1187
18.15.6.1.7 Method 7: Trifluoro(nitroso)methane, N,N-Bis(trifluoromethyl)hydroxylamine, and the Bis(trifluoromethyl)nitroxide Radical 1187
18.15.6.1.8 Method 8: Trifluoro(nitro)methane, Difluorodinitromethane, and Fluorotrinitromethane ... 1188

18.15.6.2 Applications of Product Subclass 6 in Organic Synthesis 1188
18.15.6.2.1 Method 1: Addition to Alkenes ... 1188

18.15.7 Product Subclass 7: Compounds with Carbon—Halogen and Carbon—Phosphorus Bonds ... 1189
18.15.7.1 Synthesis of Product Subclass 7 ... 1189
18.15.7.1.1 Method 1: Tris(trifluoromethyl)phosphine 1189
18.15.7.1.2 Method 2: Mono- and Bis(trifluoromethyl)phosphine, Dimethyl(trifluoromethyl)phosphine, Methylbis(trifluoromethyl)phosphine, and Phenylbis(trifluoromethyl)phosphine .. 1190
18.15.7.1.3 Method 3: Mono- and Dihalo(trifluoromethyl)phosphines 1191
18.15.7.1.4 Method 4: Amino(trifluoromethyl)phosphines 1191
18.15.7.1.5 Method 5: Tetrakis(trifluoromethyl)diphosphine 1192
18.15.7.1.6 Method 6: Halo(trifluoromethyl)phosphoranes, Tris(trifluoromethyl)-phosphine Oxide, and (Trifluoromethyl)phosphonic and (Trifluoromethyl)phosphinic Acids and Derivatives ... 1192
18.15.7.1.7 Method 7: (Halomethyl)phosphonium Bromides and Trifluorotris(trifluoromethyl)phosphate .. 1193

18.15.7.2 Applications of Product Subclass 7 in Organic Synthesis 1194
18.15.7.2.1 Method 1: Additions of (Trifluoromethyl)phosphines and (Trifluoro- methyl)phosphoranes to Alkenes, and Wittig Reactions of (Halomethyl)phosphonium Bromides with Aldehydes or Ketones 1194

18.16 Product Class 16: Other Tetraheterosubstituted Methanes
C. M. Diaper

18.16 Product Class 16: Other Tetraheterosubstituted Methanes 1203
18.16.1 Product Subclass 1: Orthocarbonic Acid Tetraesters
(Tetraalkoxymethanes) .. 1203
18.16.1.1 Synthesis of Product Subclass 1 ... 1204
18.16.1.1.1 Method 1: Substitution Reactions of Trichloromethane Derivatives with Alcohols or Alkoxides .. 1204
Method 2: Substitution Reactions of Dichloroacetals 1205
Method 3: Metal-Mediated Desulfurization of Carbon Disulfide with Alkoxides or Alcohols ... 1205
Method 4: Spiro Orthocarbonates from Epoxides and Cyclic Carbonates by Addition .. 1206
Method 5: Transesterification of Orthocarbonic Acid Tetraesters with Alcohols .. 1207

Applications of Product Subclass 1 in Organic Synthesis 1208
Method 1: Generation of Trialkoxycarbenium Salts 1208
Method 2: Alkylation Reactions .. 1208
Method 3: Protecting Group Chemistry 1210

Product Subclass 2: Thioorthocarbonic Acid Tetraesters
[Trialkoxy(alkylsulfanyl)methanes] ... 1211

Synthesis of Product Subclass 2 ... 1211
Method 1: Substitution Reaction of Dichloroacetals with 2-Sulfanylethanol ... 1211
Method 2: Nucleophilic Addition of Alcohols to O-O-Dialkyl Thiocarbonates ... 1211

Product Subclass 3: Orthocarbamic Acid Triesters 1212

Synthesis of Product Subclass 3 .. 1213
Method 1: Addition of Alkoxides to Dialkoxyaminocarbenium and Chloroformamidinium Salts .. 1214
Method 2: 2,5-Dihydro-1,3,4-oxadiazoles from Ketone Hydrazones by Oxidative Cyclization .. 1215
Method 3: 2,2-Diaryloxy- and 2,2-Dialkoxydihydrooxadiazoles from 2-Acetoxy-2-aryloxydihydrooxadiazoles 1215

Applications of Product Subclass 3 in Organic Synthesis 1216
Method 1: Dihydrooxadiazoles as Precursors of Dialkoxy carbeneis 1216

Product Subclass 4: Trialkoxy(phosphino)methanes and Trialkoxy(phosphoryl)methanes .. 1217

Synthesis of Product Subclass 4 ... 1217
Method 1: Addition to Trialkoxycarbenium Salts 1217
Variation 1: Trialkoxy(phosphoryl)methanes by Addition of Sodium Dialkyl Phosphites .. 1217
Variation 2: Trialkoxy(phosphino)methanes by Addition of Lithium Dialkyl phosphites .. 1217

Product Subclass 5: Dithioorthocarbonic Acid Tetraesters
[Dialkoxybis(alkylsulfanyl)methanes] ... 1218

Synthesis of Product Subclass 5 ... 1218
Method 1: Substitution Reactions of Dihaloacetals and Dihalothioacetals ... 1219
Method 2: Transesterification of Orthocarbonates with Dithiols 1219
Product Subclass 6: Orthocarbonic Acid Diester Diamides (Dialkoxydiaminomethanes) ... 1220

Synthesis of Product Subclass 6 .. 1221

Method 1: Substitution Reactions of Halomethanes 1222

Variation 1: Substitution Reactions of 3-Alkoxo-3-chlorodiazirines with Alkoxides .. 1222

Variation 2: Unsymmetrical Dioxadiazaspirans by Substitution Reactions of 2,2-Dihaloacetals with Amines 1222

Method 2: Symmetrical Dioxadiazaspirans by Desulfurization of Carbon Disulfide or N-Alkylthiocarbamates with Amino Alcohols ... 1223

Method 3: Addition of Alkoxides to Uronium and Formamidinium Salts ... 1224

Method 4: Oxidation of Dihydroimidazole N-Oxides 1225

Method 5: Oxidation of Acetone Semicarbazones 1225

Method 6: Symmetrical Dioxadiazaspirans from Dialkylcarbodiimides ... 1226

Applications of Product Subclass 6 in Organic Synthesis 1227

Method 1: Dialkoxydiazirines and Amino(oxy)dihydrooxazoles as Dialkoxycarbene Precursors ... 1227

Product Subclass 7: Dialkoxybis(phosphino)methanes and Dialkoxybis(phosphoryl)methanes ... 1228

Synthesis of Product Subclass 7 .. 1229

Method 1: Substitution Reactions of Dichloroacetals with Trialkyl Phosphites .. 1229

Method 2: Hydrates of Carbonyldiphosphonates 1230

Product Subclass 8: Trithioorthocarbonic Acid Tetraesters [Alkoxytris(organosulfanyl)methanes] ... 1230

Synthesis of Product Subclass 8 .. 1231

Method 1: Addition of Alkoxide to Sulfanylcarbenium Salts 1231

Method 2: Cycloaddition of Thiocarbonyl Compounds 1231

Method 3: Oxatrithiaspirans by Addition of Epoxides to 1,3-Dithiolane-2-thiones .. 1232

Method 4: Thermal Decomposition of Bisdithiocarbonates 1233

Product Subclass 9: Alkoxytriaminomethanes and Alkoxytrinitromethanes ... 1234

Synthesis of Product Subclass 9 .. 1234

Method 1: Addition of Alkoxides to Hexaalkylguanidinium Chlorides .. 1235

Method 2: Heterocyclic Derivatives by Cycloaddition Reactions 1236

Product Subclass 10: Tetrathioorthocarbonic Acid Tetraesters [Tetrakis(organosulfanyl)methanes], Bis(organosulfanyl)bis(organosulfinyl)methanes, Tris(organosulfanyl)(organosulfonyl)methanes, and Bis(organosulfanyl)bis(organosulfonyl)methanes ... 1237

Synthesis of Product Subclass 10 .. 1238

Method 1: Substitution Reactions of Halomethanes with Thiolates 1238
Method 2: Substitution Reactions of Tris(organosulfanyl)methyllithium Compounds and Bis(organosulfanyl)methanes

Variation 1: Substitution Reactions of Tris(organosulfanyl)methyllithium Compounds with Diorgano Disulfides

Variation 2: Reaction of Bis(alkylsulfanyl)methanes with N-(Organosulfanyl)phthalimides

Method 3: Addition of Thiols to Sulfanylcarbenium Salts

Method 4: Tetrathiaspirans from Dithiolane-2-thione or Carbon Disulfide by Addition Reactions

Method 5: Transesterification of Tetrathioorthocarbonic Acid Tetraesters with Dithiols

Product Subclass 11: Thithioorthocarbamic Triesters [Aminotris(organosulfanyl)methanes] and Nitrotris(organosulfanyl)methanes

Synthesis of Product Subclass 11

Method 1: Addition of Thiolates to Carbamidium Salts and Amines to Sulfanylcarbenium Salts

Method 2: Nitration of Tris(organosulfanyl)methanes

Product Subclass 12: Tris(alkylsulfanyl)phosphorylmethanes

Synthesis of Product Subclass 12

Method 1: Reaction of Phosphoryldithioformates with Organometallics

Product Subclass 13: Dithioorthocarbonic Acid Diamide Diesters [Diaminobis(organosulfanyl)methanes] and Bis(arylsulfanyl)dinitromethanes

Synthesis of Product Subclass 13

Method 1: Substitution Reactions of 2,2-Dichloroimidazolidine-4,5-diones with Organothiols

Method 2: Ring Closure of Iminodithiocarbonates and Thioureas

Method 3: Cycloaddition of Thiocarbonyl Compounds with Nitrilimines

Method 4: Reaction of Sulfenyl Halides with Dinitro Ylides

Method 5: From Heterocyclic Aminals

Product Subclass 14: Bis(alkylsulfanyl)- and Bis(alkylselanyl)-bis(phosphino)methanes and -bis(phosphoryl)methanes

Synthesis of Product Subclass 14

Method 1: Reaction of Metalated Phosphines or Phosphorines with Carbon Disulfide

Method 2: Dimerization of [Bis(alkylsulfanyl)methylene]phosphines

Method 3: Sulfenation of Bis(phosphoryl)methanes

Product Subclass 15: Thio- and Selenoorthocarbonic Acid Triamide Esters [Triamino(organosulfanyl)- and Triamino(organoselanyl)methanes] and Trinitro(organosulfanyl)- and Trinitro(organoselanyl)methanes

Synthesis of Product Subclass 15

Method 1: Addition of Amines to Thioureas or Isothioureas
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.16.15.1.2</td>
<td>Method 2:</td>
<td>Cycloaddition of Thioureas and Isothioureas with Isocyanates</td>
</tr>
<tr>
<td>18.16.15.1.3</td>
<td>Method 3:</td>
<td>Substitution Reactions of Metalated Methanes with Sulfenyl and Selenenyl Halides</td>
</tr>
<tr>
<td>18.16.16</td>
<td>Product Subclass 16: Tetraselenoorthocarbonic Acid Tetraesters</td>
<td>[Tetrakis(alkylselanyl)methanes]</td>
</tr>
<tr>
<td>18.16.16.1</td>
<td>Synthesis of Product Subclass 16</td>
<td></td>
</tr>
<tr>
<td>18.16.16.1.1</td>
<td>Method 1:</td>
<td>Substitution Reactions of [Tris(organoselanyl)methyl]lithium Reagents with Diorganodiselenium Compounds</td>
</tr>
<tr>
<td>18.16.16.17</td>
<td>Product Subclass 17: Orthocarbonic Acid Tetraamides</td>
<td>[Tetrakis(dialkylamino)methanes] and Tetranitromethane</td>
</tr>
<tr>
<td>18.16.17.1</td>
<td>Synthesis of Product Subclass 17</td>
<td></td>
</tr>
<tr>
<td>18.16.17.1.1</td>
<td>Method 1:</td>
<td>Substitution of Halomethanes with Amines</td>
</tr>
<tr>
<td>18.16.17.1.2</td>
<td>Method 2:</td>
<td>Tetrakis(dialkylamino)methanes from Formamidinium Salts by Addition of Metalated Dialkylamines</td>
</tr>
<tr>
<td>18.16.17.1.3</td>
<td>Method 3:</td>
<td>Tetraaminomethanes from Cycloaddition Reactions</td>
</tr>
<tr>
<td>18.16.17.1.4</td>
<td>Method 4:</td>
<td>Tetranitromethane from Trinitromethane Derivatives by Nitration</td>
</tr>
<tr>
<td>18.16.17.2</td>
<td>Applications of Product Subclass 17 in Organic Synthesis</td>
<td></td>
</tr>
<tr>
<td>18.16.17.2.1</td>
<td>Method 1:</td>
<td>Nitrations using Tetranitromethane</td>
</tr>
<tr>
<td>18.16.18</td>
<td>Product Subclass 18: Aminotris(phosphoryl)methanes</td>
<td></td>
</tr>
<tr>
<td>18.16.18.1</td>
<td>Synthesis of Product Subclass 18</td>
<td></td>
</tr>
<tr>
<td>18.16.18.1.1</td>
<td>Method 1:</td>
<td>Substitution Reactions of (Trihalomethyl)amines with Trialkyl Phosphites</td>
</tr>
<tr>
<td>18.16.19</td>
<td>Product Subclass 19: Tetrakis(phosphanyl)methanes, Tetrakis(phosphinoyl)methanes, and Tetrakis(phosphoryl)methanes</td>
<td></td>
</tr>
<tr>
<td>18.16.19.1</td>
<td>Synthesis of Product Subclass 19</td>
<td></td>
</tr>
<tr>
<td>18.16.19.1.1</td>
<td>Method 1:</td>
<td>Reactions of Carbon Tetrachloride</td>
</tr>
<tr>
<td>18.16.19.1.1.1</td>
<td>Variation 1:</td>
<td>With Chlorodimethylphosphine</td>
</tr>
<tr>
<td>18.16.19.1.2</td>
<td>Variation 2:</td>
<td>By [2 + 1] Cyclocondensation with Dipotassium 1,2-Di-tert-butyldiphosphide</td>
</tr>
</tbody>
</table>

Keyword Index

1283

Author Index

1335

Abbreviations

1399
Volume 19:
Three Carbon—Heteroatom Bonds:
Nitriles, Isocyanides, and Derivatives

Preface ... V
Table of Contents .. IX

Introduction
S.-I. Murahashi .. 1

19.1 Product Class 1: Nitrile Oxides, Sulfides, and Selenides
S. Kanemasa ... 17

19.2 Product Class 2: Nitrile Imines
S. Kanemasa ... 41

19.3 Product Class 3: Nitrilium Salts
S. Kanemasa ... 53

19.4 Product Class 4: Nitrile Ylides
S. Kanemasa ... 67

19.5 Product Class 5: Nitriles
L. R. Subramanian ... 79

19.5.1 Construction of the Cyano Group by Functional-Group Transformation from a Nitrogen-Free Starting Material
L. R. Subramanian ... 95

19.5.2 Construction of the Cyano Group by Functional-Group Transformation from a Nitrogen-Containing Starting Material
L. R. Subramanian ... 109

19.5.3 Introduction of the Cyano Group by Substitution of Hydrogen
A. Schmidt .. 133

19.5.4 Introduction of the Cyano Group by Substitution of Metals
L. R. Subramanian ... 163

19.5.5 Introduction of the Cyano Group by Substitution of a Halogen
L. R. Subramanian ... 173

19.5.6 Introduction of the Cyano Group by Substitution of Oxygen Functions
L. R. Subramanian ... 197
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.5.7</td>
<td>Introduction of the Cyano Group by Substitution of Sulfur Functions</td>
<td>L. R. Subramanian</td>
<td>215</td>
</tr>
<tr>
<td>19.5.8</td>
<td>Introduction of the Cyano Group by Substitution of Nitrogen Functions</td>
<td>L. R. Subramanian</td>
<td>217</td>
</tr>
<tr>
<td>19.5.9</td>
<td>Introduction of the Cyano Group by Addition to a Carbonyl Group</td>
<td>M. North</td>
<td>235</td>
</tr>
<tr>
<td>19.5.10</td>
<td>Introduction of the Cyano Group by Addition to an Imino Group</td>
<td>M. North</td>
<td>285</td>
</tr>
<tr>
<td>19.5.11</td>
<td>Introduction of the Cyano Group by Conjugate Addition</td>
<td>J. Podlech</td>
<td>311</td>
</tr>
<tr>
<td>19.5.12</td>
<td>Introduction of the Cyano Group by Addition to Alkynes</td>
<td>J. Podlech</td>
<td>325</td>
</tr>
<tr>
<td>19.5.13</td>
<td>Introduction of the Cyano Group by Addition to Alkenes</td>
<td>J. Podlech</td>
<td>333</td>
</tr>
<tr>
<td>19.5.14</td>
<td>Synthesis from Nitriles with Retention of the Cyano Group</td>
<td>S.-I. Murahashi</td>
<td>345</td>
</tr>
<tr>
<td>19.5.15</td>
<td>Applications of Nitriles as Reagents for Organic Synthesis with Loss of the Nitrile Functionality (Including Cycloaddition Reactions)</td>
<td>S. J. Collier and P. Langer</td>
<td>403</td>
</tr>
<tr>
<td>19.6</td>
<td>Product Class 6: Phosphaalkynes (Alkylidyne phosphines)</td>
<td>U. Bergstrasser</td>
<td>427</td>
</tr>
<tr>
<td>19.7</td>
<td>Product Class 7: Isocyanides and Related Compounds</td>
<td>M. Suginome and Y. Ito</td>
<td>445</td>
</tr>
</tbody>
</table>

Keyword Index 531
Author Index 557
Abbreviations 589
Table of Contents

Introduction
S.-I. Murahashi

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1</td>
<td>Product Class 1: Nitrile Oxides, Sulfides, and Selenides</td>
<td>17</td>
</tr>
<tr>
<td>19.1.1</td>
<td>Product Subclass 1: Nitrile Oxides</td>
<td>17</td>
</tr>
<tr>
<td>19.1.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td>19</td>
</tr>
<tr>
<td>19.1.1.1.1</td>
<td>Method 1: Dehydrohalogenation of Hydroximoyl Halides</td>
<td>19</td>
</tr>
<tr>
<td>19.1.1.1.2</td>
<td>Method 2: Dehydration of Activated Nitroalkanes and Nitroalkenes</td>
<td>22</td>
</tr>
<tr>
<td>19.1.1.1.3</td>
<td>Method 3: Halogenation/Dehydrohalogenation of Aldoximes</td>
<td>24</td>
</tr>
<tr>
<td>19.1.1.1.4</td>
<td>Method 4: Dehydration of Nitroalkanes (The Mukaiyama Reaction)</td>
<td>25</td>
</tr>
<tr>
<td>19.1.1.1.5</td>
<td>Method 5: Oxidation of Aldoximes</td>
<td>28</td>
</tr>
<tr>
<td>19.1.1.1.6</td>
<td>Method 6: Thermolysis of 1,2,5-Oxadiazole 2-Oxides (Furoxans)</td>
<td>31</td>
</tr>
<tr>
<td>19.1.1.1.7</td>
<td>Methods 7: Miscellaneous Methods</td>
<td>31</td>
</tr>
<tr>
<td>19.1.2</td>
<td>Product Subclass 2: Nitrile Sulfides</td>
<td>34</td>
</tr>
<tr>
<td>19.1.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>34</td>
</tr>
<tr>
<td>19.1.2.1.1</td>
<td>Method 1: Thermolysis of 1,3,4-Oxathiazol-2-ones</td>
<td>34</td>
</tr>
<tr>
<td>19.1.2.1.1.1</td>
<td>Variation 1: Thermolysis of 1,3,4-Oxathiazoles</td>
<td>36</td>
</tr>
<tr>
<td>19.1.3</td>
<td>Product Subclass 3: Nitrile Selenides</td>
<td>37</td>
</tr>
<tr>
<td>19.2</td>
<td>Product Class 2: Nitrile Imines</td>
<td>41</td>
</tr>
<tr>
<td>19.2.1</td>
<td>Synthesis of Product Class 2</td>
<td>41</td>
</tr>
<tr>
<td>19.2.1.1</td>
<td>Method 1: Dehydrohalogenation of Hydrazonoyl Halides</td>
<td>41</td>
</tr>
<tr>
<td>19.2.1.2</td>
<td>Method 2: Oxidation of Hydrazones</td>
<td>46</td>
</tr>
<tr>
<td>19.2.1.3</td>
<td>Methods 3: Miscellaneous Methods</td>
<td>48</td>
</tr>
<tr>
<td>19.2.1.3.1</td>
<td>Variation 1: From a Lithiated Diazomethane</td>
<td>48</td>
</tr>
<tr>
<td>19.2.1.3.2</td>
<td>Variation 2: Thermolysis or Photolysis of Heterocycles</td>
<td>49</td>
</tr>
</tbody>
</table>
19.3 Product Class 3: Nitrilium Salts
S. Kanemasa

19.3 Synthesis of Product Class 3 .. 53

19.3.1 Method 1: Dehydration of Oximes 53
19.3.2 Method 2: N-Alkylation of Nitriles 55
19.3.3 Method 3: Generation of Nitrilium Salts in Ring-Closure and Rearrangement Reactions Leading to Heterocycles 59
19.3.4 Method 4: Synthesis from Triazenyl Chlorides and Dialkylcyanamides 63

19.4 Product Class 4: Nitrile Ylides
S. Kanemasa

19.4 Synthesis of Product Class 4 .. 67

19.4.1 Method 1: Dehydrochlorination of Imidoyl Chlorides 67
19.4.2 Method 2: Preparation of Nitrile Ylide Equivalents 71
19.4.3 Method 3: Reaction of Nitriles with Carbenes 73
19.4.4 Method 4: Photolysis of Azirines 74
19.4.5 Methods 5: Miscellaneous Methods 76

19.5 Product Class 5: Nitriles
L. R. Subramanian

19.5 Construction of the Cyano Group by Functional-Group Transformation from a Nitrogen-Free Starting Material
L. R. Subramanian

19.5.1 Transformation of an Aldehyde Group 95

19.5.1.1 Method 1: One-Pot Reactions Involving Intermediate Aldimines 95
19.5.1.1.1 Variation 1: By Copper-Catalyzed Oxidation 95
19.5.1.1.2 Variation 2: By Nickel-Catalyzed Oxidation 96
19.5.1.1.3 Variation 3: By Oxidation with Manganese(IV) Oxide 96
19.5.1.1.4 Variation 4: By Oxidation with Ammonium Cerium(IV) Nitrate 97
19.5.1.1.5 Variation 5: By Oxidation with Iodine 98
19.5.1.1.6 Variation 6: By Oxidation with Hydrogen Peroxide 98
19.5.1.2 Method 2: Reactions Involving Intermediate Oximes 99
19.5.1.2.1 Variation 1: Using Boron Trifluoride–Diethyl Ether Complex 99

Table of Contents
19.5.1.1.2.2 Variation 2: Using 4-Toluenesulfonic Acid ... 100
19.5.1.1.2.3 Variation 3: Using Acetic Anhydride ... 100
19.5.1.1.2.4 Variation 4: Using Phthalic Anhydride .. 100
19.5.1.1.2.5 Variation 5: Using 1-Methylpyrrolidin-2-one 101
19.5.1.1.2.6 Variation 6: Using Pyridine/Formamide ... 101
19.5.1.1.2.7 Variation 7: Using Sodium Iodide .. 102
19.5.1.1.2.8 Variation 8: By Dehydration with Triphosgene 102
19.5.1.1.2.9 Variation 9: By Treatment with Iron(II) Chloride Modified Montmorillonite K 10 .. 102
19.5.1.1.2.10 Variation 10: Using Dry Alumina .. 103
19.5.1.1.2.11 Variation 11: By Using Microwaves .. 103
19.5.1.1.3 Methods 3: Miscellaneous Methods ... 105
19.5.1.1.3.1 Variation 1: Using S,S-Dimethylsulfurdiimide as Iminating Agent 105
19.5.1.1.3.2 Variation 2: Using Sodium Azide/Aluminum Trichloride 105
19.5.1.2 Transformation of a Carboxylic Acid or Derivatives 105
19.5.1.2.1 Method 1: Transformation of Carboxy Groups 105
19.5.1.2.2 Method 2: Transformation of Carboxylic Ester Groups 106
19.5.1.2.3 Method 3: Transformation of Carboxylic Acid Halides 107

19.5.2

Construction of the Cyano Group by Functional-Group Transformation from a Nitrogen-Containing Starting Material
L. R. Subramanian

19.5.2.1 Method 1: Synthesis from Hydrazones ... 109
19.5.2.1.1 Variation 1: By Alkylation Followed by Basic Cleavage 109
19.5.2.1.2 Variation 2: By Oxidation Reactions .. 110
19.5.2.1.3 Variation 3: By Microwave-Assisted Oxidation with Oxone 111
19.5.2.2 Method 2: Synthesis from Aldoximes .. 111
19.5.2.2.1 Variation 1: By Microbial Dehydration of Aldoximes 112
19.5.2.2.2 Variation 2: By Chemical Dehydration at Room Temperature 112
19.5.2.2.3 Variation 3: By Thermal Dehydration with Suitable Reagents 114
19.5.2.2.4 Variation 4: By Microwave Irradiation .. 118
19.5.2.3 Method 3: Synthesis from O-Substituted Aldoximes 118
19.5.2.4 Method 4: Synthesis from Primary Carboxamides and Thioamides 121
19.5.2.5 Method 5: From Miscellaneous Nitrogen-Containing Carbonyl and Carboxy Derivatives .. 127
19.5.3 Introduction of the Cyano Group by Substitution of Hydrogen

A. Schmidt

19.5.3 Introduction of the Cyano Group by Substitution of Hydrogen 133

19.5.3.1 Synthesis of Heteroaromatic and Aromatic Cyanides 133

19.5.3.1.1 Method 1: Using Cyanogen Bromide 133

19.5.3.1.2 Method 2: Using Tosyl Cyanide 134

19.5.3.1.2.1 Variation 1: By Modified Reissert Reactions 135

19.5.3.1.3 Method 3: Using Trimethylsilyl Cyanide 136

19.5.3.1.3.1 Variation 1: By Modified Reissert–Henze Reaction 138

19.5.3.1.2.2 Variation 2: By Catalytic Asymmetric Reissert-Type Reactions 139

19.5.3.1.4 Method 4: Using Trichloroacetonitrile 140

19.5.3.1.5 Method 5: Using Chlorosulfonyl Isocyanate 141

19.5.3.1.6 Method 6: Using Ethyl (Triphenylphosphoranylidene)carbamate/Boron Trifluoride 142

19.5.3.1.7 Method 7: Using Triphenylphosphine/Thiocyanogen 143

19.5.3.1.8 Method 8: Using Acetone Cyanohydrin 144

19.5.3.1.9 Method 9: Using Diethyl Cyanophosphonate 144

19.5.3.1.10 Method 10: Using Tetranitromethane 145

19.5.3.1.11 Method 11: Using Viehe’s Reagent 146

19.5.3.1.12 Method 12: By Anodic Substitution 146

19.5.3.1.13 Method 13: By Modified Vilsmeier–Haack Reactions 147

19.5.3.1.14 Method 14: Oxidative Cyanation of Quinoline 1-Oxides with Potassium Cyanide in the Presence of Potassium Hexacyanoferrate(III) 147

19.5.3.1.15 Method 15: By Nucleophilic Aromatic Substitution of Hydrogen with Cyanides 148

19.5.3.2 Synthesis of Acetylenic Nitriles 148

19.5.3.2.1 Method 1: Using Copper(I) Cyanide 148

19.5.3.2.1.1 Variation 1: In the Presence of Chlorotrimethylsilane 148

19.5.3.2.1.2 Variation 2: In the Presence of Bis(trimethylsilyl) Peroxide 149

19.5.3.2.2 Method 2: Using Tosyl Cyanide and Zinc(II) Iodide 149

19.5.3.2.3 Method 3: Using Phenyl Cyanate 149

19.5.3.2.4 Method 4: Using 1H-Imidazole-1-carbonitrile 150

19.5.3.3 Synthesis of Vinyl Nitriles 151

19.5.3.3.1 Method 1: Using Cyanogen Bromide and Cyanogen Chloride 151

19.5.3.3.2 Method 2: Using Tosyl Cyanide 151

19.5.3.3.3 Method 3: Using Phenyl Cyanates 152

19.5.3.3.4 Method 4: Using Triphenylphosphine/Thiocyanogen 152

19.5.3.4 Synthesis of Aliphatic Nitriles 152

19.5.3.4.1 Method 1: Using 2,3-Dichloro-5,6-dicyanobenzo-1,4-quinone and Trimethylsilyl Cyanide 152

19.5.3.4.2 Method 2: By Aerobic Ruthenium-Catalyzed Oxidative Cyanation with Sodium Cyanide 154

19.5.3.4.3 Method 3: Using Chlorine Dioxide and Sodium Cyanide 154
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>By Anodic Cyanation</td>
<td>155</td>
</tr>
<tr>
<td>5</td>
<td>Using 2-Chlorobenzyl Thiocyanate</td>
<td>155</td>
</tr>
<tr>
<td>6</td>
<td>Using Sulfonyl Cyanides</td>
<td>156</td>
</tr>
<tr>
<td>7</td>
<td>Using 1,2-Benziodoxole-1-carbonitriles</td>
<td>157</td>
</tr>
<tr>
<td>8</td>
<td>Starting from (N)-Oxides of Tertiary Amines with Trifluoroacetic Acid Anhydride and Cyanide</td>
<td>158</td>
</tr>
</tbody>
</table>

19.5.4 Introduction of the Cyano Group by Substitution of Metals

L. R. Subramanian

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>From Organozinc Compounds</td>
<td>163</td>
</tr>
<tr>
<td>2</td>
<td>From Organocopper Compounds</td>
<td>165</td>
</tr>
<tr>
<td>3</td>
<td>From Organomagnesium Compounds</td>
<td>165</td>
</tr>
<tr>
<td>4</td>
<td>From Organolithium Compounds</td>
<td>167</td>
</tr>
<tr>
<td>5</td>
<td>From Other Organometallic Compounds</td>
<td>169</td>
</tr>
</tbody>
</table>

19.5.5 Introduction of the Cyano Group by Substitution of a Halogen

L. R. Subramanian

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>From Aliphatic and Alicyclic Halides</td>
<td>173</td>
</tr>
<tr>
<td>2</td>
<td>From Vinyl and Alkynyl Halides</td>
<td>177</td>
</tr>
<tr>
<td>3</td>
<td>From Aryl Halides</td>
<td>179</td>
</tr>
<tr>
<td>3.1</td>
<td>Variation 1: Using Copper(I) Cyanide</td>
<td>180</td>
</tr>
<tr>
<td>3.2</td>
<td>Variation 2: Using Alkali Metal Cyanides</td>
<td>182</td>
</tr>
<tr>
<td>3.3</td>
<td>Variation 3: By Palladium- and Nickel-Catalyzed Substitutions</td>
<td>184</td>
</tr>
<tr>
<td>3.4</td>
<td>Variation 4: By Microwave-Assisted Cyanations</td>
<td>189</td>
</tr>
<tr>
<td>3.5</td>
<td>Variation 5: By Electrophilic Cyanation</td>
<td>190</td>
</tr>
<tr>
<td>3.6</td>
<td>Method 4: From Heterocyclic Halides</td>
<td>191</td>
</tr>
</tbody>
</table>

19.5.6 Introduction of the Cyano Group by Substitution of Oxygen Functions

L. R. Subramanian

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Substitution of a Hydroxy Group in a One-Pot Procedure</td>
<td>197</td>
</tr>
<tr>
<td>2</td>
<td>Substitution of Hydroxy Derivatives</td>
<td>202</td>
</tr>
<tr>
<td>2.1</td>
<td>Variation 1: Displacement of Alkyl Sulfonates</td>
<td>202</td>
</tr>
<tr>
<td>2.2</td>
<td>Variation 2: Displacement of Alkenyl Sulfonates</td>
<td>203</td>
</tr>
<tr>
<td>2.3</td>
<td>Variation 3: Displacement of Aryl Sulfonates</td>
<td>204</td>
</tr>
<tr>
<td>3</td>
<td>Method 3: Substitution of a Carbonyl Group by Direct Displacement</td>
<td>208</td>
</tr>
</tbody>
</table>
19.5.7 Introduction of the Cyano Group by Substitution of Sulfur Functions
L. R. Subramanian

Method 1: Displacement of a Sulfanyl Group .. 215
Method 2: Displacement of a Sulfonyl Group 215

19.5.8 Introduction of the Cyano Group by Substitution of Nitrogen Functions
L. R. Subramanian

Method 1: By Replacement of Amines ... 217
Variation 1: From Aliphatic and Alicyclic Amines .. 217
Variation 2: From Aromatic Amines .. 221
Method 2: By Replacement of a Nitro Group .. 223
Method 3: By Fragmentation and Rearrangement Reactions 225
Variation 1: From Beckmann Fragmentation of Oximes and Derivatives 225
Variation 2: Miscellaneous Reactions .. 230

19.5.9 Introduction of the Cyano Group by Addition to a Carbonyl Group
M. North

Cyanohydrins Derived from Aldehydes .. 235
Method 1: Addition without External Stereocontrol 235
Method 2: Addition to Achiral Substrates in the Presence of a Chiral Catalyst ... 243
Variation 1: Use of (R)-Oxynitrilase Enzymes ... 244
Variation 2: Use of (S)-Oxynitrilase Enzymes ... 247
Variation 3: Use of Cyclic Dipeptides as Catalysts 249
Variation 4: Use of Chiral Titanium Complexes as Catalysts 251
Variation 5: Use of Chiral Aluminum Complexes as Catalysts 260
Variation 6: Use of Other Chiral Metal Complexes as Catalysts 262

Cyanohydrins Derived from Ketones .. 266
Method 1: Addition without External Stereocontrol 266
Method 2: Addition to Achiral Substrates in the Presence of a Chiral Catalyst ... 272
Variation 1: Use of Oxynitrilase Enzymes ... 272
Variation 2: Use of Metal-Based Catalysts ... 275
Variation 3: Use of Chiral Lewis Bases .. 277
Introduction of the Cyano Group by Addition to an Imino Group

M. North

19.5.10 Introduction of the Cyano Group by Addition to an Imino Group

- 19.5.10.1 α-Aminonitriles Derived from Aldimines
- 19.5.10.1.1 Method 1: Addition without Stereocontrol
- 19.5.10.1.2 Variation 1: Strecker Reactions under Aqueous Conditions
- 19.5.10.1.3 Variation 2: Strecker Reactions under Nonaqueous Conditions
- 19.5.10.1.4 Variation 3: Using Trimethylsilyl Cyanide
- 19.5.10.1.5 Variation 4: Addition of Cyanide to Aldimines Derived from Chiral Aldehydes
- 19.5.10.1.6 Method 2: Addition to Substrates Containing a Chiral Auxiliary on the Nitrogen Atom
- 19.5.10.1.7 Variation 1: Use of (1-Phenylethyl)amine
- 19.5.10.1.8 Variation 2: Use of 2-Phenylglycinol
- 19.5.10.1.9 Variation 3: Use of Phenylglycinamide
- 19.5.10.1.10 Variation 4: Use of Sugar-Derived Auxiliaries
- 19.5.10.1.11 Variation 5: Use of an α-Aminonitrile as a Chiral Auxiliary
- 19.5.10.1.12 Method 3: Addition to Achiral Substrates in the Presence of a Chiral Catalyst
- 19.5.10.1.13 Variation 1: Use of Nonmetallic Catalysts
- 19.5.10.1.14 Variation 2: Catalysis by Aluminum Complexes
- 19.5.10.1.15 Variation 3: Catalysis by First-Row Transition-Metal Complexes
- 19.5.10.1.16 Variation 4: Catalysis by Zirconium Complexes
- 19.5.10.1.17 α-Aminonitriles Derived from Ketimines
- 19.5.10.1.18 Method 1: Addition without Stereocontrol
- 19.5.10.1.19 Variation 1: Use of Ultrasound
- 19.5.10.1.20 Variation 2: Using Trimethylsilyl Cyanide
- 19.5.10.1.21 Variation 3: Other Addition Reactions
- 19.5.10.1.22 Method 2: Addition to Substrates Containing a Chiral Auxiliary on the Nitrogen Atom
- 19.5.10.1.23 Products Derived from Other Compounds Containing a C=N Bond
- 19.5.10.1.24 Method 1: Products Derived from Hydrazones
- 19.5.10.1.25 Variation 1: Processes Using Trimethylsilyl Cyanide
- 19.5.10.1.26 Variation 2: Reaction under Phase-Transfer Conditions
- 19.5.10.1.27 Method 2: Products Derived from Nitrones
- 19.5.10.1.28 Method 3: Products Derived from Sulfinimines
- 19.5.10.1.29 Method 4: Products Derived from Oximes
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.5.11</td>
<td>Introduction of the Cyano Group by Conjugate Addition</td>
<td>J. Podlech</td>
<td>311</td>
</tr>
<tr>
<td>19.5.11.1</td>
<td>Method 1: Hydrocyanation of (\alpha,\beta)-Unsaturated Carbonyl Compounds</td>
<td></td>
<td>311</td>
</tr>
<tr>
<td>19.5.11.1.1</td>
<td>Variation 1: Using Alkali Metal Cyanides</td>
<td></td>
<td>313</td>
</tr>
<tr>
<td>19.5.11.1.2</td>
<td>Variation 2: Using Acetone Cyanohydrin</td>
<td></td>
<td>314</td>
</tr>
<tr>
<td>19.5.11.1.3</td>
<td>Variation 3: Using Trimethylsilyl Cyanide</td>
<td></td>
<td>315</td>
</tr>
<tr>
<td>19.5.11.1.4</td>
<td>Variation 4: Using Dialkylaluminum Cyanide or Hydrogen Cyanide/Trialkylaluminum Compounds</td>
<td></td>
<td>322</td>
</tr>
<tr>
<td>19.5.11.1.5</td>
<td>Variation 5: Using Organic Isocyanides</td>
<td></td>
<td>322</td>
</tr>
<tr>
<td>19.5.12</td>
<td>Introduction of the Cyano Group by Addition to Alkynes</td>
<td>J. Podlech</td>
<td>325</td>
</tr>
<tr>
<td>19.5.12.1</td>
<td>Method 1: Hydrocyanation of Alkynes</td>
<td></td>
<td>325</td>
</tr>
<tr>
<td>19.5.12.2</td>
<td>Method 2: Addition of Trimethylsilyl Cyanide or Tributylstannancarbonitrile to Alkynes</td>
<td></td>
<td>328</td>
</tr>
<tr>
<td>19.5.12.2.1</td>
<td>Variation 1: Addition to Terminal Arylalkynes</td>
<td></td>
<td>329</td>
</tr>
<tr>
<td>19.5.12.2.2</td>
<td>Variation 2: Addition to Ynamines</td>
<td></td>
<td>329</td>
</tr>
<tr>
<td>19.5.13</td>
<td>Introduction of the Cyano Group by Addition to Alkenes</td>
<td>J. Podlech</td>
<td>333</td>
</tr>
<tr>
<td>19.5.13.1</td>
<td>Method 1: Hydrocyanation of Alkenes and Arylalkenes</td>
<td></td>
<td>334</td>
</tr>
<tr>
<td>19.5.13.1.1</td>
<td>Variation 1: Hydrocyanation of Alkenes</td>
<td></td>
<td>334</td>
</tr>
<tr>
<td>19.5.13.1.2</td>
<td>Variation 2: Hydrocyanation of Arylalkenes</td>
<td></td>
<td>336</td>
</tr>
<tr>
<td>19.5.13.2</td>
<td>Method 2: Hydrocyanation of Conjugated and Isolated Dienes</td>
<td></td>
<td>337</td>
</tr>
<tr>
<td>19.5.13.3</td>
<td>Method 3: Enantioselective Hydrocyanation of Alkenes</td>
<td></td>
<td>340</td>
</tr>
<tr>
<td>19.5.14</td>
<td>Synthesis from Nitriles with Retention of the Cyano Group</td>
<td>S.-I. Murahashi</td>
<td>345</td>
</tr>
<tr>
<td>19.5.14.1</td>
<td>Method 1: Reaction of (\alpha)-Cyano Carbanions with Electrophiles</td>
<td></td>
<td>345</td>
</tr>
<tr>
<td>19.5.14.1.1</td>
<td>Variation 1: Alkylation by Alkyl Halides</td>
<td></td>
<td>345</td>
</tr>
<tr>
<td>19.5.14.1.2</td>
<td>Variation 2: Alkylation by Alcohols</td>
<td></td>
<td>347</td>
</tr>
<tr>
<td>19.5.14.1.3</td>
<td>Variation 3: Alkylation by Organoboranes</td>
<td></td>
<td>348</td>
</tr>
<tr>
<td>19.5.14.1.4</td>
<td>Variation 4: Reaction with Epoxides</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>19.5.14.1.5</td>
<td>Variation 5: Reaction with Carboxylic Acid Derivatives</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>19.5.14.1.6</td>
<td>Variation 6: Reaction with Carbonyl Compounds (Aldol Reaction)</td>
<td></td>
<td>349</td>
</tr>
</tbody>
</table>
Variation 7: Reaction of Active Methylene Compounds Bearing a Cyano Group with Carbonyl Compounds (Knoevenagel Reaction) ... 351

Variation 8: Reaction with Alkenes and Alkynes Bearing Electron- Withdrawning Groups (Michael Addition) 354

Variation 9: Reaction with Nitriles (Thorpe–Ziegler Reaction) 356

Method 2: Wittig Reaction .. 358

Method 3: Reaction of Organozinc Compounds Bearing Cyano Groups with Electrophiles 360

Method 4: Reaction of Organocopper Compounds Bearing Cyano Groups with Electrophiles 361

Method 5: Addition of Radicals Bearing Cyano Groups by Reductive Coupling .. 362

Method 6: Friedel–Crafts Reaction .. 363

Method 7: Addition of Carbenes Bearing Cyano Groups .. 363

Method 8: Addition to Alkenenitriles .. 364

Variation 1: Conjugate Addition of Ketone and Ester Enolates to Alkenenitriles (Cyanoethylation) 364

Variation 2: Conjugate Addition of Enamines to Alkenenitriles (Cyanoethylation) .. 365

Variation 3: Conjugate Addition of Metalated Nitriles to Alkenenitriles ... 367

Variation 4: Conjugate Addition of Metalated Nitroalkanes and Metalated Sulfones and Sulfoxides to Alkenenitriles .. 368

Variation 5: Addition of Diazonium Salts to Alkenenitriles (Meerwein Reaction) 369

Variation 6: Conjugate Addition of Grignard Reagents to Alkenenitriles .. 369

Variation 7: Conjugate Addition with Organocopper Reagents .. 370

Variation 8: Conjugate Addition with Organozinc Reagents .. 371

Variation 9: Nickel-Catalyzed Addition to Alkenenitriles .. 372

Variation 10: Palladium-Catalyzed Addition to Benzylidenemalononitrile ... 373

Variation 11: Conjugate Addition of Allylsilanes to Alkenenitriles .. 373

Variation 12: Conjugate Addition of Thiols to Alkenenitriles .. 374

Variation 13: Conjugate Addition of Amines to Alkenenitriles .. 374

Variation 14: Cyanoselenation of Alkenes ... 375

Variation 15: [2 + 2] Cycloaditions of Alkenenitriles ... 376

Variation 16: 1,3-Dipolar Cycloaditions ... 377

Variation 17: The Diels–Alder Reaction .. 378

Variation 18: Dimerization and Condensation of Nitriles .. 379

Method 9: Metal-Catalyzed Reaction of Alkenes Bearing Cyano Groups .. 380

Variation 1: The Heck–Mizoroki Reaction .. 380

Variation 2: Palladium-Catalyzed Allylation of Nitriles .. 382

Variation 3: Catalytic Dimerization of Propenenitrile ... 383

Variation 4: Metathesis Reaction of Alkenenitriles ... 383

Variation 5: Ruthenium-Catalyzed Addition of Alcohols to Alkenenitriles .. 384

Method 10: Addition to Alkynenitriles .. 384

Method 11: Metal-Catalyzed Cross-Coupling Reactions .. 386
19.5.11

Variation 1: Cross Coupling Using Organozinc Compounds Bearing Cyano Groups 386

Variation 2: Cross Coupling of Organoboranes with Organic Halides 388

Variation 3: Cross Coupling Using Organotin Compounds .. 389

Variation 4: Cross Coupling Using Organosilicon Compounds 390

Variation 5: Direct Catalytic Arylation of Cyanoesters .. 390

Method 12: Reduction of Alkenenitriles ... 391

Method 13: Oxidation of Nitrile Compounds ... 393

Method 14: Synthesis of Polycyano Compounds ... 394

19.5.15

Applications of Nitriles as Reagents for Organic Synthesis with Loss of the Nitrile Functionality (Including Cycloaddition Reactions)

S. J. Collier and P. Langer

Method 1: Base-Mediated One-Pot Reactions of Nitriles ... 403

Method 2: Nitriles as Reagents in Reactions of Three or More Components 405

Variation 1: Reactions with One Nitrile Molecule .. 405

Variation 2: Reactions with Two Nitrile Molecules ... 407

Variation 3: Reactions with Three or More Nitrile Molecules 410

Method 3: Cycloaddition Reactions .. 411

Variation 1: \([2 + 2 + 2]\)-Self-Cyclotrimerization Reactions ... 411

Variation 2: \([2 + 2 + 2]\)-Cyclotrimerization Reactions of Nitriles and Alkynes 412

Variation 3: \([4 + 2]\)-Cycloaddition Reactions ... 416

Variation 4: \([3 + 2]\)-Cycloaddition Reactions ... 419

Variation 5: \([2 + 2]\)-Cycloaddition Reactions ... 422

19.6

Product Class 6: Phosphaalkynes (Alkylidyneophosphines)

U. Bergsträßer

Synthesis of Product Class 6 .. 427

Method 1: Elimination of Hydrogen Halides .. 428

Variation 1: From Alkyl dichlorophosphines .. 428

Variation 2: From Substituted (Dihalomethyl)phosphines .. 428

Method 2: Elimination of Organometallic Compounds ... 430

Variation 1: Of Chlorotrimethylsilane ... 430

Variation 2: Of Hexamethyldisiloxane ... 430

Variation 3: Of Lithium Trimethylsilanolate .. 432

Method 3: Rearrangement of Halophosphaalkynes ... 432

Method 4: Rearrangement of Alkynylphosphines .. 433

Method 5: Rearrangement of Phosphiranes or Allylphosphines by Flash-Vacuum Pyrolysis ... 434
19.6.1.6 Method 6: Rearrangement of 1-Aza-3-phosphaallenes 434
19.6.1.7 Methods 7: Other Methods ... 435
19.6.2 Applications of Product Class 6 in Organic Synthesis 436
19.6.2.1 Method 1: Cycloaddition Reactions of Phosphaalkynes 436
19.6.2.1.1 Variation 1: [2 + 1] Cycloadditions .. 436
19.6.2.1.2 Variation 2: [3 + 2] Cycloadditions .. 436
19.6.2.1.3 Variation 3: [4 + 2] Cycloadditions .. 437
19.6.2.2 Method 2: 1,2-Addition Reactions of Phosphaalkynes 438
19.6.2.2.1 Variation 1: Addition of Enophiles .. 438
19.6.2.2.2 Variation 2: Addition of Organometallic Groups 438
19.6.2.3 Method 3: Phosphaalkynes as Ligands in Transition-Metal Complexes 439
19.6.2.4 Method 4: Cyclooligomerization Reactions of Phosphaalkynes 440

19.7 Product Class 7: Isocyanides and Related Compounds

M. Suginome and Y. Ito

19.7.1 Product Subclass 1: Carbon-Bound Isocyanides 446
19.7.1.1 Synthesis of Product Subclass 1 .. 446
19.7.1.1.1 Method 1: Nucleophilic Substitution of Halides with Metal Cyanides 446
19.7.1.1.1.1 Variation 1: From Halides and Equivalents 446
19.7.1.1.1.2 Variation 2: From Epoxides and Oxetanes 450
19.7.1.1.2 Method 2: Reduction of Isocyanates and Related Compounds 453
19.7.1.1.3 Method 3: Reduction of Carbamates .. 455
19.7.1.1.4 Method 4: Dehalogenation of Isocyanide Dihalides 455
19.7.1.1.5 Method 5: Dehydration of Formamides ... 456
19.7.1.1.5.1 Variation 1: With Phosgene .. 457
19.7.1.1.5.2 Variation 2: With Trichloromethyl Chloroformate (Diphosgene) ... 457
19.7.1.1.5.3 Variation 3: With Bis(trichloromethyl) Carbonate (Triphosgene) 459
19.7.1.1.5.4 Variation 4: With Thionyl Chloride/Dimethylformamide (Vilsmeier Reagent) .. 460
19.7.1.1.5.5 Variation 5: With Phosphoryl Chloride ... 461
19.7.1.1.5.6 Variation 6: With Arenesulfonyl Chlorides 466
19.7.1.1.5.7 Variation 7: With Other Reagents ... 468
19.7.1.1.6 Method 6: By α-Elimination Reactions Involving Fragmentation of Heterocyclic Compounds .. 472
19.7.1.1.7 Method 7: Addition of Cyanides to Alkenes 475
19.7.1.1.8 Method 8: Reaction of Dihalocarbenes with Primary Amines 478
19.7.1.1.9 Method 9: From Other Isocyanides through Their α-Anions 480
19.7.1.1.9.1 Variation 1: Reaction with Alkyl Halides and Epoxides 480
19.7.1.1.9.2 Variation 2: Reaction with Carbonyl Compounds and Michael Acceptors 484
19.7.1.1.9.3 Variation 3: Elimination and C=C Transposition Reactions 486
19.7.1.2 Applications of Product Subclass 1 in Organic Synthesis 488
19.7.1.2.1 Method 1: Simple α-Additions ... 488
19.7.1.1 Variation 1: Addition of Brønsted Acids 488
19.7.1.2 Variation 2: Addition of Hydrogen—Heteroatom Bonds and Heteroatom—Heteroatom Bonds 489
19.7.1.3 Variation 3: Addition of Metal Hydrides and Bimetals 490
19.7.1.4 Variation 4: Addition of Organometallic Compounds 491
19.7.1.5 Variation 5: Oxidative α-Additions Including the Addition of Halogen-Containing Reagents .. 494
19.7.1.6 Variation 6: Addition of Acid Chlorides and Related Compounds 494
19.7.1.7 Variation 7: Synthesis of Heteroaromatic Compounds by Intramolecular α-Addition Reactions of ortho-Functionalized Aryl Isocyanides 495
19.7.1.8 Variation 8: Addition to π-Systems (Including Aromatic Compounds) 496
19.7.1.2 Method 2: Cyclizations Utilizing Isocyanides as One-Carbon Donors 497
19.7.1.3 Method 3: The Passerini Reaction and Ugi Reaction: Multicomponent Couplings by an α-Addition Reaction 499
19.7.1.3.1 Variation 1: The Passerini Reaction: Synthesis of α-Acyloxy carbamides by the Three-Component Coupling of an Isocyanide, a Carbonyl Compound, and a Carboxylic Acid 500
19.7.1.3.2 Variation 2: The Ugi Reaction: Synthesis of α-Acylaminocarbamides by the Four-Component Coupling of an Isocyanide, a Carbonyl Compound, an Amine, and a Carboxylic Acid 504
19.7.1.4 Method 4: Cycloadditions via α-Isocyanomethyl Anions 509
19.7.1.5 Method 5: Transition-Metal Catalysis Involving Activation of C—H Bonds α to the Isocyano Group 512
19.7.1.6 Method 6: Oligomerization and Polymerization 514
19.7.1.6.1 Variation 1: Of Monoisocyanides 514
19.7.1.6.2 Variation 2: Of Diisocyanides 515
19.7.1.7 Method 7: Reactions Accompanied by Cleavage of the C—NC Linkage: Isomerization to Nitriles and Removal of the Isocyano Group 516
19.7.1.8 Method 8: Use of Transition-Metal Complexes of Isocyanide as Catalysts 518
19.7.2 Product Subclass 2: Oxygen-, Sulfur-, Nitrogen-, and Phosphorus-Bound Isocyanides .. 520
19.7.2.1 Synthesis of Product Subclass 2 ... 521
19.7.2.1.1 Method 1: Dehydration .. 521
19.7.2.1.2 Method 2: Fragmentation of Heterocyclic Compounds 523
19.7.2.1.3 Methods 3: Miscellaneous Methods 523

Keyword Index .. 531

Author Index .. 557

Abbreviations ... 589
Volume 20a:
Three Carbon–Heteroatom Bonds:
Acid Halides; Carboxylic Acids and Acid Salts

Preface .. V

Volume Editor’s Preface ... VII

Table of Contents ... XI

Introduction
J. S. Panek ... 1

20.1 Product Class 1: Acid Halides
S. G. Nelson .. 15

20.2 Product Class 2: Carboxylic Acids

20.2.1 Product Subclass 1: Alkanoic Acids

20.2.1.1 Synthesis from Carbonic Acid Derivatives
S. J. Collier and E. Kataisto .. 53

20.2.1.2 Synthesis from Carboxylic Acid Derivatives
N. F. Jain and C. E. Masse ... 75

20.2.1.3 Synthesis from Aldehydes, Ketones, and Derivatives
(Including Enol Ethers)
S. Lin, L. Yan, and P. Liu .. 93

20.2.1.4 Synthesis from Organic Halides
G. Evano ... 137

20.2.1.5 Synthesis from Alcohols
B. Figadère and X. Franck .. 173

20.2.1.6 Synthesis from Alkenes
(Excluding Reactions with Carboxylic Acid Derivatives)
G. Evano ... 205

20.2.1.7 Synthesis by Rearrangement
A. J. Phillips and C. E. Love .. 241

20.2.1.8 Synthesis with Retention of the Functional Group
P. Vedantham, M. Jiménez, and P. R. Hanson 265

20.2.2 Product Subclass 2: Arenedicarboxylic Acids
L. R. Subramanian ... 307

20.2.3 Product Subclass 3: Butenedioic and Butynedioic Acids
C. E. Masse ... 329

20.2.4 Product Subclass 4: Alkanedioic Acids
C. E. Masse ... 337
<table>
<thead>
<tr>
<th>Section</th>
<th>Product Class</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.2.5</td>
<td>Product Subclass 5: 2-Oxo- and 2-Imino-Substituted Alkanoic Acids</td>
<td>J. A. Westbrook and S. E. Schaus</td>
<td>355</td>
</tr>
<tr>
<td>20.2.6</td>
<td>Product Subclass 6: 2,2-Diheteroatom-Substituted Alkanoic Acids</td>
<td>J. A. Westbrook and S. E. Schaus</td>
<td>371</td>
</tr>
<tr>
<td>20.2.7</td>
<td>Product Subclass 7: 2-Aminoalkanoic Acids (α-Amino Acids)</td>
<td>S. E. Wolkenberg and R. M. Garbaccio</td>
<td>385</td>
</tr>
<tr>
<td>20.2.8</td>
<td>Product Subclass 8: 2-Heteroatom-Substituted Alkanoic Acids</td>
<td>S. R. Chemler and T. P. Zabawa</td>
<td>483</td>
</tr>
<tr>
<td>20.2.9</td>
<td>Product Subclass 9: Alk-2-ynoic Acids</td>
<td>G. Evano</td>
<td>507</td>
</tr>
<tr>
<td>20.2.10</td>
<td>Product Subclass 10: Arenecarboxylic Acids</td>
<td>T. P. Yoon and E. N. Jacobsen</td>
<td>533</td>
</tr>
<tr>
<td>20.2.11</td>
<td>Product Subclass 11: Alk-2-enoic Acids</td>
<td>C. D. Vanderwal and E. N. Jacobsen</td>
<td>551</td>
</tr>
<tr>
<td>20.2.12</td>
<td>Product Subclass 12: 3-Oxoalkanoic and 3,3-Dioxyalkanoic Acids</td>
<td>J. Beignet</td>
<td>569</td>
</tr>
<tr>
<td>20.2.13</td>
<td>Product Subclass 13: 3-Heteroatom-Substituted Alkanoic Acids</td>
<td>G. Sartori and R. Maggi</td>
<td>579</td>
</tr>
<tr>
<td>20.3</td>
<td>Product Class 3: Carboxylic Acid Salts</td>
<td>L. Dakin and B. Lahue</td>
<td>605</td>
</tr>
<tr>
<td>20.4</td>
<td>Product Class 4: Carboxylic Acid Anhydrides and Their Sulfur, Selenium, and Tellurium Derivatives</td>
<td>P. A. Keller</td>
<td>617</td>
</tr>
</tbody>
</table>

Keyword Index .. i
Author Index .. xxxiii
Abbreviations .. lxiii
Table of Contents

Introduction
J. S. Panek

Introduction ... 1

20.1 **Product Class 1: Acid Halides**
S. G. Nelson

20.1.1 **Product Subclass 1: Acid Fluorides**

20.1.1.1 Method 1: Fluorination of Carboxylic Acids 21
20.1.1.1.1 Variation 1: Treatment with 2,4,6-Trifluoro-1,3,5-triazine 21
20.1.1.1.2 Variation 2: Treatment with Tetramethylfluoroformamidinium Hexafluorophosphate ... 22
20.1.1.1.3 Variation 3: Treatment with N,N-Diethylaminosulfur Trifluoride or N,N-Bis(2-methoxyethyl)aminosulfur Trifluoride 23
20.1.1.1.4 Variation 4: Treatment with Pyridinium Poly(hydrogen fluoride)/Dicyclohexylcarbodiimide ... 25
20.1.1.1.5 Variation 5: Treatment with 1-Fluoro-N,N,2-trimethylprop-1-en-1-amine 26
20.1.1.2 Method 2: Reactions of Acid Chlorides with Fluoride Ion 27
20.1.1.3 Method 3: Reactions of Carboxylate Esters and Anhydrides with Hydrogen Fluoride or Hydrogen Fluoride/Pyridine 28

20.1.2 **Product Subclass 2: Acid Chlorides** 29

20.1.2.1 Synthesis of Product Subclass 2 ... 30
20.1.2.1.1 Method 1: Chlorination of Carboxylic Acids 30
20.1.2.1.1.1 Variation 1: Treatment with Oxalyl Chloride 30
20.1.2.1.1.2 Variation 2: Treatment with Thionyl Chloride 33
20.1.2.1.1.3 Variation 3: Treatment with Triphenylphosphine/Carbon Tetrachloride and Other Phosphorus-Based Reagents ... 36
20.1.2.1.1.4 Variation 4: Treatment with 1-Chloro-N,N,2-trimethylprop-1-en-1-amine 38
20.1.2.1.1.5 Variation 5: Treatment with Bis(trichloromethyl) Carbonate 39
20.1.2.1.1.6 Variation 6: Treatment with 2,4,6-Trichloro-1,3,5-triazine 40
20.1.2.1.2 Method 2: Chlorination of Trialkylsilyl Carboxylate Esters 41

20.1.3 **Product Subclass 3: Acid Bromides** 42

20.1.3.1 Synthesis of Product Subclass 3 ... 43
20.1.3.1.1 Method 1: Reactions of Carboxylic Acids with Phosphorus Tribromide 43
20.1.3.1.2 Method 2: Reactions of Carboxylic Acids or Trialkylsilyl Carboxylate Esters with Dibromotriphenylenephosphorane 43
20.1.3.1.3 Method 3: Reactions of Carboxylic Acids with 1-Bromo-N,N,2-trimethylprop-1-en-1-amine .. 45
20.1.3.1.4 Method 4: Halide-Exchange Reactions of Acid Chlorides 46
20.1.3.1.5 Method 5: Oxidation of Aldehydes ... 47
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1.4</td>
<td>Product Subclass 4: Acid Iodides</td>
<td>47</td>
</tr>
<tr>
<td>20.1.4.1</td>
<td>Synthesis of Product Subclass 4</td>
<td>48</td>
</tr>
<tr>
<td>20.1.4.1.1</td>
<td>Method 1: Synthesis from Acid Chlorides</td>
<td>48</td>
</tr>
<tr>
<td>20.1.4.1.2</td>
<td>Method 2: Synthesis from Carboxylic Esters</td>
<td>49</td>
</tr>
<tr>
<td>20.2</td>
<td>Product Class 2: Carboxylic Acids</td>
<td></td>
</tr>
<tr>
<td>20.2.1</td>
<td>Product Subclass 1: Alkanoic Acids</td>
<td></td>
</tr>
<tr>
<td>20.2.1.1</td>
<td>Synthesis from Carbonic Acid Derivatives</td>
<td>53</td>
</tr>
<tr>
<td>20.2.1.1.1</td>
<td>Method 1: Reactions with Carbon Dioxide</td>
<td>53</td>
</tr>
<tr>
<td>20.2.1.1.1.1</td>
<td>Variation 1: Reactions with Unstabilized Organometallic Carbanions</td>
<td>54</td>
</tr>
<tr>
<td>20.2.1.1.1.2</td>
<td>Variation 2: Reactions with Benzylic Carbanions</td>
<td>58</td>
</tr>
<tr>
<td>20.2.1.1.1.3</td>
<td>Variation 3: Reactions with Allylic and Propargyl Carbanions</td>
<td>62</td>
</tr>
<tr>
<td>20.2.1.1.1.4</td>
<td>Variation 4: Reactions with (\alpha)-Heteroatom-Stabilized Carbanions</td>
<td>63</td>
</tr>
<tr>
<td>20.2.1.1.1.5</td>
<td>Variation 5: Electrochemical Carboxylations</td>
<td>66</td>
</tr>
<tr>
<td>20.2.1.1.1.6</td>
<td>Variation 6: Miscellaneous Carboxylations with Carbon Dioxide</td>
<td>69</td>
</tr>
<tr>
<td>20.2.1.2</td>
<td>Method 2: Use of Other Carbonic Acid Derivatives</td>
<td>70</td>
</tr>
<tr>
<td>20.2.1.2</td>
<td>Synthesis from Carboxylic Acid Derivatives</td>
<td></td>
</tr>
<tr>
<td>20.2.1.2.1</td>
<td>Method 1: Hydrolysis of Acid Halides</td>
<td>75</td>
</tr>
<tr>
<td>20.2.1.2.2</td>
<td>Method 2: Hydrolysis of Acid Anhydrides</td>
<td>76</td>
</tr>
<tr>
<td>20.2.1.2.3</td>
<td>Method 3: Hydrolysis of Esters</td>
<td>76</td>
</tr>
<tr>
<td>20.2.1.2.3.1</td>
<td>Variation 1: Base-Catalyzed Hydrolysis</td>
<td>76</td>
</tr>
<tr>
<td>20.2.1.2.3.2</td>
<td>Variation 2: Acid-Catalyzed Hydrolysis</td>
<td>78</td>
</tr>
<tr>
<td>20.2.1.2.3.3</td>
<td>Variation 3: Other Methods</td>
<td>79</td>
</tr>
<tr>
<td>20.2.1.2.4</td>
<td>Method 4: Hydrolysis of Amides</td>
<td>80</td>
</tr>
<tr>
<td>20.2.1.2.4.1</td>
<td>Variation 1: Base-Catalyzed Hydrolysis</td>
<td>80</td>
</tr>
<tr>
<td>20.2.1.2.4.2</td>
<td>Variation 2: Acid-Catalyzed Hydrolysis</td>
<td>81</td>
</tr>
<tr>
<td>20.2.1.2.5</td>
<td>Method 5: Hydrolysis of 2-Alkyl-4,5-dihydrooxazoles</td>
<td>81</td>
</tr>
<tr>
<td>20.2.1.2.6</td>
<td>Method 6: Hydrolysis of Nitriles</td>
<td>84</td>
</tr>
<tr>
<td>20.2.1.2.6.1</td>
<td>Variation 1: Base-Catalyzed Hydrolysis</td>
<td>84</td>
</tr>
<tr>
<td>20.2.1.2.6.2</td>
<td>Variation 2: Acid-Catalyzed Hydrolysis</td>
<td>85</td>
</tr>
<tr>
<td>20.2.1.2.7</td>
<td>Method 7: Hydrolysis of Ketenes</td>
<td>86</td>
</tr>
<tr>
<td>20.2.1.2.8</td>
<td>Method 8: Hydrolysis of Ketene Acetals</td>
<td>87</td>
</tr>
<tr>
<td>20.2.1.2.9</td>
<td>Method 9: Hydrolysis of 1-Heteroatom-Substituted Alkynes</td>
<td>88</td>
</tr>
<tr>
<td>20.2.1.2.9.1</td>
<td>Variation 1: Hydrolysis of 1-Haloalkynes</td>
<td>88</td>
</tr>
<tr>
<td>20.2.1.2.9.2</td>
<td>Variation 2: Hydrolysis of 1-Sulfanylalkynes</td>
<td>88</td>
</tr>
<tr>
<td>20.2.1.2.9.3</td>
<td>Variation 3: Hydrolysis of Alkynylbenzotriazoles</td>
<td>89</td>
</tr>
</tbody>
</table>
20.2.1.3 Synthesis from Aldehydes, Ketones, and Derivatives (Including Enol Ethers)
S. Lin, L. Yan, and P. Liu

20.2.1.3.1 Oxidation of Aldehydes

20.2.1.3.1.1 Method 1: Oxidation Using the Jones Reagent

20.2.1.3.1.2 Method 2: Oxidation Using Permanganate Salts

20.2.1.3.1.2.1 Variation 1: Using Solid-Supported Permanganate Salts

20.2.1.3.1.3 Method 3: Oxidation Using Silver(I) Oxide

20.2.1.3.1.4 Method 4: Oxidation Using Hydrogen Peroxide

20.2.1.3.1.5 Method 5: Oxidation Using Peroxy Acids

20.2.1.3.1.6 Method 6: Oxidation Using a Peroxide

20.2.1.3.1.7 Method 7: Oxidation Using Oxygen

20.2.1.3.1.8 Method 8: Oxidation Using Pyridinium Chlorochromate or Pyridinium Dichromate

20.2.1.3.1.9 Method 9: Oxidation Using Ruthenium(III) Chloride or Ruthenium(IV) Oxide and Sodium Periodate

20.2.1.3.1.10 Method 10: Oxidation Using Sodium Chlorite or Sodium Hypochlorite

20.2.1.3.1.10.1 Variation 1: Using Solid-Supported Chlorite Ion

20.2.1.3.1.11 Method 11: Oxidation Using Iodine or Bromine

20.2.1.3.1.12 Method 12: Oxidation Using Fuming Nitric Acid

20.2.1.3.1.13 Method 13: Oxidation Using Oxone

20.2.1.3.1.14 Method 14: Oxidation Using 1-Hydroxy-1,2-benziodoxol-3(1H)-one 1-Oxide

20.2.1.3.1.15 Method 15: Enzymatic Oxidation

20.2.1.3.2 Oxidation of Methyl Ketones

20.2.1.3.2.1 Method 1: Oxidation Using Halogens (Haloform Reactions)

20.2.1.3.2.1.1 Variation 1: Using Sodium Bromite

20.2.1.3.2.2 Method 2: Oxidation Using Rhenium(VII) Oxide and tert-Butyl Hydroperoxide

20.2.1.3.3 Oxidation of \(\alpha \)-Hydroxy Ketones

20.2.1.3.3.1 Method 1: Oxidation Using the Jones Reagent

20.2.1.3.3.2 Method 2: Oxidation Using Periodic Acid or a Periodate

20.2.1.3.3.3 Method 3: Oxidation Using Bismuth(III) Mandelate and Oxygen

20.2.1.3.3.4 Method 4: Oxidation Using a Bis(1,3-diketonato)nickel(II) Complex and Oxygen

20.2.1.3.3.5 Method 5: Oxidation Using a Peroxy Acid

20.2.1.3.4 Oxidation of \(\alpha \)-Oxo Ketones

20.2.1.3.4.1 Method 1: Oxidation Using Hydrogen Peroxide

20.2.1.3.4.1.1 Variation 1: Using Sodium Perborate

20.2.1.3.5 Oxidation of Aldehyde and Ketone Derivatives

20.2.1.3.5.1 Method 1: Oxidation of Acetals

20.2.1.3.5.2 Method 2: Oxidation of Enol Ethers

20.2.1.3.5.2.1 Variation 1: From O-Alkylated Enol Ethers

20.2.1.3.5.2.2 Variation 2: From O-Silylated Enol Ethers
20.2.1.4 Synthesis from Organic Halides
G. Evano

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.2.1.4.1</td>
<td>Carboxylation</td>
<td>137</td>
</tr>
<tr>
<td>20.2.1.4.1.1</td>
<td>Method 1: Acid-Catalyzed Carboxylation with Carbon Monoxide</td>
<td>137</td>
</tr>
<tr>
<td>20.2.1.4.1.2</td>
<td>Method 2: Transition-Metal-Catalyzed Carboxylation with Carbon Monoxide</td>
<td>138</td>
</tr>
<tr>
<td>20.2.1.4.1.2.1</td>
<td>Variation 1: Of Aryl Halides</td>
<td>138</td>
</tr>
<tr>
<td>20.2.1.4.1.2.2</td>
<td>Variation 2: Of Vinyl Halides</td>
<td>144</td>
</tr>
<tr>
<td>20.2.1.4.1.2.3</td>
<td>Variation 3: Of Benzyl Halides</td>
<td>147</td>
</tr>
<tr>
<td>20.2.1.4.1.2.4</td>
<td>Variation 4: Of Allyl Halides</td>
<td>150</td>
</tr>
<tr>
<td>20.2.1.4.1.2.5</td>
<td>Variation 5: Of Simple Alkyl Halides</td>
<td>151</td>
</tr>
<tr>
<td>20.2.1.4.1.3</td>
<td>Method 3: Carboxylation with Formate or Its Derivatives</td>
<td>152</td>
</tr>
<tr>
<td>20.2.1.4.2</td>
<td>Electrocarboxylation</td>
<td>154</td>
</tr>
<tr>
<td>20.2.1.4.2.1</td>
<td>Method 1: Electrocarboxylation with Carbon Dioxide</td>
<td>154</td>
</tr>
<tr>
<td>20.2.1.4.3</td>
<td>Metalation</td>
<td>157</td>
</tr>
<tr>
<td>20.2.1.4.3.1</td>
<td>Method 1: Metalation of an Organic Halide Followed by Carbon Dioxide Addition</td>
<td>157</td>
</tr>
<tr>
<td>20.2.1.4.3.1.1</td>
<td>Variation 1: Via Grignard Reagents</td>
<td>158</td>
</tr>
<tr>
<td>20.2.1.4.3.1.2</td>
<td>Variation 2: Via Organolithium Reagents</td>
<td>160</td>
</tr>
<tr>
<td>20.2.1.4.3.1.3</td>
<td>Variation 3: Via Other Organometallic Reagents</td>
<td>165</td>
</tr>
<tr>
<td>20.2.1.4.3.2</td>
<td>Method 2: Metalation of an Organic Halide Followed by a Ring-Opening Reaction with a Lactone</td>
<td>166</td>
</tr>
<tr>
<td>20.2.1.4.4</td>
<td>Miscellaneous Routes</td>
<td>168</td>
</tr>
<tr>
<td>20.2.1.4.4.1</td>
<td>Method 1: Coupling with Chloroform</td>
<td>168</td>
</tr>
<tr>
<td>20.2.1.4.4.2</td>
<td>Method 2: Reaction with Sodium Nitrite and Acetic Acid</td>
<td>169</td>
</tr>
</tbody>
</table>

20.2.1.5 Synthesis from Alcohols
B. Figadère and X. Franck

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.2.1.5</td>
<td>Synthesis from Alcohols</td>
<td>173</td>
</tr>
<tr>
<td>20.2.1.5.1</td>
<td>Synthesis by Oxidation Mediated by Metallic Salts</td>
<td>173</td>
</tr>
<tr>
<td>20.2.1.5.1.1</td>
<td>Method 1: Electrochemical Oxidation with Mercury and Oxygen</td>
<td>174</td>
</tr>
<tr>
<td>20.2.1.5.1.2</td>
<td>Method 2: Oxidation with a Copper(II) Complex and Hydrogen Peroxide</td>
<td>174</td>
</tr>
<tr>
<td>20.2.1.5.1.3</td>
<td>Method 3: Electrochemical Oxidation with Silver and Oxygen</td>
<td>175</td>
</tr>
<tr>
<td>20.2.1.5.1.4</td>
<td>Method 4: Oxidation with Gold on Carbon and Oxygen</td>
<td>176</td>
</tr>
<tr>
<td>20.2.1.5.1.5</td>
<td>Method 5: Oxidation with Nickel</td>
<td>176</td>
</tr>
<tr>
<td>20.2.1.5.1.5.1</td>
<td>Variation 1: With Nickel Peroxide</td>
<td>176</td>
</tr>
<tr>
<td>20.2.1.5.1.5.2</td>
<td>Variation 2: Electrochemical Oxidation with Nickel(II) Hydroxide</td>
<td>177</td>
</tr>
<tr>
<td>20.2.1.5.1.6</td>
<td>Method 6: Oxidation with Palladium</td>
<td>177</td>
</tr>
<tr>
<td>20.2.1.5.1.6.1</td>
<td>Variation 1: With Palladium on Carbon and Oxygen</td>
<td>177</td>
</tr>
<tr>
<td>20.2.1.5.1.6.2</td>
<td>Variation 2: With Palladium(II) and Oxygen</td>
<td>178</td>
</tr>
<tr>
<td>20.2.1.5.1.7</td>
<td>Method 7: Oxidation with Platinum on Carbon and Oxygen</td>
<td>179</td>
</tr>
<tr>
<td>20.2.1.5.1.8</td>
<td>Method 8: Oxidation with Cobalt</td>
<td>179</td>
</tr>
</tbody>
</table>
20.2.1.5.1.8.1 Variation 1: With Cobalt(II) and Hydrogen Peroxide 180
20.2.1.5.1.8.2 Variation 2: With a Heterogeneous Cobalt–Cerium–Ruthenium Catalyst 180
20.2.1.5.1.8.3 Variations 3: Miscellaneous Oxidations ... 181
20.2.1.5.1.9 Method 9: Oxidation with Ruthenium ... 181
20.2.1.5.1.9.1 Variation 1: With Ruthenium(III) Chloride and Sodium Periodate 181
20.2.1.5.1.9.2 Variation 2: With Ruthenium(III) Chloride and Potassium Persulfate 182
20.2.1.5.1.9.3 Variation 3: With Ruthenium(III) Chloride and Hydrogen Peroxide 182
20.2.1.5.1.9.4 Variation 4: With Ruthenium(III) Chloride and Trichloroisocyanuric Acid .. 183
20.2.1.5.1.9.5 Variation 5: Electrochemical Oxidation with Ruthenium(IV) Oxide 184
20.2.1.5.1.10 Method 10: Oxidation with Manganese ... 185
20.2.1.5.1.10.1 Variation 1: With Sodium Permanganate .. 185
20.2.1.5.1.10.2 Variation 2: With Copper(II) Permanganate ... 186
20.2.1.5.1.10.3 Variation 3: With Zinc(II) Permanganate .. 187
20.2.1.5.1.10.4 Variation 4: With Manganese(IV) Phosphate ... 187
20.2.1.5.1.10.5 Variation 5: Electrochemical Oxidation with Manganese(IV) Phosphate .. 189
20.2.1.5.1.11 Method 11: Oxidation with Chromium .. 190
20.2.1.5.1.11.1 Variation 1: With Chromium(VI) Oxide ... 190
20.2.1.5.1.11.2 Variation 2: With Potassium or Sodium Dichromate 190
20.2.1.5.1.11.3 Variation 3: With Pyridinium Dichromate ... 191
20.2.1.5.1.12 Method 12: Oxidation with Sodium Tungstate .. 191
20.2.1.5.1.13 Method 13: Oxidation with Ammonium Cerium(IV) Nitrate 191
20.2.1.5.1.14 Method 14: Oxidation with Polyoxometalates .. 191
20.2.1.5.2 Synthesis by Metal-Free Oxidation ... 192
20.2.1.5.2.1 Method 1: Oxidation with 2,2,6,6-Tetramethylpiperidin-1-oxyl 192
20.2.1.5.2.1.1 Variation 1: 2,2,6,6-Tetramethylpiperidin-1-oxyl with Sodium Hypochlorite 193
20.2.1.5.2.1.2 Variation 2: 2,2,6,6-Tetramethylpiperidin-1-oxyl with (Diacetoxyiodo)benzene ... 195
20.2.1.5.2.1.3 Variations 3: Miscellaneous Oxidations with 2,2,6,6-Tetramethylpiperidin-1-oxyl ... 196
20.2.1.5.2.2 Method 2: Oxidation with Hypervalent Iodine .. 196
20.2.1.5.2.2.1 Variation 1: Hypervalent Iodine(III) with Potassium Bromide 196
20.2.1.5.2.2.2 Variation 2: Hypervalent Iodine(V) .. 197
20.2.1.5.2.3 Methods 3: Miscellaneous Oxidations ... 198
20.2.1.5.2.3.1 Variation 1: Oxidation with Nitric Acid ... 198
20.2.1.5.2.3.2 Variation 2: Oxidation with Sodium Bromate ... 199
20.2.1.5.3 Synthesis by Biotransformations ... 200
20.2.1.5.3.1 Method 1: Oxidation with Enzymes ... 200
20.2.1.5.3.2 Method 2: Oxidation with Microorganisms .. 201

20.2.1.6 Synthesis from Alkenes
(Excluding Reactions with Carboxylic Acid Derivatives)
G. Evano

20.2.1.6 Synthesis from Alkenes
(Excluding Reactions with Carboxylic Acid Derivatives) ... 205
20.2.1.6.1 Method 1: Oxidative C=C Bond Cleavage .. 205
20.2.1.6.1.1 Variation 1: Using Ozone .. 205
20.2.1.8.2.2 Variation 2: \(\omega \)-Alkynoic Acids and Aromatic Acids by Addition–Elimination 269
20.2.1.8.3 Method 3: Synthesis by Conjugate Addition 273
20.2.1.8.3.1 Variation 1: Asymmetric Conjugate Addition 273
20.2.1.8.3.2 Variation 2: Stereospecific Conjugate Addition 274
20.2.1.8.4 Method 4: Synthesis by Cycloaddition .. 275
20.2.1.8.4.1 Variation 1: Diels–Alder Reaction ... 275
20.2.1.8.4.2 Variation 2: Tandem Ene/Intramolecular Diels–Alder Reaction 277
20.2.1.8.4.3 Variation 3: Asymmetric Diels–Alder Reaction 277
20.2.1.8.4.4 Method 5: Synthesis by Homologation 278
20.2.1.8.4.5 Variation 1: Homologation by One Carbon Atom 278
20.2.1.8.4.6 Variation 2: Homologation by Multiple Carbon Atoms 279
20.2.1.8.5 Method 6: Synthesis by Cycloaddition ... 281
20.2.1.8.5.1 Variation 1: Diels–Alder Reaction ... 281
20.2.1.8.5.2 Variation 2: Tandem Ene/Intramolecular Diels–Alder Reaction 284
20.2.1.8.5.3 Variation 3: Asymmetric Diels–Alder Reaction 284
20.2.1.8.6 Method 7: Synthesis by Homologation .. 286
20.2.1.8.6.1 Variation 1: Homologation by One Carbon Atom 286
20.2.1.8.6.2 Variation 2: Regioselective Hydrogenation 287
20.2.1.8.6.3 Variation 3: Diastereoselective Hydrogenation 287
20.2.1.8.6.4 Variation 4: Asymmetric Hydrogenation 288
20.2.1.8.7 Method 8: Synthesis by Oxidation ... 289
20.2.1.8.7.1 Variation 1: Aromatization ... 289
20.2.1.8.7.2 Variation 2: Oxidative Cleavage of Unsaturated Carboxylic Acids 290
20.2.1.8.7.3 Variation 3: Oxidative Dimerization of Carboxylic Acids 290
20.2.1.8.8 Method 9: Synthesis by Reduction ... 291
20.2.1.8.8.1 Variation 1: Hydroboration Reactions 291
20.2.1.8.8.2 Variation 2: Birch Reduction ... 292
20.2.1.8.8.3 Method 10: Synthesis by Wittig Reaction 293
20.2.1.8.8.4 Method 11: Synthesis by Resolution .. 294
20.2.1.8.9.1 Variation 1: Chemical Resolution .. 294
20.2.1.8.9.2 Variation 2: Enzymatic Resolution .. 297
20.2.1.8.10 Methods 12: Miscellaneous Reactions 298
20.2.1.8.10.1 Variation 1: Functional Group Transformation 298
20.2.1.8.10.2 Variation 2: Transcarboxylation .. 298
20.2.1.8.10.3 Variation 3: Ring-Closing Metathesis 299
20.2.1.8.10.4 Variation 4: Barton’s Radical Decarboxylation 300
20.2.1.8.10.5 Variation 5: The Kolbe Reaction .. 301
20.2.1.8.10.6 Variation 6: Reactions on Solid Support 301

20.2.2 **Product Subclass 2: Arenedicarboxylic Acids**
L. R. Subramanian

20.2.2 **Product Subclass 2: Arenedicarboxylic Acids** .. 307
20.2.2.1 Synthesis of Product Subclass 2 .. 307
20.2.2.1.1 Method 1: Carboxylation Using Carbon Tetrachloride and Copper Powder with Cyclodextrin as Catalyst 307
20.2.2.1.2 Method 2: Carboxylation Using Carbon Dioxide 309
20.2.2.1.3 Method 3: Synthesis by Carboxylation of Aryl Halides 310
Product Subclass 3: Butenedioic and Butynedioic Acids
C. E. Masse

Product Subclass 4: Alkanedioic Acids
C. E. Masse
20.2.4.1.4 Method 4: Malonic Acids by Nucleophilic Acyl Substitution 340
20.2.4.1.4.1 Variation 1: Microwave Hydrolysis of Meldrum’s Acid Derivatives 340
20.2.4.1.4.2 Variation 2: Phenolysis of Meldrum’s Acid .. 341
20.2.4.1.4.3 Variation 3: Alcoholysis of Meldrum’s Acid with tert-Butyl Alcohol 342
20.2.4.1.4.4 Variation 4: Using Silicon Nucleophiles .. 342
20.2.4.1.5 Method 5: Malonic Acids by Acylation of Acetic Acid Derivatives 344
20.2.4.1.5.1 Variation 1: From Lithio Dianions of Acetic Acid 344
20.2.4.1.6 Method 6: Succinic Acids by Oxidative Coupling of Carboxylate Dianions 345
20.2.4.1.6.1 Variation 1: Cross Coupling with Lithium α-Halocarboxylates 345
20.2.4.1.6.2 Variation 2: Homocouplings Mediated by Iodine 346
20.2.4.1.7 Method 7: Succinic Acid by Hydrolysis of Succinic Anhydride 346
20.2.4.1.8 Method 8: Succinic Acids by Oxidative Protocols 347
20.2.4.1.8.1 Variation 1: From Lactones .. 347
20.2.4.1.8.2 Variation 2: From Nitroalkanes ... 348
20.2.4.1.8.3 Variation 3: From Cyclobutanones ... 348
20.2.4.1.8.4 Variation 4: From Dihalocyclobutanones ... 349
20.2.4.1.8.5 Variation 5: From Halocyclobutenes ... 350
20.2.4.1.9 Method 9: Succinic Acids by Allylic Alkylation 351
20.2.4.1.9.1 Variation 1: From Chiral Allylic Carbonates 351

20.2.5 Product Subclass 5: 2-Oxo- and 2-Imino-Substituted Alkanoic Acids
J. A. Westbrook and S. E. Schaus

20.2.5 Product Subclass 5: 2-Oxo- and 2-Imino-Substituted Alkanoic Acids 355
20.2.5.1 Synthesis of Product Subclass 5 ... 355
20.2.5.1.1 Method 1: Synthesis by Hydrolysis ... 355
20.2.5.1.1.1 Variation 1: 2-Oxo and 2-(Oxyimino) Acids by Hydrolysis of the Corresponding Esters .. 355
20.2.5.1.1.2 Variation 2: α-Oxo Acids by Hydrolysis of Acyl Cyanides 358
20.2.5.1.1.3 Variation 3: 3-Aryl-2-oxopropanoic Acids by Hydrolysis of 4-(Arylmethylene)oxazol-5(4H)-ones ... 359
20.2.5.1.1.4 Variation 4: Aryl(oxo)acetic Acids by Hydrolysis of Indole-2,3-diones 360
20.2.5.1.1.5 Variation 5: α-Oxo Acids by Acid Hydrolysis of 2-Hydroxymorpholin-3-ones ... 361
20.2.5.1.2 Method 2: Synthesis by Oxidation ... 361
20.2.5.1.2.1 Variation 1: α-Oxo Acids by Oxidation of α-Amino or α-Hydroxy Acids 361
20.2.5.1.2.2 Variation 2: α-Oxo Acids by Oxidation of Methyl Ketones 362
20.2.5.1.2.3 Variation 3: Aryl(oxo)acetic Acids by Oxidation of 1-Aryl-2-nitroethanols 363
20.2.5.1.2.4 Variation 4: α-Oxo Acids by Oxidation of α-Sulfanyl Esters 364
20.2.5.1.2.5 Variation 5: α-Oxo Acids by Oxidative Cleavage of 2-Alkylidene-Substituted Carboxylic Acids 364
20.2.5.1.3 Method 3: Friedel–Crafts Acylation .. 365
20.2.5.1.3.1 Variation 1: Hetaryl(oxo)acetic Acids by Acylation of Hetarenes 365
20.2.5.1.3.2 Variation 2: Oxo(phenyl)acetic Acids by Acylation of Benzenes 365
20.2.5.1.4 Method 4: Aldol Condensations between Pyruvic Acid and Benzaldehydes 366
20.2.6 Product Subclass 6: 2,2-Diheteroatom-Substituted Alkanoic Acids
J. A. Westbrook and S. E. Schaus

20.2.6.1 Synthesis of Product Subclass 6 371

20.2.6.1.1 Method 1: Synthesis by Hydrolysis 371

20.2.6.1.1.1 Variation 1: Hydrolysis of 2,2-Diheteroatom-Substituted Esters 371

20.2.6.1.1.2 Variation 2: Hydrolysis of 2,2-Diheteroatom-Substituted Amides 373

20.2.6.1.1.3 Variation 3: Hydrolysis of a 2,2-Diheteroatom-Substituted Thioester 374

20.2.6.1.1.4 Variation 4: Hydrolysis of Thiazoles 375

20.2.6.1.1.5 Variation 5: Hydrolysis of 2,2-Dihalo Acid Halides 375

20.2.6.1.2 Method 2: Synthesis by Oxidation 376

20.2.6.1.2.1 Variation 1: Oxidation of \(\alpha \)-Hydroxycarboxylic Acids 376

20.2.6.1.2.2 Variation 2: Oxidation of 2,2-Diheteroatom-Substituted Aldehydes 376

20.2.6.1.2.3 Variation 3: Oxidation of 2,2-Dihaloalkan-1-ols 377

20.2.6.1.2.4 Variation 4: Oxidative Cleavage of an Alkynol 378

20.2.6.1.3 Method 3: Synthesis by Addition 378

20.2.6.1.3.1 Variation 1: Addition to \(\alpha \)-Oxo or \(\alpha \)-Hydrazono Acids 378

20.2.6.1.3.2 Variation 2: Addition of the Carboxy Group to Dithioates 380

20.2.6.1.3.3 Variation 3: Addition to an \(\alpha,\beta \)-Unsaturated Carboxylic Acid 380

20.2.6.1.4 Method 4: Sigmatropic Rearrangement of Allyl Trihaloacetates 381

20.2.6.1.5 Method 5: Nucleophilic Substitution at the \(\alpha \)-Carbon of 2,2-Diheteroatom-Substituted Acetic Acids 382

20.2.7 Product Subclass 7: 2-Aminoalkanoic Acids (\(\alpha \)-Amino Acids)
S. E. Wolkenberg and R. M. Garbaccio

20.2.7.1 Synthesis of Product Subclass 7 385

20.2.7.1.1 \(\alpha,\beta \)-Didehydroamino Acids 385

20.2.7.1.1.1 Synthesis of \(\alpha,\beta \)-Didehydroamino Acids through Elimination 385

20.2.7.1.1.1.1 Method 1: Acetamide Condensation with \(\alpha \)-Oxo Acids 385

20.2.7.1.2 \(\alpha \)-Aminoalkanoic Acids .. 386

20.2.7.1.2.1 Introduction of the Side Chain: Alkylation of Glycine and Related Enolates 386

20.2.7.1.2.1.1 Method 1: Alkylation of Chiral Cyclic Enolates 386

20.2.7.1.2.1.1.1 Variation 1: Alkylation of Chiral Oxazinones 386

20.2.7.1.2.1.1.2 Variation 2: Alkylation of Chiral Imidazolidinones 388

20.2.7.1.2.1.1.3 Variation 3: Alkylation of Transition-Metal Complexes 389

20.2.7.1.2.1.2 Method 2: Alkylation of Chiral Acyclic Schiff Bases 390

20.2.7.1.2.1.2.1 Variation 1: Alkylation of Chiral \(\text{trans-Pyrrolidine Amides} \) 390

20.2.7.1.2.1.2.2 Variation 2: Alkylation of Chiral Acyloxazolidinones 391

20.2.7.1.2.2 Introduction of the Side Chain: Addition to Glycine Cations 392

20.2.7.1.2.2.1 Method 1: Alkylation of Cyclic Imines 393
20.2.71.2.3 Introduction of the \(\alpha\)-Amino Group: Nucleophilic Addition of Nitrogen to Electrophiles .. 395

20.2.71.2.3.1 Method 1: Intermolecular Nucleophilic Addition to Chiral Epoxides 395

20.2.71.2.3.1.1 Variation 1: Nucleophilic Amination of \(\alpha,\beta\)-Epoxy Acids Using Ammonia 395

20.2.71.2.3.1.2 Variation 2: Nucleophilic Amination of 2,3-Epoxy Alcohols Using Diazidotitanium(IV) Diisopropoxide ... 396

20.2.71.2.3.2 Method 2: Intramolecular Nucleophilic Addition to Epoxides 396

20.2.71.2.3.2.1 Variation 1: Intramolecular Nucleophilic Nitrogen Addition to Epoxides To Generate Cyclic Carbamates 397

20.2.71.2.3.2.2 Variation 2: Intramolecular Nucleophilic Addition to Epoxides Using Trichloroacetimidate ... 398

20.2.71.2.3.3 Method 3: Nucleophilic Displacement of Halides 399

20.2.71.2.3.4 Method 4: Using Azide via Chiral (Trichloromethyl)methanols 400

20.2.71.2.4 Introduction of the \(\alpha\)-Amino Group: Electrophilic Amination of Enolates 401

20.2.71.2.4.1 Method 1: Electrophilic Amination of Chiral Enolates Using Azodicarboxylates ... 401

20.2.71.2.4.1.1 Variation 1: Electrophilic Amination of Chiral Silyl Enol Ethers with Azodicarboxylates ... 403

20.2.71.2.4.1.2 Variation 2: Direct Amination of Enolates with Azodicarboxylates 404

20.2.71.2.4.2 Method 2: Electrophilic Amination of Chiral Enolates Using Sulfonyl Azides .. 405

20.2.71.2.4.3 Method 3: Electrophilic Amination of Enolates Using a Chiral Catalyst and Azodicarboxylate .. 406

20.2.71.2.4.4 Method 4: Electrophilic Amination of Enolates Using 1-Chloro-1-nitrosocyclohexane ... 407

20.2.71.2.5 Introduction of the Nitrogen: Reductive Amination 409

20.2.71.2.5.1 Method 1: Rhodium(I)-Catalyzed Asymmetric Reductive Amination of \(\alpha\)-Oxo Acids .. 409

20.2.71.2.5.2 Method 2: Chiral Pyridoxamine Promoted Asymmetric Reductive Amination of \(\alpha\)-Oxo Acids .. 410

20.2.71.2.6 Asymmetric Hydrogenation of \(\alpha,\beta\)-Didehydroamino Acids Using Homogeneous Catalysis .. 410

20.2.71.2.7 Introduction of the \(\alpha\)-Hydrogen: Asymmetric Hydrogenation of \(\alpha,\beta\)-Didehydroamino Acids Using Heterogeneous Catalysts 411

20.2.71.2.7.1 Method 1: Asymmetric Reduction of Hydrazono Lactones Based on Chiral N-Aminodihydroindoles ... 411

20.2.71.2.7.2 Method 2: Asymmetric Hydrogenation of Dehydropiperazinediones 412

20.2.71.2.7.3 Method 3: Asymmetric Hydrogenation Using Pinene-Based Cyclic Imino Esters as Templates ... 413

20.2.71.2.8 Introduction of the Carboxylate: Catalytic Asymmetric Addition of Nitriles to Imines (Strecker and Ugi Syntheses) 414

20.2.71.2.8.1 Method 1: Chiral Salicylamine Catalyzed Strecker Reaction 415

20.2.71.2.8.2 Method 2: Chiral Salicylamine–Titanium Complex Catalyzed Strecker Synthesis ... 416

20.2.71.2.8.3 Method 3: Chiral Guanidine Catalyzed Strecker Synthesis 418
Table of Contents

20.7.1.2.8.4 Method 4: Addition of Cyanide to Chiral Sulfonimidines .. 419
20.7.1.2.8.5 Method 5: Carbohydrate Templates for Asymmetric Streater Synthesis 420
20.7.1.2.8.6 Method 6: 5-Amino-1,3-dioxanes as Chiral Auxiliaries ... 421
20.7.1.2.8.7 Method 7: α-Arylethylamines as Chiral Auxiliaries .. 422
20.7.1.2.8.8 Method 8: α-Arylethylamines as Chiral Auxiliaries .. 423
20.7.1.2.8.9 Method 9: Asymmetric Addition of Isocyanide to Imines (Ugi Synthesis) 424
20.7.1.2.9 Method 1: Copper-Catalyzed Alkylation of Imines .. 427
20.7.1.2.9.1 Method 2: Asymmetric Addition to Chiral Oximes .. 429
20.7.1.2.9.3 Method 3: Asymmetric Addition to Camphorsultam-Based Oximes 430
20.7.1.2.9.4 Method 4: [2 + 2] Cycloaddition and the β-Lactam Route to Amino Acids 430
20.7.1.2.10 Method 1: Photolysis of Chromium–Carbene Complexes .. 431
20.7.1.2.10.1 Method 1: Photolysis of Chromium–Carbene Complexes .. 431
20.7.1.2.10.2 Method 2: Intramolecular Amidomercuration ... 432
20.7.1.2.10.3 Method 3: Diastereoselective Michael Additon to Nitroalkenes 433
20.7.1.2.10.4 Method 4: Rearrangement of Allylic Trichloroacetimidates .. 435
20.7.1.2.10.4.1 Variation 1: Thermal Rearrangement of Allylic Trichloroacetimidates on a Chiral Template .. 435
20.7.1.2.10.4.2 Variation 2: Diastereoselective Palladium-Catalyzed Rearrangement of Allylic Trichloroacetimidates .. 436
20.7.1.2.11 Method 1: Copper-Catalyzed Alkylation of Imines .. 427
20.7.1.2.11.1 Method 1: Ester Enolate Claisen Rearranagement .. 437
20.7.1.2.11.1 Variation 1: Diastereoselective Ester Enolate Claisen Rearrangment 437
20.7.1.2.11.2 Variation 2: Enantioselective Ester Enolate Claisen Rearrangment 438
20.7.1.2.12 Method 1: Photolysis of Chromium–Carbene Complexes .. 439
20.7.1.2.12.1 Method 1: Photolysis of Chromium–Carbene Complexes .. 439
20.7.1.3 α-Alkyl-α-aminoalkanoic Acids .. 440
20.7.1.3.1 Method 1: Alkylation of cis- and trans-Imidazolidinones ... 441
20.7.1.3.2 Method 2: Alkylation of cis- and trans-Oxazolidinones .. 443
20.7.1.3.2.1 Variation 1: Alkylation of tert-Butyloxazolidinones ... 443
20.7.1.3.2.2 Variation 2: Alkylation of Aryloxazolidinones ... 444
20.7.1.3.3 Method 3: Alkylation of Oxazolidinones, Thiazolidinones, and Pyrroloindoles 446
20.7.1.3.4 Method 4: Alkylation of OXazaboolizinones ... 447
20.7.1.3.5 Method 5: Alkylation of Chiral Borane–Amine Adducts .. 449
20.7.1.3.6 Method 6: Memory of Chirality Alkylation ... 450
20.7.1.3.2 Method 1: Alkylation of Dihydroimidazol-4-ones ... 451
20.7.1.3.2.2 Method 2: Oxazinone Alkylation .. 453
20.7.1.3.2.2.1 Variation 1: 5,6-Diphenyltetrahydro-1,4-oxazin-2-one Alkylation 453
20.7.1.3.2.2.2 Variation 2: 3,6-Dihydro-2H-1,4-oxazin-2-one Alkylation .. 454
20.7.1.3.3 Method 3: Alkylation of Chiral Nickel Complexes .. 455
20.7.1.3.4 Method 4: Alkylation of Menthol Derivatives ... 455
20.2.7.1.3.3 Introduction of the Side Chain: Chiral β-Lactams as Building Blocks 457
20.2.7.1.3.3.1 Method 1: Alkylation at C3 of a Chiral β-Lactam 458
20.2.7.1.3.3.2 Method 2: Alkylation at the α-Carbon of a Chiral β-Lactam 459
20.2.7.1.3.4 Introduction of the Side Chain: Reductive Methods 461
20.2.7.1.3.4.1 Method 1: Stereoselective Birch Reduction of Chiral Pyrrole-2-carboxylates ... 461
20.2.7.1.3.5 Introduction of the Side Chain: Addition to C= N Bonds 462
20.2.7.1.3.5.1 Method 1: Addition of Grignard Reagents to Chiral Dehydro- morpholinones ... 462
20.2.7.1.3.5.2 Method 2: Addition to Chiral Sulfinimines 462
20.2.7.1.3.6 Introduction of the Side Chain: Cycloaddition to C=C Bonds 463
20.2.7.1.3.6.1 Method 1: Diels–Alder Cycloadditions 463
20.2.7.1.3.6.2 Method 2: Cyclopropanation ... 464
20.2.7.1.3.6.3 Method 3: [3 + 2]-Dipolar Cycloaddition Reactions 465
20.2.7.1.3.7 Introduction of the Carboxylate: Addition of Nitrile or α-Bromo Ester Enolates to Imines (Strecker and Darzens Syntheses) 466
20.2.7.1.3.7.1 Method 1: Chiral Salicylamine-Based Strecker Synthesis 466
20.2.7.1.3.7.2 Method 2: Sulfinimine-Mediated Strecker Synthesis 467
20.2.7.1.3.7.3 Method 3: Chiral Dioxane-Based Strecker Synthesis 468
20.2.7.1.3.7.4 Method 4: 1-Phenylethylamine-Based Strecker Synthesis 469
20.2.7.1.3.7.5 Method 5: Morpholinone-Based Strecker Synthesis 470
20.2.7.1.3.7.6 Method 6: Darzens Condensation of α-Bromo Ester Enolates with Sulfinimines ... 471
20.2.7.1.3.8 Introduction of the Nitrogen and Carboxylate Groups 472
20.2.7.1.3.8.1 Method 1: Spirohydantoins of Ketones (Bucherer–Bergs Reaction) 472
20.2.7.1.3.9 Introduction of the Side Chain: Sigmatropic Rearrangements 473
20.2.7.1.3.9.1 Method 1: Claisen Rearrangement 473
20.2.7.1.3.10 Introduction of the α-Amino Group: Rearrangement of α,α-Dialkyl-β-carbonyl Carboxylic Acids and Sigmatropic Rearrangements 474
20.2.7.1.3.10.1 Method 1: Rearrangement of Allylic Trichloroacetimidates 474
20.2.7.1.3.10.2 Method 2: Curtius Rearrangement of α,α-Dialkyl β-Ester Carboxylic Acids 475
20.2.7.1.3.10.3 Method 3: Hofmann Rearrangement of α,α-Dialkyl β-Amido Esters 476
20.2.8 Product Subclass 8: 2-Heteroatom-Substituted Alkanoic Acids

S. R. Chemler and T. P. Zabawa

20.2.8 Product Subclass 8: 2-Heteroatom-Substituted Alkanoic Acids 483
20.2.8.1 Synthesis of Product Subclass 8 .. 483
20.2.8.1.1 2-Haloalkanoic Acids ... 483
20.2.8.1.1.1 2-Fluoroalkanoic Acids .. 483
20.2.8.1.1.1 Method 1: Deaminative Fluorination (Fluorodediazoniation) of Chiral α-Amino Acids ... 484
Method 2: Electrophilic Fluorination with Acetyl Hypofluorite 485
Method 3: Enantioselective Hydrogenation of α-Fluoro-α,β-unsaturated Acids 485
Method 2: Deaminative Chlorination (Chloroamide) of α-Amino Acids 487
Method 2: Deaminative Bromination (Bromodediazoniation) of Chiral α-Amino Acids 489
Method 2: Catalytic Enantioselective Hydrogenation of 2-(Aryloxy)but-2-enoic Acids 496
Product Subclass 9: Alk-2-ynoic Acids
G. Evano

Synthesis of Product Subclass 9 .. 507

Method 1: Oxidation of Propargylic Alcohols or Aldehydes 507
Variation 1: Oxidation of Propargylic Alcohols 507
Variation 2: Oxidation of Conjugated Ynals or Synthetic Equivalents 510
Method 2: Carboxylation of Metalated Alk-1-ynes 511
Variation 1: Carboxylation of Alk-1-ynes 511
Variation 2: Carboxylation of 1,1-Dibromoalkenes 516
Variation 3: Carboxylation of 1-Haloalkenes 517
Method 3: Hydrolysis of Alk-2-ynoic Acid Esters 518
Method 4: Bromination/Dehydrobromination of Alk-2-enoic Acids 519
Variation 1: Coupling of Alk-1-ynes with Bromopropynoic Acid (Cadiot–Chodkiewicz Reaction) 521
Variation 2: Coupling of Haloarenes with Propynoic Acid 522
Variation 3: Addition of Metalated Propynoic Acid to Electrophiles ... 525

Product Subclass 10: Arenecarboxylic Acids
T. P. Yoon and E. N. Jacobsen

Synthesis of Product Subclass 10 ... 533
Method 1: Electrophilic Aromatic Substitution 533
Variation 1: Friedel–Crafts Carboxylation 533
Variation 2: Kolbe–Schmitt Reaction 534
Variation 3: Carboxylation of Phenols by Carbon Tetrachloride 535
Method 2: Palladium-Mediated C—H Activation and Carboxylation 535
Method 3: Oxidative Degradation 536
Variation 1: Oxidation of Alkyl Substituents 536
Variation 2: Oxidation of Aryl Ketones 537
Method 4: Carboxylation of Arylmetal Species 538
Variation 1: Simple Metalation .. 538
Variation 2: Directed ortho-Metalation 539
Variation 3: Reductive Metalation of Haloarenes 540
Variation 4: Lithium–Halogen Exchange 540
Method 5: Base-Promoted Cleavage of Diaryl Ketones 541
Method 6: Substitution of Halogen 542
Variation 1: Metal-Catalyzed Carboxylation of Haloarenes 542
Variation 2: Cyanation/Hydrolysis of Haloarenes 543
Method 7: Carboxylation of Arenediazonium Salts 544
Method 8: Addition to Benzyne Intermediates 544
Method 9: The von Richter Rearrangement 545
Method 10: Metalation/Alkylation of Arene Carboxylates 545
20.2.10.1.1 Variation 1: *ortho*-Lithiation of Arene Carboxylates 545
20.2.10.1.2 Variation 2: Lithiation of *ortho*-Alkyl Substituents of Arene Carboxylic Acids 546
20.2.10.1.11 Method 11: *S*__N*Ar Reaction of 2-(Methoxyaryl)dihydrooxazoles 547

20.2.11 **Product Subclass 11: Alk-2-enoic Acids**
C. D. Vanderwal and E. N. Jacobsen

20.2.11 **Product Subclass 11: Alk-2-enoic Acids** ... 551
20.2.11.1 Synthesis of Product Subclass 11 ... 551
20.2.11.1.1 Method 1: Carboxylation of Alkenyl Organometallics 551
20.2.11.1.1 Variation 1: Metation/Carboxylation of Alkenyl Ethers, Carbamates,
and Sulfides .. 551
20.2.11.1.2 Variation 2: Reductive Metation/Carboxylation of Haloalkenes 552
20.2.11.1.3 Variation 3: Reductive Carboxylation of Alkynes 553
20.2.11.1.4 Variation 4: Carbometalation/Carboxylation of Alkynes 554
20.2.11.1.5 Variation 5: Palladium-Catalyzed Hydroxycarbonylation of Alkenyl
Electrophiles ... 555
20.2.11.1.2 Method 2: Elimination Reactions ... 556
20.2.11.1.2.1 Variation 1: Elimination from β-Heteroatom-Substituted Alkanoic Acids 556
20.2.11.1.2.2 Variation 2: Reductive Elimination of Vicinal Heteroatom Substituents ... 557
20.2.11.1.3 Variation 3: Haloform Reaction of Alkenyl Methyl Ketones 558
20.2.11.1.3 Method 3: Carboxyl Alkenations ... 558
20.2.11.1.3.1 Variation 1: Knoevenagel–Doebner Condensation 558
20.2.11.1.3.2 Variation 2: Perkin Reaction ... 559
20.2.11.1.3.3 Variation 3: Wittig Reaction ... 560
20.2.11.1.3.4 Variation 4: Horner–Wadsworth–Emmons Reaction 560
20.2.11.1.3.5 Variation 5: Peterson Reaction .. 561
20.2.11.1.3.6 Variation 6: Alkenation of α-Oxo Acids ... 562
20.2.11.1.4 Method 4: Reduction of Alk-1-ynoic Acids ... 562
20.2.11.1.5 Method 5: Cycloaddition of Alkynoic Acids ... 563
20.2.11.1.6 Method 6: Palladium-Catalyzed Cross Coupling to β-Halogen-Substituted
Alk-2-enoic Acids ... 564
20.2.11.1.7 Method 7: Heck Reaction .. 564
20.2.11.1.8 Method 8: Alkene Metathesis .. 565

20.2.12 **Product Subclass 12: 3-Oxoalkanoic and 3,3-Dioxyalkanoic Acids**
J. Beignet

20.2.12 **Product Subclass 12: 3-Oxoalkanoic and 3,3-Dioxyalkanoic Acids** 569
20.2.12.1 Synthesis of Product Subclass 12 ... 569
20.2.12.1.1 3-Oxoalkanoic Acids ... 569
20.2.12.1.1.1 Method 1: Acylation of Bis(trimethylsilyl) Malonate 569
20.2.12.1.1.1 Variation 1: Use of the Lithium Enolate of Bis(trimethylsilyl) Malonate 569
20.2.12.1.1.2 Variation 2: Use of Triethylamine and Metal Salts 570
20.2.12.1.1.2 Method 2: Carboxylation of Methyl Ketones 571
20.2.12.1.1.1 Variation 1: Use of Magnesium Methyl Carbonate 571
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.2.12.1.2.2</td>
<td>Variation 2: Use of Carbon Dioxide</td>
<td>572</td>
</tr>
<tr>
<td>20.2.12.1.3</td>
<td>Method 3: Acylation of Trimethylsilyl Acetate</td>
<td>572</td>
</tr>
<tr>
<td>20.2.12.1.4</td>
<td>Method 4: Electrocarboxylation of Chloroacetone</td>
<td>573</td>
</tr>
<tr>
<td>20.2.12.1.5</td>
<td>Method 5: Electrocarboxylation of Vinyl Trifluoromethanesulfonates</td>
<td>574</td>
</tr>
<tr>
<td>20.2.12.1.6</td>
<td>Method 6: Hydration of Alk-2-ynoic Acids</td>
<td>575</td>
</tr>
<tr>
<td>20.2.12.1.2</td>
<td>3,3-Dioxyalkanoic Acids</td>
<td>575</td>
</tr>
<tr>
<td>20.2.12.1.2.1</td>
<td>Method 1: Hydroxyacylation and Oxidation of Alkenes</td>
<td>575</td>
</tr>
<tr>
<td>20.2.13</td>
<td>Product Subclass 13: 3-Heteroatom-Substituted Alkanoic Acids</td>
<td>579</td>
</tr>
<tr>
<td>20.2.13.1</td>
<td>Synthesis of Product Subclass 13</td>
<td>579</td>
</tr>
<tr>
<td>20.2.13.1.1</td>
<td>3-Haloalkanoic Acids</td>
<td>579</td>
</tr>
<tr>
<td>20.2.13.1.1.1</td>
<td>Method 1: Nucleophilic Substitutions</td>
<td>579</td>
</tr>
<tr>
<td>20.2.13.1.1.2</td>
<td>Method 2: Ring-Opening Reactions</td>
<td>580</td>
</tr>
<tr>
<td>20.2.13.1.1.2.1</td>
<td>Variation 1: Ring Opening of Lactones</td>
<td>580</td>
</tr>
<tr>
<td>20.2.13.1.1.2.2</td>
<td>Variation 2: Ring Opening of Epoxides</td>
<td>580</td>
</tr>
<tr>
<td>20.2.13.1.1.3</td>
<td>Method 3: Oxidation Reactions</td>
<td>582</td>
</tr>
<tr>
<td>20.2.13.1.1.4</td>
<td>Methods 4: Miscellaneous Reactions</td>
<td>582</td>
</tr>
<tr>
<td>20.2.13.1.2</td>
<td>3-Hydroxy- and 3-Sulfanylalkanoic Acids and Derivatives</td>
<td>584</td>
</tr>
<tr>
<td>20.2.13.1.2.1</td>
<td>Method 1: Addition to (\alpha,\beta)-Unsaturated Compounds</td>
<td>584</td>
</tr>
<tr>
<td>20.2.13.1.2.2</td>
<td>Method 2: Ring Opening of Cyclic Precursors</td>
<td>584</td>
</tr>
<tr>
<td>20.2.13.1.2.2.1</td>
<td>Variation 1: Ring Opening of Lactones</td>
<td>584</td>
</tr>
<tr>
<td>20.2.13.1.2.2.2</td>
<td>Variation 2: Ring Opening of Heterocyclic Compounds</td>
<td>586</td>
</tr>
<tr>
<td>20.2.13.1.2.3</td>
<td>Method 3: Selective Reduction of Dicarbonyl Compounds</td>
<td>588</td>
</tr>
<tr>
<td>20.2.13.1.2.4</td>
<td>Method 4: Oxidation Reactions</td>
<td>589</td>
</tr>
<tr>
<td>20.2.13.1.2.5</td>
<td>Method 5: Carboxylation Reactions</td>
<td>591</td>
</tr>
<tr>
<td>20.2.13.1.2.6</td>
<td>Methods 6: Miscellaneous Reactions</td>
<td>593</td>
</tr>
<tr>
<td>20.2.13.1.3</td>
<td>3-Amino- and 3-Phosphorus-Substituted Alkanoic Acids and Derivatives</td>
<td>593</td>
</tr>
<tr>
<td>20.2.13.1.3.1</td>
<td>Method 1: Addition to (\alpha,\beta)-Unsaturated Acids</td>
<td>593</td>
</tr>
<tr>
<td>20.2.13.1.3.2</td>
<td>Method 2: Ring Opening of Cyclic Precursors</td>
<td>597</td>
</tr>
<tr>
<td>20.2.13.1.3.3</td>
<td>Methods 3: Miscellaneous Reactions</td>
<td>600</td>
</tr>
<tr>
<td>20.3</td>
<td>Product Class 3: Carboxylic Acid Salts</td>
<td>605</td>
</tr>
<tr>
<td>20.3.1</td>
<td>Product Subclass 1: Group 1 Metal Carboxylic Acid Salts</td>
<td>607</td>
</tr>
<tr>
<td>20.3.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td>607</td>
</tr>
<tr>
<td>20.3.1.1.1</td>
<td>Method 1: Deprotonation of Carboxylic Acids</td>
<td>607</td>
</tr>
<tr>
<td>20.3.1.1.2</td>
<td>Method 2: Saponification of Esters</td>
<td>608</td>
</tr>
</tbody>
</table>
20.3.2 Product Subclass 2: Non-Group 1 Metal Carboxylic Acid Salts .. 610
20.3.2.1 Synthesis of Product Subclass 2 .. 610
20.3.2.1.1 Method 1: Synthesis from Carboxylic Acids and Esters .. 610
20.3.3 Product Subclass 3: Amine Carboxylic Acid Salts .. 612
20.3.3.1 Synthesis of Product Subclass 3 .. 612
20.3.3.1.1 Method 1: Synthesis of Amine Carboxylic Acid Salts ... 612
20.3.3.1.2 Method 2: Asymmetric Resolution of Amines with Carboxylic Acids 614
20.4 Product Class 4: Carboxylic Acid Anhydrides and Their Sulfur, Selenium, and Tellurium Derivatives
P. A. Keller

20.4 Product Class 4: Carboxylic Acid Anhydrides and Their Sulfur, Selenium, and Tellurium Derivatives ... 617
20.4.1 Product Subclass 1: Carboxylic Acid Anhydrides ... 617
20.4.1.1 Synthesis of Product Subclass 1 .. 617
20.4.1.1.1 Method 1: Direct Elimination of Water from Carboxylic Acids 617
20.4.1.1.2 Method 2: Formal Elimination of Water from Carboxylic Acids via an Intermediate .. 617
20.4.1.1.2.1 Variation 1: Via Acid Chloride Intermediates .. 617
20.4.1.1.2.2 Variation 2: Via Carboxylate Phosphorus Intermediates 618
20.4.1.1.2.3 Variation 3: Using Phosphine-Based Reagents .. 619
20.4.1.1.2.4 Variation 4: Exchange Reactions with Acetic Anhydride 620
20.4.1.1.2.5 Variation 5: Using Phosgene ... 621
20.4.1.1.2.6 Variation 6: Using Ethyl Chloroformate ... 622
20.4.1.1.2.7 Variation 7: Using Carboximidates ... 622
20.4.1.1.2.8 Variation 8: Using Imidazoles ... 623
20.4.1.1.2.9 Variation 9: Using Cyanates ... 624
20.4.1.1.2.10 Variation 10: Reaction of Carboxylic Acids with Acetylenes 625
20.4.1.1.2.11 Variation 11: Activation with 1-Ethoxy-2-silylacetylenes 626
20.4.1.1.2.12 Variation 12: Activation Using Methanesulfonyl Chloride and Triethylamine 627
20.4.1.1.2.13 Method 3: Using Acid Chlorides in the Presence of Pyridinium Bases 628
20.4.1.1.2.14 Method 4: Using Acid Chlorides and 4-Benzylpyridine as an Activator 628
20.4.1.1.2.15 Method 5: Activation of Acid Chlorides with Methyl(2-pyridyl)carbamoyl Chloride .. 629
20.4.1.1.2.16 Method 6: Zinc(II) Chloride Mediated Reaction of Acid Chlorides with Acylypyridazine Derivatives .. 630
20.4.1.1.2.17 Method 7: Activation of Acid Chlorides Using Pyridine-2-thiones 631
20.4.1.1.2.18 Method 8: Cobalt(II)-Catalyzed Reaction of Acid Chlorides 631
20.4.1.1.2.19 Method 9: Synthesis by Reaction of Carboxylate Anions 632
20.4.1.1.2.20 Variation 1: Reaction with Acid Chlorides .. 632
20.4.1.1.2.21 Variation 2: Reaction with Sulfonfylpyridazines .. 633
20.4.1.1.2.22 Variation 3: In Situ Halogenation of Carboxylate Anions 634
20.4.1.1.2.23 Variation 4: Using Thallium Carboxylate Salts ... 634
20.4.1.1.2.24 Method 10: Insertion of Carbon Monoxide into Arenediazonium Salts 635
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.4.2</td>
<td>Product Subclass 2: Sulfur-Based Anhydrides</td>
<td>636</td>
</tr>
<tr>
<td>20.4.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>636</td>
</tr>
<tr>
<td>20.4.2.1.1</td>
<td>Method 1: Oxo/Thioxo Anhydrides Using Hydrogen Sulfide</td>
<td>636</td>
</tr>
<tr>
<td>20.4.2.1.2</td>
<td>Method 2: Oxo/Thioxo Anhydrides Using Hydrogen Disulfide</td>
<td>637</td>
</tr>
<tr>
<td>20.4.2.1.3</td>
<td>Method 3: Oxo/Thioxo Anhydrides by Cyclization of Aromatic Compounds with Adjacent Methyl and Carboxylic Acid Substituents</td>
<td>638</td>
</tr>
<tr>
<td>20.4.2.1.4</td>
<td>Method 4: Dithioxo Anhydrides from Naphthalic Anhydride</td>
<td>638</td>
</tr>
<tr>
<td>20.4.3</td>
<td>Product Subclass 3: Selenium- and Tellurium-Based Anhydrides</td>
<td>639</td>
</tr>
</tbody>
</table>

Keyword Index .. i

Author Index .. xxxiii

Abbreviations ... lxiii
Preface

Preface ... V

Volume Editor's Preface

Volume Editor's Preface .. VII

Table of Contents

Table of Contents ... XI

20.5 Product Class 5: Carboxylic Acid Esters

20.5.1 Product Subclass 1: Alkyl Alkanoates

M. Yus, C. Nájera, and R. Chinchilla 643

20.5.1.1 Synthesis from Carbonic Acid Derivatives

S. J. Collier ... 665

20.5.1.2 Synthesis from Carboxylic Acids and Derivatives

N. F. Jain and C. E. Masse .. 711

20.5.1.3 Synthesis from Aldehydes, Ketones, and Derivatives

(Including Enol Ethers)

L. Yan, S. Lin, and P. Liu ... 725

20.5.1.4 Synthesis from Organometallic Compounds, Alkyl Halides,

Primary Alcohols, or Ethers (Excluding Reactions with Carboxylic

Acid Derivatives)

M. Yus, C. Nájera, and R. Chinchilla 777

20.5.1.5 Synthesis from Alkenes (Excluding Reactions with Carboxylic

Acid Derivatives)

G. Evano ... 795

20.5.1.6 Synthesis by Rearrangement

A. J. Phillips and C. E. Love .. 827

20.5.1.7 Synthesis with Retention of the Functional Group

M. Zhang and P. R. Hanson .. 863

20.5.2 Product Subclass 2: Arenedicarboxylic Acid Esters

L. R. Subramanian ... 947

20.5.3 Product Subclass 3: Butenedioic and Butynedioic Acid Esters

C. E. Masse .. 957

20.5.4 Product Subclass 4: Alkanedioic Acid Esters

C. E. Masse .. 987

20.5.5 Product Subclass 5: Alkynyl Alkanoates

S. G. Nelson ... 1047
<table>
<thead>
<tr>
<th>Product Subclass</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6</td>
<td>Product Subclass 6: Aryl Alkanoates</td>
<td>S. G. Nelson</td>
<td>1051</td>
</tr>
<tr>
<td>6.7</td>
<td>Product Subclass 7: Alkenyl Alkanoates</td>
<td>S. G. Nelson</td>
<td>1065</td>
</tr>
<tr>
<td>6.8</td>
<td>Product Subclass 8: 2-Oxo- and 2-Imino-Substituted Alkanoic Acid Esters, and Related Compounds</td>
<td>J. A. Westbrook and S. E. Schaus</td>
<td>1091</td>
</tr>
<tr>
<td>6.9</td>
<td>Product Subclass 9: 2,2-Diheteroatom-Substituted Alkanoic Acid Esters</td>
<td>J. A. Westbrook and S. E. Schaus</td>
<td>1115</td>
</tr>
<tr>
<td>6.10</td>
<td>Product Subclass 10: 2-Aminoalkanoic Acid Esters (α-Amino Acid Esters)</td>
<td>R. M. Garbaccio and S. E. Wolkenberg</td>
<td>1131</td>
</tr>
<tr>
<td>6.11</td>
<td>Product Subclass 11: 2-Heteroatom-Substituted Alkanoic Acid Esters</td>
<td>S. R. Chemler and T. P. Zabawa</td>
<td>1203</td>
</tr>
<tr>
<td>6.12</td>
<td>Product Subclass 12: Alk-2-ynoic Acid Esters</td>
<td>G. Evano</td>
<td>1243</td>
</tr>
<tr>
<td>6.13</td>
<td>Product Subclass 13: Arenecarboxylic Acid Esters</td>
<td>T. P. Yoon and E. N. Jacobsen</td>
<td>1285</td>
</tr>
<tr>
<td>6.15</td>
<td>Product Subclass 15: 3-Oxo- and 3,3-Diheteroatom-Substituted Alkanoic Acid Esters</td>
<td>J. Beignet</td>
<td>1341</td>
</tr>
<tr>
<td>6.16</td>
<td>Product Subclass 16: 3-Heteroatom-Substituted Alkanoic Acid Esters</td>
<td>G. Sartori and R. Maggi</td>
<td>1375</td>
</tr>
<tr>
<td>6.17</td>
<td>Product Class 6: Lactones</td>
<td>M. E. Maier</td>
<td>1421</td>
</tr>
<tr>
<td>6.18</td>
<td>Product Class 7: Peroxy Acids and Derivatives</td>
<td>S. Mitra, S. R. Gurrala, and R. S. Coleman</td>
<td>1553</td>
</tr>
<tr>
<td>6.19</td>
<td>Product Class 8: Thiocarboxylic S-Acids, Selenocarboxylic Se-Acids, Tellurocarboxylic Te-Acids, and Derivatives</td>
<td>S. J. Collier</td>
<td>1597</td>
</tr>
<tr>
<td></td>
<td>Keyword Index</td>
<td></td>
<td>1691</td>
</tr>
<tr>
<td></td>
<td>Author Index</td>
<td></td>
<td>1741</td>
</tr>
<tr>
<td></td>
<td>Abbreviations</td>
<td></td>
<td>1801</td>
</tr>
</tbody>
</table>
Table of Contents

20.5 Product Class 5: Carboxylic Acid Esters

20.5.1 Product Subclass 1: Alkyl Alkanoates
M. Yus, C. Nájera, and R. Chinchilla

20.5.1.1 Synthesis from Carbonic Acid Derivatives
S. J. Collier

<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.5.1.1</td>
<td>Method 1</td>
<td>Use of Carbonic Acid Diesters</td>
<td>665</td>
</tr>
<tr>
<td>20.5.1.1.1</td>
<td>Variation 1</td>
<td>Reactions with Enolates</td>
<td>665</td>
</tr>
<tr>
<td>20.5.1.1.2</td>
<td>Variation 2</td>
<td>Reactions with Carbanions without Stabilizing Electron-Withdrawing (\alpha)-Heteroatom Groups</td>
<td>670</td>
</tr>
<tr>
<td>20.5.1.1.3</td>
<td>Variation 3</td>
<td>Reaction with (\alpha)-Heteroatom-Stabilized Carbanions</td>
<td>673</td>
</tr>
<tr>
<td>20.5.1.1.4</td>
<td>Variation 4</td>
<td>Intramolecular Rearrangements</td>
<td>675</td>
</tr>
<tr>
<td>20.5.1.2</td>
<td>Method 2</td>
<td>Use of Haloformates</td>
<td>678</td>
</tr>
<tr>
<td>20.5.1.2.1</td>
<td>Variation 1</td>
<td>Reactions with Enolates</td>
<td>679</td>
</tr>
<tr>
<td>20.5.1.2.2</td>
<td>Variation 2</td>
<td>Reaction with Carbanions without Stabilizing Electron-Withdrawing (\alpha)-Heteroatom Groups</td>
<td>683</td>
</tr>
<tr>
<td>20.5.1.2.3</td>
<td>Variation 3</td>
<td>Reaction with (\alpha)-Heteroatom-Stabilized Carbanions</td>
<td>688</td>
</tr>
<tr>
<td>20.5.1.2.4</td>
<td>Variation 4</td>
<td>Other Syntheses</td>
<td>691</td>
</tr>
<tr>
<td>20.5.1.3</td>
<td>Method 3</td>
<td>Use of Cyanoformate Esters</td>
<td>693</td>
</tr>
<tr>
<td>20.5.1.3.1</td>
<td>Variation 1</td>
<td>Reaction with Enolates</td>
<td>694</td>
</tr>
<tr>
<td>20.5.1.3.2</td>
<td>Variation 2</td>
<td>Using Other Carbon Nucleophiles</td>
<td>698</td>
</tr>
<tr>
<td>20.5.1.3.3</td>
<td>Variation 3</td>
<td>Novel Reactions</td>
<td>700</td>
</tr>
<tr>
<td>20.5.1.4</td>
<td>Method 4</td>
<td>Use of Di-tert-butyl Dicarbonate</td>
<td>702</td>
</tr>
</tbody>
</table>

20.5.2 Synthesis from Carboxylic Acids and Derivatives
N. F. Jain and C. E. Masse

<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.5.2.1</td>
<td>Method 1</td>
<td>Synthesis from Carboxylic Acids</td>
<td>711</td>
</tr>
<tr>
<td>20.5.2.1.1</td>
<td>Variation 1</td>
<td>Phosphorus Activation of Alcohols (Mitsunobu Reaction)</td>
<td>711</td>
</tr>
<tr>
<td>20.5.2.1.2</td>
<td>Variation 2</td>
<td>Dicyclohexylcarbodiimide Activation of Acids</td>
<td>712</td>
</tr>
<tr>
<td>20.5.2.1.3</td>
<td>Variation 3</td>
<td>Direct Condensation of Acids and Alcohols Catalyzed by a Lewis Acid</td>
<td>713</td>
</tr>
<tr>
<td>20.5.2.1.4</td>
<td>Variation 4</td>
<td>Direct Condensation of Acids and Alcohols Using Ammonium Salts</td>
<td>714</td>
</tr>
<tr>
<td>20.5.2.2</td>
<td>Method 2</td>
<td>Synthesis from Acid Halides</td>
<td>715</td>
</tr>
<tr>
<td>20.5.2.3</td>
<td>Method 3</td>
<td>Synthesis from Acid Anhydrides</td>
<td>715</td>
</tr>
<tr>
<td>20.5.2.4</td>
<td>Method 4</td>
<td>Synthesis from Amides</td>
<td>717</td>
</tr>
<tr>
<td>20.5.2.5</td>
<td>Method 5</td>
<td>Synthesis from 2-Alkyl-4,5-dihydrooxazoles</td>
<td>717</td>
</tr>
<tr>
<td>Section</td>
<td>Method</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>20.5.1.2.6</td>
<td>Method 6:</td>
<td>Synthesis from Nitriles</td>
<td></td>
</tr>
<tr>
<td>20.5.1.2.7</td>
<td>Method 7:</td>
<td>Synthesis from Ketenes</td>
<td></td>
</tr>
<tr>
<td>20.5.1.2.7.1</td>
<td>Variation 1:</td>
<td>Nucleophilic Addition of Alcohols</td>
<td></td>
</tr>
<tr>
<td>20.5.1.2.7.2</td>
<td>Variation 2:</td>
<td>Asymmetric Chlorination</td>
<td></td>
</tr>
<tr>
<td>20.5.1.3</td>
<td>Synthesis from Aldehydes, Ketones, and Derivatives (Including Enol Ethers)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.1</td>
<td>Synthesis from Aldehydes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.1.1</td>
<td>Oxidative Processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.1.1.1</td>
<td>Method 1:</td>
<td>Using Manganese(IV) Oxide and Sodium Cyanide</td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.1.1.2</td>
<td>Method 2:</td>
<td>Using Bromine</td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.1.2.1</td>
<td>Variation 1:</td>
<td>Using Pyridinium Tribromide</td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.1.3</td>
<td>Method 3:</td>
<td>Using Iodine</td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.1.4</td>
<td>Method 4:</td>
<td>Using Pyridinium Dichromate</td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.1.5</td>
<td>Method 5:</td>
<td>Using Sodium or Calcium Hypochlorites</td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.1.6</td>
<td>Method 6:</td>
<td>Using N-Bromosuccinimide</td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.1.6.1</td>
<td>Variation 1:</td>
<td>Using N-Bromosuccinimide and Alkoxytrialkylstannanes or Alkoxytrialkylsilanes</td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.1.7</td>
<td>Method 7:</td>
<td>Using N-Iodosuccinimide</td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.1.8</td>
<td>Method 8:</td>
<td>Using Caro’s Acid</td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.1.9</td>
<td>Method 9:</td>
<td>Using Oxone</td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.1.10</td>
<td>Method 10:</td>
<td>Using Trichloroisocyanuric Acid</td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.1.11</td>
<td>Method 11:</td>
<td>Using Transition-Metal Catalysts</td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.1.12</td>
<td>Method 12:</td>
<td>Using Electrochemical Oxidation</td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.1.13</td>
<td>Method 13:</td>
<td>Using Ozone</td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.1.14</td>
<td>Method 14:</td>
<td>Using Hydrogen Peroxide</td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.1.12</td>
<td>Oxidation/Reduction Processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.1.2.1</td>
<td>Method 1:</td>
<td>Using the Tishchenko Reaction</td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.1.2.1.1</td>
<td>Variation 1:</td>
<td>Using the Homo Aldol–Tishchenko Reaction</td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.1.2.1.2</td>
<td>Variation 2:</td>
<td>Using the Hetero Aldol–Tishchenko Reaction</td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.1.2.1.3</td>
<td>Variation 3:</td>
<td>Using the Evans–Tishchenko Reaction</td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.1.2.2</td>
<td>Method 2:</td>
<td>Intramolecular Hydroacylation Reactions</td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.2</td>
<td>Synthesis from Ketones via the Baeyer–Villiger Reaction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.2.1</td>
<td>Method 1:</td>
<td>Using Pertrifluoroacetic Acid</td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.2.2</td>
<td>Method 2:</td>
<td>Using Peroxybenzoic Acids</td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.2.3</td>
<td>Method 3:</td>
<td>Using Hydrogen Peroxide</td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.2.4</td>
<td>Method 4:</td>
<td>Using Bis(trimethylsilyl) Peroxide</td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.2.5</td>
<td>Method 5:</td>
<td>Using Enzymes</td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.3</td>
<td>Synthesis from Acetals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.3.1</td>
<td>Method 1:</td>
<td>Using Ozone</td>
<td></td>
</tr>
<tr>
<td>20.5.1.3.3.2</td>
<td>Method 2:</td>
<td>Using Hypochlorous Acid</td>
<td></td>
</tr>
</tbody>
</table>
20.5.1.3.3 Method 3: Using N-Bromosuccinimide 758
20.5.1.3.4 Method 4: Using Peroxy Acids .. 759
20.5.1.3.5 Method 5: Using Oxone .. 760
20.5.1.3.6 Method 6: Using Caro’s Acid ... 761
20.5.1.3.7 Method 7: Using tert-Butyl Hydroperoxide and a Catalyst 762
20.5.1.3.8 Method 8: Photochemical Oxidation 763
20.5.1.3.9 Method 9: Using Potassium Permanganate 763

20.5.1.3.4 Synthesis from Enol Ethers ... 764
20.5.1.3.4.1 Method 1: Using Ozone .. 764
20.5.1.3.4.2 Method 2: Using 3-Chloroperoxybenzoic Acid 765
20.5.1.3.4.3 Method 3: Using Chromium(VI) Oxide 766
20.5.1.3.4.4 Method 4: Using Pyridinium Chlorochromate 767
20.5.1.3.5 Synthesis from α-Hydroxy Carbonyl Compounds and 1,2-Diones . 768
20.5.1.3.5.1 Method 1: Using Lead(IV) Acetate 768
20.5.1.3.5.2 Method 2: Using Oxone or Potassium Peroxymonosulfate 769
20.5.1.3.5.3 Method 3: Using Dioxygen ... 771
20.5.1.3.5.4 Method 4: Using Electrochemistry 772

20.5.1.4 Synthesis from Organometallic Compounds, Alkyl Halides, Primary
Alcohols, or Ethers (Excluding Reactions with Carboxylic Acid Derivatives)
M. Yus, C. Nájera, and R. Chinchilla

20.5.1.4 Synthesis from Organometallic Compounds, Alkyl Halides, Primary
Alcohols, or Ethers (Excluding Reactions with Carboxylic Acid Derivatives) 777
20.5.1.4.1 Alkoxy carbonylation of Organometallic Compounds 777
20.5.1.4.1.1 Method 1: Alkoxy carbonylation of Organolithium Compounds 777
20.5.1.4.1.2 Method 2: Alkoxy carbonylation of Organomagnesium Compounds 778
20.5.1.4.1.3 Method 3: Alkoxy carbonylation of Organotransition-Metal Compounds ... 779
20.5.1.4.2 Alkoxy carbonylation of Alkyl Halides 781
20.5.1.4.2.1 Method 1: Alkoxy carbonylation of Alkyl Halides Promoted by Acids 781
20.5.1.4.2.2 Method 2: Alkoxy carbonylation of Alkyl Halides Promoted by Transition-Metal Catalysts .. 782
20.5.1.4.2.3 Method 3: Alkoxy carbonylation of Alkyl Iodides Promoted by Photolysis ... 784
20.5.1.4.3 Oxidation of Primary Alcohols ... 784
20.5.1.4.3.1 Method 1: Oxidation by Halonium-Generating Combinations 785
20.5.1.4.3.2 Method 2: Oxidation by Chromium(IV) Oxide 786
20.5.1.4.3.3 Method 3: Transition-Metal-Catalyzed Oxidations 786
20.5.1.4.4 Oxidation of Ethers, Silyl Ethers, or Stannyl Ethers 787
20.5.1.4.4.1 Method 1: Oxidation of Ethers ... 788
20.5.1.4.4.1.1 Variation 1: Oxidation by Halonium-Generating Combinations 788
20.5.1.4.4.1.2 Variation 2: Oxidation by Stoichiometric Transition-Metal Reagents ... 788
20.5.1.4.4.1.3 Variation 3: Transition-Metal-Catalyzed Oxidation 789
20.5.1.4.4.2 Method 2: Oxidation of Silyl and Stannyl Ethers Using N-Bromosuccinimide ... 790
20.5.1.5 Synthesis from Alkenes
(Excluding Reactions with Carboxylic Acid Derivatives)
G. Evano

20.5.1.5 Synthesis from Alkenes
(Excluding Reactions with Carboxylic Acid Derivatives) 795
20.5.1.5.1 Method 1: Oxidative C=C Bond Cleavage 795
20.5.1.5.2 Method 2: Hydroesterification with Carbon Monoxide
(Reppe Carbonylation) 797
20.5.1.5.3 Method 3: Hydroesterification with Formate Esters 802
20.5.1.5.4 Method 4: Cross Metathesis with Conjugated Esters 806
20.5.1.5.5 Method 5: Synthesis via Hydroboration with Two-Carbon Homologation 808
20.5.1.5.6 Method 6: Addition of Acetate Esters to Alkenes 811
20.5.1.5.7 Method 7: Hydroacyloxylation 813
20.5.1.5.7.1 Variation 1: Markovnikov Hydroacyloxylation Using Carboxylic Acids 814
20.5.1.5.7.2 Variation 2: Anti-Markovnikov Hydroacyloxylation via Hydroboration 818
20.5.1.5.8 Method 8: Allylic Acyloxylation 818
20.5.1.5.8.1 Variation 1: Allylic Acyloxylation without Double-Bond Migration 818
20.5.1.5.8.2 Variation 2: Allylic Acyloxylation with Double-Bond Migration 821
20.5.1.5.9 Method 9: The Prévost Reaction 822

20.5.1.6 Synthesis by Rearrangement
A. J. Phillips and C. E. Love

20.5.1.6 Synthesis by Rearrangement 827
20.5.1.6.1 Method 1: Baeyer–Villiger Oxidation 827
20.5.1.6.2 Method 2: Cope Rearrangement 831
20.5.1.6.2.1 Variation 1: Cope Rearrangement of Silyl Cyanohydrins 831
20.5.1.6.2.2 Variation 2: Cope Rearrangement of Divinylcyclopropanes 833
20.5.1.6.3 Method 3: Rearrangement of Vinylcyclopropanes 836
20.5.1.6.4 Method 4: Rearrangement of Ketene Acetals 839
20.5.1.6.4.1 Variation 1: Rearrangement of Ketene Acetals Derived from Ortho Esters
(The Johnson Protocol) 840
20.5.1.6.4.2 Variation 2: Rearrangement of Ketene Acetals Derived from Selenoxides 843
20.5.1.6.5 Method 5: [2,3]-Wittig Rearrangement of α-(Alkenyloxy) Esters 845
20.5.1.6.5.1 Variation 1: Via Lithium Enolates 845
20.5.1.6.5.2 Variation 2: Via Tin, Titanium, and Zirconium Enolates 848
20.5.1.6.6 Method 6: [3,3] Rearrangements of Allylic Esters 849
20.5.1.6.7 Method 7: The Pummerer Rearrangement 852
20.5.1.6.8 Method 8: Palladium-Catalyzed Carbonylation with Rearrangement 854
20.5.1.6.9 Method 9: Favorovskii Rearrangement 855
20.5.1.6.10 Method 10: Arndt–Eistert and Related Reactions 857
20.5.1.7 Synthesis with Retention of the Functional Group
M. Zhang and P. R. Hanson

20.5.1.7 Synthesis with Retention of the Functional Group 863
20.5.1.7.1 Conjugate Addition of α,β-Unsaturated Esters 863
20.5.1.7.1.1 Method 1: Addition of Organocopper Reagents 863
20.5.1.7.1.2 Method 2: Addition of Organoborane Reagents 865
20.5.1.7.1.3 Method 3: Addition of Nitroalkanes 868
20.5.1.7.1.4 Method 4: Hydrohalogenation Reactions of Substituted Allenoates 869
20.5.1.7.1.5 Method 5: Addition of AlkylRadicals 870
20.5.1.7.1.6 Method 6: Addition of Organomanganese(II) Reagents 871
20.5.1.7.1.7 Method 7: Addition of Grignard Reagents 871
20.5.1.7.1.8 Method 8: Nickel(0)-Catalyzed Conjugate Additions 872
20.5.1.7.1.9 Method 9: Reductive C—C Bond Formation of α,β-Unsaturated Esters ... 873
20.5.1.7.1.10 Method 10: Addition of Allyltrimethylsilane 874
20.5.1.7.2 Alkylations of Alkyl Alkanoates .. 875
20.5.1.7.2.1 Method 1: α-Alkylation .. 875
20.5.1.7.2.1.1 Variation 1: Alkylation with Strong Base and an Alkylating Agent ... 875
20.5.1.7.2.1.2 Variation 2: Metal-Complex-Catalyzed α-Alkylation 877
20.5.1.7.2.1.3 Variation 3: Michael Addition of Ester Enolates 878
20.5.1.7.2.2 Method 2: Deconjugate Alkylation 879
20.5.1.7.2.3 Method 3: Reductive Alkylation ... 880
20.5.1.7.2.4 Method 4: Ene Reaction ... 881
20.5.1.7.2.5 Method 5: Asymmetric Alkylation ... 882
20.5.1.7.3 Cross-Coupling Reactions Catalyzed by Transition-Metal Complexes 883
20.5.1.7.3.1 Method 1: Sonogashira Coupling .. 883
20.5.1.7.3.2 Method 2: Hydrovinylation ... 884
20.5.1.7.3.3 Method 3: Hydroformylation ... 885
20.5.1.7.3.4 Method 4: Other Palladium-Complex-Catalyzed Cross Couplings 886
20.5.1.7.4 Cleavage Reactions ... 889
20.5.1.7.4.1 Method 1: Cleavage of Oxalates ... 889
20.5.1.7.4.2 Method 2: Cleavage of Malonates by Decarboxylation 890
20.5.1.7.4.3 Method 3: Cleavage of α-Cyano Esters by Decyanation 891
20.5.1.7.4.4 Method 4: Cleavage of β-Oxo Esters ... 893
20.5.1.7.5 Oxidation Reactions ... 894
20.5.1.7.5.1 Method 1: Ozonolysis ... 894
20.5.1.7.5.2 Method 2: Photooxygenation ... 895
20.5.1.7.6 Conjugate Reduction of α,β-Unsaturated Esters 895
20.5.1.7.6.1 Method 1: Use of Aluminum Hydride Reducing Agents 896
20.5.1.7.6.2 Method 2: Use of Borohydride Reducing Agents 896
20.5.1.7.6.3 Method 3: Reduction Using Samarium(II) Iodide 898
20.5.1.7.6.4 Method 4: Use of Metals in Protic Solvents as Reducing Agents 899
20.5.1.7.6.5 Method 5: Hydrostannation .. 900
20.5.1.7.6.6 Method 6: Use of Hydrosilane Reducing Agents 900
Method 7: Use of Sodium Dithionite Reducing Agents .. 902
Method 8: Asymmetric Conjugate Reduction .. 902
Selective Reduction of Distant Multiple Bonds in Unsaturated Esters 903
Method 1: Reduction of Triple Bonds .. 904
Method 2: Reduction of Double Bonds .. 905
Method 8: Asymmetric Conjugate Reduction .. 902
Selective Reduction of Distant Multiple Bonds in Unsaturated Esters 903
Method 1: Reduction of Triple Bonds .. 904
Method 2: Reduction of Double Bonds .. 905
Chemoselective Hydrogenations .. 905
Method 1: Heterogeneous Hydrogenations .. 906
Method 2: Homogeneous Hydrogenations .. 907
Method 3: Asymmetric Hydrogenations .. 909
Synthesis from Lactones by Ring Opening .. 911
Method 1: Ring Opening under Basic Conditions 911
Method 2: Ring Opening under Acidic Conditions 912
Method 3: Enzyme-Catalyzed Ring Opening .. 913
Synthesis from Alkyl Formates .. 914
Method 1: Hydroesterifications Catalyzed by Transition-Metal Complexes 914
Method 2: Free-Radical Addition .. 915
Method 3: Palladium-Catalyzed Reaction with Nitrobenzene 916
Method 4: Carbynylation Reactions of Formates with Organic Halides 917
Isomerizations .. 917
Method 1: Deconjugation .. 917
Method 2: Other Isomerizations .. 919
Alkene Metathesis .. 920
Method 1: Metathesis with Tungsten-Based Catalysts 920
Method 2: Metathesis with Molybdenum-Based Catalysts 921
Method 3: Metathesis with Ruthenium-Based Catalysts 923
Method 4: Metathesis with Rhenium-Based Catalysts 925
 Transesterification .. 926
Method 1: Transesterification without Catalysis 926
Method 2: Transesterification with Chemical Catalysis 927
Variation 1: By Brønsted Acids .. 927
Variation 2: By Lewis Acids .. 928
Variation 3: By Solid Acids .. 930
Variation 4: By Bases .. 931
Method 3: Transesterification with Enzymes 932
Kinetic Resolution .. 934
Method 1: Resolution with Enzymatic Catalysis 934
Method 2: Non-Enzymatic Resolution .. 936

Product Subclass 2: Arenedicarboxylic Acid Esters
L. R. Subramanian

Synthesis of Product Subclass 2 .. 947
20.5.2.1.1 Method 1: Direct Esterification of Arene-dicarboxylic Acids Using Alkyl Halides ... 947
20.5.2.1.2 Method 2: Direct Esterification of Arene-dicarboxylic Acids and Anhydrides Using Alcohols .. 948
20.5.2.1.2.1 Variation 1: Using a Morpholinium Salt as Catalyst 948
20.5.2.1.2.2 Variation 2: Using Heteropolyacids as Catalysts 949
20.5.2.1.3 Method 3: Direct Esterification of Arene-dicarboxylic Acids Using Pentafluorophenol and N,N’-Dicyclohexylcarbodiimide 950
20.5.2.1.4 Method 4: Synthesis of Arene-1,2-dicarboxylic Acid Esters by Diels–Alder Reaction Followed by Aromatization 950
20.5.2.1.4.1 Variation 1: From 2H-Pyran-2-ones .. 950
20.5.2.1.4.2 Variation 2: From 4-Nitrostyrene ... 952
20.5.2.1.4.3 Variation 3: From Substituted Benzo[c]furan 953
20.5.2.1.5 Methods 5: Miscellaneous Methods .. 953

20.5.3 Product Subclass 3: Butenedioic and Butynedioic Acid Esters

C. E. Masse

20.5.3.1 Synthesis of Product Subclass 3 ... 957
20.5.3.1.1 Method 1: Anhydride Cleavage .. 957
20.5.3.1.1.1 Variation 1: Solvolysis of Maleic Anhydride 957
20.5.3.1.1.2 Variation 2: Using Lactam Acetals ... 958
20.5.3.1.2 Method 2: Carbenoid Dimerization ... 959
20.5.3.1.2.1 Variation 1: Ruthenium-Mediated Reactions 959
20.5.3.1.2.2 Variation 2: Rhodium-Mediated Reactions 961
20.5.3.1.2.3 Variation 3: Copper-Mediated Reactions .. 961
20.5.3.1.3 Method 3: Phosphorus-Based Alkenations 962
20.5.3.1.3.1 Variation 1: From Thiiranes .. 962
20.5.3.1.3.2 Variation 2: From Lithiophosphoranes .. 964
20.5.3.1.4 Method 4: 1,4-Addition of Alcohols ... 965
20.5.3.1.4.1 Variation 1: Organic Base Mediated Reactions 965
20.5.3.1.4.2 Variation 2: Titanium-Mediated Reactions 965
20.5.3.1.4.3 Variation 3: Lead-Mediated Reactions ... 966
20.5.3.1.4.4 Variation 4: Silver-Mediated Reactions ... 967
20.5.3.1.5 Method 5: Elimination Protocols .. 968
20.5.3.1.5.1 Variation 1: From Aspartate Esters ... 968
20.5.3.1.5.2 Variation 2: From Monohalosuccinic Acid Esters 969
20.5.3.1.5.3 Variation 3: From Hydroxysuccinic Acid Esters 970
20.5.3.1.5.4 Variation 4: From Dibromosuccinic Acid Esters with Dimethylformamide ... 970
20.5.3.1.5.5 Variation 5: From Tartrates via Phosphinate Activation 971
20.5.3.1.5.6 Variation 6: From Tartrates via Cyclic Sulfates 972
20.5.3.1.5.7 Variation 7: From Bromosuccinic Acid Esters 973
20.5.3.1.5.8 Variation 8: From Dibromosuccinates with Sodium Dithionite 974
20.5.3.1.5.9 Variation 9: From vic-Diols via 1,3-Dioxolanes 975
20.5.3.1.5.10 Variation 10: From vic-Diols via Phosphonium Sulfates 976
20.5.3.1.5.11 Variation 11: From vic-Diols with Sodium Sulfide 978
20.5.3.1.5.12 Variation 12: From vic-Diols via Thermal Elimination 978
20.5.3.1.6 Method 6: Semihydrogenation ... 979
20.5.3.1.6.1 Variation 1: Using Homogeneous Palladium Catalysts 979
20.5.3.1.6.2 Variation 2: Using Hydrosilane Reagents .. 980
20.5.3.1.6.3 Variation 3: Using Nickel Boride Catalysts 981
20.5.3.1.6.4 Variation 4: Using a Polymer-Supported Palladium Catalyst 982
20.5.3.1.6.5 Variation 5: Using a Rhodium Hydride Complex 982
20.5.3.1.6.6 Variation 6: Using an Indium Hydride Complex 983
20.5.3.1.7 Methods 7: Other Methods ... 984
20.5.3.1.7.1 Variation 1: Phosphine Additions to Butynedioates 984
20.5.3.1.7.2 Variation 2: Carbene Additions to Maleic Anhydride Derivatives 985

20.5.4 Product Subclass 4: Alkanedioic Acid Esters
C. E. Masse

20.5.4.1 Synthesis of Product Subclass 4 .. 987
20.5.4.1.1 Method 1: Esterification of Oxalic Acid by the Fischer Method 987
20.5.4.1.2 Method 2: Oxalate Esters by Nucleophilic Acyl Substitution on
Activated Oxalyl Derivatives ... 988
20.5.4.1.2.1 Variation 1: From Oxalyl Chloride ... 988
20.5.4.1.2.2 Variation 2: From Ethyl Cyanooxalacetate 988
20.5.4.1.3 Method 3: Oxalate Esters by Oxidative Methods 989
20.5.4.1.3.1 Variation 1: Palladium-Mediated Oxidative Coupling of Carbon Monoxide
20.5.4.1.3.2 Variation 2: Oxidative Cleavage of 2-Chlorobuta-1,3-diene 990
20.5.4.1.4 Method 4: Esterification of Malonic Acids ... 990
20.5.4.1.4.1 Variation 1: Using Isobutene .. 990
20.5.4.1.4.2 Variation 2: Via the Monoacid Chloride ... 991
20.5.4.1.4.3 Variation 3: Via Mixed Carbonic Anhydrides 992
20.5.4.1.5 Method 5: Malonate Esters by Alkylation of Malonate Derivatives .. 993
20.5.4.1.5.1 Variation 1: Via Monoalkylation of Malonate Diesters 993
20.5.4.1.5.2 Variation 2: Phase-Transfer-Catalyzed Dialkylation of Malonates 994
20.5.4.1.5.3 Variation 3: Intramolecular Cyclization of ω-(Bromoalkyl)malonates 995
20.5.4.1.5.4 Variation 4: Transition-Metal-Mediated Alkylations 996
20.5.4.1.5.5 Variation 5: Alkylation–Decarboxylation of Methanetricarboxylates 996
20.5.4.1.5.6 Variation 6: Via Alkylation of Meldrum’s Acid 997
20.5.4.1.6 Method 6: Malonate Esters by Acylation of Malonate Derivatives 998
20.5.4.1.6.1 Variation 1: Via Ethoxymagnesium Malonates 998
20.5.4.1.6.2 Variation 2: C-Acylation Using Magnesium Oxide 999
20.5.4.1.6.3 Variation 3: C-Acylation Using Soft Enolization 1000
20.5.4.1.7 Method 7: Malonate Esters by Conjugate Additions to Malonate
Derivatives .. 1001
20.5.4.1.7.1 Variation 1: Reduction of Alkylidenemalonates with Sodium
Cyanoborohydride ... 1001
20.5.4.1.7.2 Variation 2: Grignard Additions to Alkylidenemalonates 1001
20.5.4.1.7.3 Variation 3: Phase-Transfer-Catalyzed Michael Addition of Malonate
Enolates .. 1002
Method 8: Malonate Esters by Knoevenagel Condensation of Malonates

Variation 1: With Acetaldehyde and Acetic Anhydride 1003
Variation 2: With Paraformaldehyde and Copper(II) Acetate 1003
Variation 3: From Pyrolysis of Malonate Diels–Alder Adducts 1004

Method 9: Malonate Esters by Claisen Condensations with Oxalic Acid

Method 10: Malonate Esters by Arylation of Malonate Derivatives 1006

Variation 1: Via Electrophilic Aromatic Substitution 1006
Variation 2: Via Nucleophilic Aromatic Substitution on Malonyl–Iron–Arene Complexes 1008

Method 11: Malonate Esters by Addition of Allylsilanes to Activated Cyclopropanes .. 1008

Method 12: Malonate Esters by Dichlorination of Malonates with Trifluoromethanesulfonyl Chloride 1009

Method 13: Esterification of Succinic Acid .. 1010

Method 14: Succinate Esters by Reduction of Butenedioates 1010

Variation 1: Lewis Acid Mediated Reduction of Maleates 1010
Variation 2: Ruthenium-Mediated Hydrogenation of 2-Methylenesuccinate Esters .. 1011
Variation 3: Rhodium-Mediated Hydrogenation of 2-Methylenesuccinate Esters .. 1012

Method 15: Succinate Esters by Alkene Dimerization 1013

Variation 1: Radical-Based Methods .. 1013
Variation 2: Oxidative Dimerization of Titanium Enolates 1014
Variation 3: Oxidative Dimerization of Organocuprates 1015

Method 16: Succinate Esters by Rearrangement Reactions 1016

Variation 1: Ring Opening of Cyclopropanes 1016
Variation 2: Malonate Displacements .. 1017
Variation 3: Allylmalonate Rearrangement ... 1018

Method 17: Succinate Esters by Carbonylation 1019

Variation 1: Dicarbonylation of But-2-enes 1019
Variation 2: Dicarbonylation of Terminal Alkenes and Cycloalkenes 1020
Variation 3: Monocarbonylation of Acrylates 1022
Variation 4: From Allylic Carbonates ... 1023

Method 18: Succinate Esters by Conjugate Additions 1023

Variation 1: Reaction of Thiols with Butenedioates 1023
Variation 2: Reaction of Enamines with Nitroalkenes 1024
Variation 3: Reaction of Cyanohydrins with Butenedioates 1025

Method 19: Succinate Esters by Stobbe Condensations 1026

Method 20: Succinate Esters by α-Alkylation of Succinoyl Derivatives 1027

Variation 1: Using an Organometallic Auxiliary 1027
Variation 2: Using Malate Esters .. 1028

Method 21: Succinate Esters by Asymmetric Nucleophilic Addition Using a Chiral Ketone Auxiliary .. 1029

Method 22: Succinate Esters by Stereoselective [2,3]-Wittig Rearrangement 1030

Method 23: Succinate Esters by Asymmetric Alkylation Using N-Acylxazolidinones (Evans Asymmetric Alkylation) ... 1031
20.5.4.1.23.1 Variation 1: Application to the Synthesis of a Pharmaceutical Agent 1032
20.5.4.1.24 Method 24: Succinate Esters by Aldol Approaches 1033
20.5.4.1.24.1 Variation 1: Using Chiral Imines 1033
20.5.4.1.24.2 Variation 2: 2-Substituted 2-Hydroxysuccinates Using a Stoichiometric Chiral Tin Lewis Acid 1034
20.5.4.1.24.3 Variation 3: 2,3-Disubstituted 2-Hydroxysuccinates Using a Stoichiometric Chiral Tin Lewis Acid 1035
20.5.4.1.24.4 Variation 4: Using Chiral N-Acylhydrazones 1036
20.5.4.1.24.5 Variation 5: Using a Catalytic Chiral Titanium Lewis Acid 1037
20.5.4.1.24.6 Variation 6: Using a Catalytic Chiral Copper Lewis Acid 1038
20.5.4.1.24.7 Variation 7: Use of a Fluorous Lewis Acid Catalyst 1039
20.5.4.1.24.8 Variation 8: Use of a Catalytic Tin Lewis Acid 1041
20.5.4.1.24.9 Variation 9: Application of a Chiral Tin Lewis Acid in Total Synthesis 1042
20.5.4.1.24.10 Variation 10: Use of a Cationic Scandium Lewis Acid 1043

20.5.5 Product Subclass 5: Alkynyl Alkanoates
S. G. Nelson

20.5.5 Product Subclass 5: Alkynyl Alkanoates 1047
20.5.5.1 Synthesis of Product Subclass 5 1047
20.5.5.1.1 Method 1: Metalation and Rearrangement of α,α-Dihalo Ketones (Alkynolate Anions) 1047
20.5.5.1.2 Method 2: Reaction of Carboxylic Acids with Alkynyliodonium Salts 1048
20.5.5.1.2.1 Variation 1: Using Preformed Alkynyliodonium Ions 1048
20.5.5.1.2.2 Variation 2: Using (Diacyliodo)arenes 1049

20.5.6 Product Subclass 6: Aryl Alkanoates
S. G. Nelson

20.5.6 Product Subclass 6: Aryl Alkanoates 1051
20.5.6.1 Synthesis of Product Subclass 6 1052
20.5.6.1.1 Method 1: Acylation of Phenols 1052
20.5.6.1.1.1 Variation 1: Direct Acylation 1052
20.5.6.1.1.2 Variation 2: Lewis Acid Catalyzed Acylation 1057
20.5.6.1.1.3 Variation 3: Lewis Base Catalyzed Acylation 1059
20.5.6.1.2 Method 2: Oxidation of Arenes 1060
20.5.6.1.2.1 Variation 1: Acyl Peroxide Mediated Oxidation 1060
20.5.6.1.2.2 Variation 2: Lead(IV) Acetate Mediated Oxidation 1062
20.5.6.1.3 Method 3: Displacement of Diazonium Groups by Nucleophiles (The Sandmeyer Reaction) 1062

20.5.7 Product Subclass 7: Alkenyl Alkanoates
S. G. Nelson

20.5.7 Product Subclass 7: Alkenyl Alkanoates 1065
20.5.7.1 Synthesis of Product Subclass 7 1069
20.5.7.1 Method 1: O-Acylation of Enolates .. 1069
 20.5.7.1.1 Variation 1: Kinetic Deprotonation 1069
 20.5.7.1.2 Variation 2: Fluoride-Catalyzed O-Acylation of Enolates 1072
 20.5.7.1.3 Variation 3: O-Acylation of Enolates and Enols Generated under Equilibrating Conditions .. 1074
 20.5.7.1.4 Method 2: O-Acylation of Aldehyde Enolates Derived from Alkynoate Anions .. 1076
 20.5.7.1.5 Method 3: Metal-Catalyzed Alkoxycarbonylation of Alkynes 1077
 20.5.7.1.6 Method 4: Cross-Coupling of Alkenymercury Halides or Alkenyl Halides with Metal Acetate Salts 1084
 20.5.7.1.7 Method 5: Coupling of Fischer Carbenes with Acid Chlorides 1086
 20.5.7.1.8 Method 6: Alkenation Reactions 1086

20.5.8 Product Subclass 8: 2-Oxo- and 2-Imino-Substituted Alkanoic Acid Esters, and Related Compounds
J. A. Westbrook and S. E. Schaus

20.5.8 Product Subclass 8: 2-Oxo- and 2-Imino-Substituted Alkanoic Acid Esters, and Related Compounds .. 1091
 20.5.8.1 Synthesis of Product Subclass 8 1091
 20.5.8.1.1 Method 1: Esterification of 2-Heteroatom-Substituted Acids 1091
 20.5.8.1.2 Method 2: Hydrolysis of 2-Heteroatom-Substituted Esters 1094
 20.5.8.1.3 Method 3: Alcoholsysis of 2-Heteroatom-Substituted Nitriles ... 1097
 20.5.8.1.4 Method 4: Oxidation Reactions 1098
 20.5.8.1.4.1 Variation 1: Oxidation of α-Hydroxy Esters 1098
 20.5.8.1.4.2 Variation 2: Oxidation of α-Diazo Esters 1100
 20.5.8.1.4.3 Variation 3: Oxidation of 3-Oxo-2-(triphenylphosphoranylidene)-propanoate .. 1101
 20.5.8.1.4.4 Variation 4: Oxidation of 2-Alkylidene Esters 1102
 20.5.8.1.5 Method 5: Addition of Organometallic Reagents to Oxalates 1103
 20.5.8.1.6 Method 6: Friedel–Crafts Acylation of Buta-1,3-dienes, Arenes, and Hetarenes .. 1106
 20.5.8.1.7 Method 7: Sigmatropic Rearrangements 1108
 20.5.8.1.7.1 Variation 1: Claisen Rearrangement of Allyl Vinyl Ethers 1108
 20.5.8.1.7.2 Variation 2: Stevens Rearrangement of \(N,N\)-Dimethyl-\(N\)-(phenylethynyl)-glycinium Bromides 1109
 20.5.8.1.8 Method 8: Hetero-Diels–Alder Reactions 1110
 20.5.8.1.9 Method 9: Aldol Condensations 1110

20.5.9 Product Subclass 9: 2,2-Diheteroatom-Substituted Alkanoic Acid Esters
J. A. Westbrook and S. E. Schaus

20.5.9 Product Subclass 9: 2,2-Diheteroatom-Substituted Alkanoic Acid Esters 1115
 20.5.9.1 Synthesis of Product Subclass 9 1115
 20.5.9.1.1 Method 1: Esterification of 2,2-Diheteroatom-Substituted Acids 1115
 20.5.9.1.2 Method 2: Synthesis by Acetal Formation 1117
 20.5.9.1.2.1 Variation 1: Formation of Acetals and Hemiacetals 1117

Science of Synthesis Original Edition Volume 20b
© Georg Thieme Verlag KG
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.5.9.1.2.2</td>
<td>Variation 2: Formation of α,α-Diamino Esters</td>
<td>1119</td>
</tr>
<tr>
<td>20.5.9.1.2.3</td>
<td>Variation 3: Formation of Thioacetals</td>
<td>1120</td>
</tr>
<tr>
<td>20.5.9.1.3</td>
<td>Method 3: Alcoholsysis of 2,2-Diheteroatom-Substituted Nitriles</td>
<td>1120</td>
</tr>
<tr>
<td>20.5.9.1.4</td>
<td>Method 4: Oxidation of Alkene Derivatives</td>
<td>1121</td>
</tr>
<tr>
<td>20.5.9.1.5</td>
<td>Method 5: Synthesis by Nucleophilic Attack of the α-Carbon of Esters</td>
<td>1123</td>
</tr>
<tr>
<td>20.5.9.1.5.1</td>
<td>Variation 1: Nucleophilic Substitution at the α-Carbon of</td>
<td>1123</td>
</tr>
<tr>
<td></td>
<td>2,2-Diheteroatom-Substituted Esters</td>
<td></td>
</tr>
<tr>
<td>20.5.9.1.5.2</td>
<td>Variation 2: Nucleophilic Substitution at the α-Carbon of Diesters and</td>
<td>1124</td>
</tr>
<tr>
<td></td>
<td>β-Oxo Esters</td>
<td></td>
</tr>
<tr>
<td>20.5.9.1.5.3</td>
<td>Variation 3: Metal-Mediated C–C Bond Formation</td>
<td>1125</td>
</tr>
<tr>
<td>20.5.9.1.6</td>
<td>Method 6: Radical-Mediated Transformations of 2-Halo-Substituted</td>
<td>1126</td>
</tr>
<tr>
<td></td>
<td>Esters</td>
<td></td>
</tr>
<tr>
<td>20.5.9.1.7</td>
<td>Method 7: 1,3-Allylic Rearrangement of a Chiral Acetal</td>
<td>1127</td>
</tr>
<tr>
<td>20.5.9.1.8</td>
<td>Method 8: Rearrangement of (ortho-Nitroaryliden)e)malonates</td>
<td>1127</td>
</tr>
</tbody>
</table>

20.5.10 Product Subclass 10: 2-Aminoalkanoic Acid Esters (α-Amino Acid Esters)
R. M. Garbaccio and S. E. Wolkenberg

20.5.10 Product Subclass 10: 2-Aminoalkanoic Acid Esters (α-Amino Acid Esters) 1131

20.5.10.1 Synthesis of Product Subclass 10 1131

20.5.10.1.1 α,β-Didehydroamino Acid Esters 1131

20.5.10.1.1.1 Synthesis of α,β-Didehydroamino Acid Esters through Palladium(0)-Catalyzed Cross-Coupling Reactions 1131

20.5.10.1.1.1.1 Method 1: Suzuki Coupling of β-Bromoamidoacrylates with Aryl- and Vinylboronic Acids 1131

20.5.10.1.1.1.2 Method 2: Heck Coupling of Amidoacrylates with Aryl and Vinyl Halides 1132

20.5.10.1.1.2 Synthesis of α,β-Didehydroamino Esters through Elimination 1133

20.5.10.1.1.2.1 Method 1: Erlenmeyer Condensation 1133

20.5.10.1.1.2.2 Method 2: Horner–Emmons Condensation 1134

20.5.10.1.2 2-Aminoalkanoic Acid Esters 1135

20.5.10.1.2.1 Introduction of the Side Chain: Alkylation of Glycine and Related Chiral Enolates 1136

20.5.10.1.2.1.1 Method 1: Alkylation of Chiral Cyclic Enolates 1136

20.5.10.1.2.1.1.1 Variation 1: Alkylation of Chiral Bis-lactim Ethers 1136

20.5.10.1.2.1.1.2 Variation 2: Alkylation of Chiral Oxazinones 1138

20.5.10.1.2.1.2 Method 2: Alkylation of Chiral Acyclic Schiff Bases 1139

20.5.10.1.2.1.3 Method 3: Alkylation Utilizing Chiral Phase-Transfer Reagents 1141

20.5.10.1.2.1.4 Method 4: Metal-Mediated Glycine Enolate Alkylation 1143

20.5.10.1.2.1.4.1 Variation 1: Palladium-Catalyzed Alkylation of Glycine Derivatives 1143

20.5.10.1.2.1.4.2 Variation 2: Gold-Catalyzed Aldol Reactions 1146

20.5.10.1.2.1.4.3 Variation 3: Titanium-Mediated Aldol Reactions 1147

20.5.10.1.2.1.4.4 Variation 4: Aluminum–Salen-Catalyzed Aldol Reactions of 5-Alkoxyoxazoles 1149

20.5.10.1.2.2 Introduction of the α-Amino Group: Nucleophilic Amination 1150
Method 1: Intermolecular Nucleophilic Addition to Chiral Epoxides
Method 2: Intramolecular Nucleophilic Addition to Epoxides
Method 3: Nucleophilic Displacement of Halides
Method 4: Nucleophilic Displacement of Sulfonic Esters and Cyclic Sulfates
Variation 1: Displacement of Trifluoromethanesulfonates
Variation 2: Opening Cyclic Sulfates
Method 5: Mitsunobu Displacement of an \(\alpha \)-Hydroxy Group
Method 6: Nucleophilic Addition to \(p \)-Allylpalladium Intermediates
Method 1: Proline Organocatalysis
Introduction of the \(\alpha \)-Amino Group: Electrophilic Amination of Enolates
Method 1: Proline Organocatalysis
Method 1: Homogeneous Catalysis
Variation 1: Cationic Rhodium Complexes of Chiral \(C_2 \)-Symmetric Bisphosphines
Variation 2: Cationic Rhodium Complexes of Chiral \(C_2 \)-Symmetric Bisphosphinites
Variation 3: Cationic Rhodium Complexes of P-Chirogenic Phosphines
Method 1: Enantioselective Michael Addition–Hydrogen Atom Transfer
Method 2: Diastereoselective Organocuprate Michael Addition to Chiral Piperazine-2,5-dione Acceptors
Introduction of Carboxylate: Asymmetric Addition of Nitriles to Imines (Strecker Synthesis)
Method 1: Chiral Binuclear Zirconium-Complex-Catalyzed Strecker Synthesis
Method 2: Chiral Aluminum–Salen Complex Catalyzed Strecker Synthesis
Method 1: Proline-Catalyzed Mannich Additions to Imino Esters
Method 2: Copper-Catalyzed Alkylationst of Imino Esters
Method 3: Catalytic Asymmetric Mannich Additions to Imino Esters
Method 4: Catalytic Asymmetric Aza-Henry Addition to Imino Esters
Method 5: Palladium-Catalyzed Silyl Enol Ether Additions of Imino Esters
Method 6: Catalytic Asymmetric Aromatic Additions to Imino Esters
Method 7: Organometallic Additions to Chiral Imino Esters
Method 8: Mannich-Type Reaction of Electron-Rich Aromatic Compounds with Chiral Imino Lactones
Method 9: Rhodium-Catalyzed Addition of Arylboronic Acids to \(N \)-(tert-Butylsulfinyl)imino Esters
Method 1: Catalytic Asymmetric Diels–Alder Cycloaddition Reactions
Method 1: Catalytic Asymmetric Diels–Alder Addition to Chiral Imino Esters
20.5.10.1.2.9.1 Method 1: Rearrangement of Allylic Trichloroacetimidates 1182
20.5.10.1.2.9.1.1 Variation 1: Thermal Rearrangement of Chiral Allylic Trichloroacetimidates 1183
20.5.10.1.2.9.1.2 Variation 2: Enantioselective Palladium-Catalyzed Rearrangement of Prochiral Allylic Trichloroacetimidates 1184

20.5.10.1.10 Addition of the Carboxylate Group: Rearrangements 1185
20.5.10.1.10.1 Method 1: Photolysis of Chromium–Carbene Complexes 1185

20.5.10.1.3 α-Alkyl-α-aminoalkanoic Acid Esters ... 1186
20.5.10.1.3.1 Introduction of the Side Chain: Alkylation of Chiral Amino Acid Enolates 1187
20.5.10.1.3.1.1 Method 1: Alkylation of Bis-lactim Ethers .. 1187
20.5.10.1.3.1.2 Method 2: Alkylation of Schiff Bases .. 1188
20.5.10.1.3.1.2.1 Variation 1: Alkylation of Galactodialdehyde Aldimines 1188
20.5.10.1.3.1.2.2 Variation 2: Alkylation of Camphor-Derived Sultams 1189
20.5.10.1.3.1.3 Method 3: Transition-Metal-Catalyzed Asymmetric Allylic Alkylation of Azlactones ... 1190
20.5.10.1.3.1.3.1 Variation 1: Palladium-Catalyzed Asymmetric Allylic Alkylation of Azlactones .. 1191
20.5.10.1.3.1.3.2 Variation 2: Molybdenum-Catalyzed Asymmetric Allylic Alkylation of Azlactones .. 1192
20.5.10.1.3.2 Introduction of the Side Chain: Rearrangements ... 1193
20.5.10.1.3.2.1 Method 1: Rearrangement of O-Acylated Azlactones 1193
20.5.10.1.3.3 Introduction of the α-Amino Group: Rearrangement of α,α-Dialkyl-β-carbonyl Carboxylic Acid Esters ... 1194
20.5.10.1.3.3.1 Method 1: Curtius Rearrangement of α,α-Dialkyl β-Ester Carboxylic Acids .. 1195
20.5.10.1.3.3.2 Method 2: Hofmann Rearrangement of α,α-Dialkyl-β-amido Esters 1195
20.5.10.1.3.3.3 Method 3: Schmidt Rearrangement of β-Oxido Esters 1196
20.5.10.1.3.3.4 Method 4: Beckmann Rearrangement of β-Oxime Esters 1197

20.5.11 Product Subclass 11: 2-Heteroatom-Substituted Alkanoic Acid Esters
S. R. Chemler and T. P. Zabawa

20.5.11 Product Subclass 11: 2-Heteroatom-Substituted Alkanoic Acid Esters 1203
20.5.11.1 Synthesis of Product Subclass 11 ... 1203
20.5.11.1.1 2-Haloalkanoates ... 1203
20.5.11.1.1.1 2-Fluoroalkanoates .. 1203
20.5.11.1.1.1.1 Method 1: Electrophilic Fluorination of Alkanoates 1204
20.5.11.1.1.1.1 Variation 1: Fluorination with N-Fluorobis(trifluoromethylsulfonyl)amine 1204
Variation 2: Fluorination with 2-Fluoro-1,3,2-benzodithiazole 1,1,3,3-Tetraoxide .. 1205

Variation 3: Catalytic Asymmetric Fluorination of α-Cyano Esters by Treatment with Chiral Palladium Complexes and N-Fluorobis(phenylsulfonyl)amine .. 1206

Variation 4: Catalytic Asymmetric Fluorination of β-Oxo Esters 1207

Method 2: Kinetic Enzymatic Resolution of Racemic 2-Fluoroalkanoates 1207

Variation 2: Tandem Chlorination/Esterification of Acid Halides 1209

Method 2: Nucleophilic Displacement of a Hydroxy Group 1211

Variation 2: Asymmetric Tandem Bromination/Esterification of Acid Chlorides 1212

Method 1: Electrophilic Bromination of Carbon Nucleophiles 1212

Variation 1: Catalytic Asymmetric Bromination with Chiral Bis(dihydroxazole)–Copper(II) Complexes 1212

Variation 2: Asymmetric Tandem Bromination/Esterification of Acid Chlorides 1213

Method 1: Formation of 2-Iodoalkanoates with N-Iodosuccinimide under Microwave Conditions 1214

Method 2: Catalytic Asymmetric C—C Bond-Forming Reactions 1218

Variation 1: Asymmetric Alkylation of 2-Hydroxyacetates 1219

Variation 2: Enantioselective Addition of Silyl Enol Ethers to Ethyl Glyoxylate and 2-Oxoalkanoates 1220

Variation 1: Oxidation of Enolates with Oxaziridines 1221

Variation 2: Sharpless Catalytic Asymmetric Dihydroxylation of α,β-Unsaturated Esters 1222

Variation 3: Synthesis of the Taxol Side Chain Using the Sharpless Catalytic Asymmetric Aminohydroxylation of Cinnamate Esters 1224

Variation 2: 2-Alkoxyalkanoates by C—C Bond-Forming Reactions 1226
20.5.11.4 2,3-Epoxyalkanoates ... 1227
20.5.11.4.1 Method 1: Asymmetric Epoxidation of \(\alpha,\beta \)-Unsaturated Esters with Chiral Dioxiranes 1228
20.5.11.4.2 Method 2: Chiral Manganese(III)–Salen Catalyzed Enantioselective Epoxidation of \(\text{cis}-\alpha,\beta \)-Unsaturated Esters 1229
20.5.11.4.3 Method 3: Catalytic Enantioselective Epoxidation of \(\alpha,\beta \)-Unsaturated Esters Using a Lanthanide Lewis Acid Catalyst and tert-Butyl Hydroperoxide 1229
20.5.11.5 2-Sulfanylalkanoates ... 1230
20.5.11.5.1 Method 1: Sulfanylation of Enolates 1231
20.5.11.5.1.1 Variation 1: Sulfanylation of Ester Enolates 1231
20.5.11.5.1.2 Variation 2: Catalytic Enantioselective Sulfanylation of \(\beta \)-Oxo Esters .. 1231
20.5.11.5.2 Method 2: Nucleophilic Displacement with Thiolates 1232
20.5.11.5.2.1 Variation 1: Direct Displacement of a Chiral Methanesulfonate .. 1232
20.5.11.5.2.2 Variation 2: Dynamic Resolution of 2-Bromoalkanoic Acid N-Methyl-pseudoephedrine Esters with Triphenylmethylthiol 1233
20.5.11.6 2-Selanylalkanoates ... 1234
20.5.11.6.1 Method 1: Selanylation of Enolates 1234
20.5.11.6.2 Method 2: Synthesis Using the Selenide Anion 1235
20.5.11.6.2.1 Variation 1: Opening of Epoxides 1235
20.5.11.6.2.2 Variation 2: Synthesis of Selenides by Nucleophilic Substitution .. 1235
20.5.11.7 2-Tellanylalkanoates ... 1236
20.5.11.7.1 Method 1: Synthesis Using the Telluride Anion 1236
20.5.11.7.2 Method 2: Synthesis from Iodotelluride 1237

20.5.12 Product Subclass 12: Alk-2-ynoic Acid Esters

G. Evano

20.5.12 Product Subclass 12: Alk-2-ynoic Acid Esters ... 1243
20.5.12.1 Synthesis of Product Subclass 12 ... 1243
20.5.12.1.1 Method 1: Esterification of Alk-2-ynoic Acids or Derivatives ... 1243
20.5.12.1.1.1 Variation 1: Direct Esterification of Alk-2-ynoic Acids ... 1243
20.5.12.1.1.2 Variation 2: Alkylation of Alk-2-ynoic Acids or Their Salts ... 1249
20.5.12.1.1.3 Variation 3: Alcoholesis of Alk-2-ynoic Acid Derivatives ... 1253
20.5.12.1.2 Method 2: Carboxylation of Alk-1-ynes ... 1255
20.5.12.1.2.1 Variation 1: Carboxylation of Alk-1-ynes by Deprotonation–Carboxylation ... 1255
20.5.12.1.2.2 Variation 2: Carboxylation of Lithium Acetylides Derived from 1,1-Dihaloalkenes Produced from Aldehydes by Corey–Fuchs Alkenation ... 1259
20.5.12.1.2.3 Variation 3: Carboxylation of Lithium Acetylides Derived from 1-Haloalkenes ... 1261
20.5.12.1.2.4 Variation 4: Palladium-Catalyzed Carboxylation of Alk-1-ynes with Chloroformates ... 1261
20.5.12.1.2.5 Variation 5: Palladium-Catalyzed Carboxylation of Alk-1-ynes with Carbon Monoxide and Alcohols ... 1262
20.5.12.2.6 Variation 6: Copper-Catalyzed Carboxylation of Alk-1-ynes with Carbon Dioxide and Alkyl Bromides .. 1264
20.5.12.1.3 Method 3: Synthesis from Alk-2-enoic Acid Esters by Bromination–Dehydrobromination .. 1264
20.5.12.1.4 Method 4: Using Wittig-Type Reactions .. 1265
20.5.12.1.4.1 Variation 1: Reaction of [(Alkoxycarbonyl)methylene]triphenylphosphoranes with Acyl Chlorides, Anhydrides, or Carboxylic Acids .. 1265
20.5.12.1.4.2 Variation 2: Reaction of [(Ethoxycarbonyl)iodomethyl]triphenylphosphonium Iodide with Aldehydes 1269
20.5.12.1.5 Method 5: Modifications of Propynoic Acid Esters or Derivatives 1270
20.5.12.1.5.1 Variation 1: Coupling of Propynoic Acid Esters .. 1270
20.5.12.1.5.2 Variation 2: Coupling of Bromopropynoic Acid Esters 1274
20.5.12.1.5.3 Variation 3: Addition of Metalated Propynoic Acid Esters to Electrophiles 1275
20.5.12.1.6 Method 6: Deaminative Dehydration of β-Oxo Esters Derived from Aldehydes .. 1279

20.5.13 Product Subclass 13: Arenecarboxylic Acid Esters
T. P. Yoon and E. N. Jacobsen

20.5.13 Synthesis of Product Subclass 13 .. 1285
20.5.13.1 Method 1: Friedel–Crafts Acylation ... 1285
20.5.13.1.2 Method 2: Oxidation of Benzylic Ethers .. 1286
20.5.13.1.3 Method 3: Radical Benzylxoylation .. 1287
20.5.13.1.4 Method 4: Metallation/Carbonylation of Arenes 1288
20.5.13.1.4.1 Variation 1: Direct Metallation ... 1288
20.5.13.1.4.2 Variation 2: Reductive Metallation of Haloarenes 1289
20.5.13.1.4.3 Variation 3: Lithium–Halogen Exchange with Haloarenes 1290
20.5.13.1.4.4 Variation 4: Metallation of Tricarbonylchromium–η⁶-Arene Complexes .. 1291
20.5.13.1.5 Method 5: Palladium-Mediated C–H Activation and Carbonylation 1292
20.5.13.1.6 Method 6: Palladium-Catalyzed Carbonylation of Main-Group Arylmetal Species .. 1293
20.5.13.1.6.1 Variation 1: Stille Coupling of Alkyl Chloroformates with Arylstannanes 1293
20.5.13.1.6.2 Variation 2: Carbyonlation of Arylboranes with Carbon Monoxide 1294
20.5.13.1.7 Method 7: Transition-Metal-Catalyzed Carbonylation of Haloarenes 1294
20.5.13.1.8 Method 8: Construction of the Aromatic Ring by Anionic Methods 1295
20.5.13.1.8.1 Variation 1: Anionic [3 + 3] Aromatic Ring Formation with Chan’s Diene 1295
20.5.13.1.8.2 Variation 2: Anionic [4 + 2] Aromatic Ring Formation by Phthalide Annulation .. 1296
20.5.13.1.8.3 Variation 3: Anionic [5 + 1] Aromatic Ring Formation by Addition to Pyrylium Salts .. 1297
20.5.13.1.9 Method 9: Construction of the Aromatic Ring by Radical Cyclizations of β-Oxo Esters .. 1298
20.5.13.1.10 Method 10: Construction of the Aromatic Ring by Cycloadditions 1298
20.5.13.1.10.1 Variation 1: [4 + 2] Diels–Alder Cycloadditions and Aromatization 1298
20.5.13.1.10.2 Variation 2: Transition-Metal-Catalyzed [2 + 2 + 2] Cyclotrimerization of Alkynes .. 1300
20.5.13.1.11 Method 11: Construction of the Aromatic Ring by Electrocyclization and Elimination ... 1300
20.5.13.1.12 Method 12: Oxidative Rearrangement of 2-(Hydroxyaryl) Acylhydrazones 1301
20.5.13.1.13 Method 13: Lithiation and Alkylation of Benzoate Esters .. 1301

20.5.14 Product Subclass 14: Alk-2-enoic Acid Esters
C. D. Vanderwal and E. N. Jacobsen

20.5.14 Synthesis of Product Subclass 14 .. 1305
20.5.14.1 Method 1: Alkoxycarbonylation of Alkenyl Organometallics .. 1305
20.5.14.1.1 Variation 1: Metalation/Alkoxycarbonylation of Alkenyl Ethers, Sulfides, and Enecarbamates .. 1305
20.5.14.1.2 Variation 2: Reductive Metalation/Alkoxycarbonylation of Haloalkenes .. 1306
20.5.14.1.3 Variation 3: Reductive Alkoxycarbonylation of Alkynes .. 1307
20.5.14.1.4 Variation 4: Zirconium-Catalyzed Carboalumination/Alkoxycarbonylation of Alkenes .. 1308
20.5.14.1.5 Variation 5: Palladium-Catalyzed Carboxylation/Alkoxycarbonylation of Alkenyl Electrophiles .. 1308
20.5.14.1.6 Method 2: Elimination Reactions .. 1309
20.5.14.1.7 Variation 1: Oxidative Elimination of Hydrogen from Alkanoic Acid Esters .. 1309
20.5.14.1.8 Variation 2: Palladium-Mediated Oxidation of Silyl Enol Ethers .. 1310
20.5.14.1.9 Variation 3: Elimination from \(\beta \)-Heteroatom-Substituted Alkanoic Acid Esters .. 1311
20.5.14.1.10 Variation 4: Elimination from \(\alpha \)-Heteroatom-Substituted Alkanoic Acid Esters .. 1312
20.5.14.1.11 Variation 5: Pericyclic \(\text{syn} \)-Elimination from \(\alpha \)-Acetoxy, \(\alpha \)-Sulfinyl, and \(\alpha \)-Seleninyl Alkanoic Acid Esters .. 1313
20.5.14.1.12 Variation 6: Reductive Elimination of Vicinal Heteroatom Substituents .. 1314
20.5.14.1.13 Variation 7: Conversion of \(\alpha \)-Oxo Esters into 2-Alkoxy- and 2-Aminoalk-2-enoic Acid Esters .. 1315
20.5.14.1.14 Variation 8: Conversion of \(\beta \)-Oxo Esters into 3-Alkoxy- and 3-Aminoalk-2-enoic Acid Esters .. 1316
20.5.14.1.15 Method 3: Aldol-Type Condensations .. 1317
20.5.14.1.16 Variation 1: Knoevenagel and Doebner-Modified Knoevenagel Condensations .. 1317
20.5.14.1.17 Variation 2: Stobbe Condensation .. 1319
20.5.14.1.18 Variation 3: Carbonyl Homologation by Siloxyalkynes and Alkoxyalkynes .. 1319
20.5.14.1.19 Method 4: Wittig and Related Alkenylations .. 1320
20.5.14.1.20 Variation 1: Wittig Reaction .. 1321
20.5.14.1.21 Variation 2: Horner–Wittig Reaction .. 1322
20.5.14.1.23 Variation 4: The Peterson Alkenation .. 1324
20.5.14.1.24 Variation 5: Alkenation of \(\alpha \)-Oxo Esters .. 1325
20.5.14.1.25 Method 5: Eschenmoser Sulfide Contraction .. 1326
20.5.14.1.6 Method 6: Semihydrogenation of Alk-2-ynoic Acid Esters 1326
20.5.14.1.7 Method 7: Phosphine-Catalyzed Internal Redox Isomerization of Alk-2-ynoic Acid Esters to Dienoic Acid Esters 1328
20.5.14.1.8 Method 8: Conjugate Addition to Alk-2-ynoic Acid Esters 1329
20.5.14.1.9 Method 9: Cycloadditions of Alk-2-ynoic Acid Esters 1330
20.5.14.1.10 Method 10: α-Alkylation of Preformed Alk-2-enoic Acid Esters 1332
20.5.14.1.12 Method 12: Transition-Metal-Catalyzed Cross Couplings of Alk-2-enoic Acid Esters .. 1334
20.5.14.1.13 Method 13: Heck Reaction .. 1336
20.5.14.1.14 Method 14: Alkene Metathesis .. 1337

20.5.15 Product Subclass 15: 3-Oxo- and 3,3-Diheteroatom-Substituted Alkanoic Acid Esters

J. Beignet

20.5.15 Product Subclass 15: 3-Oxo- and 3,3-Diheteroatom-Substituted Alkanoic Acid Esters .. 1341
20.5.15.1 Synthesis of Product Subclass 15 .. 1341
20.5.15.1.1 3-Oxalkanoic Acid Esters .. 1341
20.5.15.1.1 Method 1: Oxidation of 3-Hydroxyalkanoic Acid Esters .. 1341
20.5.15.1.1.2 Method 2: Addition of Methyl Ketones to Carbonyl Compounds .. 1342
20.5.15.1.2.1 Variation 1: Using Carbonates .. 1342
20.5.15.1.2.2 Variation 2: Using Cyanooformates .. 1342
20.5.15.1.2.3 Variation 3: Using Chloroformates .. 1343
20.5.15.1.3 Method 3: Addition of 2,2-Dimethyl-1,3-dioxane-4,6-dione to Acylating Agents .. 1344
20.5.15.1.3.1 Variation 1: Using Acid Chlorides .. 1344
20.5.15.1.3.2 Variation 2: Using Activated Carboxylic Acids .. 1345
20.5.15.1.3.3 Variation 3: Using Imidates .. 1346
20.5.15.1.4 Method 4: Addition of Nitroalkanes to Ethyl Glyoxalate .. 1346
20.5.15.1.4.1 Method 5: Addition of the Enolates of Acetates to Carbonyl Compounds .. 1347
20.5.15.1.5.1 Variation 1: Using Acid Chlorides .. 1347
20.5.15.1.5.2 Variation 2: Using Mixed Anhydrides .. 1348
20.5.15.1.5.3 Variation 3: Using 1-Alkanoylimidazoles .. 1349
20.5.15.1.5.4 Variation 4: Using N-Methoxy-N-methylamides .. 1349
20.5.15.1.5.5 Variation 5: Using a Lithium (Trimethylsilyl)acetate and a 1-Acylimidazole 1350
20.5.15.1.6 Method 6: Addition of Acetates to Acid Chlorides (via a Titanium Enolate) .. 1351
20.5.15.1.6.1 Method 7: Addition of Acetates to Carbonyl Compounds (via a Formal Zinc Enolate) .. 1351
20.5.15.1.6.1.1 Method 1: Using a Reformatsky Reagent and an Acid Chloride .. 1351
20.5.15.1.6.1.2 Method 2: Using a Reformatsky Reagent and a Nitrile .. 1352
20.5.15.1.7 Method 8: Claisen Condensation of Acetates .. 1353
20.5.15.1.8 Method 9: Rearrangement of (Alkanoylsulfanyl)acetates .. 1353
20.5.15.1.9 Method 10: Addition of Ethyl Diazoacetate to Aldehydes .. 1353

Science of Synthesis Original Edition Volume 20b
© Georg Thieme Verlag KG
Method 11: Reduction of Ethyl 3-Oxo-2-(triphenylphosphoranylidene)alkanoates ... 1354

Method 12: Elimination of a Heterocyclic Substituent from a 3-Hetaryl-3-hydroxyalkanoate 1355

Variation 1: Elimination of Pyrrole from 3-Hydroxy-3-(1H-pyrrol-1-yl)alkanoates ... 1355

Variation 2: Deprotection of tert-Butyl 3-Hydroxy-3-(1-methyl-1H-imidazol-2-yl)nonanoate 1355

Method 13: Pyrolysis of 3-Hydroxy-2-(phenylsulfinyl)alkanoic Acid Esters .. 1356

Method 14: Acylation of 3-Oxoalkanoic Acid Esters 1356

Variation 1: Acylation of Methyl Acetoacetate with Acid Chlorides ... 1356

Variation 2: Acylation of 3-Oxoalkanoic Acid Esters with Nitriles ... 1357

Variation 3: Acylation of Ethyl Hydrogen Malonate 1358

Variation 4: Acylation of Methyl Tetrahydro-2H-pyran-2-yl Malonate .. 1360

Method 15: Acylation of Malonates 1359

Variation 1: Acylation of Dialkyl Malonates with Acid Chlorides .. 1359

Variation 2: Acylation of Magnesium Methyl Malonate with 1-Acylimidazoles .. 1360

Variation 3: Acylation of Ethyl Hydrogen Malonate 1361

Variation 4: Acylation of Methyl Tetrahydro-2H-pyran-2-yl Malonate ... 1362

Method 16: Oxidation of Methyl Alk-2-ynoates 1362

Variation 1: Wacker Oxidation .. 1363

Variation 2: Epoxidation and Rearrangement of Alk-2-enoates ... 1363

Method 17: Oxidation of Alk-2-enoates 1364

Method 18: Acetoacetylation of Alcohols Using Diketene 1365

Variation 1: From Aldehydes .. 1366

Variation 2: From Acetals .. 1367

Method 20: Transesterification of 1,3-Dioxin-4-ones 1368

Method 21: Alkylation of 3-Oxoalkanoic Acid Esters 1369

Method 1: Fluorination of Ethyl 3-Oxoalkanoates 1369

Method 2: Reaction of Fluorinated Alkenes and Trimethyl Orthoacetate ... 1370

Method 3: Transesterification of 3,3-Difluoroalkanoic Acid Esters .. 1371

Method 1: Addition of a Silyl Ketene Acetal to 2-Ethoxy-2-methyl-1,3-dioxolane .. 1371

Method 2: Addition of a Silyl Ketene Acetal to a 1,3-Dioxolan-2-yl Cation .. 1372

Method 3: Addition of Pyrocatechol to Alkyl Penta-2,3-dienoates .. 1372

Method 1: Addition of 2-Sulfanylphenol to Alkyl Penta-2,3-dienoates .. 1373

Method 1: Addition of the Lithium Enolate of an Ester to 1- Alkanoyl-1H-pyroles .. 1373

Method 1: Addition of Magnesium Methyl Malonate with 1-Acylimidazoles .. 1374
20.5.15.1.6.1 Method 1: Addition of 4-Methylbenzene-1,2-dithiol to Methyl Penta-2,3-dienoate ... 1372
20.5.15.1.7 3-Amino-3-sulfanylalkanoic Acid Esters ... 1372
20.5.15.1.7.1 Method 1: Addition of 2-Aminoethanethiol to an Alk-2-ynoic Acid Ester 1372

20.5.16 **Product Subclass 16: 3-Heteroatom-Substituted Alkanoic Acid Esters**
G. Sartori and R. Maggi

20.5.16 **Product Subclass 16: 3-Heteroatom-Substituted Alkanoic Acid Esters** ... 1375
20.5.16.1 Synthesis of Product Subclass 16 ... 1375
20.5.16.1.1 Haloalkanoic Acid Esters ... 1375
20.5.16.1.1.1 Method 1: C=C Addition Reactions ... 1375
20.5.16.1.1.2 Method 2: Nucleophilic Substitutions ... 1376
20.5.16.1.1.3 Method 3: Cycloaddition Reactions ... 1377
20.5.16.1.1.4 Method 4: Ring Opening ... 1379
20.5.16.1.2 Hydroxy- and Sulfanylalkanoic Acid Esters and Derivatives 1380
20.5.16.1.2.1 Method 1: Addition to \(\alpha,\beta\)-Unsaturated Esters 1380
20.5.16.1.2.1.1 Variation 1: Michael Addition .. 1380
20.5.16.1.2.1.2 Variation 2: Oxidative Addition ... 1381
20.5.16.1.2.2 Method 2: Nucleophilic Substitutions ... 1383
20.5.16.1.2.3 Method 3: Cycloaddition Reactions ... 1386
20.5.16.1.2.3.1 Variation 1: Cyclopropanation of Functionalized Alkenes 1386
20.5.16.1.2.3.2 Variation 2: \([2+2]\) Cycloaddition ... 1387
20.5.16.1.2.3.3 Variation 3: Diels–Alder Reaction ... 1389
20.5.16.1.2.4 Method 4: Ring Opening of Cyclic Precursors ... 1391
20.5.16.1.2.4.1 Variation 1: Ring Opening of Lactones .. 1391
20.5.16.1.2.4.2 Variation 2: Ring Opening of Epoxides ... 1392
20.5.16.1.2.5 Method 5: Reduction of \(\beta\)-Dicarbonyl Compounds 1393
20.5.16.1.2.5.1 Variation 1: Selective Reductions of \(\beta\)-Oxo Esters 1393
20.5.16.1.2.5.2 Variation 2: Monoreduction of Malonates .. 1395
20.5.16.1.2.6 Method 6: Oxidation Reactions .. 1397
20.5.16.1.2.6.1 Variation 1: Oxidation of a Preexisting Alcohol or Aldehyde Function 1397
20.5.16.1.2.6.2 Variation 2: “Ex-novo” Oxidative Insertion of the Ester Function 1399
20.5.16.1.2.6.3 Variation 3: Oxidative Insertion of the Hydroxy Function 1400
20.5.16.1.2.7 Method 7: Carboxylation Reactions ... 1401
20.5.16.1.2.8 Methods 8: Miscellaneous Reactions ... 1402
20.5.16.1.3 Amino- and Phosphorylalkanoic Esters and Derivatives 1402
20.5.16.1.3.1 Method 1: Addition to \(\alpha,\beta\)-Unsaturated Esters 1402
20.5.16.1.3.1.1 Variation 1: Michael Addition .. 1402
20.5.16.1.3.1.2 Variation 2: Oxidative Addition ... 1408
20.5.16.1.3.2 Method 2: Nucleophilic Substitutions ... 1410
20.5.16.1.3.3 Method 3: Cycloaddition Reactions ... 1412
20.5.16.1.3.3.1 Variation 1: Cyclopropanation of Functionalized Alkenes 1412
20.5.16.1.3.3.2 Variation 2: \([2+2]\) Cycloaddition ... 1413
20.5.16.1.3.4 Method 4: Ring Opening of Cyclic Precursors ... 1415
20.6 Product Class 6: Lactones

M. E. Maier

20.6 Product Class 6: Lactones ... 1421
20.6.1 Synthesis of Product Class 6 .. 1424
20.6.1.1 Method 1: Lactonization .. 1424
20.6.1.1.1 Variation 1: Lactonization To Give Five-Membered Lactones 1424
20.6.1.2 Method 2: Asymmetric Dihydroxylation Followed by Lactonization 1426
20.6.1.2.1 Variation 1: Butyrolactones from 1,4-Unsaturated Esters 1426
20.6.1.2.2 Variation 2: Butyrolactones from 1,3-Unsaturated Esters 1429
20.6.1.2.3 Variation 3: Butyrolactones from Epoxides and C₃ Building Blocks 1431
20.6.1.2.4 Variation 4: Butyrolactones from the Addition of C₃ Building Blocks to Carbonyl Compounds ... 1438
20.6.1.3 Method 3: Metalation of Aromatic Carboxylic Acid Derivatives 1444
20.6.1.3.1 Variation 1: Base-Induced Lactonization 1447
20.6.1.3.2 Variation 2: Lactonization To Give Six-Membered Lactones 1449
20.6.1.3.3 Variation 3: δ-Lactones from the Opening of Epoxides with C₃ Building Blocks .. 1451
20.6.1.3.4 Variation 4: δ-Lactones from the Addition of C₄ Building Blocks to Carbonyl Compounds ... 1453
20.6.1.3.5 Variation 5: Lactonization To Give Four-Membered Lactones 1455
20.6.1.4 Method 4: Macrolactonization and Difficult Lactonizations 1456
20.6.1.4.1 Variation 1: The Corey–Nicolaou Method 1456
20.6.1.4.2 Variation 2: The Masamune Method 1459
20.6.1.4.3 Variation 3: The Mukaiyama Method 1459
20.6.1.4.4 Variation 4: The Steliou Method .. 1460
20.6.1.4.5 Variation 5: The Yamaguchi Method 1462
20.6.1.4.6 Variation 6: Using Other Benzoic Acid Anhydrides 1465
20.6.1.4.7 Variation 7: The Keck Method ... 1466
20.6.1.4.8 Variation 8: Cyclization of 9-Hydroxydecanoic Acid 1468
20.6.1.4.9 Variation 9: The Trost Method ... 1468
20.6.1.4.10 Variation 10: Other Routes ... 1470
20.6.1.5 Method 5: Lactones by Cycloalkylating Reactions 1470
20.6.1.6 Method 6: Mitsunobu Lactonization 1475
20.6.1.7 Method 7: Lactonization of Unsaturated Carboxylic Acids 1481
20.6.1.7.1 Variation 1: Proton-Catalyzed Lactonization 1482
20.6.1.7.2 Variation 2: Halolactonization .. 1482
20.6.1.7.3 Variation 3: (Phenylselanyl)- and (Phenylsulfanyl)lactonization.... 1493
20.6.1.8 Method 8: Lactones by Intramolecular Epoxide Opening with Carboxy Functions ... 1495
20.6.1.9 Method 9: Spiro Lactones by Oxidative Cyclization 1496
20.6.1.10 Method 10: Lactones by Baeyer–Villiger Oxidation 1498
20.6.1.10.1 Variation 1: Baeyer–Villiger Oxidation of Cyclobutanones 1498
Variation 2: Baeyer–Villiger Oxidation of Monocyclic, Annulated, and Spirocyclic Ketones

Variation 3: Baeyer–Villiger Oxidation of Bi- and Polycyclic Ketones

Variation 4: Metal-Catalyzed Baeyer–Villiger Oxidation

Variation 5: Enzymatic Baeyer–Villiger Reactions

Variation 6: Macrolactones by Baeyer–Villiger Oxidation

Variation 6: Metal-Catalyzed Baeyer–Villiger Oxidation

Method 11: \(\beta \)-Lactones by \([2 + 2]\)-Cycloaddition Reactions

Method 12: Lactones from Heterocyclic Precursors

Method 13: Butenolides from Furans

Product Class 7: Peroxy Acids and Derivatives

Product Subclass 1: Peroxy Acids, Peroxy Acid Salts, and Peroxy Acid Esters

Synthesis of Product Subclass 1

Method 1: Synthesis of Phthaloyl Peroxide

Applications of Product Subclass 1 in Organic Synthesis

Method 1: Asymmetric Allylic Oxidation of Alkenes

Method 2: Diastereofacial Selective Epoxidation

Method 3: Hydrolysis of Peroxy Esters in the Presence of Bis(tributyltin) Oxide

Product Subclass 2: O-Acylhydroxylamines and Related Compounds

Synthesis of Product Subclass 2

Method 1: \(N \)-Aryl-O-benzoylhydroxylamines by Reaction of \(N \)-Arylhydroxylamines with Benzoyl Chloride

Method 2: \(N \)-Alkyl-O-benzoylhydroxylamines by Reduction of Oxime Benzoates

Method 3: O-Aroylhydroxylamines from Aroyl Cyanides or Aroyl Chlorides

Method 4: O-Acetyl-N-allyl-N-pent-4-enoylhydroxylamine from O-Acetyl-N-allylhydroxylamine

Method 5: Cysteine Protease Inhibitor

Method 6: Optically Active Isoxazolidin-5-ones from Nitrones

Method 7: 3-Phenylcyclobutanone \(O \)-Benzoyloxime from Hydroxylamine and Benzoyl Chloride

Method 8: Optically Pure Spiro-\(\lambda^4 \)-sulfanes from Sulfides

Variation 1: Stereospecific Synthesis of Optically Active (Acylamino)(acyloxy)diarylspiro-\(\lambda^4 \)-sulfanes

Variation 2: Bis(acyloxy)spiro-\(\lambda^4 \)-sulfanes from Sulfoxides
Method 9: Trihalomethanesulfenyl Acetates and Trifluoroacetates from Sulfenyl Chlorides .. 1568

Method 10: (R)-Acetyl 1,1'-Binaphthyl-2,2'-diyl Phosphite 1569

Method 11: Carboxyalkyl α-Aminoalkylphosphonic Acid Monoesters from Spirophosphoranes .. 1570

Method 12: A (Benzyloxy)(benzyl)phenylphosphine–Tungsten Complex via Phospha-Wittig Reaction 1571

Method 13: Synthesis of 1,2-Oxaphosphole–Pentacarbonyltungsten Complexes .. 1571

Method 14: Spiro-l4-selanes from Selenides 1572

Method 15: Applications of Product Subclass 2 in Organic Synthesis .. 1576

Method 1: Synthesis of Adenosine Derivatives 1576

Method 2: Conversion of Cyclobutanone O-Benzoyloximes into Nitriles 1577

Method 3: Synthesis of Secondary Amines 1577

Method 4: Synthesis of N-Hydroxy Peptides 1578

Method 5: Synthesis of the N-tert-Butyl-N-(3,5-dinitrobenzoyl)nitroxyl Radical .. 1578

Method 6: Addition of Trihalomethanesulfenyl Acetates to Alkenes 1579

Method 7: Synthesis of Thioacytelated Lactosides 1579

Method 8: Reaction of Cyclic Phosphites with β-Dicarbonyl Compounds 1580

Method 9: Applications of Benzeneselenenyl Trifluoroacetate 1581

Method 10: One-Pot Method for Alkene Trifunctionalization 1582

Method 11: Transformation of Allylsilanes into Allylamines via Phenyltellurinylnation .. 1584

Method 12: Cyclofunctionalization of Alkenyl Carbamates Using Benzenetellurinic Trifluoroacetate 1585

Method 13: Diacetoxylation of Dienes by Acetoxytellurination Followed by Acetylation ... 1585

Product Subclass 3: Acetyl Hypohalites 1587

Synthesis of Product Subclass 3 .. 1587

Method 1: Synthesis of Acetyl Hypohalites 1587

Applications of Product Subclass 3 in Organic Synthesis 1588

Method 1: Iodocyclization Using Acetyl Hypoiiodite 1588

Method 2: Fluorination Using Acetyl Hypofluorite 1589

Method 2.2.2.1 Variation 1: Direct Fluorination of Peptides Containing Tyrosine ... 1589

Method 2.2.2.2 Variation 2: Fluorination of 1,3-Dicarbonyl Derivatives ... 1589

Method 2.2.2.3 Variation 3: Fluorination of Nitro Compounds 1590
20.7.3.2.2.4 Variation 4: Synthesis of α-Fluorocarboxylates .. 1591
20.7.3.2.2.5 Variation 5: Acetoxylation of Nitrogen Heterocycles 1591
20.7.4 **Product Subclass 4: Peroxy Esters of Sulfur, Nitrogen, and Phosphorus** 1592
20.7.4.1 Synthesis of Product Subclass 4 ... 1592
20.7.4.1.1 Method 1: Pentfluorosulfur Peroxy Esters from Acyl Fluorides and Pentfluoro-\(\lambda^6\)-sulfane Hydroperoxide ... 1592
20.7.4.1.2 Method 2: 1-(Benzoylperoxy)-2,2,6,6-tetramethylpiperidine by Direct Reaction of Dibenzoyl Peroxide ... 1593
20.7.4.1.3 Method 2: Trifluoroacetyl Peroxynitrate by Nitration of Trifluoroperacetic Acid ... 1593
20.7.4.2 Applications of Product Subclass 4 in Organic Synthesis 1594
20.7.4.2.1 Method 1: As Radical Initiators Used in the Bulk Polymerization of Styrene ... 1594

20.8 **Product Class 8: Thiocarboxylic S-Acids, Selenocarboxylic Se-Acids, Tellurocarboxylic Te-Acids, and Derivatives**

S. J. Collier
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.8.4.1.2.2</td>
<td>Variation 2: Acylation by Acid Anhydrides</td>
<td>1622</td>
</tr>
<tr>
<td>20.8.4.1.2.3</td>
<td>Variation 3: Acylation by Carboxylic Acids</td>
<td>1624</td>
</tr>
<tr>
<td>20.8.4.1.2.4</td>
<td>Variation 4: Acylation by Carboxylic Acid Esters</td>
<td>1627</td>
</tr>
<tr>
<td>20.8.4.1.3</td>
<td>Method 3: Carbylation Reactions</td>
<td>1630</td>
</tr>
<tr>
<td>20.8.4.1.4</td>
<td>Method 4: Synthesis by Rearrangement</td>
<td>1634</td>
</tr>
<tr>
<td>20.8.4.1.5</td>
<td>Method 5: Synthesis by Modification of the Acyl Group</td>
<td>1635</td>
</tr>
<tr>
<td>20.8.4.1.6</td>
<td>Method 6: Synthesis by Modification of the Sulfur Unit</td>
<td>1638</td>
</tr>
<tr>
<td>20.8.4.1.7</td>
<td>Methods 7: Miscellaneous Procedures</td>
<td>1639</td>
</tr>
<tr>
<td>20.8.5</td>
<td>Product Subclass 5: Acylsulfenyl Halides</td>
<td>1641</td>
</tr>
<tr>
<td>20.8.5.1</td>
<td>Synthesis of Product Subclass 5</td>
<td>1641</td>
</tr>
<tr>
<td>20.8.5.1.1</td>
<td>Method 1: Direct Halogenation of Thiocarboxylic S-Acids or Their Salts</td>
<td>1641</td>
</tr>
<tr>
<td>20.8.6</td>
<td>Product Subclass 6: Acylsulfenic Acids and Derivatives</td>
<td>1643</td>
</tr>
<tr>
<td>20.8.7</td>
<td>Product Subclass 7: Diacyl Disulfides</td>
<td>1645</td>
</tr>
<tr>
<td>20.8.7.1</td>
<td>Synthesis of Product Subclass 7</td>
<td>1645</td>
</tr>
<tr>
<td>20.8.7.1.1</td>
<td>Method 1: Oxidation of Thiocarboxylic S-Acids</td>
<td>1645</td>
</tr>
<tr>
<td>20.8.7.1.2</td>
<td>Method 2: Reaction of Acid Chlorides and a Disulfide Source</td>
<td>1646</td>
</tr>
<tr>
<td>20.8.7.1.3</td>
<td>Method 3: Reaction of Thiocarboxylic S-Acids and Electrophilic Acylsulfanyl Donors</td>
<td>1647</td>
</tr>
<tr>
<td>20.8.7.1.4</td>
<td>Methods 4: Miscellaneous Procedures</td>
<td>1648</td>
</tr>
<tr>
<td>20.8.8</td>
<td>Product Subclass 8: Acyl Disulfides (Acyl Dithioperoxides)</td>
<td>1649</td>
</tr>
<tr>
<td>20.8.8.1</td>
<td>Synthesis of Product Subclass 8</td>
<td>1649</td>
</tr>
<tr>
<td>20.8.8.1.1</td>
<td>Method 1: Synthesis from Thiocarboxylic S-Acids and Electrophilic Sulfur Species</td>
<td>1649</td>
</tr>
<tr>
<td>20.8.8.1.2</td>
<td>Method 2: Synthesis from Acylsulfenyl Chlorides and Sulfur Nucleophiles</td>
<td>1650</td>
</tr>
<tr>
<td>20.8.8.1.3</td>
<td>Methods 3: Miscellaneous Procedures</td>
<td>1651</td>
</tr>
<tr>
<td>20.8.9</td>
<td>Product Subclass 9: S-Acyl Selenothioperoxides and Tellurothioperoxides</td>
<td>1652</td>
</tr>
<tr>
<td>20.8.9.1</td>
<td>Synthesis of Product Subclass 9</td>
<td>1653</td>
</tr>
<tr>
<td>20.8.9.1.1</td>
<td>Method 1: Synthesis from a Thiocarboxylic S-Acid and an Electrophilic Selenium or Tellurium Fragment</td>
<td>1653</td>
</tr>
<tr>
<td>20.8.9.1.2</td>
<td>Method 2: Synthesis from Acylsulfenyl Halides and Chalcogen Nucleophiles</td>
<td>1654</td>
</tr>
<tr>
<td>20.8.9.1.3</td>
<td>Methods 3: Miscellaneous Procedures</td>
<td>1655</td>
</tr>
<tr>
<td>20.8.10</td>
<td>Product Subclass 10: Acyl Sulenamides and Related Compounds</td>
<td>1655</td>
</tr>
<tr>
<td>20.8.10.1</td>
<td>Synthesis of Product Subclass 10</td>
<td>1656</td>
</tr>
<tr>
<td>20.8.10.1.1</td>
<td>Method 1: Synthesis from Thiocarboxylic S-Acids and Electrophilic Amine Sources</td>
<td>1656</td>
</tr>
<tr>
<td>20.8.11</td>
<td>Product Subclass 11: Selenocarboxylic Acid Se-Esters and Tellurocarboxylic Acid Te-Esters</td>
<td>1658</td>
</tr>
<tr>
<td>20.8.11.1</td>
<td>Synthesis of Product Subclass 11</td>
<td>1660</td>
</tr>
<tr>
<td>20.8.11.1.1</td>
<td>Method 1: Selenocarboxylic Acid Se-Esters and Tellurocarboxylic Acid Te-Esters by Alkylation of Chalcogenocarboxylic Acids</td>
<td>1660</td>
</tr>
</tbody>
</table>
Method 2: Synthesis from Carboxylic Acids ... 1662
Method 3: Synthesis from Activated Esters ... 1665
Method 4: Synthesis from Carboxylic Acid Esters 1668
Methods 5: Miscellaneous Procedures ... 1670

Product Subclass 12: Other Acylselenium and Acyltellurium Compounds 1672

Synthesis of Product Subclass 12 ... 1673

Method 1: Synthesis of Selenocarboxylic Se-Acids and Tellurocarboxylic Te-Acids ... 1673
Method 2: Synthesis of Diacyl Selenides (Selenoanhydrides) and Diacyl Tellurides (Telluroanhydrides) ... 1674
Method 3: Synthesis of Acyl Diselenides, Acyl Ditellurides, and Mixed Chalcogen Derivatives ... 1674
Method 4: Synthesis of Diacyl Diselenides and Diacyl Ditellurides 1675
Method 5: Synthesis of Acylselenenyl Halides 1675
Method 6: Synthesis of Acylselenium(IV) and Acyltellurium(IV) Compounds ... 1676

Keyword Index ... 1691

Author Index ... 1741

Abbreviations ... 1801
Volume 21:
Three Carbon–Heteroatom Bonds:
Amides and Derivatives; Peptides; Lactams

Preface ... V
Table of Contents .. IX

21 Introduction
Y. R. Mahajan and S. M. Weinreb 1

21.1 Product Class 1: Amides
Y. R. Mahajan and S. M. Weinreb 17

21.1.1 Synthesis from Carbonic Acid Derivatives
D. Stien .. 27

21.1.2 Synthesis from Carboxylic Acids and Derivatives
T. Ziegler .. 43

21.1.3 Synthesis from Aldehydes, Ketones, and Related Compounds
D. J. Austin and S. M. Miller 77

21.1.4 Synthesis from Amines
G. R. Cook .. 111

21.1.5 Synthesis by Rearrangement
W. R. Judd, C. E. Katz, and J. Aubé 133

21.1.6 Synthesis with Retention of the Functional Group
W.-R. Li ... 179

21.2 Product Class 2: Triacylamines, Imides (Diacylamines),
and Related Compounds
F. A. Luzzio ... 259

21.3 Product Class 3: N-[α-(Heteroatom)alkyl]-Substituted Alkanamides
J. K. Cha .. 325

21.4 Product Class 4: N-Arylalkanamides, Ynamides, Enamides,
Dienamides, and Allenamides
M. R. Tracey, R. P. Hsung, J. Antoline, K. C. M. Kurtz, L. Shen, B. W. Slafer,
and Y. Zhang ... 387

21.5 Product Class 5: α-Heteroatom-Substituted Alkanamides
M. Pätzel, S. Pritz, and J. Liebscher 477

21.6 Product Class 6: α,β- Unsaturated Amides: Alk-2-ynamides,
Arenecarboxamides, and Alk-2-enamides
M. F. Lipton and M. A. Mauragis 537

21.7 Product Class 7: β-Heteroatom-Substituted Alkanamides
S. Manyem and M. P. Sibi .. 565
<table>
<thead>
<tr>
<th>Product Class</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Product Class 8: α-Lactams</td>
<td>R. V. Hoffman and V. Cesare</td>
<td>591</td>
</tr>
<tr>
<td>9</td>
<td>Product Class 9: β-Lactams</td>
<td>C. Coates, J. Kabir, and E. Turos</td>
<td>609</td>
</tr>
<tr>
<td>10</td>
<td>Product Class 10: γ-Lactams and Larger Ring Lactams</td>
<td>M. B. Smith</td>
<td>647</td>
</tr>
<tr>
<td>12</td>
<td>Product Class 12: Metal Amides and Imides</td>
<td>T. R. Bailey</td>
<td>811</td>
</tr>
<tr>
<td>13</td>
<td>Product Class 13: N-Heteroatom-Substituted Alkanamides</td>
<td>P. R. Blakemore</td>
<td>833</td>
</tr>
<tr>
<td>14</td>
<td>Product Class 14: Acylphosphorus Compounds</td>
<td>A. Whitehead, S. R. Sieck, S. Mukherjee, and P. R. Hanson</td>
<td>907</td>
</tr>
</tbody>
</table>

Keyword Index ... 941
Author Index ... 979
Abbreviations ... 1031
Table of Contents

21

Introduction
Y. R. Mahajan and S. M. Weinreb

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.1</td>
<td>Product Class 1: Amides</td>
<td>17</td>
</tr>
<tr>
<td>21.1.1</td>
<td>Synthesis from Carbonic Acid Derivatives</td>
<td>27</td>
</tr>
<tr>
<td>21.1.1.1</td>
<td>Method 1: Synthesis from Carbon Dioxide and Compounds Related to Carbonic Acid</td>
<td>27</td>
</tr>
<tr>
<td>21.1.1.2</td>
<td>Variation 1: From Carbon Dioxide</td>
<td>27</td>
</tr>
<tr>
<td>21.1.1.3</td>
<td>Variation 2: From Carbon Tetrachloride</td>
<td>28</td>
</tr>
<tr>
<td>21.1.1.4</td>
<td>Variation 3: From Phosgene, Phosgene Surrogates, and Chloroformates</td>
<td>28</td>
</tr>
<tr>
<td>21.1.1.5</td>
<td>Variation 4: From Carbonates</td>
<td>29</td>
</tr>
<tr>
<td>21.1.1.6</td>
<td>Method 2: Synthesis from Carbamic Acids and Related Derivatives</td>
<td>30</td>
</tr>
<tr>
<td>21.1.1.7</td>
<td>Variation 1: From O-Alkyl or O-Aryl Carbamates</td>
<td>30</td>
</tr>
<tr>
<td>21.1.1.8</td>
<td>Variation 2: From Carbamoyl Halides and Related Derivatives</td>
<td>31</td>
</tr>
<tr>
<td>21.1.1.9</td>
<td>Variation 3: From Cyanic Acid and Cyanic Acid Salts</td>
<td>32</td>
</tr>
<tr>
<td>21.1.1.10</td>
<td>Variation 4: From Isocyanates</td>
<td>32</td>
</tr>
<tr>
<td>21.1.1.11</td>
<td>Method 3: Synthesis from Ureas and Related Derivatives</td>
<td>33</td>
</tr>
<tr>
<td>21.1.1.12</td>
<td>Variation 1: From Diverse N-Substituted Ureas</td>
<td>33</td>
</tr>
<tr>
<td>21.1.1.13</td>
<td>Variation 2: From Diimides and Cyanamides</td>
<td>35</td>
</tr>
<tr>
<td>21.1.1.14</td>
<td>Variation 3: From O-Alkylated Ureas</td>
<td>35</td>
</tr>
<tr>
<td>21.1.1.15</td>
<td>Method 4: Synthesis from Sulfur-Containing Compounds</td>
<td>37</td>
</tr>
<tr>
<td>21.1.1.16</td>
<td>Variation 1: Reduction of the C—S Bond</td>
<td>37</td>
</tr>
<tr>
<td>21.1.1.17</td>
<td>Variation 2: C—C Bond Formation</td>
<td>38</td>
</tr>
<tr>
<td>21.1.2</td>
<td>Synthesis from Carboxylic Acids and Derivatives</td>
<td>43</td>
</tr>
<tr>
<td>21.1.2.1</td>
<td>Method 1: Aminolysis of Acylboranes</td>
<td>43</td>
</tr>
<tr>
<td>21.1.2.2</td>
<td>Method 2: Synthesis from Acid Halides</td>
<td>43</td>
</tr>
<tr>
<td>21.1.2.2.1</td>
<td>Variation 1: By Condensation with Amines and Alkyl(trialkylsilyl)amines</td>
<td>43</td>
</tr>
<tr>
<td>21.1.2.2.2</td>
<td>Variation 2: By Indium Catalysis</td>
<td>44</td>
</tr>
<tr>
<td>21.1.2.3</td>
<td>Method 3: Synthesis from Carboxylic Acids</td>
<td>44</td>
</tr>
<tr>
<td>21.1.2.3.1</td>
<td>Variation 1: By Direct Condensation with Amines</td>
<td>44</td>
</tr>
<tr>
<td>21.1.2.3.2</td>
<td>Variation 2: By Condensation with Borane or Borohydrides</td>
<td>45</td>
</tr>
</tbody>
</table>
21.1.2.3.3 Variation 3: By Condensation with Carbodiimides 46
21.1.2.3.4 Variation 4: By Other Dehydrating Agents 46
21.1.2.3.5 Variation 5: By Redox Condensation .. 46
21.1.2.4 Method 4: Synthesis from Acid Anhydrides 47
21.1.2.4.1 Variation 1: By Condensation with Isocyanates 47
21.1.2.4.2 Variation 2: By Condensation with Amines 48
21.1.2.5 Method 5: Synthesis from Esters ... 49
21.1.2.5.1 Variation 1: By Aminolysis with Amines or Metal Amides 49
21.1.2.5.2 Variation 2: Via Intermediate Acyl Cyanides 50
21.1.2.5.3 Variation 3: By Electrolysis ... 51
21.1.2.5.4 Variation 4: By Enzyme Catalysis .. 51
21.1.2.6 Method 6: Synthesis from Thiocarboxylic Acids or Carbothioate Esters .. 51
21.1.2.6.1 Variation 1: From Thiocarboxylic Acids 52
21.1.2.6.2 Variation 2: From Carbothioate Esters and Amines 55
21.1.2.6.3 Variation 3: From S-Benzothiazol-2-yl Carbothioates 56
21.1.2.6.4 Variation 4: From Carbothioate Esters by Reaction with Alkyl Azides ... 56
21.1.2.7 Method 7: Synthesis from Acyl Azides ... 57
21.1.2.7.1 Variation 1: By Reduction ... 57
21.1.2.7.2 Variation 2: By Substitution with Amines 58
21.1.2.8 Method 8: Synthesis from Imidates and Related Compounds 58
21.1.2.8.1 Variation 1: By Rearrangement ... 58
21.1.2.8.2 Variation 2: From 4,5-Dihydrooxazoles by Ring Opening 58
21.1.2.9 Method 9: Synthesis from Nitriles by Functional Group Transformation .. 58
21.1.2.9.1 Variation 1: By Hydrolysis ... 58
21.1.2.9.2 Variation 2: N-Alkylation by Ritter-Type Reactions 61
21.1.2.10 Method 10: Synthesis from Isocyanides 66
21.1.2.10.1 Variation 1: By Passerini-Type Reactions 66
21.1.2.10.2 Variation 2: By Ugi Reactions .. 68
21.1.2.11 Method 11: Synthesis from 1,1,1-Trihaloalkanes 69
21.1.2.12 Method 12: Synthesis from Ketenes, Ketene Acetals, or Ynamines 70

21.1.3 Synthesis from Aldehydes, Ketones, and Related Compounds
D. J. Austin and S. M. Miller

21.1.3 Synthesis from Aldehydes, Ketones, and Related Compounds 77
21.1.3.1 Method 1: Oxidation of Aldehydes ... 77
21.1.3.1.1 Variation 1: Radical-Promoted Oxidation 78
21.1.3.1.2 Variation 2: Palladium-Catalyzed Oxidation 79
21.1.3.1.3 Variation 3: Manganese(IV) Oxide Promoted Oxidation 80
21.1.3.1.4 Variation 4: Nickel Peroxide Mediated Oxidation 80
21.1.3.1.5 Variation 5: Photochemical Oxidation of Aryl Aldehydes 81
21.1.3.1.6 Variation 6: Electrochemical Oxidation 82
21.1.3.2 Method 2: Oxidative Decyanation of α-Aminonitrile Derivatives of Aldehydes ... 83
21.1.3.3 Method 3: Amination and Hydrolysis of O-Trimethylsilyl Cyanohydrins .. 84
21.1.3.3.1 Variation 1: Direct Hydrolysis of O-Trimethylsilyl Cyanohydrins 84
21.1.3.4 Method 4: Electrochemical Oxidation of Aryl and Aliphatic Ketones 85
21.1.3.5 Method 5: Fragmentation of Non-Enolizable Ketones (Haller–Bauer Reaction) .. 87
21.1.3.6 Method 6: Hydrolysis of Iminium Salts Formed from Ketones and Dichloromethylenedimethylammonium Chloride 88
21.1.3.7 Method 7: Reductive Amidation of Ketones (Leuckart Reaction) 89
21.1.3.8 Method 8: Condensation of Carbonyl Compounds with Ynamines 91
21.1.3.9 Method 9: Reaction of Ketones with Chloroform and Amines under Phase-Transfer Conditions 92
21.1.3.10 Method 10: Oxidation of Imines .. 93
21.1.3.10.1 Variation 1: With 3-Chloroperoxybenzoic Acid 93
21.1.3.10.2 Variation 2: With Sodium Perborate 94
21.1.3.10.3 Variation 3: With Potassium Permanganate 95
21.1.3.10.4 Variation 4: Oxidation of Quinone Imines 96
21.1.3.10.5 Variation 5: With Chromyl Chloride 97
21.1.3.10.6 Variation 6: With Phosphorus Pentachloride 97
21.1.3.11 Method 11: Oxidation of Cyclic Iminium Salts 99
21.1.3.12 Method 12: Transition-Metal-Catalyzed Carbonylation of Imines 99
21.1.3.12.1 Variation 1: With Octacarboxylicobalt(0), Thiols, Imines, and Carbon Monoxide .. 100
21.1.3.12.2 Variation 2: With Octacarboxylicobalt(0), Alkyl Boranes, and Carbon Monoxide .. 102
21.1.3.13 Method 13: Base-Induced Cycloreversion of Nitrile Oxide Cycloadducts 103
21.1.3.14 Method 14: Reaction of Acetals with Isocyanides 104
21.1.3.15 Method 15: Acylation of Enamines ... 105
21.1.3.16 Method 16: Palladium-Catalyzed Arylation with α-Anilinoalkenenitriles .. 105
21.1.3.17 Method 17: Reaction of α-Aminoalkenenitriles 107

21.1.4 Synthesis from Amines
G. R. Cook

21.1.4 Synthesis from Amines ... 111
21.1.4.1 By Oxidation ... 111
21.1.4.1.1 Method 1: Oxidation of Benzylamines with Potassium Permanganate ... 111
21.1.4.1.2 Method 2: Oxidation of 2-Aminonitriles .. 112
21.1.4.1.3 Method 3: Oxidation of Aldimines .. 112
21.1.4.1.3.1 Variation 1: With Sodium Perborate 113
21.1.4.1.3.2 Variation 2: With 3-Chloroperoxybenzoic Acid 113
21.1.4.2 By Carbonylation ... 114
21.1.4.2.1 Method 1: Palladium-Catalyzed Aminocarbonylation of Aryl and Vinyl Halides and Trifluoromethanesulfonates, and Related Compounds ... 114
21.1.4.2.1.1 Variation 1: Aminocarbonylation of Vinyl Halides and Trifluoromethanesulfonates ... 114
21.1.4.2.1.2 Variation 2: Palladium-Catalyzed Insertion into Aryl Halides and Trifluoromethanesulfonates ... 116
21.1.4.2.1.3 Variation 3: Palladium-Catalyzed Insertion into Hypervalent Iodine Compounds and Diazonium Salts 122
21.1.4.2.1.4 Variation 4: Palladium-Catalyzed Aminocarbonylation with In Situ Generated Carbon Monoxide .. 123
21.1.4.2.1.5 Variation 5: Ammonia Equivalents for the Palladium-Catalyzed Preparation of N-Unsubstituted Amides 125
21.1.4.2.2 Method 2: Palladium-Catalyzed Aminocarbonylation via Insertion into C—H Bonds ... 126
21.1.4.2.2.1 Variation 1: Insertion into Aryl C—H Bonds 126
21.1.4.2.2.2 Variation 2: Insertion into Acetylenic C—H Bonds 127
21.1.4.2.3 Method 3: Aminocarbonylation Involving Migratory Insertion into Alkene and Alkyne π-Bonds .. 128
21.1.4.2.3.1 Variation 1: Cobalt-Catalyzed Hydroformylation and Amination 128
21.1.4.2.3.2 Variation 2: Palladium-Catalyzed Aminocarbonylation of Alkynes 128
21.1.4.2.3.3 Variation 3: Palladium-Catalyzed Selenation and Carbonylation of Alkynes 129
21.1.4.2.4 Method 4: Photochemical Aminocarbonylation of Alkyl Iodides 129
21.1.4.2.5 Method 5: Ring Expansion of Aziridines 130

21.1.5 Synthesis by Rearrangement
W. R. Judd, C. E. Katz, and J. Aubé

21.1.5 Synthesis by Rearrangement ... 133
21.1.5.1 Method 1: Favorskii Rearrangement from α-Halo Ketones 133
21.1.5.1.1 Variation 1: From Mono-α-halo Ketones 135
21.1.5.1.2 Variation 2: From α-Substituted α-Halo Ketones 136
21.1.5.1.3 Variation 3: Reactions with α,α'-Dihalo Ketones 138
21.1.5.2 Method 2: Arndt–Eistert Synthesis from Diazo Ketones 139
21.1.5.2.1 Variation 1: Intermolecular Reactions with Amines 142
21.1.5.2.2 Variation 2: Synthesis of β-Amino Acids and β-Peptides 144
21.1.5.2.3 Variation 3: Intramolecular Reactions 145
21.1.5.2.4 Variation 4: Ring Contraction .. 145
21.1.5.3 Method 3: Schmidt Reaction from Ketones with Hydrazoic Acid 146
21.1.5.3.1 Variation 1: From Ketones with Alkyl Azides 150
21.1.5.3.2 Variation 2: By Intramolecular Reactions of Alkyl Azides with Ketones 152
21.1.5.3.3 Variation 3: From Hydroxyalkyl Azides 154
21.1.5.4 Method 4: Beckmann Rearrangement from Oximes 156
21.1.5.4.1 Variation 1: The Photochemical Beckmann Rearrangement 161
21.1.5.5 Method 5: Chapman Rearrangement from Aryl Imidates 162
21.1.5.6 Method 6: Aza-Claisen Rearrangement from Allyl Imidates 164
21.1.5.7 Method 7: Rearrangement of Oxaaziridines 168
21.1.5.8 Method 8: Willgerodt Reaction from Aryl Ketones 173
21.1.5.8.1 Variation 1: The Kindler Modification 175
21.1.6 Synthesis with Retention of the Functional Group
W.-R. Li

21.1.6 Synthesis with Retention of the Functional Group .. 179
21.1.6.1 Synthesis from Acyl Nitroso Compounds, Acyl Azides, N-Hydroxy Amides, N-Nitroso Amides, N-Nitro Amides, Acyl Hydrazines, Acyl Nitrenes, and Related Compounds .. 179
21.1.6.1.1 Method 1: Synthesis from Acyl Nitroso Compounds 179
21.1.6.1.2 Method 2: Reduction of Acyl Azides ... 180
21.1.6.1.2.1 Variation 1: With Hydride Reducing Agents 180
21.1.6.1.2.2 Variation 2: Conversion into Acetylated Amides with Acetic Anhydride and Chlorotrimethylsilane .. 181
21.1.6.1.3 Method 3: Synthesis from N-Hydroxy Amides and Their Derivatives 182
21.1.6.1.3.1 Variation 1: By Reductive Cleavage of N-Alkoxy Amides 182
21.1.6.1.3.2 Variation 2: By Reductive Cleavage of N-Benzylxy β-Lactams 184
21.1.6.1.3.3 Variation 3: By Amidyl Radical–Alkene Cyclizations 185
21.1.6.1.3.4 Variation 4: By Diastereoselective Addition of Nucleophiles to the C3 Position of N-Tosyloxy β-Lactams ... 186
21.1.6.1.3.5 Variation 5: By Base-Promoted Reaction of O-Sulfonylated N-Hydroxy Amides with Nucleophiles ... 187
21.1.6.1.4 Method 4: Synthesis from N-Nitroso Amides or N-Nitro Amides 189
21.1.6.1.5 Method 5: Synthesis from Acyl Hydrazines ... 190
21.1.6.1.5.1 Variation 1: By Reductive Cleavage .. 190
21.1.6.1.5.2 Variation 2: By Oxidative Amidation .. 191
21.1.6.1.6 Method 6: Synthesis from Acyl Nitrenes ... 192
21.1.6.2 Synthesis from Formamides by Substitution of Hydrogen 193
21.1.6.2.1 Method 1: Palladium-Catalyzed Aminocarbonylation 193
21.1.6.2.2 Method 2: Carboxamidation of Organolithium and Organomagnesium Reagents ... 195
21.1.6.3 Synthesis from Imides (Diacylamines) and Triacylamines by Decylation 196
21.1.6.3.1 Method 1: Samarium(II) Iodide Mediated Coupling Reaction 196
21.1.6.3.2 Method 2: Aluminum Trichloride Promoted Aminolysis of Cyclic Imides 197
21.1.6.3.3 Method 3: Hydride Reduction ... 198
21.1.6.3.4 Method 4: Photoinduced Single-Electron-Transfer (SET) Reaction 199
21.1.6.4 Synthesis from Enamides ... 199
21.1.6.4.1 Method 1: Asymmetric Hydrogenation .. 199
21.1.6.4.2 Method 2: Enantioselective Hydrogen Atom Transfer Reactions 206
21.1.6.4.3 Method 3: Chemoselective Conjugate Addition of Nucleophiles 207
21.1.6.4.4 Method 4: Cycloaddition Reactions ... 208
21.1.6.5 Synthesis from Other Amides by Transamidation 209
21.1.6.5.1 Method 1: Catalytic Transamidation ... 209
21.1.6.5.2 Method 2: Transamidation of Activated Amides 211
21.1.6.6 Synthesis from Other Amides by Acyl Exchange on Nitrogen 211
21.1.6.6.1 Method 1: Conversion of Carbamates .. 211
21.1.6.7 Synthesis from Other Amides by Modification of a Substituent on Nitrogen .. 212
 21.1.6.7.1 Method 1: Amidoalkylation ... 212
 21.1.6.7.1.1 Variation 1: Under Lewis Acid Catalysis 213
 21.1.6.7.1.2 Variation 2: By Nucleophilic Attack ... 214
 21.1.6.7.2 Method 2: Catalytic Asymmetric Allylation 215
 21.1.6.7.3 Method 3: Radical Cyclization or Addition 216
 21.1.6.7.4 Method 4: Oxidation .. 217
 21.1.6.8 Synthesis from Other Amides by N-Alkylation .. 218
 21.1.6.8.1 Method 1: Palladium-Catalyzed Alkylation 218
 21.1.6.8.2 Method 2: Rhodium Carbenoid Reactions 219
 21.1.6.8.3 Method 3: Ruthenium-Catalyzed Propargylic Substitution Reactions 220
 21.1.6.8.4 Method 4: Copper(I)-Catalyzed Amidation 221
 21.1.6.8.5 Method 5: Osmium-Catalyzed Asymmetric Aminohydroxylation of Alkenes .. 222
 21.1.6.8.6 Method 6: Multicomponent Coupling of Aldehydes, Amides, and Dienophiles .. 223
 21.1.6.9 Synthesis from Other Amides by N-Dealkylation 223
 21.1.6.9.1 Method 1: Reduction by Lithium of Low-Molecular-Weight Amines and Ethane-1,2-diamine .. 223
 21.1.6.9.2 Method 2: Ruthenium(VIII) Oxidation of Serine/Threonine Peptides 224
 21.1.6.9.3 Method 3: Aza-Claisen Rearrangement .. 225
 21.1.6.10 Synthesis from Lactams with Ring Opening .. 226
 21.1.6.10.1 Method 1: Cleavage of the β-Lactam Ring .. 226
 21.1.6.11 Synthesis from 2-Hydroxyamino Amides, α-Oxo Amides, α-Sulfanyl Amides, and Other Functionalized Amides .. 229
 21.1.6.11.1 Method 1: Reduction of 2-Hydroxyamino Amides 229
 21.1.6.11.2 Method 2: Reduction of α-Oxo Amides ... 230
 21.1.6.11.3 Method 3: Desulfurization of α-Sulfanyl Amides 231
 21.1.6.11.4 Method 4: Reduction of α-Functionalized Amides 231
 21.1.6.11.5 Method 5: Free-Radical C-Allylation Reactions 233
 21.1.6.11.6 Method 6: Sequential Elimination–Cyclopropanation Reactions 234
 21.1.6.12 Synthesis from α-Amido Nitriles by Decyanation 235
 21.1.6.12.1 Method 1: Catalytic Reduction of Nitriles ... 235
 21.1.6.13 Synthesis from Alkynamides and Alkenamides by Reduction 236
 21.1.6.13.1 Method 1: Enantioselective Conjugate Reduction with Semicorrin Cobalt Catalysts ... 236
 21.1.6.13.2 Method 2: Regioselective Reduction with the Sodium Borohydride/Iodine System ... 237
 21.1.6.14 Synthesis from Alkynamides and Alkenamides by Addition of Carbon Moieties to Carbon—Carbon Multiple Bonds, Other than 1,4-Addition of Heteroatoms .. 238
 21.1.6.14.2 Method 2: Lewis Acid Promoted Cyclization 240
Method 3: Palladium-Catalyzed Hydroarylation of Propynamides 241
Method 1: Asymmetric Alkylation Using Pseudoephedrine as a Chiral Auxiliary 243
Variation 1: By Alkylation with Haloalkanes 243
Variation 2: By Alkylation with Epoxides and Their Derivatives 244
Variation 3: By Asymmetric Michael Reactions 246
Variation 4: By Mannich Reaction with Enolizable Imines 247
Variation 5: By Asymmetric Aldol Reactions 247
Method 2: Diastereoselective α-Iodination Reactions 248

Product Class 2: Triacylamines, Imides (Diacylamines), and Related Compounds
F. A. Luzzio

Product Subclass 1: Triacylamines 259
Synthesis of Product Subclass 1 259
Method 1: Acylation of Imides 259
Method 2: Synthesis from Dicarboxylic Acids and Thiourea through Microwave Irradiation 263
Method 4: Acylation of Acid Anhydrides 264
Method 5: Amidation of Esters 265
Method 6: Synthesis from Ketene Dithioacetals via Nitriles 268
Method 7: Synthesis from Lactams 269
Method 8: Synthesis from Ketenes 296
Method 9: Photodecarboxylation of N-Acylamino Acids 271
Method 10: Oxidation/Rearrangement of Azlactones 272

Product Subclass 2: Imides (Diacylamines) Unsubstituted on Nitrogen 261
Synthesis of Product Subclass 2 262
Method 1: Acylation of Acid Halides 262
Method 2: Acylation of Dicarboxylic Acids 262
Method 3: Synthesis from Dicarboxylic Acids and Thiourea through Microwave Irradiation 263
Method 4: Acylation of Acid Anhydrides 264
Method 5: Amidation of Esters 265
Method 6: Synthesis from Ketene Dithioacetals via Nitriles 268
Method 7: Synthesis from Amides and Thioamides 269
Method 8: Synthesis from Lactams 269
Method 9: Photodecarboxylation of N-Acylamino Acids 271
Method 10: Oxidation/Rearrangement of Azlactones 272

Product Subclass 3: Imides (Diacylamines) Substituted at Nitrogen by Groups Other than Acyl 274
Synthesis of Product Subclass 3 274
Method 1: Acylation of Acid Halides 274
Method 2: Amination and Dehydration of Carboxylic Acids 275
Method 3: Synthesis from Carboxylic Acid Anhydrides 282
Method 4: Synthesis from Activated Esters 293
Method 5: Rearrangement of Amides and Lactams 294
Method 6: Synthesis from Ketenes 296
Method 7: Rearrangement of β-Oxo Esters 296
Method 8: Acylation of Amides 297
21.2.3.1.9 Method 9: Synthesis from Lactams by Oxidation of α-Methylene Groups 301
21.2.3.1.10 Method 10: Synthesis from Isoimides by Rearrangement 303
21.2.3.1.11 Method 11: Synthesis from Imides through N-Alkylation or N-Arylation 304
21.2.3.1.12 Method 12: Synthesis from Esters and Amido Esters 313
21.2.3.1.13 Method 13: Carbonylation of Alkynes and Amines 316
21.2.4 Product Subclass 4: Imides (Diacylamines) N-Substituted by Amino or Hydroxy Groups, or by a Halogen 317
21.2.4.1 Synthesis of Product Subclass 4 317
21.2.4.1.1 Method 1: N-Aminated Imides from Anhydrides 317
21.2.4.1.2 Method 2: N-Hydroxylated Imides from Anhydrides 318
21.2.4.1.3 Method 3: N-Acyloxylated Imides from N-Hydroxylated Imides 319
21.2.4.1.4 Method 4: N-Brominated Imides from Imides 320
21.2.4.1.5 Method 5: Hydroxylated Imides by the Rearrangement of Cyclic Nitro Ketones 321

21.3 Product Class 3: \(N-\left[\alpha-(\text{Heteroatom})\text{alkyl}\right]\)-Substituted Alkanamides

J. K. Cha

21.3.1 Product Subclass 1: \(N-(1-\text{Haloalkyl})\) Amides and Carbamates 325
21.3.1.1 Synthesis of Product Subclass 1 325
21.3.1.1.1 Method 1: Treatment of \(N-(1-\text{Hydroxyalkyl})\) Amides with Inorganic Halides 325
21.3.1.1.1 Variation 1: Treatment of Amides with Paraformaldehyde 326
21.3.1.1.2 Method 2: Addition of Acid Chlorides to Imines 326
21.3.1.1.3 Method 3: Halogenation of Glycinates 327
21.3.1.2 Applications of Product Subclass 1 in Organic Synthesis 328
21.3.1.2.1 Method 1: Displacement Reactions 328
21.3.1.2.2 Method 2: \(\alpha\)-Amidoalkylation 330
21.3.1.2.3 Method 3: Free-Radical Reactions 331
21.3.2 Product Subclass 2: \(N-(1-\text{Alkoxyalkyl})\) Amides and Carbamates 332
21.3.2.1 Synthesis of Product Subclass 2 332
21.3.2.1.1 Method 1: Addition of Amides to Aldehydes 332
21.3.2.1.1 Variation 1: Addition of N-Silylated Amides to Aldehydes 333
21.3.2.1.2 Variation 2: Cyclization of Amides to Tethered Aldehydes 334
21.3.2.1.3 Variation 3: Condensation of Amino Alcohols and Oxo Acids 335
21.3.2.2 Applications of Product Subclass 2 in Organic Synthesis 336
21.3.2.2.1 Method 1: Hetero [4 + 2] Cycloadditions 336
21.3.2.2.2 Method 2: Partial Reduction of Imides 338
21.3.2.2.1 Variation 1: Diastereoselective Reduction of Imides 341
21.3.2.2.2 Variation 2: Desymmetrization of meso-Imides 342
21.3.2.2.3 Method 3: Addition of Grignard Reagents to Cyclic Imides 343
21.3.2.2.4 Method 4: Kulinkovich Reactions of Vinyl-Tethered Imides 345
21.3.2.2.5 Method 5: Treatment of Imines with Carboxylic Acid Anhydrides 347
21.3.2.6 Method 6: Reduction of N-Acylimidates .. 347
21.3.2.7 Method 7: Electrochemical Oxidation of Amides and Carbamates 348
21.3.2.7.1 Variation 1: Anodic Oxidation of Carbamates in Acetic Acid 351
21.3.2.7.2 Variation 2: Decarboxylative Oxidation of N-Acylamino Acids 351
21.3.2.7.3 Variation 3: Oxidative Decarboxylation of N-Acylamino Acids by Chemical Methods ... 352
21.3.2.8 Method 8: Ruthenium-Catalyzed Oxidation of Amides and Carbamates ... 353
21.3.2.8.1 Variation 1: Decomposition of Diazonium Salts of 1-(2-Aminobenzoyl)azacycloalkanes .. 354
21.3.2.8.2 Variation 2: Oxidation of Amines by 2-Iodoxybenzoic Acid 355
21.3.2.9 Methods 9: Miscellaneous Procedures .. 355
21.3.2.10 Method 10: Further Applications of Iminium and N-Acyliminium Ions in Total Synthesis ... 358

21.3.3 Product Subclass 3: N-(1-Amino- or 1-Acylaminoalkyl) Amides and Carbamates 358

21.3.3.1 Synthesis of Product Subclass 3 ... 358
21.3.3.1.1 Method 1: Condensation of Amides and Aldehydes 358
21.3.3.1.1 Variation 1: Treatment of Acetals with Isocyanates 359
21.3.3.1.2 Variation 2: Condensation of Amides, Formaldehyde, and Amines 360
21.3.3.1.3 Variation 3: Use of Benzotriazole in a Mannich-Type Reaction 360
21.3.3.1.2 Method 2: Curtius Rearrangement ... 361
21.3.3.1.3 Method 3: Treatment of N-(1-Haloalkyl) or N-(1-Acloyxalkyl) Amides and Carbamates with Amines or Azides 362
21.3.3.2 Applications of Product Subclass 3 in Organic Synthesis 362
21.3.3.2.1 Method 1: α-Amidoalkylation .. 362
21.3.3.2.2 Method 2: Reductive Cleavage of Reduced Pyridazines 362
21.3.3.2.3 Method 3: α-Azidonation of Amides and Carbamates 363

21.3.4 Product Subclass 4: N-(1-Thioalkyl) Amides and Carbamates 365

21.3.4.1 Synthesis of Product Subclass 4 ... 365
21.3.4.1.1 Method 1: By Displacement Reactions .. 365
21.3.4.1.2 Method 2: Acylation of Thiazolidines .. 366
21.3.4.1.3 Method 3: Mannich Condensations Involving Sulfinic Acids 367
21.3.4.1.3.1 Variation 1: Pummerer Reactions of Amido Sulfoxides 368
21.3.4.2 Applications of Product Subclass 4 in Organic Synthesis 369
21.3.4.2.1 Method 1: Ring Cleavage via N-Acyliminium Ions 369
21.3.4.2.2 Method 2: Generation of α-Acylamino Radicals 373

21.3.5 Product Subclass 5: N-(1-Phosphoniumalkyl) or N-(1-Phosphonylalkyl) Amides and Carbamates ... 374

21.3.5.1 Synthesis of Product Subclass 5 ... 374
21.3.5.1.1 Method 1: Displacement by Phosphine or Phosphite 374
21.3.5.1.2 Method 2: Acylation of Amino Phosphonic and Phosphinic Acids 375
21.3.5.1.2.1 Variation 1: Staudinger Reactions of 1-Azidoalkylphosphonates 376
21.3.5.1.3 Method 3: Three-Component Coupling of Carbonyls, Amides, and Phosphorus-Based Nucleophiles ... 376
21.3.5.1.4 Method 4: Curtius Rearrangements of α-Acylazido Phosphonates 379
21.3.5.2 Applications of Product Subclass 5 in Organic Synthesis 380
21.3.5.2.1 Method 1: Wittig Alkenation 380

21.4 Product Class 4: N-Arylalkanamides, Ynamides, Enamides, Dienamides, and Allenamides

21.4.1 Product Subclass 1: N-Arylalkanamides 387
21.4.1.1 Synthesis of Product Subclass 1 388
21.4.1.1.1 Method 1: Palladium-Catalyzed Intermolecular Coupling of Aryl Halides and Amides 388
21.4.1.1.1.1 Variation 1: Palladium(II)-Catalyzed Intermolecular Coupling of Aryl Halides and Lactams 389
21.4.1.1.1.2 Variation 2: Palladium(0)-Catalyzed Intermolecular Coupling of Aryl Halides and Carbamates 390
21.4.1.1.1.3 Variation 3: Palladium(II)-Catalyzed Intermolecular Coupling of Aryl Halides and Oxazolidinones 390
21.4.1.1.1.4 Variation 4: Palladium(0)-Catalyzed Intermolecular Coupling of Aryl Halides and Ureas 391
21.4.1.1.5.1 Variation 5: Palladium(II)-Catalyzed Intramolecular Cyclization of Amides 391
21.4.1.1.6.1 Variation 6: Palladium(II)-Catalyzed Intramolecular Cyclization of Chiral Amides 392
21.4.1.1.2 Method 2: Palladium(0)-Catalyzed Coupling of Epoxides and Isocyanates via a π-Allyl Intermediate 393
21.4.1.1.2.1 Variation 1: Palladium(0)-Catalyzed Coupling of Dicarbonates and Isocyanates via a π-Allyl Intermediate 393
21.4.1.1.3 Method 3: Copper(I)-Catalyzed Intermolecular Coupling of Aryl Halides and Amides (The Goldberg Reaction) 394
21.4.1.1.3.1 Variation 1: Copper(I)-Catalyzed Intermolecular Coupling of Hetaryl Halides with Carbamates 395
21.4.1.1.3.2 Variation 2: Copper(I)-Catalyzed Intermolecular Coupling of Aryl Halides and Hydrazides 395
21.4.1.1.3.3 Variation 3: Microwave-Enhanced Goldberg Reaction 396
21.4.1.1.4 Method 4: Alkylation of N-Aryl Amides with Alkyl Halides 396
21.4.1.1.4.1 Variation 1: Generation of Solid-Supported N-Arylalkanamides by Three-Component Coupling of N-Arylamines, Carbon Dioxide, and Merrifield’s Resin 397
21.4.1.1.5 Method 5: Oxidation of Thioamides with 3-Chloroperoxybenzoic Acid 398
21.4.1.1.5.1 Variation 1: Oxidation of Thioamides with Vinyl L3-Iodanes 398
21.4.1.1.6 Method 6: Dicyclohexylcarbodiimide Peptide Coupling 399
21.4.1.1.7 Method 7: Solid-Phase Synthesis of Boronic Acids Containing Amide Functionality via Ugi Reactions 400
21.4.1.8 Method 8: 2-Iodoxybenzoic Acid Mediated Radical Cyclization of N-Arylated Amides and Carbamates 400
21.4.1.9 Method 9: Intramolecular Epoxide Opening and Oxazolidinone Formation 401
21.4.1.9.1 Variation 1: Intermolecular Epoxide Opening and Oxazolidinone Formation ... 402
21.4.1.10 Method 10: N-Pyridinylation of Amides with Pyridine 1-Oxide 402
21.4.1.11 Method 11: Anionic Additions of Prop-2-yn-1-ols to Isocyanates 403
21.4.1.12 Method 12: Hydrolysis of Imidazolium Chlorides under Basic Conditions 403
21.4.2 Product Subclass 2: Ynamides ... 404
21.4.2.1 Synthesis of Product Subclass 2 ... 406
21.4.2.1.1 Method 1: Addition of Amides to Alkynyliodonium Trifluoromethanesulfonates ... 406
21.4.2.1.1 Variation 1: Ring-Opening of Aziridines with Lithium Alkynes, and Trapping with Alkynyliodonium Trifluoromethanesulfonates 407
21.4.2.1.2 Method 2: Copper(II)-Catalyzed Coupling of Amides and Haloalkynes 407
21.4.2.1.2 Variation 1: Copper(I)-Catalyzed Coupling of Amides and Haloalkynes 408
21.4.2.1.2 Variation 2: Stoichiometric Copper(I) Coupling of Amides and Alkynes 409
21.4.2.1.3 Method 3: Base-Induced Isomerization of Prop-2-yn-1-yalted Amides 410
21.4.2.1.4 Method 4: Sonogashira Coupling of Unsubstituted Ynamides 410
21.4.2.1.4 Variation 1: Negishi Coupling of Unsubstituted Ynamides 411
21.4.2.1.5 Method 5: Elimination of Vinyl Chlorides 412
21.4.2.1.5 Variation 1: Elimination of Vinyl Bromides 412
21.4.2.1.6 Method 6: Acylation of C-Halogenated Ketenimines 413
21.4.2.1.6.1 Variation 1: Acylation of β-Lithio-β-silyl Ketenimines 414
21.4.2.1.7 Method 7: Pyrolysis of Alkynyl Azides 415
21.4.3 Product Subclass 3: Enamides ... 415
21.4.3.1 Synthesis of Product Subclass 3 416
21.4.3.1.1 Method 1: Copper(I)-Catalyzed Coupling of Amides and Vinyl Iodides with Copper(I) Thiophenecarboxylate 416
21.4.3.1.1 Variation 1: Copper(I)-Catalyzed Coupling of Amides and Vinyl Iodides with Copper(I) Iodide 417
21.4.3.1.1 Variation 2: Copper(I)-Catalyzed Coupling of Amides and Vinyl Iodides with (Acetonitrile)copper(1+) Phosphorus Hexafluoride(1–)/Rubidium Carbonate 417
21.4.3.1.2 Method 2: Palladium(II)-Catalyzed Amidation of Alkenes 418
21.4.3.1.2 Variation 1: Palladium(0)-Catalyzed Amidation of Enol Trifluoromethanesulfonates and 4-Toluenesulfonates 419
21.4.3.1.2.2 Variation 2: Palladium(II)-Catalyzed Amidation of Enol Ethers 420
21.4.3.1.2.3 Variation 3: Palladium(II)-Catalyzed N,O-Acetal Formation and Isomerization 420
21.4.3.1.3 Method 3: Titanium(II)-Mediated Coupling of Ynamides and Aldehydes 421
21.4.3.1.3.1 Variation 1: Ruthenium(II)-Mediated Coupling of Alkynes and N-Allylated Amides 421
21.4.3.1.3.2 Variation 2: Chromium(0)-Mediated Coupling of Amino Alcohols and Chromium Carbene Complexes 422
21.4.3.1.4 Method 4: Base-Promoted Elimination of Substituted Alcohols 423
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.4.3.14.1</td>
<td>Variation 1: Thermal Elimination of Sulfoxides</td>
<td>423</td>
</tr>
<tr>
<td>21.4.3.14.2</td>
<td>Variation 2: Base-Promoted Elimination of Sulfones</td>
<td>424</td>
</tr>
<tr>
<td>21.4.3.14.3</td>
<td>Variation 3: Thermal Elimination of Hydrogen Chloride and Carbon Dioxide</td>
<td>425</td>
</tr>
<tr>
<td>21.4.3.14.4</td>
<td>Variation 4: Thermal Elimination of Amides</td>
<td>425</td>
</tr>
<tr>
<td>21.4.3.14.5</td>
<td>Variation 5: Oxidative Elimination of Selenides</td>
<td>425</td>
</tr>
<tr>
<td>21.4.3.14.6</td>
<td>Variation 6: Base-Promoted Elimination of a Benzyllic Proton</td>
<td>426</td>
</tr>
<tr>
<td>21.4.3.15</td>
<td>Method 5: Acylation of Imines</td>
<td>426</td>
</tr>
<tr>
<td>21.4.3.15.1</td>
<td>Variation 1: Reductive Acylation of Nitroalkenes</td>
<td>427</td>
</tr>
<tr>
<td>21.4.3.15.2</td>
<td>Variation 2: Reductive Acylation of Oximes</td>
<td>428</td>
</tr>
<tr>
<td>21.4.3.15.3</td>
<td>Variation 3: Acylation of Enamines with Acid Chlorides</td>
<td>428</td>
</tr>
<tr>
<td>21.4.3.16.1</td>
<td>Variation 1: Alkenation Using Wittig Conditions</td>
<td>429</td>
</tr>
<tr>
<td>21.4.3.16.2</td>
<td>Variation 2: Alkenation Using Thio-Wittig Conditions</td>
<td>430</td>
</tr>
<tr>
<td>21.4.3.16.3</td>
<td>Variation 3: Alkenation Using Aza-Wittig Conditions</td>
<td>430</td>
</tr>
<tr>
<td>21.4.3.16.4</td>
<td>Variation 4: Alkenation Using Peterson Conditions</td>
<td>431</td>
</tr>
<tr>
<td>21.4.3.16.5</td>
<td>Variation 5: Alkenation Using Tebbe Conditions</td>
<td>431</td>
</tr>
<tr>
<td>21.4.3.16.6</td>
<td>Variation 6: Alkenation by Ring-Closing Metathesis</td>
<td>432</td>
</tr>
<tr>
<td>21.4.3.16.7</td>
<td>Variation 7: Alkenation by Dithiocarboxylation</td>
<td>432</td>
</tr>
<tr>
<td>21.4.3.16.8</td>
<td>Variation 8: Tungsten(0)-Mediated Coupling of Thiocarbonyl and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thioacetal Groups</td>
<td>433</td>
</tr>
<tr>
<td>21.4.3.16.9</td>
<td>Variation 9: Schöllkopf Formylamino-Methylation</td>
<td>433</td>
</tr>
<tr>
<td>21.4.3.17</td>
<td>Method 7: Tributyltin Hydride Mediated Radical Cyclization of Enamides</td>
<td>434</td>
</tr>
<tr>
<td>21.4.3.17.1</td>
<td>Variation 1: Palladium(0)-Catalyzed Cyclization of Amides Bearing a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>But-3-yn-1-yl Side Chain</td>
<td>435</td>
</tr>
<tr>
<td>21.4.3.17.2</td>
<td>Variation 2: Rhodium(I)-Catalyzed Cyclization of Ene-Allenones</td>
<td>435</td>
</tr>
<tr>
<td>21.4.3.17.3</td>
<td>Variation 3: Copper(I)-Catalyzed Cyclization of Prop-2-ynyl Carbamates</td>
<td>436</td>
</tr>
<tr>
<td>21.4.3.18</td>
<td>Method 8: Hetero [4 + 2] Cycloaddition</td>
<td>436</td>
</tr>
<tr>
<td>21.4.3.18.1</td>
<td>Variation 1: [3 + 2] Cycloaddition and Rearrangement</td>
<td>437</td>
</tr>
<tr>
<td>21.4.3.18.2</td>
<td>Variation 2: Aza-Annulation of Enaminones with Itaconic Anhydride</td>
<td>438</td>
</tr>
<tr>
<td>21.4.3.19</td>
<td>Method 9: Isomerization of N-Allyl Amides with Pentacarbonyliron</td>
<td>438</td>
</tr>
<tr>
<td>21.4.3.19.1</td>
<td>Variation 1: Isomerization of N-Allyl Amides with</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbonyl(hydrido)tris(triphenylphosphine)ruthenium(II)</td>
<td>439</td>
</tr>
<tr>
<td>21.4.3.19.2</td>
<td>Variation 2: Isomerization of N-Allyl Amides with</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorobis(cyclooctadiene)diiridium(I)</td>
<td>440</td>
</tr>
<tr>
<td>21.4.3.19.3</td>
<td>Variation 3: Isomerization of N-Allyl Amides with</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hydridotetrahis(triphenylphosphine)rhodium</td>
<td>440</td>
</tr>
<tr>
<td>21.4.3.10</td>
<td>Method 10: Dyotropic Rearrangement</td>
<td>441</td>
</tr>
<tr>
<td>21.4.3.10.1</td>
<td>Variation 1: 1,2-Thio-Wittig-Type Rearrangement Reactions</td>
<td>441</td>
</tr>
<tr>
<td>21.4.3.10.2</td>
<td>Variation 2: Beckmann Rearrangement and α-Formylation</td>
<td>442</td>
</tr>
<tr>
<td>21.4.3.10.3</td>
<td>Variation 3: Imine/Enamide Rearrangement</td>
<td>442</td>
</tr>
<tr>
<td>21.4.3.11</td>
<td>Method 11: Condensation of Amides and Aldehydes</td>
<td>443</td>
</tr>
<tr>
<td>21.4.3.11.1</td>
<td>Variation 1: Amide Addition to Acetals</td>
<td>444</td>
</tr>
<tr>
<td>21.4.3.12</td>
<td>Method 12: Addition of Alcohols to Isocyanates</td>
<td>444</td>
</tr>
<tr>
<td>21.4.3.12.1</td>
<td>Variation 1: Addition of Vinyl Anions to Isocyanates</td>
<td>445</td>
</tr>
<tr>
<td>21.4.3.12.2</td>
<td>Variation 2: Addition of Alkyl Anions to Isocyanates</td>
<td>446</td>
</tr>
<tr>
<td>21.4.3.13</td>
<td>Method 13: Hydrohalogenation of Ynamides</td>
<td>446</td>
</tr>
<tr>
<td>21.4.3.13.1</td>
<td>Variation 1: Hydrostannylation of Ynamides</td>
<td>447</td>
</tr>
<tr>
<td>21.4.3.13.2</td>
<td>Variation 2: Hydroboration/Suzuki–Miyaura Cross-Coupling of Ynamides</td>
<td>447</td>
</tr>
</tbody>
</table>
21.4.3.13.3 Variation 3: Pauson–Khand Reactions of Ynamides 448
21.4.3.14 Method 14: Oxazole Ring Opening with Amines 448
21.4.3.14.1 Variation 1: Methanolsysis of a 4-Methyleneoxazol-5(4H)-one under
Acid or Base Catalysis .. 449
21.4.3.14.2 Variation 2: Ring Opening of a 4-Methyleneoxazol-5(4H)-one by an
Alcohol/Lewis Acid ... 450
21.4.3.15 Method 15: Condensation of α-Acetamidobutenyln Boronates and
Aldehydes .. 450
21.4.3.16 Method 16: 1,4-Addition of Allyl Anions to Furanones 451
21.4.3.17 Method 17: Addition of Nitriles to Geminal Haloacylated Compounds .. 452
21.4.3.18 Method 18: Amide Additions to Alkynes .. 452
21.4.3.19 Method 19: Enol Ether Formation ... 453
21.4.4 Product Subclass 4: Dienamides .. 453
21.4.4.1 Synthesis of Product Subclass 4 .. 454
21.4.4.1.1 Method 1: Condensation of Amides and Aldehydes 455
21.4.4.1.1.1 Variation 1: Addition of Amides to Allyl Bromide and Elimination of
1H-Benzotriazole .. 455
21.4.4.1.2 Method 2: Acylation of Eneimines with Acid Chlorides 456
21.4.4.1.3 Method 3: From Vinylogous Amides by O-Silylation 456
21.4.4.1.4 Method 4: Thermal Rearrangement of Pent-2-yn-1-yl 2,2,2-
Trichloroethanimidoates .. 457
21.4.4.1.4.1 Variation 1: Thermal Rearrangement of Acyl Azides
(A Modified Curtius Rearrangement) 457
21.4.4.1.5 Method 5: Palladium(0)-Catalyzed Elimination of Allyl Acetate 458
21.4.4.1.6 Method 6: Ring-Closing Metathesis of Enynamides 459
21.4.4.1.7 Method 7: Titanium(II)-Mediated Coupling of Ynamides and Alkynes 460
21.4.4.1.7.1 Variation 1: Chromium(0)-Mediated Coupling of Amino Alcohols and
Chromium Carbene Complexes 460
21.4.4.1.8 Method 8: Alkenation Using Wittig Conditions 461
21.4.5 Product Subclass 5: Allenamides ... 462
21.4.5.1 Synthesis of Product Subclass 5 .. 463
21.4.5.1.1 Method 1: Base-Induced Isomerization of Cyclic Amides 463
21.4.5.1.1.1 Variation 1: Base-Induced Isomerization/Addition to Aldehydes ... 463
21.4.5.1.2 Method 2: Base-Induced Isomerization of Acyclic Amides 464
21.4.5.1.3 Method 3: Elimination of Vinyl Trifluoromethanesulfonates 465
21.4.5.1.4 Method 4: Palladium(0)-Catalyzed Cyclizations of Yne-Bis(carbonates) ... 466
21.4.5.1.5 Method 5: By a [3,3]-Sigmatropic Rearrangement of a Propynyl Imidate 467
21.4.5.1.5.1 Variation 1: [2,3]-Sigmatropic Rearrangement 468
21.4.5.1.6 Method 6: Copper(I)-Catalyzed Amide Additions to Alkynes 468
21.4.5.1.7 Method 7: Alkenation of Ketenes Using Wittig Conditions 468
21.4.5.1.8 Method 8: By the [2 + 2] Dimerization of a Ketene and the Subsequent
Elimination of Carbon Dioxide 469
Product Class 5: α-Heteroatom-Substituted Alkanamides

M. Pätz, S. Pritz, and J. Liebscher

Product Class 5: α-Heteroatom-Substituted Alkanamides

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.5.1</td>
<td>Product Subclass 1: Alkanamides with One (or More) Group 17 Element in the α-Position</td>
<td>477</td>
</tr>
<tr>
<td>21.5.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td>477</td>
</tr>
<tr>
<td>21.5.1.1.1</td>
<td>Method 1: Substitution of One (or More) α-Hydrogen Atom</td>
<td>477</td>
</tr>
<tr>
<td>21.5.1.1.2</td>
<td>Variation 1: Substitution by Fluorine Atoms</td>
<td>477</td>
</tr>
<tr>
<td>21.5.1.1.3</td>
<td>Variation 2: Substitution by Chlorine Atoms</td>
<td>478</td>
</tr>
<tr>
<td>21.5.1.1.4</td>
<td>Variation 3: Substitution by Bromine Atoms</td>
<td>479</td>
</tr>
<tr>
<td>21.5.1.1.5</td>
<td>Variation 4: Substitution by Iodine Atoms</td>
<td>481</td>
</tr>
<tr>
<td>21.5.1.2</td>
<td>Method 2: Substitution of Heteroatoms</td>
<td>482</td>
</tr>
<tr>
<td>21.5.1.2.1</td>
<td>Variation 1: Substitution by Fluorine Atoms</td>
<td>482</td>
</tr>
<tr>
<td>21.5.1.2.2</td>
<td>Variation 2: Substitution by Chlorine Atoms</td>
<td>482</td>
</tr>
<tr>
<td>21.5.1.2.3</td>
<td>Variation 3: Substitution by Bromine Atoms</td>
<td>483</td>
</tr>
<tr>
<td>21.5.1.2.4</td>
<td>Variation 4: Substitution by Iodine Atoms</td>
<td>484</td>
</tr>
<tr>
<td>21.5.1.3</td>
<td>Method 3: C—C Bond Formation between the Carbonyl Group and the α-Carbon Atom</td>
<td>484</td>
</tr>
<tr>
<td>21.5.1.4</td>
<td>Method 4: Addition of Halogen Atoms to α,β-Unsaturated Amides</td>
<td>485</td>
</tr>
<tr>
<td>21.5.1.5</td>
<td>Method 5: Addition to α,β-Unsaturated α-Halo Amides</td>
<td>485</td>
</tr>
<tr>
<td>21.5.1.6</td>
<td>Method 6: C—C Chain Elongation at the α-Carbon Atom</td>
<td>486</td>
</tr>
<tr>
<td>21.5.2</td>
<td>Product Subclass 2: Alkanamides with One (or More) Group 16 Element in the α-Position</td>
<td>487</td>
</tr>
<tr>
<td>21.5.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>487</td>
</tr>
<tr>
<td>21.5.2.1.1</td>
<td>Method 1: Substitution of One (or More) α-Hydrogen Atom</td>
<td>487</td>
</tr>
<tr>
<td>21.5.2.1.2</td>
<td>Variation 1: Substitution by Oxygen Atoms</td>
<td>487</td>
</tr>
<tr>
<td>21.5.2.1.3</td>
<td>Variation 2: Substitution by Sulfur, Selenium, or Tellurium Atoms</td>
<td>488</td>
</tr>
<tr>
<td>21.5.2.1.4</td>
<td>Variation 3: Oxidation of α-Hydroxy and α-Sulfanyl Amides to α-Oxo and α-Thioxo Amides</td>
<td>490</td>
</tr>
<tr>
<td>21.5.2.1.5</td>
<td>Method 2: Substitution of Heteroatoms</td>
<td>491</td>
</tr>
<tr>
<td>21.5.2.1.6</td>
<td>Variation 1: Substitution by Oxygen Atoms</td>
<td>491</td>
</tr>
<tr>
<td>21.5.2.1.7</td>
<td>Variation 2: Substitution by Sulfur Atoms</td>
<td>493</td>
</tr>
<tr>
<td>21.5.2.1.8</td>
<td>Variation 3: Substitution by Selenium or Tellurium Atoms</td>
<td>495</td>
</tr>
<tr>
<td>21.5.2.1.9</td>
<td>Method 3: C—C Bond Formation between the Carbonyl Group and the α-Carbon Atom</td>
<td>496</td>
</tr>
<tr>
<td>21.5.2.1.10</td>
<td>Method 4: Addition of a Heteroatom Functionality to α,β-Unsaturated Amides</td>
<td>498</td>
</tr>
<tr>
<td>21.5.2.1.11</td>
<td>Method 5: Oxidation with C—C Bond Cleavage</td>
<td>501</td>
</tr>
<tr>
<td>21.5.2.1.12</td>
<td>Method 6: Reduction of α-Oxo Amides</td>
<td>501</td>
</tr>
<tr>
<td>21.5.2.1.13</td>
<td>Method 7: C—C Chain Elongation at the α-Carbon Atom</td>
<td>502</td>
</tr>
<tr>
<td>21.5.2.1.14</td>
<td>Methods 8: Miscellaneous Procedures</td>
<td>505</td>
</tr>
<tr>
<td>21.5.3</td>
<td>Product Subclass 3: Alkanamides with One (or More) Group 15 Element in the α-Position</td>
<td>506</td>
</tr>
<tr>
<td>21.5.3.1</td>
<td>Synthesis of Product Subclass 3</td>
<td>506</td>
</tr>
</tbody>
</table>
21.5.3.1 Method 1: Substitution of One (or More) α-Hydrogen Atom 506
21.5.3.1.1 Variation 1: Substitution by Nitrogen Atoms 506
21.5.3.1.2 Variation 2: Substitution by Phosphorus Atoms 509
21.5.3.1.3 Variation 3: Transformation of α-Amino Amides into α-Imino Amides and α-Diazo Amides 509
21.5.3.2 Method 2: Substitution of Heteroatoms 510
21.5.3.2.1 Variation 1: Substitution of Sulfur Atoms by Nitrogen Atoms 510
21.5.3.2.2 Variation 2: Substitution of Oxygen or Nitrogen Atoms by Nitrogen Atoms 510
21.5.3.2.3 Variation 3: Substitution of Halogen Atoms by Nitrogen Atoms 512
21.5.3.2.4 Variation 4: Substitution by Phosphorus Atoms 515
21.5.3.3 Method 3: C—C Bond Formation between the Carbonyl Group and the α-Carbon Atom 516
21.5.3.4 Method 4: Addition of a Nitrogen Functionality to α,β-Unsaturated Amides 518
21.5.3.5 Method 5: Addition to α,β-Unsaturated α-Amino Amides 519
21.5.3.6 Method 6: Addition to α-Imino Amides 520
21.5.3.7 Method 7: C—C Bond Formation at the α-Carbon Atom 521
21.5.3.7.1 Variation 1: Of α-Amino Amides 521
21.5.3.7.2 Variation 2: Of α-Phosphoryl Amides 523
21.5.3.8 Methods 8: Miscellaneous Procedures 524

21.6 Product Class 6: α,β-Unsaturated Amides: Alk-2-ynamides, Arenecarboxamides, and Alk-2-enamides
M. F. Lipton and M. A. Mauragis

21.6.1 Synthesis of Product Class 6 537
21.6.1.1 Method 1: Coupling of Activated Acyl Units and Amines 537
21.6.1.2 Method 2: Connective Alkene Formation by Wittig Reaction 540
21.6.1.3 Method 3: Elimination Reactions 543
21.6.1.4 Method 4: Hydrolysis of Nitriles 547
21.6.1.5 Method 5: Transition-Metal-Catalyzed Couplings 548
21.6.1.6 Method 6: Reduction of Aroyl Azides 553
21.6.1.7 Method 7: Direct Amine Oxidations 554
21.6.1.8 Method 8: Stereoselective Isomerization of 2-Ynoic Amides 555
21.6.1.9 Method 9: Electrophilic Substitution 557
21.6.1.10 Methods 10: Additional Methods 560

21.7 Product Class 7: α-Heteroatom-Substituted Alkanamides
S. Manyem and M. P. Sibi

21.7.1 Product Subclass 1: α-Halogen-Substituted Alkanamides 565
21.7.1.1 Synthesis of Product Subclass 1 565
21.7.1.1.1 Method 1: Addition of Chloride to Alkenimides 565
21.7.2 **Product Subclass 2: β-Oxygen-Substituted Alkanamides** 566

21.7.2.1 Synthesis of Product Subclass 2 ... 566

21.7.2.1.1 Method 1: Diastereoselective Ene Reaction ... 566

21.7.2.1.2 Method 2: Intramolecular Conjugate Addition 567

21.7.2.1.3 Method 3: Tandem Acetalization–Conjugate Addition 568

21.7.3 **Product Subclass 3: β-Sulfur-Substituted Alkanamides** 568

21.7.3.1 Synthesis of Product Subclass 3 ... 569

21.7.3.1.1 Method 1: Addition of Metal Thiolates .. 569

21.7.3.1.1.1 Variation 1: Addition of Aluminum Thiolates and Intramolecular Trapping with a Carbonyl Group ... 570

21.7.3.1.2 Variation 2: Addition of a Thiolate Derived from an Odorless Thiol .. 571

21.7.3.1.2 Method 2: Addition of Sulfur Nucleophiles Derived from Thioesters or Silyl Thioethers ... 571

21.7.3.1.3 Method 3: Stereoselective Addition of Thiols ... 572

21.7.3.1.4 Method 4: Intramolecular Transfer of Sulfur from a Thiocarbonyl Group . 574

21.7.4 **Product Subclass 4: β-Selenium-Substituted Alkanamides** 575

21.7.4.1 Synthesis of Product Subclass 4 ... 576

21.7.4.1.1 Method 1: Addition of Lithium Selenolates .. 576

21.7.5 **Product Subclass 5: β-Nitrogen-Substituted Alkanamides** 576

21.7.5.1 Synthesis of Product Subclass 5 ... 576

21.7.5.1.1 Method 1: Addition of Phthalimide Salts to Alkenimides 576

21.7.5.1.2 Method 2: Addition of Hydroxylamines to Alkenamides 577

21.7.5.1.3 Method 3: Chiral Lewis Acid Catalyzed Addition of Hydrazoic Acid to Alkenimides ... 579

21.7.5.1.3.1 Variation 1: Enantioselective Addition of Azidotrimethylsilane to Alkenimides Using a Peptide Catalyst ... 580

21.7.5.1.3.2 Variation 2: Addition of Azide to Alkenimides Followed by Intramolecular Cycloaddition ... 580

21.7.5.1.4 Method 4: Addition of Carbamates to Alkenamides 581

21.7.5.1.5 Method 5: Addition of Lithium Amides .. 581

21.7.5.1.6 Method 6: Addition of Amino Esters to Alkenamides 582

21.7.5.1.6.1 Variation 1: Enantioselective Addition of Amines Using Dibenzo[4,6-diyl-2,2’-bis(4-phenyl-4,5-dihydrooxazole)]–Nickel Catalyst . . 583

21.7.5.1.6.2 Variation 2: Aminohydroxylation Using a Solid-Supported Catalyst 584

21.7.5.1.7 Method 7: Diels–Alder Reaction of Buta-1,3-dien-1-amines with Alkenimides ... 585

21.7.6 **Product Subclass 6: β-Phosphorus-Substituted Alkanamides** 585

21.7.6.1 Synthesis of Product Subclass 6 ... 585

21.7.6.1.1 Method 1: Addition of Secondary Phosphines 585

21.7.6.1.2 Method 2: Addition of Phosphinates ... 586

21.7.6.1.3 Method 3: Diastereoselective Addition of a Phosphite 587
21.8 **Product Class 8: α-Lactams**
R. V. Hoffman and V. Cesare

21.8.1 Synthesis of Product Class 8

21.8.1.1 Method 1: Dehydrohalogenation of α-Halo Amides
21.8.1.1.1 Variation 1: Using the tert-Butoxide Ion
21.8.1.1.2 Variation 2: Using Potassium Hydroxide and 18-Crown-6
21.8.1.2 Method 2: Cycloelimination of N-Sulfonyloxy Amides

21.8.1.3 Variation 1: Using Amines as Bases
21.8.1.4 Variation 2: Using Sodium Hydride as Base

21.8.2 Applications of Product Class 8 in Organic Synthesis

21.8.2.1 Method 1: Incorporation of Nucleophiles
21.8.2.1.1 Variation 1: Synthesis of N-Aminohydantoins
21.8.2.1.2 Variation 2: Synthesis of 1,2,4-Triazine-3,6-diones

21.8.2.2 Method 2: Cycloaddition Reactions Involving α-Lactams

21.9 **Product Class 9: β-Lactams**
C. Coates, J. Kabir, and E. Turos

21.9.1 Synthesis of Product Class 9

21.9.1.1 Method 1: Ketene–Imine Cycloadditions
21.9.1.1.1 Variation 1: Using Acid Chlorides
21.9.1.1.2 Variation 2: Using Carboxylic Acids or Their Salts
21.9.1.1.3 Variation 3: Using Amides via an Azetidin-2-ylideneammonium Salt
21.9.1.1.4 Variation 4: By Decomposition of α-Diazoketones
21.9.1.2 Method 2: Ester Enolate–Imine Cyclocondensations
21.9.1.2.1 Variation 1: From γ-Lactones
21.9.1.2.2 Variation 2: From 2-Pyridyl Thioesters
21.9.1.2.3 Variation 3: From 1,3-Dioxolan-4-ones
21.9.1.2.4 Variation 4: From Ethyl Bromodifluoroacetate
21.9.1.2.5 Variation 5: From Lithium Ynolates
21.9.1.3 Method 3: Cyclocondensation of β-Amino Acid Derivatives
21.9.1.3.1 Variation 1: Via Ugi Three-Component Reaction
21.9.1.3.2 Variation 2: From β-Lactones
21.9.1.4 Method 4: Ring Closure of 2-Aza-1,3-dienes
21.9.1.5 Method 5: Alkene–Isocyanate Cycloadditions
21.9.1.6 Method 6: Nitrone Cycloadditions Employing Alkynes
21.9.1.7 Method 7: Ring Closures by Nucleophilic S_N2 Displacement
21.9.1.8 Method 8: Radical Ring Closures
21.9.1.9 Method 9: Photochemical Ring Contractions

21.9.1.10 Variation 1: Photochemical Processes in the Solid State
21.9.1.10 Method 10: Ring Contractions of Isoxazolidines (Non-Photochemical Processes) .. 634
21.9.1.11 Method 11: Ring Expansion of Cyclopropanones ... 635
21.9.1.12 Method 12: Transition-Metal-Catalyzed Processes 636
21.9.1.12.1 Variation 1: Carbonylation of Aziridines .. 637
21.9.1.12.2 Variation 2: Use of Organoiron–Alkene Complexes 638
21.9.1.12.3 Variation 3: Additions of Fischer Carbenes to Imines 639
21.9.1.12.4 Variation 4: Rhodium-Catalyzed C—H Bond Insertion 640
21.9.1.12.5 Variation 5: Reductive Coupling of Imines with Acrylates 641
21.9.1.13 Method 13: 1,4-Addition of Amines to 3-Phenylpropenoyl Chloride 642

21.10 Product Class 10: γ-Lactams and Larger Ring Lactams

M. B. Smith

21.10 Product Class 10: γ-Lactams and Larger Ring Lactams ... 647
21.10.1 Product Subclass 1: Saturated Lactams .. 647
21.10.1.1 Synthesis of Product Subclass 1 ... 647
21.10.1.1.1 Synthesis by Ring-Closure Reactions .. 647
21.10.1.1.1.1 Method 1: Direct Cyclization of Amino Acids 647
21.10.1.1.1.1.1 Variation 1: By Heating an Amino Acid on Alumina or Silica Gel 648
21.10.1.1.1.1.2 Variation 2: By Heating with Titanium(IV) Isopropoxide 649
21.10.1.1.1.1.3 Variation 3: By Dibutylin Oxide Cyclization of Amino Acids 649
21.10.1.1.1.1.2 Method 2: Alkoxy and Alkylsulfanyl Lactams by Cyclization of
Functionalized Amino Acids ... 650
21.10.1.1.1.1.3 Method 3: Direct Cyclization of Amino Esters 650
21.10.1.1.1.1.4 Method 4: Formation of an α-Alkoxy Lactam by Cyclization of an
Alkoxy Amino Ester .. 652
21.10.1.1.1.1.5 Method 5: Cyclization of Amino Esters via Cyano Esters 653
21.10.1.1.1.1.5.1 Variation 1: Nitrile Surrogates by Nitrile–Enolate Alkylation 654
21.10.1.1.1.1.5.2 Variation 2: 1,4-Addition to Conjugated Nitriles 655
21.10.1.1.1.1.5.3 Variation 3: Enolate Alkylation of α-Halo Nitriles 656
21.10.1.1.1.1.6 Method 6: Cyclization of Amino Esters via Azido Esters 657
21.10.1.1.1.1.7 Method 7: Cyclization of Amino Esters via Nitro Esters 658
21.10.1.1.1.1.7.1 Variation 1: By Conjugate Addition of Nitro Enolates to Conjugated
Esters .. 658
21.10.1.1.1.1.7.2 Variation 2: By Conjugate Addition of Enolate Anions to Nitroalkenes .. 659
21.10.1.1.1.1.7.3 Variation 3: By Lewis Acid Catalyzed Addition of Silyl Ketene Acetals to
Nitroalkenenes .. 660
21.10.1.1.1.1.8 Method 8: Oxo Lactams by Cyclization with Oxalates 661
21.10.1.1.1.1.9 Method 9: Oxo Lactams by Cyclization of Amido Diesters 662
21.10.1.1.1.1.10 Method 10: Cyclization of Functionalized Acid Derivatives 662
21.10.1.1.1.1.10.1 Variation 1: Reduction of Nitro Nitriles ... 663
21.10.1.1.1.1.10.2 Variation 2: 1-Aryl Lactams by Cyclization of Aromatic Amides 664
21.10.1.1.1.1.10.11 Method 11: Iodolactamization .. 664
21.10.1.1.1.1.10.12 Method 12: Radical Cyclization ... 665
21.10.1.1.1.1.10.12.1 Variation 1: Tin Hydride Mediated Radical Cyclization of
N-Monosubstituted Amides ... 665
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.10.1.1.2.2</td>
<td>Variation 2: Radical Cyclization of Unsymmetrical Dienes Containing an Amide Unit</td>
<td>666</td>
</tr>
<tr>
<td>21.10.1.1.2.3</td>
<td>Variation 3: Borane-Mediated Radical Cyclization</td>
<td>667</td>
</tr>
<tr>
<td>21.10.1.1.2.4</td>
<td>Variation 4: Cyclization of Amidyl Radicals</td>
<td>667</td>
</tr>
<tr>
<td>21.10.1.1.2.5</td>
<td>Variation 5: Metal-Mediated Radical Cyclization Reactions</td>
<td>668</td>
</tr>
<tr>
<td>21.10.1.1.2.6</td>
<td>Variation 6: Photocyclization</td>
<td>669</td>
</tr>
<tr>
<td>21.10.1.1.13</td>
<td>Method 13: Metal-Catalyzed Cyclization</td>
<td>669</td>
</tr>
<tr>
<td>21.10.1.1.13.1</td>
<td>Variation 1: Amine-Directed Hydrocarbonylation</td>
<td>669</td>
</tr>
<tr>
<td>21.10.1.2</td>
<td>Synthesis by Ring Transformation</td>
<td>671</td>
</tr>
<tr>
<td>21.10.1.2.1</td>
<td>Ring Enlargement</td>
<td>671</td>
</tr>
<tr>
<td>21.10.1.2.1.1</td>
<td>Method 1: Beckmann Rearrangement</td>
<td>671</td>
</tr>
<tr>
<td>21.10.1.2.1.1.1</td>
<td>Variation 1: From Ketoimine O-Sulfonic Acids</td>
<td>672</td>
</tr>
<tr>
<td>21.10.1.2.1.1.2</td>
<td>Variation 2: Reaction with Ketoimine O-Carbonates</td>
<td>673</td>
</tr>
<tr>
<td>21.10.1.2.1.2</td>
<td>Method 2: Schmidt Reaction</td>
<td>674</td>
</tr>
<tr>
<td>21.10.1.2.1.2.1</td>
<td>Variation 1: By Reaction of Cyclic Ketones with Metal Azides and Acids</td>
<td>675</td>
</tr>
<tr>
<td>21.10.1.2.1.2.2</td>
<td>Variation 2: By Reaction with Alkyl Azides and Acids</td>
<td>676</td>
</tr>
<tr>
<td>21.10.1.2.1.2.3</td>
<td>Variation 3: By Photocyclization of Siloxy Azides</td>
<td>676</td>
</tr>
<tr>
<td>21.10.1.2.1.3</td>
<td>Method 3: Photochemical Ring Expansion of Oxaziridines</td>
<td>677</td>
</tr>
<tr>
<td>21.10.1.2.1.4</td>
<td>Method 4: Carboxylation of Cyclic Amines</td>
<td>678</td>
</tr>
<tr>
<td>21.10.1.2.1.5</td>
<td>Method 5: Condensation of β-Lactones and Imines</td>
<td>678</td>
</tr>
<tr>
<td>21.10.1.2.1.6</td>
<td>Method 6: Aza-Claisen Ring Expansion</td>
<td>679</td>
</tr>
<tr>
<td>21.10.1.2.2</td>
<td>Formal Exchange of Ring Members with Retention of the Ring Size</td>
<td>679</td>
</tr>
<tr>
<td>21.10.1.2.2.1</td>
<td>Method 1: Conversion of Lactones into Lactams by Reaction with Amines</td>
<td>679</td>
</tr>
<tr>
<td>21.10.1.2.2.2</td>
<td>Method 2: Reduction or Selective Alkylation of Imides</td>
<td>680</td>
</tr>
<tr>
<td>21.10.1.2.2.2.1</td>
<td>Variation 1: Reduction of Cyclic Imides</td>
<td>681</td>
</tr>
<tr>
<td>21.10.1.2.2.2.2</td>
<td>Variation 2: Reaction of Imides with Grignard Reagents</td>
<td>681</td>
</tr>
<tr>
<td>21.10.1.2.2.2.3</td>
<td>Variation 3: 5-Hydroxy Lactams by Reduction of Imides</td>
<td>682</td>
</tr>
<tr>
<td>21.10.1.2.2.2.4</td>
<td>Variation 4: 5-Alkyl-5-hydroxy Lactams</td>
<td>683</td>
</tr>
<tr>
<td>21.10.1.2.2.3</td>
<td>Method 3: N-Amino-Substituted Lactams</td>
<td>683</td>
</tr>
<tr>
<td>21.10.1.2.2.3</td>
<td>Oxidation of Cyclic Amines</td>
<td>684</td>
</tr>
<tr>
<td>21.10.1.2.3.1</td>
<td>Method 1: Direct Oxidation of Cyclic Amines by Ruthenium(IV) Oxide</td>
<td>684</td>
</tr>
<tr>
<td>21.10.1.2.3.2</td>
<td>Method 2: Sequential Hydroxylation and Oxidation of Cyclic Amines</td>
<td>684</td>
</tr>
<tr>
<td>21.10.1.3</td>
<td>Synthesis by Substituent Modification</td>
<td>685</td>
</tr>
<tr>
<td>21.10.1.3.1</td>
<td>Substitution of Existing Substituents</td>
<td>685</td>
</tr>
<tr>
<td>21.10.1.3.1.1</td>
<td>Method 1: Direct N-Acylation</td>
<td>685</td>
</tr>
<tr>
<td>21.10.1.3.1.2</td>
<td>Method 2: N-Carbamoyl Protection of Lactams</td>
<td>686</td>
</tr>
<tr>
<td>21.10.1.3.1.3</td>
<td>Method 3: Acylation of Lactam Anions with Pentafluorophenyl Esters</td>
<td>686</td>
</tr>
<tr>
<td>21.10.1.3.1.4</td>
<td>Method 4: N-Alkylation</td>
<td>687</td>
</tr>
<tr>
<td>21.10.1.3.1.4.1</td>
<td>Variation 1: By Base-Mediated N-Alkylation</td>
<td>687</td>
</tr>
<tr>
<td>21.10.1.3.1.4.2</td>
<td>Variation 2: By Reductive Alkylation of Lactams with Aldehydes</td>
<td>688</td>
</tr>
<tr>
<td>21.10.1.3.1.4.3</td>
<td>Variation 3: Functionalization of an N-Alkyl Group: Chloromethylation</td>
<td>689</td>
</tr>
<tr>
<td>21.10.1.3.1.5</td>
<td>Method 5: N-Arylation</td>
<td>689</td>
</tr>
<tr>
<td>21.10.1.3.1.6</td>
<td>Method 6: N-Alkenylation</td>
<td>690</td>
</tr>
</tbody>
</table>
Table of Contents

21.10.1.3.17 Method 7: \(\alpha\)-Alkyl Lactams by Enolate Alkylation 690
21.10.1.3.17.1 Variation 1: Via the \(N,\alpha\)-Dianion .. 691
21.10.1.3.17.8 Method 8: Direct \(\alpha\)-Arylation ... 692
21.10.1.3.17.9 Method 9: \(\alpha\)-Alkylidene Lactams by Addition to Aldehydes or Ketones 692
21.10.1.3.17.10 Method 10: Alkylation with Allylsilanes via \(N\)-Acyliminium Ion Intermediates .. 693
21.10.1.3.17.11 Method 11: Alkylation at \(\beta\)- and More Remote Positions 694
21.10.1.3.17.11.1 Variation 1: By Conjugate Addition to \(\alpha,\beta\)-Unsaturated Lactams 694
21.10.1.3.17.11.2 Variation 2: Addition of Organocuprates to Conjugated Lactams 695
21.10.1.3.17.12 Method 12: \(\alpha\)-Halogenation ... 696
21.10.1.3.17.13 Method 13: \(\alpha\)-Hydroxylation ... 697
21.10.1.3.17.14 Method 14: Alkoxy Lactams by Electrochemical Oxidation of Lactams ... 698
21.10.1.3.17.15 Method 15: \(\alpha\)-Sulfides and \(\alpha\)-Selenides 698

21.1.2 Product Subclass 2: Unsaturated Lactams ... 699
21.1.2.1 Synthesis of Product Subclass 2 ... 699
21.1.2.1.1 Method 1: Ring-Closing Metathesis .. 699
21.1.2.1.2 Method 2: Metal-Mediated Coupling Reactions of Carbonyl Compounds 700
21.1.2.1.3 Method 3: Carbonylative \([4 + 1]\) Cycloaddition 701
21.1.2.1.4 Method 4: Conjugate Addition–Cyclization 702
21.1.2.1.5 Method 5: Hetero \([4 + 2]\) Cycloadditions of (Trialkylsilyl)vinyketenes 702
21.1.2.1.6 Method 6: Aza-Claisen Rearrangement of Acylaziridines 703
21.1.2.1.7 Method 7: Via Azametalloacyclopentene Complexes 704
21.1.2.1.8 Method 8: Oxidation of Pyrroles .. 704

21.11 Product Class 11: Peptides
W. D. Lubell, J. W. Blankenship, G. Fridkin, and R. Kaul

21.11 Product Class 11: Peptides ... 713
21.11.1 Amino Acid Protection–Deprotection ... 714
21.11.1.1 Method 1: \(\alpha\)-Amino Protection ... 715
21.11.1.1.1 Variation 1: tert-Butoxycarbonyl Group .. 716
21.11.1.1.2 Variation 2: 9-Fluorenylmethoxycarbonyl Group 717
21.11.1.1.3 Variation 3: Benzoyloxycarbonyl Group .. 720
21.11.1.1.4 Variation 4: Allyloxycarbonyl Group ... 721
21.11.1.1.5 Variation 5: 2-\([4-(Nitrophenyl)sulfonyl]ethoxycarbonyl Group 721
21.11.1.2 Method 2: \(\alpha\)-Carboxylic Acid Protection .. 722
21.11.1.2.1 Variation 1: Methyl Ester ... 723
21.11.1.2.2 Variation 2: Benzyl Ester .. 724
21.11.1.2.3 Variation 3: tert-Butyl Ester .. 724
21.11.1.2.4 Variation 4: Phenacyl Ester .. 725
21.11.1.3 Method 3: Acidic Side-Chain Protection .. 725
21.11.1.3.1 Variation 1: Benzyl Ester .. 726
21.11.1.3.2 Variation 2: Cyclohexyl Ester ... 727
21.11.1.3.3 Variation 3: tert-Butyl Ester .. 728
21.11.1.4 Method 4: Basic Side-Chain Protection .. 729
21.11.1.4.1 Variation 1: Benzoyloxycarbonyl Group and Derivatives 730
Table of Contents

21.1.1.2 Variation 2: 2,4-Dinitrophenyl Group ... 731
21.1.1.3 Variation 3: Benzoxymethyl Group ... 732
21.1.1.4 Variation 4: Arylsulfonyl Derivatives ... 732
21.1.1.5 Variation 5: Formyl Group ... 733
21.1.1.6 Variation 6: tert-Butoxycarbonyl Group 733
21.1.1.7 Variation 7: Trityl Group and Derivatives 733
21.1.5 Method 5: Alcoholic Side-Chain Protection 734
21.1.5.1 Variation 1: Benzyl Group ... 735
21.1.5.2 Variation 2: 2-Bromobenzoxycarbonyl Group 736
21.1.5.3 Variation 3: tert-Butyl Group ... 736
21.1.5.4 Variation 4: Trityl Group and Derivatives 738
21.1.6 Method 6: Amide Side-Chain Protection ... 739
21.1.6.1 Variation 1: 9H-Xanthen-9-yl Group ... 740
21.1.6.2 Variation 2: 2,4,6-Trimethoxybenzyl Group 740
21.1.6.3 Variation 3: Trityl Group ... 740
21.1.7 Method 7: Thiol Side-Chain Protection ... 741
21.1.7.1 Variation 1: 4-Methylbenzyl Group ... 742
21.1.7.2 Variation 2: Acetamidomethyl Group ... 742
21.1.7.3 Variation 3: Trityl Group ... 742
21.1.7.4 Variation 4: tert-Butyl Group .. 743
21.1.7.5 Variation 5: tert-Butylsulfanyl Group ... 743
21.1.7.6 Variation 6: 2,4,6-Trimethoxybenzyl Group 743
21.1.2 Amino Acid Activation ... 744
21.1.2.1 Method 1: α-Amino Acid Halides .. 744
21.1.2.2 Variation 1: N\(^{\text{a}}\)-9-Fluorenlymethoxycarbonyl Amino Acid Chlorides 745
21.1.2.2 Variation 2: N\(^{\text{a}}\)-9-Fluorenlymethoxycarbonyl Amino Acid Fluorides 746
21.1.2.2 Method 2: α-Amino Acid Anhydrides ... 747
21.1.2.2 Variation 1: Symmetrical Anhydrides 747
21.1.2.2 Variation 2: Urethane-Protected Amino Acid N- Carboxyanhydrides 748
21.1.2.3 Variation 3: Mixed Anhydrides .. 750
21.1.2.3 Method 3: Active Esters .. 750
21.1.2.3.1 Variation 1: Halogenated Phenyl Esters 752
21.1.2.3.2 Variation 2: Hydroxylamine-Derived Esters 753
21.1.2.3.3 Variation 3: 4-Nitrophenyl Esters .. 754
21.1.2.4 Method 4: Carbodiimides .. 754
21.1.2.4.1 Variation 1: Synthesis of Peptides in Solution Using Carbodiimides 755
21.1.2.4.2 Variation 2: Solid-Phase Peptide Synthesis Using Carbodiimides 756
21.1.2.5 Method 5: Phosphonium and Uronium/Guanidinium Salts 757
21.1.2.5.1 Variation 1: Phosphonium Salts ... 759
21.1.2.5.2 Variation 2: Uronium/Guanidinium Salts 761
21.1.3 Racemization .. 762
21.1.4 Supports for Solid-Phase Peptide Synthesis 766
21.1.4.1 Method 1: Polystyrene-Based Resins .. 767
21.1.4.2 Method 2: Polyacrylamide-Based Resins 768
21.1.4.3 Method 3: Poly(ethylene glycol)-Based Resins 768
21.1.4.3.1 Variation 1: TentaGel .. 768
Variation 2: Poly(ethylene glycol)-Dimethylacrylamide Copolymer

Variation 3: Cross-Linked Ethoxylate Acrylate Resin

Variation 4: Polyethylene–Polystyrene and Polyethylene–Polyoxopropylene Resins

Variation 5: Super Permeable Organic Combinatorial Chemistry Resin

Variation 1: Merrifield Resin (Chloromethyl Cross-Linked Polystyrene Resin) 773

Variation 2: Wang Resin (4-Benzoyloxybenzyl Alcohol Cross-Linked Polystyrene) 776

Variation 3: Super Acid Sensitive Resin 778

Variation 4: PAM Resin 778

Variation 5: Trityl Resin 779

Variation 6: Rink Acid Resin 779

Variation 7: HYCRAM Resin 780

Variation 8: Photolabile Linkers 780

Method 2: Generation of C-Terminal Peptide Amides 781

Variation 1: Benzhydrylamine and 4-Methylbenzhydrylamine Resins 781

Variation 2: Rink Amide Resin 781

Variation 3: Sieber Amide Resin 782

Variation 4: Oxime-Based (Kaiser–DeGrado) Resin 782

Variation 5: 4-Hydroxymethylbenzoic Acid Resin 784

Variation 1: Fmoc Monitoring 786

Variation 2: Picric Acid Test 786

Variation 3: Ninhydrin (Kaiser) Test 787

Variation 2: 2,4,6-Trinitrobenzenesulfonic Acid Test 787

Variation 3: Chloranil Test 787

Method 6: Qualitative Tests for Determination of Free Amino Groups on the Solid Support 788

Variation 1: Native Chemical Ligation 789

Variation 2: Auxiliary-Mediated Chemical Ligation 792
21.12 Product Class 12: Metal Amides and Imides
T. R. Bailey

21.12 Product Class 12: Metal Amides and Imides .. 811
21.12.1 Product Subclass 1: Group 15 (Arsenic, Antimony, and Bismuth) Amides and Imides ... 811
21.12.1.1 Synthesis of Product Subclass 1 .. 812
21.12.1.1.1 Method 1: Synthesis from Arsenic, Antimony, and Bismuth Halides 812
21.12.1.1.2 Method 2: Generation by Ligand Displacement 813
21.12.2 Product Subclass 2: Silicon Amides and Imides ... 813
21.12.2.1 Synthesis of Product Subclass 2 ... 814
21.12.2.1.1 Method 1: Synthesis from Trialkylhalosilanes ... 814
21.12.2.1.2 Variation 1: Anion Formation on Amide .. 814
21.12.2.1.2 Variation 2: Using Nitrogenous Bases .. 815
21.12.2.1.2 Method 2: Exchange with Silylated Nitrogen Compounds 815
21.12.2.1.2 Variation 1: With Hexamethyldisilazane .. 815
21.12.2.1.2 Variation 2: With N-Silylated Amides .. 816
21.12.2.1.3 Method 3: Exchange with N,O-Bis(trimethylsilyl)acetamide 816
21.12.2.1.3 Method 4: Synthesis from Acid Chlorides and Hexamethyldisilazane 817
21.12.2.1.3 Method 5: Oxidative Addition of Trialkylsilanes 817
21.12.3 Product Subclass 3: Group 14 (Germanium, Tin, and Lead) Amides and Imides .. 818
21.12.3.1 Synthesis of Product Subclass 3 ... 818
21.12.3.1.1 Method 1: Synthesis from Trialkylmetal Halides 818
21.12.3.1.2 Method 2: Synthesis from Metal Oxides ... 819
21.12.4 Product Subclass 4: Boron Amides and Imides ... 819
21.12.4.1 Synthesis of Product Subclass 4 ... 820
21.12.4.1.1 Method 1: Synthesis from Boron Halides ... 820
21.12.4.1.1 Variation 1: Via Transmetalation ... 820
21.12.4.1.1 Variation 2: By Addition of Dialkylbromoboranes 820
21.12.4.1.2 Method 2: Exchange with N-Silylated Amides 821
21.12.4.1.3 Method 3: Synthesis from Boron Imidates .. 822
21.12.5 Product Subclass 5: Groups 3–13 Transition Metal Amides 822
21.12.5.1 Synthesis of Product Subclass 5 ... 822
21.12.5.1.1 Method 1: Synthesis from Metal Halides .. 822
21.12.5.1.2 Method 2: Synthesis from Diphenylmercury 823
21.12.6 Product Subclass 6: Group 2 (Beryllium, Magnesium, Calcium, and Barium) Amides and Imides ... 824
21.12.6.1 Synthesis of Product Subclass 6 ... 824
21.12.6.1.1 Method 1: Metalation with Grignard Reagents 824
21.12.6.1.2 Method 2: Metalation with Metal Carbonates and Metal Hydroxides 825
21.12.7 Product Subclass 7: Group 1 (Lithium, Sodium, Potassium, Rubidium, and Cesium) Amides and Imides .. 825

21.12.7.1 Synthesis of Product Subclass 7 .. 826
21.12.7.1.1 Method 1: Metalation with Potassium Fluoride on Alumina 826
21.12.7.1.2 Method 2: Metalation by Metal Hydrides 826
21.12.7.1.3 Method 3: Metalation with Metal Carbonates 827
21.12.7.1.4 Method 4: Metalation with Metal Hydroxides and Metal Alkoxides 827
21.12.7.1.4.1 Variation 1: With Sodium Hydroxide 827
21.12.7.1.4.2 Variation 2: With Potassium tert-Butoxide 828
21.12.7.1.5 Method 5: Metalation with Metal Amides 828

21.13.1 Product Subclass 1: Acyl Nitro Compounds 833
21.13.2 Product Subclass 2: Acyl Nitroso Compounds 834
21.13.3 Product Subclass 3: N-Acyl Sulfoximides and N-Acyl Sulfimides 835
21.13.3.1 Synthesis of Product Subclass 3 .. 835
21.13.3.1.1 Method 1: Oxidative Imination of Sulfoxides and Sulfides 836
21.13.3.1.2 Method 2: N-Acylation of Sulfoximides and Sulfimides 837
21.13.4 Product Subclass 4: Acyl Azides .. 838
21.13.4.1 Synthesis of Product Subclass 4 .. 838
21.13.4.1.1 Method 1: Oxidative Azidonation of Aldehydes 838
21.13.4.1.2 Method 2: Acyl Substitution with an Azide Nucleophile 840
21.13.4.1.2.1 Variation 1: From Activated Carboxylic Acid Derivatives 840
21.13.4.1.2.2 Variation 2: From Carboxylic Acids Using Diphenylphosphoryl Azide .. 841
21.13.4.1.2.3 Variation 3: From Esters Using Diethylaluminum Azide 843
21.13.4.1.3 Method 3: Nitrosation of Hydrazides 844
21.13.5 Product Subclass 5: Acyl Diazenes 845
21.13.5.1 Synthesis of Product Subclass 5 .. 846
21.13.5.1.1 Method 1: Oxidation of Hydrazides 846
21.13.6 Product Subclass 6: (Acylimino)phosphoranes 847
21.13.6.1 Synthesis of Product Subclass 6 .. 847
21.13.6.1.1 Method 1: N-Acylation of Iminophosphoranes 847
21.13.6.1.2 Method 2: Staudinger Reaction of Acyl Azides 848
21.13.7 Product Subclass 7: N,N-Diheteroatom-Substituted Amides (Anomeric Amides) .. 849
21.13.8 Product Subclass 8: N-Halo Amides 850
21.13.8.1 Synthesis of Product Subclass 8 .. 850
21.13.8.1.1 Method 1: Oxidative Halogenation of Amides 850
21.13.8.1.1.1 Variation 1: Fluorination of Amides 851
21.13.8.1.2 Variation 2: Chlorination of Amides .. 851
21.13.8.1.3 Variation 3: Bromination of Amides 853
21.13.8.1.4 Variation 4: Iodination of Amides 854
21.13.9 **Product Subclass 9: N-Hydroxy Amides** 855
21.13.9.1 Synthesis of Product Subclass 9 .. 856
21.13.9.1.1 Method 1: Oxidation of Amides, Hydroxylamines, and Amines 856
21.13.9.1.2 Method 2: N-Acylation of Hydroxylamines 857
21.13.9.1.3 Method 3: Deprotection of N-Silox, N-Alkoxy, or N-Alkoxy Amides 860
21.13.9.1.4 Method 4: Ene Reactions of Acyl Nitroso Compounds 862
21.13.9.1.5 Method 5: Synthesis from Nitro Compounds 864
21.13.10 **Product Subclass 10: N-Acyloxy Amides** 865
21.13.10.1 Synthesis of Product Subclass 10 .. 865
21.13.10.1.1 Method 1: O- or N-Acylation .. 865
21.13.10.1.1.1 Variation 1: By O-Acylation of N-Hydroxy Amides 865
21.13.10.1.1.2 Variation 2: N-Acylation of O-Acyl Hydroxylamines 867
21.13.11 **Product Subclass 11: N-Alkoxy Amides and O-Siloxy Amides** 867
21.13.11.1 Synthesis of Product Subclass 11 .. 868
21.13.11.1.1 Method 1: O-Alkylation or O-Silylation of N-Hydroxy Amides 868
21.13.11.1.1.1 Variation 1: O-Silylation of N-Hydroxy Amides 868
21.13.11.1.1.2 Variation 2: O-Alkylation of N-Hydroxy Amides 869
21.13.11.1.2 Method 2: N-Acylation of O-Alkyl or O-Silyl Hydroxylamine Derivatives 871
21.13.11.1.2.1 Variation 1: With Activated Carboxylic Acid Derivatives 871
21.13.11.1.2.2 Variation 2: Reactions of Esters and Imides with O-Alkyl N-Metalated Hydroxylamine Reagents 873
21.13.11.1.3 Method 3: Hetero-Diels–Alder Reaction of Acyl Nitroso Compounds 874
21.13.12 **Product Subclass 12: N-Sulfonyl and N-Sulfinyl Amides** 876
21.13.12.1 Synthesis of Product Subclass 12 .. 876
21.13.12.1.1 Method 1: Oxidation of N-Sulfinyl and N-Sulfanyl Amides 876
21.13.12.1.2 Method 2: N-Acylation of Sulfonamides and Sulfinamides 877
21.13.12.1.3 Method 3: N-Sulfonylation of Amides 879
21.13.12.1.4 Method 4: Synthesis from N-Sulfonyl Isocyanates 880
21.13.13 **Product Subclass 13: N-Sulfanyl Amides** 882
21.13.13.1 Synthesis of Product Subclass 13 .. 882
21.13.13.1.1 Method 1: N-Sulfanylation of Amides 882
21.13.13.1.2 Method 2: N-Acylation of Sulfinamides 883
21.13.14 **Product Subclass 14: N-Nitro and N-Nitroso Amides** 884
21.13.14.1.2 Method 2: Synthesis from Imidoyl Chlorides 886
21.13.15 **Product Subclass 15: Acyl Hydrazones** 887
21.13.15.1 Synthesis of Product Subclass 15 .. 887
21.13.15.1.1 Method 1: Acylation of Hydrazones .. 887
21.13.15.1.2 Method 2: Synthesis from Hydrazides and Carbonyl Compounds 888
21.13.16 Product Subclass 16: Hydrazides .. 889
21.13.16.1 Synthesis of Product Subclass 16 ... 890
21.13.16.1.1 Method 1: Electrophilic Amination of Amides 890
21.13.16.1.2 Method 2: Acylation of Hydrazide Derivatives 891
21.13.16.1.3 Method 3: Reductive Processes ... 892
21.13.16.1.4 Method 4: Addition of Carbon-Centered Nucleophiles to N-Acyl Hydrazones .. 894

21.14 Product Class 14: Acylphosphorus Compounds 907
21.14.1.1 Synthesis of Product Subclass 1 ... 907
21.14.1.1.2 Method 2: Dithiane Alkylation, Followed by Hydrolysis 908
21.14.1.1.3 Method 3: Metal-Mediated Oxidations of α-Hydroxy Phosphonates 909
21.14.1.1.3.1 Variation 1: Heterogeneous Reactions 910
21.14.1.1.3.2 Variation 2: Solvent-Free Reactions 910
21.14.1.2 Applications of Product Subclass 1 in Organic Synthesis 911
21.14.1.2.1 Variation 1: Halogenation Reactions of Acylphosphonates 911
21.14.1.2.1.1 Variation 2: Formation of α-Chloro Carboxylic Acids 911
21.14.1.2.1.2 Variation 2: Selective Chlorination of α-Phosphorylated Aldehydes 913
21.14.1.2.1.3 Variation 3: Fluorination of Acylphosphonates 913
21.14.1.2.2 Method 2: Condensation of Acylphosphonates with Amines and Hydrazines, and Subsequent Reactions 914
21.14.1.2.2.1 Variation 1: Reductive Amination 914
21.14.1.2.2.2 Variation 2: Pyrazoles via the Vilsmeier–Haack Reaction 915
21.14.1.2.2.3 Variation 3: Synthesis of Bis(acylphosphonates) 916
21.14.1.2.3 Method 3: Reduction of Acylphosphonates 917
21.14.1.2.3.1 Variation 1: Diastereoselective Reductions 917
21.14.1.2.3.2 Variation 2: Enantioselective Reductions 918
21.14.1.2.4 Method 4: Organometallic Additions to Acylphosphonates 918
21.14.1.2.4.1 Variation 1: Grignard Additions .. 918
21.14.1.2.4.2 Variation 2: Indium-Mediated Additions 919
21.14.1.2.5 Method 5: Diels–Alder Reactions of Acylphosphonates 920
21.14.1.2.6 Method 6: Mukaiyama–Michael Reactions of β,γ-Unsaturated Acylphosphonates ... 921
21.14.1.2.7 Method 7: Enolization and Subsequent Reactions of Acylphosphonates 922
21.14.1.2.7.1 Variation 1: C-Alkylation of Acylphosphonates 922
21.14.1.2.7.2 Variation 2: Asymmetric Hydrogenation 923
21.14.1.2.7.3 Variation 3: Cross-Coupling Reactions 924
<table>
<thead>
<tr>
<th>Section</th>
<th>Method/Method 9</th>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.14.1.2.8</td>
<td>Method 8: Reaction of Acylphosphonates with Phosphorus(III)</td>
<td>Compounds</td>
<td>925</td>
</tr>
<tr>
<td>21.14.1.2.8.1</td>
<td>Variation 1: Reaction with Trialkyl Phosphites</td>
<td></td>
<td>925</td>
</tr>
<tr>
<td>21.14.1.2.8.2</td>
<td>Variation 2: Reaction with 2-Isocyanato-4H-1,3,2-benzodioxaphosphin-4-one</td>
<td></td>
<td>926</td>
</tr>
<tr>
<td>21.14.1.2.8.3</td>
<td>Variation 3: Coupling Reactions of Aryl Acylphosphonates with Aryl Phosphonates</td>
<td></td>
<td>927</td>
</tr>
<tr>
<td>21.14.1.2.9</td>
<td>Method 9: Metal-Mediated Reactions of Acylphosphonates</td>
<td></td>
<td>928</td>
</tr>
<tr>
<td>21.14.1.2.9.1</td>
<td>Variation 1: Ytterbium-Promoted Rearrangements</td>
<td></td>
<td>929</td>
</tr>
<tr>
<td>21.14.1.2.9.2</td>
<td>Variation 2: Samarium(II) Iodide Promoted Three-Component Couplings</td>
<td></td>
<td>930</td>
</tr>
<tr>
<td>21.14.1.2.9.3</td>
<td>Variation 3: Tin-Catalyzed Intramolecular Acylations</td>
<td></td>
<td>931</td>
</tr>
<tr>
<td>21.14.1.2.10</td>
<td>Method 10: Deprotection of Acylphosphonates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.14.2</td>
<td>Product Subclass 2: Tricoordinate Acylphosphorus Compounds</td>
<td></td>
<td>932</td>
</tr>
<tr>
<td>21.14.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td></td>
<td>932</td>
</tr>
<tr>
<td>21.14.2.1.1</td>
<td>Method 1: Alkylation of Secondary Acylphosphines</td>
<td></td>
<td>932</td>
</tr>
<tr>
<td>21.14.2.1.2</td>
<td>Method 2: Acylation of Di- and Tricoordinate Phosphines</td>
<td></td>
<td>933</td>
</tr>
<tr>
<td>21.14.2.1.2.1</td>
<td>Variation 1: Under Basic Conditions</td>
<td></td>
<td>933</td>
</tr>
<tr>
<td>21.14.2.1.2.2</td>
<td>Variation 2: Under Nonbasic Conditions</td>
<td></td>
<td>934</td>
</tr>
<tr>
<td>21.14.2.2</td>
<td>Applications of Product Subclass 2 in Organic Synthesis</td>
<td></td>
<td>935</td>
</tr>
<tr>
<td>21.14.2.2.1</td>
<td>Method 1: Enolization and Aldol Reactions of Acylphosphines</td>
<td></td>
<td>935</td>
</tr>
<tr>
<td>21.14.2.2.2</td>
<td>Method 2: Reactions of Formylphosphines</td>
<td></td>
<td>936</td>
</tr>
<tr>
<td>21.14.3</td>
<td>Keyword Index</td>
<td></td>
<td>941</td>
</tr>
<tr>
<td>21.14.4</td>
<td>Author Index</td>
<td></td>
<td>979</td>
</tr>
<tr>
<td>21.14.5</td>
<td>Abbreviations</td>
<td></td>
<td>1031</td>
</tr>
</tbody>
</table>
Preface

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>V</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>IX</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Product Class 1: Thiocarboxylic Acids and Derivatives</td>
<td></td>
</tr>
<tr>
<td>Product Subclass 1: α-Substituted Sulfur Ylides</td>
<td>11</td>
</tr>
<tr>
<td>Product Subclass 2: Thioacyl Halides</td>
<td>75</td>
</tr>
<tr>
<td>Product Subclass 3: Thiocarboxylic O-Acid Esters</td>
<td>85</td>
</tr>
<tr>
<td>Product Subclass 4: Dithiocarboxylic Acid Esters</td>
<td>109</td>
</tr>
<tr>
<td>Product Subclass 5: Selenothiocarboxylic Se-Acid Esters</td>
<td>133</td>
</tr>
<tr>
<td>Product Subclass 6: Tellurothiocarboxylic Te-Acid Esters</td>
<td>139</td>
</tr>
<tr>
<td>Product Subclass 7: Thioamides</td>
<td>141</td>
</tr>
<tr>
<td>Product Class 2: Selenocarboxylic Acids and Derivatives</td>
<td>181</td>
</tr>
<tr>
<td>Product Class 3: Tellurocarboxylic Acids and Derivatives</td>
<td>213</td>
</tr>
<tr>
<td>Product Class 4: Imidic Acids and Derivatives</td>
<td></td>
</tr>
<tr>
<td>Product Subclass 1: Carbon-Substituted Iminium Salts</td>
<td>221</td>
</tr>
<tr>
<td>Product Subclass 2: C-Heteroatom-Substituted Nitrones, Other Dipoles</td>
<td>267</td>
</tr>
<tr>
<td>Product Subclass 3: Imidoyl (Imino) Halides</td>
<td>331</td>
</tr>
<tr>
<td>Product Subclass 4: Imidates</td>
<td>343</td>
</tr>
</tbody>
</table>
22.4.5 Product Subclass 5: Thioimidates and Their Derivatives
 N. Nakajima and M. Ubukata ... 361

22.4.6 Product Subclass 6: Selenoimidates (Imidoselenoates) and Derivatives
 N. Nakajima and M. Ubukata ... 367

22.4.7 Product Subclass 7: Telluroimidates (Imidotelluroates) and Derivatives
 N. Nakajima and M. Ubukata ... 375

22.4.8 Product Subclass 8: N-Alkyl-, N-Aryl-, and N-Hetaryl-Substituted Amidines
 (Imidamides)
 K. Ostrowska and A. Kolasa ... 379

22.4.9 Product Subclass 9: Amidines (Imidamides) N-Substituted by Metals, Halogens, Oxygen, and Other Heteroatoms
 K. Ostrowska and A. Kolasa ... 489

22.5 Product Class 5: 2-Functionalized Alkylidenephosphines
 R. A. Aitken .. 565

22.6 Product Class 6: 2-Functionalized Arsaalkenes and α-Functionalized Arsonium Ylides
 R. A. Aitken .. 601

22.7 Product Class 7: Ortho Acid Derivatives

22.7.1 Product Subclass 1: Trihalomethyl Compounds
 G. K. S. Prakash and J. Hu ... 617

22.7.2 Product Subclass 2: Ortho Esters and Halogenated Derivatives
 H. Lebel and M. Grenon ... 669

22.7.3 Product Subclass 3: Trithioortho Esters and Halogenated Derivatives
 H. Lebel and M. Grenon ... 749

22.7.4 Product Subclass 4: Triselenoortho Esters and Halogenated Derivatives
 H. Lebel and M. Grenon ... 775

22.7.5 Product Subclass 5: Tritelluroortho Esters and Halogenated Derivatives
 H. Lebel and M. Grenon ... 789

22.7.6 Product Subclass 6: Ortho Amides (Alkane-1,1,1-triamines)
 W. Kantlehner .. 795

22.7.7 Product Subclass 7: Tris(diorganophosphino)methanes and Derivatives
 W. Kantlehner .. 843

Keyword Index ... 851
Author Index .. 887
Abbreviations ... 945
Table of Contents

22 Introduction

André B. Charette

22.1 Product Class 1: Thiocarboxylic Acids and Derivatives

22.1.1 Product Subclass 1: α-Substituted Sulfur Ylides

V. K. Aggarwal, J. Richardson, and C. L. Winn

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.1.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td>13</td>
</tr>
<tr>
<td>22.1.1.1.1</td>
<td>Method 1: Deprotonation of Sulfonium and Sulfoxonium Salts</td>
<td>14</td>
</tr>
<tr>
<td>22.1.1.1.2</td>
<td>Method 2: Hydrogen Atom Substitution of Lesser Functionalized Sulfur Ylides</td>
<td>15</td>
</tr>
<tr>
<td>22.1.1.1.2.1</td>
<td>Variation 1: Hydrogen Atom Substitution Using Chloro(methyl)silanes, -germanes, and -stannanes</td>
<td>15</td>
</tr>
<tr>
<td>22.1.1.1.3</td>
<td>Method 3: Synthesis from Carbenes</td>
<td>16</td>
</tr>
<tr>
<td>22.1.1.1.3.1</td>
<td>Variation 1: Transition-Metal-Catalyzed Decomposition of Diazo Compounds</td>
<td>17</td>
</tr>
<tr>
<td>22.1.1.1.4</td>
<td>Method 4: 1,3-Elimination Reactions</td>
<td>18</td>
</tr>
<tr>
<td>22.1.1.1.4.1</td>
<td>Variation 1: Thermolysis of [Bromo(trimethylsilyl)methyl][Trimethylsilyl]methyl Sulfides</td>
<td>18</td>
</tr>
<tr>
<td>22.1.1.1.5</td>
<td>Method 5: Modification of Existing Ylides</td>
<td>18</td>
</tr>
<tr>
<td>22.1.1.2</td>
<td>Halogen-Substituted Sulfur Ylides</td>
<td>19</td>
</tr>
<tr>
<td>22.1.1.2.1</td>
<td>Method 1: Deprotonation of Sulfonium and Sulfoxonium Salts</td>
<td>19</td>
</tr>
<tr>
<td>22.1.1.2.2</td>
<td>Method 2: Hydrogen Atom Substitution of Lesser Functionalized Sulfur Ylides</td>
<td>21</td>
</tr>
<tr>
<td>22.1.1.2.2.1</td>
<td>Variation 1: Replacement with a Halogen Atom</td>
<td>21</td>
</tr>
<tr>
<td>22.1.1.2.2.2</td>
<td>Variation 2: Replacement with Other Functional Groups</td>
<td>22</td>
</tr>
<tr>
<td>22.1.1.2.3</td>
<td>Method 3: Synthesis from Carbenes</td>
<td>22</td>
</tr>
<tr>
<td>22.1.1.2.3.1</td>
<td>Variation 1: By Reaction with Dihalocarbenes</td>
<td>22</td>
</tr>
<tr>
<td>22.1.1.2.3.2</td>
<td>Variation 2: From Monohalocarbenes</td>
<td>25</td>
</tr>
<tr>
<td>22.1.1.3</td>
<td>Oxygen-Substituted Sulfur Ylides</td>
<td>25</td>
</tr>
<tr>
<td>22.1.1.4</td>
<td>Sulfur-Substituted Sulfur Ylides</td>
<td>26</td>
</tr>
<tr>
<td>22.1.1.4.1</td>
<td>Method 1: Deprotonation of Sulfonium and Sulfoxonium Salts</td>
<td>27</td>
</tr>
<tr>
<td>22.1.1.4.2</td>
<td>Method 2: Hydrogen Atom Substitution of Lesser Functionalized Sulfur Ylides</td>
<td>29</td>
</tr>
<tr>
<td>22.1.1.4.2.1</td>
<td>Variation 1: With Sulfur-Based Electrophiles</td>
<td>29</td>
</tr>
<tr>
<td>22.1.1.4.2.2</td>
<td>Variation 2: With Carbon-Based Electrophiles</td>
<td>31</td>
</tr>
<tr>
<td>22.1.1.4.3</td>
<td>Method 3: Synthesis from Carbenes</td>
<td>31</td>
</tr>
<tr>
<td>22.1.1.4.3.1</td>
<td>Variation 1: Photolytic Decomposition of Diazocompounds</td>
<td>31</td>
</tr>
</tbody>
</table>
22.1.1.4.3.2 Variation 2: Thermolysis of Diazo Compounds .. 32
22.1.1.4.3.3 Variation 3: Metal-Catalyzed Decomposition of Diazo Compounds 32
22.1.1.4.3.4 Variation 4: By Transylidation .. 32
22.1.1.4.3.5 Variation 5: From Other Carbene Sources .. 35
22.1.1.4.4 Method 4: Reaction of C—H Acidic Compounds with Sulfonium Salts Bearing a Leaving Group ... 35
22.1.1.4.5 Method 5: Addition of Sulfoxides to 1-[(Trifluoromethyl)sulfonyl]alkynes . 37
22.1.1.4.6 Method 6: Hydrolysis of Tetrathiafulvenium Salts 37
22.1.1.5 Selenium-Substituted Sulfur Ylides ... 38
22.1.1.5.1 Method 1: Reaction of “Onium” Salts with Activated Sulfoxides or Selenoxides .. 38
22.1.1.5.1.1 Variation 1: From Sulfoxides ... 38
22.1.1.5.1.2 Variation 2: From Selenoxides .. 39
22.1.1.6 Nitrogen-Substituted Sulfur Ylides ... 39
22.1.1.6.1 Method 1: Deprotonation of Sulfonium and Sulfoxonium Salts 40
22.1.1.6.2 Method 2: Hydrogen Atom Substitution of Lesser Functionalized Sulfur Ylides .. 40
22.1.1.6.3 Method 3: Reaction of Sulfides with Dibromo(nitro)acetonitrile 41
22.1.1.6.4 Method 4: Synthesis from Carbenes ... 41
22.1.1.6.4.1 Variation 1: By Transylidation .. 41
22.1.1.6.5 Method 5: Reaction of Activated Sulfoxides with C—H Acidic Compounds 42
22.1.1.7 Phosphorus-Substituted Sulfur Ylides .. 44
22.1.1.7.1 Method 1: Deprotonation of Sulfonium and Sulfoxonium Salts 44
22.1.1.7.1.1 Variation 1: α-Phosphorus(III)-Substituted Sulfonium Ylides 44
22.1.1.7.1.2 Variation 2: α-Phosphorus(V)-Substituted Sulfonium Ylides 45
22.1.1.7.2 Method 2: Hydrogen Atom Substitution of Lesser Functionalized Sulfur Ylides .. 45
22.1.1.7.2.1 Variation 1: α-Phosphorus(III)-Substituted Sulfur Ylides 46
22.1.1.7.2.2 Variation 2: α-Phosphorus(V)-Substituted Ylides 46
22.1.1.7.3 Method 3: Synthesis from Carbenes ... 48
22.1.1.7.3.1 Variation 1: α-Phosphorus(III)-Substituted Sulfur Ylides 48
22.1.1.7.3.2 Variation 2: α-Phosphorus(V)-Substituted Sulfur Ylides 48
22.1.1.7.4 Method 4: Reaction of C—H Acidic Compounds with Sulfonium Salts Bearing a Leaving Group ... 49
22.1.1.7.4.1 Variation 1: Phosphorus(III)-Substituted Sulfonium Ylides 49
22.1.1.7.4.2 Variation 2: Phosphorus(V)-Substituted Sulfonium Ylides 50
22.1.1.7.5 Method 5: Alkylation of α-(Alkylsulfanyl) Phosphorus Ylides 50
22.1.1.7.6 Method 6: Synthesis by Modification of a Heteroatom Once Attached 50
22.1.1.8 Applications of Product Subclass 1 in Organic Synthesis 51
22.1.1.8.1 Silicon-, Tin-, and Germanium-Substituted Sulfur Ylides 51
22.1.1.8.1.1 Method 1: Reactions with Carbonyl Compounds 52
22.1.1.8.1.2 Method 2: Reactions with Electron-Deficient Alkenes 52
22.1.1.8.1.3 Method 3: Rearrangement Reactions .. 52
22.1.1.8.1.4 Method 4: Cycloaddition Reactions .. 55
22.1.2.2 Halogen-Substituted Sulfur Ylides ... 56
22.1.2.2.1 Method 1: 1,3-Electrocyclization Reactions 56
22.1.2.2.2 Method 2: Preparation of α-Hydroxy Aldehydes and Acetals 57
22.1.2.2.3 Method 3: Rearrangement Reactions 58
22.1.2.3 Sulfur-Substituted Sulfur Ylides ... 59
22.1.2.3.1 Method 1: Rearrangement Reactions 60
22.1.2.3.2 Method 2: Reactions with Aldehydes 60
22.1.2.3.3 Method 3: Reactions with Electron-Deficient Alkenes 61
22.1.2.3.4 Method 4: Cycloreversion Reactions 62
22.1.2.3.5 Method 5: Hydrolysis Reactions ... 63
22.1.2.4 Selenium-Substituted Sulfur Ylides .. 64
22.1.2.4.1 Methods 1: Miscellaneous Applications 64
22.1.2.5 Nitrogen-Substituted Sulfur Ylides .. 64
22.1.2.5.1 Methods 1: Miscellaneous Applications 64
22.1.2.6 Phosphorus-Substituted Sulfur Ylides 66
22.1.2.6.1 Method 1: Reactions with Aldehydes 66
22.1.2.6.2 Method 2: Reaction with Electron-Deficient Alkenes 67
22.1.2.6.3 Method 3: Rearrangement Reactions 68
22.1.2.6.4 Methods 4: Miscellaneous Applications 68

22.1.2. Product Subclass 2: Thioacyl Halides

R. S. Glass

22.1.2.1 Synthesis of Product Subclass 2 .. 75
22.1.2.1.1 Method 1: Sulfuration .. 76
22.1.2.1.2 Method 2: Dehalogenation of Haloalkanesulfenyl Chlorides 76
22.1.2.1.3 Method 3: By Substitution of Dithiocarboxylic Acids 77
22.1.2.1.4 Method 4: By Nucleophilic Substitution of Thiophosgene 77
22.1.2.1.5 Method 5: By C—S Cleavage of α-Thioether Cations 78
22.1.2.2 Applications of Product Subclass 2 in Organic Synthesis 79
22.1.2.2.1 Method 1: Acyl Nucleophilic Substitution 79
22.1.2.2.2 Method 2: Reductive Dimerization .. 79
22.1.2.2.3 Method 3: Friedel–Crafts Thioacylation 80
22.1.2.2.4 Method 4: Cycloaddition Reactions 81
22.1.2.2.5 Method 5: Oxidation ... 81

22.1.3 Product Subclass 3: Thiacarboxylic O-Acid Esters

R. S. Glass

22.1.3.1 Synthesis of Product Subclass 3 .. 85
22.1.3.1.1 Method 1: Thioacylation of Alcohols 85
Variation 1: Thioacylation of Alcohols with Thioaroyl Chlorides	86
Variation 2: Thioacylation of Alcohols with Nitro(thioacyl)benzotriazoles	86
Method 2: Thionation of Esters	87
Variation 1: By Thionation of Esters with Lawesson’s Reagent	87
Variation 2: By Microwave Irradiation with Lawesson’s Reagent	88
Variation 3: With Phosphorus Pentasulfide and Hexamethyldisiloxane	89
Method 3: Thiolysis of Iminosulfuranes and Sulfuranes	90
Variation 1: From Carboxamides	90
Variation 2: From Nitriles	91
Method 4: Alkoxycarbonylation of Enolates	92
Method 5: Elimination of Monothioacetal Derivatives	93
Method 1: Photochemical Elimination	93
Variation 2: Thermolysis of Thiosulfinates	94

Applications of Product Subclass 3 in Organic Synthesis

Variation 1: Thioacylation	94
Variation 2: Nucleophilic Addition	95
Variation 1: Redox Glycosidation	95
Variation 2: Organometallic Addition and Methylation	97
Method 3: Synthesis of Heterocycles	98
Method 4: Enolate Reactions	98
Variation 1: Claisen Rearrangement	98
Variation 2: Aldol Addition	99
Variation 3: Michael Addition	100
Variation 4: Horner–Emmons Reaction	100
Method 5: Cycloaddition Reactions	101
Variation 1: Diels–Alder 2π-Components	101
Variation 2: Diels–Alder 4π-Components	102
Variation 3: 1,3-Dipolar Cycloaddition Reactions	102
Variation 4: Photochemical [2 + 2] Cycloaddition	103
Method 6: Reductive Desulfurization	103
Variation 1: Reductive Desulfurization with Triphenyltin Hydride	103
Variation 2: Reductive Desulfurization with Tributyltin Hydride	104
Method 7: Reductive Dimerization	105
Method 8: Barton–McCombie Deoxygenation of Secondary Alcohols	105
Method 9: Fluorinative Desulfurization	106

Product Subclass 4: Dithiocarboxylic Acid Esters

R. S. Glass

Synthesis of Product Subclass 4	109
Method 1: Thioacetylation of Thiols	109
Method 2: Thionation of Carboxylic Acids	110
Method 3: Thiolysis of Iminosulfuranes and Sulfuranes	111
Method 4: Dithiocarboxylation	112
Method 1: Dithiocarboxylation of Grignard Reagents	112
Method 2: Dithiocarboxylation of Sulfone α-Carbanions	113
22.1.4.3 Variation 3: Dithiocarboxyalkylation ... 114
22.1.4.5 Method 5: Friedel–Crafts Alkylidithiocarboxylation 115
22.1.4.6 Method 6: Bromination of Tin Dithiocarboxylates 116
22.1.4.7 Method 7: Reaction of Dithiocarboxylates with Halophosphines, Thiophosphinic Chloride, and Selenophosphinic Chloride 116
22.1.4.8 Method 8: Acylation of Dithiophosphoric Acids 117
22.1.4.9 Method 9: Amination of Arenedithiocarboxylates 118
22.1.4.2 Applications of Product Subclass 4 in Organic Synthesis 118
22.1.4.2.1 Method 1: Thioacylation .. 118
22.1.4.2.1.1 Variation 1: Aminolysis of Dithioesters 118
22.1.4.2.1.2 Variation 2: Aminolysis of S-Thioacyl Dithiophosphates 119
22.1.4.2.1.3 Variation 3: Synthesis of Thiohydroxamic Acids 120
22.1.4.2.2 Method 2: Addition of Organometallic Reagents 120
22.1.4.2.2.1 Variation 1: Carbophilic Addition of Grignard Reagents 120
22.1.4.2.2.2 Variation 2: Thiophilic Addition of Grignard Reagents 121
22.1.4.2.3 Method 3: Synthesis of 5-Aryl-1,4,2-dithiazolium Salts 122
22.1.4.2.4 Method 4: Synthesis of Penems .. 123
22.1.4.2.5 Method 5: Enethiolates and Ketene Dithioacetals 123
22.1.4.2.5.1 Variation 1: S-Alkylation and S-Silylation of Enethiolates 124
22.1.4.2.5.2 Variation 2: Aldol Addition ... 125
22.1.4.2.5.3 Variation 3: Addition to Imines .. 125
22.1.4.2.5.4 Variation 4: Addition to Azodicarboxylates 126
22.1.4.2.5.5 Variation 5: Michael Addition ... 127
22.1.4.2.6 Method 6: Cycloaddition Reactions ... 128
22.1.4.2.6.1 Variation 1: Diels–Alder Cycloaddition Reactions 128
22.1.4.2.6.2 Variation 2: 1,3-Dipolar Cycloaddition with Diazomethane 129
22.1.4.2.6.3 Variation 3: 1,3-Dipolar Cycloaddition with Phenyl Azide 130
22.1.4.2.7 Method 7: Oxidation ... 130

22.1.5 Product Subclass 5: Selenothiocarboxylic Se-Acid Esters
R. S. Glass

22.1.5.1 Synthesis of Product Subclass 5 .. 133
22.1.5.1.1 Method 1: Thioacylation of Areneselenolates 133
22.1.5.1.1.1 Variation 1: Thioacylation with Thioacyl Chlorides 133
22.1.5.1.1.2 Variation 2: Thioacylation with Bis(thioacyl) Sulfides 133
22.1.5.1.2 Method 2: Reaction of Thioiocarboxylic O-Acid Esters with Dialkylaluminum Alkaneselenolates 134
22.1.5.1.3 Method 3: Se-Alkylation of Selenothioates 134
22.1.5.1.4 Method 4: Sulfuration of a Selanynamine 135
22.1.5.2 Applications of Product Subclass 5 in Organic Synthesis 135
22.1.5.2.1 Method 1: Thioacylation .. 135
22.1.5.2.2 Method 2: Alkylation of Enethiolates ... 135
22.1.5.2.3 Method 3: Oxidation ... 136
Product Subclass 6: Tellurothiocarboxylic Te-Acid Esters
R. S. Glass

Product Subclass 7: Thioamides
H. Lebel

Synthesis of Product Subclass 6

Method 1: Thionation of Telluroesters

Synthesis of Product Subclass 7

Method 1: Sulfurization of Amides by Tetraphosphorus Decasulfide

Variation 1: With Sodium Carbonate as an Activator

Variation 2: With Ultrasonic Irradiation

Variation 3: With Hexamethyldisiloxane

Method 2: Sulfurization of Amides

Variation 1: With Lawesson’s Reagent

Variation 2: With Belleau’s Reagent

Method 3: Thioamidation of Carboxylic Acids

Method 4: Thiolysis of Imidoyl Chlorides

Variation 1: With Hexamethyldisilathiane

Variation 2: With Benzyltriethylammonium Tetrathiomolybdate

Method 5: Thiolysis of Pyridinium Imidates

Method 6: Thiolysis of Dihydrooxazoles

Method 7: Thiolysis of Amidines

Method 8: Thiolysis of Nitriles

Variation 1: Addition of Enamines

Variation 2: Addition of Ketene Acetals

Variation 3: Addition of Enolates

Variation 4: Addition of Grignard Reagents

Variation 5: Addition of Organolithium Reagents

Variation 6: Via Friedel–Crafts Procedures

Variation 7: Via Organosamarium Complexes

Variation 8: With O-Alkyl Thiocarboxylates
22.1.7.12.2 Variation 2: With Dithiocarboxylates .. 168
22.1.7.12.3 Variation 3: With Carbon Disulfide .. 169
22.1.7.13 Method 13: Transamidation of Thioamides 169
22.1.7.13.1 Variation 1: With Thioacylated Benzoazoles 170
22.1.7.13.2 Variation 2: With Thioacylated Benzimidazolones 171
22.1.7.13.3 Variation 3: With Thioacylated N-Phthalimides 171
22.1.7.14 Method 14: Synthesis from Ketones by the Willgerodt–Kindler Reaction .. 172

22.2 Product Class 2: Selenocarboxylic Acids and Derivatives
T. Wirth

22.2.1 Product Subclass 1: Selenocarboxylic Acids with Selenium in Higher Oxidation States ... 181
22.2.2 Product Subclass 2: Selenocarbonyl Halides .. 181
22.2.2.1 Synthesis of Product Subclass 2 ... 182
22.2.2.1.1 Method 1: Reaction of Bis(perfluoroalkylselanyl)mercury(II) Compounds with Lewis Acids ... 182
22.2.2.1.2 Method 2: Synthesis by Flash-Vacuum Pyrolysis 183
22.2.2.3 Product Subclass 3: Chalcocelenocarboxylic Acids 183
22.2.2.3.1 Synthesis of Product Subclass 3 ... 183
22.2.2.3.1.1 Method 1: Reaction of Imidates ... 183
22.2.2.3.1.2 Variation 1: With Hydrogen Selenide 183
22.2.2.3.1.3 Variation 2: With Sodium Hydrogen Selenide 184
22.2.2.3.1.4 Method 2: Reaction of Ketene Acetals with Hydrogen Selenide 185
22.2.2.3.1.5 Method 3: Reaction of Alkyneselenolates and Alkyneselenols 186
22.2.2.3.1.6 Method 4: Reaction of Chromium–Carbene Complexes with Selenium ... 187
22.2.2.3.1.7 Method 5: Reaction of Esters and Ortho Esters 188
22.2.2.3.1.8 Method 6: Reactions with Carbon Diselenide 188
22.2.2.3.1.9 Method 7: Synthesis by Transesterification or Isomerization 189
22.2.2.3.2 Applications of Product Subclass 3 in Organic Synthesis 190
22.2.2.3.2.1 Method 1: Reaction with Nucleophiles 190
22.2.2.3.2.2 Method 2: Reaction with Electrophiles 191
22.2.2.4 Product Subclass 4: Selenoamides .. 191
22.2.2.4.1 Synthesis of Product Subclass 4 .. 191
22.2.2.4.1.1 Method 1: Reaction of Amides ... 191
22.2.2.4.1.1.1 Variation 1: With Phosphorus Pentaselenide 191
22.2.2.4.1.1.2 Variation 2: With Hexamethyldisilaselenane 192
22.2.2.4.1.1.3 Variation 3: With Selenium and Diisobutylaluminum Hydride 193
22.2.2.4.1.1.4 Variation 4: With Cyclic Phosphorus-Containing Reagents 193
22.2.2.4.1.2 Method 2: Reaction of Nitriles ... 194
22.2.2.4.1.2.1 Variation 1: With Elemental Selenium and Carbon Monoxide 194
22.2.2.4.1.2.2 Variation 2: With Elemental Selenium and Sodium Borohydride 195
22.2.2.4.1.2.3 Variation 3: With Aluminum Selenide 195
Variation 4: With Hexamethyldisilaselenane 196

Method 3: Reaction of Amidines or Amidinium Salts 197

Variation 1: Reaction of Imines .. 197

Variation 3: Reaction via Imidothiocarbamates 199

Method 4: Reaction of Alkyneselenolates or Alkyneselenols 199

Variation 1: Reaction of Alkyneselenolates Synthesized from Alkynes ... 200

Variation 2: Reaction of Alkyneselenolates Synthesized from 1,2,3-Selenadiazoles .. 200

Method 5: Reaction of Isoselenocyanates 201

Variation 1: With Alcohols .. 201

Variation 2: With Amines .. 202

Method 6: Synthesis by Transesterification 203

Variation 1: From O-Alkyl Selenoates or S-Alkyl Selenothioates 203

Variation 2: From Triselenocarbonates 204

Method 7: Synthesis via α-Amino-Substituted Diphenylphosphine Oxide Anions .. 204

Method 8: Synthesis via Cycloreversion of Oxaselenazines 205

Method 9: Reaction of 1,1-Dihaloalkanes with Elemental Selenium 206

Method 10: Synthesis from Ynamines 207

Variation 1: Using Elemental Selenium 207

Variation 2: Using Metal Complexes of Selenocarbonyl Compounds 207

Applications of Product Subclass 4 in Organic Synthesis 208

Method 1: Reaction with Nucleophiles 208

Method 2: Reaction with Electrophiles 208

Product Class 3: Tellurocarboxylic Acids and Derivatives
T. Murai

Product Class 3: Tellurocarboxylic Acids and Derivatives 213

Product Subclass 1: Tellurocarbonyl Halides 213

Synthesis of Product Subclass 1 .. 213

Method 1: Elimination of a Fluorostannane from a Tellanylstannane 213

Product Subclass 2: Tellurocarboxylic O-Acids and O-Esters 214

Synthesis of Product Subclass 2 .. 214

Method 1: Addition of Sodium Telluride to Oxoiminium Salts 214

Method 2: .. 216

Product Subclass 3: Telluroformamides 215

Synthesis of Product Subclass 3 .. 216

Method 1: Reaction of a Dialuminum Telluride with Formamides 216

Variation 1: Reaction of Tellurium and Diisobutylaluminum Hydride with Formamides .. 216

Applications of Product Subclass 3 in Organic Synthesis 217

Method 1: Reaction of a Telluroformamide with Pentacarbonyl- chromium–Pyridine Complex .. 217
22.3.4 Product Subclass 4: Telluroamides .. 217
22.3.4.1 Synthesis of Product Subclass 4 217
22.3.4.1.1 Method 1: Reaction of a Sulfanyliminium Salt with Hydrogen Telluride 217
22.3.4.1.2 Method 2: Reaction of a Dialuminum Telluride with a Cyclic Amide 218
22.3.4.1.3 Method 3: Reaction of Selanyliminium Salt with Lithium Aluminum Hydride and Elemental Tellurium 218

22.4 Product Class 4: Imidic Acids and Derivatives

22.4.1 Product Subclass 1: Carbon-Substituted Iminium Salts
S. Cicchi and F. M. Cordero

22.4.1.1 Synthesis of Product Subclass 1 .. 221
22.4.1.1.1 Halomethaniminium Salts ... 221
22.4.1.1.1.1 Method 1: Halogenation of Amides .. 222
22.4.1.1.1.2 Method 2: Reaction of (Dichloromethylene)dimethylammonium Chloride 224
22.4.1.1.1.3 Methods 3: Additional Methods 226
22.4.1.1.2 Alkoxymethaniminium Salts .. 227
22.4.1.1.2.1 Method 1: Reaction of Other Methaniminium Salts 227
22.4.1.1.2.1.1 Variation 1: Reaction of Alcohols with Trifluoromethanesulfonic Anhydride–Amide Adducts 227
22.4.1.1.2.1.2 Variation 2: Reaction of Alcohols with the Benzoyl Chloride–Dimethylformamide Adduct 228
22.4.1.1.2.1.3 Variation 3: Reaction of Alcohols with N-Acylamidinium Salts .. 229
22.4.1.1.2.1.4 Variation 4: Reaction of Oximes with N-Acylamidinium Salts .. 230
22.4.1.1.2.2 Method 2: Reaction of Nitrilium Salts 230
22.4.1.1.2.2.1 Variation 1: With Aromatic Aldehydes 230
22.4.1.1.2.2.2 Variation 2: With α,β-Unsaturated Carbonyl Compounds 231
22.4.1.1.2.2.3 Method 3: O-Alkylation of Amides and Lactams 232
22.4.1.1.2.2.3.1 Variation 1: With Methyl Sulfoxides 232
22.4.1.1.2.2.3.2 Variation 2: With Dimethyl Sulfate 233
22.4.1.1.2.2.3.3 Variation 3: With Sulfonium Salts 233
22.4.1.1.2.2.3.4 Variation 4: With Oxonium Salts 234
22.4.1.1.2.2.3.5 Variation 5: With Haloalkanes 236
22.4.1.1.2.2.3.6 Method 4: N-Alkylation of Imidates 237
22.4.1.1.2.2.3.7 Variation 1: With Alkyl Sulfoxides and Dialkyl Sulfides 237
22.4.1.1.2.2.3.8 Variation 2: With Haloalkanes 238
22.4.1.1.2.2.3.9 Method 5: Electrochemical Oxidation of N,N-Disubstituted Amides ... 240
22.4.1.1.2.2.3.10 Method 6: Ring Expansion of Cyclic Ketones by Reaction with β- and γ-Hydroxy Azides 240
22.4.1.1.2.2.3.11 Method 7: Reaction of Alkoxymethaniminium Salts 241
22.4.1.1.2.3 (Alkylsulfanyl)methaniminium Salts 242
22.4.1.1.2.3.1 Method 1: Reaction of (Sulfonyloxy)methaniminium Salts with Thiols ... 242
22.4.1.1.2.3.2 Method 2: S-Alkylation of N,N-Disubstituted Thioamides ... 243
22.4.1.1.3.2.1 Variation 1: With (Alk-1-enyl)-\(\lambda_3\)-iodanes .. 243
22.4.1.1.3.2.2 Variation 2: With Alkyl Sulfonates and Dialkyl Sulfates 244
22.4.1.1.3.2.3 Variation 3: With Oxonium Salts ... 245
22.4.1.1.3.2.4 Variation 4: With Haloalkanes ... 246
22.4.1.1.3.2.5 Variation 5: Reaction of N-Unsubstituted Thioamides with Aziridines 247
22.4.1.1.3.3 Method 3: N-Alkylation of Thioimidates with Haloalkanes 248
22.4.1.1.4 Method 3: N-Alkylation of Thioimidates with Haloalkanes 249
22.4.1.1.4.1 Method 1: Reaction of Carboxylic Acid Derivatives with Secondary Amines .. 249
22.4.1.1.4.1.1 Variation 1: Reaction of Ortho Esters with Secondary Amines 249
22.4.1.1.4.1.2 Variation 2: Reaction of Oxonium Salts with Secondary Amines 251
22.4.1.1.4.2 Method 2: Reaction of Other Methaniminium Salts with Secondary Amines 251
22.4.1.1.4.2.1 Variation 1: Reaction of Chloromethaniminium Salts 252
22.4.1.1.4.2.2 Variation 2: Reaction of Alkoxymethaniminium Salts 254
22.4.1.1.4.3 Method 3: Reaction of Acyl Chlorides with Carbon Monoxide and Imines ... 255
22.4.1.1.4.4 Method 4: Cycloaddition of Keteniminium Trifluoromethanesulfonates with Imines ... 255
22.4.1.1.4.5 Method 5: Reaction of Nitriiun Salts with Amines and Aminolysis of the Adducts .. 256
22.4.1.1.4.6 Method 6: Electrophilic Addition to 1,1-Bis(dialkylamino)alk-1-enes 257
22.4.1.1.4.7 Method 7: Electrophilic Addition to N'-Thiaoacetyl- and N'-Selenoacylaminides ... 258
22.4.1.1.4.8 Method 8: S-Alkylation of Alkyl 3,3-Diaminoprop-2-ene(dithioates) 259
22.4.1.1.4.9 Method 9: N-Alkylation of Amidines ... 259
22.4.1.1.4.10 Method 10: Oxidation of Ethylenetetramines .. 261
22.4.1.1.4.11 Methods 11: Additional Methods ... 262

22.4.2 Product Subclass 2: C-Heteroatom-Substituted Nitrones, Other Dipoles
F. M. Cordero and S. Cicchi

22.4.2.1 Synthesis of Product Subclass 2 ... 267
22.4.2.1.1 C-Chloro-Substituted Nitrones ... 267
22.4.2.1.1.1 Method 1: Substitution of Aldonitrones ... 267
22.4.2.1.1.2 Method 2: Alkylation of 2-Chloroquinoline 1-Oxide 268
22.4.2.1.1.3 Method 3: Rearrangement of \(\alpha\)-Chloro Nitroso Compounds 268
22.4.2.1.2 C-Oxygen-Substituted Nitrones ... 269
22.4.2.1.2.1 Method 1: Substitution of C-Chloronitrones ... 270
22.4.2.1.2.2 Method 2: Oxidation of N,N-Disubstituted Hydroxylamines 270
22.4.2.1.2.3 Method 3: Oxidation of Aldonitrones ... 271
22.4.2.1.2.4 Method 4: Hydrolysis of 2,2-Dimethoxy-1-phenylethanone Oxime 272
22.4.2.1.2.5 Method 5: Condensation of Hydroxylamine .. 273
22.4.2.1.2.5.1 Variation 1: Condensation of \(\beta\)-Hydroxyamino Alcohols with Ortho Esters 273
22.4.2.1.2.5.2 Variation 2: Condensation with Amide Acetals .. 275
22.4.2.1.2.6 Method 6: Alkylation of Hydroxamic Acids ... 275
Method 7: Isomerization of Oxaziridines .. 277
Method 8: Acid-Promoted Rearrangement of Nitroso Acetals 279
C-Sulfanyl- or C-Sulfonyl-Substituted Nitrones 280
Method 1: Substitution of C-Cyanonitrones ... 280
Method 2: Substitution of C-Alkoxynitrones .. 280
Method 3: Demethylation of 1-Methoxypyrrolidine-2-thiones 282
Method 4: N-Alkylation of Oximes .. 282
Method 5: Reaction of Thiazolidin-4-ones with Nitrosobenzene 283
Method 6: Reaction of Nitroalkenes with Ynamines 284
Method 7: Intramolecular Condensation of an S-Alkyl
4-(Hydroxyamino)butanethioate ... 285
Method 8: Alkylation of Thiohydroxamic Acid Derivatives 286
Variation 1: Alkylation of Thiohydroxamic Acid with Alkyl Iodides 286
Variation 2: Reaction of 1-Methoxypyrrolidine-2-thiones with
Iodotrimethylsilane ... 288
Method 9: Isomerization of a Four-Membered Cyclic Nitrone 289
Method 1: Substitution of Aldonitrones ... 289
Method 2: Substitution of C-Methoxynitrones .. 291
Method 3: Oxidation of N,N-Disubstituted Hydroxylamines 292
Method 4: Dehydrogenation of 2-Amino-N^2-hydroxybenzimidamides 298
Method 5: Oxidation of Imidamides .. 299
Method 6: Oxidation of Imidazolidines ... 303
Method 7: Condensation of N-(2-Aminoethyl)hydroxylamines with
Ortho Esters ... 304
Method 8: Condensation of N-Substituted Hydroxylamines with
N-Aryl-Substituted Imidates ... 305
Method 9: Condensation of Amino-Substituted N^2-Hydroxyimidamides
with Aldehydes ... 306
Variation 1: Condensation of 2-Amino-N^2-hydrobenzimidamides with
Aldehydes .. 306
Variation 2: Condensation of 3-Amino-N^2-hydroxypropanimidamides and
Aldehydes .. 308
Method 10: Condensation of 2-(Hydroxyamino)propan-1-one Oximes with
Glyoxal Derivatives .. 310
Method 11: Reaction of N-Substituted Hydroxylamines with Alkyl
Cyanofornates ... 311
Method 12: Reactions with Nitroso Compounds 312
Variation 1: Reaction of Nitroso Compounds with N-Methyleneamines ... 312
Variation 2: Reaction of Nitroso Compounds with
(Aryl)arylaminatocteyonitrile .. 313
Variation 3: Reaction of Nitroso Compounds with Nitrile Oxides or Nitrile
Imides .. 313
Method 13: Reductive Cyclization of Nitroalkyl Cyanides 315
Variation 1: Reductive Cyclization of 3-, 4-, and 5-Nitroalkyl Cyanides ... 315
Variation 2: Electrochemical Reduction of 4- and 5-Nitroalkyl Cyanides ... 317
22.4.2.1.5 C-Phosphorus-Substituted Nitrones .. 319
22.4.2.1.5.1 Method 1: Substitution of Aldonitrones 319
22.4.2.1.5.2 Method 2: Oxidation of N,N-Disubstituted Hydroxylamines 320
22.4.2.1.6 C-Heteroatom-Substituted Azomethine Ylides 321
22.4.2.1.6.1 Method 1: Synthesis of C-Oxygen- or C-Sulfur-Substituted Azomethine Ylides .. 321
22.4.2.1.6.1.1 Variation 1: Desilylation of Iminium Salts 321
22.4.2.1.6.1.2 Variation 2: Photochemical Transformation of 2,3-Dihydroisoxazoles 322
22.4.2.1.6.1.3 Variation 3: Rhodium-Catalyzed Transformation of 1-(1-Acylpyrrolidin-2-yl)-2-diazoethanones 323
22.4.2.1.6.2 Method 2: Synthesis of C-Nitrogen-Substituted Azomethine Ylides 324
22.4.2.1.6.2.1 Variation 1: Deprotonation of 1,3-Dialkyl-4,5-dihydro-1H-imidazolium Bromides .. 324
22.4.2.1.6.2.2 Variation 2: Nucleophilic Addition to Oxazolium Salts 326
22.4.2.1.7 C-Heteroatom-Substituted Azomethine Imides 326
22.4.2.1.7.1 Method 1: Condensation of Hydrazino Alcohols with Ortho Esters 326

22.4.3 Product Subclass 3: Imidoyl (Imino) Halides
N. Nakajima and M. Ubukata

22.4.3 Product Subclass 3: Imidoyl (Imino) Halides .. 331
22.4.3.1 Synthesis of Product Subclass 3 ... 331
22.4.3.1.1 Method 1: Oxidation of Aldimines 331
22.4.3.1.2 Method 2: Halogenation of Amides 331
22.4.3.1.2.1 Variation 1: By Halogenating Reagents 331
22.4.3.1.2.2 Variation 2: By Phosphorus-Containing Reagents 333
22.4.3.1.3 Method 3: Addition of Perfluoroalkyl Iodides to Isocyanides 334
22.4.3.1.4 Methods 4: Miscellaneous Methods 334
22.4.3.2 Applications of Product Subclass 3 in Organic Synthesis 335
22.4.3.2.1 Reactions with Nucleophiles ... 335
22.4.3.2.1.1 Method 1: Alcohol Additions 335
22.4.3.2.1.2 Method 2: Thiol Additions 336
22.4.3.2.1.3 Method 3: Amine Additions 337
22.4.3.2.1.4 Method 4: Addition Reactions with Other Nucleophiles 337
22.4.3.2.1.4.1 Variation 1: Hydride and Organometallic Additions 337
22.4.3.2.1.4.2 Variation 2: Internal Nucleophile Additions 338
22.4.3.2.2 Reactions with Electrophiles ... 338
22.4.3.2.2.1 Method 1: Reactions with Palladium Complexes (Heck Reaction, Carbonylation, and Cross Coupling) 339
22.4.3.2.2.2 Method 2: Iodine–Metal Exchange Reactions 340
22.4.3.2.3 Radical Reactions ... 340
22.4.3.2.3.1 Method 1: Synthesis of Heterocyclic Compounds 340
22.4.4
Product Subclass 4: Imidates
N. Nakajima and M. Ubukata

22.4.4
Product Subclass 4: Imidates .. 343

22.4.4.1
Synthesis of Product Subclass 4 .. 344

22.4.4.1.1
Method 1: Reaction of Imidoyl Chlorides by Base-Catalyzed Coupling 344

22.4.4.1.2
Method 2: Conversion of Amides .. 344

22.4.4.1.2.1
Variation 1: By Alkylation ... 344

22.4.4.1.2.2
Variation 2: By Acylation ... 346

22.4.4.1.3
Method 3: Reaction of Ortho Esters with Amines .. 346

22.4.4.1.4
Method 4: Coupling of Nitriles and Isocyanides with Alcohols 346

22.4.4.1.4.1
Variation 1: Acid-Catalyzed Coupling (Pinner Synthesis) .. 347

22.4.4.1.4.2
Variation 2: Base-Catalyzed Coupling .. 347

22.4.4.1.4.3
Variation 3: Palladium-Catalyzed Reaction .. 349

22.4.4.1.5
Method 5: Synthesis from Metal Complexes and Organometallics 349

22.4.4.2
Applications of Product Subclass 4 in Organic Synthesis .. 350

22.4.4.2.1
Method 1: Introduction of Nitrogen Functionality by [3,3]-Sigmatropic Rearrangement ... 351

22.4.4.2.1.1
Variation 1: Thermal Conditions .. 351

22.4.4.2.1.2
Variation 2: Metal-Catalyzed Conditions and Asymmetric [3,3]-Sigmatropic Rearrangement ... 352

22.4.4.2.2
Method 2: Glycosylation .. 353

22.4.4.2.3
Method 3: Protection Reaction .. 354

22.4.4.2.4
Method 4: Cyclization ... 355

22.4.4.2.5
Method 5: Synthesis of Heterocyclic Compounds .. 356

22.4.5
Product Subclass 5: Thioimidates and Their Derivatives
N. Nakajima and M. Ubukata

22.4.5
Product Subclass 5: Thioimidates and Their Derivatives .. 361

22.4.5.1
Synthesis of Product Subclass 5 .. 361

22.4.5.1.1
Method 1: Coupling of Imidoyl Halides .. 361

22.4.5.1.2
Method 2: Conversion of Thioamides ... 362

22.4.5.1.2.1
Variation 1: By Alkylation ... 362

22.4.5.1.2.2
Variation 2: By Acylation ... 362

22.4.5.1.3
Method 3: Coupling of Nitriles and Isocyanides with Thiols .. 363

22.4.5.1.3.1
Variation 1: Acid-Catalyzed Coupling .. 363

22.4.5.1.3.2
Variation 2: Base-Catalyzed Coupling .. 363

22.4.5.1.4
Method 4: Beckmann Rearrangement ... 364

22.4.5.2
Applications of Product Subclass 5 in Organic Synthesis .. 364

22.4.5.2.1
Method 1: Metalation .. 364

22.4.5.2.2
Method 2: Synthesis of Heterocyclic Compounds .. 365
22.4.6 Product Subclass 6: Selenoimidates (Imidoselenoates) and Derivatives
N. Nakajima and M. Ubukata

22.4.6 Product Subclass 6: Selenoimidates (Imidoselenoates) and Derivatives · 367
22.4.6.1 Synthesis of Product Subclass 6 · 367
22.4.6.1.1 Method 1: Conversion of Selenoamides · 367
22.4.6.1.2 Method 2: Coupling of Lithiated Hydrocarbons with Selenium and Isocyanate · 368
22.4.6.1.3 Method 3: Reactions of Organometallic Compounds · 369
22.4.6.2 Applications of Product Subclass 6 in Organic Synthesis · 370
22.4.6.2.1 Method 1: Cyclization of Ene Radicals · 370
22.4.6.2.2 Method 2: Use as Acyl Radical Synthons · 371

22.4.7 Product Subclass 7: Telluroimidates (Imidotelluroates) and Derivatives
N. Nakajima and M. Ubukata

22.4.7 Product Subclass 7: Telluroimidates (Imidotelluroates) and Derivatives · 375
22.4.7.1 Synthesis of Product Subclass 7 · 375
22.4.7.1.1 Method 1: Displacement of Chloride from Imidoyl Chlorides · 375
22.4.7.1.2 Method 2: Reaction of Acyl Tellurides with Isocyanides · 375
22.4.7.2 Applications of Product Subclass 7 in Organic Synthesis · 376
22.4.7.2.1 Method 1: Photolysis and Indole Derivatives Synthesis · 376

22.4.8 Product Subclass 8: N-Alkyl-, N-Aryl-, and N-Hetaryl-Substituted Amidines (Imidamides)
K. Ostrowska and A. Kolasa

22.4.8 Product Subclass 8: N-Alkyl-, N-Aryl-, and N-Hetaryl-Substituted Amidines (Imidamides) · 379
22.4.8.1 Synthesis of Product Subclass 8 · 379
22.4.8.1.1 From Nitriles and Isocyanides · 379
22.4.8.1.1.1 Method 1: Addition of Nitrogen Bases to Nitriles · 379
22.4.8.1.1.1.1 Variation 1: Addition of Stoichiometric Amounts of Alkali Metal Amides · 381
22.4.8.1.1.1.2 Variation 2: Addition of Amines in the Presence of Alkyllithium or Grignard Reagents · 383
22.4.8.1.1.1.3 Variation 3: Addition of Silylimines · 385
22.4.8.1.1.1.4 Variation 4: Addition of Ammonia or Amines to Nitriles Substituted with Electron-Withdrawing Groups · 386
22.4.8.1.1.2 Method 2: Addition of Ammonia and Its Derivatives to Nitriles via Heterosubstituted Imines (The Pinner Method) · 386
22.4.8.1.1.2.1 Variation 1: Modifications of the Classical Pinner Method (via Imidates) · 392
22.4.8.1.1.2.2 Variation 2: Modifications of the Classical Pinner Method (via Thioimidates) · 395
22.4.8.1.3 Method 3: N-Substituted and N¹,N¹-Disubstituted Amidines by Addition of an Amine to a Nitrile Activated by a Lewis Acid 396
22.4.8.1.4 Method 4: Variously Substituted Amidines via Nitrilium Salts 400
22.4.8.1.5 Method 5: Reaction of Nitriles with Azides in the Presence of Samarium(II) Iodide 402
22.4.8.1.6 Method 6: Reaction of Nitriles with Nitroarenes in the Presence of Metals or Metal Salts 403
22.4.8.1.7 Method 7: Cyclic Amidines by Treatment with Catalytic Hydrogen Sulfide, Sulfur, Phosphorus Pentasulfide, or Carbon Disulfide 404
22.4.8.1.8 Method 8: Synthesis from Isocyanides 405
22.4.8.1.2 From Cumulenes 411
22.4.8.1.2.1 Method 1: Synthesis from Isonicocyanates, Isothiocyanates, or Isocyanates 411
22.4.8.1.2.1.1 Variation 1: Addition of Amines to Benzimidoyl Isonicocyanates, Isothiocyanates, or Isocyanates 411
22.4.8.1.2.1.2 Variation 2: 1,3-Dipolar Cycloaddition of Isothiocyanates or Isocyanates 412
22.4.8.1.2.1.3 Variation 3: Semicyclic Amidines Starting from Isothiocyanates or Isocyanates and α- or β-Amino Cyanides 413
22.4.8.1.2.1.4 Variation 4: Cycloaddition of Isothiocyanates with α- or β-Hydroxy Cyanides 415
22.4.8.1.2.1.5 Variation 5: Addition of N,N-Disubstituted Amides to Isocyanates 416
22.4.8.1.2.2 Method 2: Synthesis from Carbodiimides 418
22.4.8.1.2.2.1 Variation 1: Addition of Various Carbon Nucleophiles to Carbodiimides 418
22.4.8.1.2.2.2 Variation 2: Reduction of Carbodiimides 419
22.4.8.1.2.3 Method 3: Addition of Amines to Ketenimines 419
22.4.8.1.3 From Carboxylic Acids and Carboxylic Acid Esters 422
22.4.8.1.3.1 Method 1: Synthesis from Carboxylic Acids 422
22.4.8.1.3.1.1 Variation 1: Reaction of Carboxylic Acids with Amines Promoted by Polysilanes of Acid Trimethylisyl Ester 422
22.4.8.1.3.1.2 Variation 2: Cyclic Amidines from Carboxylic Acids and Diamines 423
22.4.8.1.3.2 Method 2: Synthesis from Carboxylic or Dithiocarboxylic Acid Esters 424
22.4.8.1.4 From Ortho Esters, Dialkyl(dialkoxy methyl)amines, and tert-Butoxybis(dimethylamino)methane 425
22.4.8.1.4.1 Method 1: Synthesis from Ortho Esters by Condensation with Amines 425
22.4.8.1.4.2 Method 2: Synthesis from Dialkyl(dialkoxy methyl)amines and tert-Butoxybis(dimethylamino)methane 427
22.4.8.1.4.2.1 Variation 1: Condensation of Dialkyl(dialkoxy methyl)amines and tert-Butoxybis(dimethylamino)methane 427
22.4.8.1.4.2.2 Variation 2: Cyclic Amidines by the Reaction of Dialkyl(dialkoxy methyl)amines with Diamines 429
22.4.8.1.5 From Thioamides and Amides 429
22.4.8.1.5.1 Method 1: Synthesis from Thioamides 429
22.4.8.1.5.1.1 Variation 1: Reaction of Thioamides with Ammonia or Amines in the Presence of Mercury(II) Oxide or Mercury(II) Salts 431
22.4.8.1.5.2.1 Variation 1: Amination of Amides via O-Silylated Imidates 435
22.4.8.1.5.2.2 Variation 2: Amination of Amides via O-Sulfonylated Imidates 435
22.4.8.1.5.2.3 Variation 3: Amination of Amides via O-Phosphorylated Imidates 437
22.4.8.1.5.2.4 Variation 4: Reaction of Amides with Activated Amines 438
22.4.8.1.5.2.5 Variation 5: Reaction of Amides with Azides Using Trisubstituted Phosphines as Activating Agent 438

22.4.8.1.6 From Imidoyl Chlorides 439
22.4.8.1.6.1 Method 1: Synthesis from Imidoyl Chlorides and Ammonia or Amines 439
22.4.8.1.6.2 Method 2: Synthesis from The Vilsmeier Reagent and Amines or Amides 442

22.4.8.1.7 From Thioimidates and Imidates 444
22.4.8.1.7.1 Method 1: Synthesis from Amines and Thioimidates or Their Salts 444
22.4.8.1.7.2 Method 2: Synthesis from Imidates 446
22.4.8.1.7.3 Method 3: Synthesis from Alkoxyliminium Salts Obtained from Imidates 447

22.4.8.1.8 From Amidines 450
22.4.8.1.8.1 Method 1: Transamination of Amidines 450
22.4.8.1.8.2 Method 2: Alkylation of Amidines 452
22.4.8.1.8.3 Method 3: Acylation of Amidines 455
22.4.8.1.8.4 Method 4: Urea and Thiourea Derivatives of Amidines from Isocyanates or Isothiocyanates 457

22.4.8.1.9 Miscellaneous Syntheses 457
22.4.8.1.9.1 Method 1: Oxidation of Aminals 457
22.4.8.1.9.2 Method 2: Reduction of Amidoximes 458
22.4.8.1.9.3 Method 3: Reduction of Various Compounds with the 1,3-Diaza Skeleton 460
22.4.8.1.9.4 Method 4: Synthesis from Reagents with a Good Leaving Group 461
22.4.8.1.9.5 Method 5: Decomposition of Various Nitrogen Heterocyclic Rings 462
22.4.8.1.9.6 Method 6: Other Methods 464

22.4.9 Product Subclass 9: Amidines (Imidamides) N-Substituted by Metals, Halogens, Oxygen, and Other Heteroatoms
K. Ostrowska and A. Kolasa

22.4.9.1 Synthesis of Product Subclass 9 489
22.4.9.1.1 N-Silylated, N,N-Disilylated, N,N’-Disilylated, and N,N,N’-Trisilylated Amidines 489
22.4.9.1.1.1 Method 1: Silylation of Amidines 489
22.4.9.1.1.2 Method 2: Synthesis from Silylated Nitrogen Compounds 490
22.4.9.1.1.3 Method 3: Synthesis from Non-Silylated or Silylated Carbodimides 490
22.4.9.1.2 N-Germanyl, N-Stannyl, N-Plumbyl, N-Arsenyl, and N-Antimonyl Amidines 491
22.4.9.1.2.1 Method 1: Synthesis from Amidines 491
22.4.9.1.3 Boron-Substituted Amidines ... 492
22.4.9.1.3.1 Method 1: Synthesis from Amidines and Various Boron Compounds .. 492
22.4.9.1.4 N-Haloamidines .. 493
22.4.9.1.4.1 Method 1: N^1,N^1,N^2-Trifluoroimidamides from Amidines and Fluorine with Sodium Fluoride as Catalyst ... 493
22.4.9.1.4.2 Method 2: Dehydrofluorination of N,N,N',N'-Tetrafluoroalkane-1,1-diamines .. 493
22.4.9.1.4.3 Method 3: N-Fluoroamidines from Imidoyl Fluorides and Amines ... 494
22.4.9.1.4.4 Method 4: N-Chloroamidines from Amidines and Hypochlorites or Chlorine in the Presence of Aqueous Sodium Hydrogen Carbonate .. 495
22.4.9.1.4.5 Method 5: Synthesis from Amidines and N-Chlorosuccinimide .. 496
22.4.9.1.4.6 Method 6: Synthesis from Amidines by the Action of Fluorine in Aqueous Potassium Chloride .. 496
22.4.9.1.4.7 Method 7: N-Bromoamidines from Amidines and Bromine in Acetic Acid or Sodium Hypobromite .. 496
22.4.9.1.4.8 Method 8: N-Iodoamidines from Amidines and Iodine in the Presence of Sodium Hydroxide, Potassium Iodide, or Nitrogen Iodide .. 497
22.4.9.1.5 Amidoximes (N-Hydroxylated Amidines) .. 497
22.4.9.1.5.1 Method 1: Addition of Hydroxylamine to Nitriles .. 497
22.4.9.1.5.2 Method 2: Addition of Ammonia or Amines to Nitrile Oxides .. 498
22.4.9.1.5.3 Method 3: Cycloaddition of Nitrile Oxides to Imines, Cyanates, Isocyanates, and Related Compounds .. 499
22.4.9.1.5.4 Method 4: Reactions of N-Hydroxyimidoyl Chlorides with Ammonia or Amines .. 500
22.4.9.1.5.5 Method 5: Reactions of Imidoyl Chlorides with Hydroxylamine, O-Substituted, or N-Substituted Hydroxyamines .. 501
22.4.9.1.5.6 Method 6: Hydroxylation of Amidines .. 502
22.4.9.1.5.7 Method 7: Reactions of Amides or Thioamides with Hydroxylamine .. 502
22.4.9.1.5.8 Methods 8: Other Procedures .. 504
22.4.9.1.6 Carbohydroximinohydrazides .. 504
22.4.9.1.6.1 Method 1: Synthesis from Nitrile Oxides and Hydrazine Derivatives .. 504
22.4.9.1.6.2 Method 2: Synthesis from N-Hydroxy or N-Amino Imidoyl Chlorides .. 505
22.4.9.1.6.3 Method 3: Transamination with Hydroxylamine or Hydrazine Derivatives .. 506
22.4.9.1.6.4 Methods 4: Other Procedures .. 506
22.4.9.1.7 N-Sulfanylaminidines .. 507
22.4.9.1.7.1 Method 1: Direct Sulfanylation of Amidines .. 507
22.4.9.1.7.2 Methods 2: Other Procedures .. 508
22.4.9.1.8 N-Sulfonylamidines .. 509
22.4.9.1.8.1 Method 1: Cycloaddition Reactions of Arylsulfonyl Isocyanates, Sulfuryl Chloride Isocyanate, or N-Sulfinylsulfonamides .. 509
22.4.9.1.8.2 Method 2: Cycloaddition of Arylsulfonyl Azides and Thioamides, Enamines, or Enaminones .. 510
22.4.9.1.8.3 Method 3: Synthesis from Ortho Esters or (Dialkoxy)methyl dialkylamines .. 511
22.4.9.1.8.4 Method 4: Synthesis from N-Thioacylated or N-Acylated Sulfonamides or Amides ... 512
22.4.9.1.8.5 Method 5: Synthesis from Sulfonylimidoyl Chlorides and Amines or from Imidoyl Chlorides and Sulfonamides 513
22.4.9.1.8.6 Method 6: Synthesis from Imidates or N-Sulfonylated Imidates 514
22.4.9.1.8.7 Method 7: Synthesis from Amidines and Sulfonyl Chlorides 515
22.4.9.1.8.8 Methods 8: Other Procedures ... 516
22.4.9.1.9 Method 1: General Procedures for the Synthesis of N"-Sulfanyl, N"-Sulfinyl, or N"-Selanyl Carboximidohydrazides 517
22.4.9.1.9.1 Method 2: Synthesis of N"-Sulfonyl Carboximidohydrazides 518
22.4.10 Carboximidohydrazides and Carbohydrazonamides .. 520
22.4.10.1 Method 1: Addition of Hydrazine to Nitriles 520
22.4.10.2 Method 2: 1,2- or 1,3-Addition Reactions of Nitrilimines 522
22.4.10.3 Method 3: Synthesis from Isocyanates or Isothiocyanates and Hydrazine Derivatives .. 523
22.4.10.4 Method 4: Synthesis from 4-Phenyl-1,2,4-triazole-3,5-dione or Dialkyl Azodicarboxylate ... 525
22.4.10.5 Method 5: Synthesis from Carboxylic Acid Thioamides and Amides 526
22.4.10.6 Method 6: Synthesis from Imidoyl or Hydrazonoyl Chlorides by Nucleophilic Substitution .. 527
22.4.10.7 Method 7: Synthesis from Thiimidates and Hydrazines or Hydrazones 528
22.4.10.8 Method 8: Synthesis from Imidates and Various Hydrazine Derivatives 529
22.4.10.9 Methods 9: Other Procedures ... 530
22.4.11 Carbohydrazonohydrazides .. 531
22.4.11.1 Method 1: Synthesis from Carboxylic, Thiocarboxylic, Dithiocarboxylic Acids, Carboxylates, or Ortho Esters 531
22.4.11.2 Method 2: Synthesis from Carboxylic Acid Hydrazides 533
22.4.11.3 Method 3: Synthesis from Hydrazonoyl Halides 533
22.4.11.4 Method 4: Synthesis from Imidates, N-Amino Imidates, or Their Salts and Hydrazine Derivatives 535
22.4.11.5 Methods 5: Other Procedures ... 536
22.4.12 Formazans ... 536
22.4.12.1 Method 1: Synthesis from Aryldiazonium Salts by Azo Coupling with Aryl Hydrazones .. 536
22.4.12.2 Method 2: Synthesis from Aryldiazonium Salts by Azo Coupling with Active Methylene Compounds 538
22.4.12.3 Method 3: Synthesis from Hydrazonoyl Halides 539
22.4.12.4 Method 4: Synthesis from Various Heterocycles by Their Decomposition or Transformation ... 540
22.4.12.5 Methods 5: Other Procedures ... 541
22.4.13 Amidines Substituted with a Group Containing a Trivalent Phosphorus Atom .. 541
22.4.13.1 Method 1: Synthesis from Amidines and Chloro Derivatives of Phospholanes .. 541
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Method 1</th>
<th>Method 2</th>
<th>Method 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.4.9.13.2</td>
<td>Method 2: Synthesis from Silylated or Lithiated Amidines and Phosphorus(III) Chlorides</td>
<td></td>
<td></td>
<td>542</td>
</tr>
<tr>
<td>22.4.9.13.3</td>
<td>Methods 3: Other Procedures</td>
<td></td>
<td></td>
<td>542</td>
</tr>
<tr>
<td>22.4.9.14</td>
<td>Amidines Substituted with a Group Containing a Pentavalent Phosphorus Atom</td>
<td></td>
<td></td>
<td>542</td>
</tr>
<tr>
<td>22.4.9.14.1</td>
<td>Method 1: Synthesis from Amides, Imidoyl Chlorides, Imidates, or Thioimidates</td>
<td></td>
<td></td>
<td>542</td>
</tr>
<tr>
<td>22.4.9.14.2</td>
<td>Method 2: Synthesis from Amidines or N-Chloroamidines</td>
<td></td>
<td></td>
<td>544</td>
</tr>
<tr>
<td>22.4.9.14.3</td>
<td>Methods 3: Other Procedures</td>
<td></td>
<td></td>
<td>545</td>
</tr>
<tr>
<td>22.4.9.15</td>
<td>Highly Substituted Amidines</td>
<td></td>
<td></td>
<td>546</td>
</tr>
</tbody>
</table>

22.5 Product Class 5: 2-Functionalized Alkylidenephosphines

R. A. Aitken

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Method 1</th>
<th>Method 2</th>
<th>Method 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.5</td>
<td>Product Class 5: 2-Functionalized Alkylidenephosphines</td>
<td></td>
<td></td>
<td>565</td>
</tr>
<tr>
<td>22.5.1</td>
<td>Product Subclass 1: 2-Halophosphaalkenes [(2-Halomethylene)phosphines]</td>
<td></td>
<td></td>
<td>565</td>
</tr>
<tr>
<td>22.5.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td></td>
<td></td>
<td>565</td>
</tr>
<tr>
<td>22.5.1.1.1</td>
<td>Method 1: Synthesis from (2,4,6-Tri-tert-butylphenyl)phosphine with a Haloform and Potassium Hydroxide</td>
<td></td>
<td></td>
<td>565</td>
</tr>
<tr>
<td>22.5.1.1.2</td>
<td>Method 2: Synthesis from Dichloro(2,4,6-tri-tert-butylphenyl)phosphine with a Haloform and Butyllithium</td>
<td></td>
<td></td>
<td>566</td>
</tr>
<tr>
<td>22.5.1.1.3</td>
<td>Method 3: Lithiation of (Chloromethylene)(2,4,6-tri-tert-butylphenyl)phosphine Followed by Alkylation</td>
<td></td>
<td></td>
<td>567</td>
</tr>
<tr>
<td>22.5.1.1.4</td>
<td>Method 4: Lithium–Halogen Exchange of a (Dihalomethylene)(2,4,6-tri-tert-butylphenyl)phosphine Followed by Protonation</td>
<td></td>
<td></td>
<td>568</td>
</tr>
<tr>
<td>22.5.1.1.5</td>
<td>Method 5: Lithium–Halogen Exchange of a (Dihalomethylene)(2,4,6-tri-tert-butylphenyl)phosphine Followed by Alkylation</td>
<td></td>
<td></td>
<td>568</td>
</tr>
<tr>
<td>22.5.1.1.6</td>
<td>Method 6: Synthesis from Bis(trimethylsilyl)methylenephosphine with Bromine and Sodium Methoxide</td>
<td></td>
<td></td>
<td>569</td>
</tr>
<tr>
<td>22.5.1.1.7</td>
<td>Method 7: Synthesis from a Dihalo(halomethyl)phosphine with Sodium Hexamethyldisilazanide</td>
<td></td>
<td></td>
<td>570</td>
</tr>
<tr>
<td>22.5.1.1.8</td>
<td>Method 8: Thermolysis of (Pentafluoroethyl)(trimethylstannyl)phosphines</td>
<td></td>
<td></td>
<td>570</td>
</tr>
<tr>
<td>22.5.1.1.9</td>
<td>Method 9: Photolytic Ring Opening of a Diphosphirane</td>
<td></td>
<td></td>
<td>571</td>
</tr>
<tr>
<td>22.5.1.1.10</td>
<td>Method 10: Synthesis from Alkylidynephosphines with Benzeneselenenyl Chloride</td>
<td></td>
<td></td>
<td>572</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Method 1</th>
<th>Method 2</th>
<th>Method 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.5.2</td>
<td>Product Subclass 2: 2-Alkoxy-, 2-(Alkylsulfanyl)-, and 2-(Alkylselanyl)phosphaalkenes (2-Substituted Methylene phosphines)</td>
<td></td>
<td></td>
<td>573</td>
</tr>
<tr>
<td>22.5.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td></td>
<td></td>
<td>573</td>
</tr>
<tr>
<td>22.5.2.1.1</td>
<td>Method 1: Synthesis from Potassium Phosphide with an Alkyl or Aryl Benzoate</td>
<td></td>
<td></td>
<td>573</td>
</tr>
<tr>
<td>22.5.2.1.2</td>
<td>Method 2: Reaction of Lithium Phosphide with an Alkyl Formate</td>
<td></td>
<td></td>
<td>574</td>
</tr>
<tr>
<td>22.5.2.1.3</td>
<td>Method 3: Synthesis from Lithium Phosphide and an Acid Chloride Followed by Protonation with Tetrafluoroboric Acid</td>
<td></td>
<td></td>
<td>574</td>
</tr>
</tbody>
</table>
22.5.2.1.4 Method 4: Synthesis from Bis(trimethylsilyl)phosphine and Pivaloyl Chloride ... 575
22.5.2.1.5 Method 5: Synthesis from Bis(trimethylsilyl)phosphine and Pivaloyl Chloride Followed by Treatment with Methylthiium and Chlorotrimethylsilane ... 576
22.5.2.1.6 Method 6: Synthesis from Bis(trimethylsilyl)phosphine with Two Equivalents of Pivaloyl Chloride 576
22.5.2.1.7 Method 7: Synthesis from (2,4,6-Tri-tert-butylphenyl)phosphine and Oxalyl Chloride ... 577
22.5.2.1.8 Method 8: Synthesis from (1,2-Dioxoethane-1,2-diyl)bis[(2,4,6-tri-tert-butylphenyl)phosphine] and Methylthiium with Pivaloyl Chloride .. 578
22.5.2.1.9 Method 9: Synthesis from tert-Butyl(2,2-dimethylpropanoyl)phosphine with Triethylamine and an Electrophile 578
22.5.2.1.10 Method 10: Synthesis from a Metalated Acylphosphine and an Electrophile .. 579
22.5.2.1.11 Method 11: Synthesis from Tris(trimethylsilyl)phosphine and an Acid Chloride ... 580
22.5.2.1.12 Method 12: Reaction of Lithium Bis(trimethylsilyl)phosphide with an Acid Chloride .. 581
22.5.2.1.13 Method 13: Reaction of an Alkylbis(trimethylsilyl)phosphine with an Acid Chloride .. 581
22.5.2.1.14 Method 14: Synthesis from Lithium (tert-Butyldimethylsilyl)(2,4,6-tri-tert-butylphenyl)phosphide and Benzoyl Chloride 583
22.5.2.1.15 Method 15: Synthesis from [2,2-Dimethyl-1-(trimethylsiloxy)propylidene]- (trimethylsilyl)phosphine and Hexachloroethane .. 583
22.5.2.1.16 Method 16: Synthesis from [2,2-Dimethyl-1-(trimethylsiloxy)propylidene]- (trimethylsilyl)phosphine and a Diazoo Compound .. 584
22.5.2.1.17 Method 17: Thermolysis of 4,5-Dihydro-3H-1,2,4-diazaphospholes .. 585
22.5.2.1.18 Method 18: Reaction of a (Hydroxyalkyl)phosphine with (1Z)-2,2-Dimethyl-N-(4-tolyl)propanimidoyl Chloride 586
22.5.2.1.19 Method 19: Isomerization of (1-Ethoxyvinyl)phosphines .. 586
22.5.2.1.20 Method 20: Lithium–Halogen Exchange of (E)-[Bromo(phenyl- sulfanyl)methylene](2,4,6-tri-tert-butylphenyl)phosphate Followed by Reaction with Methanol .. 587
22.5.2.1.21 Method 21: Lithium–Halogen Exchange of (E)-[Bromo(phenyl- sulfanyl)methylene](2,4,6-tri-tert-butylphenyl)phosphate Followed by Oxidative Coupling .. 588
22.5.2.1.22 Method 22: Reaction of an Alkylidyneephosphine with Benzeneselenenyl Fluoride .. 588

22.5.3 Product Subclass 3: 2-Aminophosphaalkenes [(2-Aminomethylene)phosphines] ... 588
22.5.3.1 Synthesis of Product Subclass 3 .. 589
22.5.3.1.1 Method 1: Reaction of an Arylphosphine with an Amide Dimethyl Acetal .. 589
22.5.3.1.2 Method 2: Reaction of Potassium Phosphide with an Ethoxyiminium Tetrafluoroborate .. 589
22.5.3.1.3 Method 3: Reaction of a Bis(trimethylsilyl)phosphine with Dimethylformamide .. 590
22.5.3.1.4 Method 4: Reaction of a Lithium (Trimethylsilyl)phosphide with Dimethylformamide .. 591
22.5.3.1.5 Method 5: Reaction of (Phenyl)[bis(trimethylsilyl)]phosphine with an Imidoyl Chloride .. 591
22.5.3.1.6 Method 6: Reaction of a Chloroiminium Chloride with Tris(trimethylsilyl)phosphine .. 592
22.5.3.1.7 Method 7: Reaction of a Chloroiminium Chloride with Lithium Phenyl(triphenylstannyl)phosphide .. 592
22.5.3.1.8 Method 8: Synthesis from a Lithium Phosphide and a Nitrile Followed by Protonation .. 593
22.5.3.1.9 Method 9: Synthesis from a Lithium Phosphide with Acetonitrile Followed by Silylation .. 594
22.5.3.1.10 Method 10: Synthesis from (2,2-Dimethylpropyldyne)phosphine and a Thioketone S-Imide ... 594
22.5.3.1.11 Method 11: Reaction of a 2-Chloro-1-ethylquinolinium Tetrafluoroborate with Tris(hydroxymethyl)phosphine 594
22.5.3.1.12 Method 12: Reaction of a 1-Alkyl-2-chloroquinolinium Salt with Tris(trimethylsilyl)phosphine .. 595
22.5.3.1.13 Method 13: Reaction of 2-Chloro-1-methylquinolinium Tetrafluoroborate with Sodium Dicyanophosphide Followed by Sodium Diethyl Phosphate .. 595
22.5.3.1.14 Method 14: Reaction of Phosphamethinecyanine Tetrafluoroborates with Sodium Dicyanophosphide 596
22.5.3.1.15 Method 15: [2 + 2] Cycloaddition of Tri-tert-butylazete and a Phosphaalkyne ... 596
22.5.3.1.16 Method 16: Diels–Alder Reaction of [(Diisopropylamino)methylidyne]phosphine .. 597
22.5.3.1.17 Method 17: Synthesis from [2,2-Dimethyl-1-[phenyl(trimethylsilyl)amino]propyldene]phenylphosphine and Benzoyl Chloride ... 598
22.5.3.1.18 Method 18: Synthesis from (2,3-Di-tert-butylcycloprop-2-en-1-yldene)-(mesityl)phosphine and an Ynamine 598

22.6 Product Class 6: 2-Functionalized Arsaalkenes and α-Functionalized Arsonium Ylides
R. A. Aitken

22.6 Product Class 6: 2-Functionalized Arsaalkenes and α-Functionalized Arsonium Ylides ... 601
22.6.1 Product Subclass 1: 2-Haloarsaalkenes .. 601
22.6.1.1 Synthesis of Product Subclass 1 .. 601
22.6.1.1.1 Method 1: Lithium–Halogen Exchange of a [(2,2-Dibromo)methylene]arsine Followed by Methanolysis 601
22.6.2 Product Subclass 2: 2-Alkoxyarsaalkenes 602
22.6.2.1 Synthesis of Product Subclass 2 .. 602
22.6.1.1 Method 1: Reaction of Bis(trimethylsilyl)arsines and Pivaloyl Chloride Followed by Thermal Rearrangement .. 602
22.6.1.2 Method 2: Reaction of 2,4,6-Trimethylbenzoyl Chloride and Lithium Arsine–1,2-Dimethoxyethane Complex in a 1:2 Ratio 603
22.6.1.3 Method 3: Reaction of 2,4,6-Trimethylbenzoyl Chloride and Lithium Arsine–Tetrahydrofuran Complex in a 2:3 Ratio 604

22.6.2 Product Subclass 3: 2-Aminoarsaalkenes .. 605
22.6.2.1 Synthesis of Product Subclass 3 ... 605
22.6.2.1.1 Method 1: Reaction of Phenylbis(trimethylsilyl)arsine and an Imidoyl Chloride ... 605
22.6.2.1.2 Method 2: Reaction of Phenylbis(trimethylsilyl)arsine and Dimethylformamide ... 605
22.6.2.1.3 Method 3: Reaction of a Lithium Trimethylsilylarsenide and Dimethylformamide ... 606
22.6.2.1.4 Method 4: Reaction of (2,4-Di-tert-butyl-6-methylphenyl)arsine and an Amide Dimethyl Acetal 606
22.6.2.1.5 Method 5: Reaction of Tris(trimethylsilyl)arsine and a 1-Alkyl-2-chloroquinolinium Tetrafluoroborate 607

22.6.3 Product Subclass 4: α-Sulfur- and Selenium-Substituted Arsonium Ylides 607
22.6.3.1 Synthesis of Product Subclass 4 ... 607
22.6.3.1.1 Method 1: Reaction of a Stabilized Arsonium Ylide and Benzenesulfonyl Chloride ... 607
22.6.3.1.2 Method 2: Reaction of Triphenyl(phenylsulfonylmethyl)arsonium Iodide with Triethylamine and Acetyl Chloride 608
22.6.3.1.3 Method 3: Reaction of Triphenylarsine Oxide with Dimethyl(2-oxo-2-phenylethyl)sulfonium Tetraphenylborate and Acetic Anhydride ... 608
22.6.3.1.4 Method 4: Reaction of [2-(4-Bromophenyl)-2-oxoethylidene]triphenylarsorane and Phenylsulfine 609
22.6.3.1.5 Method 5: Reaction of [(Ethoxy carbonyl)methylene]triphenylarsorane and Phenylsulfonyl Chloride 610
22.6.3.1.6 Method 6: Reaction of a Stabilized Arsonium Ylide with Benzeneselenenyl Iodide ... 610
22.6.3.1.6.1 Variation 1: With No Added Base ... 610
22.6.3.1.6.2 Variation 2: In the Presence of Triethylamine 611
22.6.3.1.7 Method 7: Reaction of Triphenyl[(phenylselanyl)methyl]arsonium Iodide with Triethylamine and Acetyl Chloride 611
22.6.3.1.8 Method 8: Reaction of (2-Oxo-2-phenylethyl)triphenylarsonium Tetrafluoroborate and Diphenyl Selenoxide in the Presence of Dicyclohexylcarbodiimide 612

22.6.3.2 Applications of Product Subclass 4 in Organic Synthesis 613
22.6.3.2.1 Method 1: Reaction of Triphenyl[(phenylsulfonyl)methyl]arsonium Iodide with Butyllithium 613
Product Subclass 5: α-Nitroarsonium Ylides

Method 1: Reaction of Dichloro(triphenyl)arsorane with (Nitromethyl)benzene and Triethylamine

Method 2: Reaction of Triphenylarsine Oxide with Nitromethane and Phosphorus Pentoxide

Method 3: Reaction of Triphenylarsine Oxide with Nitromethane and Acetic Anhydride

Product Class 7: Ortho Acid Derivatives

Product Subclass 1: Trihalomethyl Compounds

Method 1: Reaction of Trimethyl(trifluoromethyl)silane and Other Organosilicon Reagents

Variation 1: Fluoride-Induced Chemoselective Nucleophilic Trifluoromethylation and Perfluoroalkylation

Variation 2: Stereoselective Nucleophilic Trifluoromethylation with Trimethyl(trifluoromethyl) silane

Variation 3: Trifluoromethylation and Perfluoroalkylation by Copper(I)-Mediated Oxidative Addition

Method 2: Reaction of Trifluoromethane and Other Polyfluoroalkanes

Method 3: Reaction of Hemiaminals of Trifluoroacetaldehyde

Variation 1: Using the Silylated Morpholino Hemiaminal of Trifluoroacetaldehyde

Variation 2: Using Silylated and Non-Silylated Piperazino Hemiaminals of Trifluoroacetaldehyde

Method 4: Reaction of 2,2,2-Trifluoro-1-phenylethanone and Its Adduct

Method 5: Reaction of Trifluorohalomethanes and Perfluorohaloalkanes

Method 6: Reaction of Trifluoroacetic Acid and Trifluoromethanesulfonic Acid Derivatives

Method 7: Reaction of Phenyl Trifluoromethyl Sulfide, Sulfoxide, or Sulfone

Method 8: Reaction of Fluorinated Organometallic Reagents

Electrophilic Trifluoromethylation or Perfluoroalkylation

Method 1: Reaction of Aryl(perfluoroalkyl)iodonium Salts

Method 2: Reaction of Aryl(polyfluoroalkyl)iodonium Salts

Method 3: Reaction of 5-(Perfluoroalkyl)dibenzothiophenium, 5-(Perfluoroalkyl)dibenzoselenophenium, and 5-(Perfluoroalkyl)dibenzotellurophenium Salts
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trifluoromethylation and Polyfluoroalkylation via Fluorinated Radical Species</td>
<td>633</td>
</tr>
<tr>
<td>Method 1: Addition to Unsaturated Systems</td>
<td>633</td>
</tr>
<tr>
<td>Method 2: Substitution Reactions</td>
<td>634</td>
</tr>
<tr>
<td>Other Methods</td>
<td>635</td>
</tr>
<tr>
<td>Method 1: Halogen-Exchange Reactions</td>
<td>635</td>
</tr>
<tr>
<td>Method 2: Reaction of Trifluoroacetic Acid Derivatives with Organometallic Compounds</td>
<td>635</td>
</tr>
<tr>
<td>Method 3: Reaction of Sulfur Tetrafluoride and Related Reagents</td>
<td>636</td>
</tr>
<tr>
<td>Method 4: Reaction of Hydrogen Fluoride and Amine Complexes</td>
<td>636</td>
</tr>
<tr>
<td>Method 5: Electrochemical Fluorination</td>
<td>637</td>
</tr>
<tr>
<td>Method 6: Perfluorination Reactions with Elemental Fluorine</td>
<td>638</td>
</tr>
<tr>
<td>Method 7: Electrophilic Fluorination of (2,2-Difluorovinyl)ysilanes</td>
<td>638</td>
</tr>
<tr>
<td>Compounds Containing a Trichloromethyl Group</td>
<td>639</td>
</tr>
<tr>
<td>Method 1: Reaction of Trimethyl(trichloromethyl)silane</td>
<td>639</td>
</tr>
<tr>
<td>Method 2: Reaction of Chloroform with Base</td>
<td>640</td>
</tr>
<tr>
<td>Method 3: Reaction of Carbon Tetrachloride with a Lewis Acid</td>
<td>640</td>
</tr>
<tr>
<td>Method 4: Reaction of Carbon Tetrachloride with a Reducing Agent</td>
<td>641</td>
</tr>
<tr>
<td>Method 5: Halogen-Exchange Reactions Using Metal Chlorides</td>
<td>642</td>
</tr>
<tr>
<td>Method 6: Use of Phosphorus Pentachloride as the Chlorinating Agent</td>
<td>642</td>
</tr>
<tr>
<td>Method 7: Reaction of Elemental Chlorine</td>
<td>643</td>
</tr>
<tr>
<td>Method 8: Reaction of Trichloroacetic Acid and Its Derivatives</td>
<td>643</td>
</tr>
<tr>
<td>Method 9: Reaction of Chloral</td>
<td>644</td>
</tr>
<tr>
<td>Compounds Containing a Tribromomethyl or Triiodomethyl Group</td>
<td>645</td>
</tr>
<tr>
<td>Method 1: Reaction of Elemental Bromine or Iodine</td>
<td>645</td>
</tr>
<tr>
<td>Method 2: Reaction of Tribromomethane with Base</td>
<td>645</td>
</tr>
<tr>
<td>Method 3: Reaction of Trichloroacetic Acid and Its Derivatives</td>
<td>646</td>
</tr>
<tr>
<td>Method 4: Reaction of Carbon Tetrabromide with a Reducing Agent</td>
<td>647</td>
</tr>
<tr>
<td>Method 5: Reaction of N-Bromosuccinimide</td>
<td>647</td>
</tr>
<tr>
<td>Method 6: Halogen-Exchange Reactions</td>
<td>648</td>
</tr>
<tr>
<td>Compounds Containing the Chlorodifluoromethyl, Bromodifluoromethyl, or Difluoriodomethyl Group</td>
<td>648</td>
</tr>
<tr>
<td>Method 1: Reaction of (Chlorodifluoromethyl)trimethylsilane and Related Compounds</td>
<td>648</td>
</tr>
<tr>
<td>Method 2: Radical Reactions with Elemental Halogens</td>
<td>649</td>
</tr>
<tr>
<td>Method 3: Reaction of an N-Halosuccinimide</td>
<td>650</td>
</tr>
<tr>
<td>Method 4: Halogen-Exchange Reactions</td>
<td>650</td>
</tr>
<tr>
<td>Method 5: Electrophilic Halogenation of (2,2-Difluorovinyl)ysilanes</td>
<td>651</td>
</tr>
<tr>
<td>Method 6: Reaction of Difluorohaloacetic Acid Derivatives</td>
<td>651</td>
</tr>
<tr>
<td>Compounds Containing a Dichlorofluoromethyl, Dibromofluoromethyl, or Fluorodiodomethyl Group</td>
<td>652</td>
</tr>
<tr>
<td>Method 1: Halogen-Exchange Reactions</td>
<td>652</td>
</tr>
<tr>
<td>Method 2: Reaction of Dichlorofluoromethane with a Base</td>
<td>653</td>
</tr>
<tr>
<td>Method 3: Reaction of Trichlorofluoromethane</td>
<td>653</td>
</tr>
<tr>
<td>Method 4: Reaction of Dichlorofluoromethanesulfenyl Acetate and Trifluoroacetate</td>
<td>654</td>
</tr>
</tbody>
</table>
22.7.1.5.5 Method 5: Reaction of (2,2-Dichlorocyclopropyl)methanol or 2,2-(Dibromocyclopropyl)methanol with Pyridinium Poly(hydrogen fluoride) .. 654

22.7.1.5.6 Method 6: Reaction of the Lithium or Zinc Carbenoid Generated from Tribromofluoromethane .. 655

22.7.1.5.7 Method 7: Electrochemical Fluorination .. 656

22.7.1.6 Compounds Containing a Bromochlorofluoromethyl, Bromofluoroiodomethyl, or Chlorofluoroiodomethyl Group .. 656

22.7.1.6.1 Method 1: Halogen-Exchange Reactions .. 656

22.7.1.6.2 Method 2: Reaction of Elemental Halogens .. 657

22.7.1.6.3 Method 3: Reaction of Dibromochlorofluoromethane and Sodium Dithionite .. 657

22.7.1.6.4 Method 4: Electrophilic Halogenation or Halofluorination 658

22.7.1.7 Compounds Containing a Bromodichloromethyl, Dichloroiodomethyl, Dibromochloromethyl, Dibromoiodomethyl, Chlorodiiodomethyl, or Bromodiiodomethyl Group .. 658

22.7.1.7.1 Method 1: Electrophilic Halogenation of Alkenes with Halogens 659

22.7.1.7.2 Method 2: 1,2-Addition of Alkenes to Alkyl Hypohalites 659

22.7.1.7.3 Method 3: Reaction of Bromodichloromethane or Dibromochloromethane with a Base ... 660

22.7.1.7.4 Method 4: Halogen-Exchange Reactions .. 660

22.7.1.7.5 Method 5: Halogenation of Enolates Generated In Situ 661

22.7.1.8 Compounds Containing the Bromochloroiodomethyl Group 662

22.7.1.8.1 Method 1: Reaction of Bromochloroiodomethane and Base 662

22.7.1.8.2 Method 2: Halogen-Exchange Reactions .. 662

22.7.2 Product Subclass 2: Ortho Esters and Halogenated Derivatives H. Lebel and M. Grenon

22.7.2.1 Synthesis of Product Subclass 1 .. 669

22.7.2.1.1 a,a-Dihalogenated Ethers and a-Halogenated Acetals 670

22.7.2.1.1 Method 1: Halogenation of Ethers .. 670

22.7.2.1.2 Method 2: Halogen Substitution Reactions 671

22.7.2.1.2.1 Variation 1: Preparation of a,a-Difluoro Ethers from a,a-Difluoro-a-haloalkanes .. 672

22.7.2.1.2.2 Variation 2: Preparation of Ortho Esters from Tribromoalkanes 673

22.7.2.1.3 Method 3: Alcoholyis of a,a-Difluorinated Alkenes 674

22.7.2.1.4 Method 4: Oxidative Fluorodesulfurization of Thiocarboxylic O-Acid Esters .. 676

22.7.2.1.4.1 Variation 1: Fluorination with (Diethylamino)sulfur Trifluoride 676

22.7.2.1.4.2 Variation 2: Fluorination with Bromine Trifluoride 677

22.7.2.1.5 Method 5: Halogenation of Esters and Anhydrides 678

22.7.2.1.6 Method 6: Oxidative Fluorodesulfurization of 5,6-Dihydro-4H-1,3-dithiin-1-ium Salts ... 679
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.7.2.1.7</td>
<td>Method 7:</td>
<td>Halogenation of Acetals</td>
</tr>
<tr>
<td>22.7.2.1.8</td>
<td>Method 8:</td>
<td>Electrochemical Oxidation of 2-Chloro-5,6-dihydro-1,4-dioxin</td>
</tr>
<tr>
<td>22.7.2.1.9</td>
<td>Method 9:</td>
<td>Reactions of 3,4,5,6-Tetrachlorobenz-1,2-quinone with Benzyl Halides</td>
</tr>
<tr>
<td>22.7.2.1.2</td>
<td>Ortho Esters</td>
<td></td>
</tr>
<tr>
<td>22.7.2.1.12</td>
<td>Method 1:</td>
<td>Electrochemical Oxidation of Acetals to Ortho Esters</td>
</tr>
<tr>
<td>22.7.2.1.12</td>
<td>Method 2:</td>
<td>Photoinduced Electron Transfer between Tetrachlorobenz-1,4-quinone and Benzodioxoles</td>
</tr>
<tr>
<td>22.7.2.1.12</td>
<td>Method 3:</td>
<td>Alcoholysis of Cyclopropenone Ketals</td>
</tr>
<tr>
<td>22.7.2.1.12</td>
<td>Method 4:</td>
<td>Elimination/Intramolecular Cyclization of Selenoglycosides</td>
</tr>
<tr>
<td>22.7.2.1.12</td>
<td>Method 5:</td>
<td>Nucleophilic Substitution Reactions on Orthocarbonates</td>
</tr>
<tr>
<td>22.7.2.1.12</td>
<td>Method 6:</td>
<td>Nucleophilic Substitution Reactions on Cyano Ortho Esters</td>
</tr>
<tr>
<td>22.7.2.1.12</td>
<td>Method 7:</td>
<td>Alcoholysis of Amide Acetals</td>
</tr>
<tr>
<td>22.7.2.1.12</td>
<td>Method 8:</td>
<td>Alcoholysis of Activated Amides</td>
</tr>
<tr>
<td>22.7.2.1.12</td>
<td>Method 9:</td>
<td>Nucleophilic Addition to Trialkoxycarbenium Salts</td>
</tr>
<tr>
<td>22.7.2.1.12</td>
<td>Method 10:</td>
<td>Alcoholysis of Dialkoxycarbenium Salts</td>
</tr>
<tr>
<td>22.7.2.1.12</td>
<td>Method 11:</td>
<td>Alcoholysis of Nitriles</td>
</tr>
<tr>
<td>22.7.2.1.12</td>
<td>Method 12:</td>
<td>Alcoholysis of Imidic Esters</td>
</tr>
<tr>
<td>22.7.2.1.12</td>
<td>Method 13:</td>
<td>Alcoholysis of Ketene Acetals</td>
</tr>
<tr>
<td>22.7.2.1.12</td>
<td>Method 14:</td>
<td>Transition-Metal-Catalyzed Reactions of Ketene Acetals with α-Diazo Ketones</td>
</tr>
<tr>
<td>22.7.2.1.12</td>
<td>Method 15:</td>
<td>[4 + 2] Cycloadditions of Ketene Acetals with α,β-Unsaturated Carbonyl Compounds</td>
</tr>
<tr>
<td>22.7.2.1.12</td>
<td>Method 16:</td>
<td>[4 + 2] Cycloadditions of Ketene Acetals with Acetyketene or Formylketene</td>
</tr>
<tr>
<td>22.7.2.1.12</td>
<td>Method 17:</td>
<td>[2 + 2] Cycloadditions of Ketene Acetals with Carbonyl Compounds</td>
</tr>
<tr>
<td>22.7.2.1.12</td>
<td>Method 18:</td>
<td>Transition-Metal-Catalyzed Reactions of 1,1-Diethoxyethene with α-Dicarbonyl Compounds</td>
</tr>
<tr>
<td>22.7.2.1.12</td>
<td>Method 19:</td>
<td>Alcoholysis of Alkoxyalkynes</td>
</tr>
<tr>
<td>22.7.2.1.12</td>
<td>Method 20:</td>
<td>Reactions of Lactones with Alkylating Reagents and Alcohols</td>
</tr>
<tr>
<td>22.7.2.1.12</td>
<td>Method 21:</td>
<td>Acid-Catalyzed Reactions of Lactones with Diols</td>
</tr>
<tr>
<td>22.7.2.1.12</td>
<td>Method 22:</td>
<td>Trimehtylsilyl Trifluoromethanesulfonate Catalyzed Reactions of Lactones with Diols and Methoxytrimethylsilane</td>
</tr>
<tr>
<td>22.7.2.1.12</td>
<td>Method 23:</td>
<td>Reactions of Esters with Epoxides</td>
</tr>
<tr>
<td>22.7.2.1.12</td>
<td>Method 24:</td>
<td>Lewis Acid Mediated Rearrangements of Epoxy Esters</td>
</tr>
<tr>
<td>22.7.2.1.12</td>
<td>Method 25:</td>
<td>Transition-Metal-Catalyzed Rearrangements of Epoxy Esters</td>
</tr>
<tr>
<td>22.7.2.1.12</td>
<td>Method 26:</td>
<td>Lewis Acid Catalyzed Rearrangements of Oxetane Esters</td>
</tr>
<tr>
<td>22.7.2.1.12</td>
<td>Method 27:</td>
<td>Synthesis from Dithioesters and Dialkoxydibutylstannanes</td>
</tr>
<tr>
<td>22.7.2.1.12</td>
<td>Method 28:</td>
<td>Preparation of Carbohydrate Ortho Esters from O-Acylglycosyl Derivatives</td>
</tr>
<tr>
<td>22.7.2.1.12</td>
<td>Method 29:</td>
<td>[2 + 2] Electrocyclic Ring Opening of 2,2-Dimethoxycyclobutenones</td>
</tr>
<tr>
<td>22.7.2.1.12</td>
<td>Method 30:</td>
<td>[3 + 2] Cycloadditions of Carbonyl Ylides with Carbonyl Compounds</td>
</tr>
</tbody>
</table>
22.7.2.1.2.31 Method 31: Cycloadditions of Methylene cyclopropanone Ketals with Carbonyl Compounds .. 723
22.7.2.1.2.32 Method 32: Claisen Rearrangement of Phenols with 3,3,3-Triethoxypropene .. 726
22.7.2.1.2.33 Method 33: Alcoholsysis of α,α-Dialkoxy cyclopropyl Esters .. 727
22.7.2.1.2.34 Method 34: Alcoholsysis of α,α-Dihalocyclopropyl Ketones .. 728
22.7.2.1.2.35 Method 35: Exchange of Alkoxy Groups by the Reactions of Ortho Esters with Alcohols (Transorthoesterification) .. 728
22.7.2.1.2.35.1 Variation 1: Reactions with Diols .. 729
22.7.2.1.2.35.2 Variation 2: Reactions with Triols .. 730
22.7.2.1.2.35.3 Variation 3: Alcoholsysis of Trithioortho Esters .. 732
22.7.2.1.2.36 Method 36: The Wittig Reaction .. 733
22.7.2.1.2.37 Method 37: Additions of Anions Containing an Ortho Ester Fragment .. 733
22.7.2.1.2.37.1 Variation 1: Addition of the Anion of 1-Ethynyl-4-methyl-2,6,7-trioxabicyclo[2.2.2]octane to Various Electrophiles .. 735
22.7.2.1.2.37.2 Variation 2: Addition of the Anion of (E)-1-(2-Iodovinyl)-4-methyl-2,6,7-trioxabicyclo[2.2.2]octane to Various Electrophiles .. 736
22.7.2.1.2.38 Method 38: Transition-Metal-Catalyzed Coupling Reactions .. 737
22.7.2.1.2.39 Method 39: Preparation of 3,3,3-Triethoxypropene and 3,3,3-Triethoxypropyne .. 738
22.7.2.1.2.39.1 Variation 1: Preparation of 3,3,3-Triethoxypropyne .. 739
22.7.2.1.2.39.2 Variation 2: Preparation of 3,3,3-Triethoxypropyne .. 740

22.7.3 Product Subclass 3: Trithioortho Esters and Halogenated Derivatives
H. Lebel and M. Grenon

22.7.3.1 Synthesis of Product Subclass 3 .. 749
22.7.3.1.1 α-Halogenated Dithioacetals and α,α-Dihalogenated Sulfides .. 749
22.7.3.1.1.1 Method 1: Halogenation of Sulfides .. 749
22.7.3.1.1.1.1 Variation 1: Fluorination of Sulfides .. 749
22.7.3.1.1.1.2 Variation 2: Electrolytic Fluorination of Sulfides .. 751
22.7.3.1.1.1.3 Variation 3: Chlorination of Sulfides .. 752
22.7.3.1.1.1.4 Variation 4: Bromination of Sulfides .. 753
22.7.3.1.1.2 Method 2: Halogen Substitution Reactions of α,α-Difluoro-α-haloalkanes .. 754
22.7.3.1.1.2.1 Variation 1: Substitution by Thiolates .. 754
22.7.3.1.1.2.2 Variation 2: Substitution by Thiocyanates .. 755
22.7.3.1.1.3 Method 3: Oxidative Desulfurization–Fluorination of Trithioortho Esters To Give α,α-Difluoro Sulfides .. 756
22.7.3.1.1.4 Method 4: Oxidative Desulfurization–Fluorination of Dithioesters To Give α,α-Difluoro Sulfides .. 757
22.7.3.1.1.5 Method 5: Halogenation of Dithioacetals .. 758
22.7.3.1.1.5.1 Variation 1: Chlorination of Dithioacetals with N-Chlorosuccinimide .. 759
22.7.3.1.1.5.2 Variation 2: Chlorination of Dithioacetals with Sulfuryl Chloride .. 759
22.7.3.1.1.6 Method 6: Halogenation of Ketene Dithioketals .. 760
22.7.3.1.2 Trithioortho Esters .. 761
22.7.3.1.2.1 Method 1: Thionation of Dithioacetals with Disulfides 761
22.7.3.1.2.2 Method 2: Transorthoesterification of Ortho Esters with Thiols 762
22.7.3.1.2.3 Method 3: Sulfur–Metal Exchange of Thioorthocarbonates 762
22.7.3.1.2.4 Method 4: From Disubstituted Thriothiocarbonates by Nucleophilic Addition at the Sulfur Atom of the Thione Group 763
22.7.3.1.2.4.1 Variation 1: Addition of Organolithium Reagents to Thriothiocarbonates 763
22.7.3.1.2.4.2 Variation 2: Addition of Allylsilanes to Thriothiocarbonates 765
22.7.3.1.2.5 Method 5: From Disubstituted Thriothiocarbonates by Reaction with Thiocarbonyl Ylides 765
22.7.3.1.2.6 Method 6: From Tris(methylsulfanyl)carbenium Salts 766
22.7.3.1.2.7 Method 7: Thiolysis of Ketene Dithioacetals 768
22.7.3.1.2.8 Method 8: Addition of Tris(alkylsulfanyl)methanes and Tris(aryl- sulfanyl)methanes 769
22.7.3.1.2.8.1 Variation 1: Additions to Alkyl Halides 770
22.7.3.1.2.8.2 Variation 2: 1,2-Addition to Aldehydes and Ketones 771
22.7.3.1.2.8.3 Variation 3: 1,4-Addition to α,β-Unsaturated Carbonyl Compounds 771

22.7.4 Product Subclass 4: Triselenoortho Esters and Halogenated Derivatives

22.7.4.1 Synthesis of Product Subclass 4 776
22.7.4.1.1 Method 1: Dimerization of Selenocarbonyl Fluorides 776
22.7.4.1.2 Method 2: Halogen Exchange of 2,4-Difluoro-2,4-bis(perfluoroalkyl)-1,3-diselenetanes 778
22.7.4.1.3 Method 3: Alkylation of Aldehydes with Benzeneselenenyl Bromide 778
22.7.4.1.4 Method 4: Selenation of Diselenanes with Diselenides 779
22.7.4.1.5 Method 5: Halogen Substitution Reactions 780
22.7.4.1.5.1 Variation 1: From Bromoform and Carbon Tetrabromide 780
22.7.4.1.5.2 Variation 2: From Dichloromethyl Methyl Ether 781
22.7.4.1.6 Method 6: Transorthoesterification of Ortho Esters 782
22.7.4.1.6.1 Variation 1: Lewis Acid Catalyzed Transorthoesterification of Ortho Esters 782
22.7.4.1.6.2 Variation 2: Transorthoesterification of Ortho Esters with Tris(methylselenyl)borane 783
22.7.4.1.7 Method 7: Metalation of Selenoorthocarbonates 784
22.7.4.1.8 Method 8: Reduction of Tris(alkylselenyl)carbenium Salts 785
22.7.4.1.9 Method 9: Acid-Mediated Condensation of Benzeneselenol 785
22.7.4.1.10 Method 10: Addition of Tris(alkylselenyl)methanes and Tris(aryl- selenyl)methanes 786
Product Subclass 5: Tritelluroortho Esters and Halogenated Derivatives
H. Lebel and M. Grenon

Synthesis of Product Subclass 5

Method 1: Dimerization of Tellurocarbonyl Fluorides

Method 2: Halogen Exchange of 2,4-Difluoro-2,4-bis(perfluoroalkyl)-1,3-ditelluretanes

Method 3: Preparation of Tris(aryltellanyl)carbenium Ions

Product Subclass 6: Ortho Amides (Alkane-1,1,1-triamines)
W. Kantlehner

Synthesis of Product Subclass 6

Method 1: Substitution of Cyano Groups

Method 2: Substitution of Halogens

Variation 1: Substitution of Fluorine and Sulfur Groups in Disulfides

Variation 2: Other Substitutions

Method 3: Substitution of Amine Derivatives

Method 4: Substitution of Alkoxy Groups

Variation 1: Substitution of Alkoxy and Amino Groups

Variation 2: With Metal Hydrides

Variation 3: With Amidines

Variation 4: With Triethylsilane

Variation 5: With Bis(dialkylamino)acetonitriles

Method 5: Substitution of Alkylsulfanyl Groups

Method 6: Reactions of Guanidinium Salts

Method 7: Reaction of Pyrimidinium Salts with Amines

Method 8: Reaction of Tetrazolium Salts with Ammonia

Method 9: Reaction of Isocyanates

Variation 1: With Nucleophilic Carbenes

Variation 2: With Amides

Variation 3: With Amidines

Variation 4: With Triethylsilane

Variation 5: With Bis(dialkylamino)acetonitriles

Method 10: Reaction of Tetraaminoethenes with NH-Acidic Compounds

Method 11: Reaction of Azoalkenes with CH₂-Acidic Compounds

Method 12: Modification of Existing Ortho Amides

Variation 1: Transamination Reactions

Variation 2: N-Metalation, N-Acylation, and N-Sulfonylation

Variation 3: N-Alkylation

Variation 4: N-Dealkylation

Variation 5: Transformation of Carbonyl or Thiocarbonyl Groups into Methylene Groups

Variation 6: Sulfurization of Carbonyl Groups

Variation 7: Alteration of More Remote Functional Groups

Method 13: Cycloaddition Reactions

Methods 14: Other Methods
Product Subclass 7: Tris(diorganophosphino)methanes and Derivatives
W. Kantlehner

22.7.1 Synthesis of Product Subclass 7 843

22.7.1.1 Method 1: Alkylation of Lithium Tris(dimethylphosphino)methanides 843

22.7.1.2 Method 2: Phosphorylation of Lithium Bis(diorganophosphino)methanides 844

22.7.1.3 Method 3: Phosphorylation of [Diphenyl(thiophosphoryl)]methyllithium 846

22.7.1.4 Method 4: Synthesis of Phosphorylated Methanes by Addition of Oxygen, Sulfur, Selenium, and Azides ... 846

22.7.1.5 Method 5: Synthesis of Phosphonium Iodides .. 848

Keyword Index ... 851

Author Index ... 887

Abbreviations ... 945
Volume 23: Three Carbon–Heteroatom Bonds: Ketenes and Derivatives

Preface ... V

Table of Contents ... IX

Introduction
R. L. Danheiser .. 1

23.1 Product Class 1: Ketene
T. T. Tidwell .. 15

23.2 Product Class 2: Silylketenes
D. M. George and R. L. Danheiser .. 53

23.3 Product Class 3: Halogen-Substituted Ketenes
T. T. Tidwell .. 101

23.4 Product Class 4: Oxygen-Substituted Ketenes
C. Palomo, M. Oiarbide, and J. M. Aizpurua 169

23.5 Product Class 5: Sulfur- and Selenium-Substituted Ketenes
C. Palomo, J. M. Aizpurua, I. Ganboa, and E. Gómez-Bengoa 199

23.6 Product Class 6: Nitrogen- and Phosphorus-Substituted Ketenes
C. Palomo and J. M. Aizpurua ... 221

23.7 Product Class 7: Alkylideneketenes
W. F. Austin, J. J. Kowalczyk, G. B. Dudley, and R. L. Danheiser 245

23.8 Product Class 8: Cyanoketenes
H. W. Moore ... 259

23.9 Product Class 9: Acylketenes
G. Kollenz and S. Ebner .. 271

23.10 Product Class 10: Imidoylketenes
G. Kollenz ... 351

23.11 Product Class 11: Alk-1-ynylketenes
H. W. Moore ... 381

23.12 Product Class 12: Aryl- and Hetarylketenes
T. T. Tidwell ... 391

23.13 Product Class 13: Alkenylketenes
R. L. Danheiser, G. B. Dudley, and W. F. Austin 493

23.14 Product Class 14: Alkyl- and Cycloalkylketenes
T. T. Tidwell ... 569
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.15</td>
<td>Product Class 15: Bisketenes</td>
<td>T. T. Tidwell</td>
<td>679</td>
</tr>
<tr>
<td>23.16</td>
<td>Product Class 16: Sulfur, Selenium, and Tellurium Analogues of Ketenes</td>
<td>C. Spanka and E. Schaumann</td>
<td>735</td>
</tr>
<tr>
<td>23.17</td>
<td>Product Class 17: Ketenimines</td>
<td>H. Perst</td>
<td>781</td>
</tr>
<tr>
<td></td>
<td>Keyword Index</td>
<td></td>
<td>899</td>
</tr>
<tr>
<td></td>
<td>Author Index</td>
<td></td>
<td>1013</td>
</tr>
<tr>
<td></td>
<td>Abbreviations</td>
<td></td>
<td>1049</td>
</tr>
</tbody>
</table>
Table of Contents

Introduction
R. L. Danheiser

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1</td>
<td>Product Class 1: Ketene</td>
<td>15</td>
</tr>
<tr>
<td>23.1.1</td>
<td>Method 1: Ketene from Acetic Acid, Acid Anhydrides, and Esters</td>
<td>18</td>
</tr>
<tr>
<td>23.1.2</td>
<td>Method 2: Dehydrohalogenation of Acetyl Halides</td>
<td>19</td>
</tr>
<tr>
<td>23.1.2.1</td>
<td>Variation 1: Ionization of Acetyl Halides to Acylium Ions and Deprotonation</td>
<td>21</td>
</tr>
<tr>
<td>23.1.3</td>
<td>Method 3: Pyrolysis of Ketene Dimer</td>
<td>22</td>
</tr>
<tr>
<td>23.1.4</td>
<td>Method 4: Photolysis of Cyclobutanones and Thermolysis</td>
<td>22</td>
</tr>
<tr>
<td>23.1.5</td>
<td>Method 5: Dehalogenation of Haloacetyl Halides</td>
<td>23</td>
</tr>
<tr>
<td>23.1.6</td>
<td>Method 6: Pyrolysis of Acetone</td>
<td>24</td>
</tr>
<tr>
<td>23.1.7</td>
<td>Method 7: Wolff Rearrangement of Diazoacetaldehyde</td>
<td>24</td>
</tr>
<tr>
<td>23.1.8</td>
<td>Method 8: Elimination from Alkynyl Ethers</td>
<td>25</td>
</tr>
<tr>
<td>23.1.2</td>
<td>Applications of Product Class 1 in Organic Synthesis</td>
<td>26</td>
</tr>
<tr>
<td>23.1.2.1</td>
<td>Method 1: Nucleophilic Addition to Ketene</td>
<td>26</td>
</tr>
<tr>
<td>23.1.2.1.1</td>
<td>Variation 1: Enol Acetates from the Reaction of Ketene with Aldehydes and Ketones</td>
<td>28</td>
</tr>
<tr>
<td>23.1.2.2</td>
<td>Method 2: Electrophilic and Radical Additions to Ketene</td>
<td>29</td>
</tr>
<tr>
<td>23.1.2.3</td>
<td>Method 3: Dimerization by [2 + 2] Cycloaddition</td>
<td>32</td>
</tr>
<tr>
<td>23.1.2.4</td>
<td>Method 4: [2 + 2] Cycloaddition of Ketene with Alkenes and Dienes</td>
<td>32</td>
</tr>
<tr>
<td>23.1.2.5</td>
<td>Method 5: [2 + 2] Cycloaddition of Ketene with Alkynes</td>
<td>34</td>
</tr>
<tr>
<td>23.1.2.6</td>
<td>Method 6: [2 + 2] Cycloaddition of Ketene with Imines</td>
<td>35</td>
</tr>
<tr>
<td>23.1.2.7</td>
<td>Method 7: [2 + 2] and [4 + 2] Cycloaddition of Ketene with Carbonyl Groups</td>
<td>36</td>
</tr>
<tr>
<td>23.1.2.7.1</td>
<td>Variation 1: β-Hydroxy Esters by Titanium Alkoxide Induced Addition of Carbonyl Compounds to Ketene</td>
<td>42</td>
</tr>
<tr>
<td>23.1.2.8</td>
<td>Method 8: [2 + 2] Cycloaddition of Ketene with Azobenzenes</td>
<td>42</td>
</tr>
<tr>
<td>23.1.2.9</td>
<td>Method 9: [2 + 1] Cycloaddition of Ketene with Sulfur Dioxide</td>
<td>43</td>
</tr>
<tr>
<td>23.1.2.10</td>
<td>Method 10: [2 + 1] Cycloaddition of Ketene with Diazomethane</td>
<td>44</td>
</tr>
<tr>
<td>23.1.2.11</td>
<td>Method 11: [4 + 2] Cycloaddition of Ketene with Heterodiienes</td>
<td>44</td>
</tr>
<tr>
<td>23.1.2.12</td>
<td>Method 12: Wittig Reaction of Ketene with a Chiral Phosphorane</td>
<td>45</td>
</tr>
<tr>
<td>23.1.2.13</td>
<td>Method 13: Dimetal Ketenides from Ketene and Metal Salts</td>
<td>45</td>
</tr>
<tr>
<td>23.1.2.14</td>
<td>Method 14: Decarbonylation of Ketene</td>
<td>46</td>
</tr>
</tbody>
</table>
23.2 Product Class 2: Silyketenes
D. M. George and R. L. Danheiser

23.2.1 Product Subclass 1: Silyl-Substituted Aldoketenes

23.2.1.1 Synthesis of Product Subclass 1

23.2.1.1 Method 1: Dehydrohalogenation of Acyl Halides

23.2.1.1 Method 2: Dehydration of Silylacetacids

23.2.1.1 Method 3: Thermolysis of 1-Alkoxy-2-silylacetylenes

23.2.1.1 Method 4: 1,3-Silyl Shift of (Trimethylsiloxy)acetylene

23.2.1.1 Method 5: Thermolysis of Silylacetic Anhydrides

23.2.1.2 Applications of Product Subclass 1 in Organic Synthesis

23.2.1.2 Method 1: [2 + 2] Cycloadditions Leading to β-Lactones

23.2.1.2 Method 2: [2 + 2] Cycloadditions Leading to β-Lactams

23.2.1.2 Method 3: [2 + 2] Cycloadditions Leading to Cyclobutanones

23.2.1.2 Method 4: Formation of Allenes via Wittig Reaction with Phosphorus Ylides

23.2.1.2 Method 5: Formation of Ketenimines via Reaction with Iminophosphoranes

23.2.1.2 Method 6: Formation of Cyclopropanones and Cyclobutanones via Reaction with Diazocompounds

23.2.1.2 Method 7: Formation of α-Silyl Ketones

23.2.1.2 Method 8: Formation of 2H-1-Benzopyran-2-ones from Phenols

23.2.1.2 Method 9: (Trimethylsilyl)acetylation of Alcohols and Amines

23.2.2 Product Subclass 2: (Silyl)(trialkylmetal)ketenes

23.2.2.1 Synthesis of Product Subclass 2

23.2.2.1 Method 1: Elimination from (Silyl)(trialkylmetal)acetates

23.2.2.1 Method 2: Trapping of Lithium 2-Lithioacetylen-1-olate Generated from 2-Phenyl-2,3-dihydrofurans or 3-Phenylisoxazoles

23.2.2.1 Method 3: Carbonylation and Trapping of Lithiated Diazotrimethylsilylmethane

23.2.2.1 Method 4: Lithiation of (Trialkylsilyl)ketenes and Trapping with Chlorosilanes

23.2.2.1 Method 5: Synthesis of Bis(silyl)ketenes from Other Bis(silyl)ketenes via Potassium 2-Silylacetylen-1-olates

23.2.3 Product Subclass 3: (Aryl)- and (Alkyl)silylketenes

23.2.3.1 Synthesis of Product Subclass 3

23.2.3.1 Method 1: 1,3-Silyl Shift of 1-(Siloxy)alk-1ynes

23.2.3.1 Method 2: Wolff Rearrangement of α-Diazo-α-silyl Ketones

23.2.3.1 Variation 1: By Thermolysis

23.2.3.1 Variation 2: By Photolysis

23.2.3.1 Variation 3: By Metal Catalysis

23.2.3.2 Applications of Product Subclass 3 in Organic Synthesis

23.2.3.2 Method 1: [2 + 2] Cycloadditions Leading to β-Lactones
23.2.3.2.2 Method 2: [4 + 1] Annulation Leading to 1,3-Dihydro-2H-inden-2-ones

23.2.4 Product Subclass 4: Silyl(vinyl)ketenes

23.2.4.1 Synthesis of Product Subclass 4

23.2.4.1.1 Method 1: Dehydrohalogenation of α-Silyl-α,β-unsaturated Acid Chlorides

23.2.4.1.2 Method 2: Wolff Rearrangement of α-Diazo-α-silyl α’,β'-Unsaturated Ketones

23.2.4.1.3 Method 3: Electrocyclic Ring Opening of 2-Silylcyclobut-2-enones

23.2.4.1.4 Method 4: Reaction of Bis(silyl)acetylenes with Chromium–Carbene Complexes

23.2.4.2 Applications of Product Subclass 4 in Organic Synthesis

23.2.4.2.1 Method 1: Formation of Cyclohexenones and Phenols by [4 + 2] Cycloadditions

23.2.4.2.2 Method 2: Formation of 5,6-Dihydro-2H-pyran-2-ones and 5,6-Dihydropyridin-2(1H)-ones by [4 + 2] Cycloadditions

23.2.4.2.3 Method 3: Formation of Cyclopent-2-en-1-ones by [4 + 1] Annulation

23.2.5 Product Subclass 5: Miscellaneous Silylketenes

23.2.5.1 Synthesis of Product Subclass 5

23.2.5.1.1 Method 1: Synthesis of Bromo(trialkylsilyl)ketenes by Dehydrohalogenation

23.2.5.1.2 Method 2: Synthesis of Alkoxy(triarylsilyl)ketenes from Pentacarbonyl Complexes

23.2.5.1.3 Methods 3: Miscellaneous Reactions

23.3 Product Class 3: Halogen-Substituted Ketenes

23.3.1 Product Subclass 1: Fluoro- and Difluoroketenes

23.3.1.1 Synthesis of Product Subclass 1

23.3.1.1.1 Method 1: Fluoroketene by Pyrolysis of Fluoroacetic Anhydride

23.3.1.1.2 Method 2: Fluoroketene by Dehydrochlorination of Fluoroacetyl Chloride

23.3.1.1.3 Method 3: Difluoroketene from 1,1,2-Trifluoro-2-(trifluoromethoxy)ethene

23.3.1.1.4 Method 4: Difluoroketene by Photolysis of Perfluorocyclobutanone

23.3.1.1.5 Method 5: Difluoroketene by Dehalogenation of Bromo(difluoro)acetyl Chloride with Zinc

23.3.1.1.6 Method 6: Acyl(fluro)ketenes by Thermolysis of α-Fluorodioxinones

23.3.1.1.7 Method 7: Fluoro(pentafluoroethyl)ketene by Fluoride-Induced Dephosphorylation

23.3.1.1.8 Method 8: Difluoroketene by Photoisomerization/Oxygenation of Difluoroacetylene

23.3.1.1.9 Method 9: Fluoro(1,2,3,4,4-pentafluorobuta-1,3-dienyl)ketene from Perfluorocyclohexa-2,4-dienone

23.3.1.2 Applications of Product Subclass 1 in Organic Synthesis
23.3.1.2.1 Method 1: Cyclobutanones by \([2 + 2]\) Cycloaddition of Fluoroketenes with Alkenes .. 111

23.3.1.2.2 Method 2: \(\beta\)-Lactams by \([2 + 2]\) Cycloaddition of Fluoroketenes with Imines 113

23.3.2 Product Class 2: Chloro- and Dichloroketenes 113

23.3.2.1 Synthesis of Product Subclass 2 .. 114

23.3.2.1.1 Method 1: Alkyl(chloro)ketenes by Dehydration of Carboxylic Acids 115

23.3.2.1.2 Method 2: Chloroketenes by Dehydrochlorination of Chloroalkanoyl Halides 116

23.3.2.1.2.1 Variation 1: Chloroketene by Pyrolytic Dehydrochlorination of Chloroacetyl Chloride 118

23.3.2.1.2.2 Variation 2: Substituted Chloroketenes by Dehydrochlorination of 2-Chloroacetyl Chlorides .. 119

23.3.2.1.3 Method 3: Dichloroketene by Photolysis of a Cyclic Carbonate 119

23.3.2.1.4 Method 4: Dichloroketene by Dehalogenation of Trichloroacetyl Halides with Zinc 119

23.3.2.1.4.1 Variation 1: Chloroketenes by Dechlorination of 2-Chloroacetyl Chlorides with Diphenyl(trimethylsilyl)phosphine 124

23.3.2.1.5 Method 5: Chloro(cyano)ketene by Thermolysis of 4-Azido-3-chloro-5-methoxyfuran-2(5H)-one 125

23.3.2.2 Applications of Product Subclass 2 in Organic Synthesis .. 126

23.3.2.2.1 Method 1: Cyclobutanones by \([2 + 2]\) Cycloadditions of Chloroketenes with Alkenes and Dienes 126

23.3.2.2.2 Method 2: Methylene cyclobutanones by \([2 + 2]\) Cycloaddition of Chloroketenes with Alkenes 137

23.3.2.2.3 Method 3: Cyclobutenones by \([2 + 2]\) Cycloaddition of Chloroketenes with Alkynes 138

23.3.2.2.4 Method 4: \(\beta\)-Lactams by \([2 + 2]\) Cycloaddition of Chloroketenes with Imines 140

23.3.2.2.4.1 Variation 1: \(\beta\) - and \(\delta\)-Lactams by \([2 + 2]\)- and \([4 + 2]\)-Cycloaddition Reactions of Chloroketenes with Vinylic Imines 141

23.3.2.2.4.2 Variation 2: \(\gamma\)-Lactams and \(\gamma\)-Lactones by \([3 + 2]\) Cycloaddition of Dichloroketene with N-Vinylsulfinimides 143

23.3.2.2.5 Method 5: \(\beta\)-Lactones by \([2 + 2]\) Cycloaddition of Chloroketenes with Carbonyl Compounds 146

23.3.2.2.6 Method 6: \(\gamma\)-Lactones from Dichloroketene with Vinyl Sulfoxides 148

23.3.2.2.6.1 Variation 1: \(\gamma\)-Lactones from Dichloroketene with Chiral Vinyl Sulfoxides 149

23.3.2.2.7 Method 7: Thioesters by Ketene-Claisen Reaction of Dichloroketene with Allyl Sulfoxides 150

23.3.2.2.8 Method 8: A Macrocyclic Lactone by the Ketene-Claisen Reaction of Dichloroketene with a Vinyltetrahydropyran 151

23.3.2.2.9 Method 9: \(\gamma\)-Lactones and Lactams by the Reactions of Dichloroketene with Three-Membered Heterocycles 152

23.3.2.2.9.1 Variation 1: A Lactam by the Reaction of Dichloroketene with a Vinylaziridine 153
23.3.2.9.2 Variation 2: Ketene Acetals from Cycloaddition of Chloro(cyano)ketene with 2-Phenylloxirane .. 154

23.3.3 Product Subclass 3: Bromo- and Iodoketenes ... 154
23.3.3.1 Synthesis of Product Subclass 3 .. 154
23.3.3.1.1 Method 1: Bromo- and Iodoketenes by Dehydrochlorination of Haloacetyl Chlorides .. 154
23.3.3.1.1.1 Variation 1: Bromoketene by Dehydrochlorination of Bromoacetyl Chloride with a Strong Stoichiometric Base and a Shuttle Base 156
23.3.3.1.2 Method 2: Bromoketene by Pyrolysis of 2-Bromocyclobutanone 157
23.3.3.1.3 Method 3: Bromoketenes by Dehalogenation of Haloacyl Halides 157
23.3.3.1.3.1 Variation 1: Dibromoketene by Triphenylphosphine-Induced Elimination from Trimethylsilyl Tribromoacetate 158
23.3.3.1.4 Method 4: An Aryl(bromo)ketene from a 3-Aryloxirane-2,2-dicarbonitrile 158

23.3.3.2 Applications of Product Subclass 3 in Organic Synthesis 159
23.3.3.2.1 Method 1: Cyclobutanones by [2 + 2] Cycloaddition of Bromoketenes with Alkenes or Dienes ... 159
23.3.3.2.1.1 Variation 1: Cyclohex-2-en-1-ones by [4 + 2] Cycloaddition of Bromo(vinyl)ketenes with Enamines 160
23.3.3.2.2 Method 2: β- and δ-Lactams by Cycloaddition of Bromoketenes with Imines .. 161
23.3.3.2.3 Method 3: [3 + 2] Cycloaddition of Aryl(bromo)ketenes with Pyridiniumolate Betaines .. 161
23.3.3.2.4 Method 4: Chiral Aryl(halo)acetates by Stereoselective Addition of Chiral Alcohols to Bromo- and Iodoketenes 162
23.3.3.2.5 Method 5: A Chiral Bromo(chloro)acetate by Stereoselective Chlorination of Bromoketene .. 163
23.3.3.2.6 Method 6: Mixed Dimerization of Bromo[(tert-butyl)ketenes with tert-Butylketene .. 163

23.4 Product Class 4: Oxygen-Substituted Ketenes

C. Palomo, M. Oiarbide, and J. M. Aizpurua

23.4.1 Synthesis of Product Class 4 .. 169
23.4.1.1 Method 1: Elimination Reactions of Carboxylic Acids or Their Derivatives 170
23.4.1.1.1 Variation 1: Dehydration of Carboxylic Acids by Activating Reagents 170
23.4.1.1.2 Variation 2: Dehydrohalogenation of Carboxylic Acid Chlorides with Tertiary Amines in Solution ... 172
23.4.1.3 Variation 3: Dehydrohalogenation of Carboxylic Acid Chlorides with Solid-Supported Bases .. 174
23.4.1.2 Method 2: Photolysis of Metal–Carbene Complexes ... 177
23.4.1.3 Method 3: Dirhodium Tetraacetate Catalyzed Decomposition of α-Diazo Anhydrides ... 179
23.4.1.4 Methods 4: Miscellaneous Methods .. 181
23.4.2 Applications of Product Class 4 in Organic Synthesis ... 181
23.4.2.1 Method 1: \([2 + 2]\)-Cycloaddition Reactions Leading to Cyclobutanones, \(\beta\)-Lactones, and \(\beta\)-Lactams .. 181

23.4.2.1.1 Variation 1: With Alkenes, Enol Ethers, or Enecarbamates 181

23.4.2.1.2 Variation 2: With Aldehydes or Ketones ... 187

23.4.2.1.3 Variation 3: With Imines .. 189

23.4.2.2 Method 2: Lewis Acid Catalyzed \([3,3]\)-Sigmatropic Bellus–Claisen Rearrangements .. 194

23.5 Product Class 5: Sulfur- and Selenium-Substituted Ketenes
C. Palomo, J. M. Aizpurua, I. Ganboa, and E. Gómez-Bengoa

23.5 Product Class 5: Sulfur- and Selenium-Substituted Ketenes .. 199

23.5.1 Product Subclass 1: Sulfur-Substituted Ketenes ... 199

23.5.1.1 Synthesis of Product Subclass 1 .. 200

23.5.1.1.1 Method 1: Elimination Reactions of Carboxylic Acids and Their Derivatives 200

23.5.1.1.1.1 Variation 1: Dehydration of Carboxylic Acids .. 200

23.5.1.1.1.2 Variation 2: Dehydrohalogenation of Acyl Halides ... 201

23.5.1.1.2 Method 2: Wolff Rearrangement of Diazocompounds .. 203

23.5.1.1.2.1 Variation 1: Photochemical Wolff Rearrangement .. 203

23.5.1.1.2.2 Variation 2: Thermal Wolff Rearrangement ... 204

23.5.1.1.2.3 Variation 3: Metal-Catalyzed Wolff Rearrangement ... 205

23.5.1.1.3 Method 3: Photolysis of Metal–Carbene Complexes 205

23.5.1.1.4 Method 4: Fragmentation of Cyclobutene-1,2-diones ... 206

23.5.1.1.5 Methods 5: Miscellaneous Preparations ... 207

23.5.1.2 Applications of Product Subclass 1 in Organic Synthesis .. 208

23.5.1.2.1 Method 1: \([2 + 2]\)-Cycloaddition Reactions ... 208

23.5.1.2.1.1 Variation 1: Reaction with Alkenes and Alkynes Leading to Cyclobutanones and Cyclobutenones .. 208

23.5.1.2.1.2 Variation 2: Reaction with Imines Leading to \(\beta\)-Lactams .. 212

23.5.1.2.2 Method 2: Formation of Allenes by Wittig Alkenation ... 214

23.5.2 Product Subclass 2: Selenium-Substituted Ketenes .. 215

23.5.2.1 Synthesis of Product Subclass 2 ... 215

23.5.2.1.1 Method 1: Dehydrohalogenation of Acyl Chlorides .. 215

23.5.2.1.2 Method 2: Reactions of Silver Ketenide ... 217

23.5.2.2 Applications of Product Subclass 2 in Organic Synthesis ... 217

23.5.2.2.1 Method 1: \([2 + 2]\)-Cycloaddition Reactions Leading to \(\beta\)-Lactams 217

23.6 Product Class 6: Nitrogen- and Phosphorus-Substituted Ketenes
C. Palomo and J. M. Aizpurua

23.6 Product Class 6: Nitrogen- and Phosphorus-Substituted Ketenes 221

23.6.1 Product Subclass 1: Nitrogen-Substituted Ketenes ... 221

23.6.1.1 Synthesis of Product Subclass 1 .. 222
Method 1: Elimination Reactions of α-Amino Acids or Their Derivatives
Method 2: Photolysis of Metal–Carbene Complexes
Applications of Product Subclass 1 in Organic Synthesis
Method 1: Addition of Nitrogen- or Oxygen-Nucleophiles
Method 2: Cycloaddition Reactions with Alkenes Leading to Cyclobutanones
Method 3: Cycloaddition Reactions with Imines or Hydrazones Leading to β-Lactams
Method 4: Lewis Acid Catalyzed Bellus–Claisen Rearrangement
Product Subclass 2: Phosphorus-Substituted Ketenes
Synthesis of Product Subclass 2
Method 1: Elimination Reactions of α-Phosphorylcarboxylic Acid Derivatives
Method 2: Wolff Rearrangement of α-Diazo-β-oxophosphonates
Method 3: Dehydroalkoxylation of α-Triarylphosphoranylidene Esters
Method 4: Thermolysis of Phosphinoethynyl Ethers
Product Class 7: Alkylideneketenes
Product Subclass 1: Substituted Methyleneketenes
Synthesis of Product Subclass 1
Method 1: Elimination from Carboxylic Acid Derivatives
Method 2: Cycloreversion Reactions
Method 3: Thermolysis of Alkylidene Derivatives of Meldrum’s Acid
Method 4: Dehalogenation of 2-Bromoacryloyl Chlorides
Method 5: Alkenation of Carbonyl Compounds with Phosphorylideneketenes
Applications of Product Subclass 1 in Organic Synthesis
Method 1: [2 + 2] Cycloadditions Leading to Cyclobutane-1,3-diones or α-Alkylidene-Substituted β-Lactones
Method 2: Generation of Vinylidenes by Thermolysis or Photolysis
Method 3: Rearrangements Triggering Cyclization Reactions
Product Subclass 2: Carbon Suboxide
Synthesis of Product Subclass 2
Method 1: Elimination from Malonic Acid Derivatives
Method 2: Thermolysis of O,O-Diacetyltartaric Anhydride
Method 3: Dehalogenation of Dibromomalonyl Chloride
Applications of Product Subclass 2 in Organic Synthesis
Method 1: Reaction with Nucleophiles Leading to Malonic Acid Derivatives
Method 2: Generation of Oxovinylidene by Photolysis
Product Class 8: Cyanoketenes

H. W. Moore

<table>
<thead>
<tr>
<th>23.8</th>
<th>Product Class 8: Cyanoketenes</th>
<th>259</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.8</td>
<td>Synthesis of Product Class 8</td>
<td>259</td>
</tr>
<tr>
<td>23.8.1 Method 1:</td>
<td>Synthesis from 3-Azidocyclobut-3-ene-1,2-diones</td>
<td>260</td>
</tr>
<tr>
<td>23.8.2 Method 2:</td>
<td>Synthesis from 2,5- and 2,6-Diazidobenzo-1,4-quinones</td>
<td>261</td>
</tr>
<tr>
<td>23.8.3 Method 3:</td>
<td>Synthesis from 4-Azido-3-halo-5-methoxyfuran-2(5H)-ones</td>
<td>263</td>
</tr>
<tr>
<td>23.8.4 Method 4:</td>
<td>Synthesis of Cyan(trimethylsiloxy)ketene via a Retro-Diels–Alder Reaction</td>
<td>266</td>
</tr>
<tr>
<td>23.8.5 Method 5:</td>
<td>Synthesis of the Parent Cyanoketene</td>
<td>267</td>
</tr>
</tbody>
</table>

Product Class 9: Acylketenes

G. Kollenz and S. Ebner

<table>
<thead>
<tr>
<th>23.9</th>
<th>Product Class 9: Acylketenes</th>
<th>271</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.9.1 Product Subclass 1: Monoalkanoylketenes and Formylketenes</td>
<td>272</td>
<td></td>
</tr>
<tr>
<td>23.9.1.1 Synthesis of Product Subclass 1</td>
<td>272</td>
<td></td>
</tr>
<tr>
<td>23.9.1.1.1 Method 1:</td>
<td>Ruthenium(VIII) Oxide Oxidation of an Acyllallene</td>
<td>272</td>
</tr>
<tr>
<td>23.9.1.1.2 Method 2:</td>
<td>Dehydrochlorination of Acid Chlorides</td>
<td>272</td>
</tr>
<tr>
<td>23.9.1.1.3 Method 3:</td>
<td>Flash-Vacuum Pyrolysis</td>
<td>273</td>
</tr>
<tr>
<td>23.9.1.1.3.1 Variation 1:</td>
<td>Of β-Oxo Esters</td>
<td>273</td>
</tr>
<tr>
<td>23.9.1.1.3.2 Variation 2:</td>
<td>Of 4H-1,3-Dioxin-4-ones and a 4H-1,3-Oxazin-4-one</td>
<td>273</td>
</tr>
<tr>
<td>23.9.1.1.3.3 Variation 3:</td>
<td>Of Furan-2,3-diones</td>
<td>275</td>
</tr>
<tr>
<td>23.9.1.1.4 Method 4:</td>
<td>Thermolysis Reactions</td>
<td>276</td>
</tr>
<tr>
<td>23.9.1.1.4.1 Variation 1:</td>
<td>Of β-Oxo Esters</td>
<td>276</td>
</tr>
<tr>
<td>23.9.1.1.4.2 Variation 2:</td>
<td>Of 4H-1,3-Dioxin-4-ones</td>
<td>276</td>
</tr>
<tr>
<td>23.9.1.1.4.3 Variation 3:</td>
<td>Of 5-Acyl-2,2-dimethyl-1,3-dioxane-4,6-diones</td>
<td>280</td>
</tr>
<tr>
<td>23.9.1.1.4.4 Variation 4:</td>
<td>Of 4-Ethoxbut-3-yn-2-one</td>
<td>281</td>
</tr>
<tr>
<td>23.9.1.1.4.5 Variation 5:</td>
<td>Of 2-Diazo-1,3-dicarbonyl Compounds</td>
<td>281</td>
</tr>
<tr>
<td>23.9.1.1.5 Method 5:</td>
<td>Photolysis of 2-Diazo-1,3-dicarbonyl Compounds</td>
<td>281</td>
</tr>
<tr>
<td>23.9.1.1.6 Method 6:</td>
<td>[4 + 2] Dimerization of Dipivaloylketene</td>
<td>282</td>
</tr>
<tr>
<td>23.9.1.2 Applications of Product Subclass 1 in Organic Synthesis</td>
<td>283</td>
<td></td>
</tr>
<tr>
<td>23.9.1.2.1 Method 1:</td>
<td>Cycloaddition Reactions</td>
<td>283</td>
</tr>
<tr>
<td>23.9.1.2.2 Method 2:</td>
<td>Addition of Nucleophiles</td>
<td>284</td>
</tr>
<tr>
<td>23.9.2 Product Subclass 2: α-(Oxomethylene)cycloalkanones</td>
<td>285</td>
<td></td>
</tr>
<tr>
<td>23.9.2.1 Synthesis of Product Subclass 2</td>
<td>285</td>
<td></td>
</tr>
<tr>
<td>23.9.2.1.1 Method 1:</td>
<td>Dehydrochlorination of Acid Chlorides</td>
<td>285</td>
</tr>
<tr>
<td>23.9.2.1.2 Method 2:</td>
<td>Flash-Vacuum Pyrolysis of Cyclic β-Oxo Esters</td>
<td>286</td>
</tr>
<tr>
<td>23.9.2.1.3 Method 3:</td>
<td>Thermolysis Reactions</td>
<td>286</td>
</tr>
<tr>
<td>23.9.2.1.3.1 Variation 1:</td>
<td>Of a Fused 4H-1,3-Dioxin-4-one</td>
<td>287</td>
</tr>
<tr>
<td>23.9.2.1.3.2 Variation 2:</td>
<td>Of Cyclic 2-Diazo-1,3-diketones</td>
<td>288</td>
</tr>
<tr>
<td>23.9.2.1.4 Method 4:</td>
<td>Photolysis of Cyclic 2-Diazo-1,3-diketones</td>
<td>290</td>
</tr>
</tbody>
</table>
23.9.3 Product Subclass 3: α-(Oxomethylene)cycloalkenones 291
23.9.3.1 Synthesis of Product Subclass 3 .. 291
23.9.3.1.1 Method 1: Thermolysis Reactions ... 291
23.9.3.1.1.1 Variation 1: Of Salicylic Acid Derivatives 291
23.9.3.1.1.2 Variation 2: Of Fused Furan-2,3-diones 292
23.9.3.1.1.3 Variation 3: Of 2-Diazo-1H-indene-1,3(2H)-dione 293
23.9.3.1.2 Method 2: Photolysis Reactions ... 293
23.9.3.1.2.1 Variation 1: Of 2-Phenyl-4H-1,3-benzodioxin-4-one 293
23.9.3.1.2.2 Variation 2: Of 2,3-Benzodioxin-1,4-dione 293
23.9.3.1.2.3 Variation 3: Of Fused 2-Diaz0-1,3-diketones 294
23.9.3.1.3 Method 3: Addition of Alkynes to Carbon Suboxide 295
23.9.4 Product Subclass 4: α-(Oxomethylene)heterocycloalkanones 296
23.9.4.1 Synthesis of Product Subclass 4 ... 296
23.9.4.1.1 Method 1: Thermolysis of a Furo[3,4-d]-1,3-dioxinone 296
23.9.4.1.2 Method 2: Photolysis Reactions ... 297
23.9.4.1.2.1 Variation 1: Of 5-Diazo-2,2-dimethyl-1,3-dioxane-4,6-dione 297
23.9.4.1.2.2 Variation 2: Of 3-Diazo-1-methylquinoline-2,4(1H,3H)-dione 298
23.9.5 Product Subclass 5: DialkanoylketenEs .. 299
23.9.5.1 Synthesis of Product Subclass 5 ... 299
23.9.5.1.1 Method 1: Flash-Vacuum Pyrolysis of 5-tert-Butyl-4-pivaloylfuran-2,3-dione ... 299
23.9.5.2 Applications of Product Subclass 5 in Organic Synthesis 300
23.9.5.2.1 Method 1: Cycloaddition Reactions 300
23.9.5.2.2 Method 2: Addition of Nucleophiles 301
23.9.6 Product Subclass 6: MonoaroylketenEs .. 302
23.9.6.1 Synthesis of Product Subclass 6 ... 302
23.9.6.1.1 Method 1: Thermolysis Reactions 302
23.9.6.1.1.1 Variation 1: Of β-Oxo Esters ... 302
23.9.6.1.1.2 Variation 2: Of 4H-1,3-Dioxin-4-ones and 1,3-Dioxane-4,6-diones 302
23.9.6.1.1.3 Variation 3: Of Furan-2,3-diones 303
23.9.6.1.1.4 Variation 4: Of 2-Diaz0-1,3-diketones 305
23.9.6.1.2 Method 2: Photolysis Reactions .. 310
23.9.6.1.2.1 Variation 1: Of 5-Phenylfuran-2,3-dione 310
23.9.6.1.2.2 Variation 2: Of 2-Diazo-1,3-diketones 310
23.9.6.1.2.3 Variation 3: Of a Mesoionic Compound 311
23.9.7 Product Subclass 7: DiaroylketenEs .. 311
23.9.7.1 Synthesis of Product Subclass 7 ... 311
23.9.7.1.1 Method 1: Flash-Vacuum Pyrolysis of 4-Benzoyl-5-phenylfuran-2,3-dione 311
23.9.7.1.2 Method 2: Thermolysis of 4-Benzoyl-5-phenylfuran-2,3-dione 312
23.9.8 Product Subclass 8: CarboxyketenEs ... 314
23.9.8.1 Synthesis of Product Subclass 8 ... 314
23.9.8.1.1 Method 1: Flash-Vacuum Pyrolysis of 5-Alkylidene-2,2-dimethyl-1,3-dioxane-4,6-diones .. 314

23.9.9 Product Subclass 9: (Alkoxycarbonyl)ketenes .. 315

23.9.9.1 Synthesis of Product Subclass 9 .. 315

23.9.9.1.1 Method 1: Dehydrochlorination of Acid Chlorides .. 315

23.9.9.1.2 Method 2: Thermolysis Reactions .. 316

23.9.9.1.2.1 Variation 1: Of Acid Derivatives .. 316

23.9.9.1.2.2 Variation 2: Of 6-Methoxy-4H-1,3-dioxin-4-ones .. 317

23.9.9.1.2.3 Variation 3: Of a Pyrrolo[1,2-a]quinoxalinetrione .. 317

23.9.9.1.2.4 Variation 4: Of Dimethyl Diazomalonate .. 317

23.9.9.1.3 Method 3: Photolysis of 2-Diazo-1,3-dicarbonyl Compounds 318

23.9.9.2 Applications of Product Subclass 9 in Organic Synthesis 318

23.9.9.2.1 Method 1: Cycloaddition Reactions .. 318

23.9.9.2.2 Method 2: Addition of Nucleophiles .. 319

23.9.10 Product Subclass 10: Acyl(alkoxycarbonyl)ketenes 319

23.9.10.1 Synthesis of Product Subclass 10 .. 319

23.9.10.1.1 Method 1: Flash-Vacuum Pyrolysis of Methyl 2-tert-Butyl-4,5-dioxo-4,5-dihydrofuran-3-carboxylate .. 319

23.9.10.1.2 Method 2: Thermolysis Reactions .. 320

23.9.10.1.2.1 Variation 1: Of 4H-1,3-Dioxin-4-ones .. 320

23.9.10.1.2.2 Variation 2: Of Ethyl 4,5-Dioxo-2-phenyl-4,5-dihydrofuran-3-carboxylate .. 321

23.9.10.2 Applications of Product Subclass 10 in Organic Synthesis 322

23.9.10.2.1 Method 1: Cycloaddition Reactions .. 322

23.9.10.2.2 Method 2: Addition of Amines .. 323

23.9.11 Product Subclass 11: Bis(alkoxycarbonyl)ketenes .. 324

23.9.11.1 Synthesis of Product Subclass 11 .. 324

23.9.11.1.1 Method 1: Thermolysis of 2-Diazo-3-oxosuccinates .. 324

23.9.11.1.2 Method 2: Photolysis of 2-Diazo-1,3-dicarbonyl Compounds .. 324

23.9.11.1.3 Method 3: Reaction of Tetraethoxyallene with Phosgene .. 325

23.9.11.2 Applications of Product Subclass 11 in Organic Synthesis 325

23.9.11.2.1 Method 1: Preparation of Allenetetra carboxylates .. 325

23.9.11.2.2 Method 2: Cycloaddition Reactions .. 326

23.9.11.2.3 Method 3: Ring Transformations of Five-Membered Heterocycles .. 326

23.9.12 Product Subclass 12: (Chlorocarbonyl)ketenes .. 327

23.9.12.1 Synthesis of Product Subclass 12 .. 327

23.9.12.1.1 Method 1: Dehydrochlorination of Malonyl Chlorides .. 327

23.9.12.2 Applications of Product Subclass 12 in Organic Synthesis 329

23.9.12.2.1 Method 1: Cycloaddition Reactions .. 329

23.9.12.2.2 Method 2: Condensation Reactions .. 330

23.9.13 Product Subclass 13: Fluorinated Acylketenes .. 333

23.9.13.1 Synthesis of Product Subclass 13 .. 333
23.9.13.1.1 Method 1: Thermolysis Reactions 333
23.9.13.1.1 Variation 1: Of (Trifluoromethyl)malonic Acid Derivatives 333
23.9.13.1.2 Variation 2: Of Fluorinated 4H-1,3-Dioxin-4-ones 334
23.9.13.1.2 Method 2: Transformation of Fluorinated Alkenes and Alkynes 335
23.9.13.1.2 Variation 1: By Reaction with Sulfur Trioxide 335
23.9.13.1.2 Variation 2: With Lewis Acid Catalysis 336
23.9.13.1.3 Method 3: Photolysis of Methyl 2-Diazo-4,4,4-trifluoroacetooacetate 337
23.9.13.2 Applications of Product Subclass 13 in Organic Synthesis 337
23.9.13.2.1 Method 1: Cycloaddition Reactions 337
23.9.13.2.2 Method 2: Electrophilic Substitution Reactions 338
23.9.13.2.3 Method 3: Addition of Nucleophiles 339
23.9.14 Product Subclass 14: Acyl(phosphoryl)ketenes and Acyl(trialkylmetal)ketenes 341
23.9.14.1 Synthesis of Product Subclass 14 341
23.9.14.1.2 Method 2: Photolysis or Thermolysis of Methyl 2-Diazo-3-(diisopropoxyphosphoryl)-3-oxopropanoate 341
23.9.14.1.4 Method 4: Transformation of Functionalized Ethoxyacetylene 342

23.10 Product Class 10: Imidoylketenes

G. Kollenz

23.10 Product Class 10: Imidoylketenes 351
23.10.1 Product Subclass 1: N-Unsubstituted and N-Alkyl-Substituted Imidoylketenes 351
23.10.1.1 Synthesis of Product Subclass 1 351
23.10.1.1.1 Method 1: Pyrolysis Reactions 352
23.10.1.1.1 Variation 1: Flash-Vacuum Pyrolysis of Meldrum's Acid Derivatives 352
23.10.1.1.2 Variation 2: Flash-Vacuum Pyrolysis of Pyrrole-2,3-diones 353
23.10.1.1.3 Variation 3: Thermolysis of 3-Aminoacrylates 353
23.10.1.1.2 Method 2: Reaction of 1-Aminopyridinium Iodide with 2,3-Diphenylcycloprop-2-en-1-one 354
23.10.1.1.3 Method 3: Extrusion of Sulfur from Isothiazol-5(2H)-ones 355
23.10.2 Product Subclass 2: (N-Acylimidoyl)ketenes 356
23.10.2.1 Synthesis of Product Subclass 2 356
23.10.2.1.1 Method 1: Pyrolysis of 3-(Acamino)acrylates 356
23.10.2.1.2 Method 2: Reaction of Pyridinium Ylides with 2,3-Diphenylcycloprop-2-en-1-one 357
23.10.2.1.3 Method 3: Reaction of Di-tert-butoxyacetylene with Benzoyl Isocyanate 357
23.10.3 Product Subclass 3: (N-Arylimidoyl)ketenes 358
23.10.3.1 Synthesis of Product Subclass 3 358
23.10.3.1.1 Method 1: Thermolysis Reactions 359
<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.10.3.1.1</td>
<td></td>
<td>Variation 1:</td>
<td>Flash-Vacuum Pyrolysis of Meldrum’s Acid Derivatives</td>
<td>359</td>
</tr>
<tr>
<td>23.10.3.1.2</td>
<td></td>
<td>Variation 2:</td>
<td>Pyrolysis of 1-Aryl-1H-pyrole-2,3-diones</td>
<td>360</td>
</tr>
<tr>
<td>23.10.3.1.3</td>
<td></td>
<td>Variation 3:</td>
<td>Flash-Vacuum Pyrolysis of 1-Aryl-1H-1,2,3-triazoles</td>
<td>362</td>
</tr>
<tr>
<td>23.10.3.1.4</td>
<td></td>
<td>Variation 4:</td>
<td>Thermolysis of N-Arylketenimines</td>
<td>363</td>
</tr>
<tr>
<td>23.10.3.1.5</td>
<td></td>
<td>Variation 5:</td>
<td>Thermolysis of Mesoionic Compounds</td>
<td>364</td>
</tr>
<tr>
<td>23.10.3.1.2</td>
<td></td>
<td>Method 2:</td>
<td>Extrusion of Sulfur from Isothiazol-5(2H)-ones</td>
<td>365</td>
</tr>
<tr>
<td>23.10.4</td>
<td></td>
<td>Product Subclass 4:</td>
<td>N-Hetaryl-Substituted Imidoylketenes</td>
<td>365</td>
</tr>
<tr>
<td>23.10.4.1</td>
<td></td>
<td>Method 1: Flash-Vacuum Pyrolysis of 1-(1H-Pyrazol-5-yl)-1H-1,2,3-triazoles</td>
<td>366</td>
<td></td>
</tr>
<tr>
<td>23.10.4.2</td>
<td></td>
<td>Method 2: Lithiation of Isoxazol-5(2H)-ones</td>
<td>366</td>
<td></td>
</tr>
<tr>
<td>23.10.5</td>
<td></td>
<td>Product Subclass 5:</td>
<td>Acyl(imidoyl)ketenes</td>
<td>367</td>
</tr>
<tr>
<td>23.10.5.1</td>
<td></td>
<td>Method 1: Thermolysis Reactions of Pyrrole-2,3-diones and Furan-2,3-diones</td>
<td>367</td>
<td></td>
</tr>
<tr>
<td>23.10.5.1.1</td>
<td></td>
<td>Variation 1:</td>
<td>In the Solid State</td>
<td>368</td>
</tr>
<tr>
<td>23.10.5.1.2</td>
<td></td>
<td>Variation 2:</td>
<td>In Solution</td>
<td>368</td>
</tr>
<tr>
<td>23.10.6</td>
<td></td>
<td>Product Subclass 6:</td>
<td>N-Unsubstituted 6-(Oxomethylene)cyclohexa-2,4-dien-1-imines</td>
<td>372</td>
</tr>
<tr>
<td>23.10.6.1</td>
<td></td>
<td>Method 1:</td>
<td>Photolysis Reactions of 1,2,3-Benzotriazin-4(3H)-ones</td>
<td>372</td>
</tr>
<tr>
<td>23.10.6.1.2</td>
<td></td>
<td>Method 2:</td>
<td>Reactions of 3,2,1-Benzoxathiazin-4(1H)-one 2-Oxide</td>
<td>373</td>
</tr>
<tr>
<td>23.10.7</td>
<td></td>
<td>Product Subclass 7:</td>
<td>N-Substituted 6-(Oxomethylene)cyclohexa-2,4-dien-1-imines</td>
<td>374</td>
</tr>
<tr>
<td>23.10.7.1</td>
<td></td>
<td>Method 1:</td>
<td>Photolysis Reactions of 1,2,3-Benzotriazin-4(3H)-ones</td>
<td>375</td>
</tr>
<tr>
<td>23.10.7.1.2</td>
<td></td>
<td>Method 2:</td>
<td>Thermolysis Reactions</td>
<td>376</td>
</tr>
<tr>
<td>23.10.7.1.2.1</td>
<td></td>
<td>Variation 1:</td>
<td>Of a 3,2,1-Benzoxathiazin-4(1H)-one 2-Oxide</td>
<td>376</td>
</tr>
<tr>
<td>23.10.7.1.2.2</td>
<td></td>
<td>Variation 2:</td>
<td>Of 2,1-Benzisothiazol-3(1H)-ones</td>
<td>377</td>
</tr>
<tr>
<td>23.10.7.1.2.3</td>
<td></td>
<td>Variation 3:</td>
<td>Of 1-Phenyl-1H-indole-2,3-dione</td>
<td>377</td>
</tr>
<tr>
<td>23.10.7.1.3</td>
<td></td>
<td>Method 3:</td>
<td>Ring Opening of 2,1-Benzisoxazol-1-ium Salts</td>
<td>377</td>
</tr>
<tr>
<td>23.11</td>
<td></td>
<td>Product Class 11:</td>
<td>Alk-1-ynylketenes</td>
<td>381</td>
</tr>
<tr>
<td>23.11</td>
<td></td>
<td>H. W. Moore</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.11</td>
<td></td>
<td>Product Class 11:</td>
<td>Alk-1-ynylketenes</td>
<td>381</td>
</tr>
<tr>
<td>23.11.1</td>
<td></td>
<td>Method 1:</td>
<td>Retro-Diels–Alder Reactions</td>
<td>381</td>
</tr>
<tr>
<td>23.11.1.1</td>
<td></td>
<td>Method 2:</td>
<td>Thermolysis of 1-Alkoxyalk-1-yynes</td>
<td>384</td>
</tr>
<tr>
<td>23.11.1.2</td>
<td></td>
<td>Method 3:</td>
<td>Alk-1-ynyl(cyano)ketenes from 2,5-Di(alk-1-ynyl)-3,6-diazidobenzo-1,4-quinones</td>
<td>385</td>
</tr>
<tr>
<td>23.11.1.4</td>
<td></td>
<td>Methods 4:</td>
<td>Additional Methods for the Generation of Alk-1-ynylketenes</td>
<td>389</td>
</tr>
</tbody>
</table>
Product Class 12: Aryl- and Hetarylketenes
T. T. Tidwell

Product Subclass 1: Monoarylketenes

Method 1: Monoarylketenes by Dehydration of Arylacetic Acids
Method 2: Monoarylketenes from Arylacetic Anhydrides
Variation 1: Monoarylketenes by Decarboxylation of Arylmalonic Acids
Method 3: Monoarylketenes from Arylacetic Esters
Method 4: Monoarylketenes by Dehydrohalogenation of Arylacetyl Chlorides
Variation 1: Monoarylketenes by Dehydrochlorination Using a Shuttle Procedure with a Kinetic Base and a Stoichiometric Base
Method 5: Monoarylketenes by Dehalogenation of Arylhaloacetyl Halides
Method 6: Monoarylketenes by Wolff Rearrangement of α-Diazoketones
Variation 1: Monoarylketenes by Metal-Catalyzed Wolff Rearrangement
Variation 2: Monoarylketenes by Microwave and Ultrasound-Enhanced Wolff Rearrangement
Variation 3: Monoarylketenes by Photochemical Wolff Rearrangement
Variation 4: Phenylketene by Wolff-Type Rearrangement of a Sulfur Ylide
Method 7: Monoarylketenes from Ynols and Ynolates
Method 8: Monoarylketenes by Oxidation of Arylacetylenes
Variation 1: Monoarylketenes by Oxidation of Lithium Arylacetylides
Variation 2: Monoarylketenes by Ruthenium-Catalyzed Alkyne Oxygenation
Method 9: Monoarylketenes from Metal–Carbene Complexes

Applications of Product Subclass 1 in Organic Synthesis

Method 1: Esters and Amides by Addition of Nucleophiles to Monoarylketenes
Method 2: Ketones and Vinyl Ethers by Addition of Carbon Electrophiles
Method 3: N-Aroyloxyamines by Aminoxyl Radical Addition to Monoarylketenes
Method 4: Cyclobutanones by [2 + 2] Cycloaddition with Alkenes and Dienes
Method 5: Cyclobutenones by [2 + 2] Cycloaddition of Monoarylketenes with Alkynes
Method 6: β-Lactams by [2 + 2] Cycloaddition of Monoarylketenes with Imines
Variation 1: Pyrimidinones by [4 + 2] Cycloaddition of Monoarylketenes with 1,3-Diazabuta-1,3-dienes
Method 7: 2-Arylaceto Derivatives by [4 + 2] Cycloaddition of o-Chloranil with Ketene Enolates
Method 8: Carbene Formation by Decarbonylation of Monoarylketenes

Product Subclass 2: Alkyl(aryl)- and Aryl(vinyl)ketenes

Synthesis of Product Subclass 2
23.12.2.1 Method 1: Alkyl(aryl)ketenes by Elimination from 2-Arylalkanoate Esters 421
23.12.2.2 Method 2: Alkyl(aryl)ketenes by Dehydrohalogenation of 2-Arylalkanoyl Chlorides .. 423
23.12.2.3 Method 3: Alkyl(aryl)ketenes by Dehalogenation of 2-Aryl-2-haloalkanoyl Halides .. 423
23.12.2.4 Method 4: Alkyl(aryl)ketenes by Wolff Rearrangement of \(\alpha\)-Diazoketones .. 424
23.12.2.5 Method 5: Alkyl(aryl)ketenes by Decarboxylation of Malonic Acids 425
23.12.2.6 Method 6: Aryl(vinyl)ketenes by Cyclobutenone Ring Opening ... 426
23.12.2.7 Method 7: Aryl(vinyl)ketenes from Metal–Carbene Complexes ... 427
23.12.2.8 Method 8: Alkyl(aryl)ketenes by \([4 + 2]\) Cycloadditions of Cyclic Diazines 427
23.12.2.9 Applications of Product Subclass 2 in Organic Synthesis ... 428
23.12.2.10 Method 1: 2-Arylalkanoic Acid Derivatives by Stereoselective Esterification of Alkyl(aryl)ketenes 428
23.12.2.11 Variation 1: Chiral 2-Arylalkanoate Esters by Catalytic Stereoselective Addition of Methanol to Alkyl(aryl)ketenes .. 431
23.12.2.12 Variation 2: Chiral 2-Arylalkanoate Enol Esters by Catalytic Stereoselective Esterification of Alkyl(aryl)ketenes with Aldehydes ... 433
23.12.2.13 Variation 3: Chiral 2-Arylalkanamides by Stereoselective Amination of Alkyl(aryl)ketenes 434
23.12.2.14 Method 2: Ketones and Vinyl Esters and Ethers by Addition of Carbon Nucleophiles to Ethyl(phenyl)ketene .. 436
23.12.2.15 Method 3: Divinyl Ketone Formation by Iridium–Alkyne Complex Addition to Methyl(phenyl)ketene with Double C–H Activation ... 438
23.12.2.16 Method 4: Lactones and Cycloalkanones by Electrophilic Addition to Alkyl(aryl)ketenes .. 438
23.12.2.17 Method 5: Allenyl Ketones and Esters by Wittig-Type Reactions of Alkyl(aryl)ketenes ... 439
23.12.2.18 Method 6: Cyclobutanones by \([2 + 2]\) Cycloaddition of Methyl(phenyl)ketene with Alkenes and Dienes 440
23.12.2.19 Variation 1: Cyclobutanones by Intramolecular \([2 + 2]\) Cycloaddition of Aryl(pent-4-enyl)ketenes 441
23.12.2.20 Method 7: Naphthol Formation by Intramolecular Cyclization of an Alkyl(aryl)ketene with an Alkynyl Group 441
23.12.2.21 Method 8: \(\beta\)-Lactone Formation by Intramolecular Cycloaddition of an Alkyl(aryl)ketene with a Carbonyl Group 442
23.12.2.22 Method 9: Succinic Anhydrides by Oxidation of Alkyl(aryl)ketenes ... 442
23.12.2.23 Method 10: Aminoxyl Radical Substituted Polymers from Alkyl(aryl)ketenes .. 442

23.12 Product Subclass 3: Diarylketenes .. 443
23.12.3.1 Synthesis of Product Subclass 3 .. 444
23.12.3.1.1 Method 1: Diarylketenes by Dehydration of Diarylacetic Acids ... 444
23.12.3.1.2 Method 2: Diarylketenes by Dehydrochlorination of Diarylacetyl Chlorides ... 445
23.12.3.1.3 Method 3: Diarylketenes by Dehalogenation of Diarylhaloacetyl Halides ... 446
23.12.3.1.4 Method 4: Diaryketenes by Pyrolysis of Diarylketene Acetals

Diarylketenes by Pyrolysis of Diarylketene Acetals

- 448

23.12.3.1.5 Variation 1: Diaryketenes by Photochemical Wolff Rearrangement of \(\alpha\)-Diazoketones

Variation 1: Diaryketenes by Photochemical Wolff Rearrangement of \(\alpha\)-Diazoketones

- 449

23.12.3.1.6 Method 6: Diaryketenes by Oxidation of Diarylacetylenes

Method 6: Diaryketenes by Oxidation of Diarylacetylenes

- 449

23.12.3.2 Applications of Product Subclass 3 in Organic Synthesis

Applications of Product Subclass 3 in Organic Synthesis

- 450

23.12.3.2.1 Method 1: Diarylacetic Acid Derivatives by Nucleophilic Additions to Diaryketenes

Method 1: Diarylacetic Acid Derivatives by Nucleophilic Additions to Diaryketenes

- 450

23.12.3.2.2 Method 2: Alcohols, Aldehydes, Ketones, and Enol Derivatives by Addition of Hydrogen, Carbon, and Silicon Nucleophiles and Electrophiles to Diaryketenes

Method 2: Alcohols, Aldehydes, Ketones, and Enol Derivatives by Addition of Hydrogen, Carbon, and Silicon Nucleophiles and Electrophiles to Diaryketenes

- 450

23.12.3.2.2.1 Variation 1: Cyclopropanones by Diazoalkane Addition to Diaryketenes

Variation 1: Cyclopropanones by Diazoalkane Addition to Diaryketenes

- 453

23.12.3.2.3 Method 3: Aminoxy Esters from Aminoxyl Radical Addition to Diaryketenes

Method 3: Aminoxy Esters from Aminoxyl Radical Addition to Diaryketenes

- 454

23.12.3.2.4 Method 4: Allenes by Wittig Reactions

Method 4: Allenes by Wittig Reactions

- 454

23.12.3.2.4.1 Variation 1: Ketenimines by Aza-Wittig Reaction of Diaryketenes

Variation 1: Ketenimines by Aza-Wittig Reaction of Diaryketenes

- 455

23.12.3.2.5 Method 5: Cyclobutanones and Other Products by Cycloaddition Reactions with Alkenes and Dienes

Method 5: Cyclobutanones and Other Products by Cycloaddition Reactions with Alkenes and Dienes

- 455

23.12.3.2.6 Method 6: \([2 + 2]\) and \([2 + 2 + 2]\) Cycloadditions with Alk-1-ynyl Ethers

Method 6: \([2 + 2]\) and \([2 + 2 + 2]\) Cycloadditions with Alk-1-ynyl Ethers

- 459

23.12.3.2.7 Method 7: \(\beta\)-Lactams by \([2 + 2]\) Cycloaddition with Imines

Method 7: \(\beta\)-Lactams by \([2 + 2]\) Cycloaddition with Imines

- 459

23.12.3.2.7.1 Variation 1: \(\delta\)-Lactams by \([4 + 2]\) Cycloaddition with Chiral 2-Vinyl-4,5-dihydrothiazoles

Variation 1: \(\delta\)-Lactams by \([4 + 2]\) Cycloaddition with Chiral 2-Vinyl-4,5-dihydrothiazoles

- 461

23.12.3.2.8 Method 8: \(\beta\)-Lactones by \([2 + 2]\) Cycloaddition with Carboxyl Groups

Method 8: \(\beta\)-Lactones by \([2 + 2]\) Cycloaddition with Carboxyl Groups

- 462

23.12.3.2.8.1 Variation 1: \(\gamma\)-Lactone Formation by Diarylketene Reaction with Carboxyl Compounds

Variation 1: \(\gamma\)-Lactone Formation by Diarylketene Reaction with Carboxyl Compounds

- 463

23.12.3.2.9 Method 9: Polyesters by Oxidation of Diaryketenes

Method 9: Polyesters by Oxidation of Diaryketenes

- 463

23.12.3.2.10 Method 10: Diarylacetylenes by Deoxygenation of Diaryketenes

Method 10: Diarylacetylenes by Deoxygenation of Diaryketenes

- 464

23.12.3.2.11 Method 11: Carbenes and Carbocations by Decarbonylation of Diaryketenes

Method 11: Carbenes and Carbocations by Decarbonylation of Diaryketenes

- 464

23.12.4 Product Subclass 4: Fulvenones

Product Subclass 4: Fulvenones

- 465

23.12.4.1 Synthesis of Product Subclass 4

Synthesis of Product Subclass 4

- 466

23.12.4.1.1 Method 1: Fulvenones by Elimination from Esters

Method 1: Fulvenones by Elimination from Esters

- 466

23.12.4.1.2 Method 2: Fulvenones by Dehydrochlorination of Acyl Chlorides

Method 2: Fulvenones by Dehydrochlorination of Acyl Chlorides

- 466

23.12.4.1.3 Method 3: Fulvenones by Dehalogenation of 2-Haloacyl Halides

Method 3: Fulvenones by Dehalogenation of 2-Haloacyl Halides

- 467

23.12.4.1.4 Method 4: Fulvenones by Wolff Rearrangement of \(\alpha\)-Diazoketones

Method 4: Fulvenones by Wolff Rearrangement of \(\alpha\)-Diazoketones

- 468

23.12.4.1.4.1 Variation 1: Azafulvenones by Wolff Rearrangement and Other Routes

Variation 1: Azafulvenones by Wolff Rearrangement and Other Routes

- 470

23.12.4.1.4.2 Variation 2: Pentafulvenone by Photochemical Wolff-like Rearrangement of 2-Halophenols

Variation 2: Pentafulvenone by Photochemical Wolff-like Rearrangement of 2-Halophenols

- 471

23.12.4.2 Applications of Product Subclass 4 in Organic Synthesis

Applications of Product Subclass 4 in Organic Synthesis

- 472

23.12.4.2.1 Method 1: Pyridinium Zwitterions from Pentafulvenones

Method 1: Pyridinium Zwitterions from Pentafulvenones

- 472

23.12.4.2.2 Method 2: Cyclobutanones by \([2 + 2]\) Cycloaddition with Alkenes and Dienes

Method 2: Cyclobutanones by \([2 + 2]\) Cycloaddition with Alkenes and Dienes

- 472

23.12.5 Product Subclass 5: Hetarylketenes

Product Subclass 5: Hetarylketenes

- 473

23.12.5.1 Synthesis of Product Subclass 5

Synthesis of Product Subclass 5

- 473

23.12.5.1.1 Method 1: Hetarylketenes by Ester Elimination of Hetarylacetates

Method 1: Hetarylketenes by Ester Elimination of Hetarylacetates

- 473
Method 2: Hetarylketenes by Dehydrochlorination of Hetarylacetyl Chlorides

Variation 1: Hetarylketenes by Dehydrochlorination Using a Shuttle Procedure with a Kinetic Base, and a Stoichiometric Base

Method 3: Hetarylketenes by Thermal Decarbonylation of Furan-2,3-diones

Method 4: Hetarylketenes by Wolff Rearrangement of α-Diazo Ketones

Variation 1: Hetarylketenes by Rhodium-Catalyzed Wolff Rearrangement of α-Diazo Ketones

Variation 2: Hetarylketenes by Wolff Rearrangement and [2 + 2] Cycloaddition with Alkynes

Variation 3: Hetarylketenes by Wolff-like Rearrangements of Triazoles and Other Substrates

Method 5: Hetarylketenes by Carbene Carbonylation

Method 6: Hetarylketenes from Chromium–Carbene Complexes

Applications of Product Subclass 5 in Organic Synthesis

Method 1: Esters and Amides by Addition of Nucleophiles to Hetarylketenes

Method 2: Imidazo[4,5-c]isoxazole Formation by Cyclization of Hetarylketenes

Product Subclass 6: Ferrocenylketenes

Synthesis of Product Subclass 6

Method 1: Ferrocenylketene by Activation of Ferrocenylacetic Acid

Method 2: Ferrocenylketenes by Wolff Rearrangement of α-Diazo Ketones

Product Class 13: Alkenylketenes

R. L. Danheiser, G. B. Dudley, and W. F. Austin

Product Subclass 1: Vinylketenes

Synthesis of Product Subclass 1

Method 1: Elimination from Carboxylic Acid Derivatives

Method 2: Wolff Rearrangement of α'-Diazo-α,β-unsaturated Ketones

Method 3: Electrocyclic Ring Opening of Cyclobutenones

Applications of Product Subclass 1 in Organic Synthesis

Method 1: [2 + 2] Cycloadditions Leading to 4-Alkenylcyclobutanones

Variation 1: Intermolecular Cycloadditions

Variation 2: Intramolecular Cycloadditions

Method 2: [2 + 2] Cycloadditions Leading to β-Lactams

Product Subclass 2: 1,3-Dienylketenes and (2-Arylviny1)ketenes

Synthesis of Product Subclass 2

Method 1: Elimination from Carboxylic Acid Derivatives

Method 2: Wolff Rearrangement of 1,3-Dienyl α'-Diazo Ketones
23.13.2.1.3 Method 3: Electrocyclic Ring Opening of Cyclobutenones 527
23.13.2.1.3.1 Variation 1: Electrocyclic Ring Opening of 4-Alkenyl- and 4-Arylcyclobutenones 528
23.13.2.1.3.2 Variation 2: Electrocyclic Ring Opening of 2-(1,3-Dienyl)cyclobutenones and 2-(2-Arylvinyl)cyclobutenones 530
23.13.2.1.4 Method 4: Electrocyclic Ring Opening of 6,6-Disubstituted Cyclohexa-2,5-dien-1-ones 531
23.13.2.2 Applications of Product Subclass 2 in Organic Synthesis .. 533
23.13.2.2.1 Method 1: Six-Electron Electrocyclizations Leading to Phenols 533
23.13.2.2.1.1 Variation 1: Of Ketenes from the Elimination of Carboxylic Acid Derivatives 534
23.13.2.2.1.2 Variation 2: Of Ketenes Generated by the Electrocyclic Ring Opening of Cyclobutenones 539
23.13.2.2.1.3 Variation 3: Of Ketenes Generated by Electrocyclic Ring Opening of 4-Hydroxycyclobutenones ... 547
23.13.3 Product Subclass 3: Alk-1-en-3-ynylketenes .. 555
23.13.3.1 Synthesis of Product Subclass 3 ... 556
23.13.3.1.1 Method 1: Elimination from Carboxylic Acid Derivatives .. 556
23.13.3.1.2 Method 2: Wolff Rearrangement of Diazoketones ... 557
23.13.3.1.3 Method 3: Electrocyclic Ring Opening of 4-Alkynylcyclobutenones 558
23.13.3.2 Applications of Product Subclass 3 in Organic Synthesis ... 559
23.13.3.2.1 Method 1: Cyclizations Leading to Quinones .. 559

23.14 Product Class 14: Alkyl- and Cycloalkylketenes
T. T. Tidwell

23.14.1.1 Product Subclass 1: Monoalkylketenes ... 571
23.14.1.1.1 Synthesis of Product Subclass 1 .. 571
23.14.1.1.1.1 Method 1: Dehydration of Alkanoic Acids .. 572
23.14.1.1.1.1.1 Variation 1: Dehydration of Carboxylic Acids Using Mukaiyama’s Reagent 572
23.14.1.1.1.2 Method 2: Pyrolysis of Alkanoic Anhydrides .. 574
23.14.1.1.1.2.1 Variation 1: From Alkanoic Anhydrides under Perkin Conditions 575
23.14.1.1.1.3 Method 3: Michael Addition and Elimination Reaction of Alkanoate Esters 575
23.14.1.1.1.3.1 Variation 1: Ester Pyrolysis ... 576
23.14.1.1.1.4 Method 4: Dehydrohalogenation of Alkanoyl Chlorides 577
23.14.1.1.1.4.1 Variation 1: Dehydrochlorination Using a Shuttle Procedure with a Kinetic Base and a Stoichiometric Base 577
23.14.1.1.1.5 Method 5: Synthesis from Cycloalkanones and Hexa-1,5-dien-3-ones ... 579
23.14.1.1.1.5.1 Variation 1: Photolysis of Cyclobutanones 581
23.14.1.1.1.5.2 Variation 2: Photolysis of Cyclohexanones 582
23.14.1.1.1.5.3 Variation 3: Photolysis of Hexa-1,5-dien-3-ones 583
23.14.1.1.1.6 Method 6: Dehalogenation of 2-Haloalkanoyl Halides 583
23.14.1.1.1.7 Method 7: Wolff Rearrangement of Diazoketones 585
23.14.1.1.1.7.1 Variation 1: Metal-Catalyzed Wolff Rearrangement 585
23.14.1.7.3 Variation 3: Microwave-Enhanced Wolff Rearrangement 587
23.14.1.7.4 Variation 4: Photochemical Wolff Rearrangement 587
23.14.1.1.8 Method 8: Thermolysis of Alkynyl Ethers .. 588
23.14.1.1.9 Method 9: Synthesis from Ynolates (The Kowalski Homologation) 590
23.14.1.2 Applications of Product Subclass 1 in Organic Synthesis 590
23.14.1.2.1 Method 1: Allenyl Esters by Wittig Reactions of Monoalkylketenes 590
23.14.1.2.2 Method 2: Alkanoic Acid Derivatives by Addition of Heteroatom Nucleophiles to Monoalkylketenes .. 592
23.14.1.2.2.1 Variation 1: Alkanoic Acid Derivatives by the Arndt–Eistert Chain Elongation .. 592
23.14.1.2.2.2 Variation 2: β-Amino Acid Derivatives by the Arndt–Eistert Reaction 593
23.14.1.2.2.3 Variation 3: β-Amino Acid Esters by Kowalski Homologation of Esters ... 595
23.14.1.2.2.4 Variation 4: Aldols via Boron Enolates from the Addition of Sulfur Nucleophiles to Monoalkylketenes .. 596
23.14.1.2.2.5 Variation 5: γ-Lactams by Intramolecular Cyclization of Monoalkylketenes with Nitrogen Nucleophiles ... 597
23.14.1.2.2.6 Variation 6: Amides by Allylic Amino Addition and Aza-Claisen Rearrangement .. 598
23.14.1.2.3 Method 3: 2-Halo Esters by Addition of Electrophilic Halogenating Agents to Monoalkylketenes .. 599
23.14.1.2.4 Method 4: Ketones and Vinyl Ethers by Addition of Carbon Nucleophiles to Monoalkylketenes .. 600
23.14.1.2.5 Method 5: Trifluoromethyl Ketones and Oxo Esters by Acylation of Monoalkylketenes with Trifluoroacetic Anhydride 601
23.14.1.2.6 Method 6: 3-Methylene-β-lactones by Dimerization of Monoalkylketenes 601
23.14.1.2.7 Method 7: Cyclobutanones by [2 + 2] Cycloaddition of Monoalkylketenes with Alkenes and Dienes ... 603
23.14.1.2.7.1 Variation 1: Polycyclic Ketones by Intramolecular [2 + 2] Cycloaddition of Monoalkylketenes with Alkenyl Groups .. 606
23.14.1.2.10 Method 10: γ-Lactones by Intramolecular [3 + 2] Cyclization of Ketenes to Cyclobutanones .. 611
23.14.1.2.11 Method 11: Cyclopropanones by [2 + 1] Cycloaddition of Monoalkylketenes with Diazocarbonates ... 612
23.14.2 Product Subclass 2: Dialkylketenes and (Oxomethylene)cycloalkanes 613
23.14.2.1 Synthesis of Product Subclass 2 ... 614
23.14.2.1.1 Method 1: Dehydration of Dialkylalkanoic Acids 614
23.14.2.1.2 Method 2: Pyrolysis of 2-Alkylalkanoic Anhydrides 615
23.14.2.1.2.1 Variation 1: Decarboxylation of Dialkylmalonic Anhydrides 616
Variation 1: Elimination from Ester Enolates Formed by Michael Addition to Acrylates 619

Method 4: Dehydrochlorination of 2-Alkylalkanoyl Halides 620

Method 5: Pyrolysis of Ketene Dimers 625

Method 6: Dehalogenation of 2-Haloalkanoyl Halides 628

Variation 1: Dehalogenation of 2-Haloalkanoyl Halides with Other Metals 629

Method 7: Wolff Rearrangement of Diazoketones 630

Variation 1: Photochemical Wolff Rearrangement of Diazoketones 632

Variation 2: Ultrasound-Enhanced Wolff Rearrangement 634

Variation 3: Photochemical Wolff Rearrangement of α-Oxo Ketenes 635

Method 8: Oxygenation of a Dialkylthioketene 635

Applications of Product Subclass 2 in Organic Synthesis 635

Method 1: Carbenes by Decarbonylation of Dialkylketenes 635

Method 2: Carboxylic Acid Derivatives by Nucleophilic Addition to Dialkylketenes .. 636

Variation 1: Carboxylic Anhydrides and Derivatives by Electrophilic Addition to Dialkylketenes 637

Variation 2: Esters and Free Radicals by Radical Addition to Dialkylketenes .. 638

Method 3: Ketones and Vinyl Ethers by Addition of Carbon Nucleophiles to Dialkylketenes .. 639

Method 4: Cyclobutane-1,3-diones by Dimerization of Dialkylketenes 642

Variation 1: Cyclobutane-1,3-diones by Mixed Dimerization of Dialkylketenes with tert-Butyl(cyano)ketene 643

Method 5: Cyclobutanones and Cyclobutenones by \([2 + 2]\) Cycloaddition of Dialkylketenes with Alkenes, Dienes, Allenes, or Alkynes 644

Variation 1: Bicyclo[\(n.2.0\)]alkanones by Intramolecular \([2 + 2]\) Cycloaddition with Alkenyl Groups 649

Method 6: \(\beta\)-Lactams by \([2 + 2]\) Cycloaddition of Dialkylketenes with Imines .. 653

Variation 1: Malonimides by \([2 + 2]\) Cycloaddition of Dialkylketenes with Isocyanates .. 654

Method 7: \(\beta\)-Lactones by \([2 + 2]\) Cycloaddition of Dialkylketenes with Aldehydes .. 655

Variation 1: \(\beta\)-Lactones by Asymmetric \([2 + 2]\) Cycloaddition of Dimethylketene with Chiral Aldehydes 655

Method 8: Cyclopropanones by \([2 + 1]\) Cycloaddition of Dialkylketenes with Diazoalkanes .. 656

Method 9: Polymerization of Dialkylketenes 657

Product Subclass 3: Cyclopropylketene, (Cycloprop-2-enyl)ketene, and Oxiranylketene ... 658

Synthesis of Product Subclass 3 .. 658

Method 1: Elimination from Cyclopropylacetates 658

Method 2: Dehydrohalogenation of Cyclopropylacetyl Halides 659

Method 3: Wolff Rearrangements of Diazoketones 659

Variation 1: (Cycloprop-2-enyl)ketene by Wolff Rearrangement 661

Variation 2: Oxiranylketenes by Wolff Rearrangement 662
Method 4: Photochemical Rearrangement of 5,5-Dimethylcyclopent-2-enone .. 662

Variation 1: Photolysis of Cyclopentadienones 662

Applications of Product Subclass 3 in Organic Synthesis 663

Method 1: Bicyclooctadienones and Cycloheptadienones from Cyclopropylketenes by Cope Rearrangement 663

Product Subclass 4: (Fluoroalkyl)ketenes 665

Synthesis of Product Subclass 4 ... 666

Method 1: Dehydration of Fluoroalkanoic Acids 666

Method 2: Dehalogenation of 2-Haloacyl Halides 666

Method 3: Wolff Rearrangement of Diazoketones 667

Variation 1: Bis(trifluoromethyl)ketene by Wolff-Type Rearrangement upon Oxidation of an Alkyne 667

Method 4: Hydrolysis of a Perfluoroalkene 668

Method 5: Acyl(trifluoromethyl)ketenes by Cleavage of a 1,3-Dioxin-4-one ... 668

Applications of Product Subclass 4 in Organic Synthesis 668

Method 1: Fluoroalkyl Cyclobutanones, Cyclobutenones, and Derivatives by [2+2]-Cycloaddition Reactions of (Fluoroalkyl)ketenes 668

Method 2: (Trifluoromethyl)malonates by Nucleophilic Additions to a (Trifluoromethyl)ketene .. 671

Product Class 15: Bisketenes
T. T. Tidwell

Product Class 15: Bisketenes ... 679

Product Subclass 1: 1,2-Bisketenes .. 681

Synthesis of Product Subclass 1 ... 681

Method 1: 1,2-Bisketenes by Thermal Ring Opening of Cyclobutene-1,2-diones ... 682

Variation 1: Stabilized 1,2-Bisketenes by Thermal Ring Opening of Cyclobutene-1,2-diones ... 683

Method 2: 1,2-Bisketenes by Photochemical Ring Opening of Cyclobutene-1,2-diones ... 684

Method 3: Metal-Complexed 1,2-Bisketene 687

Method 4: 1,2-Bisketenes by Wolff Rearrangement of Bis(diazo ketones) ... 687

Applications of Product Subclass 1 in Organic Synthesis 688

Method 1: Acids, Esters, and Amides by Nucleophilic Additions to 1,2-Bisketenes ... 688

Variation 1: (Carboxy)ketenes and Succinic Anhydrides by Water Addition to 1,2-Bisketenes ... 691

Method 2: Diamides by Amine Addition to 1,2-Bisketenes 692

Variation 1: Carbamoyl-Substituted Esters by Successive Amine and Alcohol Addition 692
23.15.1.2.2.2 Variation 2: A Cyclic Carbamoyl Ester by Addition of an Amino Alcohol to a 1,2-Bisketene .. 693
23.15.1.2.3 Method 3: A Fumaroyl Bromide by Bromine Addition to a 1,2-Bisketene 693
23.15.1.2.4 Method 4: Maleic Anhydride Formation by Aminoxyl Radical Addition to a 1,2-Bisketene ... 694
23.15.1.2.5 Method 5: Furanone Formation by Dimerization of 1,2-Bisketenes 694
23.15.1.2.6 Method 6: Naphthofuranones by [4 + 2] Cycloaddition of 1,2-Bisketenes with Pendant Alkenes .. 695
23.15.1.2.7 Method 7: Cyclopropenes and Quinones by [2 + 1] and [4 + 2] Cycloaddition of 1,2-Bisketenes with Alkynes 695
23.15.1.2.8 Method 8: A β-Lactone by [2 + 2] Cycloaddition of a 1,2-Bisketene with Acetaldehyde .. 697
23.15.1.2.9 Method 9: Cyclopentenediones by [4 + 1] Cycloaddition of 1,2-Bisketenes with Carbenes and Diazooalkanes 697
23.15.1.2.10 Method 10: Cyclopropenones and Alkynes by Photolysis of 1,2-Bisketenes 697

23.15.2 Product Subclass 2: 1,3- and Higher Bisketenes ... 699
23.15.2.1 Synthesis of Product Subclass 2 .. 699
23.15.2.1.1 Method 1: A Bisketene by Dehydration of a Dicarboxylic Acid 699
23.15.2.1.2 Method 2: A Bisketene by Elimination from a Bis(isopropenyl) Ester 700
23.15.2.1.3 Method 3: Bisketenes by Dehydrochlorination of Dicarboxylic Acid Chlorides .. 701
23.15.2.1.3.1 Variation 1: Bisketenes by Dehydrochlorination of Dicarboxylic Acid Chlorides by a Shuttle Procedure with a Kinetic Base and a Stoichiometric Base .. 702
23.15.2.1.3.2 Variation 2: 1,4-Bis(oxovinyl)benzenes by Dehydrochlorination 705
23.15.2.1.4 Method 4: Bisketenes by Ring Opening of Benzo-1,2-quinones 705
23.15.2.1.5 Method 5: Bisketenes by Wolff Rearrangement of Bis(diazo ketones) ... 706
23.15.2.1.6 Method 6: Bis- and Tris(oxovinyl)silanes by Thermolysis of (Ethoxyethyl)ylsilanes .. 707
23.15.2.1.7 Method 7: A 1,5-Bisketene by [4 + 2] Cycloaddition of Norbornadiene with a 1,3,4-Oxadiazine Followed by Nitrogen Elimination ... 710
23.15.2.1.8 Method 8: A Bis(allenylketene) from a Bis(methylene)cyclobuteneone) ... 710
23.15.2.2 Applications of Product Subclass 2 in Organic Synthesis 711
23.15.2.2.1 Method 1: Esters and Amides by Addition of Nucleophiles to Bisketenes 711
23.15.2.2.1.1 Variation 1: Polyamides and Polyesters from Bisketenes and Diamines or Diols .. 711

23.15.3 Product Subclass 3: Bis(oxomethylene)cyclohexanes and -cyclohexadienes .. 712
23.15.3.1 Synthesis of Product Subclass 3 .. 713
23.15.3.1.1 Method 1: Bis(oxomethylene)cyclohexanes and -cyclohexadienes by Dehydrochlorination of Dicarboxylic Acid Chlorides 713
23.15.3.1.2 Method 2: Bis(oxomethylene)cyclohexadienes by Dehalogenation of Terephthaloyl Halides ... 714
23.15.3.1.3 Method 3: 1,2-Bis(oxomethylene)cyclohexane by Ring Opening of a Cyclobutene-1,2-dione ... 714
Method 4: 5,6-Bis(oxomethylene)cyclohexa-1,3-diene by Ring Opening
of a Cyclobutene-1,2-dione

Variation 1: 5,6-Bis(oxomethylene)cyclohexa-1,3-diene by Thermal
Nitrogen Loss from Phthalazine-1,4-dione

Method 5: 5,6-Bis(oxomethylene)cyclohexa-1,3-diene by Cyclophane
Cleavage

Method 6: Bis(oxomethylene)cycloalkanes by Double Wolff
Rearrangement

Applications of Product Subclass 3 in Organic Synthesis

Method 1: Esters and Amides by Addition of Nucleophiles to Bisketenes

Method 2: [4 + 2] Cycloadditions of 1,2-Bisketenes with Alkenes and
Benzoquinones

Method 3: Spiro[cyclopropane-1,1¢(3¢H)-isobenzofuran]-3¢-ones by
Cycloaddition of a 1,2-Bisketene with Alkenes

Method 4: A 1,3,5-Oxathiazine by [4+ 2] Cycloaddition of a Bisketene
with an Isocyanate

Method 5: Benzyne by Photochemical Decarbonylation of
5,6-Bis(oxomethylene)cyclohexa-1,3-diene

Variation 1: A Bicyclic Enyne by Photochemical Decarbonylation of a
Bisketene

Method 6: Polymerization of a 1,4-Bisketene by [2 + 2] Cyclodimerization

Product Subclass 4: Other Bisketenes

Method 1: Bis(acylketenes) by Thermolysis of Bis(dioxinones) and
Bis(Meldrum’s acid) Derivatives

Method 2: A Tris(acylketene) by Thermolysis of a Triester

Method 3: A Bis(acylketene) by Carbon Dioxide Addition to a
Diynediamine

Method 4: Bis(acylketenes) by Wolff Rearrangement of Bis(diazo)
Tetraketones

Variation 1: Cyclic Bis(acylketene) Formation by a Wolff-Type
Rearrangement

Method 5: Bis(dienylketenes) by Photolysis of Bis(cyclohexadienones)

Method 6: A Bis(oxovinyl)platinum Complex by Addition of a Ketene
to an (Oxovinyl)platinum Complex

Method 7: Bis(ketenechromium) Complexes from
Bis(alkylidenechromium) Complexes

Product Class 16: Sulfur, Selenium, and Tellurium Analogues of Ketenes
C. Spanka and E. Schaumann

Product Subclass 1: Thioketenes

Synthesis of Product Subclass 1

Method 1: Sulfuration of Ketenes
23.16.1.2 Method 2: Synthesis from Dithiocarboxylates .. 738
23.16.1.3 Method 3: Elimination Reactions of Ketene S,X-Acetals 739
23.16.1.4 Method 4: Synthesis by Cycloreversion .. 740
23.16.1.4.1 Variation 1: [2 + 2] Cycloreversion of 2,4-Bis(alkylidene)-1,3-dithietanes
(Thioketene Dimers) or 4-Alkylidene-1,3-dithietan-2-ones 740
23.16.1.4.2 Variation 2: [3 + 2] Cycloreversion of 2-Alkylidene-1,3-dithiolane
Derivatives .. 742
23.16.1.4.3 Variation 3: 1,2,3-Thiadiazoles as Stable Thioketene Precursors
(Thio-Wolff Rearrangement) .. 746
23.16.1.5 Method 5: Treatment of Alkylidenephosphoranes with Carbon Disulfide 750
23.16.1.6 Method 6: Thioketenes via Alkynyl Sulfides ... 751
23.16.1.6.1 Variation 1: Protonation or Silylation of Alk-1-ynethiolates Followed by [1,3]-Hydrogen/Silicon Shift .. 753
23.16.1.6.2 Variation 2: Thia-Cope Rearrangement of Alkynyl Allyl Sulfides 754
23.16.1.7 Methods 7: Other Methods .. 758
23.16.2 Product Subclass 2: Cumulated Thioketenes and Their Derivatives 760
23.16.2.1 Synthesis of Product Subclass 2 .. 760
23.16.2.1.1 Method 1: Synthesis of Alkylidenethioketenes ... 760
23.16.2.1.2 Method 2: Synthesis of (Arylimino)thioketenes ... 761
23.16.2.1.3 Method 3: Synthesis of Carbon Subsulfide (Propadienedithione) 762
23.16.3 Product Subclass 3: Thioketene S-Oxides ... 764
23.16.3.1 Synthesis of Product Subclass 3 .. 764
23.16.3.1.1 Method 1: Direct Oxidation of Thioketenes ... 764
23.16.3.1.2 Method 2: [3 + 2] Cycloreversion of 1,3-Dithiolane 1,1,3-Trioxides 765
23.16.3.1.3 Method 3: Retro-Diels–Alder Reaction ... 765
23.16.4 Product Subclass 4: Selenoketenes .. 766
23.16.4.1 Synthesis of Product Subclass 4 .. 766
23.16.4.1.1 Method 1: Rearrangement of Alkynyl Selenides ... 767
23.16.4.1.2 Method 2: [3,3]-Sigmatropic Rearrangement of Alkynyl Allyl Selenides
(Selena-Cope Rearrangement) .. 769
23.16.4.1.3 Method 3: Nitrogen Extrusion from 1,2,3-Selenadiazoles 772
23.16.5 Product Subclass 5: Telluroketenes .. 776
23.17 Product Class 17: Ketenimines
H. Perst

23.17 Product Class 17: Ketenimines ... 781
23.17.1 Product Subclass 1: Monoketenimines ... 783
23.17.1.1 Synthesis of Product Subclass 1 ... 783
23.17.1.1.1 Synthesis by Formation of the C═C Bond .. 784
23.17.1.1.1.1 Method 1: Dehydrocyanation of Imidoyl Cyanides 784
23.17.1.1.1.2 Method 2: Dehydration of Carboxamides by Oxophilic Reagents in the
Presence of Tertiary Amines .. 785
23.17.1.1.2.1 Variation 1: Using Triphenylphosphine–Carbon Tetrachloride–Triethylamine .. 787
23.17.1.1.2.2 Variation 2: Using Triphenylphosphine–Bromine–Triethylamine .. 788
23.17.1.1.2.3 Variation 3: Using Diphosgene–Triethylamine .. 791
23.17.1.1.3 Method 3: \(\beta \)-Elimination from Imidocarboxylic Acid Derivatives .. 793
23.17.1.1.3.1 Variation 1: Dehydrohalogenation of Imidoyl Halides .. 793
23.17.1.1.3.2 Variation 2: Dehalogenation of \(\alpha \)-Haloimidoyl Halides .. 795
23.17.1.1.3.3 Variation 3: \(\beta \)-Elimination from Imidocarboxylic Acid Esters .. 796
23.17.1.1.4 Method 4: \(\beta \)-Elimination from Other Precursors via Imidocarboxylic Acid Derivatives Formed In Situ .. 798
23.17.1.1.4.1 Variation 1: From Oximes .. 798
23.17.1.1.4.2 Variation 2: From 2,2-Dihaloaziridines .. 799
23.17.1.1.5 Method 5: Elimination of Hydrogen Sulfide from Thioamides .. 801
23.17.1.1.5.1 Variation 1: From Thioamides via Imidoyl Chlorides .. 801
23.17.1.1.5.2 Variation 2: From Methyl Imidothioesters .. 802
23.17.1.1.6 Method 6: Connective Alkene Formation by Reaction of Phosphonium Ylides or Related Reagents with Azaheterocumulenes .. 804
23.17.1.1.6.1 Variation 1: Ketenimines from Wittig Reaction of Alkylidenetriphenylphosphoranes with Isocyanates .. 804
23.17.1.1.6.2 Variation 2: Reaction of Alkylidenephosphoranes with Isothiocyanates or Carbodiimides .. 808
23.17.1.1.6.3 Variation 3: Horner–Wittig Reaction of Isocyanates with Carbanions Derived from Diethyl Phosphonates .. 809
23.17.1.1.7 Method 7: Cycloreversion .. 809
23.17.1.1.8 Method 8: Cheletropic Reactions (Sulfur Extrusion from 2,5-Dihydroisothiazol-5-imines) .. 811
23.17.1.1.9 Method 9: Addition of Isocyanides to Carbene Complexes .. 812
23.17.1.1.10 Method 10: Addition of Isocyanides to Suitable Carbon Fragments in the Coordination Sphere of Transition-Metal Complexes .. 814
23.17.1.1.10.1 Variation 1: Addition of Carbenes to Transition Metal–Isocyanide Complexes .. 814
23.17.1.1.10.2 Variation 2: Addition of Isocyanides to Transition Metal–Carbene Complexes .. 815
23.17.1.1.10.3 Variation 3: Rearrangement of a Transition Metal–Isocyanide Complex .. 816
23.17.1.1.10.4 Variation 4: Palladium-Assisted Reactions of Isocyanides with Alkyl Chlorides .. 817
23.17.1.1.11 Method 11: Addition of Isocyanides to Alkynes .. 818
23.17.1.1.12 Method 12: Addition of Isocyanides to Cyclopropene Derivatives .. 820
23.17.1.1.13 Method 13: Iminocarbene–Ketenimine Rearrangement .. 821
23.17.1.1.13.1 Variation 1: Photochemical Transformation of 2-(Cyanooimino)-1-diazoalkanes .. 821
23.17.1.1.13.2 Variation 2: Thermal or Photochemical Transformation of 1-Aryl-1,2,3-triazoles and 1H-Benzotriazoles .. 822
23.17.1.1.12 Synthesis by Formation of the \(\text{C} = \text{N} \) Bond .. 824
23.17.1.1.12.1 Method 1: Dehydrocyanation of \(\alpha \)-Cyanoenamines .. 825
23.17.1.1.12.2 Method 2: Dehydrohalogenation of \(\alpha \)-Haloenamines .. 826
23.17.1.1.12.3 Method 3: Eliminations from Ketene \(N,S \)-Acetals .. 828
Method 4: Connective Imine Formation by Aza-Wittig Reaction of Iminophosphoranes or Related Compounds with Ketenes

Variation 1: With Preformed Iminophosphoranes and Preformed Ketenes

Variation 2: With Preformed Iminophosphoranes and In Situ Generated Ketenes

Variation 3: With In Situ Generated Iminophosphoranes and Preformed Ketenes

Variation 4: Reaction of N-Substituted Diethyl Phosphoramidate Anions with Ketenes

Method 5: Connective Imine Formation by the Reaction of Thioketenes with Sulfur Diimides

Method 6: Deprotonation and Ring Opening of Isoxazolium Salts

Method 7: Cycloreversion

Method 8: Cheletropic Reactions

Method 9: Thermolysis of Vinyl Azides

Method 10: Photolysis of Vinyl Azides or Aryl Azides

Synthesis by Formation of the C=C and C=N Bonds

Method 1: Addition–Elimination Reactions with Nitriles

Variation 1: Via Nitrilium Ions and Subsequent Deprotonation at the β-Carbon Atom

Variation 2: Via Nitrile Anions and Subsequent Addition of Electrophiles to the Nitrogen Atom

Variation 3: Addition of Trialkyl Phosphites to α-Halo Nitriles and Elimination of Haloalkanes

Method 2: [2,3]-Sigmatropic Rearrangement of 1-Cyanoalkyl Methylenesulfur Ylides

Method 3: [3 + 2]-Cycloaddition Reactions of Ketenimines

Variation 1: With 1,3-Dipoles

Variation 2: With Three-Membered Heterocycles

Variation 3: Via Intramolecular Reactions of C-(Aziridin-1-ylimino)ketenimines

Method 4: [4 + 2]-Cycloaddition Reactions Using Ketenimines as Dienophiles

Method 5: [4 + 2]-Cycloaddition Reactions Using Ketenimines as 1,3-Dienes

Variation 1: From a 1,3-Diene Formed by the Ketenimine C=C Bond and a Suitable C-Substituent
23.17.1.2.5.2 Variation 2: From a 1,3-Diene Formed by the Ketenimine C=H Bond and a C-Aryl Substituent; Intramolecular [4+2]-Cycloaddition Reactions .. 877

23.17.1.2.5.3 Variation 3: From a 1,3-Diene Formed by the Ketenimine C=N Bond and a Suitable N-Substituent .. 879

23.17.1.2.5.4 Variation 4: From a 1,3-Diene Formed by the Ketenimine C=N Bond and an N-Aryl Substituent 882

23.17.1.2.6 Method 6: Rearrangements of Ketenimines 884

23.17.1.2.7 Method 7: Reactions with Loss of the N-Substituent 885

23.17.1.2.7.1 Variation 1: Thermal Cleavage 885

23.17.1.2.7.2 Variation 2: Addition–Elimination Reactions of N-Silyl- or N-Stannylketenimines ... 886

23.17.1.2.7.3 Variation 3: Alk-2-enenitriles from C,C,N-Tris(trimethylsilyl)ketenimine and Aldehydes ... 888

23.17.2 Product Subclass 2: Bisiminopropa-1,2-dienes 889

23.17.2.1 Synthesis of Product Subclass 2 .. 889

23.17.2.1.1 Method 1: Thermolysis of Isoxazolonoketene N,S-Acetals 889

Keyword Index ... 899

Author Index .. 1013

Abbreviations .. 1049
Volume 24:
Three Carbon—Heteroatom Bonds:
Ketene Acetals and Yne—X Compounds

Preface .. V
Volume Editor’s Preface .. VII
Table of Contents .. XV

Introduction
A. de Meijere .. 1

24.1 Product Class 1: 1,1-Bis(heteroatom-functionalized) Allenes

24.1.1 Product Subclass 1: 1,1-Dihaloallenes
R. R. Kostikov .. 17

24.1.2 Product Subclass 2: 1-Halo-1-(organooxy)allenes
R. Zimmer .. 37

24.1.3 Product Subclass 3: 1-Halo-1-(organochalcogeno)allenes and
1-Halo-1-(organochalcogeno)butatrienes
R. Zimmer .. 39

24.1.4 Product Subclass 4: 1-Nitrogen-Functionalized 1-Haloallenes
R. Zimmer .. 43

24.1.5 Product Subclass 5: 1-Phosphorus-Functionalized 1-Haloallenes
R. Zimmer .. 45

24.1.6 Product Subclass 6: 1,1-Bis(organooxy)allenes,
1,1-Bis(organooxy)butatrienes, 1-(Organooxy)-1-siloxyallenes,
and 1-(Organooxy)allen-1-olates
R. Zimmer .. 49

24.1.7 Product Subclass 7: 1-(Organochalcogeno)-1-(organooxy)allenes
R. Zimmer .. 55

24.1.8 Product Subclass 8: 1-Nitrogen-Functionalized 1-(Organooxy)allenes and
Allen-1-olates
R. Zimmer .. 57

24.1.9 Product Subclass 9: 1-Phosphorus-Functionalized 1-(Organooxy)allenes and
1-Siloxyallenes
R. Zimmer .. 61
<table>
<thead>
<tr>
<th>Product Subclass</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.1.10</td>
<td>Product Subclass 10: 1,1-Bis(organochalcogeno)allenes and 1,1-Bis(organochalcogeno)butatrienes</td>
<td>R. Zimmer</td>
<td>63</td>
</tr>
<tr>
<td>24.1.11</td>
<td>Product Subclass 11: 1-Nitrogen-Functionalized 1-(Organochalcogeno)allenes</td>
<td>R. Zimmer</td>
<td>69</td>
</tr>
<tr>
<td>24.1.12</td>
<td>Product Subclass 12: 1-Phosphorus-Functionalized 1-(Organochalcogeno)allenes</td>
<td>R. Zimmer</td>
<td>73</td>
</tr>
<tr>
<td>24.1.13</td>
<td>Product Subclass 13: 1,1-Bis(nitrogen-functionalized) Allenes and Butatrienes</td>
<td>R. Zimmer</td>
<td>75</td>
</tr>
<tr>
<td>24.1.15</td>
<td>Product Subclass 15: 1,1-Bis(phosphorus-functionalized) Allenes</td>
<td>M. Stankević and K. M. Pietrusiewicz</td>
<td>81</td>
</tr>
<tr>
<td>24.2.1</td>
<td>Product Subclass 1: 1,1-Dihaloalk-1-enes</td>
<td>R. R. Kostikov</td>
<td>85</td>
</tr>
<tr>
<td>24.2.4</td>
<td>Product Subclass 4: 1-Nitrogen-Functionalized 1-Haloalk-1-enes</td>
<td>J. G. Schantl</td>
<td>223</td>
</tr>
<tr>
<td>24.2.5</td>
<td>Product Subclass 5: 1-Phosphorus-Functionalized 1-Haloalk-1-enes</td>
<td>M. Stankević and K. M. Pietrusiewicz</td>
<td>285</td>
</tr>
<tr>
<td>24.2.6</td>
<td>Product Subclass 6: 1,1-Bis(organooxy)alk-1-enes</td>
<td>C. Schneider</td>
<td>293</td>
</tr>
<tr>
<td>24.2.7</td>
<td>Product Subclass 7: 1-(Organooxy)-1-(organosulfanyl)alk-1-enes</td>
<td>W. Dölling</td>
<td>323</td>
</tr>
<tr>
<td>24.2.8</td>
<td>Product Subclass 8: 1-(Organooxy)-1-(organoselanyl)- and 1-(Organooxy)-1-(organotellanyl)alk-1-enes</td>
<td>W. Dölling</td>
<td>331</td>
</tr>
<tr>
<td>Section</td>
<td>Product Subclass</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>24.2.9</td>
<td>9</td>
<td>1-Nitrogen-Functionalized 1-(Organooxy)alk-1-enes (Ketene O,N-Acetals)</td>
<td>W. Kantlehner</td>
</tr>
<tr>
<td>24.2.10</td>
<td>10</td>
<td>1-Phosphorus-Functionalized 1-(Organooxy)alk-1-enes</td>
<td>H. Heydt</td>
</tr>
<tr>
<td>24.2.11</td>
<td>11</td>
<td>1,1-Bis(organosulfanyl)alk-1-enes (Ketene S,S-Acetals)</td>
<td>W. Dölling</td>
</tr>
<tr>
<td>24.2.12</td>
<td>12</td>
<td>1-(Organoselanyl)-1-(organosulfanyl)alk-1-enes and 1-(Organosulfanyl)-1-(organotellanyl)alk-1-enes</td>
<td>M. Yoshimatsu</td>
</tr>
<tr>
<td>24.2.13</td>
<td>13</td>
<td>1-Nitrogen-Functionalized 1-(Organosulfanyl)alk-1-enes</td>
<td>W. Dölling</td>
</tr>
<tr>
<td>24.2.14</td>
<td>14</td>
<td>1-Phosphorus-Functionalized 1-(Organosulfanyl)alk-1-enes</td>
<td>J. Romański, G. Młostoń, and K. M. Pietrusiewicz</td>
</tr>
<tr>
<td>24.2.15</td>
<td>15</td>
<td>1,1-Bis(organoselanyl)alk-1-enes and Derivatives</td>
<td>M. Yoshimatsu</td>
</tr>
<tr>
<td>24.2.16</td>
<td>16</td>
<td>1,1-Bis(organotellanyl)alk-1-enes and Derivatives</td>
<td>M. Yoshimatsu</td>
</tr>
<tr>
<td>24.2.17</td>
<td>17</td>
<td>1,1-Bis(nitrogen-functionalized) Alk-1-enes</td>
<td></td>
</tr>
<tr>
<td>24.2.17.1</td>
<td>18</td>
<td>Alk-1-ene-1,1-diamines</td>
<td>W. Kantlehner</td>
</tr>
<tr>
<td>24.2.17.2</td>
<td>19</td>
<td>Alk-1-ene-1,1-diamines with Retention of the Functional Group</td>
<td>P. A. Keller and J. Morgan</td>
</tr>
<tr>
<td>24.2.17.3</td>
<td>20</td>
<td>1,1-Bisazo-, 1,1-Diazido-, and 1,1-Dinitroalk-1-enes</td>
<td>K. Banert</td>
</tr>
<tr>
<td>24.2.18</td>
<td>21</td>
<td>1-Nitrogen-Functionalized 1-Phosphorus-Functionalized Alk-1-enes</td>
<td>M. Stankević and K. M. Pietrusiewicz</td>
</tr>
<tr>
<td>24.2.19</td>
<td>22</td>
<td>1,1-Bis(phosphorus-functionalized) Alk-1-enes</td>
<td>M. Stankević and K. M. Pietrusiewicz</td>
</tr>
</tbody>
</table>
24.3 Product Class 3: Bis(heteroatom-functionalized) Acetylenes

24.3.1 Product Subclass 1: Dihaloacetylenes
B. Witulski and C. Alayrac .. 781

24.3.2 Product Subclass 2: 1-Heteroatom-Functionalized 2-Haloacetylenes
B. Witulski and C. Alayrac .. 797

24.3.3 Product Subclass 3: Bis(organooxy)acetylenes
B. Witulski and C. Alayrac .. 821

24.3.4 Product Subclass 4: 1-(Organochalcogeno)-2-(organooxy)acetylenes
B. Witulski and C. Alayrac .. 835

24.3.5 Product Subclass 5: 1-Nitrogen-Functionalized 2-(Organooxy)acetylenes
B. Witulski and C. Alayrac .. 841

24.3.6 Product Subclass 6: 1-Phosphorus-Functionalized
2-(Organooxy)acetylenes
B. Witulski and C. Alayrac .. 843

24.3.7 Product Subclass 7: Bis(organochalcogeno)acetylenes
T. Murai ... 849

24.3.8 Product Subclass 8: 1-Nitrogen-Functionalized
2-(Organochalcogeno)acetylenes
T. Murai ... 859

24.3.9 Product Subclass 9: 2-Phosphorus-Functionalized
1-(Organochalcogeno)acetylenes
T. Murai ... 863

24.3.10 Product Subclass 10: Bis(nitrogen-functionalized) Acetylenes
B. Witulski and C. Alayrac .. 867

24.3.11 Product Subclass 11: 1-Nitrogen-Functionalized 2-Phosphorus-
Functionalized Acetylenes and Bis(phosphorus-functionalized) Acetylenes
B. Witulski and C. Alayrac .. 883

24.4 Product Class 4: 1-Heteroatom-Functionalized Alk-1-ynes

24.4.1 Product Subclass 1: 1-Haloalk-1-ynes and Alk-1-yn-1-ols
B. Witulski and C. Alayrac .. 905

24.4.2 Product Subclass 2: 1-(Organooxy)alk-1-ynes and
1-(Heterooxy)alk-1-ynes
B. Witulski and C. Alayrac .. 933
Product Subclass 3: 1-(Organosulfanyl)-, 1-(Organoselanyl)-, and 1-(Organotellanyl)alk-1-ynes

V. A. Potapov and B. A. Trofimov .. 957

Product Subclass 4: 1-Nitrogen-Functionalized Alk-1-ynes

24.4.4.1 Alk-1-yn-1-amines
B. Witulski and C. Alayrac .. 1007

24.4.4.2 N-Acyl- and N-Sulfonylalk-1-yn-1-amines
B. Witulski and C. Alayrac .. 1031

24.4.4.3 Alk-1-ynylidazonium Salts, 1-Azidoalk-1-ynes, and 1-Nitroalk-1-ynes
K. Banert ... 1059

24.4.5 Product Subclass 5: 1-Phosphorus-Functionalized Alk-1-ynes
K. M. Pietrusiewicz and M. Stankević 1073

Keyword Index
Keyword Index .. 1087

Author Index
Author Index ... 1145

Abbreviations
Abbreviations .. 1189
Table of Contents

Introduction
A. de Meijere

24.1 Product Class 1: 1,1-Bis(heteroatom-functionalized) Allenes

24.1.1 Product Subclass 1: 1,1-Dihaloallenes
R. R. Kostikov

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.1.1.1</td>
<td>Method 1: Synthesis from Allenes and Acetylenes by Substitution Reactions</td>
<td>18</td>
</tr>
<tr>
<td>24.1.1.2</td>
<td>Variation 2: From Acetylenes by Substitution Reactions</td>
<td>18</td>
</tr>
<tr>
<td>24.1.1.3</td>
<td>Variation 3: Via (gem-Difluoroallenyl)indium Derivatives</td>
<td>20</td>
</tr>
<tr>
<td>24.1.1.2.1</td>
<td>Method 2: Dehydrohalogenation of Dihalopropanes or Halopropanes</td>
<td>20</td>
</tr>
<tr>
<td>24.1.1.2.1</td>
<td>Variation 1: Direct Dehydrohalogenation</td>
<td>20</td>
</tr>
<tr>
<td>24.1.1.2.2</td>
<td>Variation 2: Dehydrochlorination through gem-Lithio, Halo-Substituted Carbenoid or Carbene Intermediates</td>
<td>23</td>
</tr>
<tr>
<td>24.1.1.3</td>
<td>Method 3: Synthesis by the Shapiro Reaction</td>
<td>24</td>
</tr>
<tr>
<td>24.1.1.4</td>
<td>Method 4: Dehalogenation of Fluoropropanes</td>
<td>24</td>
</tr>
<tr>
<td>24.1.1.4.1</td>
<td>Variation 1: Direct Dehalogenation of Fluoropropanes</td>
<td>24</td>
</tr>
<tr>
<td>24.1.1.4.2</td>
<td>Variation 2: Defluorosilylation of Silyl-Substituted Fluoropropanes</td>
<td>25</td>
</tr>
<tr>
<td>24.1.1.5</td>
<td>Method 5: Isomerization of Acetylenes, Cyclopropenes, or Methylene cyclopropanes</td>
<td>25</td>
</tr>
<tr>
<td>24.1.1.2</td>
<td>Applications of Product Subclass 1 in Organic Synthesis</td>
<td>26</td>
</tr>
<tr>
<td>24.1.1.2.1</td>
<td>Method 1: Addition of Nucleophilic and Electrophilic Reagents</td>
<td>27</td>
</tr>
<tr>
<td>24.1.1.2.1.1</td>
<td>Variation 1: 1,2-Addition to 1,1-Difluoroallenes</td>
<td>27</td>
</tr>
<tr>
<td>24.1.1.2.1.2</td>
<td>Variation 2: Nucleophilic Addition to 1,1-Dichloroallenes</td>
<td>28</td>
</tr>
<tr>
<td>24.1.1.2.1.3</td>
<td>Variation 3: Electrophilic Addition of Acyl Chlorides</td>
<td>28</td>
</tr>
<tr>
<td>24.1.1.2.1.4</td>
<td>Variation 4: Oxygenolytic Solvolysis of Polyiodoallenes</td>
<td>28</td>
</tr>
<tr>
<td>24.1.1.2.2</td>
<td>Method 2: [2 + 2] Cycloaddition</td>
<td>29</td>
</tr>
<tr>
<td>24.1.1.2.2.1</td>
<td>Variation 1: Dimerization</td>
<td>29</td>
</tr>
<tr>
<td>24.1.1.2.2.2</td>
<td>Variation 2: Allene–Alkene [2 + 2] Cycloaddition</td>
<td>30</td>
</tr>
<tr>
<td>24.1.1.2.2.3</td>
<td>Variation 3: Allene–Alkyne [2 + 2] Cycloaddition</td>
<td>31</td>
</tr>
<tr>
<td>24.1.1.2.3</td>
<td>Method 3: [2 + 3]-Dipolar Cycloaddition</td>
<td>31</td>
</tr>
<tr>
<td>24.1.1.2.4</td>
<td>Method 4: [2 + 4] Cycloaddition</td>
<td>32</td>
</tr>
<tr>
<td>24.1.1.2.5</td>
<td>Method 5: Metal Complexes</td>
<td>33</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>24.1.2</td>
<td>Product Subclass 2: 1-Halo-1-(organooxy)allenes</td>
<td>37</td>
</tr>
<tr>
<td>24.1.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>37</td>
</tr>
<tr>
<td>24.1.2.1.1</td>
<td>Method 1: Halogenation of 1-Alkoxylallenes</td>
<td>37</td>
</tr>
<tr>
<td>24.1.3</td>
<td>Product Subclass 3: 1-Halo-1-(organochalcogeno)allenes and 1-Halo-1-(organochalcogeno)butatrienes</td>
<td>39</td>
</tr>
<tr>
<td>24.1.3.1</td>
<td>Synthesis of Product Subclass 3</td>
<td>39</td>
</tr>
<tr>
<td>24.1.3.1.1</td>
<td>Method 1: 1-Halo-1-(organochalcogeno)allenes by the Isomerization of 3-Halo-3-(organochalcogeno)alk-1-yne with Base</td>
<td>39</td>
</tr>
<tr>
<td>24.1.3.1.2</td>
<td>Method 2: 1-Halo-1-(organochalcogeno)allenes by the Reaction of 1-Haloalk-1-yn-3-ols with Sulfur Compounds, and Subsequent Rearrangement</td>
<td>40</td>
</tr>
<tr>
<td>24.1.3.1.3</td>
<td>Method 3: 1-Halo-1-(organochalcogeno)butatrienes by Dehydrochlorination of 1,2-Dichloro-1-(organochalcogeno)buta-1,3-diene</td>
<td>41</td>
</tr>
<tr>
<td>24.1.4</td>
<td>Product Subclass 4: 1-Nitrogen-Functionalized 1-Haloallenes</td>
<td>43</td>
</tr>
<tr>
<td>24.1.4.1</td>
<td>Synthesis of Product Subclass 4</td>
<td>43</td>
</tr>
<tr>
<td>24.1.4.1.1</td>
<td>Method 1: Halogenation of an Allene-1,1,3-triamine</td>
<td>43</td>
</tr>
<tr>
<td>24.1.5</td>
<td>Product Subclass 5: 1-Phosphorus-Functionalized 1-Haloallenes</td>
<td>45</td>
</tr>
<tr>
<td>24.1.5.1</td>
<td>Synthesis of Product Subclass 5</td>
<td>45</td>
</tr>
<tr>
<td>24.1.5.1.1</td>
<td>Method 1: Reaction of 1-Haloalk-1-yn-3-ols with Phosphorus Compounds, and Subsequent Rearrangement</td>
<td>45</td>
</tr>
<tr>
<td>24.1.5.2</td>
<td>Applications of Product Subclass 5 in Organic Synthesis</td>
<td>46</td>
</tr>
<tr>
<td>24.1.5.2.1</td>
<td>Method 1: Palladium-Catalyzed Cross Coupling</td>
<td>46</td>
</tr>
</tbody>
</table>
Product Subclass 6: 1,1-Bis(organooxy)allenes, 1,1-Bis(organooxy)-butatrienes, 1-(Organooxy)-1-siloxyallenes, and 1-(Organooxy)-allen-1-olates
R. Zimmer

Synthesis of Product Subclass 6

Synthesis of 1,1-Bis(organooxy)allenes and 1,1-Bis(organooxy)butatrienes

Method 1: 1,1-Bis(organooxy)allenes and 1,1-Bis(organooxy)butatrienes by Deprotonation–Alkylation of 1,1-Bis(organooxy)alk-2-ynes

Method 2: 1,1-Bis(organooxy)allenes by Ring Opening of Highly Functionalized Cyclopropanes

Method 3: 1,1-Bis(organooxy)allenes by Wittig Alkenation

Synthesis of 1-(Organooxy)-1-siloxyallenes

Method 1: Cuprate Addition and Silylation of Alkyl Propynoates

Synthesis of 1-(Organooxy)allen-1-olates

Applications of Product Subclass 6 in Organic Synthesis

[2 + 2]-Cycloaddition Reactions of 1,1-Bis(organooxy)allenes

Synthesis of 2H-Pyran-2,4(3H)-diones and Furan-2,5-diones from Tetraalkoxyallenes

Product Subclass 7: 1-(Organochalcogeno)-1-(organooxy)allenes
R. Zimmer

Synthesis of Product Subclass 7

Method 1: Deprotonation–Addition Reaction of 1-(Organooxy)allenes

Method 2: Wittig Alkenation

Product Subclass 8: 1-Nitrogen-Functionalized 1-(Organooxy)allenes and Allen-1-olates
R. Zimmer

Synthesis of Product Subclass 8

Method 1: 1-(Organooxy)allen-1-amines by Alkylation–Deprotonation of Malonamides
24.1.8.1.2 Method 2: 1-(Organooxy)-1-(1H-1,2,4-triazol-1-yl)allenes by Deprotonation–Alkylation of 3-(Organooxy)-3-(1H-1,2,4-triazol-1-yl)prop-1-ynes 57

24.1.8.1.3 Method 3: Generation of 1-Nitrogen-Functionalized Allen-1-olates from \(\alpha \)-Hydrazono N-Monosubstituted Amides by the Shapiro Reaction ... 58

24.1.9 Product Subclass 9: 1-Phosphorus-Functionalized 1-(Organooxy)allenes and 1-Siloxyallenes
R. Zimmer

24.1.9.1 Synthesis of Product Subclass 9 .. 61

24.1.9.1.1 Method 1: 1-Phosphorus-Functionalized 1-(Organooxy)allenes by the Addition of Phosphorus Compounds to 1-Alkoxyalk-1ynes 61

24.1.9.1.2 Method 2: 1-Phosphorus-Functionalized 1-Siloxyallenes by the Reaction of Carbon Suboxide with Silylated Phosphites ... 61

24.1.10 Product Subclass 10: 1,1-Bis(organochalcogeno)allenes and 1,1-Bis(organochalcogeno)butatrienes
R. Zimmer

24.1.10.1 Synthesis of Product Subclass 10 .. 63

24.1.10.1.1 Synthesis of 1,1-Bis(organochalcogeno)allenes 63

24.1.10.1.1 Method 1: Deprotonation–Addition Sequence 63

24.1.10.1.1.1 Variation 1: Starting from an Alk-1-yn-3-ol 63

24.1.10.1.1.2 Variation 2: Starting from an Alk-1-enyl-Substituted Allene 63

24.1.10.1.2 Method 2: Alkylation–Elimination Starting from a Vinylphosphonium Salt 64

24.1.10.1.3 Method 3: Isomerization of 2-Ethylnyl-1,3-dithianes 64

24.1.10.1.4 Method 4: Reaction of 1-(Organosulfanyl)alk-1-yn-3-ols with Sulfenyl Halides and Subsequent Rearrangement .. 64

24.1.10.1.2 Synthesis of 1,1-Bis(organochalcogeno)butatrienes 65

24.1.10.1.2.1 Method 1: Nucleophilic Substitution .. 65

24.1.10.1.2.1.1 Variation 1: Of a Perchlorinated Enyne 65

24.1.10.1.2.1.2 Variation 2: Of Chloro-Substituted Butatrienes 65

24.1.10.1.2.2 Method 2: Reaction of 1,4-Dilithiobuta-1,3-diynes with Electrophiles .. 66

24.1.10.1.2.3 Method 3: Wittig Alkenation of Diarylketenes 66

24.1.10.1.2.4 Method 4: Elimination–Isomerization Starting from 4-Alkoxy-1,1-bis(organosulfanyl)alk-2-ynes 67
Product Subclass 11: 1-Nitrogen-Functionalized 1-(Organochalcogeno)allenes
R. Zimmer

Synthesis of Product Subclass 11

Method 1: Deprotonation–Addition Reaction of 1-Nitrogen-Functionalized Allenes

Method 2: Deprotonation of Amidinium Salts

Method 3: Alkylation of 2-Ethynylbenzothiazolium Salts

Method 4: Isomerization of 1-Azido-1-(phenylsulfanyl)prop-2-ynne

Product Subclass 12: 1-Phosphorus-Functionalized 1-(Organochalcogeno)allenes
R. Zimmer

Synthesis of Product Subclass 12

Method 1: Deprotonation–Addition Reaction of 1-Phosphorus-Functionalized Allenes

Product Subclass 13: 1,1-Bis(nitrogen-functionalized) Allenes and Butatrienes
R. Zimmer

Synthesis of Product Subclass 13

Method 1: 1,1-Bis(nitrogen-functionalized) Allenes by Deprotonation of Amidinium Salts

Method 2: 1,1-Bis(nitrogen-functionalized) Allenes by Dehydrobromination of 2-Bromopropenes

Method 3: 1,1-Bis(nitrogen-functionalized) Allenes by the Reaction of 3,6-Dihydropyrimidinium-4-olates with N,N-Diethylprop-1-yn-1-amine

Method 4: 1,1-Bis(nitrogen-functionalized) Butatrienes by the Condensation Reaction of 1,1-Dichloroethenes with N,N,N′,N′-Tetramethylethene-1,1-diamine
24.1.14 Product Subclass 14: 1-Nitrogen-Functionalized 1-Phosphorus-Functionalized Allenes
R. Zimmer

24.1.14 Product Subclass 14: 1-Nitrogen-Functionalized 1-Phosphorus-Functionalized Allenes .. 79
24.1.14.1 Synthesis of Product Subclass 14 .. 79
24.1.14.1.1 Method 1: Reaction of an Iminium Iodide with Triphenylphosphine 79

24.1.15 Product Subclass 15: 1,1-Bis(phosphorus-functionalized) Allenes
M. Stankević and K. M. Pietrusiewicz

24.1.15 Product Subclass 15: 1,1-Bis(phosphorus-functionalized) Allenes 81
24.1.15.1 Synthesis of Product Subclass 15 .. 81
24.1.15.1.1 Method 1: Synthesis from Phosphorus-Functionalized Alkynes 81
24.1.15.1.2 Method 2: Synthesis from Other Phosphorus-Functionalized Allenes ... 82

24.2 Product Class 2: 1,1-Bis(heteroatom-functionalized) Alk-1-enes

24.2.1 Product Subclass 1: 1,1-Dihaloalk-1-enes
R. R. Kostikov

24.2.1 Product Subclass 1: 1,1-Dihaloalk-1-enes 85
24.2.1.1 Synthesis of Product Subclass 1 ... 85
24.2.1.1.1 Method 1: Vinylic Substitution of Halogens, Metals, or Other Groups ... 85
24.2.1.1.1 Variation 1: Substitution of a Silyl Group or a Metal in 1-Metal-Substituted 1-Haloalk-1-enes ... 86
24.2.1.1.2 Variation 2: From 1-Substituted Alk-1-ynes 87
24.2.1.1.2 Method 2: 2-Aryl- and 2-Hetaryl-Substituted 1,1-Dihaloalk-1-enes from Hydrazones of Aromatic Aldehydes and Ketones 88
24.2.1.1.3 Method 3: Dehydrohalogenation of Oligohaloalkanes and Halovinyl Intermediates ... 89
24.2.1.1.3.1 Variation 1: Dehydrohalogenation of Oligohaloalkanes 89
24.2.1.1.3.2 Variation 2: From Vinyllithium Reagents 90
24.2.1.1.3.3 Variation 3: From Halovinylzinc or Halovinylmagnesium Reagents 91
24.2.1.1.4 Method 4: From 2,2,2-Trihaloethanols and Derivatives 93
24.2.1.1.5 Method 5: Dehalogenation of Oligohaloalkanes 94
24.2.1.1.6 Method 6: Wittig-Type Reaction .. 95
24.2.1.1.7 Method 7: Synthesis from Ketones and Lithium Carbenoids 99
24.2.1.1.8 Method 8: Electrophilic Addition to 1-Haloalk-1-ynes 100
24.2.1.1.8.1 Variation 1: Halogen Addition to 1-Haloalk-1-enes 100
24.2.1.1.8.2 Variation 2: Dimerization of 1-Aryl-2-iodocetylenes 102
24.2.1.1.9 Method 9: Synthesis by Rearrangement 102
Variation 1: Friedel–Crafts Reactions .. 102
Variation 2: From 1-Haloalk-1-yn-3-ols 103
Applications of Product Subclass 1 in Organic Synthesis 104
Method 1: Substitution of Halogen for Hydrogen 104
Method 2: Substitution of Halogen for Nitrogen, Phosphorus, and Other Elements ... 105
Method 3: Synthesis of Substituted Allyl Alcohols with Vinyllithium Derivatives ... 107
Method 4: Styrene Synthesis with Perfluoroalk-1-enylzinc Derivatives 107
Method 5: Synthesis of 1,3-Dienes ... 109
Method 6: Synthesis of Acrylates ... 111
Method 7: Alkylation and Acylation .. 111
Method 8: Synthesis of Stilbenes by Suzuki Coupling 112
Method 9: Synthesis of Enynes by Sonogashira Coupling 112
Method 10: Intramolecular Cyclization for Fused Carbocycles and Heterocycles ... 113
Method 11: Synthesis of Alkynes .. 116
Method 12: Synthesis of 1-Haloalk-1-ynes 116
Method 13: Synthesis of 1,3-Dienes ... 117
Method 14: Synthesis of Esters ... 120
Variation 1: From 1,1-Dihaloalk-1-enes with a Hydrogen Atom in the α-Position ... 120
Variation 2: From 1,1,2-Trihaloalk-1-ynes without a Hydrogen Atom in the α-Position ... 121
Method 15: [2 + 1], [2 + 2], [2 + 3], and [2 + 4] Cycloadditions 121

Product Subclass 2: 1-Halo-1-(organooxy)alk-1-enes
A. P. Molchanov and R. R. Kostikov

Synthesis of Product Subclass 2 .. 129
Method 1: Substitution of Hydrogen for Halogen 129
Method 2: Substitution of Halogen for Oxygen 129
Variation 1: From 1,1-Dihaloalk-1-enes with a Hydrogen Atom in the α-Position ... 130
Variation 2: From 1,1,2-Trihaloalk-1-enes without a Hydrogen Atom in the α-Position ... 131
Method 3: Elimination of Hydrogen Halides or Halogens 132
Method 4: Decarboxylation or Elimination of Carbonyl Difluoride 134
Method 5: Addition of Oxygen Nucleophiles to 1-Haloalk-1-ynes 136
Method 6: Addition of Hydrogen Halides to 1-Alkoxyalk-1-ynes 136
Method 7: Addition of Phosgene to 1-Alkoxyalk-1-ynes 137
Method 8: Addition of Halogens to 1-(Organooxy)alk-1-ynes 138
24.2.1.9 Method 9: Addition of Heteroelement Halides to 1-(Organooxy)alk-1-ynes 139
24.2.1.9.1 Variation 1: Addition of Boron Halides 139
24.2.1.9.2 Variation 2: Addition of Carbon, Silicon, Germanium, and Tin Halides ... 140
24.2.1.9.3 Variation 3: Addition of Phosphorus Halides 140
24.2.1.9.4 Variation 4: Addition of Sulfur Halides 142
24.2.1.9.5 Variation 5: Addition of Mercury(II) Chloride 143
24.2.1.10 Method 10: Addition of Carbonyl Compounds to 1-Halo- or 1-Alkoxyalk-1-ynes .. 143
24.2.1.11 Method 11: O-Acylation of Acyl Halides or Aldehydes 143
24.2.2 Applications of Product Subclass 2 in Organic Synthesis 145
24.2.2.1 Method 1: Thermolysis ... 145
24.2.2.2 Method 2: Substitution of Halogen 145
24.2.2.3 Method 3: Elimination of Hydrogen Halides 148
24.2.2.4 Method 4: Elimination of Halogens 149
24.2.2.5 Method 5: Addition of Mineral Acids, Halogens, and Water 150
24.2.2.6 Method 6: Addition of Alcohols, Phenols, and Amines 153
24.2.2.7 Method 7: Addition of Carboxylic Acids and Their Derivatives 155
24.2.2.8 Method 8: Radical Addition 157
24.2.2.9 Method 9: Addition of Alkyl Hypofluorites 157
24.2.2.10 Method 10: Addition of Sulfur-Containing Reagents 158
24.2.2.11 Method 11: Cycloadditions 159
24.2.2.11.1 Variation 1: [2 + 1] Cycloadditions 159
24.2.2.11.2 Variation 2: [2 + 2] Cycloadditions 159
24.2.2.11.3 Variation 3: Synthesis of Heterocyclic Compounds 160
24.2.2.12 Method 12: Rearrangements 161

24.2.3 Product Subclass 3: 1-Halo-1-(organochalcogeno)alk-1-enes
A. F. Khlebnikov and R. R. Kostikov

24.2.3.1 Synthesis of Product Subclass 3 167
24.2.3.1.1 Method 1: Substitution of Metal for Halogen 167
24.2.3.1.2 Method 2: Substitution of Halogen for Chalcogen 170
24.2.3.1.3 Method 3: Substitution of Oxygen for Halogen 175
24.2.3.1.4 Method 4: Elimination of Hydrogen Halides or Halogens 176
24.2.3.1.5 Method 5: Wittig-Type Reactions 180
24.2.3.1.6 Method 6: Miscellaneous Eliminations 185
24.2.3.1.7 Method 7: Addition of Hydrogen Halides to Alk-1ynes 188
24.2.3.1.8 Method 8: Addition of Halogens to Alk-1ynes 190
24.2.3.1.9 Method 9: Addition of Heteroelement Halides to Alk-1ynes 191
24.2.3.1.10 Method 10: Miscellaneous Additions to Alk-1ynes 193
24.2.3.1.11 Methods 11: Miscellaneous Reactions 195
24.2.3.2 Applications of Product Subclass 3 in Organic Synthesis 196
24.2.3.2.1 Method 1: Substitution of Halogen by Hydrogen, Deuterium, or a Metal 197
24.2.3.2.2 Method 2: Substitution of a Halogen for a Carbon Group 199
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.2.3.2.3</td>
<td>Method 3</td>
<td>Substitution of a Halogen for a Heteroatom Group</td>
<td>204</td>
</tr>
<tr>
<td>24.2.3.2.4</td>
<td>Method 4</td>
<td>Substitution of a Sulfonyl Group</td>
<td>207</td>
</tr>
<tr>
<td>24.2.3.2.5</td>
<td>Method 5</td>
<td>Elimination Reactions</td>
<td>208</td>
</tr>
<tr>
<td>24.2.3.2.6</td>
<td>Method 6</td>
<td>Addition Reactions</td>
<td>210</td>
</tr>
<tr>
<td>24.2.3.2.7</td>
<td>Method 7</td>
<td>Cyclizations</td>
<td>213</td>
</tr>
<tr>
<td>24.2.3.2.8</td>
<td>Methods 8</td>
<td>Miscellaneous Reactions</td>
<td>217</td>
</tr>
</tbody>
</table>

24.2.4 Product Subclass 4: 1-Nitrogen-Functionalized 1-Haloalk-1-enes

J. G. Schantl

<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.2.4</td>
<td>Product Subclass 4</td>
<td>1-Nitrogen-Functionalized 1-Haloalk-1-enes</td>
<td>223</td>
</tr>
<tr>
<td>24.2.4.1</td>
<td>Synthesis of Product Subclass 4</td>
<td></td>
<td>223</td>
</tr>
<tr>
<td>24.2.4.1.1</td>
<td>1-Haloalk-1-en-1-amines</td>
<td></td>
<td>223</td>
</tr>
<tr>
<td>24.2.4.1.1.1</td>
<td>Method 1</td>
<td>1,2-Dehydrohalogenation of 1,2-Dihaloalkan-1-amines</td>
<td>223</td>
</tr>
<tr>
<td>24.2.4.1.1.1.1</td>
<td>Variation 1</td>
<td>1,2-Dehydrobromination of Oligohalogenated N,N-Bis(trifluoromethyl)ethanamines</td>
<td>223</td>
</tr>
<tr>
<td>24.2.4.1.1.1.2</td>
<td>Variation 2</td>
<td>1,2-Dehydrochlorination of 1-(1,2,2,2-Tetrachloroethyl)-pyridinium Chloride</td>
<td>224</td>
</tr>
<tr>
<td>24.2.4.1.1.2</td>
<td>Method 2</td>
<td>1,2-Dehalogenation</td>
<td>224</td>
</tr>
<tr>
<td>24.2.4.1.1.3</td>
<td>Method 3</td>
<td>Monosubstitution of 1,1-Dihaloalk-1-enes by Nitrogen Nucleophiles</td>
<td>225</td>
</tr>
<tr>
<td>24.2.4.1.1.3.1</td>
<td>Variation 1</td>
<td>Nucleophilic Substitution of Vinylic Fluorine by Amide Anions</td>
<td>225</td>
</tr>
<tr>
<td>24.2.4.1.1.3.2</td>
<td>Variation 2</td>
<td>Nucleophilic Substitution of 1,1-Difluoroalk-1-enes by Amines</td>
<td>225</td>
</tr>
<tr>
<td>24.2.4.1.1.3.3</td>
<td>Variation 3</td>
<td>Nucleophilic Substitution of 2,2-Dichlorovinyl Ketones</td>
<td>226</td>
</tr>
<tr>
<td>24.2.4.1.1.3.4</td>
<td>Variation 4</td>
<td>Substitution of Vinylic Bromine or Chlorine by Amines</td>
<td>226</td>
</tr>
<tr>
<td>24.2.4.1.1.3.5</td>
<td>Variation 5</td>
<td>Nucleophilic Monosubstitution of Vinylic Chlorine by Amines</td>
<td>227</td>
</tr>
<tr>
<td>24.2.4.1.1.3.6</td>
<td>Variation 6</td>
<td>Nucleophilic Monosubstitution of Vinylic Chlorine by Amides</td>
<td>228</td>
</tr>
<tr>
<td>24.2.4.1.1.3.7</td>
<td>Variation 7</td>
<td>Nucleophilic Monosubstitution of Vinylic Chlorine by Heterocyclic Amides</td>
<td>229</td>
</tr>
<tr>
<td>24.2.4.1.1.3.8</td>
<td>Variation 8</td>
<td>Nucleophilic Monosubstitution of a Vinylic Chlorine by Nucleic Acid Bases and Related Heterocycles</td>
<td>230</td>
</tr>
<tr>
<td>24.2.4.1.1.3.9</td>
<td>Variation 9</td>
<td>Nucleophilic Monosubstitution of a Vinylic Chlorine by Lithium Diisopropylamide</td>
<td>231</td>
</tr>
<tr>
<td>24.2.4.1.1.4</td>
<td>Method 4</td>
<td>Nucleophilic Addition of a Nitrogen Functionality to 1-Haloalk-1-ynes</td>
<td>231</td>
</tr>
<tr>
<td>24.2.4.1.1.4.1</td>
<td>Variation 1</td>
<td>Addition of Nitrogen Nucleophiles to 1-Haloalk-1-ynes</td>
<td>231</td>
</tr>
<tr>
<td>24.2.4.1.1.4.2</td>
<td>Variation 2</td>
<td>Nucleophilic Addition of Dimethyl Hydrazine-1,2-dicarboxylate to Dichloroacetylene</td>
<td>232</td>
</tr>
<tr>
<td>24.2.4.1.1.4.3</td>
<td>Variation 3</td>
<td>Nucleophilic Addition of Amines to Dichloroacetylene</td>
<td>232</td>
</tr>
<tr>
<td>24.2.4.1.1.5</td>
<td>Method 5</td>
<td>Addition of Hydrogen Halides or Halide Anions to Ynamines or N,N-Yncarboxamides</td>
<td>232</td>
</tr>
<tr>
<td>24.2.4.1.1.5.1</td>
<td>Variation 1</td>
<td>Addition of Hydrogen Halides to N,N-Dimethylalk-1-yn-1-amines</td>
<td>232</td>
</tr>
<tr>
<td>24.2.4.1.1.5.2</td>
<td>Variation 2</td>
<td>Addition of Hydrogen Halides to 1-Acyl-N,N-dialkylalk-1-en-3-yn-4-amines</td>
<td>233</td>
</tr>
<tr>
<td>Section</td>
<td>Variation</td>
<td>Reaction Details</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>24.2.4.1.1.5.3</td>
<td>3</td>
<td>Hydrohalogenation of N-alk-1-ynylcarboxamides with magnesium halides</td>
<td></td>
</tr>
<tr>
<td>24.2.4.1.1.5.4</td>
<td>4</td>
<td>Addition of N,N-diethyl-2-(trimethylstannyl)acetylen-1-amine to 2-(chloromethylene)malononitrile</td>
<td></td>
</tr>
<tr>
<td>24.2.4.1.1.6</td>
<td>Method 6</td>
<td>Treatment of Carboxamides with Phosphoryl Chloride</td>
<td></td>
</tr>
<tr>
<td>24.2.4.1.1.7</td>
<td>Method 7</td>
<td>Transformation of imidoyl chlorides or of amides via imidoyl chlorides</td>
<td></td>
</tr>
<tr>
<td>24.2.4.1.1.7.1</td>
<td>Variation 1</td>
<td>Conversion of N,N-disubstituted amides</td>
<td></td>
</tr>
<tr>
<td>24.2.4.1.1.7.2</td>
<td>Variation 2</td>
<td>Isomerization of imidoyl chlorides</td>
<td></td>
</tr>
<tr>
<td>24.2.4.1.1.7.3</td>
<td>Variation 3</td>
<td>Conversion of imidoyl chlorides with trialkyl phosphites</td>
<td></td>
</tr>
<tr>
<td>24.2.4.1.1.7.4</td>
<td>Variation 4</td>
<td>Nucleophilic Substitution of N-(dichloromethylene)-N,N-dimethyliminium chloride by an in situ generated allyl anion intermediate</td>
<td></td>
</tr>
<tr>
<td>24.2.4.1.1.7.5</td>
<td>Variation 5</td>
<td>Nucleophilic Substitution of N-(dichloromethylene)-N,N-dimethyliminium chloride by an in situ generated enamine intermediate</td>
<td></td>
</tr>
<tr>
<td>24.2.4.1.1.8</td>
<td>Method 8</td>
<td>Synthesis from nitriles (via ketenimine intermediates)</td>
<td></td>
</tr>
<tr>
<td>24.2.4.1.1.8.1</td>
<td>Variation 1</td>
<td>Addition of hydrogen halides to dicyanoacetates</td>
<td></td>
</tr>
<tr>
<td>24.2.4.1.1.8.2</td>
<td>Variation 2</td>
<td>Addition of hydrogen halides to tri- and tetracyanomethanes</td>
<td></td>
</tr>
<tr>
<td>24.2.4.1.1.8.3</td>
<td>Variation 3</td>
<td>Addition of hydrogen halides to 2-(1-hydroxyalkylidene)malononitriles</td>
<td></td>
</tr>
<tr>
<td>24.2.4.1.1.8.4</td>
<td>Variation 4</td>
<td>Addition of hydrogen chloride to 2-sulfonyl-substituted malononitriles</td>
<td></td>
</tr>
<tr>
<td>24.2.4.1.1.8.5</td>
<td>Variation 5</td>
<td>Addition of hydrogen halides to 2-[2-(dicyanomethylene)hydrazino]malononitrile</td>
<td></td>
</tr>
<tr>
<td>24.2.4.1.1.8.6</td>
<td>Variation 6</td>
<td>Addition of hydrogen chloride to ethane-1,1,2,2-tetracarbonitrile</td>
<td></td>
</tr>
<tr>
<td>24.2.4.1.1.8.7</td>
<td>Variation 7</td>
<td>Addition of liquid hydrogen bromide to malononitrile</td>
<td></td>
</tr>
<tr>
<td>24.2.4.1.1.8.8</td>
<td>Variation 8</td>
<td>Reaction of hydrogen chloride with nitriles containing an α-hydrogen to form [2 + 2] adducts</td>
<td></td>
</tr>
<tr>
<td>24.2.4.1.1.8.9</td>
<td>Variation 9</td>
<td>Phosphorus halide addition to oligocyanomethanes</td>
<td></td>
</tr>
<tr>
<td>24.2.4.1.1.8.10</td>
<td>Variation 10</td>
<td>Addition of sulfur chlorides to oligocyanomethanes</td>
<td></td>
</tr>
<tr>
<td>24.2.4.1.1.9</td>
<td>Method 9</td>
<td>Conversion of ketenimines</td>
<td></td>
</tr>
<tr>
<td>24.2.4.1.1.9.1</td>
<td>Variation 1</td>
<td>Thermal rearrangement of vinyl azides to ketenimine intermediates</td>
<td></td>
</tr>
<tr>
<td>24.2.4.1.1.9.2</td>
<td>Variation 2</td>
<td>Addition of chlorine to a ketenimine</td>
<td></td>
</tr>
<tr>
<td>24.2.4.1.1.10</td>
<td>Methods 10</td>
<td>Miscellaneous reactions</td>
<td></td>
</tr>
<tr>
<td>24.2.4.1.1.10.1</td>
<td>Variation 1</td>
<td>Iodinolysis of in situ generated amino-substituted titanacyclopentadienes</td>
<td></td>
</tr>
<tr>
<td>24.2.4.1.1.10.2</td>
<td>Variation 2</td>
<td>Rearrangement of a heterocyclic azide</td>
<td></td>
</tr>
<tr>
<td>24.2.4.1.1.10.3</td>
<td>Variation 3</td>
<td>Rearrangement of an alkyl azide in the presence of an alkynyl</td>
<td></td>
</tr>
<tr>
<td>24.2.4.1.1.10.4</td>
<td>Variation 4</td>
<td>Pyrolysis of 1,2,3,4,4-hexafluoro-N,N,N',N'-tetraakis-(trifluoromethyl)cyclobutane-1,2-diamine</td>
<td></td>
</tr>
<tr>
<td>24.2.4.1.1.11</td>
<td>Method 11</td>
<td>Transformation of 1-nitrogen-functionalized 1-haloalk-1-enes into 1-haloalk-1-en-1-amines and derivatives</td>
<td></td>
</tr>
</tbody>
</table>
Variation 1: Reactions Involving the Nitrogen Functionality of 1-Nitrogen-Functionalized 1-Haloalk-1-enes:
Conversion into Amines 249

Variation 2: Derivatization Reactions at a Remote Site of the Nitrogen Moiety .. 251

Variation 3: Halogen Exchange at C1 251

Variation 4: Remote Reaction at C2 252

1-Halo-1-iminoalk-1-enes (3-Halo-2-azabuta-1,3-dienes) 252

Method 1: 1,2-Dehydrohalogenation 252

Method 2: 1,2-Dehalogenation .. 253

Method 3: Nucleophilic Substitution of Vinylic Fluorine by Imines 253

Method 4: Treatment of Acylureas with Phosphorus Chlorides 254

Variation 1: Conversion of N-Acetylureas 254

Variation 2: Conversion of N-Acylureas 254

Method 5: 1,4-Dehydrochlorination of N-Alkyl-Substituted α-Chloroimidoyl Chlorides 255

Method 6: Addition of Ketenimines to Chloroiminium Chlorides 256

Method 7: Wittig-Type Condensation 256

Method 8: Transformation of 1-Nitrogen-Functionalized 1-Haloalk-1-enes into 1-Halo-1-iminoalk-1-enes 256

Variation 1: Reactions Involving the Nitrogen Functionality of 1-Nitrogen-Functionalized 1-Haloalk-1-enes 256

Variation 2: Derivatization Reactions at Remote Sites at C2 and in the Imine Moiety .. 257

Variation 3: Remote Reactions at C2 257

Variation 4: Reaction of Isothiocyanates with Triethyl Phosphite 258

1-Halo-1-isocyanatoalk-1-enes .. 258

Method 1: 1,2-Dehydrochlorination 258

Method 2: 1,2-Debromination .. 258

Method 3: Synthesis from Carbamates 259

Method 4: Synthesis from Nitriles 259

Method 5: Synthesis by Curtius Reaction 259

Methods 6: Miscellaneous Reactions 260

1-Halo-1-isothiocyanatoalk-1-enes 260

Method 1: α-Halogenation of Alkyl Isothiocyanates 260

Method 2: Nucleophilic Substitution of Vinylic Fluorine by Thiocyanate Anion ... 261

1-Haloalk-1-enyl Isocyanides .. 261

Method 1: 1,2-Dehydrohalogenation 261

Method 2: 1,2-Dehalogenation .. 261

Variation 1: 1,2-Dechlorination of (1,1,2,2-Tetrachloroalkyl isocyanide)- and (1,2-Dichloro-1,1,2,2,2-pentahaloethyl isocyanide)-chromium Complexes .. 261

Variation 2: 1,2-Dechlorination of (1,2-Dichlorooligohaloethyl isocyanide)-chromium Complexes 262
24.2.4.5.3 Method 3: Horner–Wadsworth–Emmons Reaction 262
24.2.4.5.4 Method 4: Derivatization of 1-Haloalk-1-enyl Isocyanides with Retention of the Functional Group ... 263
24.2.4.5.4.1 Variation 1: Nucleophilic Substitution at C2 ... 263
24.2.4.5.4.2 Variation 2: Remote Reactions at the Nitrogen Moiety 264
24.2.4.6 1-Haloalk-1-enyldiazenes (1-Halo-1-diazenylalk-1-enes) 264
24.2.4.6.1 Method 1: 1,4-Elimination of Hydrogen Halides from α-Halohydrazonoyl Halides ... 264
24.2.4.6.1.1 Variation 1: 1,4-Dehydrofluorination of N-Phenylperfluoroalkanehydrazonoyl Fluorides .. 264
24.2.4.6.1.2 Variation 2: 1,4-Dehydrohalogenation of α-Chlorohydrazonoyl Chlorides 265
24.2.4.6.2 Method 2: Reaction of Λ-C=ΦC–Functionalized α-Halohydrazonoyl Halides 265
24.2.4.6.3 Method 3: 1,2-Dehydrohalogenation of 2-Alkyl-1-(1,2-dihaloalkyl)-diazene 1-Oxides .. 266
24.2.4.6.4 Method 4: Azo Coupling onto Activated Halomethyl Groups 266
24.2.4.6.4.1 Variation 1: Coupling of Diazonium Salts with Halomethyl-Substituted Hetarenenium Salts .. 266
24.2.4.6.4.2 Variation 2: Azo Coupling of α-Chloro Ketones 266
24.2.4.6.5 Method 5: Nucleophilic Substitution of Vinyl Halides by Nitrogen Nucleophiles ... 267
24.2.4.6.6 Method 6: Nucleophilic Substitution of Chlorine in Carbonohydrasonic Dichlorides .. 268
24.2.4.7 1-Azido-1-haloalk-1-enes ... 268
24.2.4.7.1 Method 1: Nucleophilic Substitution of Vinylic Fluorine ... 268
24.2.4.8 1-Halo-1-nitroalk-1-enes ... 269
24.2.4.8.1 Method 1: 1,2-Elimination of Hydrogen Halides 269
24.2.4.8.1.1 Variation 1: 1,2-Dehydrohalogenation of 1,2-Dihalo-1-nitroalkanes 269
24.2.4.8.1.2 Variation 2: 1,2-Dehydrobromination of 1,2-Dibromo-1-nitroalkanes 270
24.2.4.8.1.3 Variation 3: 1,2-Dehydrochlorination of 1,2-Dichloro-1-nitroalkanes 272
24.2.4.8.1.4 Variation 4: 1,2-Dehydrochlorination of 1,2,2-Trichloro-1-nitroethane ... 272
24.2.4.8.1.5 Variation 5: 1,2-Dehydration of 2-Bromo-2-nitroethanol 273
24.2.4.8.1.6 Variation 6: 1,2-Elimination of Nitrous Acid from a 1-Fluoro-2,2-dinitroalkane ... 273
24.2.4.8.2 Method 2: Introduction of a Nitro Group ... 274
24.2.4.8.2.1 Variation 1: By Displacement of Bromine ... 274
24.2.4.8.2.2 Variation 2: By Nitration .. 274
24.2.4.8.3 Method 3: Iodonitration of Silylacetylenes .. 275
24.2.4.8.4 Method 4: C–C Bond Formation by Condensation of Halonitromethanes with Carbonyl Compounds .. 275
24.2.4.8.4.1 Variation 1: Condensation of Bromonitromethane with Aromatic Aldehydes .. 275
24.2.4.8.4.2 Variation 2: Condensation of Halonitromethanes with Aromatic and Heteroaromatic Aldehydes .. 276
24.2.4.8.4.3 Variation 3: Condensation of Bromonitromethane with an N-Alkylbenzaldimine .. 277

Table of Contents
Variation 4: Condensation of Bromonitromethane with Triethyl Orthoformate .. 277
Method 5: Pyrolysis .. 278
Method 6: Derivatization Reactions of 1-Halo-1-nitroalk-1-enes .. 278
Variation 1: Nucleophilic Substitution at C2 278
Variation 2: Nucleophilic Substitution at C4 of 1,1,4-Trichloro-
2,4-dinitrobuta-1,3-diene .. 279

Product Subclass 5: 1-Phosphorus-Functionalized 1-Haloalk-1-enes
M. Stankević and K. M. Pietrusiewicz

Synthesis of Product Subclass 5 .. 285
Method 1: Synthesis from 1,1-Dihaloalkenes 285
Method 2: Synthesis from Alkynes 286
Method 3: Synthesis from 1-Phosphorus-Functionalized
1-Haloalkanes and Carbonyl Compounds 287
Variation 1: By the Horner–Wadsworth–Emmons Reaction 287
Variation 2: By Peterson Alkenation 288
Variation 3: By Condensation ... 288
Applications of Product Subclass 5 in Organic Synthesis 289

Product Subclass 6: 1,1-Bis(organooxy)alk-1-enes
C. Schneider

Synthesis of Product Subclass 6 .. 293
Method 1: Elimination from 2-Halo Acetals 295
Variation 1: Phase-Transfer-Catalyzed Elimination from 2-Halo Acetals 296
Variation 2: Ultrasound-Accelerated Elimination from 2-Halo Acetals 296
Variation 3: Elimination from 2-Bromo Peracetyl Glycosides 296
Variation 4: Elimination from 2-Selanyl Acetals 297
Method 2: Elimination from Ortho Esters 297
Variation 1: Acid-Catalyzed Elimination from In Situ Formed Ortho Esters 298
Method 3: O-Heteroacylation of Ester Enolates 299
Method 4: O-Alkylation of Ester Enolates 300
Method 5: Alkenation of Carbonates with Transition Metal–Carbene Complexes 301
Method 6: Horner–Wittig Alkenation of Carbonyl Compounds 302
Method 7: Nucleophilic Addition to Alkoxyalkynes 303
Method 8: Nucleophilic Addition to 1,1-Dihaloalk-1-enes 303
Method 9: Decarboxylation of ß-Lactones 304
Applications of Product Subclass 6 in Organic Synthesis 305
Variation 1: Alkylation and Aarylation of Ketene O,O-Acetals 305
Variation 1: Lewis Acid Catalyzed Aarylation of Ketene O,O-Acetals 306
24.2.6.2 Method 2: Acylation of Ketene O,O-Acetals 306
24.2.6.2.3 Method 3: Bromination of Ketene O,O-Acetals 307
24.2.6.2.4 Method 4: Silylation of Ketene O,O-Acetals 308
24.2.6.2.5 Method 5: Reaction of Ketene O,O-Acetals with Diazocompounds 309
24.2.6.2.6 Method 6: Dihydroxylation of Ketene O,O-Acetals 310
24.2.6.2.7 Method 7: [2 + 2] Cycloadditions of Ketene O,O-Acetals with Carbonyl Compounds 311
24.2.6.2.7.1 Variation 1: Lewis Acid Catalyzed [2 + 2] Cycloadditions 312
24.2.6.2.7.2 Variation 2: High-Pressure-Promoted [2 + 2] Cycloadditions with Carbonyl Compounds 313
24.2.6.2.8 Method 8: [2 + 2] Cycloadditions of Ketene O,O-Acetals with Electron-Deficient Alkenes 313
24.2.6.2.8.1 Variation 1: Thermal [2 + 2] Cycloadditions 314
24.2.6.2.8.2 Variation 2: Lewis Acid Catalyzed [2 + 2] Cycloadditions 315
24.2.6.2.8.3 Variation 3: [2 + 2] Cycloadditions with 2-Halo-1,4-quinones 315
24.2.6.2.9 Method 9: [4 + 2] Cycloadditions of Ketene O,O-Acetals with Electron-Deficient Heterodienes 316
24.2.6.2.10 Method 10: [4 + 2] Cycloadditions of Ketene O,O-Acetals with Electron-Deficient Dienes 318
24.2.6.2.11 Method 11: 1,3-Dipolar Cycloadditions of Ketene O,O-Acetals 319

24.2.7 Product Subclass 7: 1-(Organoxy)-1-(organosulfanyl)alk-1-enes
W. Dölling

24.2.7 Synthesis of Product Subclass 7 .. 323
24.2.7.1 Method 1: 1-(Organoxy)-1-(organosulfanyl)alk-1-enes from Acylated Ketene Acetals 323
24.2.7.2 Method 2: 1-(Organoxy)-1-(organosulfanyl)alk-1-enes by Addition of Sodium Alkanethiolates to Either Ethoxyacetylethylene or Phenoxycarbonylene 324
24.2.7.3 Method 3: 1-(Organoxy)-1-(organosulfanyl)alk-1-enes by Alkylolation of O-Alkyl Thiocarboxylates 324
24.2.7.4 Method 4: 2-Alkylidene-1,3-oxathiolanes from the Anions of Alkyl Thiocarboxylates and 4-Tolueneisulfonates 325
24.2.7.5 Method 5: 1-(Organoxy)-1-(organosulfanyl)alk-1-enes from Carbonyl Compounds 326
24.2.7.5.1 Variation 1: From Aldehydes or Ketones by Horner–Emmons Reactions 326
24.2.7.5.2 Variation 2: From Ketones by the Peterson Reaction 326
24.2.7.6 Method 6: 1-(Organoxy)-1-(organosulfanyl)alk-1-enes by Treatment of Sulfanylacetylenes with 4-Tolueneisulfonic Acid 328
24.2.7.7 Method 7: 1-(Organoxy)-1-(organosulfanyl)alk-1-enes from Ketene Dithioacetals 328
24.2.7.8 Method 8: 1-(Organoxy)-1-(organosulfanyl)alk-1-enes by Other Routes 329
24.2.8 Product Subclass 8: 1-(Organoxy)-1-(organoselanyl)- and 1-(Organoxy)-1-(organotellanyl)alk-1-enes
W. Dölling

24.2.8 Product Subclass 8: 1-(Organoxy)-1-(organoselanyl)- and 1-(Organoxy)-1-(organotellanyl)alk-1-enes ... 331
24.2.8.1 Synthesis of Product Subclass 8 ... 331
24.2.8.1.1 Method 1: Synthesis from Selenoates or Telluroates 331
24.2.8.1.1.1 Variation 1: Se-Alkylation of O-Alkyl Selenoates 331
24.2.8.1.1.2 Variation 2: O-Silylation of Se-Phenyl or Se-Methyl 2-Methylpropane-
selenoates and Te-Butyl Diphenylethanetelluroate 332
24.2.8.1.1.3 Variation 3: Reaction of Halogenated Esters and Carbamates 332
24.2.8.1.2 Method 2: Addition of 4-Toluenesulfonic Acid to 1-(Phenylselanyl)alk-1ynes .. 333
24.2.8.1.3 Method 3: Synthesis from Oxygen Heterocycles 333

24.2.9 Product Subclass 9: 1-Nitrogen-Functionalized 1-(Organoxy)alk-1-enes (Ketene O,N-Acetals)
W. Kantlehner

24.2.9 Product Subclass 9: 1-Nitrogen-Functionalized 1-(Organoxy)alk-1-enes (Ketene O,N-Acetals) ... 337
24.2.9.1 Synthesis of Product Subclass 9 ... 337
24.2.9.1.1 Method 1: Synthesis from Dimethyl 3-Oxopentanedioate and Ortho Amide Derivatives of Alkynecarboxylic Acids 337
24.2.9.1.2 Method 2: Synthesis from Oxazoles and Their Derivatives and Isocyanates .. 337
24.2.9.1.3 Method 3: Synthesis from β-Dicarbonyl Compounds and Isocyanates 338
24.2.9.1.4 Method 4: Synthesis from Aldehydes and Activated Isocyanates 338
24.2.9.1.5 Method 5: Synthesis from 2-Alkylxazolium Salts 339
24.2.9.1.6 Method 6: Synthesis from Alkyl Carboximidates and Ethyl 2-Cyano-3-ethoxyacrylate ... 339
24.2.9.1.7 Method 7: Synthesis from Oxazoles and Their Derivatives by Self-Condensation ... 340
24.2.9.1.8 Method 8: Synthesis from 2-Alkylxazoles and Halogens 340
24.2.9.1.9 Method 9: Synthesis from 3-Iodo-4H-1-benzopyran-4-one and Piperidine 341
24.2.9.1.10 Method 10: Synthesis from 5-(Ethenylmethylene)-1,3-bis(2-methoxyphenyl)thiobarbituric Acid .. 341
24.2.9.1.11 Method 11: Synthesis from 4-Halo-β-oxo Esters and Isocyanates 342
24.2.9.1.12 Method 12: Synthesis from Carboxamides by Alkylation 342
24.2.9.1.13 Method 13: Synthesis from 3-Aminoalk-2-enenitriles and Alcohols or Phenols .. 345
24.2.9.1.14 Method 14: Synthesis from 5-(4-Chloro-5H-1,2,3-dithiazol-5-ylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione 345
24.2.9.1.15 Method 15: Synthesis from Oligohaloalkane Derivatives by Substitution and Concomitant Dehydrohalogenation 346
Method 16: Synthesis from 1,1-Dihaloalkenes and Related Compounds .. 346

Method 17: Synthesis from β-Bromoenamines .. 350

Method 18: Synthesis from Ketene O,O-Acetals .. 350

Method 19: Synthesis from α-Phosphoryl Thioamide Derivatives 353

Method 20: Synthesis from O,O-Dialkyl Dithiomalonates or Thiomalonic Acid O-Ester Nitriles and Amines .. 354

Method 21: Synthesis from Iminocarbonic O,S-Esters ... 357

Method 22: Synthesis from Benzoxazole-2-thiones ... 358

Method 23: Synthesis from Ketene S,S-Acetals ... 358

Method 24: Synthesis from Ketene S,N-Acetals ... 360

Method 25: Synthesis from Ketene N,N-Acetals ... 363

Method 26: Deprotonation of Alkoxy(alkyl)(dialkylamino)carbenium Salts (Iminium Salts) .. 364

Method 27: Elimination of Hydrogen Halides, Alcohols, or Sulfonic Acids from α-Halo or α-Oxy Aldehyde O,N-Acetals ... 370

Method 28: Elimination of Alcohols or Amines from Amide O,O-Acetals or Ester N,N-Acetals ... 372

Method 29: Addition to 3-Oxocarboxylic Acid Derivatives ... 375

Method 30: Addition of CH-Acidic Compounds to Dialkoxy(amino)-carbenium Salts, Dialkoxy(diamino)methanes, (Trialkoxy)-aminomethanes, and Alkoxy(alkylsulfanyl)aminocarbenium Salts ... 375

Method 31: Addition of CH-Acidic Compounds to Imidocarbonates 379

Method 32: Addition of CH-Acidic Compounds to Alkyl or Aryl Cyanates 380

Method 33: Synthesis from Carbonyl Compounds and Barbituric Acid Derivatives 382

Method 34: Synthesis from α,β-Unsaturated Carbonyl Compounds and Malononitrile or Alkyl Cyanoacetates ... 382

Method 35: Synthesis from Alkyl Methyleneacyanoacetates or Methyleneemalononitriles and Hydroxyarenes, Hydroxyhetarenes, or Enolizable Ketones ... 383

Method 36: Synthesis from Isocyanides by Multicomponent Reactions 390

Method 37: Synthesis from Furan-2,3-diones .. 391

Method 38: Synthesis from 2-(Alk-1-enyl)oxazole Derivatives by Cycloaddition Reactions .. 392

Method 39: Synthesis from Vinyliminophosphoranes ... 393

Method 40: Synthesis from Nitriles and Alcohols .. 393

Method 41: Synthesis from Ketenes .. 400

Method 42: Synthesis from Ketenimines ... 402

Method 43: Synthesis from 1-Alkoxyalk-1-ynes .. 403

Method 44: Synthesis from Alk-1-yne-1-amines .. 404

Method 45: Rearrangement of Cyclobuta-1,3-diene-2,4-diamines 407

Method 46: Synthesis from Oxazoles or Isoxazolum Salts ... 407

Method 47: Synthesis from 2,6-Dialkoxy pyridines and Electron-Rich Alkenes 408

Method 48: Synthesis from 2-Amino-4,5-dihydropthiophene-3-carbonitriles and Dibenzozyldiazomethane ... 408

Method 49: Synthesis from N-Hydroxyenamines .. 409
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.2.9.1.50</td>
<td>Method 50</td>
<td>Synthesis by Transformation with Retention of the Functional Group</td>
</tr>
<tr>
<td>24.2.9.1.51</td>
<td>Method 51</td>
<td>Reaction in the Ene Moiety with Formation of New C–C Bonds</td>
</tr>
<tr>
<td>24.2.9.1.51.1</td>
<td>Variation 1</td>
<td>Substitution of the β-Hydrogen Atom by 2,4,6-Trichloro-1,3,5-triazine, Ortho Esters, Methylenealonic Acid Derivatives, Trimethylsilyl Trifluoromethanesulfonate, and Dialkyl Imidodithiocarbonates</td>
</tr>
<tr>
<td>24.2.9.1.51.2</td>
<td>Variation 2</td>
<td>Substitution of the β-Hydrogen Atom by Isocyanates and Isothiocyanates</td>
</tr>
<tr>
<td>24.2.9.1.51.3</td>
<td>Variation 3</td>
<td>Substitution of the β-Hydrogen Atom by Ketenes and Ketene Dimers</td>
</tr>
<tr>
<td>24.2.9.1.51.4</td>
<td>Variation 4</td>
<td>Substitution of the β-Hydrogen Atom by α,β-Unsaturated Carboxylic Acid Derivatives</td>
</tr>
<tr>
<td>24.2.9.1.51.5</td>
<td>Variation 5</td>
<td>From Ortho Amide Derivatives as Precursors</td>
</tr>
<tr>
<td>24.2.9.1.51.6</td>
<td>Variation 6</td>
<td>Substitution of the β-Hydrogen Atom by Alkynes</td>
</tr>
<tr>
<td>24.2.9.1.51.7</td>
<td>Variation 7</td>
<td>From Carboxylic Acid Ortho Amide Derivatives and α,β-Unsaturated Carbonyl Compounds</td>
</tr>
<tr>
<td>24.2.9.1.51.8</td>
<td>Variation 8</td>
<td>Substitution of the β-Hydrogen Atom by the N=N Bond of Dialkyl Azodicarboxylates</td>
</tr>
<tr>
<td>24.2.9.1.52</td>
<td>Method 52</td>
<td>Reactions at the Ene Moiety with Cleavage of C–C Bonds</td>
</tr>
<tr>
<td>24.2.9.1.53</td>
<td>Method 53</td>
<td>Reaction at the Acetal Moiety</td>
</tr>
<tr>
<td>24.2.9.1.53.1</td>
<td>Variation 1</td>
<td>Exchange of Alkoxy Groups</td>
</tr>
<tr>
<td>24.2.9.1.53.2</td>
<td>Variation 2</td>
<td>Exchange of Amino Groups</td>
</tr>
<tr>
<td>24.2.9.1.53.3</td>
<td>Variation 3</td>
<td>Alteration of Substituents on the Oxygen or Nitrogen Atom</td>
</tr>
<tr>
<td>24.2.9.1.54</td>
<td>Method 54</td>
<td>Reactions in the Ene and Acetal Moieties</td>
</tr>
<tr>
<td>24.2.9.1.55</td>
<td>Method 55</td>
<td>Alteration of Substituents on Remote Functional Groups</td>
</tr>
</tbody>
</table>

Product Subclass 10: 1-Phosphorus-Functionalized 1-(Organooxy)alk-1-enes

H. Heydt

<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.2.10</td>
<td>Synthesis of Product Subclass 10</td>
<td></td>
</tr>
<tr>
<td>24.2.10.1</td>
<td>Method 1</td>
<td>Alkylation, Acylation, Phosphorylation, and Metalation of Enols or Enolates of Acylphosphoryl Compounds</td>
</tr>
<tr>
<td>24.2.10.1.2</td>
<td>Method 2</td>
<td>Alkylation, Acylation, Silylation, Sulfonylation, and Phosphorylation of Anions of (1-Methoxyalk-2-enyl)-phosphonium Salts and Related Compounds</td>
</tr>
<tr>
<td>24.2.10.1.3</td>
<td>Method 3</td>
<td>Acylation of Dialkyl Phosphonates</td>
</tr>
<tr>
<td>24.2.10.1.4</td>
<td>Method 4</td>
<td>Reaction of Esters of Phosphinous, Phosphonous, and Phosphorous Acids (Michaelis–Arbuzov and Related Reactions)</td>
</tr>
<tr>
<td>24.2.10.1.5</td>
<td>Method 5</td>
<td>Substitution of 1-Alkoxy-1-haloalk-1-enes with Phosphines under Palladium Catalysis</td>
</tr>
<tr>
<td>24.2.10.1.6</td>
<td>Method 6</td>
<td>Elimination of Hydrogen Halides from Phosphorylated 1,2-Difunctionalized Compounds</td>
</tr>
</tbody>
</table>
24.2.10.1.7 Method 7: Generation of (1-Alkoxyalk-1-enyl)phosphonates by the Horner–Emmons Reaction 452
24.2.10.1.8 Method 8: Generation of (1-Alkoxyalk-1-enyl)phosphonates by the Peterson Alkenation Reaction 453
24.2.10.1.9 Method 9: [4 + 2]-Cycloaddition Reactions of Phosphorylated Hetero-1,3-dienes with Enol Ethers 453
24.2.10.1.10 Method 10: Addition of Phosphines, Phosphinites, Phosphonites, and Phosphites to Ketenes 454
24.2.10.1.11 Method 11: Addition of Esters of Diphenylphosphinous Acid to Unsaturated Acyl Phosphonates 455
24.2.10.1.12 Method 12: Addition of Trialkyl Phosphites or 1,1,2,2-Tetraalkoxy-diphosphines to Alk-1-ynyl Ethers 455
24.2.10.2 Applications of Product Subclass 10 in Organic Synthesis ... 456

24.2.11 Product Subclass 11: 1,1-Bis(organosulfanyl)alk-1-enes (Ketene S,S-Acetals)
W. Dölling

24.2.11.1 Synthesis of Product Subclass 11 ... 461
24.2.11.1.1 Method 1: Alkylation of Dithiocarboxylic Acids and Their Derivatives 461
24.2.11.1.1.1 Variation 1: From Dithiocarboxylic Acids .. 461
24.2.11.1.1.2 Variation 2: From Alkyl Dithiocarboxylates 462
24.2.11.1.1.3 Variation 3: From 1,1,1-Tris(alkylsulfanyl)ethanes 464
24.2.11.1.1.4 Variation 4: Reactions of Carboxylic Esters, Lactones, and Carboxylic Acids with Metal Thiolates 465
24.2.11.1.2 Method 2: Ketene S,S-Acetals from 1,1-Dihaloalkenes 466
24.2.11.1.3 Method 3: Ketene S,S-Acetals from 2-Substituted 1,1-Disulfanylated Ethanes .. 468
24.2.11.1.3.1 Variation 1: O-Acylation of 1-Aryl-2,2-bis(methylsulfanyl)ethanones 468
24.2.11.1.3.2 Variation 2: Dehydrochlorination of 2-Chloro-1,1-disulfanylethanes 468
24.2.11.1.3.3 Variation 3: Dehydration of 2,2-Bis(methylsulfanyl)ethanols 469
24.2.11.1.3.4 Variation 4: Elimination of a Thiol from 1,1,2-Tris(organosulfanyl)ethanes 472
24.2.11.1.3.5 Variation 5: Elimination of an Amine from 2-(Aminomethyl)-1,3-dithiane S,S-Dioxides 473
24.2.11.1.4 Method 4: Alkenation of Carbonyl Compounds 473
24.2.11.1.4.1 Variation 1: Using Bis(phenylsulfanyl)methylboronates 474
24.2.11.1.4.2 Variation 2: Wittig and Horner–Emmons Reactions 474
24.2.11.1.4.3 Variation 3: Peterson Reactions .. 477
24.2.11.1.5 Method 5: Synthesis from 1,3-Dithianes, Nitriles, and Amides 479
24.2.11.1.6 Method 6: Reactions of Carbon Disulfide with Carbaniions 480
24.2.11.1.6.1 Variation 1: From Aldehydes and Ketones 481
24.2.11.1.6.2 Variation 2: From Esters, Lactones, Amides, Nitriles, and Hydrazones 486
24.2.11.1.6.3 Variation 3: From Isocyanides or Nitroalkanes 494
24.2.11.1.6.4 Variation 4: From Sulfur-Stabilized Carbanions 494
Variation 5: From Phosphorus-Stabilized Carbanions 497
Variation 6: From α-Aminated Carbanions or Nitrogen Ylides 498
Variation 7: From Heterocycles Containing Endocyclic Methylene Groups 500
Variation 8: From Other Resonance-Stabilized Carbanions 501
Variation 9: From Nonstabilized Carbanions .. 501
Method 7: Transformations of Other Ketene S,S-Acetals 503
Method 8: Synthesis from the Diesters of Thioicarbonates 507
Variation 1: Reactions with Acetonitriles and Other CH-Acidic Compounds 507
Variation 2: By Desulfurization .. 508
Variation 3: By the Reactions of Carbenes or Ylides 509
Method 9: Ring Opening and/or Rearrangement ... 509
Applications of Product Subclass 11 in Organic Synthesis 510

Product Subclass 12: 1-(Organoselanyl)-1-(organosulfanyl)alk-1-ynes
and 1-(Organosulfanyl)-1-(organotellanyl)alk-1-ynes
M. Yoshimatsu

Synthesis of Product Subclass 12 .. 517
Method 1: Alkylation of Alkaneselenothioate Esters 517
Variation 1: By Alkylation of Lithium Enethiolates or Eneselenolates 517
Variation 2: By Alkylation of Ammonium Eneselenolates of
S-Alkyl Alkaneselenothioates ... 519
Variation 3: By Cadmium(II) Acetate Mediated Conversion of
S-Alkyl Alkaneselenothioates ... 520
Variation 4: By Reaction of S-Alkyl Alkaneselenothioates with
Trialkyl Phosphites ... 521
Method 2: Chalcogenation of α-Metalated
1-(Organochalcogeno)alkenes .. 521
Method 3: Horner–Emmons Alkenation of Carbonyl Compounds 524
Method 4: Alkylation with Thiols of Lithium Eneselenolates
Generated from Alkynylselenolates ... 525
Method 5: Selenenylation of 1-(Organosulfonyl)alkynes 526
Applications of Product Subclass 12 in Organic Synthesis 526

Product Subclass 13: 1-Nitrogen-Functionalized
1-(Organosulfanyl)alk-1-ynes
W. Dölling

Synthesis of Product Subclass 13 .. 529
Method 1: 1-(Organosulfanyl)alk-1-en-1-amines by
the S-Alkylation of Thiocarboxamides .. 529
Method 2: Synthesis from 1-Halo-1-(organosulfanyl)alk-1-enes or Ketene S,S-Acetals

Variation 1: Reaction of 1-Halo-1-(organosulfanyl)alk-1-enes with Amines

Variation 2: Reaction of Ketene S,S-Acetals with Amines and Related Compounds

Variation 3: Reaction of 1-Chloroethenamines with Sodium Alkanethiolates

Method 3: Synthesis from Dithiocarboxylates or Dithiocarbonates

Method 4: Synthesis from Ynamines

Method 5: Synthesis from Isothiocyanates and S-Alkylation of the Adducts

Applications of Product Subclass 13 in Organic Synthesis

Method 1: Synthesis from 1-Phosphorus-Functionalized 1-(Organosulfanyl)alkanes

Variation 1: By Elimination of Hydrogen Chloride or Methanesulfenic or Methaneselenenic Acid

Variation 2: By the Pummerer Reaction

Variation 3: By Condensation with Carbonyl Compounds and Derivatives

Applications of Product Subclass 14 in Organic Synthesis

Method 1: Selenenylation of ω-Metalated 1-(Organoselanyl)alkenes

Method 2: Nickel-Catalyzed Substitution of 1,1-Dibromoalkenes with Benzeneselenolates

Method 3: Alkenation of Carbonyl Compounds

Variation 1: Peterson Alkenation of Aldehydes with [Bis(organoselanyl)-(trimethylsilyl)methyl]lithium Reagents

Variation 2: Reaction of Lithiated 1,1-[Bis(organoselanyl)methyl]phosphonates with Aldehydes and Ketones

Method 4: β-Elimination from Selenoortho Esters with or without a 2-Hydroxy Group

Method 5: Reaction of Alkylidenecarbenes with Diselenides

Applications of Product Subclass 15 in Organic Synthesis
24.2.15.1.6 Method 6: Reaction of C—H Acidic Methylene Compounds with Carbon Diselenide .. 553

24.2.15.1.7 Method 7: Reaction of Alkenes or Alkynes with Selenols, Selenolates, or Other Selenenylation Agents 555

24.2.15.2 Applications of Product Subclass 15 in Organic Synthesis 558

24.2.16 Product Subclass 16: 1,1-Bis(organotellanyl)alk-1-enes and Derivatives

M. Yoshimatsu

24.2.16 Synthesis of Product Subclass 16 563

24.2.16.1 Method 1: Chalcogenation of α-Metalated 1-(Organochalcogeno)alk-1-enes .. 563

24.2.16.2 Method 2: Reaction of Aldehydes with Lithium [Bis(organotellanyl)methyl]phosphonates 564

24.2.16.3 Method 3: Syntheses of [1-(Organotellanyl)alkenyl]phosphonates and [1-(Organotellanyl)alkenyl]stannanes 565

24.2.16 Applications of Product Subclass 16 in Organic Synthesis .. 566

24.2.17 Product Subclass 17: 1,1-Bis(nitrogen-functionalized) Alk-1-enes

W. Kantlehner

24.2.17 Alk-1-ene-1,1-diamines .. 571

24.2.17.1 Synthesis of Alk-1-ene-1,1-diamines 571

24.2.17.1.1 Method 1: Synthesis from Chloroformamidinium Salts and Alkyllithium Compounds 571

24.2.17.1.2 Method 2: Synthesis from But-2-yne-1,1,1,4,4,4-hexamines and Trimethylsilyl Cyanide 571

24.2.17.1.3 Method 3: Synthesis from Amines and Carbenes or Carbenoids 572

24.2.17.1.4 Method 4: Synthesis from Nitroketene N,N-Acetals and (Ethoxymethylene)malonic Acid Derivatives 572

24.2.17.1.5 Method 5: Synthesis from Diaziridinones and Malonic Acid Derivatives 573

24.2.17.1.6 Method 6: Synthesis from Alk-1-yn-1-amines 573

24.2.17.1.7 Method 7: Synthesis from N-Aryl-2-chloroacetamides and Malononitrile 575

24.2.17.1.8 Method 8: Synthesis from Alkyldienemalononitriles and Compounds Containing a CH-Acidic Group 576

24.2.17.1.9 Method 9: Synthesis from Alkyldiene Malononitriles and Amines or Amine Derivatives 578

24.2.17.1.10 Method 10: Synthesis from Aziridines and Malonic Acid Derivatives 580

24.2.17.1.11 Method 11: Synthesis from 1,1,1-Trihaloalkanes .. 581
<table>
<thead>
<tr>
<th>Method</th>
<th>Synthesis Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.2.17.1.12</td>
<td>Synthesis from a Triethylammonium Dichloromethane-sulfonate Derivative</td>
</tr>
<tr>
<td>24.2.17.1.13</td>
<td>Synthesis from Anhydrides, Esters, or Amides and Tetradecyl(dimethylamino)titanium</td>
</tr>
<tr>
<td>24.2.17.1.14</td>
<td>Synthesis from Dithioesters and Amines</td>
</tr>
<tr>
<td>24.2.17.1.15</td>
<td>Synthesis from Dithioamides and Amines</td>
</tr>
<tr>
<td>24.2.17.1.16</td>
<td>Synthesis from 3H-1,2-Dithiole-3-thiones and Related Heterocycles</td>
</tr>
<tr>
<td>24.2.17.1.17</td>
<td>Synthesis from Benzodiazepines</td>
</tr>
<tr>
<td>24.2.17.1.18</td>
<td>Synthesis from (3-Oxo-3-phenylpropanoyl)malononitrile</td>
</tr>
<tr>
<td>24.2.17.1.19</td>
<td>Synthesis from Malononitrile and N,N'-Bis(2-aminoethyl)-ethane-1,2-diamine</td>
</tr>
<tr>
<td>24.2.17.1.20</td>
<td>Synthesis from Ketenes and Diaziridines</td>
</tr>
<tr>
<td>24.2.17.1.21</td>
<td>Synthesis from 1-Haloalk-1-ynes or Alk-1-yn-1-amines and Amines, Amides, or Betaines</td>
</tr>
<tr>
<td>24.2.17.1.22</td>
<td>Synthesis from 2,2-Dichloroalkanamines</td>
</tr>
<tr>
<td>24.2.17.1.23</td>
<td>Synthesis from Hetarenes</td>
</tr>
<tr>
<td>24.2.17.1.24</td>
<td>Synthesis from Chloroformamidinium Salts</td>
</tr>
<tr>
<td>24.2.17.1.25</td>
<td>Synthesis from 1,1-Dialkoxymethanediamines</td>
</tr>
<tr>
<td>24.2.17.1.26</td>
<td>Synthesis from Alkoxy-N,N,N',N'-tetraalkylformamidinium Salts</td>
</tr>
<tr>
<td>24.2.17.1.27</td>
<td>Synthesis from Isouronium Salts</td>
</tr>
<tr>
<td>24.2.17.1.28</td>
<td>Synthesis from Urea–Phosphoryl Chloride Adducts</td>
</tr>
<tr>
<td>24.2.17.1.29</td>
<td>Synthesis from Imidothiocarbamates</td>
</tr>
<tr>
<td>24.2.17.1.30</td>
<td>Synthesis from Isothiuronium Salts</td>
</tr>
<tr>
<td>24.2.17.1.31</td>
<td>Synthesis from Alkoxytris(dimethylamino)methanes or Tetrakis(dimethylamino)methane</td>
</tr>
<tr>
<td>24.2.17.1.32</td>
<td>Synthesis from Guanidinium Salts</td>
</tr>
<tr>
<td>24.2.17.1.33</td>
<td>Synthesis from Carbodiimides</td>
</tr>
<tr>
<td>24.2.17.1.34</td>
<td>Synthesis from Cyanamides</td>
</tr>
<tr>
<td>24.2.17.1.35</td>
<td>Synthesis from 1-tert-Butoxy-N,N,N',N'-tetramethylenediamine or 1,1-Diethoxy-N,N-dimethylethanamine</td>
</tr>
<tr>
<td>24.2.17.1.36</td>
<td>Synthesis from Alkyne- and Allene-Substituted Ortho Amides</td>
</tr>
<tr>
<td>24.2.17.1.37</td>
<td>Synthesis from Amidines (With C—C Bond Formation)</td>
</tr>
<tr>
<td>24.2.17.1.38</td>
<td>Synthesis from 1,2,4-Triazolium Salts</td>
</tr>
<tr>
<td>24.2.17.1.39</td>
<td>Synthesis from Amidinium Salts and Amidines (Without C—C Bond Formation)</td>
</tr>
<tr>
<td>24.2.17.1.40</td>
<td>Synthesis from 2-Haloethane-1,1-diamines</td>
</tr>
<tr>
<td>24.2.17.1.41</td>
<td>Synthesis from Diaminopropanenitriles</td>
</tr>
<tr>
<td>24.2.17.1.42</td>
<td>Synthesis from 1,1-Dihaloalk-1-enes</td>
</tr>
<tr>
<td>24.2.17.1.43</td>
<td>Synthesis from 1-Haloalk-1-en-1-amines or 6-Chloropyrimidine Derivatives</td>
</tr>
<tr>
<td>24.2.17.1.44</td>
<td>Synthesis from 1-Chloro-1-sulfonylalk-1-enes</td>
</tr>
<tr>
<td>24.2.17.1.45</td>
<td>Synthesis from Ketene O,O-Acetals</td>
</tr>
<tr>
<td>24.2.17.1.46</td>
<td>Synthesis from Ketene O,N-Acetals</td>
</tr>
<tr>
<td>24.2.17.1.47</td>
<td>Synthesis from Ketene S,S-Acetals</td>
</tr>
<tr>
<td>24.2.17.1.48</td>
<td>Synthesis from Ketene S,N-Acetals</td>
</tr>
<tr>
<td>24.2.17.1.49</td>
<td>Synthesis from Keteniminines</td>
</tr>
</tbody>
</table>
Method 50: Synthesis from 2-Bromoethenamines 682
Method 51: Synthesis from Heterocyclic or Heteroaromatic Compounds 682
Method 52: Synthesis from 3,3,3-Trihaloprop-1-en-2-amines 683
Method 53: Synthesis from 2-Aminoacrylonitriles, 2-(Alkylsulfanyl)-
acrylonitriles, or Alkylidenemalononitriles 684
Method 54: Synthesis from Amino-Substituted Hetarenes or
Dihydrohetarenes ... 686
Method 55: Synthesis Using Carbonic Acid Derivatives 688
Method 56: Synthesis from (Diethylamino)(diethyliminio)dithioacetate 693
Method 57: Synthesis from Imidazolium Salts via Nucleophilic Carbenes 694
Method 58: Synthesis from 2-Oxocyclododecane-1-carbonitrile 694

Alk-1-ene-1,1-diamines with Retention of the Functional Group
P. A. Keller and J. Morgan

4.2.17.2

Alk-1-ene-1,1-diamines with Retention of the Functional Group 707
4.2.17.2.1 Synthesis with Formation of C—C Bonds 707
4.2.17.2.1.1 Method 1: Reactions of Ketene N,N-Acetals with Carboxylic Acid Derivatives ... 707
4.2.17.2.1.2 Method 2: Reactions of Ketene N,N-Acetals with Activated Chloroalkenes, Enamines, or Nitro Compounds 709
4.2.17.2.1.3 Method 3: Reactions of Ketene N,N-Acetals with Alkynes or Allenes 711
4.2.17.2.1.4 Method 4: Reactions of Ketene N,N-Acetals with Activated Alkenes 714
4.2.17.2.1.5 Method 5: Reactions of Ketene N,N-Acetals with Alkyl or Aryl Halides, Related Alkylating Reagents, or Aryldiazenes 717
4.2.17.2.1.6 Method 6: Reactions of Ketene N,N-Acetals with Activated Methylene Compounds .. 719
4.2.17.2.2 Synthesis without Formation of New C—C Bonds 720
4.2.17.2.2.1 Method 1: Disulfide Reduction with Hydrogen 720
4.2.17.2.2.2 Method 2: Reactions of Ketene N,N-Acetals with Halogens or Halogen Carriers ... 720
4.2.17.2.2.3 Method 3: Reactions of Ketene N,N-Acetals with Sulfur Electrophiles ⋯ 721
4.2.17.2.2.4 Method 4: Reactions of Ketene N,N-Acetals with Metal Halides,
Other Metal Salts, or Metal Carbonyl Compounds 722
4.2.17.2.3 Synthesis with Cleavage of C—C Bonds 723
4.2.17.2.3.1 Method 1: Deacylation Reactions 723
4.2.17.2.4 Reactions at the Ketene N,N-Acetal Moiety ... 725
4.2.17.2.4.1 Method 1: Reactions of Ketene N,N-Acetals with
Carbonic Acid Derivatives ... 725
4.2.17.2.4.2 Method 2: Reactions of Ketene N,N-Acetals with
Carbonic Acid Derivatives ... 726
4.2.17.2.4.3 Method 3: Reactions of Ketene N,N-Acetals with
Alkynoic Acid Derivatives ... 729
4.2.17.2.4.4 Method 4: Reactions of Ketene N,N-Acetals with Ketones 729
24.2.17.2.4.5 Method 5: Reactions of Ketene N,N-Acetals with Alkylating and Arylation Reagents ... 729
24.2.17.2.4.6 Method 6: Reactions of Ketene N,N-Acetals with Mineral Acids, Potassium Iodide, and Acidic Hydrolysis 730
24.2.17.2.4.7 Method 7: Reactions of Ketene N,N-Acetals with Aqueous Sodium Hydroxide or Alcoholic Alkoxides (Hydrolysis, Cyclizations, and N-Decacylation) .. 732
24.2.17.2.4.8 Method 8: Reactions of Ketene N,N-Acetals with Sulfur and Phosphorus Electrophiles .. 732
24.2.17.2.4.9 Method 9: Reactions of Ketene N,N-Acetals with Amines .. 733
24.2.17.2.4.10 Method 10: Reactions of Ketene N,N-Acetals with Hydrogen ... 734
24.2.17.2.5 Reactions at the Periphery of the System ... 735
24.2.17.2.5.1 Method 1: Aminodechlorination Reactions ... 735
24.2.17.2.5.2 Method 2: Reactions of Imidoyl Chloride Groups .. 736
24.2.17.2.5.3 Method 3: Hydrolysis of Remote Ester or Amide Groups ... 737
24.2.17.2.5.4 Method 4: Addition of Chloro Compounds across a β-Cyano Group .. 737
24.2.17.2.5.5 Method 5: Reactions of β-Cyano Groups with Hydrogen Sulfide ... 738
24.2.17.2.5.6 Method 6: Transformations of β-Carbonyl Groups ... 739
24.2.17.2.5.7 Method 7: Transformations of β-Imidoyl Groups ... 739
24.2.17.2.5.8 Method 8: Transformations of Remote Nitro or Amino Groups ... 740
24.2.17.2.5.9 Method 9: Transformations of C\equivO Bonds .. 741
24.2.17.2.5.10 Method 10: Transformations by Oxidation or Reduction ... 741
24.2.17.2.5.11 Method 11: Alkylation Reactions .. 742
24.2.17.2.6 Transformations of Hydrazino or N-Hydroxyamino Derivatives of Ketene N,N-Acetals .. 743
24.2.17.2.6.1 Method 1: Reactions of Ketene N,N-Acetals with Isocyanates and Isothiocyanates .. 743
24.2.17.2.6.2 Method 2: Reactions of Ketene N,N-Acetals with Carboxylic Acid Derivatives .. 743
24.2.17.2.6.3 Method 3: Reactions of Ketene N,N-Acetals with Aldehydes or Ketones ... 744
24.2.17.2.6.4 Method 4: Reactions of Ketene N,N-Acetals with Diazomethane ... 744
24.2.17.2.6.5 Method 5: Reactions of Ketene N,N-Acetals with Sodium Nitrite/Hydrochloric Acid ... 744

24.2.17.3 1,1-Bisazo-, 1,1-Diazido-, and 1,1-Dinitroalk-1-enes

K. Banert

24.2.17.3 1,1-Bisazo-, 1,1-Diazido-, and 1,1-Dinitroalk-1-enes ... 747
24.2.17.3.1 Synthesis of 1,1-Bisazo-, 1,1-Diazido-, and 1,1-Dinitroalk-1-enes ... 747
24.2.17.3.3.1 Method 1: 1,1-Bisazoalk-1-enes from Formazans .. 747
24.2.17.3.1.1 Variation 1: By Dehydrogenation .. 747
24.2.17.3.1.1.2 Variation 2: By Base-Induced Deprotonation .. 748
24.2.17.3.1.1.3 Variation 3: By Dehydration .. 748
24.2.17.3.1.2 Method 2: 1,1-Diazidoalk-1-enes from 3,3-Dichloroacrylonitriles .. 749
24.2.17.3.1.3 Method 3: 1,1-Dinitroalk-1-enes by Formation of the C\equivC Bond from Two Carbon Components ... 750
Variation 1: Reactions between Di- or Trinitromethyl Reagents and Diazo Compounds .. 750
Variation 2: Reactions between Tetra- or Dinitromethane and Other Reagents ... 750
Method 4: 1,1-Dinitroalk-1-enes by Formation of the C=C Bond by Elimination ... 752
Method 5: 1,1-Dinitroalk-1-enes by Introduction of the Nitro Groups at the C=C Bonds of Alkenes 753
Method 6: 1,1-Dinitroalk-1-enes from Methyl-Substituted Heterocycles .. 755
Method 7: 1,1-Dinitroalk-1-enes by Substitution of Other 1,1-Dinitroalk-1-enes ... 757
Variation 1: By Substitution at the C=C Bond ... 757
Variation 2: By Other Substitutions ... 759
Applications of 1,1-Bisazo-, 1,1-Diazo-, and 1,1-Dinitroalk-1-enes in Organic Synthesis ... 760

Product Subclass 18: 1-Nitrogen-Functionalized 1-Phosphorus-Functionalized Alk-1-enes
M. Stankević and K. M. Pietrusiewicz

Synthesis of Product Subclass 18 ... 767
Method 1: Synthesis from Haloenamines and Haloimines ... 767
Method 2: Synthesis from 1-Phosphorus-Functionalized Alkanamines .. 768
Variation 1: By Condensation with Carbonyl Compounds ... 768
Variation 2: By the Horner–Wadsworth–Emmons Reaction ... 769
Variation 3: ByElimination ... 769
Applications of Products Subclass 18 in Organic Synthesis ... 770

Product Subclass 19: 1,1-Bis(phosphorus-functionalized) Alk-1-enes
M. Stankević and K. M. Pietrusiewicz

Synthesis of Product Subclass 19 ... 775
Method 1: Substitution Reactions of 1,1-Dihaloalkenes ... 775
Method 2: Synthesis from Methylenebis(phosphonates) and Methylenebis(phosphine sulfides) ... 776
Method 3: Synthesis from α-Acyl Ylides ... 777
Applications of Product Subclass 19 in Organic Synthesis ... 777
24.3 Product Class 3: Bis(heteroatom-functionalized) Acetylenes

24.3.1 Product Subclass 1: Dihaloacetylenes
B. Witulski and C. Alayrac

24.3.1.1 Synthesis of Product Subclass 1

24.3.1.1.1 Method 1: Vacuum Pyrolysis

24.3.1.1.2 Method 2: Electrical Discharge

24.3.1.1.3 Method 3: Photolysis

24.3.1.1.4 Method 4: Dehydrohalogenation and Dehalogenation Reactions

24.3.1.1.5 Variation 1: Dehydrohalogenation of 2-Fluoro-1,1-dihaloalkenes

24.3.1.1.6 Variation 2: Dehydrohalogenation of Trihaloalkanes

24.3.1.1.7 Variation 3: Dehalogenation of Tetrahaloalkanes

24.3.1.1.8 Variation 4: Dehydrochlorination of Trichloroethene

24.3.1.5 Method 5: Halogenation of Acetylene

24.3.1.5.1 Variation 1: Metalation and Chlorination of Acetylene

24.3.1.5.2 Variation 2: Metalation and Bromination of Acetylene

24.3.1.5.3 Variation 3: Iodination of Acetylene Using Iodine in Liquid Ammonia

24.3.1.5.4 Variation 4: Iodination of Acetylenes Using Bis(2,4,6-collidine)iodonium Hexafluorophosphate

24.3.1.2 Applications of Product Subclass 1 in Organic Synthesis

24.3.2 Product Subclass 2: 1-Heteroatom-Functionalized 2-Haloacetylenes
B. Witulski and C. Alayrac

24.3.2.1 Synthesis of Product Subclass 2

24.3.2.1.1 Method 1: Synthesis of 1-Halo-2-(triorganosilyl)acetylenes

24.3.2.1.2 Variation 1: Halogenation of Silylated Acetylenes

24.3.2.1.3 Variation 2: Halogenation of Metal Silylacetylides

24.3.2.1.4 Variation 3: Synthesis of 1-Fluoro-2-(triisopropylsilyl)acetylene from 1,1-Difluoroethene

24.3.2.1.5 Variation 4: Silylation of Metal Chloro- or Bromoacetylides

24.3.2.1.6 Variation 5: Iodination of Disilylated Acetylenes

24.3.2.1.7 Method 2: Synthesis of 1-Alkoxy-2-haloacetylenes

24.3.2.1.8 Method 3: Synthesis of 1-Halo-2-(organosulfonyl)- and 1-Halo-2-(organosulfanyl)acetylenes

24.3.2.1.9 Variation 1: Bromination of Sulfonlated Acetylenes with N-Bromosuccinimide

24.3.2.1.10 Variation 2: By the Hypobromite or Hypochlorite Methods

24.3.2.1.11 Variation 3: Halogenation of Lithium 2-Sulfanylacetylides

24.3.2.1.12 Variation 4: Alkylthiolation of Lithium Chloroacetylde
24.3.1.3.5 Variation 5: 1-(Alkylsulfanyl)-2-chloroacetylenes under Phase-Transfer Conditions .. 807
24.3.1.4 Method 4: Synthesis of 2-Haloacetylen-1-amines 808
24.3.1.4.1 Variation 1: By the Hypobromite Method 808
24.3.1.4.2 Variation 2: From 1,1-Dichloro-2-fluoroethene 808
24.3.1.4.3 Variation 3: From Chloroenamines ... 809
24.3.1.5 Method 5: Synthesis of 1-Halo-2-(phosphoryl)acetylenes 810
 24.3.1.5.1 Variation 1: By the Hypochlorite Method 811
 24.3.1.5.2 Variation 2: By the Ionin–Petrov Method 811
24.3.2 Applications of Product Subclass 2 in Organic Synthesis 812
 24.3.2.1 Method 1: Substitution Reactions toward Diheterosubstituted Acetylenes ... 812
 24.3.2.1.1 Variation 1: Heterosubstituted Ynamines 812
 24.3.2.1.2 Variation 2: 1-Heteroatom-Functionalized 2-(Phosphoryl)acetylenes .. 813
 24.3.2.2 Method 2: Cross-Coupling Reactions in the Presence of Transition Metals ... 813
 24.3.2.2.1 Variation 1: With Aryl- or Alkylcopper Reagents 813
 24.3.2.2.2 Variation 2: With Alkenylcopper Reagents 814
 24.3.2.2.3 Variation 3: 1-Bromo-2-silylacetylenes in Cadiot–Chodkiewicz Coupling Reactions .. 814
 24.3.2.2.4 Variation 4: Chemoselective Two-Carbon Homologation of Aldehydes 815
 24.3.2.2.5 Variation 5: Catalytic ortho-Ethynylation of Phenols and Anilines with 1-Chloro-2-(triethylsilyl)acetylene 816
 24.3.2.3 Method 3: Cycloaddition Reactions .. 816
24.3.3 Product Subclass 3: Bis(organooxy)acetylenes
 B. Witulski and C. Alayrac

24.3.3 Synthesis of Product Subclass 3 .. 821
 24.3.3.1 Method 1: Synthesis of Diphenoxyacetylene by Substitution Reactions .. 824
 24.3.3.1.1 Method 2: Synthesis of Bis(organooxy)acetylenes by Elimination Reactions .. 825
 24.3.3.1.2 Variation 1: From Polymeric Glyoxal 825
 24.3.3.1.2 Variation 2: Dialkoxyacetylenes from Bromoalkenes 826
 24.3.3.1.3 Variation 3: Di-tert-butoxyacetylene from trans,2,3-Dichloro-1,4-dioxane .. 828
 24.3.3.1.4 Method 3: Photochemical Synthesis of Acetylenediol 829
24.3.3.2 Applications of Product Subclass 3 in Organic Synthesis 829
 24.3.3.2.1 Method 1: Synthesis of Hexasubstituted Benzenes 829
 24.3.3.2.2 Method 2: Synthesis of Deltic Acid .. 830
 24.3.3.2.3 Method 3: Synthesis of Squaric and Semisquaric Acids 830
 24.3.3.2.4 Method 4:Synthesis of Hydrocroconic Acid and Croconate Dianion 831
24.3.4 Product Subclass 4: 1-(Organochalcogeno)-2-(organooxy)acetylenes
B. Witulski and C. Alayrac

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.3.4.1</td>
<td>Synthesis of Product Subclass 4</td>
<td>835-836</td>
</tr>
<tr>
<td>24.3.4.1.1</td>
<td>Method 1: Substitution Reactions of Lithium Alkoxyacetylides</td>
<td>836</td>
</tr>
<tr>
<td>24.3.4.1.2</td>
<td>Method 2: Substitution Reactions of 1-Alkoxy-2-stannylacetylenes</td>
<td>837</td>
</tr>
<tr>
<td>24.3.4.1.3</td>
<td>Method 3: Elimination Reactions of 1,1-Dichloro-2-(organosulfanyl)ethenes</td>
<td>837</td>
</tr>
<tr>
<td>24.3.4.1.4</td>
<td>Method 4: Elimination of Hydrogen Chloride from 1,2-Dichloro-2-(phenylselenyl)ethene</td>
<td>838</td>
</tr>
<tr>
<td>24.3.4.2</td>
<td>Applications of Product Subclass 4 in Organic Synthesis</td>
<td>839</td>
</tr>
</tbody>
</table>

24.3.5 Product Subclass 5: 1-Nitrogen-Functionalized 2-(Organooxy)acetylenes
B. Witulski and C. Alayrac

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.3.5.1</td>
<td>Synthesis of Product Subclass 5</td>
<td>841</td>
</tr>
<tr>
<td>24.3.5.1.1</td>
<td>Method 1: Generation of 2-Aminoacetylen-1-ols</td>
<td>841</td>
</tr>
</tbody>
</table>

24.3.6 Product Subclass 6: 1-Phosphorus-Functionalized 2-(Organooxy)acetylenes
B. Witulski and C. Alayrac

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.3.6.1</td>
<td>Synthesis of Product Subclass 6</td>
<td>843</td>
</tr>
<tr>
<td>24.3.6.1.1</td>
<td>Method 1: Substitution Reactions of (Chloroethynyl)phosphonates</td>
<td>843</td>
</tr>
<tr>
<td>24.3.6.1.2</td>
<td>Method 2: Substitution Reactions of Lithium Alkoxyacetylides</td>
<td>844</td>
</tr>
<tr>
<td>24.3.6.1.3</td>
<td>Method 3: Reaction of Potassium Alkoxyacetylides with Tetr phenylphosphonium Chloride</td>
<td>845</td>
</tr>
<tr>
<td>24.3.6.1.4</td>
<td>Method 4: Sulfuration of 1-Alkoxy-2-phosphinoacetylenes</td>
<td>845</td>
</tr>
<tr>
<td>24.3.6.2</td>
<td>Applications of Product Subclass 6 in Organic Synthesis</td>
<td>845</td>
</tr>
<tr>
<td>24.3.6.2.1</td>
<td>Method 1: Synthesis of (Oxovinylidene)phosphoranes</td>
<td>846</td>
</tr>
<tr>
<td>24.3.6.2.2</td>
<td>Method 2: Synthesis of Aminophosphoranes</td>
<td>846</td>
</tr>
<tr>
<td>24.3.6.2.3</td>
<td>Method 3: Synthesis of Silyl- or Germyl(thiophosphoryl)ketenes</td>
<td>846</td>
</tr>
<tr>
<td>24.3.6.2.4</td>
<td>Method 4: Cycloaddition Reactions</td>
<td>847</td>
</tr>
</tbody>
</table>

24.3.7 Product Subclass 7: Bis(organochalcogeno)acetylenes
T. Murai

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.3.7.1</td>
<td>Synthesis of Product Subclass 7</td>
<td>849</td>
</tr>
</tbody>
</table>
Bis(organosulfanyl)acetylenes .. 849

Method 1: Reaction of Electrophilic Acetylenic Species with
Organosulfanyl Compounds .. 849

Method 2: Reaction of Metal Acetylides with Organosulfanyl Compounds 851

Method 3: Elimination from 1-Chloro-1,2-bis(organosulfanyl)ethenes 853

Method 4: Oxidation of 1,2-Bis(organosulfanyl)acetylenes 854

1-(Organoselanyl)-2-(organosulfanyl)acetylenes 854

Method 1: Reaction of 1-Chloro-2-(organosulfanyl)acetylenes with
Organoselenols .. 854

1-(Organosulfanyl)-2-(organotellanyl)acetylenes 855

Method 1: Reaction of Diorgano Ditellurides with
1,1-Dichloro-2-(organosulfanyl)ethenes 855

Bis(organoselanyl)acetylenes .. 855

Method 1: Reaction of Sodium Acetylide with Elemental Selenium and
Alkyl Halides .. 855

Method 2: Reaction of Lithium Acetylides with
Bis(selenocyanato)alkanes .. 856

Method 3: Reaction of (Organoselanyl)acetylides with
Areneselenenyl Halides .. 856

Bis(organotellanyl)acetylenes .. 856

Method 1: Reaction of Dimetal Acetylides with Elemental Tellurium and
Alkyl Halides or Organotellanyl Compounds 857

Method 2: Reaction of Acetylene with Dialkyl Ditellurides 857

Product Subclass 8: 1-Nitrogen-Functionalized
2-(Organochalcogeno)acetylenes
T. Murai

Product Subclass 8: 1-Nitrogen-Functionalized
2-(Organochalcogeno)acetylenes ... 859

Synthesis of Product Subclass 8 ... 859

N,N-Dialkyl-2-(organosulfanyl)acetylen-1-amines 859

Method 1: Reaction of 1-Chloro-2-(organosulfanyl)acetylenes with
Amines or Metal Amides .. 859

Variation 1: Reaction of Phenyl(2-tosylethynyl)iodonium
Trifluoromethanesulfonate with Metal Amides 860

Method 2: Reaction of Metal 2-(Diorganoamino)acetylides with
Sulfur and Alkyl Halides or Sulfur Electrophiles 861

2-(Organoselanyl)acetylen-1-amines 861

Method 1: Reaction of Phenyl 2,2,2-Trifluoroethyl Selenide with
Lithium Dialkylamides ... 861
24.3.9 Product Subclass 9: 2-Phosphorus-Functionalized 1-(Organochalcogeno)acetylenes
T. Murai

24.3.9.1 Synthesis of Product Subclass 9

24.3.9.1.1 Method 1: Reaction of 1-Chloro-2-(organosulfanyl)acetylenes with Trivalent Phosphorus Compounds

24.3.9.1.2 Method 2: Reaction of 1-Chloro-2-phosphorylacetylenes with Thiols or Metal Thiolates

24.3.10 Product Subclass 10: Bis(nitrogen-functionalized) Acetylenes
B. Witulski and C. Alayrac

24.3.10.1 Synthesis of Product Subclass 10

24.3.10.1.1 Method 1: Synthesis from α-Diiminium Salts

24.3.10.1.2 Method 2: Synthesis from 1-Bromoethene-1,2-diamines

24.3.10.1.3 Method 3: Synthesis from Chloroketene N,N-Acetals

24.3.10.1.4 Method 4: One-Pot Procedure from Trichloroethenamines

24.3.10.1.5 Method 5: Flash Pyrolysis

24.3.10.1.6 Method 6: Dimerization of Alkyl Isocyanides

24.3.10.1.7 Method 7: One-Pot Procedure from Trichloroethenamines

24.3.10.2 Applications of Product Subclass 10 in Organic Synthesis

24.3.10.2.1 Method 1: Synthesis of N,N,N',N'-Tetraethylchalcogenooxalamides

24.3.10.2.2 Method 2: Synthesis of Bis(dialkylamino)cyclopropane Derivatives

24.3.10.2.2.1 Variation 1: Bis(dialkylamino)cyclopropenethiones

24.3.10.2.2.2 Variation 2: Bis(dialkylamino)cyclopropenimines

24.3.10.2.3 Method 3: Synthesis of Bis(dialkylamino)cyclobutene Derivatives

24.3.10.2.3.1 Variation 1: Tris- or Tetrakis(dimethylamino)cyclobutenes

24.3.10.2.3.2 Variation 2: Spiro-Annulated Products

24.3.10.2.4 Method 4: Synthesis of Heterocyclic Compounds

24.3.10.2.4.1 Variation 1: N,N,N',N'-Tetramethylpyrazolediamines

24.3.10.2.4.2 Variation 2: 2,6-Diazabicyclo[2.2.2]oct-7-ene-3,5-diones

24.3.10.2.4.3 Variation 3: 2-Thia-1-phosphabicyclo[3.2.0]hepta-3,6-diene-6,7-diamines

24.3.10.2.4.4 Variation 4: 1,3-Diphospha-Dewar Benzenes

24.3.10.2.5 Method 5: Synthesis of Metal Complexes

24.3.10.2.5.1 Variation 1: Tricarbonyliron Complexes of Cyclopentadienones

24.3.10.2.5.2 Variation 2: Tricyanoiron Complexes of Cyclopentadienones
Variation 2: Cyclobutenylidene Complexes of Pentacarbonyltungsten 880

Variation 3: \(N,N',N'\text{-Tetraethyl-3-methoxyindene-1,2-diamine as a Ligand of Tricarbonylchromium}\) 881

Product Subclass 11: 1-Nitrogen-Functionalized 2-Phosphorus-Functionalized Acetylenes and Bis(phosphorus-functionalized) Acetylenes 883

Method 1: Synthesis of 1-Amino-2-(phosphoryl)acetylenes 885
Method 2: Synthesis of 1-Amino-2-(thiophosphoryl)acetylenes 887
Method 3: Synthesis of 1-Amino-2-(selenophosphoryl)acetylenes 887
Method 4: Synthesis of 1-Amino-2-(phosphorimidoyl)acetylenes 888
Method 5: Synthesis of (Aminoethynyl)triphenylphosphonium Salts 889
Method 6: Synthesis of 1-Amino-2-(phosphino)acetylenes 890
Method 7: Synthesis of Bis(phosphorylated) Acetylenes 890
Method 8: Synthesis of Bis(thiophosphoryl)acetylenes 891
Method 9: Synthesis of Bis(diorganoselenophosphoryl)acetylenes 894
Method 10: Synthesis of Bis(phosphorimidoyl)acetylenes 894
Method 11: Synthesis of Bis(dihalophosphino)acetylenes 895
Method 12: Synthesis of Bis[(dialkylamino)phosphino]acetylenes 896
Method 13: Synthesis of Bis(phosphino)acetylenes from Acetylene 896
Method 14: Synthesis of Bis(phosphino)acetylenes from Tetrachloroethene 897
Method 15: Synthesis of Bis(phosphino)acetylene from 1,4-Diphosphabutatriene 898

Method 1: Synthesis of 1-Amino-2-(phosphoryl)acetylenes 885
Method 2: Synthesis of 1-Amino-2-(thiophosphoryl)acetylenes 887
Method 4: Synthesis of 1-Amino-2-(phosphorimidoyl)acetylenes 888
Method 5: Synthesis of (Aminoethynyl)triphenylphosphonium Salts 889
Method 6: Synthesis of 1-Amino-2-(phosphino)acetylenes 890
Method 7: Synthesis of Bis(phosphorylated) Acetylenes 891
Method 8: Synthesis of Bis(thiophosphoryl)acetylenes 891
Method 9: Synthesis of Bis(diorganoselenophosphoryl)acetylenes 894
Method 10: Synthesis of Bis(phosphorimidoyl)acetylenes 894
Method 11: Synthesis of Bis(dihalophosphino)acetylenes 895
Method 12: Synthesis of Bis[(dialkylamino)phosphino]acetylenes 896
Method 13: Synthesis of Bis(phosphino)acetylenes from Acetylene 896
Method 14: Synthesis of Bis(phosphino)acetylenes from Tetrachloroethene 897
Method 15: Synthesis of Bis(phosphino)acetylene from 1,4-Diphosphabutatriene 898

Method 1: Synthesis of 1-Amino-2-(phosphoryl)acetylenes 885
Method 2: Synthesis of 1-Amino-2-(thiophosphoryl)acetylenes 887
Method 4: Synthesis of 1-Amino-2-(phosphorimidoyl)acetylenes 888
Method 5: Synthesis of (Aminoethynyl)triphenylphosphonium Salts 889
Method 6: Synthesis of 1-Amino-2-(phosphino)acetylenes 890
Method 7: Synthesis of Bis(phosphorylated) Acetylenes 891
Method 8: Synthesis of Bis(thiophosphoryl)acetylenes 891
Method 9: Synthesis of Bis(diorganoselenophosphoryl)acetylenes 894
Method 10: Synthesis of Bis(phosphorimidoyl)acetylenes 894
Method 11: Synthesis of Bis(dihalophosphino)acetylenes 895
Method 12: Synthesis of Bis[(dialkylamino)phosphino]acetylenes 896
Method 13: Synthesis of Bis(phosphino)acetylenes from Acetylene 896
Method 14: Synthesis of Bis(phosphino)acetylenes from Tetrachloroethene 897
Method 15: Synthesis of Bis(phosphino)acetylene from 1,4-Diphosphabutatriene 898

Method 1: Synthesis of 1-Amino-2-(phosphoryl)acetylenes 885
Method 2: Synthesis of 1-Amino-2-(thiophosphoryl)acetylenes 887
Method 4: Synthesis of 1-Amino-2-(phosphorimidoyl)acetylenes 888
Method 5: Synthesis of (Aminoethynyl)triphenylphosphonium Salts 889
Method 6: Synthesis of 1-Amino-2-(phosphino)acetylenes 890
Method 7: Synthesis of Bis(phosphorylated) Acetylenes 891
Method 8: Synthesis of Bis(thiophosphoryl)acetylenes 891
Method 9: Synthesis of Bis(diorganoselenophosphoryl)acetylenes 894
Method 10: Synthesis of Bis(phosphorimidoyl)acetylenes 894
Method 11: Synthesis of Bis(dihalophosphino)acetylenes 895
Method 12: Synthesis of Bis[(dialkylamino)phosphino]acetylenes 896
Method 13: Synthesis of Bis(phosphino)acetylenes from Acetylene 896
Method 14: Synthesis of Bis(phosphino)acetylenes from Tetrachloroethene 897
Method 15: Synthesis of Bis(phosphino)acetylene from 1,4-Diphosphabutatriene 898
Applications of Product Subclass 11 in Organic Synthesis

24.3.11.2 Method 1: Diels–Alder Reactions

24.3.11.2.1 Method 2: Synthesis of Triazoles by Addition to Azides

24.3.11.2.2 Method 3: Synthesis of Pyrazoles by [3 + 2]-Cycloaddition Reactions with Diazoolkanes

24.3.11.2.3 Method 4: Synthesis of 1,3-Diphosphaallylium Salts

24.3.11.2.4 Method 5: Synthesis of Metal Complexes from Bis(diphenylphosphino)acetylene

Product Class 4: 1-Heteroatom-Functionalized Alk-1-ynes

24.4 Product Subclass 1: 1-Haloalk-1-ynes and Alk-1-yn-1-ols

B. Witulski and C. Alayrac

Synthesis of Product Subclass 1

24.4.1 Method 1: Halogenation of Alk-1-ynes

24.4.1.1 Variation 1: By Reaction with N-Halosuccinimides

24.4.1.2 Variation 2: Bis(trimethylsilyl) Peroxide and Metal-Promoted Transfer of Halides

24.4.1.3 Variation 3: Straus Reaction

24.4.1.4 Variation 4: Bromination Reaction with Triphenylphosphine and Carbon Tetrabromide

24.4.1.5 Variation 5: Iodination with a Polymer-Supported Bis(acyloxy)iodate(I) Reagent

24.4.1.6 Variation 6: Iodination with Bis(2,4,6-collidine)iodonium Hexafluorophosphate

24.4.1.7 Variation 7: Iodination with Molecular Iodine

24.4.1.8 Method 2: Halogenation of Metal Acetylides

24.4.1.9 Variation 1: Halogenation with Molecular Bromine or Iodine

24.4.1.10 Variation 2: Chlorination of Lithium Acetylides with N-Chlorosuccinimide

24.4.1.11 Variation 3: Iodination of Sodium Acetylides with Bis(pyridine)iodonium Tetrafluoroborate

24.4.1.12 Method 3: Halodecarboxylation of Propynoic Acids

24.4.1.13 Variation 1: With N-Halosuccinimides and Tetrabutylammonium Trifluoroacetate

24.4.1.14 Variation 2: With Bis(2,4,6-collidine)iodonium or Bis(2,4,6-collidine)-bromonium Hexafluorophosphate

24.4.1.15 Method 4: Direct Transformation of Trimethylsilylalkynes into Haloalkynes

24.4.1.16 Method 5: Dehydrohalogenation of 1,1-Dihaloalkenes

24.4.1.17 Variation 1: Dehydrohalogenation under Phase-Transfer Conditions

24.4.1.18 Variation 2: Dehydrohalogenation in Organic Solvents

24.4.1.19 Method 6: Dehalogenation of Oligohaloalkanes with a Metal

24.4.1.20 Method 7: Functionalization of Metal Haloacetylides
Method 8: Synthesis of 1-Haloalk-1-ynes from Carbonyl Compounds

Variation 1: Synthesis of 2-Aryl-1-bromoacetylenes from Hydrazones

Variation 2: Synthesis of 1-Chloroalk-1-ynes from Dihydroisoxazolones

Variation 3: Synthesis of 1-Chloroalk-1-ynes from Esters

Variation 4: One-Pot Conversion of Aldehydes into 1-Haloalk-1-ynes with Dihalomethylphosphonates

Variation 5: One-Pot Conversion of Aldehydes into 1-Haloalk-1-ynes with Dihalomethylenetriphenylphosphoranes

Method 9: Base-Induced Rearrangement of (Z)-(2-Halovinyl)iodonium Salts

Method 10: Synthesis of 1-Fluoroalk-1-ynes by Electrical Discharge

Method 11: Synthesis of 1-Haloalk-1-ynes by Vacuum Pyrolysis

Method 12: Synthesis of 1-Haloalk-1-ynes by Photolysis

Method 13: Photochemical Synthesis of Alk-1-yn-1-ols

Applications of Product Subclass 1 in Organic Synthesis

Method 1: Cadiot–Chodkiewicz Coupling

Method 2: Cross Coupling of 1-Haloalk-1-ynes with Metalated Ethenes

Method 3: Cross-Coupling Reactions of 1-Haloalk-1-ynes with Alkylzinc–Copper Reagents

Method 4: Synthesis of Stereochemically Defined Vinylboronates by Hydroboration of 1-Haloalk-1-ynes

Product Subclass 2: 1-(Organooxy)alk-1-ynes and 1-(Heterooxy)alk-1-ynes

B. Witulski and C. Alayrac

Synthesis of Product Subclass 2

Method 1: Synthesis of Alk-1-ynyl Carbamates by Elimination

Method 2: Synthesis of Alk-1-ynyl Carboxylates from Alk-1-ynyliodonium Salts

Method 3: Synthesis of Alk-1-ynyl Ethers from 1-Alkoxy-2-haloacetylenes

Method 4: Synthesis of Alk-1-ynyl Ethers by Dehydrohalogenation

Variation 1: From Alkoxides and Trichloroethene

Variation 2: Dehydrohalogenation of 2-Halovinyl Ethers

Variation 3: From Chloroacctalddehyde Dialkyl Acetals

Variation 4: From 2,2,2-Trifluoroethyl Ethers

Variation 5: From Acetates

Method 5: Synthesis of Alk-1-ynyl Sulfonates from Alk-1-ynyliodonium Salts

Method 6: Synthesis of Dialkyl Alk-1-ynyl Phosphates from Alk-1-ynyliodonium Salts

Method 7: Synthesis of 1-Siloxyalk-1-ynes from Alk-1-ynyliodonium Salts

Method 8: From Lithium Alk-1-ynolates

Method 9: From 1-Siloxyalk-1-ynes
24.4.2.1.7.2 Variation 2: By Oxygenation of Acetylides 946
24.4.2.1.7.3 Variation 3: From Ester-Derived Ynoles 947
24.4.2.1.7.4 Variation 4: From (Z)-2-Halovinyl Silyl Ethers 948
24.4.2.1.7.5 Variation 5: From Silylated α-Diazo Carbonyl Compounds 949
24.4.2.2 Applications of Product Subclass 2 in Organic Synthesis 950
24.4.2.2.1 Method 1: Synthesis of Stereochemically Defined Metalated Vinyl Ethers 950
24.4.2.2.2 Method 2: Addition Reactions to Carbonyl Compounds 952
24.4.2.2.3 Method 3: Enyne Metathesis .. 952
24.4.2.2.4 Method 4: Metal- or Acid-Promoted Cycloisomerization of 1-Siloxyalk-1-ynes 953
24.4.2.2.5 Method 5: Aromatic Annulation Reactions 953

24.4.3 Product Subclass 3: 1-(Organosulfanyl)-, 1-(Organoselanyl)-, and 1-(Organotellanyl)alk-1-ynes
V. A. Potapov and B. A. Trofimov

24.4.3.1 (Organosulfanyl)-, (Organoselanyl)-, and (Organotellanyl)acetylenes 958
24.4.3.1.1 Synthesis of (Organosulfanyl)-, (Organoselanyl)-, and (Organotellanyl)acetylenes 958
24.4.3.1.1.1 Method 1: Synthesis from Metal Acetylides and Chalcogen Electrophiles 958
24.4.3.1.1.2 Method 2: Synthesis from Ethynylmagnesium Halides and Organochalcogeno Halides 960
24.4.3.1.1.3 Method 3: (Organotellanyl)acetylenes from Acetylene, Diorgano Ditellurides, and Iodomethane 961
24.4.3.1.1.4 Method 4: Dehydrohalogenation Reactions 962
24.4.3.1.1.5 Method 5: (Organosulfanyl)acetylenes from 1,2-Bis(organosulfanyl)-ethenes and 1-(Organooxy)-2-(organosulfanyl)ethenes 963
24.4.3.1.2 Applications of (Organosulfanyl)-, (Organoselanyl)-, and (Organotellanyl)-acetylenes in Organic Synthesis 964
24.4.3.1.2.1 Method 1: The Mannich Reaction .. 965
24.4.3.1.2.2 Method 2: Syntheses Based on the Reactions of Metal (Organosulfanyl)-acetylides .. 965
24.4.3.1.2.3 Method 3: Syntheses Based on the Addition and Cycloaddition Reactions of (Organochalcogeno)acetylenes 966
24.4.3.1.2.4 Method 4: Oxidation of (Organosulfanyl)acetylenes to (Organosulfinyl)- and (Organosulfonyl)acetylenes 968
24.4.3.1.2.5 Method 5: Dialk-1-ynyl Sulfides, Selenides, and Tellurides 968
24.4.3.1.2.6 Method 6: Synthesis of Dialk-1-ynyl Sulfides, Selenides, and Tellurides 969
24.4.3.1.2.7 Method 1: Synthesis from Metal Acetylides and Chalcogen Halides 969
24.4.3.1.2.8 Method 2: Dialk-1-ynyl Selenides and Tellurides from Selenium and Tellurium Amides and Alk-1-ynes 969
24.4.3.1.2.9 Method 3: Dialk-1-ynyl Sulfides by Dehydrohalogenation Reactions .. 970
24.4.3.1 Method 1: Synthesis of Heterocyclic Compounds from Dialk-1-ynyl Sulfides

24.4.3.2.1 Method 1: Synthesis of Heterocyclic Compounds from Dialk-1-ynyl Sulfides

24.4.3.3.1 Synthesis of 1-(Alkylsulfanyl)- and 1-(Arylsulfanyl)alk-1-ynes and Their Selenium and Tellurium Analogues

24.4.3.3.1.1 Method 1: Synthesis from Metal Acetylides, Elemental Chalcogens, and Haloalkanes

24.4.3.3.1.2 Method 2: Synthesis from Metal Acetylides and Electrophilic Chalcogen Species

24.4.3.3.1.3 Method 3: Synthesis from Alk-1-ynes, Chalcogen Electrophiles, and Copper(I) Salts

24.4.3.3.1.4 Method 4: Synthesis from Alk-1-ynylidonium Salts and Chalcogen Nucleophiles

24.4.3.3.1.5 Method 5: 1-(Phenylselanyl)alk-1-ynes from Alk-1-ynes, Diphenyl Diselenide, and (Diacetoxyiodo)benzene

24.4.3.3.1.6 Method 6: 1-(Arylchalcogeno)alk-1-ynes from Dialk-1-ynylmercurials and Diaryl Dichalcogenides

24.4.3.3.1.7 Method 7: Synthesis from 1-Haloalk-1-ynes in the Presence of Copper(I) Iodide

24.4.3.3.1.8 Method 8: 1-(Organosulfanyl)- and 1-(Organoselanyl)alk-1-ynes from 1,2,3-Thia- and 1,2,3-Selenadiazoles

24.4.3.3.1.9 Method 9: 1-(Alkylsulfanyl)- and 1-(Arylsulfanyl)alk-1-ynes by Elimination Reactions

24.4.3.3.1.10 Methods 10: Additional Methods

24.4.3.3.2 Applications of 1-(Alkylsulfanyl)- and 1-(Arylsulfanyl)alk-1-ynes and Their Selenium and Tellurium Analogues

24.4.3.3.2.1 Method 1: Generation of Alk-1-ynylmetals from 1-(Organoselanyl)- and 1-(Organotellanyl)alk-1-ynes

24.4.3.3.2.2 Method 2: Cross-Coupling Reactions

24.4.3.3.2.3 Method 3: Synthesis of Stereodefined Alkenes
24.3.2.4 Method 4: Cycloaddition Reactions .. 992
24.3.2.5 Method 5: Oxidation of 1-(Organosulfanyl)alk-1-ynes to 1-(Organosulfinyl)- and 1-(Organosulfonyl)alk-1-ynes 993
24.3.2.6 Methods 6: Additional Methods .. 994
24.3.4.1 Synthesis of 1-(Vinylsulfanyl)-, 1-(Vinylselanyl)-, and 1-(Vinyltellanyl)-alk-1-ynes .. 996
24.3.4.1.1 Method 1: Synthesis from Lithium Acetylides and Vinylsulfenamides 996
24.3.4.1.2 Method 2: Dehydrohalogenation Reactions 997
24.3.4.1.2 Applications of 1-(Vinylsulfanyl)-, 1-(Vinylselanyl)-, and 1-(Vinyltellanyl)-alk-1-ynes in Organic Synthesis 998
24.3.4.1.2 Method 1: Synthesis of Heterocyclic Compounds from 1-(Vinylsulfanyl)alk-1-ynes 998

24.4 Product Subclass 4: 1-Nitrogen-Functionalized Alk-1-ynes

24.4.1 Alk-1-yn-1-amines
B. Witulski and C. Alayrac

24.4.1.1 Synthesis of Alk-1-yn-1-amines .. 1009
24.4.1.1.1 Method 1: Electrophilic Amination of Metal Acetylides 1009
24.4.1.1.2 Method 2: Synthesis from 1-Haloalk-1-ynes 1010
24.4.1.1.3 Method 3: Synthesis from Alk-1-ynyliodonium Salts 1011
24.4.1.1.4 Method 4: Synthesis from 1-Alkoxyalk-1-ynes 1012
24.4.1.1.5 Method 5: Synthesis from 1,1-Dihaloalkenes 1013
24.4.1.1.6 Method 6: Elimination Reactions of Halogenated Enamines 1014
24.4.1.1.6.1 Variation 1: From β-Halogenated Enamines 1014
24.4.1.1.6.2 Variation 2: From α,β-Di- or Trihalogenated Enamines 1014
24.4.1.1.7 Method 7: Shapiro-Type Eliminations 1016
24.4.1.1.8 Method 8: Fragmentation Reactions 1016
24.4.1.1.8.1 Variation 1: Lithiation and Fragmentation of 1-Phenyl-1,2,3-triazoles 1017
24.4.1.1.8.2 Variation 2: By Flash-Vacuum Pyrolysis 1017
24.4.1.1.8.3 Variation 3: Flash-Photolytic Generation of Primary, Secondary, and Tertiary Alk-1-yn-1-amines 1018
24.4.1.1.9 Method 9: Base-Catalyzed Isomerization of Propargylamines 1019
24.4.1.2 Applications of Alk-1-yn-1-amines in Organic Synthesis 1020
24.4.1.2.1 Method 1: Stereochemically Defined Enamines by the Carbo- or Silylmetallation of Alk-1-yn-1-amines 1021
24.4.1.2.2 Method 2: One-Carbon Homologation of Carboxylic Acids 1021
24.4.1.2.3 Method 3: Alkylation of Alk-1-yn-1-amines by Claisen Rearrangements 1022
24.4.1.2.4 Method 4: [2 + 2] Cycloadditions with Cyclopentenones and Cyclohexenones 1023
24.4.2 N-Acyl- and N-Sulfonylalk-1-yn-1-amines

B. Witulski and C. Alayrac

24.4.2.1 Synthesis of N-Acyl- and N-Sulfonylalk-1-yn-1-amines

- **Method 1:** N-Alkynylation with Alkynyliodonium Salts .. 1033
- **Method 2:** Copper-Promoted Cross Coupling of 1-Haloalk-1-ynes with Amides 1034
 - **Variation 1:** With a Stoichiometric Amount of a Copper(I) Salt .. 1035
 - **Variation 2:** With Catalytic Amounts of Copper(I) or Copper(II) Salts 1036
- **Method 3:** Elimination Reactions ... 1037
 - **Variation 1:** By a Formamide to Ynamide Homologation .. 1037
 - **Variation 2:** From /C226, /C226-Dichloroenamides by Suzuki–Miyaura Coupling and Dehydrochlorination .. 1038
 - **Variation 3:** Bromination/Dehydrobromination of Enamides ... 1039
 - **Variation 4:** Dechlorination of Trichlorinated Enamides Derived from Pyrimidine Bases 1040
- **Method 4:** Functionalization of Ynamides ... 1041
- **Method 5:** Deallylation of Ynamides .. 1041
- **Method 6:** Negishi Coupling with Ynamides ... 1043
- **Method 7:** Sonogashira Coupling with Ynamides ... 1044

24.4.2.2 Applications of N-Acyl- and N-Sulfonylalk-1-yn-1-amines in Organic Synthesis

- **Method 1:** Regioselective Hydrometalation or Carbometalation of Ynamides 1048
- **Method 2:** Transition-Metal-Catalyzed Cross-Coupling Reactions with Ynamides 1049
- **Method 3:** Intramolecular Cyclizations .. 1050
- **Method 4:** Ring-Closing Ene–yne Metathesis with Ynamides .. 1051
- **Method 5:** Pauson–Khand Reactions with Ynamides ... 1052
- **Method 6:** [4 + 2] Cycloadditions ... 1054
- **Method 7:** [2 + 2 + 2] Cycloadditions .. 1054
24.4.3 Alk-1-ynyldiazonium Salts, 1-Azidoalk-1-ynes, and 1-Nitroalk-1-ynes
K. Banert

24.4.3 Synthesis of Alk-1-ynyldiazonium Salts, 1-Azidoalk-1-ynes, and 1-Nitroalk-1-ynes

24.4.3.1 Method 1: Synthesis of Alk-1-ynyldiazonium Salts

24.4.3.1.1 Variation 1: From a 1-Nitrosoalk-1-yne

24.4.3.1.2 Variation 2: From a 1-Chloro-1-(tosylazo)alk-1-ene

24.4.3.1.3 Method 2: Synthesis of 1-Azidoalk-1-ynes

24.4.3.1.4 Variation 1: Introduction of the Azido Group by Nucleophilic Substitution

24.4.3.1.5 Variation 2: Formation of the C≡C Bond by Elimination of Halogen

24.4.3.1.6 Variation 3: Oxidation of 1-Nitrosoalk-1-ynes

24.4.3.2 Method 3: Synthesis of 1-Nitroalk-1-ynes

24.4.3.2.1 Variation 1: Formation of the C≡C Bond by Elimination

24.4.3.2.2 Variation 2: Introduction of the Nitro Group by Substitution Reactions

24.4.3.2.3 Variation 3: Oxidation of 1-Nitrosoalk-1-ynes

24.4.4 Application of Alk-1-ynyldiazonium Salts, 1-Azidoalk-1-ynes, and 1-Nitroalk-1-ynes in Organic Synthesis

24.4.5 Product Subclass 5: 1-Phosphorus-Functionalized Alk-1-ynes
K. M. Pietrusiewicz and M. Stankević

24.4.5 Synthesis of Product Subclass 5

24.4.5.1 Method 1: Nucleophilic Substitution Reactions at Phosphorus with Alkali Metal Acetylides

24.4.5.2 Method 2: Reaction of Phosphorus Nucleophiles with Electrophilic Alkynes

24.4.5.2.1 Variation 1: From Triorgano Phosphites (Michaelis–Arbuzov Reaction)

24.4.5.2.2 Variation 2: From Diorgano Phosphites (Michaelis–Becker Reaction)

24.4.5.2.3 Variation 3: From Tertiary Phosphines by Quaternization

24.4.5.3 Method 3: Elimination

24.4.5.3.1 Variation 1: From Phosphorus-Substituted Alkenes

24.4.5.3.2 Variation 2: From α-Phosphorus-Substituted Ketones

24.4.5.4 Method 4: Coupling of Phosphorus Derivatives with Alkynes and Alkenes

24.4.5.5 Method 5: Structural Modification of Other Phosphorus-Substituted Alkynes

24.4.5.5.1 Variation 1: Modification of the Phosphorus Functionality

24.4.5.5.2 Variation 2: Modification of the Alkyne Fragment

24.4.5.6 Applications of Product Subclass 5 in Organic Synthesis
Table of Contents

Keyword Index ... 1087
Author Index .. 1145
Abbreviations ... 1189
Volume 25:
Aldehydes

Preface ... V
Volume Editor's Preface .. VII
Table of Contents .. XIII

Introduction
R. Brückner .. 1

25.1 Product Class 1: Aliphatic and Alicyclic Aldehydes

25.1.1 Synthesis by Oxidative Cleavage
J. Podlech .. 17

25.1.2 Synthesis by Oxidation
J. Podlech .. 25

25.1.3 Synthesis by Isomerization
A. Gansäuer and K. Muñiz .. 57

25.1.4 Synthesis by Reduction or by Reduction Followed by Hydrolysis
C. Harcken ... 65

25.1.5 Synthesis by Elimination or Rearrangement
M. Kalesse ... 137

25.1.6 Synthesis by Protonation
M. Kalesse ... 147

25.1.7 Synthesis by Hydrolysis
B. Plietker ... 151

25.1.8 Synthesis by Hydration of Alkynes
M. Oestreich .. 199

25.1.9 Synthesis by Formylation of Enolates
T. J. J. Müller ... 213

25.1.10 Synthesis by Homologation of Aldehydes
A. Lindenschmidt ... 237

25.1.11 Synthesis by Hydroformylation of Alkenes
B. Breit ... 277
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.1.12</td>
<td>Synthesis by C₁-Extension of Alkyl Halides</td>
<td>A. S. K. Hashmi</td>
<td>319</td>
</tr>
<tr>
<td>25.1.13</td>
<td>Synthesis by C₁-Extension of Organometallics</td>
<td>A. S. K. Hashmi</td>
<td>337</td>
</tr>
<tr>
<td>25.1.14</td>
<td>Synthesis by C₂-Elongation</td>
<td>R. Göttlich</td>
<td>355</td>
</tr>
<tr>
<td>25.1.15</td>
<td>Synthesis by C₂-Elongation</td>
<td>R. Göttlich</td>
<td>369</td>
</tr>
<tr>
<td>25.1.16</td>
<td>Synthesis by Diels–Alder Reactions with Enals or Their Acetals</td>
<td>B. Witulski and C. Alayrac</td>
<td>405</td>
</tr>
<tr>
<td>25.2</td>
<td>Product Class 2: 2-Oxoaldehydes and Heteroatom Analogues</td>
<td>T. Olpp</td>
<td>423</td>
</tr>
<tr>
<td>25.3</td>
<td>Product Class 3: 2,2-Diheteroatom-Substituted Aldehydes</td>
<td>M. Harmata</td>
<td>441</td>
</tr>
<tr>
<td>25.4</td>
<td>Product Class 4: 2-Heteroatom-Substituted Aldehydes and Sugar Aldehydes</td>
<td>M. Eckhardt</td>
<td>463</td>
</tr>
<tr>
<td>25.5</td>
<td>Product Class 5: Ynals</td>
<td>B. Witulski and C. Alayrac</td>
<td>507</td>
</tr>
<tr>
<td>25.6</td>
<td>Product Class 6: Arenecarbaldehydes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.6.1</td>
<td>Synthesis by Oxidative Cleavage of Carbon—Carbon Bonds</td>
<td>K. Ditrich</td>
<td>523</td>
</tr>
<tr>
<td>25.6.2</td>
<td>Synthesis by Oxidation</td>
<td>K. Ditrich</td>
<td>531</td>
</tr>
<tr>
<td>25.6.3</td>
<td>Synthesis by Reduction</td>
<td>K. Ditrich</td>
<td>563</td>
</tr>
<tr>
<td>25.6.4</td>
<td>Synthesis by Hydrolysis of Aldehyde Derivatives</td>
<td>K. Ditrich</td>
<td>575</td>
</tr>
<tr>
<td>25.6.5</td>
<td>Synthesis by Formylation of Arylmetal Reagents</td>
<td>A. Schall and O. Reiser</td>
<td>585</td>
</tr>
<tr>
<td>25.6.6</td>
<td>Synthesis by Formylation of Arene—Hydrogen Bonds</td>
<td>A. Schall and O. Reiser</td>
<td>605</td>
</tr>
</tbody>
</table>
Synthesis by Carbonylation of Arylpalladium Intermediates
A. Schall and O. Reiser .. 655

Synthesis by C–C Bond Formation
M. Oestreich .. 667

Synthesis by C–X Bond Formation
T. Berkenbusch ... 689

Product Class 7: Polyenals
I. Escher and F. Glorius .. 711

Product Class 8: α,β-Unsaturated Aldehydes
I. Escher and F. Glorius .. 733

Product Class 9: 3-Heteroatom-Substituted Aldehydes
A. Lindenschmidt ... 779

Keyword Index ... 803

Author Index .. 841

Abbreviations ... 897
Table of Contents

Introduction
R. Brückner

Introduction .. 1

25.1 Product Class 1: Aliphatic and Alicyclic Aldehydes

25.1.1 Synthesis by Oxidative Cleavage
J. Podlech

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oxidative Cleavage of Alkenes</td>
<td>17</td>
</tr>
<tr>
<td>1.1</td>
<td>Variation 1: By Ozonolysis</td>
<td>17</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Variation 2: By Dihydroxylation/Glycol Cleavage</td>
<td>19</td>
</tr>
<tr>
<td>1.2</td>
<td>Method 2: Oxidative Cleavage of Glycols and Related Compounds</td>
<td>20</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Variation 1: Using Lead(IV) Acetate</td>
<td>20</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Variation 2: Using Sodium Periodate</td>
<td>21</td>
</tr>
</tbody>
</table>

25.1.2 Synthesis by Oxidation
J. Podlech

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oxidation of Halides and 4-Toluenesulfonates</td>
<td>25</td>
</tr>
<tr>
<td>1.1</td>
<td>Variation 1: Oxidation with Dimethyl Sulfoxide and Related Species</td>
<td>25</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Variation 2: Oxidation with N-Oxides</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>Method 2: Oxidation of Primary Alcohols</td>
<td>27</td>
</tr>
<tr>
<td>2.1</td>
<td>Variation 1: Oxidation with Metal Salts in High Oxidation States</td>
<td>28</td>
</tr>
<tr>
<td>2.2</td>
<td>Variation 2: Oxidation with Activated Dimethyl Sulfoxide and Related Species</td>
<td>33</td>
</tr>
<tr>
<td>2.3</td>
<td>Variation 3: Oxidation with Hypervalent Iodine Reagents</td>
<td>38</td>
</tr>
<tr>
<td>2.4</td>
<td>Variation 4: Oxidation of Alcohols with a Nitroxide and a Co-oxidant</td>
<td>41</td>
</tr>
<tr>
<td>2.5</td>
<td>Variation 5: Oxidation with Oxygen and a Catalyst</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>Method 3: Oxidation of Primary Silyl Ethers</td>
<td>44</td>
</tr>
<tr>
<td>4</td>
<td>Method 4: Oxidation of Sulfur Compounds</td>
<td>46</td>
</tr>
<tr>
<td>5</td>
<td>Method 5: Oxidation of Amines</td>
<td>48</td>
</tr>
<tr>
<td>6</td>
<td>Method 6: Oxidation at the Terminal Carbon Atom of an Alk-1-ene</td>
<td>49</td>
</tr>
<tr>
<td>6.1</td>
<td>Variation 1: Oxidation of Terminal Alkenes with Oxygen under Palladium Catalysis</td>
<td>50</td>
</tr>
<tr>
<td>6.2</td>
<td>Variation 2: Hydroboration of Alk-1-enes and Subsequent Oxidation of the Boranes</td>
<td>50</td>
</tr>
</tbody>
</table>
25.1.3 Synthesis by Isomerization
A. Gansäuer and K. Muñiz

25.1.3 Synthesis by Isomerization ... 57

25.1.3.1 Method 1: Transition-Metal-Catalyzed Isomerization of Allylic Alcohols 57

25.1.3.1.1 Variation 1: Enantioselective Transition-Metal-Catalyzed Isomerization of Allylic Alcohols 59

25.1.3.2 Method 2: Transition-Metal-Catalyzed Isomerization of Allylic Amines and Subsequent Hydrolysis 59

25.1.3.2.1 Variation 1: Enantioselective Transition-Metal-Catalyzed Isomerization of Allylic Amines and Subsequent Hydrolysis 61

25.1.4 Synthesis by Reduction or by Reduction Followed by Hydrolysis
C. Harcken

25.1.4 Synthesis by Reduction or by Reduction Followed by Hydrolysis 65

25.1.4.1 Reduction of Carboxylic Acid Chlorides ... 66

25.1.4.1.1 Method 1: Rosenmund Reduction 66

25.1.4.1.2 Method 2: Reduction Using Complex Aluminum Hydrides 67

25.1.4.1.3 Method 3: Reduction Using Complex Borohydrides 69

25.1.4.1.4 Method 4: Reduction Using Triethylsilane 70

25.1.4.1.5 Method 5: Reduction Using Tributyltin Hydride 70

25.1.4.2 Reduction of Carboxylic Acids .. 71

25.1.4.2.1 Method 1: Reduction Using Complex Aluminum Hydrides 71

25.1.4.2.1.1 Variation 1: Using Lithium Aluminum Hydride 71

25.1.4.2.1.2 Variation 2: Using Lithium Bis(N-methylpiperazinyl)aluminum Hydride 72

25.1.4.2.1.3 Variation 3: Using Lithium Tri-tert-butoxyaluminum Hydride 73

25.1.4.2.2 Method 2: Reduction Using Boranes 75

25.1.4.2.3 Method 3: Reduction Using Formic Acid or Formates 76

25.1.4.2.4 Method 4: Reduction Using Alkali Metals 76

25.1.4.2.5 Method 5: Reduction Using Two-Step, One-Pot Procedures 76

25.1.4.2.5.1 Variation 1: Reduction of Carboxylic Acids through Silyl Esters 76

25.1.4.2.5.2 Variation 2: Reduction of Carboxylic Acids through an Imidazolide 77

25.1.4.2.5.3 Variation 3: Reduction of Carboxylic Acids through a Triazinyl Ester 78

25.1.4.2.5.4 Variation 4: One-Pot Reduction–Oxidation of Carboxylic Acids 79

25.1.4.3 Reduction of Esters .. 79

25.1.4.3.1 Method 1: Reduction Using Diisobutylaluminum Hydride 80

25.1.4.3.2 Method 2: Reduction Using Sodium Bis(2-methoxyethoxy)aluminum Hydride 84

25.1.4.3.3 Method 3: Reduction Using Other Complex Aluminum Hydrides 85

25.1.4.3.3.1 Variation 1: Using Lithium Aluminum Hydride 85

25.1.4.3.3.2 Variation 2: Using Lithium Tri-tert-butoxyaluminum Hydride 86

25.1.4.3.3.3 Variation 3: Using Lithium Bis(diethylamino)aluminum Hydride 86

25.1.4.3.4 Method 4: Reduction Using Alkali Metal Amalgam 87
25.1.4.4 Reduction of Thioesters ... 87
25.1.4.4.1 Method 1: Reduction Using Raney Nickel 88
25.1.4.4.2 Method 2: Reduction Using Triethylsilane 88
25.1.4.4.3 Method 3: Reduction Using Diisobutylaluminum Hydride 90
25.1.4.5 Reduction of Amides .. 90
25.1.4.5.1 Method 1: Reduction Using Lithium Aluminum Hydride 92
25.1.4.5.1.1 Variation 1: Reduction of Weinreb Amides 92
25.1.4.5.1.2 Variation 2: Reduction of Other Amides 94
25.1.4.5.2 Method 2: Reduction Using Diisobutylaluminum Hydride 95
25.1.4.5.2.1 Variation 1: Reduction of Weinreb Amides 95
25.1.4.5.2.2 Variation 2: Reduction of Other Amides 96
25.1.4.5.3 Method 3: Reduction Using Other Complex Aluminum Hydrides 97
25.1.4.5.3.1 Variation 1: Using Sodium Bis(2-methoxyethoxy)aluminum Hydride 97
25.1.4.5.3.2 Variation 2: Using Lithium Alkoxyluminum Hydrides 98
25.1.4.5.3.3 Variation 3: Using Lithium Tris(dialkylamino)aluminum Hydrides 99
25.1.4.5.4 Method 4: Reduction Using Boranes or Complex Borohydrides 99
25.1.4.5.5 Method 5: Reduction Using Chlorobis(η⁵-cyclopentadienyl)-
hydrodizirconium(IV) .. 100
25.1.4.6 Reduction of Lactones and Lactams 101
25.1.4.6.1 Method 1: Reduction Using Complex Aluminum Hydrides 101
25.1.4.6.1.1 Variation 1: Using Lithium Aluminum Hydride 101
25.1.4.6.1.2 Variation 2: Using Sodium Bis(2-methoxyethoxy)aluminum Hydride 101
25.1.4.6.1.3 Variation 3: Using Lithium Tri-tert-butoxyaluminum Hydride 102
25.1.4.6.1.4 Variation 4: Using Diisobutylaluminum Hydride 102
25.1.4.6.2 Method 2: Reduction Using Boranes 105
25.1.4.6.3 Method 3: Reduction Using Alkali Metal Amalgam 106
25.1.4.6.4 Method 4: Reduction of Lactams 106
25.1.4.7 Reduction of Heterocyclic Derivatives of Carboxylic Acids 107
25.1.4.7.1 Method 1: Reduction of 5,6-Dihydro-4H-1,3-oxazines and
4,5-Dihydrooxazoles Using Sodium Borohydride 107
25.1.4.8 Reduction of Nitriles Followed by Hydrolysis 110
25.1.4.8.1 Method 1: Reduction Using Diisobutylaluminum Hydride 111
25.1.4.8.2 Method 2: Reduction Using Complex Aluminum Hydrides 118
25.1.4.8.2.1 Variation 1: Using Lithium Aluminum Hydride 118
25.1.4.8.2.2 Variation 2: Using Lithium Triethoxyluminum Hydride 118
25.1.4.8.2.3 Variation 3: Using Sodium Tris(dialkylamino)aluminum Hydrides 119
25.1.4.8.3 Method 3: Reduction Using Raney Nickel 119
25.1.4.8.4 Method 4: Reduction Using Tin(II) Chloride 120
25.1.4.9 Reduction of Enals .. 121
25.1.4.9.1 Method 1: Hydrogenation ... 121
25.1.4.9.2 Method 2: Hydrostannylation .. 122
25.1.4.9.3 Method 3: Hydrosilylation .. 123
25.1.4.9.4 Method 4: Reduction Using Copper Reagents 124
25.1.4.9.5 Method 5: Reduction Using Inorganic Salts 125
25.1.5 Synthesis by Elimination or Rearrangement
M. Kalesse

25.1.5 Synthesis by Elimination or Rearrangement .. 137
25.1.5.1 Method 1: Synthesis from Halohydrins .. 137
25.1.5.2 Method 2: Synthesis from Glycols .. 139
25.1.5.3 Method 3: Semipinacol Rearrangement .. 140
25.1.5.4 Method 4: Synthesis from Epoxides .. 142

25.1.6 Synthesis by Protonation
M. Kalesse

25.1.6 Synthesis by Protonation .. 147
25.1.6.1 Method 1: Protonation of Enol Ethers .. 147
25.1.6.2 Method 2: Asymmetric Protonation ... 148

25.1.7 Synthesis by Hydrolysis
B. Plietker

25.1.7 Synthesis by Hydrolysis .. 151
25.1.7.1 Hydrolysis of Imines and Derivatives ... 151
25.1.7.1.1 Method 1: Hydrolysis of Imines ... 151
25.1.7.1.2 Method 2: Hydrolysis of Oximes and Derivatives 153
25.1.7.1.3 Method 3: Hydrolysis of Sulfonated Imines 154
25.1.7.1.4 Method 4: Hydrolysis of N-Alkylimines .. 155
25.1.7.1.5 Method 5: Hydrolysis of Hydrazones .. 156
25.1.7.1.5.1 Variation 1: Hydrolysis of N-Arylhydrazones 156
25.1.7.1.5.2 Variation 2: Hydrolysis of N-Alkylhydrazones 158
25.1.7.1.6 Method 6: Hydrolysis of Hydrazides and Derivatives 159
25.1.7.1.7 Method 7: Hydrolysis of Semicarbazones and Related Compounds 159
25.1.7.2 Hydrolysis of Acetals and Their Derivatives ... 160
25.1.7.2.1 Method 1: Hydrolysis of O,O-Acetals and Hemiacetals 160
25.1.7.2.1.1 Variation 1: Hydrolysis of Acyclic Hemiacetals 160
25.1.7.2.1.2 Variation 2: Hydrolysis of Carbohydrates and Higher Cyclic Hemiacetals 161
25.1.7.2.1.3 Variation 3: Hydrolysis of Acyclic Dialkyl Acetals 164
25.1.7.2.1.4 Variation 4: Hydrolysis of gem-Diacetates 165
25.1.7.2.1.5 Variation 5: Hydrolysis of Alkoxytetrahydrofurans and -pyrans 166
25.1.7.2.1.6 Variation 6: Hydrolysis of Cyclic Acetals 167
25.1.7.2.2 Method 2: Hydrolysis of O,S-Acetals .. 169
25.1.7.2.2.1 Variation 1: Hydrolysis of \(\alpha \)-Hydroxy Sulphonic Acids 169
25.1.7.2.2.2 Variation 2: Hydrolysis of Hemithioacetals 169
25.1.7.2.2.3 Variation 3: Hydrolysis of Acyclic O,S-Acetals 170
25.1.7.2.2.4 Variation 4: Hydrolysis of Alkyl Thiolactols or Alkoxothiopyrans and Related Compounds 172
25.1.7.2.3 Method 3: Hydrolysis of O,N-Acetals .. 174
Variation 1: Hydrolysis of Acyclic O,N-Hemiacetals

Variation 2: Hydrolysis of Cyclic O,N-Hemiacetals

Variation 3: Hydrolysis of Acyclic O,N-Acetals

Variation 4: Hydrolysis of Cyclic O,N-Acetals

Variation 1: Hydrolysis of Acyclic S,S-Acetals

Variation 2: Hydrolysis of Cyclic S,S-Acetals

Variation 1: Hydrolysis of Acyclic S,N-Acetals

Variation 2: Hydrolysis of Cyclic S,N-Acetals

Variation 1: Hydrolysis of Enol Ethers and Their O-Derivatives

Variation 2: Hydrolysis of Vinyl Carboxylates

Method 1: Hydrolysis of Enamines and Derivatives

Variation 1: Hydrolysis of N,N-Dialkylamines

Variation 2: Hydrolysis of Enamides

Method 3: Hydrolysis of Vinyl Halides

Synthesis by Hydration of Alkynes

M. Oestreich

Synthesis by Direct Hydration

Method 1: Ruthenium(II)-Catalyzed Hydration

Variation 1: Simple Ruthenium(II) Catalysis

Variation 2: Ruthenium(II) Catalysis Assisted by Hydrogen Bonding

Variation 3: Ruthenium(II) Catalysis Using a Bifunctional Catalyst

Variation 4: Ruthenium(II) Catalysis Using a Self-Assembled Catalyst

Synthesis by Indirect Hydration

Method 1: Hydroboration Followed by Oxidation

Variation 1: Hydroboration with Sterically Hindered Boranes

Variation 2: Hydroboration with Catecholborane

Variation 3: Hydroboration with Haloboranes

Method 2: Hydrosilylation Followed by Oxidation

Method 3: Hydroamination Followed by Hydrolysis

Synthesis by Formylation of Enolates

T. J. J. Müller

Synthesis by Formylation of Enolates

Method 1: Crossed Claisen Condensations with Formates

Variation 1: Using Ketones or Esters and an Alkali Metal Alkoxide as the Base

Variation 2: Using Ketones or Esters and Sodium Metal as the Base

Variation 3: Using Ketones or Esters and Sodium Hydride as the Base
Variation 4: Using Preformed Lithium Enolates of Ketones or Esters 222
Method 2: Vilsmeier Formylation of Carbonyl Compounds, Enols, or Enol Ethers 223
Method 3: Condensation of Ketones, Esters, or Active Methylene Compounds with Dimethylformamide Acetals 227
Method 4: Condensation of Enol Ethers with Orthoformates 229
Method 5: Condensation of Esters with Formyl Acetate 229
Method 6: Synthesis from Enols by the Reimer–Tiemann Reaction 230
Method 7: Synthesis from Enol Ethers and Related Compounds by Mukaiyama Condensation 230
Method 8: Formylation of Pyranones with Dichloromethyl Methyl Ether 231
Method 9: Synthesis from Reformatsky Enolates 232
Methods 10: Additional Syntheses 232

Synthesis by Homologation of Aldehydes

Method 1: Homologation via the Darzens Reaction 237
Method 2: Homologation via the Nef Reaction 239
Method 3: Homologation via the Formation of a Nitrile Intermediate 242
Method 4: Homologation with Dihalomethane 246
Method 5: Homologation with Diazomethane 248
Method 6: Homologation with Phosphorus Reagents 249
Variation 1: Via 1-Heteroatom-Substituted Alkene Intermediates 249
Variation 2: Via Terminal Acetylene Intermediates 257
Method 7: Homologation with Boron Reagents 260
Method 8: Homologation with Silicon Reagents 262
Variation 1: Via 1-Heteroatom-Substituted Alkene Intermediates 262
Variation 2: Via α,β-Epoxide Intermediates 267
Method 9: Homologation with Sulfur Reagents 268
Variation 1: Via 1-Heteroatom-Substituted Alkene Intermediates 268
Variation 2: Via Epoxide Intermediates 269

Synthesis by Hydroformylation of Alkenes

Method 1: Regioselective Hydroformylation: Substrate Control 283
Method 2: Regioselective Hydroformylation: Catalyst Control 290
Method 3: Isomerizing Hydroformylation 293
Method 4: Diastereoselective Hydroformylation: Passive Substrate Control 294
Variation 1: Cyclic Alkenes 295
Variation 2: Acyclic and Exocyclic Alkenes 296
25.1.11.5 Method 5: Diastereoselective Hydroformylation: Active Substrate Control 297
25.1.11.6 Method 6: Diastereoselective Hydroformylation: Catalyst Control 304
25.1.11.7 Method 7: Enantioselective Hydroformylation ... 306
25.1.11.7.1 Variation 1: Vinylarenes .. 307
25.1.11.7.2 Variation 2: Aliphatic Alkenes and Dienes .. 311
25.1.11.7.3 Variation 3: Functionalized Alkenes ... 313

25.1.12 Synthesis by C₁-Extension of Alkyl Halides
A. S. K. Hashmi

25.1.12 Method 1: Synthesis from Formyl Anion Equivalents .. 319
25.1.12.1 Method 1: Synthesis from Formyl Anion Equivalents .. 319
25.1.12.1.1 Variation 1: Synthesis Using 1,3-Dithiane or Bis(phenylsulfanyl)methane 321
25.1.12.1.2 Variation 2: Synthesis Using 1,3,5-Trithiane .. 321
25.1.12.1.3 Variation 3: Synthesis Using 5-Methyl-1,3,5-dithiazinane .. 322
25.1.12.1.4 Variation 4: Synthesis Using Sulfur(VI) Reagents .. 323
25.1.12.1.5 Variation 5: Synthesis Using (Diethylamino)acetonitrile ... 324
25.1.12.1.6 Variation 6: Synthesis Using Silicon, Selenium, and Tellurium Reagents 325
25.1.12.2 Method 2: Reductive Carbonylation .. 326
25.1.12.2.1 Variation 1: Using Hydrogen and a Platinum Catalyst ... 326
25.1.12.2.2 Variation 2: Using Tributyltin Hydride and a Palladium Catalyst 327
25.1.12.2.3 Variation 3: Using Stoichiometric Amounts of Tetracarbonylhydridoferrate Salts .. 328
25.1.12.2.4 Variation 4: Using Stoichiometric Amounts of Carbonylferrate Salts and an Acidic Workup ... 329
25.1.12.2.5 Variation 5: Using Stannanes by a Free-Radical Pathway .. 330
25.1.12.3 Method 3: Reduction with Lithium Metal in the Presence of N,N-Disubstituted Formamides ... 331
25.1.12.4 Method 4: Synthesis Using Triphenylphosphine and Alkyl Formates 332

25.1.13 Synthesis by C₁-Extension of Organometallics
A. S. K. Hashmi

25.1.13 Method 1: Reaction with Formamides ... 338
25.1.13.1 Method 1: Reaction with Formamides ... 338
25.1.13.1.1 Variation 1: Reaction with Dimethylformamide ... 338
25.1.13.1.2 Variation 2: Reaction with Piperidine-1-carbaldehyde ... 342
25.1.13.1.3 Variation 3: Reaction with N-Methyl-N-phenylformamide .. 344
25.1.13.1.4 Variation 4: Reaction with N-Methyl-N-(2-pyridyl)formamide 345
25.1.13.2 Method 2: Reaction with Ortho Esters ... 345
25.1.13.2.1 Variation 1: Reaction with Triethyl Orthoformate ... 346
25.1.13.2.2 Variation 2: Reaction with Diethyl Phenyl Orthoformate .. 347
25.1.13.3 Method 3: Reaction of Organoboranes with Carbon Monoxide and Hydride Reagents, Followed by Oxidative Workup 349
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.1.13.4</td>
<td>Method 4: Reaction of Organomagnesium Compounds with Carbon Monoxide from Pentacarbonyliron(0)</td>
<td>349</td>
</tr>
<tr>
<td>25.1.13.5</td>
<td>Method 5: Reaction of Organometallic Compounds with Isocyanides</td>
<td>350</td>
</tr>
<tr>
<td>25.1.14</td>
<td>Synthesis by C(_2)-Elongation</td>
<td></td>
</tr>
<tr>
<td>25.1.14</td>
<td>Method 1: Alkylation of Enolates</td>
<td>355</td>
</tr>
<tr>
<td>25.1.14</td>
<td>Method 2: Alkylation and Michael Addition of Silyl Enol Ethers</td>
<td>357</td>
</tr>
<tr>
<td>25.1.14</td>
<td>Method 3: Alkylation and Michael Addition of Enamines</td>
<td>358</td>
</tr>
<tr>
<td>25.1.14</td>
<td>Method 4: Alkylation and Michael Addition of Azaenolates</td>
<td>360</td>
</tr>
<tr>
<td>25.1.14.1</td>
<td>Variation 1: Alkylation and Michael Addition of Imine Enolates</td>
<td>360</td>
</tr>
<tr>
<td>25.1.14.2</td>
<td>Variation 2: Alkylation of Oxime Enolates</td>
<td>361</td>
</tr>
<tr>
<td>25.1.14.3</td>
<td>Variation 3: Alkylation and Michael Addition of Achiral Hydrazine Enolates</td>
<td>362</td>
</tr>
<tr>
<td>25.1.14.4</td>
<td>Variation 4: Alkylation and Michael Addition of Enantiomerically Pure Hydrazine Enolates</td>
<td>363</td>
</tr>
<tr>
<td>25.1.14.5</td>
<td>Method 5: Arylation of Heterosubstituted Ethenes</td>
<td>366</td>
</tr>
<tr>
<td>25.1.15</td>
<td>Synthesis by C(_3)-Elongation</td>
<td></td>
</tr>
<tr>
<td>25.1.15</td>
<td>Method 1: 1,4-Addition to (\alpha,\beta)-Unsaturated Aldehydes</td>
<td>369</td>
</tr>
<tr>
<td>25.1.15.1</td>
<td>Variation 1: Base-Induced Michael Addition</td>
<td>369</td>
</tr>
<tr>
<td>25.1.15.2</td>
<td>Variation 2: Organocatalytic Michael Addition</td>
<td>372</td>
</tr>
<tr>
<td>25.1.15.3</td>
<td>Variation 3: Michael Additions Catalyzed by Metal Complexes</td>
<td>374</td>
</tr>
<tr>
<td>25.1.15.2.1</td>
<td>Method 2: Conjugate Addition Reactions of Organometallic Compounds</td>
<td>374</td>
</tr>
<tr>
<td>25.1.15.2.2</td>
<td>Variation 1: Addition of Organocopper Reagents</td>
<td>374</td>
</tr>
<tr>
<td>25.1.15.2.3</td>
<td>Variation 2: Addition of Organozinc Reagents</td>
<td>379</td>
</tr>
<tr>
<td>25.1.15.2.2.4</td>
<td>Variation 3: Addition Reactions of Other Organometallic Reagents</td>
<td>381</td>
</tr>
<tr>
<td>25.1.15.2.2.4</td>
<td>Variation 4: Transition-Metal-Catalyzed Additions</td>
<td>383</td>
</tr>
<tr>
<td>25.1.15.1.3</td>
<td>Method 3: Addition to (\alpha,\beta)-Unsaturated Aldehydes via Radicals</td>
<td>384</td>
</tr>
<tr>
<td>25.1.15.3.1</td>
<td>Variation 1: Addition of Organoboranes</td>
<td>384</td>
</tr>
<tr>
<td>25.1.15.3.2</td>
<td>Variation 2: The Meerwein Arylation</td>
<td>387</td>
</tr>
<tr>
<td>25.1.15.4</td>
<td>Method 4: Reactions of Homoenolates</td>
<td>388</td>
</tr>
<tr>
<td>25.1.15.4.1</td>
<td>Variation 1: Protected Aldehydes</td>
<td>388</td>
</tr>
<tr>
<td>25.1.15.4.2</td>
<td>Variation 2: Heteroatom-Substituted Ally Anions</td>
<td>389</td>
</tr>
<tr>
<td>25.1.15.4.3</td>
<td>Variation 3: The Carbamate Approach</td>
<td>392</td>
</tr>
<tr>
<td>25.1.15.5</td>
<td>Method 5: Aldehydes through ([3,3])-Rearrangements</td>
<td>395</td>
</tr>
<tr>
<td>25.1.15.5.1</td>
<td>Variation 1: The Claisen Rearrangement</td>
<td>395</td>
</tr>
<tr>
<td>25.1.15.5.2</td>
<td>Variation 2: Aza-Claisen Rearrangement</td>
<td>398</td>
</tr>
<tr>
<td>25.1.15.5.3</td>
<td>Variation 3: Oxy-Cope Rearrangement</td>
<td>398</td>
</tr>
</tbody>
</table>
Synthesis by Diels–Alder Reactions with Enals or Their Acetals
B. Witulski and C. Alayrac

Method 1: Thermal Diels–Alder Reactions
Method 2: Lewis Acid Catalyzed Diels–Alder Reactions
Method 3: Bronsted Acid Catalyzed Diels–Alder Reactions
 (Cationic Diels–Alder Reactions)
Method 4: Stepwise Diels–Alder Reactions of π-Complexed 1,3-Dienes
Method 5: Enantioselective Diels–Alder Reactions Catalyzed by Chiral Lewis Acids
Method 6: Enantioselective Organocatalytic Diels–Alder Reactions
Method 7: Heterogeneously Catalyzed and Polymer-Supported Diels–Alder Reactions
Method 8: Diels–Alder Reactions Accelerated by High Pressure
Method 9: Diels–Alder Reactions in Aqueous Media

Product Class 2: 2-Oxoaldehydes and Heteroatom Analogues
T. Olpp

Product Subclass 1: 2-Oxoaldehydes
Synthesis of Product Subclass 1
Method 1: Oxidation of Activated C–H Bonds by Selenium Dioxide
Method 2: Oxidation via Bromomethyl Ketones
Method 3: Oxidation of α-Diazo Ketones
Method 4: Oxidation of Hydroxymethyl Ketones
Method 5: Hydrolysis of Glyoxal Dialkyl Acetals and Related Compounds
Method 6: Reduction of Glyoxylic Acid Chlorides
Method 7: Cleavage of C=C Bonds
Method 8: C=C Bond Formation

Product Subclass 2: 2-Imino-, 2-(Hydroxyimino)-, 2-Hydrazono-, and 2-Diazoaldehydes
Synthesis of Product Subclass 2
Method 1: Formylation of Imine Derivatives
Method 2: Functionalization of Enamines with N-Electrophiles
Method 3: Addition of Azides to π-Amino Acroleins
Method 4: Nitrosation of Enals and Alkynes

Product Subclass 3: 2-Thioxoaldehydes
Synthesis of Product Subclass 3
Method 1: Retro Pericyclic Reactions

Product Subclass 4: 2-Phosphoranylidenealdehydes
25.2.4.1.1 Method 1: Formylation of Phosphoranes 435
25.2.4.1.2 Method 2: Electrophilic Substitution in Phosphoranylideneacetaldehyde 436

25.3 Product Class 3: 2,2-Diheteroatom-Substituted Aldehydes
M. Harmata

25.3 Product Class 3: 2,2-Diheteroatom-Substituted Aldehydes 441
25.3.1 Product Subclass 1: 2,2-Dihaloaldehydes 441
25.3.1.1 Synthesis of Product Subclass 1 441
25.3.1.1 Method 1: Synthesis by Halogenation 441
25.3.1.1.1 Variation 1: Bromination of an Acetal 441
25.3.1.1.2 Variation 2: Halogenation of Enamines 442
25.3.1.1.3 Variation 3: Chlorination of Tetrahydrofuran 442
25.3.1.1.4 Variation 4: Chlorination of Aldehydes 442
25.3.1.2 Method 2: Synthesis by Acylation 445
25.3.1.3 Method 3: Synthesis by Rearrangement 448
25.3.1.4 Method 4: Synthesis by Oxidation or Reduction 449
25.3.1.5 Method 5: Synthesis by Radical Addition 451
25.3.1.6 Methods 6: Miscellaneous Procedures 452

25.3.2 Product Subclass 2: 2,2-Dialkoxyaldehydes and Related Species 453
25.3.2.1 Synthesis of Product Subclass 2 453
25.3.2.1 Method 1: Synthesis by Oxidation or Reduction 453
25.3.2.2 Method 2: Synthesis by Formation of Acetals or Ketals 454
25.3.2.3 Method 3: Synthesis by Rearrangement 455

25.3.3 Product Subclass 3: 2,2-Disulfanylaldehydes and Related Species 455
25.3.3.1 Synthesis of Product Subclass 3 455
25.3.3.1 Method 1: Synthesis by Sulfanylation or Selanylation 455
25.3.3.2 Method 2: Synthesis by Formylation 456
25.3.3.3 Method 3: Synthesis by Substitution and Alkylation 457
25.3.3.4 Method 4: Synthesis by Oxidation or Reduction 458

25.4 Product Class 4: 2-Heteroatom-Substituted Aldehydes and Sugar Aldehydes
M. Eckhardt

25.4 Product Class 4: 2-Heteroatom-Substituted Aldehydes and Sugar Aldehydes 463
25.4.1 Product Subclass 1: 2-Haloaldehydes 463
25.4.1.1 Synthesis of Product Subclass 1 464
25.4.1.1.1 2-Fluoroaldehydes 464
25.4.1.1.1 Method 1: Fluorination of Aldehydes 464
25.4.1.1.2 2-Chloroaldehydes 466
Method 1: Chlorination of Aldehydes .. 466

Variation 1: Chlorination under Acidic Conditions 466
Variation 2: Amine-Catalyzed Chlorination 467

2-Bromoaldehydes ... 468

Method 1: Bromination of Aldehydes 468

Variation 1: Bromination under Neutral and Acidic Conditions 469
Variation 2: Amine-Catalyzed Bromination 471

2-Iodoaldehydes ... 472

Method 1: Iodination of Aldehydes ... 472
Method 2: Iodination of Preformed Enolates 473

Product Subclass 2: 2-Oxyaldehydes 474

Synthesis of Product Subclass 2 ... 474

Method 1: Aminooxylation of Aldehydes 474
Method 2: Oxidation of Enol Ethers and Silyl Enol Ethers 477
Method 3: Oxidative C–C Bond Cleavage of Glycols 477
Method 4: Oxidation/Aminooxylation of Primary Alcohols 480
Method 5: Addition of Formyl Anion Equivalents to Aldehydes ... 481

Variation 1: Via 2-(Trimethylsilyl)thiazole 481
Variation 2: Using Carbon Monoxide and a Silane 485
Variation 3: Via Dialkylhydrazones 486
Variation 4: Via Acetals ... 489

Product Subclass 3: 2-Aminoaldehydes 492

Synthesis of Product Subclass 3 ... 493

Method 1: α-Amination of Aldehydes 493
Method 2: Oxidative C–C Bond Cleavage of Glycols 495
Method 3: Addition of Formyl Anion Equivalents to Aldimines and Their Derivatives ... 496

Variation 1: Via Thiazoles .. 496
Variation 2: Via Thioacetals .. 501

Product Class 5: Ynals .. 507

B. Witulski and C. Alayrac

Synthesis of Product Class 5 .. 508

Method 1: Substitution Reactions with Alk-1-ynes 508

Variation 1: Direct Formylation .. 508
Variation 2: Two-Step Protocol via Formation of an Acetal 508
Variation 3: Two-Step Protocol via Formation of an Alcohol 510
Variation 4: Functionalization of 3,3-Diethoxypropyne and Subsequent Acidic Treatment .. 511

Variation 1: Oxidation of Propargyl Alcohols 512
Variation 1: With Chromium(VI) Oxide 512
Variation 2: With Dess–Martin Periodinane 512
Variation 3: Swern–Moffatt Reaction

Variation 4: With Titanium(IV) Chloride–Triethylamine

Method 4: Bromination–Dehydrobromination of Enals

Method 5: Fritsch–Buttenberg–Wiechell Rearrangement of 1,1-Dibromoalkenes and Subsequent Formylation

Method 6: Unmasking of Carbonyl Derivatives

Variation 1: Cleavage of Acetals

Variation 2: Synthesis of But-2-yne dial

Variation 3: Deprotection of Tosylhydrazones, Oximes, or Semicarbazones with Chlorotrimethylsilane–Dimethyl Sulfoxide

Method 7: Vacuum Pyrolysis

Product Class 6: Arenecarbaldehydes

Synthesis by Oxidative Cleavage of Carbon–Carbon Bonds

Method 1: Cleavage of Arene-Substituted Alkenes

Variation 1: Ozonolysis

Variation 2: Osmium-Catalyzed Cleavage

Variation 3: Cleavage by Permanganate and Periodate

Method 2: Cleavage of Arylacetic Acids

Method 3: Cleavage of ß-Aryl-Substituted ß-Hydroxycarboxylic Acids

Method 4: Cleavage of ß-Aryl-Substituted ß-Aminocarboxylic Acids

Synthesis by Oxidation

Method 1: Oxidation of Methylarenes

Variation 1: Aerobic Oxidation

Variation 2: Oxidation with Cerium Compounds

Variation 3: Electrochemical Oxidation

Variation 4: Oxidation by Halogenation

Variation 5: Oxidation by Hypervalent Iodine Compounds

Variation 6: Additional Procedures

Method 2: Oxidation of Arylmethanols

Variation 1: Oxidation with Oxygen or Hydrogen Peroxide

Variation 2: Oxidation with Sodium Hypochlorite

Variation 3: Oxidation with Cerium Compounds

Variation 4: Oxidation with Hypervalent Iodine Compounds

Variation 5: Oxidation with Chromium Compounds

Variation 6: Oxidation with Manganese Compounds

Variation 7: Oxidation with Perruthenates
25.6.2.8 Variation 8: Oxidation with Sulfoxides
(Swern and Pfitzner–Moffat Oxidations) 545
25.6.2.9 Variation 9: Oxidation with N-Oxaoammonium Salts ... 547
25.6.2.10 Variation 10: Additional Procedures ... 548
25.6.2.3 Method 3: Oxidation of Benzylic Ethers Including Silyl Ethers 551
25.6.2.4 Method 4: Oxidation of Benzylic Halides .. 552
25.6.2.4.1 Variation 1: Kornblum Oxidation ... 552
25.6.2.4.2 Variation 2: Sommelet Reaction ... 554
25.6.2.4.3 Variation 3: Additional Procedures ... 554
25.6.2.5 Method 5: Oxidation of Benzylic Nitrogen Compounds .. 557
25.6.2.5.1 Variation 1: C=N Bond Migration in Schiff Bases .. 557
25.6.2.5.2 Variation 2: Oxidation of Benzylic Nitro Compounds (The Nef Reaction) 558
25.6.2.5.3 Variation 3: Additional Procedures ... 559

25.6.3 Synthesis by Reduction
K. Ditrich

25.6.3 Synthesis by Reduction ... 563
25.6.3.1 Method 1: Reduction of Arenecarboxylic Acids .. 563
25.6.3.2 Method 2: Reduction of Arenecarboxylic Acid Chlorides 564
25.6.3.2.1 Variation 1: Reduction by Hydrogenation (Rosenmund Reduction) 564
25.6.3.2.2 Variation 2: Reduction by Metal Hydrides .. 566
25.6.3.3 Method 3: Reduction of Arenecarboxylic Acid Anhydrides 567
25.6.3.4 Method 4: Reduction of Arenecarboxylic Acid Esters ... 568
25.6.3.5 Method 5: Reduction of Carboxylic Acid Amides and Hydrazides 570
25.6.3.6 Method 6: Reduction of Arenecarbonitriles ... 571
25.6.3.6.1 Variation 1: Reduction by Hydrogenation ... 571
25.6.3.6.2 Variation 2: Hydride Reductions ... 573

25.6.4 Synthesis by Hydrolysis of Aldehyde Derivatives
K. Ditrich

25.6.4 Synthesis by Hydrolysis of Aldehyde Derivatives ... 575
25.6.4.1 Method 1: Hydrolysis of α,α-Dihalo Compounds .. 575
25.6.4.2 Method 2: Hydrolysis of O,O-Acetals ... 577
25.6.4.3 Method 3: Hydrolysis of S,S-Acetals ... 578
25.6.4.4 Method 4: Hydrolysis of Oximes ... 580
25.6.4.5 Method 5: Hydrolysis of Hydrazones and Semicarbazones 581

25.6.5 Synthesis by Formylation of Arylmetal Reagents
A. Schall and O. Reiser

25.6.5 Synthesis by Formylation of Arylmetal Reagents ... 585
25.6.5.1 Formylation of Aryllithium Reagents .. 585
25.6.5.1.1 Method 1: Formylation of Aryllithium Reagents Generated by Metalation of Arenes ... 585
25.6.5.1.1 Variation 1: ortho-Lithiation Followed by Formylation with Dimethylformamide or Related Reagents .. 586
25.6.5.1.2 Variation 2: ortho-Lithiation Followed by Formylation with Pentacarbonyliron(0) ... 592
25.6.5.1.3 Variation 3: Metalation of Arenes Using the Lochmann–Schlosser Base Followed by Formylation with Dimethylformamide 593
25.6.5.1.2 Method 2: Formylation of Aryllithium Reagents Generated by Lithium–Halogen Exchange .. 593
25.6.5.2 Formylation of Arylmagnesium Compounds .. 596
25.6.5.2.1 Method 1: Formylation of Arylmagnesium Compounds Generated by Reductive Magnesiation or Magnesium–Halogen Exchange 596
25.6.5.2.2 Method 2: Formylation of Arylmagnesium Reagents Generated by Addition of Magnesium Thiolates or Amides to Benzyne 601
25.6.6 Synthesis by Formylation of Arene–Hydrogen Bonds
A. Schall and O. Reiser

25.6.6 Synthesis by Formylation of Arene–Hydrogen Bonds .. 605
25.6.6.1 Method 1: Formylation with Formic Acid .. 606
25.6.6.2 Method 2: Intramolecular Formylation with Formic Esters:
Lewis Acid Mediated Formylation of Phenols by
Fries Rearrangement of Aryl Formates .. 606
25.6.6.3 Method 3: Formylation with Formyl Fluoride 608
25.6.6.4 Method 4: The Vilsmeier–Haack Reaction ... 609
25.6.6.4.1 Variation 1: Using Dimethylformamide and Pyrophosphoryl Chloride 618
25.6.6.4.2 Variation 2: Formylation in Solvent-Free Conditions Using Microwaves 619
25.6.6.4.3 Variation 3: Vilsmeier–Haack Formylation on Solid Support 620
25.6.6.4.4 Variation 4: Formylation with Polymer-Bound Vilsmeier–Haack Reagent 620
25.6.6.4.5 Variation 5: Vilsmeier–Haack Formylation in a Fluorous/Organic
Amphiphilic Ether Solvent ... 621
25.6.6.5 Method 5: Lewis Acid Mediated Formylation of Aromatic Compounds with Other Formamides .. 622
25.6.6.5.1 Variation 1: Lewis Acid Catalyzed Formylation of Aromatic Compounds with Triformamide .. 623
25.6.6.5.2 Variation 2: Formylation of Aromatic Compounds with
Tris(diformylamino)methane ... 626
25.6.6.6 Method 6: Formylation of Aromatic Compounds with
Tris(dichloromethyl)amine ... 628
25.6.6.7 Method 7: Formylation of Aromatic Compounds with
Hexamethylenetetramine ... 630
25.6.6.8 Method 8: Gross Formylation with Dichloromethyl Methyl Ether 632
25.6.6.9 Method 9: Formylation with Triethyl Orthoformate 636
25.6.6.10 Method 10: The Gattermann Reaction ... 636
25.6.6.10.1 Variation 1: In Situ Generation of Hydrogen Cyanide from Zinc(II) Cyanide 639
25.6.6.10.2 Variation 2: In Situ Generation of Hydrogen Cyanide from 1,3,5-Triazine (Kreutzberger Modification) ... 640
Method 11: The Gattermann–Koch Reaction

Method 12: Formylation of Arenes with Formaldehyde

Variation 1: Synthesis of Aromatic Aldehydes by Oxidative Hydroxymethylation with Formaldehyde and 2,3-Dichloro-5,6-dicyanobeno-1,4-quinone

Method 13: The Reimer–Tiemann Reaction

Synthesis by Carbonylation of Arylpalladium Intermediates

Method 1: Reductive Carbonylation of Haloarenes and Related Compounds Using Carbon Monoxide

Method 2: Reductive Carbonylation of Iodoarenes Using Acetic Formic Anhydride as a Carbon Monoxide Source

Synthesis by C–C Bond Formation

Method 1: Aminomethylation (Mannich Reaction)

Method 2: Chloromethylation

Method 3: Friedel–Crafts Acylation

Directed ortho-Metalation of In Situ Formed α-Amino Alkoxides Derived from Unprotected Arenecarbaldehydes

ortho-Claisen Rearrangement of (Allyloxy)arenecarbaldehydes

Transition-Metal-Catalyzed Cross-Coupling Reactions of Electrophilic or Nucleophilic Arenecarbaldehydes

Method 1: sp²–sp Cross-Coupling Reactions of Electrophilic Arenecarbaldehydes (Sonogashira Coupling)

Method 2: sp²–sp² Cross-Coupling Reactions of Electrophilic or Nucleophilic Arenecarbaldehydes

Variation 1: Classic Suzuki–Miyaura Coupling Reactions Using Electrophilic Arenecarbaldehydes

Variation 2: Ligand-Free Palladium Catalysis and “Transition-Metal-Free” Suzuki–Miyaura-Type Cross Coupling Using Electrophilic Arenecarbaldehydes

Variation 3: Nickel(0)-Catalyzed Suzuki–Miyaura Cross-Coupling Reactions Using Electrophilic Arenecarbaldehydes

Variation 4: Suzuki–Miyaura-Type Cross-Coupling Reactions Using Dihydroxyborylated Arenecarbaldehydes

Variation 5: Stille-Type Cross-Coupling Reactions Using Electrophilic Arenecarbaldehydes
25.6.8.4.2.6 Variation 6: Stille-Type Cross-Coupling Reactions Using Trialkylstannylated Arenecarbaldehydes .. 680
25.6.8.4.2.7 Variation 7: Negishi-Type Cross-Coupling Reactions Using Electrophilic Arenecarbaldehydes .. 681
25.6.8.4.2.8 Variation 8: Hiyama-Type Cross-Coupling Reactions Using Electrophilic Arenecarbaldehydes .. 681
25.6.8.5 Palladium-Catalyzed Arylation of Alkenes Using Electrophilic Arenecarbaldehydes (Heck Reaction) .. 682
25.6.8.6 Transition-Metal-Catalyzed Cyanation of Haloarenecarbaldehydes .. 683
25.6.8.7 Transition-Metal-Catalyzed Homocoupling of 4-Halobenzaldehydes (Ullmann-Type Reactions) or Dihydroxyborylated Arenecarbaldehydes .. 683

25.6.9 Synthesis by C–X Bond Formation
T. Berkenbusch

25.6.9 Synthesis by C–X Bond Formation .. 689
25.6.9.1 Synthesis by Electrophilic Aromatic Substitution: Hydrogen–Heteroatom Exchange .. 690
25.6.9.1.1 Halogenation of Arenecarbaldehydes .. 690
25.6.9.1.1.1 Method 1: Fluorination .. 690
25.6.9.1.1.2 Method 2: Chlorination .. 691
25.6.9.1.1.3 Method 3: Bromination .. 692
25.6.9.1.1.4 Method 4: Iodination .. 693
25.6.9.1.2 Nitration of Arenecarbaldehydes .. 694
25.6.9.1.3 Synthesis by Nucleophilic Aromatic Substitution: Heteroatom–Heteroatom Exchange .. 695
25.6.9.1.3.1 Method 1: Halogen–Nitrogen Exchange .. 696
25.6.9.1.3.1.1 Variation 1: Halogen–Nitrogen Exchange in the Absence of a Transition Metal .. 696
25.6.9.1.3.1.2 Variation 2: Palladium-Mediated Halogen–Nitrogen Exchange .. 698
25.6.9.1.3.1.3 Method 2: Halogen–Phosphorus Exchange .. 699
25.6.9.1.3.1.4 Method 3: Halogen–Oxygen Exchange .. 700
25.6.9.1.3.1.5 Variation 1: Halogen–Oxygen Exchange in the Absence of a Transition Metal .. 700
25.6.9.1.3.1.6 Variation 2: Copper-Mediated Halogen–Oxygen Exchange .. 701
25.6.9.1.3.1.7 Variation 3: Palladium- and Nickel-Mediated Halogen–Oxygen Exchange .. 702
25.6.9.1.3.1.8 Method 4: Halogen–Sulfur Exchange .. 703
25.6.9.1.3.1.9 Variation 1: Halogen–Sulfur Exchange in the Absence of a Transition Metal .. 703
25.6.9.1.3.1.10 Variation 2: Copper-Mediated Halogen–Sulfur Exchange .. 704
25.6.9.1.3.1.11 Method 5: Halogen–Fluorine Exchange .. 705
25.6.9.1.3.1.12 Diazonium–Heteroatom Exchange Reactions .. 705
25.6.9.1.3.3 Functionalization of ortho-Lithiated α-Amino Alkoxides Derived from Arenecarbaldehydes .. 707
25.7 **Product Class 7: Polyenals**
I. Escher and F. Glorius

25.7 Synthesis of Product Class 7 711

25.7.1 Method 1: Oxidation of Alcohols 711
25.7.1.1 Variation 1: Addition of α-Oxocarbenes to Furans 713
25.7.1.2 Variation 2: Addition of Organolithium Reagents to Pyrylium Salts 714
25.7.1.3 Method 3: Reduction of Carboxylic Acid Derivatives 716
25.7.1.4 Method 4: Synthesis by Elimination 717
25.7.1.5 Method 5: Formylation of Dienes 719
25.7.1.6 Method 6: Addition of Enolates and Derivatives to Carbonyl Compounds 721
25.7.1.6.1 Variation 1: Addition of Enolates and Silyl Enol Ethers to Carbonyl Compounds 721
25.7.1.6.2 Variation 2: Addition of Metalated Vinyl Ethers to Carbonyl Compounds 723
25.7.1.7 Method 7: Wittig and Horner–Wadsworth–Emmons Reactions 724
25.7.1.8 Method 8: Cross-Coupling Reaction of Enals and Polyenals 726
25.7.1.9 Methods 9: Additional Methods 728

25.8 **Product Class 8: α,β-Unsaturated Aldehydes**
I. Escher and F. Glorius

25.8 Product Subclass 1: Nonheteroatom-Substituted α,β-Unsaturated Aldehydes 733

25.8.1 Synthesis of Product Subclass 1 733
25.8.1.1 Method 1: Oxidative Cleavage of Alkenes 733
25.8.1.2 Method 2: Oxidation of Allylic Alcohols 734
25.8.1.3 Method 3: Oxidation of Allylic Methyl Groups 736
25.8.1.4 Method 4: Unsaturation of Saturated Aldehydes 736
25.8.1.4.1 Variation 1: Unsaturation of Silyl Enol Ethers with Lead(IV) Acetate 736
25.8.1.4.2 Variation 2: Unsaturation of Alkenyl Allyl Carbonates or Methyl Enol Ethers by Palladium Catalysis 737
25.8.1.4.3 Variation 3: Conversion of Saturated Primary Alcohols or Aldehydes into α,β-Unsaturated Aldehydes 738
25.8.1.5 Method 5: Synthesis by Reduction 739
25.8.1.6 Method 6: Synthesis by Elimination 741
25.8.1.7 Method 7: Synthesis by Hydrolysis of Acetals or Imines 742
25.8.1.8 Method 8: One-Carbon-Atom Extension 742
25.8.1.8.1 Variation 1: By Formylation of Alkenes 743
25.8.1.8.2 Variation 2: One-Carbon-Atom Extension of Alkenyl Halides Using Organometallic Reagents 743
25.8.1.8.3 Variation 3: Formation of α,β-Unsaturated Aldehydes by Rearrangement of β-Hydroxy Alcohols 744
25.8.1.1.9 Method 9: Cross Metathesis of Terminal Alkenes with Acrolein 745
25.8.1.1.10 Method 10: Aldol Condensations ... 747
25.8.1.1.11 Method 11: Cross Aldolization of Aldehydes with Vinyl Acetate 748
25.8.1.1.12 Method 12: Addition of Organometallic Reagents to Carbonyl Compounds 749
25.8.1.1.12.1 Variation 1: Addition of Vinyllithium Reagents to Carbonyl Compounds 749
25.8.1.1.12.2 Variation 2: Wittig Reaction .. 750
25.8.1.1.12.3 Variation 3: Combined Alcohol Oxidation and Wittig Reaction 751
25.8.1.1.12.4 Variation 4: Peterson Alkenation 751
25.8.1.1.13 Method 13: Double Bond Migration 752
25.8.1.1.13.1 Variation 1: Isomerization of β,γ- to α,β-Unsaturated Aldehydes 752
25.8.1.1.13.2 Variation 2: Opening of Vinyl Epoxides 753
25.8.1.1.13.3 Variation 3: Isomerization of Alkynols by Meyer–Schuster–Rupe Reactions 753
25.8.1.1.14.2 Variation 2: Vinylogous-Vilsmeier Formylation 756
25.8.1.1.15 Method 15: Diels–Alder Reactions 757
25.8.1.1.16 Method 16: Modification of α,β-Unsaturated Aldehydes 757
25.8.1.1.16.1 Variation 1: Substitution of an Alkoxy or Siloxy Group by Nucleophiles 757
25.8.1.1.16.2 Variation 2: Cross-Coupling Reactions 758
25.8.1.1.17 Methods 17: Additional Methods 759
25.8.1.1.17.1 Variation 1: Formylalkenation ... 760
25.8.1.1.17.2 Variation 2: Two-Carbon-Atom Homologation with α,α-Disilylated Aldimines .. 760
25.8.1.1.17.3 Variation 3: Kharasch Addition .. 761
25.8.1.1.17.4 Variation 4: Four-Carbon-Atom Extension of Grignard Reagents 762
25.8.2 Product Subclass 2: Heteroatom-Substituted α,β-Unsaturated Aldehydes 763
25.8.2.1 Synthesis of Product Subclass 2 ... 763
25.8.2.1.1 Method 1: Addition of Organometallic Reagents to Carbonyl Compounds 763
25.8.2.1.2 Method 2: Cyclopropanation with Halogenated Carbenes, Followed by Ring Opening of the Halogenated Cyclopropanes 764
25.8.2.1.3 Method 3: Reactions of 1,3-Dicarbonyl Compounds with Nitrogen Nucleophiles .. 765
25.8.2.1.4 Method 4: Formylation Reactions .. 765
25.8.2.1.4.1 Variation 1: Vilsmeier–Haack–Arnold Formylation 765
25.8.2.1.4.2 Variation 2: Formylation of Electron-Rich Double Bonds 767
25.8.2.1.4.3 Variation 3: Sulfanylformylation of Alkynes 768
25.8.2.1.5 Method 5: α-Halogenation, Selenation, or Methoxylation of α,β-Unsaturated Aldehydes .. 768
25.8.2.1.6 Method 6: Substitution of the Halogen Atom of α-Halogenated α,β-Unsaturated Aldehydes .. 770
25.8.2.1.7 Methods 7: Additional Methods .. 770
25.8.2.1.7.1 Variation 1: Addition to Acetylene Aldehydes 770
Product Class 9: 3-Heteroatom-Substituted Aldehydes
A. Lindenschmidt

25.9

Product Class 9: 3-Heteroatom-Substituted Aldehydes

25.9.1

Product Subclass 1: 3-Silicon-Substituted Aldehydes

25.9.1.1

Synthesis of Product Subclass 1

25.9.2

Product Subclass 2: 3-Tin-Substituted Aldehydes

25.9.2.1

Synthesis of Product Subclass 2

25.9.3

Product Subclass 3: 3-Boron-Substituted Aldehydes

25.9.3.1

Synthesis of Product Subclass 3

25.9.4

Product Subclass 4: 3-Halogen-Substituted Aldehydes

25.9.4.1

Synthesis of Product Subclass 4

25.9.5

Product Subclass 5: 3-Oxygen-Substituted Aldehydes

25.9.5.1

Synthesis of Product Subclass 5

25.9.5.1.1

Method 1: Oxidative Cleavage of Homoallylic Alcohols

25.9.5.1.1.1

Variation 1: By Ozonolysis

25.9.5.1.1.2

Variation 2: By Dihydroxylation/Diol Cleavage

25.9.5.1.2

Method 2: Wacker Oxidation of Homoallylic Alcohols

25.9.5.1.3

Method 3: Hydroboration of Allylic or Propargylic Alcohols

25.9.5.1.4

Method 4: Ruthenium-Catalyzed Anti-Markovnikov Hydration of Terminal Alkynes

25.9.5.1.5

Method 5: Ring Opening of Epoxides and 1,3-Dithianes

25.9.5.1.6

Method 6: Synthesis from 4,5-Dihydroisoxazoles

25.9.5.1.7

Method 7: Hydroformylation of Enol Ethers

25.9.5.1.8

Method 8: 1,4-Addition of Oxygen Nucleophiles to α,β-Unsaturated Aldehydes

25.9.6

Product Subclass 6: 3-Sulfur-Substituted Aldehydes

25.9.6.1

Synthesis of Product Subclass 6

25.9.7

Product Subclass 7: 3-Nitrogen-Substituted Aldehydes

25.9.7.1

Synthesis of Product Subclass 7

25.9.7.1.1

Method 1: 1,4-Addition of Nitrogen Nucleophiles to α,β-Unsaturated Aldehydes

25.9.7.1.2

Method 2: Oxidative Cleavage of Homoallylic Amines

25.9.7.1.3

Method 3: Oxidation of Allylic or Propargylic Amines

25.9.7.1.4

Method 4: Ring Opening of Aziridines or Cyclic Sulfamidates

25.9.7.1.5

Method 5: Synthesis by Substitution

25.9.8

Product Subclass 8: 3-Phosphorus-Substituted Aldehydes

25.9.8.1

Synthesis of Product Subclass 8
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyword Index</td>
<td>803</td>
</tr>
<tr>
<td>Author Index</td>
<td>841</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>897</td>
</tr>
</tbody>
</table>
Volume 26: Ketones

Preface ... V
Volume Editor’s Preface ... VII
Table of Contents .. XI

Introduction
J. Cossy ... 1

26.1 Product Class 1: Aliphatic and Alicyclic Ketones (Excluding Cyclobutanones and Cyclopropanones)
P. Vogel ... 13

26.1.1 Synthesis by Oxidation of Heterosubstituted Alkanes
S. von Angerer ... 39

26.1.2 Synthesis by Oxidation of Alkenes and Alkanes (Excluding Allylic or Benzylic Derivatives)
T. S. Balaban .. 127

26.1.3 Synthesis by Reduction of 1,2-Diketones and α-Diazo Ketones, α,α-Dihetero- and α-Heterosubstituted Ketones, Enones, and Ynones
M. Yus and C. Nájera ... 153

26.1.4 Synthesis from Carboxylic Acids and Derivatives by Substitution with a Carbon Nucleophile
B. Figadère and X. Franck .. 243

26.1.5 Synthesis from Aldehydes by Substitution of the Aldehyde Hydrogen
B. Figadère and X. Franck .. 293

26.1.6 Synthesis from Thioketones, Acetals, Cyanohydrins, Enol Ethers, Enamines, Other Ene Derivatives, and Related Compounds
D. Desmaële .. 301

26.1.7 Synthesis by Addition
B. Figadère and X. Franck .. 401

26.1.8 Synthesis by Fragmentation and Rearrangement
T. Constantieux and J. Rodriguez 413

26.1.9 Synthesis from Other Ketones
J.-C. Plaquevent, D. Cahard, and F. Guillen 463

26.1.10 Synthesis from Enones by Formation of C–C Bonds
J.-C. Plaquevent, D. Cahard, and F. Guillen 513
<table>
<thead>
<tr>
<th>Section</th>
<th>Product Class</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.2</td>
<td>Product Class 2: Cyclobutanones and Their Precursors</td>
<td>J. Salaün</td>
<td>557</td>
</tr>
<tr>
<td>26.3</td>
<td>Product Class 3: Cyclopropanones and Their Precursors</td>
<td>J. Salaün</td>
<td>607</td>
</tr>
<tr>
<td>26.4</td>
<td>Product Class 4: 1,2-Diketones and Related Compounds</td>
<td>Y. Landais and J. M. Vincent</td>
<td>647</td>
</tr>
<tr>
<td>26.5</td>
<td>Product Class 5: α,α-Diheterosubstituted Ketones</td>
<td>J.-L. Parrain and J. Thibonnet</td>
<td>745</td>
</tr>
<tr>
<td>26.6</td>
<td>Product Class 6: α-Heterosubstituted Ketones</td>
<td>J. Suffert</td>
<td>869</td>
</tr>
<tr>
<td>26.7</td>
<td>Product Class 7: Ynones</td>
<td>A. Nelson</td>
<td>971</td>
</tr>
<tr>
<td>26.8</td>
<td>Product Class 8: Aryl Ketones</td>
<td>J. M. Campagne and Y. Six</td>
<td>989</td>
</tr>
<tr>
<td>26.9</td>
<td>Product Class 9: Enones</td>
<td>S. P. Marsden</td>
<td>1045</td>
</tr>
<tr>
<td>26.10</td>
<td>Product Class 10: Saturated or Unsaturated Ketones with an Additional Carbonyl, Nitrile, or Carboxy Substituent or Equivalent at a β or More Remote Position: Synthesis of the Ketone Functionality</td>
<td>I. Chataigner, A. Harrison-Marchand, and J. Maddaluno</td>
<td>1123</td>
</tr>
<tr>
<td>26.11</td>
<td>Product Class 11: Saturated and Unsaturated Ketones Containing a β- or More Remote Heteroatom Substituent</td>
<td>A. Harrison-Marchand, I. Chataigner, and J. Maddaluno</td>
<td>1225</td>
</tr>
</tbody>
</table>

Keyword Index | 1287
Author Index | 1341
Abbreviations | 1417
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td></td>
<td>J. Cossy</td>
<td>1</td>
</tr>
<tr>
<td>26.1</td>
<td>Product Class 1: Aliphatic and Alicyclic Ketones (Excluding Cyclobutanones and Cyclopropanones)</td>
<td>P. Vogel</td>
<td>13</td>
</tr>
<tr>
<td>26.1.1</td>
<td>Synthesis by Oxidation of Heterosubstituted Alkanes</td>
<td>S. von Angerer</td>
<td>39</td>
</tr>
<tr>
<td>26.1.1.1</td>
<td>Oxidation of Halides</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>26.1.1.1.1</td>
<td>Method 1: With Sodium Dichromate or Sodium Periodate</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>26.1.1.1.2</td>
<td>Method 2: With Dimethyl Sulfoxide</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>26.1.1.1.3</td>
<td>Method 3: With Nitrogen–Oxygen Compounds</td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>26.1.1.2</td>
<td>Oxidation of Secondary Alcohols</td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>26.1.1.2.1</td>
<td>Method 1: By Hydrogen Elimination</td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>26.1.1.2.2</td>
<td>Method 2: With Chromium(VI) Compounds</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>26.1.1.2.2.1</td>
<td>Variation 1: With Chromic Acid in Aqueous Solution</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>26.1.1.2.2.2</td>
<td>Variation 2: With Chromic Acid in Acetic Acid</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>26.1.1.2.2.3</td>
<td>Variation 3: With Chromic Acid in Acetone</td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>26.1.1.2.2.4</td>
<td>Variation 4: With Chromic Acid in a Two-Phase System</td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>26.1.1.2.2.5</td>
<td>Variation 5: With Chromium(VI) Oxide in Pyridine</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>26.1.1.2.2.6</td>
<td>Variation 6: With Halochromates</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>26.1.1.2.3</td>
<td>Method 3: With Manganese Compounds</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>26.1.1.2.3.1</td>
<td>Variation 1: With Permanganate</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>26.1.1.2.3.2</td>
<td>Variation 2: With Manganese(IV) Oxide</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>26.1.1.2.4</td>
<td>Method 4: With Other Metal Compounds</td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>26.1.1.2.4.1</td>
<td>Variation 1: With Iron Compounds</td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>26.1.1.2.4.2</td>
<td>Variation 2: With Ruthenium(VIII) Oxide</td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>26.1.1.2.4.3</td>
<td>Variation 3: With Copper(II) Salts</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>26.1.1.2.5</td>
<td>Method 5: Oxidation of Secondary Alcohols with Halogen Compounds</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>26.1.1.2.5.1</td>
<td>Variation 1: With Hypofluorous Acid</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>26.1.1.2.5.2</td>
<td>Variation 2: With Hypochlorite and Related Oxidants</td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>26.1.1.2.5.3</td>
<td>Variation 3: With N-tert-Butylbenzenesulfinimidoyl Chloride</td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>26.1.1.2.5.4</td>
<td>Variation 4: With Bromo Compounds</td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>26.1.1.2.5.5</td>
<td>Variation 5: With Periodate</td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>26.1.1.2.5.6</td>
<td>Variation 6: With Organic Iodine(V) Compounds</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>26.1.1.2.5.7</td>
<td>Variation 7: With Organic Iodine(III) Compounds</td>
<td></td>
<td>71</td>
</tr>
</tbody>
</table>
26.1.2.6 Method 6: Oxidation by Molecular Oxygen .. 74
26.1.2.6.1 Variation 1: With Ruthenium-Based Catalysts 74
26.1.2.6.2 Variation 2: With Cobalt-Based Catalysts 75
26.1.2.6.3 Variation 3: With Vanadium-Based Catalysts 76
26.1.2.6.4 Variation 4: With Copper-Based Catalysts 78
26.1.2.6.5 Variation 5: With Palladium-Based Catalysts 79
26.1.2.6.6 Variation 6: With Other Reagents ... 82
26.1.2.7 Method 7: Oxidation with Hydrogen Peroxide 83
26.1.2.8 Method 8: Oxidation with Hydroperoxides and Peracids 84
26.1.2.8.1 Variation 1: With tert-Butyl Hydroperoxide 85
26.1.2.8.2 Variation 2: With Peracids ... 86
26.1.2.9 Method 9: Oxidation with Dioxiranes .. 88
26.1.2.10 Method 10: Oxidation with Dimethyl Sulfoxide 89
26.1.2.11 Method 11: Oxidation with Peroxomonosulfate 95
26.1.2.12 Method 12: Oxidation with Nitrogen Compounds 96
26.1.2.12.1 Variation 1: With Organic Oxoammonium Salts 96
26.1.2.12.2 Variation 2: With N-Oxides .. 98
26.1.2.12.3 Variation 3: With Other Nitrogen-Based Oxidants 98
26.1.2.13 Method 13: Oppenauer Oxidation .. 99
26.1.2.14 Method 14: Dehydrogenation with Alkenes and Alkynes 102
26.1.2.14.1 Variation 1: With Alkenes .. 103
26.1.2.14.2 Variation 2: By Isomerization of Allyl Alcohols 103
26.1.2.14.3 Variation 3: By Isomerization of α-Hydroxyalkynes 104
26.1.2.15 Method 15: Other Methods ... 105
26.1.3 Oxidation of Secondary Alcohol Derivatives 108
26.1.3.1 Method 1: Oxidation of Ethers .. 108
26.1.3.2 Method 2: Oxidative Deprotection of Silyl Ethers 111
26.1.4 Oxidation of Nitrogen Compounds ... 113
26.1.4.1 Method 1: From Nitroalkanes (The Nef Reaction) 113
26.1.4.2 Method 2: From Amines .. 115

26.1.2 Synthesis by Oxidation of Alkenes and Alkanes (Excluding Allylic or Benzylic Derivatives)
T. S. Balaban

26.1.2.1 Method 1: Oxidation of Alkenes without Cleavage of the Skeleton 127
26.1.2.1.1 Variation 1: Using Mercury Salts .. 127
26.1.2.1.2 Variation 2: Using Palladium Salts with Oxygen and a Copper Cocatalyst or Other Oxidant Systems ... 128
26.1.2.1.3 Variation 3: Using Rhodium Salts with Oxygen 131
26.1.2.1.4 Variation 4: By Oxidation of Intermediate Boron Adducts 131
26.1.2.2 Method 2: Oxidation of Alkenes with Cleavage of a C=C Bond 133
26.1.2.2.1 Variation 1: Using Transition Metal Compounds 134
26.1.2.2.2 Variation 2: Using Permanganate and Periodate Reagents 134
26.1.2.3
Variation 3: By Ozonolysis ... 135

26.1.2.4
Variation 4: By Other Methods .. 136

26.1.2
Method 3: Transition-Metal-Catalyzed Oxidation of Alkanes 137

26.1.2.3.1
Variation 1: Using Oxygen ... 137

26.1.2.3.2
Variation 2: Using Ozone ... 140

26.1.2.3.3
Variation 3: Using Hydrogen Peroxide and Organic Peroxides 140

26.1.2.3.4
Variation 4: Using Sodium Periodate 144

26.1.2.3.5
Variation 5: Using Iodosylbenzene 145

26.1.2.3.6
Variation 6: Under Irradiation .. 146

26.1.2.4
Method 4: Oxidation of Alkanes by Other Methods 146

26.1.2.4.1
Variation 1: Using Chromates and Permanganates under Lewis Acid Catalysis ... 146

26.1.2.4.2
Variation 2: Using Dioxiranes ... 147

26.1.2.4.3
Variation 3: Using Ozone ... 148

26.1.2.4.4
Variation 4: Electrochemical Oxidation 148

26.1.3
Synthesis by Reduction of 1,2-Diketones and α-Diazo Ketones, α,α-Dihetero- and α-Heterosubstituted Ketones, Enones, and Ynones
M. Yus and C. Nájera

26.1.3
Synthesis by Reduction of 1,2-Diketones and α-Diazo Ketones, α,α-Dihetero- and α-Heterosubstituted Ketones, Enones, and Ynones ... 153

26.1.3.1
Reduction of 1,2-Diketones and α-Diazo Ketones 153

26.1.3.1.1
Method 1: Reduction of 1,2-Diketones 153

26.1.3.1.2
Method 2: Reduction of α-Diazo Ketones 155

26.1.3.2
Reduction of α,α-Diheterosubstituted Ketones 157

26.1.3.2.1
Method 1: Reduction of α,α-Dihalo Ketones 157

26.1.3.2.2
Method 2: Reduction of α-Oxo Thioacetals 158

26.1.3.3
Reduction of α-Heterosubstituted Ketones 160

26.1.3.3.1
Reduction of α-Silylated Ketones 160

26.1.3.3.1.1
Method 1: Acidic Conditions .. 161

26.1.3.3.1.2
Method 2: Basic Conditions .. 162

26.1.3.3.2
Reduction of α-Halo Ketones ... 163

26.1.3.3.2.1
Method 1: Reduction of α-Fluoro Ketones 165

26.1.3.3.2.2
Method 2: Reduction of α-Chloro Ketones 166

26.1.3.3.2.2.1
Variation 1: Active Metals and Salts 166

26.1.3.3.2.2.2
Variation 2: Nucleophilic Reagents 167

26.1.3.3.2.2.3
Variation 3: Hydrides ... 169

26.1.3.3.2.3
Method 3: Reduction of α-Bromo Ketones 170

26.1.3.3.2.3.1
Variation 1: Active Metals or Salts and Electrolysis 170

26.1.3.3.2.3.2
Variation 2: Nucleophilic Reagents 172

26.1.3.3.2.3.3
Variation 3: Hydrides ... 173

26.1.3.3.2.4
Method 4: Reduction of α-Iodo Ketones 175

26.1.3.3.3
Reduction of α-Oxygenated Ketones 176
26.1.3.3.1 Method 1: Reduction of \(\alpha\)-Hydroxy Ketones 177
26.1.3.3.1 Variation 1: Active Metals and Salts .. 177
26.1.3.3.1.1 Variation 1: Active Metals and Salts .. 177
26.1.3.3.1.2 Variation 2: Nucleophilic Reagents ... 178
26.1.3.3.2 Method 2: Reduction of \(\alpha\)-Alkoxy, \(\alpha\)-Acyloxy, and \(\alpha\)-Sulfonyloxy Ketones 180
26.1.3.3.2 Variation 1: Active Metals and Salts ... 180
26.1.3.3.2.2 Variation 2: Nucleophilic Reagents and Hydrides 182
26.1.3.3.3 Method 3: Reduction of \(\alpha\)-\(\beta\)-Epoxy Ketones 184
26.1.3.3.3 Variation 1: Active Metals and Salts ... 184
26.1.3.3.3.2 Variation 2: Nucleophilic Reagents ... 186
26.1.3.3.4 Reduction of \(\alpha\)-Sulfurated Ketones ... 187
26.1.3.3.4.1 Method 1: Reduction of \(\alpha\)-Sulfanyl Ketones 188
26.1.3.3.4.2 Method 2: Reduction of \(\alpha\)-Sulfinyl Ketones 190
26.1.3.3.4.3 Method 3: Reduction of \(\alpha\)-Sulfonyl Ketones 191
26.1.3.3.4.3.1 Variation 1: Active Metals and Salts .. 191
26.1.3.3.4.3.2 Variation 2: Radicals and Nucleophilic Reagents 195
26.1.3.3.5 Reduction of \(\alpha\)-Selanyl Ketones .. 195
26.1.3.3.6 Reduction of \(\alpha\)-Nitrogenated Ketones ... 198
26.1.3.4 Reduction of Enones ... 199
26.1.3.4.1 Method 1: Catalytic Hydrogenation ... 199
26.1.3.4.1.1 Variation 1: Hydrogenation under Heterogeneous Conditions 199
26.1.3.4.1.2 Variation 2: Hydrogenation under Homogeneous Conditions 202
26.1.3.4.1.3 Variation 3: Transfer Hydrogenation ... 204
26.1.3.4.2 Method 2: Reduction with Hydrides .. 206
26.1.3.4.2.1 Variation 1: Boron Hydrides ... 206
26.1.3.4.2.2 Variation 2: Aluminum Hydrides .. 208
26.1.3.4.2.3 Variation 3: Silicon Hydrides .. 210
26.1.3.4.2.4 Variation 4: Tin Hydrides and Metal Hydroxides 212
26.1.3.4.2.5 Variation 5: Transition Metal Hydrides 214
26.1.3.4.3 Method 3: Reduction with Dissolving Metals 216
26.1.3.4.3.1 Variation 1: Main Group Metals ... 216
26.1.3.4.3.2 Variation 2: Transition Metals and Salts 220
26.1.3.4.4 Methods 4: Other Methodologies .. 221
26.1.3.5 Reduction of Ynones ... 224
26.1.3.5.1 Method 1: Partial and Full Reduction Methodologies 224

26.1.4 Synthesis from Carboxylic Acids and Derivatives by Substitution with a Carbon Nucleophile
B. Figadère and X. Franck

26.1.4 Synthesis from Carboxylic Acids and Derivatives by Substitution with a Carbon Nucleophile 243
26.1.4.1 Method 1: Synthesis from Acyl Halides ... 243
26.1.4.1.1 Variation 1: With Organotin Reagents ... 244
26.1.4.1.2 Variation 2: With Organoboron Reagents 244
26.1.4.1.3 Variation 3: With Organocobalt Reagents 245
Table of Contents

Variation 1: From Carbon Dioxide and Its Derivatives .. 253
Variation 2: With Grignard Reagents ... 259
Variation 3: With Grignard Reagents ... 260
Variation 4: With Organolithium Reagents ... 255
Variation 5: With Organocadmium Reagents ... 254
Variation 6: With Organomercury Reagents ... 249
Variation 7: With Organocopper Reagents ... 249
Variation 8: With Organocobalt, Organorhodium, or Organoiron Reagents 252
Variation 9: With Organomanganese Reagents .. 253
Variation 10: With Organotitanium or Organozirconium Reagents 254

Method 1: Synthesis from S-Alkyl or S-Aryl Thioesters .. 272
Method 2: Synthesis from Carboxylic Acids ... 258
Method 3: Synthesis from Carboxylic Esters .. 261
Method 4: Synthesis from Carboxylic Anhydrides ... 264
Method 5: Synthesis from S-Alkyl or S-Aryl Thioesters .. 272
Method 6: Synthesis from Amides .. 275
Method 7: Synthesis from Nitriles ... 277
Method 8: Synthesis from Dihydroimidazoles ... 280
Method 9: Synthesis from Miscellaneous Acylating Reagents 281
Method 10: Synthesis from Miscellaneous Acylating Reagents 270
Method 11: Synthesis from Miscellaneous Acylating Reagents 259
Method 12: Synthesis from Miscellaneous Acylating Reagents 260
Method 13: Synthesis from Miscellaneous Acylating Reagents 264
Method 14: Synthesis from Miscellaneous Acylating Reagents 266
Method 15: Synthesis from Miscellaneous Acylating Reagents 266
Method 16: Synthesis from Miscellaneous Acylating Reagents 267
Method 17: Synthesis from Miscellaneous Acylating Reagents 268
Method 18: Synthesis from Miscellaneous Acylating Reagents 268
Method 19: Synthesis from Miscellaneous Acylating Reagents 269
Method 20: Synthesis from Miscellaneous Acylating Reagents 270
Method 21: Synthesis from Miscellaneous Acylating Reagents 271
Method 22: Synthesis from Miscellaneous Acylating Reagents 272
Method 23: Synthesis from Miscellaneous Acylating Reagents 272
Method 24: Synthesis from Miscellaneous Acylating Reagents 273
Method 25: Synthesis from Miscellaneous Acylating Reagents 274
Method 26: Synthesis from Miscellaneous Acylating Reagents 274
Method 27: Synthesis from Miscellaneous Acylating Reagents 275
Method 28: Synthesis from Miscellaneous Acylating Reagents 275
Method 29: Synthesis from Miscellaneous Acylating Reagents 276
Method 30: Synthesis from Miscellaneous Acylating Reagents 276
Method 31: Synthesis from Miscellaneous Acylating Reagents 277
Method 32: Synthesis from Miscellaneous Acylating Reagents 277
Method 33: Synthesis from Miscellaneous Acylating Reagents 278
Method 34: Synthesis from Miscellaneous Acylating Reagents 278
Method 35: Synthesis from Miscellaneous Acylating Reagents 279
Method 36: Synthesis from Miscellaneous Acylating Reagents 279
Method 37: Synthesis from Miscellaneous Acylating Reagents 279
Method 38: Synthesis from Miscellaneous Acylating Reagents 280
Method 39: Synthesis from Miscellaneous Acylating Reagents 280
Method 40: Synthesis from Miscellaneous Acylating Reagents 281
Method 41: Synthesis from Miscellaneous Acylating Reagents 281
Method 42: Synthesis from Miscellaneous Acylating Reagents 281
Method 43: Synthesis from Miscellaneous Acylating Reagents 282
Method 44: Synthesis from Miscellaneous Acylating Reagents 282
Method 45: Synthesis from Miscellaneous Acylating Reagents 283
Method 46: Synthesis from Miscellaneous Acylating Reagents 283
26.1.4.9.4 Variation 4: From Ortho Esters ... 283
26.1.4.9.5 Variation 5: From Acyl Cyanides .. 284
26.1.4.9.6 Variation 6: From Acylsilanes ... 284

26.1.5 Synthesis from Aldehydes by Substitution of the Aldehyde Hydrogen
B. Figadère and X. Franck

26.1.5 Synthesis from Aldehydes by Substitution of the Aldehyde Hydrogen ... 293
26.1.5.1 Method 1: Radical Reaction of Aldehydes with Alkenes 293
26.1.5.2 Method 2: Addition of Diazoolkanes to Aldehydes 294
26.1.5.3 Method 3: Hydroacylation of Aldehydes 295
26.1.5.3.1 Variation 1: With Ruthenium Complexes 296
26.1.5.3.2 Variation 2: With Cobalt Complexes 296
26.1.5.3.3 Variation 3: With Rhodium Complexes 297

26.1.6 Synthesis from Thioketones, Acetals, Cyanohydrins, Enol Ethers, Enamines, Other Ene Derivatives, and Related Compounds
D. Desmaële

26.1.6 Synthesis from Thioketones, Acetals, Cyanohydrins, Enol Ethers, Enamines, Other Ene Derivatives, and Related Compounds ... 301
26.1.6.1 Synthesis from Thioketones ... 301
26.1.6.1.1 Method 1: Hydrolysis of Thioketones 301
26.1.6.1.2 Method 2: Oxidative Cleavage of Thioketones 302
26.1.6.1.3 Method 3: Nitrosative Cleavage of Thioketones 304
26.1.6.2 Synthesis from Iminium Ions, Ketimines, and Derivatives 304
26.1.6.2.1 Method 1: Hydrolysis of Iminium Salts and Imines 304
26.1.6.3 Synthesis from N-Sulfanyl- and N-Sulfonylimines 307
26.1.6.3.1 Method 1: Hydrolysis of N-Sulfanyl- and N-Sulfonylimines 307
26.1.6.4 Synthesis from Oximes and Derivatives 307
26.1.6.4.1 Method 1: Hydrolysis of Oximes and Derivatives 307
26.1.6.4.1.1 Variation 1: Sodium Hydrogen Sulfite Assisted Hydrolysis of Oximes and Derivatives .. 308
26.1.6.4.1.2 Variation 2: Metal Salt Assisted Hydrolysis of Oximes and Derivatives .. 309
26.1.6.4.2 Method 2: Cleavage of Oximes and Derivatives by the Exchange Method ... 310
26.1.6.4.3 Method 3: Oxidative Cleavage of Oximes and Derivatives 311
26.1.6.4.3.1 Variation 1: Aerobic Oxidation and Ozonolysis of Oximes and Derivatives .. 311
26.1.6.4.3.2 Variation 2: Oxidative Cleavage of Oximes and Derivatives with Peroxodic Compounds ... 312
26.1.6.4.3.3 Variation 3: Oxidative Cleavage of Oximes and Derivatives with High-Valency Metals .. 313
26.1.6.4.3.4 Variation 4: Other Oxidative Cleavages of Oximes and Derivatives ... 316
26.1.6.4.4 Method 4: Nitrosative Cleavage of Oximes and Derivatives 317
26.1.6.4.5 Method 5: Reductive Cleavage of Oximes and Derivatives 318
Method 2: Metal-Induced Cleavage of S,S-Acetals .. 352
Method 3: Alkylative and Electrophilic Cleavage of S,S-Acetals 354
Method 4: Oxidative Cleavage of S,S-Acetals ... 355
Method 5: Nitrosative Cleavage of S,S-Acetals ... 358
Method 6: Photolysis of S,S-Acetals .. 359

Synthesis from Dithioketal Monosulfoxides and Dithioketal Disulfoxides 359
Method 1: Hydrolysis of Dithioketal Monosulfoxides and Dithioketal Disulfoxides ... 359
Method 2: Metal-Catalyzed Cleavage of Dithioketal Monosulfoxides and Dithioketal Disulfoxides ... 360

Synthesis from S- or $N\alpha$-Substituted Sulfones .. 361
Method 1: Acidic Hydrolysis of S- or $N\alpha$-Substituted Sulfones 361
Method 2: Metal-Induced Hydrolyses of α-(Methylsulfanyl)methyl Sulfones 362

Synthesis from 1-[(Methylsulfanyl)methyl]-1H-1,2,3-benzotriazoles, Dihydrobenzothiazoles, or Nitromethyl Sulfides ... 363
Method 1: Acidic Hydrolysis of 1-[(Methylsulfanyl)methyl]-1H-benzotriazoles........ 363
Method 2: Metal-Induced Hydrolysis of Dihydrobenzothiazoles 363
Method 3: Reductive Cleavage of Nitromethyl Sulfides .. 364

Synthesis from Diselenoacetals .. 365
Method 1: Metal-Induced Cleavage of Diselenoacetals .. 365
Method 2: Oxidative and Nitrosative Cleavage of Diselenoacetals 365

Synthesis from N,N-Acetals ... 366
Method 1: Hydrolysis of N,N-Acetals ... 366
Method 2: Hydrolysis of α-Cyanodithiocarbamates ... 371
Method 4: Hydrolytic Cleavage of α-(Dialkylamino)nitriles 372

Synthesis from Haloalkenes .. 372
Method 1: Acidic Hydrolysis of Haloalkenes .. 372
Method 2: Metal-Assisted Hydrolysis of Haloalkenes .. 374

Synthesis from Enol Derivatives ... 374
Method 1: Synthesis from Enol Ethers .. 374
Method 2: Hydrolysis of Enol Esters ... 375
Method 3: Synthesis from Silylated Enol Ethers ... 376
Variation 1: Miscellaneous Cleavages of Silylated Enol Ethers 377
Variation 2: Alkylation of Silylated Enol Ethers ... 378
Method 4: Alkylation of Stannylated Enols ... 379
26.1 Synthesis by Addition

B. Figadère and X. Franck

26.1.7 Synthesis by Addition

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.1.7.1</td>
<td>Method 1: Synthesis from Alkynes</td>
</tr>
<tr>
<td>26.1.7.1.1</td>
<td>Variation 1: By Mercury-Catalyzed Hydration</td>
</tr>
<tr>
<td>26.1.7.1.2</td>
<td>Variation 2: By Gold-Catalyzed Hydration</td>
</tr>
<tr>
<td>26.1.7.1.3</td>
<td>Variation 3: By Palladium-Catalyzed Hydration</td>
</tr>
<tr>
<td>26.1.7.1.4</td>
<td>Variation 4: By Platinum-Catalyzed Hydration</td>
</tr>
<tr>
<td>26.1.7.1.5</td>
<td>Variation 5: By Iron-Catalyzed Hydration</td>
</tr>
<tr>
<td>26.1.7.1.6</td>
<td>Variation 6: By Ruthenium-Catalyzed Hydration</td>
</tr>
<tr>
<td>26.1.7.1.7</td>
<td>Variation 7: By a Hydroboration–Oxidation Sequence</td>
</tr>
<tr>
<td>26.1.7.2</td>
<td>Method 2: Synthesis from Allenes</td>
</tr>
<tr>
<td>26.1.7.2.1</td>
<td>Variation 1: By Mercury-Catalyzed Hydration</td>
</tr>
<tr>
<td>26.1.7.2.2</td>
<td>Variation 2: By a Hydroboration–Oxidation Sequence</td>
</tr>
<tr>
<td>26.1.7.3</td>
<td>Method 3: Synthesis from Ketenes</td>
</tr>
<tr>
<td>26.1.7.3.1</td>
<td>Variation 1: With Organozinc Reagents</td>
</tr>
<tr>
<td>26.1.7.3.2</td>
<td>Variation 2: With Grignard Reagents</td>
</tr>
<tr>
<td>26.1.7.3.3</td>
<td>Variation 3: With Organolithium Reagents</td>
</tr>
</tbody>
</table>

26.1.8 Synthesis by Fragmentation and Rearrangement

T. Constantieux and J. Rodriguez

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.1.8</td>
<td>Method 1: Fragmentation of Alkenes</td>
</tr>
<tr>
<td>26.1.8.2</td>
<td>Method 2: Fragmentation of 1,2-Diols</td>
</tr>
<tr>
<td>26.1.8.2.1</td>
<td>Variation 1: Fragmentation of 1,2-Diols with Periodates</td>
</tr>
<tr>
<td>26.1.8.2.2</td>
<td>Variation 2: Fragmentation of 1,2-Diols with Lead(IV) Acetate</td>
</tr>
<tr>
<td>26.1.8.2.3</td>
<td>Variation 3: Fragmentation of 1,2-Diols with N-Halosuccinimide</td>
</tr>
<tr>
<td>26.1.8.2.4</td>
<td>Variation 4: Miscellaneous Fragmentation Reactions of 1,2-Diols</td>
</tr>
<tr>
<td>26.1.8.3</td>
<td>Method 3: Fragmentation of 1,3-Diheterofunctionalized Compounds (Grob Fragmentation)</td>
</tr>
</tbody>
</table>
26.1 Variations

26.1.8.3.1 Variation 1: Fragmentation of 1,3-Amino Halides, 1,3-Amino Sulfonates, and 1,3-Hydroxy Halides .. 420

26.1.8.3.2 Variation 2: Fragmentation of 1,3-Amino Alcohols .. 420

26.1.8.3.3 Variation 3: Fragmentation of Acyclic 1,3-Diols and Derivatives 421

26.1.8.3.4 Variation 4: Fragmentation of Cyclic 1,3-Diol Monosulfonates and Derivatives (Wharton Fragmentation) 422

26.1.8.4 Method 4: Fragmentation of α,β-Unsaturated Ketones (Eschenmoser Fragmentation) .. 425

26.1.8.5 Method 5: Fragmentation of Ketones (Norrish Type II Fragmentation) 428

26.1.8.6 Method 6: Electrocyclic Rearrangements .. 430

26.1.8.6.1 Variation 1: Claisen-Type Rearrangements .. 431

26.1.8.6.2 Variation 2: Oxy-Cope Rearrangement .. 433

26.1.8.7 Method 7: Isomerization of Allylic Alcohols .. 434

26.1.8.7.1 Variation 1: Metal-Promoted Isomerization .. 435

26.1.8.7.2 Variation 2: Tandem Isomerization–Aldol Reaction .. 437

26.1.8.7.3 Variation 3: Enantioselective Isomerization .. 438

26.1.8.7.4 Variation 4: Isomerization with Ring Expansion .. 439

26.1.8.8 Method 8: Rearrangement of 1,2-Diheterofunctionalized Compounds 440

26.1.8.8.1 Variation 1: 1,2-Diols and Derivatives .. 441

26.1.8.8.2 Variation 2: 2-Sulfanyl and 2-Selenyl Alcohol Derivatives 443

26.1.8.8.3 Variation 3: 2-Aza Alcohol Derivatives .. 444

26.1.8.8.4 Variation 4: 2-Halo Alcohols and Derivatives .. 445

26.1.8.8.5 Variation 5: 2-Hydroxy Ketones and Derivatives .. 448

26.1.8.8.6 Variation 6: 2-Epoxy Alcohols .. 449

26.1.8.9 Method 9: Rearrangement of Epoxides .. 451

26.1.8.9.1 Variation 1: Alkyl- and/or Aryl-Substituted Epoxides .. 451

26.1.8.9.2 Variation 2: α,β-Epoxy Ketones .. 454

26.1.8.9.3 Variation 3: Epoxysilanes .. 455

26.1.9 Synthesis from Other Ketones

J.-C. Plaquevent, D. Cahard, and F. Guillen

26.1.9.1 Method 1: Monoalkylation of Lithium Enolates .. 464

26.1.9.1.1 Variation 1: Enantioselective Alkylation via Chiral Lithium Amide Deprotonation .. 470

26.1.9.2 Method 2: Monoalkylation of Sodium Enolates .. 471

26.1.9.3 Method 3: Monoalkylation of Potassium Enolates .. 473

26.1.9.4 Method 4: Palladium-Catalyzed Asymmetric Alkylations and Arylations of Alkali Ketone Enolates .. 475

26.1.9.5 Method 5: Monoalkylation of Magnesium Enolates .. 481

26.1.9.6 Method 6: Monoalkylation of Manganese Enolates .. 482

26.1.9.7 Method 7: Monoalkylation Using Sodium Triethylgermanate(II) 484

26.1.9.8 Method 8: Miscellaneous Metal-Mediated Alkylations of Enolates 485

26.1.9.9 Method 9: Alkylation by Phase-Transfer Catalysis .. 487

26.1.9.10 Method 10: Free Radical Alkylation .. 489

26.1.9.11 Method 11: Polyalkylation of Enols and Enolates .. 493

26.1.9.12 Method 12: Isomerization by Carbonyl Transposition .. 497
26.1.9.13 Method 13: Epimerization via Enols and Enolates 498
26.1.9.14 Method 14: Deracemization by Enantioselective Protonation of Enolates 502
26.1.9.14.1 Variation 1: With a Chiral Proton Source 502
26.1.9.14.2 Variation 2: With an Achiral Proton Source under the Influence of a Chiral Ligand ... 505
26.1.9.14.3 Variation 3: Fungal Deracemization .. 506
26.1.9.15 Method 15: Norrish Type II Fragmentation .. 507
26.1.9.16 Method 16: Ring Expansion of Alicyclic Ketones 507

26.1.10 Synthesis from Enones by Formation of C—C Bonds
J.-C. Plaquevent, D. Cahard, and F. Guillen

26.1.10.1 Method 1: By Addition of Organosilicon Reagents 513
26.1.10.2 Method 2: By Addition of Organostannane Reagents 515
26.1.10.3 Method 3: By Addition of Organoboron Reagents 516
26.1.10.4 Method 4: By Addition of Organoaluminum Reagents 519
26.1.10.5 Method 5: By Addition of Organozinc Reagents 520
26.1.10.6 Method 6: By Addition of Organocopper Reagents 525
26.1.10.7 Method 7: By Addition of Grignard Reagents 532
26.1.10.8 Method 8: By Michael and Michael-Type Addition Reactions 533
26.1.10.8.1 Variation 1: Organometallic Catalysis ... 533
26.1.10.8.2 Variation 2: Heterobimetallic Catalysis 537
26.1.10.8.3 Variation 3: Organocatalysis ... 541
26.1.10.8.4 Variation 4: Phase-Transfer Catalysis 544
26.1.10.8.5 Variation 5: Mukaiyama–Michael Reaction 547
26.1.10.9 Method 9: By the Sakurai–Hosomi Reaction 549

26.2 Product Class 2: Cyclobutanones and Their Precursors
J. Salaün

26.2.1 Synthesis of Product Class 2 ... 557
26.2.1.1 Method 1: Ring Formation by Cyclodalkylation of Protected Carbonyl Groups by 1,3-Dihalopropanes .. 557
26.2.1.1.1 Variation 1: From 1,3-Dithiane ... 557
26.2.1.1.2 Variation 2: From Methyl (Methylsulfanyl)methyl Sulfoxide 558
26.2.1.1.3 Variation 3: From Tosylmethyl Isocyanide 558
26.2.1.2 Method 2: Ring Formation by Cyclodalkylation of Ketones by 1,3-Dimetalated Propan-2-iminium Salts .. 559
26.2.1.3 Method 3: Cyclization by Intramolecular Substitution 559
26.2.1.3.1 Variation 1: Of a δ-Halo Cyanohydrin 559
26.2.1.3.2 Variation 2: Of O-Protected Alk-3-en-1-ols or Alk-3-yn-1-ols 559
26.2.1.4 Method 4: Ring Formation by Carbonylation 560
26.2.1.4.1 Variation 1: Of Titanacyclobutanes 561
26.2.1.4.2 Variation 2: Of (Alkoxyalkylidene)chromium Complexes 561
26.2.1.4.3 Variation 3: Of a Cobaltacyclopentan-2-one 562
Method 5: Reduction

Variation 1: Of 2-Acetoxycyclobutanones

Variation 2: Of 2,2-Dichlorocyclobutanones

Method 6: Oxidation

Variation 1: Of Cyclobutanols

Variation 2: Of Methylenecyclobutane

Method 7: Ring Formation by [2 + 2] Cycloaddition

Variation 1: Of Ketenes and Alkenes

Variation 2: Of Mono- or Dichloroketenes and Alkenes

Variation 3: Of Keteniminium Salts and Alkenes

Variation 4: Of Ketene Acetals and Acrylic or Maleic Acid Derivatives

Variation 5: Of Ketene Thioacetals and Alkenes

Variation 6: Of Ketene Silyl Acetals and Alkenes

Variation 7: Of N,N-Diethylprop-1-yn-1-amine and Alkenes

Method 8: Ring Enlargement of Cyclopropanones Formed by Addition of Diazomethane to Ketenes

Method 9: Ring Enlargement of the Cyclopropane Intermediate Formed by a Simmons–Smith Cyclopropanation Reaction

Method 10: Rearrangement of Spiro[2.2]pentanes

Variation 1: Of 1-Oxaspiro[2.2]pentanes

Variation 2: Of 1-Azaspiro[2.2]pentanes

Method 11: Rearrangement of (1-Hydroxyalkyl)cyclopropanes

Variation 1: Of 1-Alkoxy-1-(1-hydroxyalkyl)cyclopropanes

Variation 2: Of 1-(Arylsulfanyl)-1-(1-hydroxyalkyl)cyclopropanes

Variation 3: Of 1-(1-Hydroxyalkyl)-1-selanylcyclopropanes

Variation 4: Of 1-(1-Hydroxyalkyl)-1-(trimethylsilyl)cyclopropanes

Variation 5: Of (1-Formylamino)-1-(1-hydroxyalkyl)cyclopropanes

Method 12: Rearrangement of Cyclopropanol Derivatives

Variation 1: Of 1-Vinylcyclopropanols

Variation 2: Of 1-(1-Hydroxyalkyl)- or 1-Formylcyclopropanols

Method 13: Rearrangement of (1-Bromoalkylidene)cyclopropanes

Method 14: Ring Contraction

Variation 1: Of γ-Lactone Tosylhydrazones

Variation 2: Of Cyclohex-2-eneones

Variation 3: Of Cyclohex-3-eneones

Variation 4: Of Cycloocta-2,4,6-trieneones

Method 15: Preparation from Preformed Four-Membered Rings

Variation 1: From Cyclobutanones

Variation 2: From Cyclobutenones

Variation 3: From 1,2-Bis(trimethylsiloxy)cyclobutene
26.3 Product Class 3: Cyclopropanones and Their Precursors
J. Salaün

26.3 Product Class 3: Cyclopropanones and Their Precursors ... 607
26.3.1 Product Subclass 1: Cyclopropanones .. 607
26.3.1.1 Synthesis of Product Subclass 1 .. 607
26.3.1.1.1 Method 1: Photolysis of Strained Rings .. 607
26.3.1.1.1 Variation 1: Photodecarbonylation of Cyclobutanediones 607
26.3.1.1.2 Variation 2: Photodenitrogenation of Dihydropyrazolones 608
26.3.1.1.2 Method 2: Ring-Closing Dehalogenation of \(\alpha \)-Halo and \(\alpha,\alpha' \)-Dihalo Ketones .. 608
26.3.1.1.2.1 Variation 1: With Sterically Hindered Bases 608
26.3.1.1.2.2 Variation 2: Electrochemical Dehalogenation 609
26.3.1.1.2.3 Variation 3: Sodium Iodide Induced Dehalogenation 609
26.3.1.1.2.4 Variation 4: Carbonylmetalate-Induced Dehalogenation 610
26.3.1.1.3 Method 3: Addition Reactions of Ketenes 610
26.3.1.1.4 Method 4: Isomerization of Allene Oxides 611
26.3.1.1.4.1 Variation 1: Thermal Isomerization 612

26.3.2 Product Subclass 2: Cyclopropanone Hemiacetals ... 612
26.3.2.1 Synthesis of Product Subclass 2 .. 612
26.3.2.1.1 Method 1: Photodecarbonylation of Cyclobutanediones 612
26.3.2.1.2 Method 2: Ring-Closing Dehalogenation 613
26.3.2.1.2.1 Variation 1: Electroreduction of \(\alpha,\alpha' \)-Dihalo Ketones 613
26.3.2.1.2.2 Variation 2: Base-Induced Dehydrohalogenation of \(\alpha \)-Halo Ketones .. 613
26.3.2.1.2.3 Variation 3: Sodium-Mediated Ring Closure of \(\beta \)-Halo Esters 614
26.3.2.1.2.4 Variation 4: Sodium-Mediated Ring Closure of \(\beta \)-Haloamides .. 614
26.3.2.1.3 Method 3: Addition Reactions of Ketenes 615
26.3.2.1.3.1 Variation 1: Cyclopropanation of Silylketene Acetals 615
26.3.2.1.3.2 Variation 2: Cyclopropanation of 1-Alkoxyvinyl Esters 615
26.3.2.1.3.3 Variation 3: Addition of Glacial Acetic Acid to Cyclopropanones .. 616

26.3.3 Product Subclass 3: Cyclopropanone Hemiaminals .. 616
26.3.3.1 Synthesis of Product Subclass 3 .. 616
26.3.3.1.1 Method 1: Addition of Amines to Cyclopropanone 616

26.3.4 Product Subclass 4: Cyclopropanone Acetals ... 617
26.3.4.1 Synthesis of Product Subclass 4 .. 617
26.3.4.1.1 Method 1: Alcoholysis of 1'-Substituted Cyclopropyl Ethers 617
26.3.4.1.1.1 Variation 1: From 1,1-Dihaloacyclopropanes 618
26.3.4.1.2 Method 2: Reductive Cyclization of \(\alpha,\alpha' \)-Dihaloacetoxypropane Acetals .. 618
26.3.4.1.3 Method 3: Addition of Carbenes or Carbenoids to Ketene Acetals .. 619
26.3.4.1.3.1 Variation 1: Addition of Dialkoxyketenes to Ketones 620
26.3.4.1.4 Method 4: Addition to Cyclopropanone Acetals 621
26.3.4.1.5 Method 5: Ring Closure of (\(\gamma,\gamma' \)-Dialkoxyallyl)zirconocenes 622
26.3.4.1.6 Method 6: Photoisomerization of Dienedione Monoacetals 622
26.3.5 Product Subclass 5: Cyclopropane-1,1-diamines .. 623
 26.3.5.1 Synthesis of Product Subclass 5 ... 623
 26.3.5.1.1 Method 1: Secondary Amine Induced Ring Closure of \(\alpha \)-Halo Ketones .. 623
 26.3.5.1.2 Method 2: Amine Addition to Cyclopropanone 623
26.3.6 Product Subclass 6: Cyclopropane Thioacetals .. 624
 26.3.6.1 Synthesis of Product Subclass 6 ... 624
 26.3.6.1.1 Method 1: Substitution of Cyclopropanone Derivatives 624
 26.3.6.1.1.1 Variation 1: Using Basic Conditions 624
 26.3.6.1.1.2 Variation 2: By Metalation .. 625
 26.3.6.1.2 Method 2: Ring Closure of 1,1,3-Tris(phenylsulfanyl)alkanes 625
 26.3.6.1.3 Method 3: Addition of Thiols to Cyclopropanones 626
26.3.7 Product Subclass 7: 1,1-Bis(seleno)cyclopropanes 626
 26.3.7.1 Synthesis of Product Subclass 7 ... 626
 26.3.7.1.1 Method 1: Substitution of Cyclopropanone Derivatives 626
 26.3.7.1.2 Method 2: Ring Closure of Seleno Derivatives 627
26.3.8 Product Subclass 8: Cyclopropenones .. 628
 26.3.8.1 Synthesis of Product Subclass 8 ... 628
 26.3.8.1.1 Method 1: Hydrolysis ... 628
 26.3.8.1.1.1 Variation 1: Of Cyclopropenone Acetals 628
 26.3.8.1.1.2 Variation 2: Of Dichlorocyclopropenes 630
 26.3.8.1.1.3 Variation 3: Of Cyclopropenylum Salts 630
 26.3.8.1.2 Method 2: Oxidation of Cyclopropenones 631
 26.3.8.1.3 Method 3: Photodecarbonylation of Cyclobutenediones 632
 26.3.8.1.4 Method 4: Dehydrohalogenation of \(\alpha,\alpha' \)-Dihalo Ketones 632
26.3.9 Product Subclass 9: Cyclopropyl Ketones and Cyclopropanecarbaldehydes 633
 26.3.9.1 Synthesis of Product Subclass 9 ... 633
 26.3.9.1.1 Method 1: Ring-Closure Reactions ... 633
 26.3.9.1.1.1 Variation 1: Of \(\gamma \)-Chloro Ketones 633
 26.3.9.1.1.2 Variation 2: Of 4-Oxopentyl Phosphate Carbionions 634
 26.3.9.1.1.3 Variation 3: Of Methyl 2,3-Dihaloopropanoates 634
 26.3.9.1.2 Method 2: Addition Reactions ... 635
 26.3.9.1.2.1 Variation 1: Of Carbenes to Undec-2-en-5-yn-1-ol 636
 26.3.9.1.2.2 Variation 2: Of Diphenylsulfonium Isopropylide to Chiral Lactams 636
 26.3.9.1.2.3 Variation 3: Of Diazocyclopropane to Aldehydes 638
 26.3.9.1.3 Method 3: Oxidation Reactions ... 638
 26.3.9.1.3.1 Variation 1: Swern Oxidation of Cyclopropylcarbinols 638
 26.3.9.1.3.2 Variation 2: Oxidative Ring Opening 639
 26.3.9.1.4 Method 4: Rearrangement of Allene Oxides 640
 26.3.9.1.5 Method 5: Addition of Methylthiium to Cyclopropane Carboxylic Acids 640
 26.3.9.1.6 Method 6: Photolysis of \(\beta,\gamma \)-Unsaturated Ketones 641
26.4 Product Class 4: 1,2-Diketones and Related Compounds

Y. Landais and J. M. Vincent

26.4.1 Product Subclass 1: 1,2-Diketones

26.4.1.1 Synthesis of Product Subclass 1

- **Method 1:** Coupling Reactions
 - **Variation 1:** Coupling of Aldehydes
 - **Variation 2:** Coupling of Carboxylic Acid Derivatives
- **Variation 3:** Coupling of α-Oxonitriles
- **Variation 4:** Carbonylative Coupling of Alkyl Halides with Organometallic Reagents
- **Variation 5:** Nucleophilic Acylation of Carboxylic Acid Derivatives by Acyllithium Reagents
- **Variation 6:** Addition of Organometallic Reagents to 1,2-Diacyl Derivatives
- **Variation 7:** Friedel–Crafts Acylation

26.4.1.2 Substitution of Heteroatoms

- **Variation 1:** Hydrolysis of α-Oxo Ketals
- **Variation 2:** Hydrolysis of α-Oxo Thioketals
- **Variation 3:** Hydrolysis of α-Oxo Imines
- **Variation 4:** Hydrolysis of α,α-Dihalo Ketones
- **Variation 5:** From α-Diazo Ketones

26.4.1.3 Oxidation

- **Variation 1:** Of Ketones
- **Variation 2:** Of Enones by Ozonolysis
- **Variation 3:** Of α-Hydroxy Ketones
- **Variation 4:** Of 1,2-Diols
- **Variation 5:** Of Alkenes
- **Variation 6:** Of Alkynes
- **Variation 7:** Of Arenes, Phenols, and Catechols
- **Variation 8:** Of α-Oxo Phosphorus Ylides
- **Variation 9:** Of α-Bromo Ketones

26.4.1.4 Rearrangements of α,β-Epoxy Ketones

Method 4:
- **Variation 1:** Of 1,2-Bis(siloxy)alkenes

26.4.1.5 Additional Methods

Method 5:
- **Variation 1:** Rearrangements of α,β-Epoxy Ketones

Method 6:
- **Variation 1:** Additional Methods

26.4.1.6 Applications of Product Subclass 1 in Organic Synthesis

- **Method 1:** Oxidation of 1,2-Diketones to Carboxylic Acids
- **Method 2:** Addition Reactions with 1,2-Diketones
 - **Variation 1:** Addition of Hydrogen
 - **Variation 2:** Addition of Organometallic Reagents
 - **Variation 3:** Addition of Carbon Functionalities
 - **Variation 4:** Addition of Heteroatoms
 - **Variation 5:** Cycloadditions of 1,2-Diketones
- **Method 3:** Ring Contraction of Cyclic 1,2-Diketones
Table of Contents

<table>
<thead>
<tr>
<th>XXVI</th>
<th>Table of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.4.2</td>
<td>Product Subclass 2: α-Thioxo Ketones</td>
</tr>
<tr>
<td>26.4.2.1</td>
<td>Synthesis of Product Subclass 2</td>
</tr>
<tr>
<td>26.4.2.1.1</td>
<td>Method 1: Substitution of Heteroatoms</td>
</tr>
<tr>
<td>26.4.2.1.1.1</td>
<td>Variation 1: In 1,2-Diketones</td>
</tr>
<tr>
<td>26.4.2.1.1.2</td>
<td>Variation 2: In α-Diazo Ketones</td>
</tr>
<tr>
<td>26.4.2.1.2</td>
<td>Method 2: Oxidation of Active Methylene Compounds</td>
</tr>
<tr>
<td>26.4.2.1.2.1</td>
<td>Variation 1: Of Ketones</td>
</tr>
<tr>
<td>26.4.2.1.2.2</td>
<td>Variation 2: Of α-Sulfanyl Ketones</td>
</tr>
<tr>
<td>26.4.2.1.3</td>
<td>Method 3: Addition</td>
</tr>
<tr>
<td>26.4.2.1.3.1</td>
<td>Variation 1: Of Thionyl Chloride to Silyl Enol Ethers</td>
</tr>
<tr>
<td>26.4.2.1.3.2</td>
<td>Variation 2: Of Sulfur Ylides to Carboxylic Acid Derivatives</td>
</tr>
<tr>
<td>26.4.2.1.4</td>
<td>Method 4: Rearrangements</td>
</tr>
<tr>
<td>26.4.2.1.4.1</td>
<td>Variation 1: Retro-Diels–Alder Reactions</td>
</tr>
<tr>
<td>26.4.2.1.4.2</td>
<td>Variation 2: Rearrangement of Thiirene or Thiirane S-Oxides</td>
</tr>
<tr>
<td>26.4.2.2</td>
<td>Applications of Product Subclass 2 in Organic Synthesis</td>
</tr>
<tr>
<td>26.4.3</td>
<td>Product Subclass 3: α-Selenoxo Ketones</td>
</tr>
<tr>
<td>26.4.3.1</td>
<td>Synthesis of Product Subclass 3</td>
</tr>
<tr>
<td>26.4.3.1.1</td>
<td>Method 1: Substitution of Heteroatoms</td>
</tr>
<tr>
<td>26.4.3.1.1.1</td>
<td>Variation 1: In α-Diazo Ketones</td>
</tr>
<tr>
<td>26.4.3.1.1.2</td>
<td>Variation 2: From α-Oxo Sulfonium Ylides</td>
</tr>
<tr>
<td>26.4.3.1.2</td>
<td>Method 2: Oxidation of Active Methylene Compounds</td>
</tr>
<tr>
<td>26.4.3.1.3</td>
<td>Method 3: Addition of Selenoxides to Activated Alkynes</td>
</tr>
<tr>
<td>26.4.3.1.4</td>
<td>Methods 4: Additional Methods</td>
</tr>
<tr>
<td>26.4.3.2</td>
<td>Applications of Product Subclass 3 in Organic Synthesis</td>
</tr>
<tr>
<td>26.4.4</td>
<td>Product Subclass 4: α-Imino, α-Hydroxyimino, and α-Hydrazono Ketones</td>
</tr>
<tr>
<td>26.4.4.1</td>
<td>Synthesis of Product Subclass 4</td>
</tr>
<tr>
<td>26.4.4.1.1</td>
<td>Method 1: Coupling Reactions between Carboxylic Acid Derivatives and Imine Derivatives</td>
</tr>
<tr>
<td>26.4.4.1.2</td>
<td>Method 2: Substitution of Heteroatoms in 1,2-Diketones</td>
</tr>
<tr>
<td>26.4.4.1.3</td>
<td>Method 3: Oxidation</td>
</tr>
<tr>
<td>26.4.4.1.3.1</td>
<td>Variation 1: Nitrosation of Ketones</td>
</tr>
<tr>
<td>26.4.4.1.3.2</td>
<td>Variation 2: Nitrosation of Enones</td>
</tr>
<tr>
<td>26.4.4.1.3.3</td>
<td>Variation 3: Nitrosation of Phenols</td>
</tr>
<tr>
<td>26.4.4.1.4</td>
<td>Method 4: From α-Hydroxyimino Ketones</td>
</tr>
<tr>
<td>26.4.4.1.5</td>
<td>Methods 5: Additional Methods</td>
</tr>
<tr>
<td>26.4.4.2</td>
<td>Applications of Product Subclass 4 in Organic Synthesis</td>
</tr>
<tr>
<td>26.4.5</td>
<td>Product Subclass 5: α-Diazo Ketones</td>
</tr>
<tr>
<td>26.4.5.1</td>
<td>Synthesis of Product Subclass 5</td>
</tr>
<tr>
<td>26.4.5.1.1</td>
<td>Method 1: Substitution</td>
</tr>
<tr>
<td>26.4.5.1.1.1</td>
<td>Variation 1: Of Acyl Halides</td>
</tr>
<tr>
<td>26.4.5.1.1.2</td>
<td>Variation 2: Of Hydrazones</td>
</tr>
<tr>
<td>26.4.5.1.2</td>
<td>Method 2: Oxidation</td>
</tr>
<tr>
<td>26.4.5.1.2.1</td>
<td>Variation 1: Diazot-Transfer Reactions with Active Methylene Compounds</td>
</tr>
<tr>
<td>26.4.5.1.2.2</td>
<td>Variation 2: Diazotization of Amines</td>
</tr>
</tbody>
</table>
26.5 Product Class 5: α,α-Diheterosubstituted Ketones
J.-L. Parrain and J. Thibonnet

26.5.1 Product Subclass 1: α,α-Difluoro Ketones

26.5.1.1 Synthesis of Product Subclass 1

26.5.1.2 Method 1: Direct Fluorination of Ketones

26.5.1.3 Method 2: Oxidation of α,α-Difluoro Alcohols

26.5.1.4 Method 3: Synthesis from Difluoro Enoxysilanes

26.5.1.5 Method 4: Synthesis via Reformatsky-Type Aldol Reactions

26.5.1.6 Method 5: Synthesis from Lewis Acid Mediated Aldol-Type Reactions

26.5.1.7 Method 6: Synthesis from Anhydrides, Esters, or Amides and Organometallic Reagents

26.5.1.8 Method 7: Addition of Difluorooiodomethyl Ketones to Alkenes

26.5.1.9 Method 8: Synthesis from Alkynes

26.5.1.10 Method 9: Conversion of Arylperfluoroalkanes into Aryl Perfluoroalkyl Ketones

26.5.2 Product Subclass 2: α,α-Dichloro Ketones

26.5.2.1 Synthesis of Product Subclass 2

26.5.2.2 Method 1: Synthesis by Direct Chlorination of Ketones

26.5.2.3 Method 2: Via Acylation Reactions

26.5.2.4 Method 3: By Addition of Organometallic Reagents

26.5.2.5 Method 4: Chlorination of Terminal Alkynes

26.5.2.6 Method 5: [2 + 2]-Cycloaddition Reactions of Dichloroketenes

26.5.2.7 Method 6: Intramolecular Insertion of Trichloromethyl Ketones into Alkenes, Catalyzed by Ruthenium Complexes

26.5.3 Product Subclass 3: α,α-Dibromo Ketones and α,α-Diiodo Ketones

26.5.3.1 Synthesis of Product Subclass 3

26.5.3.2 Method 1: Synthesis of Dibromo Ketones by Direct Bromination of Ketones

26.5.3.3 Method 2: Synthesis of Diiodo Ketones by Direct Iodination of Ketones

26.5.3.4 Method 3: Synthesis from α-Diazo Ketones

26.5.3.5 Method 4: Synthesis via α,α-Dibromo Anions

26.5.3.6 Method 5: Synthesis from Alkynes

26.5.4 Product Subclass 4: α-Alkoxy-α-halo Ketones

26.5.4.1 Synthesis of Product Subclass 4

26.5.4.2 Method 1: Fluorination of α-Alkoxy Ketones

26.5.4.3 Method 2: Chlorination of α-Alkoxy Ketones

26.5.4.4 Method 3: Bromination of α-Alkoxy Ketones

26.5.4.5 Method 4: From α-Alkoxy- or α-Halo-α,β-unsaturated Ketones
26.5.4.1.5 Method 5: From α-Diazo Ketones .. 776
26.5.4.1.6 Method 6: By Addition of an Organometallic Group 776
26.5.4.1.7 Method 7: By Addition of Bromine to 1,2-Dialkoxyalkenes 777
26.5.5 Product Subclass 5: α-Halo-α-sulfanyl and α-Halo-α-sulfinyl Ketones 778
26.5.5.1 Synthesis of Product Subclass 5 .. 778
26.5.5.1.1 Method 1: Substitution of Hydrogen with Sulfur Reagents 778
26.5.5.1.2 Method 2: Halogenation of α-Sulfanyl Ketones 779
26.5.5.1.3 Method 3: Oxidation of α-Chloro-α-sulfanyl Alcohols 781
26.5.6 Product Subclass 6: α-Amino-α-halo and α-Halo-α-nitro Ketones 781
26.5.6.1 Synthesis of Product Subclass 6 .. 782
26.5.6.1.1 Method 1: Synthesis of α-Fluoro-α-nitro Ketones Using Perchloryl Fluoride .. 782
26.5.6.1.2 Method 2: Chlorination of α-Amino Ketones 782
26.5.6.1.3 Method 3: Oxidation of α-Chloro-α-nitro Alcohols 783
26.5.6.1.4 Method 4: Synthesis from Trichloronitromethane 784
26.5.7 Product Subclass 7: α,α-Dialkoxy Ketones 784
26.5.7.1 Synthesis of Product Subclass 7 .. 785
26.5.7.1.1 Method 1: Synthesis of α,α-Dialkoxy Ketones from Ketones 785
26.5.7.1.2 Method 2: Synthesis of α,α-Dialkoxy Ketones from α-Sulfinyl Ketones 786
26.5.7.1.3 Method 3: Oxidation of α-Hydroxy Acetals 786
26.5.7.1.3.1 Variation 1: Oxidation by Dess–Martin Periodinane 787
26.5.7.1.3.2 Variation 2: Swern Oxidation ... 787
26.5.7.1.3.3 Variation 3: Oxidation by Chromium(VI) Oxide 788
26.5.7.1.3.4 Variation 4: Oxidation by Ruthenium(IV) Oxide 789
26.5.7.1.4 Method 4: Oxidation of 2-Alkoxyphenols 789
26.5.7.1.5 Method 5: Synthesis from Anhydrides, Esters, or Amides and an Organometallic Reagent ... 790
26.5.7.1.5.1 Variation 1: Synthesis from Functional Anhydrides, Esters, Nitriles, or Amides .. 790
26.5.7.1.5.2 Variation 2: Synthesis from Dialkoxymethylithium Reagents 791
26.5.7.1.6 Method 6: Synthesis from α-Diazo Ketones 792
26.5.7.1.7 Method 7: Synthesis of Dialkoxy cyclobutanones via [2 + 2]-Cycloaddition Reactions ... 793
26.5.7.1.8 Method 8: Synthesis by Insertion of a Dialkoxy carbene into Strained Cyclic Ketones ... 793
26.5.7.1.9 Method 9: Synthesis by Acetalization of 1,2-Diketones or 1,2-Oxaloaldehydes ... 794
26.5.7.1.10 Method 10: Synthesis by Rearrangement of α,α′-Dialkoxy Ketones 795
26.5.7.1.11 Method 11: Synthesis from Reagents Derived from α,α-Diazo Ketones 795
26.5.7.1.11.1 Variation 1: Reactions of Enolates Derived from Dialkoxy Ketones 795
26.5.7.1.11.2 Variation 2: By Wittig Reaction ... 796
26.5.7.2 Applications of Product Subclass 7 in Organic Synthesis 797
26.5.7.2.1 Method 1: Stereoselective Applications 797
26.5.8 Product Subclass 8: α-Oxy-α-sulfanyl Ketones .. 798
26.5.8.1 Synthesis of Product Subclass 8 ... 799
26.5.8.1.1 Method 1: By Oxidation of β-Oxo Sulfides 799
26.5.8.1.2 Method 2: From α-Oxo Sulfoxides: Pummerer Reaction 800
26.5.8.1.2.1 Variation 1: Synthesis of α-Acetoxy-β-oxo Sulfides 801
26.5.8.1.2.2 Variation 2: Synthesis of α-Siloxo-β-oxo Sulfides 802
26.5.8.1.3 Method 3: By Oxidation of Functional Secondary Alcohols 802
26.5.8.1.3.1 Variation 1: By Swern Oxidation .. 803
26.5.8.1.3.2 Variation 2: Using Pyridinium Dichromate or Pyridinium Chlorochromate 803
26.5.8.1.4 Method 4: Synthesis from α-Halo-α-sulfanyl- or α-Halo-α-oxo Ketones . 804
26.5.8.1.5 Method 5: Synthesis from α-Diazo-β-oxo Sulfones 805
26.5.8.1.6 Method 6: Synthesis from Anhydrides, Esters, or Amides and an Organometallic Reagent .. 806
26.5.8.1.7 Method 7: Synthesis from α-Oxocarboxylic acids or 1,2-Diketones 809
26.5.8.1.8 Method 8: Epoxidation of α-Sulfanyl-α,β-unsaturated Ketones 810
26.5.8.1.9 Method 9: Synthesis by Rearrangement ... 812
26.5.8.2 Applications of Product Subclass 8 in Organic Synthesis 812
26.5.9 Product Subclass 9: α-Alkoxy-α-seleno Ketones 813
26.5.9.1 Synthesis of Product Subclass 9 ... 814
26.5.9.1.1 Method 1: Synthesis from α-Seleno Ketones 814
26.5.9.1.2 Method 2: Synthesis from α-Diazo Ketones 815
26.5.10 Product Subclass 10: α-Alkoxy-α-amino and α-Amino-α-hydroxy Ketones 816
26.5.10.1 Synthesis of Product Subclass 10 ... 817
26.5.10.1.1 Method 1: By Oxidation of α-Amino Ketones 817
26.5.10.1.2 Method 2: By Oxidation of α-Hydroxy N,O-Acetals 818
26.5.10.1.3 Method 3: By Substitution of Heteroatoms 820
26.5.10.1.3.1 Variation 1: From α,α-Dihydroxy Ketones 820
26.5.10.1.3.2 Variation 2: From α-Alkoxy-α-halo Ketones 821
26.5.10.1.3.3 Variation 3: From α-Amino-α-halo Ketones 822
26.5.10.1.4 Method 4: From α-Diazo Ketones ... 823
26.5.10.1.5 Method 5: By Addition of Organometallic Reagents 824
26.5.10.1.5.1 Variation 1: From Functionalized Esters, Nitriles, or Amides 824
26.5.10.1.5.2 Variation 2: From α-Lithio N,O-Acetal Reagents 825
26.5.10.1.6 Method 6: [3 + 2] Cycloaddition to Cyclopropenone 826
26.5.10.1.7 Method 7: Epoxidation of α,β-Unsaturated β-Amino Ketones 826
26.5.10.1.8 Method 8: By Addition of Alcohols or Amines 827
26.5.10.1.8.1 Variation 1: Addition of Alcohols to 1,2-Oximines or 1,2-Oxoenamines 827
26.5.10.1.8.2 Variation 2: Addition of Amines to 1,2-Diketones 828
26.5.10.1.9 Method 9: By Cycloaddition ... 829
26.5.11 Product Subclass 11: α,α-Disulfanyl Ketones 830
26.5.11.1 Synthesis of Product Subclass 11 ... 831
26.5.11.1.1 Method 1: Substitution of Hydrogen with Sulfur Reagents 831
26.5.11.1.2 Method 2: From α-Oxo Sulfoxides .. 833
26.5.11.1.3 Method 3: Oxidation of α-Hydroxy-1,3-dithianes 833
Method 4: By Addition of Organometallic Reagents

26.5.11.5 Method 5: [2 + 2]-Cycloaddition Reactions of Disulfanyl Ketenes

26.5.11.6 Method 6: [3 + 2]-Cycloaddition Reactions from α-Oxo Dithioesters

26.5.11.7 Method 7: By Addition of Dithiols to 1,2-Diketones

26.5.11.8 Method 8: By Rearrangement

26.5.11.9 Method 9: Synthesis with Retention of the Functional Group

26.5.11.9.1 Variation 1: Oxidation of α-Oxo Dithianes

26.5.11.9.2 Variation 2: Alkylation of Enolates Bearing α-Dithianes

26.5.11.9.3 Variation 3: Enolates Bearing α-Dithiane Sulfoxides

Product Subclass 12: α-Amino-α-sulfanyl Ketones

Synthesis of Product Subclass 12

Method 1: Via Pummerer Reaction from α-Sulfoxy Ketones

Method 2: By Sulfanylation of α-Amino Ketones

Method 3: From α-Alkylsulfanyl Ketones

Method 4: By Substitution of Heteroatoms

Variation 1: From α-Amino-α-halo Ketones or Dihydroxy Ketones

Variation 2: From α,α-Diamino Ketones

Variation 3: From α-Diazo Ketones

Method 5: Using α-Amino-α-(sulfonylmethyl)lithium Reagents

Method 6: From 1,2-Diketones or 1,2-Oxoaldehydes

Product Subclass 13: α,α-Diselanyl Ketones

Synthesis of Product Subclass 13

Method 1: By Addition of Metal Enolates to Elemental Selenium

Method 2: From α-Selanyl Ketones

Method 3: From α-Diazo Ketones

Method 5: Using α-Amino-α-(sulfonylmethyl)lithium Reagents

Method 6: From 1,2-Diketones or 1,2-Oxoaldehydes

Product Subclass 14: α,α-Diamino Ketones

Synthesis of Product Subclass 14

Method 1: By Substitution of Halogen

Method 2: Via Cycloaddition

Method 3: By Addition of Diaminoalkylmetal Reagents

Method 4: From 1,2-Diketones or α-Oxoaldehydes

Product Class 6: α-Heterosubstituted Ketones

J. Suffert

Product Class 6: α-Heterosubstituted Ketones

Product Subclass 1: α-Fluoro Ketones

Synthesis of Product Subclass 1

Method 1: Substitution of a Hydrogen Atom from an Alkanone

Variation 1: Direct Fluorination of Ketones without a Base

Variation 2: Deprotonation with an External Base

Variation 3: From an Alkanone via a Preformed Acetate Enol Ether

Variation 4: From Alkanones through Preformed Enol Silyl Ethers

Variation 5: Via a Preformed Enamine or Enamide
Method 2: Synthesis from Trifluoromethyl Ketones via Fluorinated Silyl Enol Ethers

Product Subclass 2: \(\alpha\)-Chloro Ketones

Synthesis of Product Subclass 2

Method 1: Substitution of a Hydrogen Atom from an Alkanone

Variation 1: Direct Chlorination with Chlorine

Variation 2: Direct Chlorination with Sulfuryl Chloride

Variation 3: Direct Chlorination with Selenium Oxychloride

Variation 4: Direct Chlorination with Sodium Chlorite/Manganese(III) Acetylacetonate

Variation 5: Direct Chlorination with Manganese(IV) Chloride

Variation 6: Direct Chlorination with Chlorotrimethylsilane/Dimethyl Sulfoxide

Variation 7: Direct Chlorination with Copper(II) Chloride/Lithium Chloride/Permanganate

Variation 8: Direct Chlorination with Trichloroisocyanuric Acid

Variation 9: Direct Chlorination with Hydrogen Chloride and Potassium Permanganate

Variation 10: Deprotonation with a Base Prior to Chlorination

Variation 11: Via a Preformed Enamine

Variation 12: Via a Preformed Silyl Enol Ether

Variation 13: Via a Preformed Enol Ether or Enol Ester

Method 2: Synthesis from \(\alpha\),\(\alpha\)-Dichloro Ketones by Reduction

Method 3: Synthesis by Oxidative Addition to an Alkene

Variation 1: Oxidation of an Alkene with Nitrosyl Chloride

Variation 2: Oxidation of an Alkene with Chromyl Chloride

Variation 3: Oxidation of an Alkene with 2-Cyanopyridinium Chlorochromate

Variation 4: Oxidation of an Alkene with Chromium(VI) Oxide and Chlorotrimethylsilane

Variation 5: Oxidation of an Alkene with Iron(III) Chloride

Variation 6: Synthesis via the Opening of an Epoxide

Variation 1: Ring Opening of Epoxides with Chloro(dimethyl)sulfonium Chloride

Variation 2: Opening of an \(\alpha\),\(\beta\)-Epoxy Ketone with Benzoyl Chloride

Product Subclass 3: \(\alpha\)-Bromo Ketones

Synthesis of Product Subclass 3

Method 1: Substitution of Hydrogen by Bromine

Variation 1: Direct Bromination with Bromine in Acetic Acid/Water or in the Presence of Urea

Variation 2: Direct Bromination with Bromine in Concentrated Sulfuric Acid

Variation 3: Direct Bromination with Bromine in Methanol or Carbon Tetrachloride

Variation 4: Direct Bromination with Bromine in the Presence of Potassium Chlorate or Sodium Chlorate in Water

Variation 5: Bromination of an Enolate with Bromine
Variation 6: Bromination with Perbromide Salts

Variation 7: Bromination with Copper Bromide

Variation 8: Bromination with Bromine Donors in Dimethyl Sulfoxide

Variation 9: Bromination with Bromine Donors: Perfluoroalkanesulfonyl Bromides or Benzeneselenenyl Bromide

Variation 10: Bromination with Bromine Donors: Hexabromocyclopentadiene and Bromomalonic Derivatives

Variation 11: Bromination with Bromine Donors: N-Bromosuccinimide in the Presence of Ammonium Acetate

Variation 12: Bromination in the Presence of an Oxidant

Method 2: Synthesis from an Enol Ether

Method 3: Synthesis from an \(\alpha,\beta \)-Unsaturated Ketone by Reductive Bromination

Method 4: Synthesis via the Ring Opening of an Epoxide

Variation 1: Photocatalytic Bromination of an Epoxide

Variation 2: Opening of an Epoxide with Bromo(dimethyl)sulfonium Bromide

Methods 5: Additional Methods

Product Subclass 4: \(\alpha \)-Iodo Ketones

Method 1: Substitution of Hydrogen by Iodine

Variation 1: Direct Iodination under Acidic Conditions

Variation 2: Iodination of Enolates

Method 2: Synthesis by Conjugate Addition to \(\alpha \)-Iodocycloalkenones

Method 3: Synthesis from an Enol Ether by Enol Acetate

Variation 1: Via an Iodonium Ion Transfer Reagent and an Enol Acetate

Variation 2: Via an Iodonium Ion Transfer from the Reagent to a Silyl Enol Ether

Method 4: Synthesis via the Ring Opening of an Epoxide

Variation 1: Using Iodotrimethylsilane

Variation 2: Via the Ring Opening of an \(\alpha \)-Nitro Epoxide

Method 5: Synthesis via Oxidative Addition to an Alkene

Variation 1: Using Silver Chromate and Iodine

Variation 2: Using Pyridinium Dichromate and Iodine

Variation 3: Using Bis(2,4,6-trimethylpyridine)iodonium(I) Tetrafluoroborate/Dimethyl Sulfoxide

Method 3: Synthesis via Oxidative Addition to an Alkene

Variation 4: Using Reaction of a Tin Enolate with Nitrosobenzene

Variation 5: Using Oxidation with a Molybdenum Complex

Variation 6: By Oxidation with Thallium(III) Salts

Variation 7: By Oxidation with Hydroxy(mesityloxy)iodobenzene
26.6.5.1.8 Variation 8: By Treatment with Oxygen and Triethyl Phosphite 940
26.6.5.1.2 Method 2: Synthesis via a Silyl Enol Ether ... 941
26.6.5.1.2.1 Variation 1: Oxidation with 3-Chloroperoxycbenzoic Acid 941
26.6.5.1.2.2 Variation 2: Oxidation with Osmium(VIII) Oxide/4-Methylmorpholine 942
26.6.5.1.3 Method 3: Synthesis via Oxidative Addition to an Alkene 942
26.6.5.1.3.1 Variation 1: By Oxidation with Permanganate Salts 942
26.6.5.1.3.2 Variation 2: By Oxidation with Ruthenium(III) Chloride and Peracetic Acid 943
26.6.6 **Product Subclass 6: α-Sulfanyl Ketones** ... 944
26.6.6.1 Synthesis of Product Subclass 6 ... 945
26.6.6.1.1 Method 1: Substitution of a Hydrogen Atom ... 945
26.6.6.1.2 Method 2: α-Sulfanylation of Silyl Enol Ethers or Enamines 946
26.6.6.1.3 Method 3: Regioselective α-Sulfanylation of Boryl Enol Ethers 946
26.6.6.7 **Product Subclass 7: α-Selanyl Ketones** .. 947
26.6.6.7.1 Synthesis of Product Subclass 7 ... 947
26.6.6.7.1.1 Method 1: Substitution of a Hydrogen Atom ... 947
26.6.6.7.1.2 Variation 1: Selanylation under Neutral Conditions 947
26.6.6.7.1.3 Variation 2: Selanylation under Basic Conditions 949
26.6.6.7.1.3 Variation 3: Selanylation under Acidic Conditions 950
26.6.6.7.1.2 Method 2: Regioselective α-Selanylation of O-Silylated Enols or Boryl Enol Ethers 952
26.6.6.7.1.3 Method 3: Synthesis by Homologation from Phenylselenoacetaldehyde 952
26.6.6.8 **Product Subclass 8: α-Amino Ketones** ... 953
26.6.6.8.1 Synthesis of Product Subclass 8 ... 954
26.6.6.8.1.1 Method 1: Neber Rearrangement .. 954
26.6.6.8.1.2 Method 2: Synthesis from Silyl Enol Ethers by Aminohydroxylation 955
26.6.6.8.1.3 Method 3: Synthesis from α-Bromo Ketones by Substitution 956
26.6.6.8.1.4 Method 4: Synthesis from Aldehydes and Iminium Salts 957
26.6.6.8.1.5 Method 5: Synthesis from α-Amino Acids via an Oxazolidin-5-one 958
26.6.6.8.1.6 Method 6: Synthesis via the Cyclization of an α-Amino Ester 958
26.6.6.8.1.7 Method 7: Synthesis via the Electroreductive Coupling of Aliphatic Amides .. 959
26.6.6.8.1.8 Method 8: Synthesis via the Selective Reduction of Acyl Cyanides 959
26.6.6.8.1.9 Method 9: Synthesis from Amines .. 960
26.6.6.9 **Product Subclass 9: α-Phosphino and α-Phosphoryl Ketones** 961
26.6.6.9.1 Synthesis of Product Subclass 9 ... 961
26.6.6.9.1.1 Method 1: 2-(Diphenylphosphoryl)cycloalkanones by Base-Mediated Phosphinylation/Oxidation of Cycloalkanones .. 961
26.6.6.9.1.2 Method 2: α-(Dialkoxyphosphoryl) Ketones by Rearrangement of a Vinyl Phosphate ... 962
26.6.6.9.1.3 Method 3: Diethyl (2-Oxoethyl)phosphonates from α-Bromo Ketones and Diethyl Chlorophosphate ... 963
26.6.6.9.1.4 Method 4: α-Phosphorylated Ketones from α-Chloro Ketones 964
26.7 Product Class 7: Ynones
A. Nelson

26.7 Product Class 7: Ynones .. 971
26.7.1 Product Subclass 1: Propargyl Ketones 971
26.7.1.1 Synthesis of Product Subclass 1 971
26.7.1.1.1 Method 1: Acylation of Organometallic Reagents 971
26.7.1.1.1 Variation 1: Acylation of Lithiated Alkynes with Carbonyl Compounds .. 972
26.7.1.1.2 Variation 2: Copper(I)-Catalyzed Coupling of Terminal Alkynes and Acid Chlorides .. 973
26.7.1.1.3 Variation 3: Coupling of Terminal Alkynes and Acid Chlorides under Bimetallic Copper(I)/Palladium Conditions ... 973
26.7.1.1.4 Variation 4: Palladium(0)-Catalyzed Coupling of Trialkynylindiums with Acid Chlorides ... 974
26.7.1.1.5 Variation 5: By Acylation of an Organometallic Reagent with a Propargylic Ester ... 975
26.7.1.2 Method 2: Oxidation of Propargyl Alcohols 975
26.7.1.2.1 Variation 1: By Propargylic Oxidation of Alkynes 976
26.7.1.3 Method 3: Three-Component Couplings Involving Carbon Monoxide ... 977
26.7.1.4 Method 4: By Elimination of Aminoalkenones 977
26.7.1.5 Method 5: By Oxy-Cope Rearrangement 978
26.7.1.6 Method 6: By Elimination of α,γ-Dioxo Phosphonium Ylides .. 978
26.7.2 Product Subclass 2: β,γ-Alkynyl Ketones 979
26.7.2.1 Synthesis of Product Subclass 2 .. 979
26.7.2.1.1 Method 1: By Alkynylation of Enolates 979
26.7.2.1.2 Method 2: By Rearrangement of 3-Furyllithium 980
26.7.2.1.3 Method 3: By 1,2-Shift of an Alkynyl Group 980
26.7.3 Product Subclass 3: γ,δ-Alkynyl Ketones 981
26.7.3.1 Synthesis of Product Subclass 3 .. 982
26.7.3.1.1 Method 1: By Conjugate Addition to α,β-Unsaturated Ketones .. 982
26.7.3.1.1 Variation 1: Addition of Alkynylaluminum Reagents 982
26.7.3.1.1 Variation 2: Addition of Alkynylboronates 982
26.7.3.1.1 Variation 3: Transition-Metal-Catalyzed Addition of Terminal Alkynes .. 983
26.7.3.1.2 Method 2: By Propargylation of Enolates 984
26.7.3.1.3 Method 3: By Fragmentation .. 984
26.7.4 Product Subclass 4: Other Alkynyl Ketones 985
26.7.4.1 Synthesis of Product Subclass 4 .. 985
26.7.4.1.1 Method 1: By Eschenmoser Fragmentation 985
Product Class 8: Aryl Ketones

J. M. Campagne and Y. Six

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.8</td>
<td>Product Class 8: Aryl Ketones</td>
<td>989</td>
</tr>
<tr>
<td>26.8.1</td>
<td>Product Subclass 1: Nonsubstituted and Carbon-Substituted Aryl Ketones</td>
<td>989</td>
</tr>
<tr>
<td>26.8.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td>989</td>
</tr>
<tr>
<td>26.8.1.2</td>
<td>Method 1: Friedel–Crafts Acylation</td>
<td>989</td>
</tr>
<tr>
<td>26.8.1.3</td>
<td>Method 2: Oxidation</td>
<td>991</td>
</tr>
<tr>
<td>26.8.1.4</td>
<td>Variation 1: Oxidation of Benzyl Halides</td>
<td>991</td>
</tr>
<tr>
<td>26.8.1.5</td>
<td>Variation 2: Oxidation of Benzyl Alcohols and Ethers</td>
<td>992</td>
</tr>
<tr>
<td>26.8.1.6</td>
<td>Variation 3: Oxidation of Benzyl Sulfur Compounds</td>
<td>993</td>
</tr>
<tr>
<td>26.8.1.7</td>
<td>Variation 4: Oxidation of Benzyl Nitrogen Compounds</td>
<td>994</td>
</tr>
<tr>
<td>26.8.1.8</td>
<td>Variation 5: Oxidative Decyanation</td>
<td>994</td>
</tr>
<tr>
<td>26.8.1.9</td>
<td>Variation 6: Benzyl Oxidation</td>
<td>995</td>
</tr>
<tr>
<td>26.8.1.10</td>
<td>Variation 7: Wacker Oxidation</td>
<td>997</td>
</tr>
<tr>
<td>26.8.1.11</td>
<td>Method 3: Acylation of Organometallic Reagents</td>
<td>997</td>
</tr>
<tr>
<td>26.8.1.12</td>
<td>Variation 1: Arylstannyl Reagents</td>
<td>998</td>
</tr>
<tr>
<td>26.8.1.13</td>
<td>Variation 2: Arylboryl Reagents</td>
<td>998</td>
</tr>
<tr>
<td>26.8.1.14</td>
<td>Variation 3: Aryl Grignard Reagents</td>
<td>999</td>
</tr>
<tr>
<td>26.8.1.15</td>
<td>Variation 4: Aryllithium Reagents</td>
<td>1000</td>
</tr>
<tr>
<td>26.8.1.16</td>
<td>Variation 5: Miscellaneous Aryl Organometallic Reagents</td>
<td>1001</td>
</tr>
<tr>
<td>26.8.1.17</td>
<td>Method 4: Transition-Metal-Catalyzed Carbylation of Aryl Halides and Pseudohalides</td>
<td>1002</td>
</tr>
<tr>
<td>26.8.1.18</td>
<td>Method 5: Hydration of Arylalkynes</td>
<td>1003</td>
</tr>
<tr>
<td>26.8.1.19</td>
<td>Method 6: Oxidation of Arylalkynes to 1,2-Diketones</td>
<td>1004</td>
</tr>
<tr>
<td>26.8.1.20</td>
<td>Method 7: Oxidative Cleavage of gem-Disubstituted Arylalkenes</td>
<td>1004</td>
</tr>
<tr>
<td>26.8.1.21</td>
<td>Method 8: Synthesis by Aromatic Ring Formation</td>
<td>1004</td>
</tr>
<tr>
<td>26.8.1.22</td>
<td>Variation 1: Ionic [2+2+2] Benzannulation</td>
<td>1004</td>
</tr>
<tr>
<td>26.8.1.23</td>
<td>Variation 2: Transition-Metal-Catalyzed [2+2+2] Benzannulation</td>
<td>1004</td>
</tr>
<tr>
<td>26.8.1.25</td>
<td>Method 10: Aryl Ketones by Electrocyclization and Aromatization</td>
<td>1006</td>
</tr>
<tr>
<td>26.8.1.26</td>
<td>Method 11: Transition-Metal-Catalyzed ortho Alkylation of Aryl Ketones</td>
<td>1006</td>
</tr>
<tr>
<td>26.8.1.27</td>
<td>Method 12: Transition-Metal-Catalyzed ortho Vinylation of Aryl Ketones</td>
<td>1007</td>
</tr>
<tr>
<td>26.8.1.28</td>
<td>Method 13: Transition-Metal-Catalyzed ortho Arylation of Aryl Ketones</td>
<td>1007</td>
</tr>
<tr>
<td>26.8.1.29</td>
<td>Applications of Product Subclass 1 in Organic Synthesis</td>
<td>1008</td>
</tr>
<tr>
<td>26.8.1.30</td>
<td>Method 1: Asymmetric Reduction</td>
<td>1008</td>
</tr>
<tr>
<td>26.8.1.31</td>
<td>Method 2: Photochemistry</td>
<td>1008</td>
</tr>
<tr>
<td>26.8.1.32</td>
<td>Method 3: Willgerodt Reaction</td>
<td>1009</td>
</tr>
<tr>
<td>26.8.1.33</td>
<td>Method 4: 1,2-Aryl Shift</td>
<td>1010</td>
</tr>
<tr>
<td>26.8.1.34</td>
<td>Method 5: Haller–Bauer Reaction</td>
<td>1011</td>
</tr>
<tr>
<td>26.8.2</td>
<td>Product Subclass 2: Heteroatom-Substituted Aryl Ketones</td>
<td>1012</td>
</tr>
<tr>
<td>26.8.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>1012</td>
</tr>
<tr>
<td>26.8.2.2</td>
<td>Method 1: Friedel–Crafts Acylation</td>
<td>1012</td>
</tr>
<tr>
<td>26.8.2.3</td>
<td>Variation 1: Halogen-Substituted Aryl Ketones</td>
<td>1012</td>
</tr>
</tbody>
</table>
Variation 2: Oxygen-Substituted Aryl Ketones .. 1013
Variation 3: Sulfur-Substituted Aryl Ketones .. 1014
Variation 4: Nitrogen-Substituted Aryl Ketones 1014
Method 2: Houben–Hoesch Reaction .. 1015
Method 3: Fries Rearrangement .. 1015
Variation 1: Hydroxy-Substituted Aryl Ketones 1015
Variation 2: Amino-Substituted Aryl Ketones .. 1016
Method 4: Hydroxy-Substituted Diaryl Ketones by Acyl Radical ipso Substitution .. 1017
Method 5: Aryl Ring Formation ... 1017
Variation 1: Amino-Substituted Aryl Ketones by Ionic [2 + 2 + 2] Aromatic Ring Formation .. 1017
Variation 2: Hydroxy-Substituted Aryl Ketones by [3 + 3] Aromatic Ring Formation .. 1018
Variation 3: Heteroatom-Substituted Aryl Ketones by [4 + 2] Aromatic Ring Formation: Aromatization of Cycloadducts Derived from Cyanophthalides .. 1019
Variation 5: Beirut Reaction ... 1019
Variation 6: Aromatization of Diels–Alder Adducts 1020
Method 6: Heteroatom-Substituted Aryl Ketones by Intramolecular Cyclization and Aromatization .. 1021
Variation 1: Intramolecular Anionic Condensation 1021
Variation 2: Radical Oxidative Cyclization ... 1021
Applications of Product Subclass 2 in Organic Synthesis 1022
Method 1: Friedländer Quinoline Synthesis ... 1022

Product Subclass 3: Aryl Ketones with the Carbonyl in a Ring 1023
Synthesis of Product Subclass 3 ... 1023
Method 1: Intramolecular Acylation by Electrophilic Aromatic Substitution .. 1023
Method 2: Intramolecular Alkylation by Electrophilic Aromatic Substitution .. 1024
Method 3: Free Radical Cyclization onto Aromatic Rings 1026
Method 4: Intramolecular Alkylation of Aromatic Carboxylic Acid Derivatives .. 1027
Method 5: Cyclization of Aroyl Radicals .. 1027
Method 6: Benzocyclobutanones from Heteroatom-Substituted Benzoyl Compounds .. 1028
Method 7: [2 + 2] Cycloaddition to Benzyne Species Generated from Aromatic Halides .. 1028
Method 8: Acylation and Carbonylation of Aryl Metallic Species Generated from Aromatic Halides .. 1030
Method 9: By Ring Formation .. 1031
Variation 1: By Transition-Metal-Catalyzed [2 + 2 + 2] Aromatic Ring Formation

Variation 2: By [3+ 3] Aromatic Ring Formation

Variation 3: By [4+ 2] Aromatic Ring Formation

Variation 4: By Electrocyclization and Aromatization

Product Class 9: Enones
S. P. Marsden

Product Subclass 1: \(\alpha,\beta\)-Unsaturated Ketones

Method 1: Oxidation Adjacent to Alkenes

Variation 1: Allylic Oxidation with Stoichiometric Chromium Reagents

Variation 2: Allylic Oxidation with Peroxides and Catalytic Metal Salts

Variation 3: Allylic Oxidation with Selenium Reagents

Method 2: Oxidation of Allylic Alcohols

Method 3: Acylation of Organometallic Reagents

Variation 1: Addition of Alkenylmetals to Carboxylic Acids

Variation 2: Addition of Alkenylmetals to Carboxylic Esters and Derivatives

Variation 3: Addition of Alkenylmetals to Carboxylic Amides and Derivatives

Variation 4: Direct Addition of Alkenylmetals to Carboxylic Acid Halides and Anhydrides

Variation 5: Lewis Acid Catalyzed Addition of Alkenylmetals to Carboxylic Acid Halides and Anhydrides

Variation 6: Transition-Metal-Catalyzed Coupling of Alkenylmetals with Carboxylic Acid Halides and Anhydrides

Variation 7: Transition-Metal-Catalyzed Coupling of Alkenylmetals with Organic Halides and Carbon Monoxide

Variation 8: Addition of Alkenylmetals to Nitriles

Variation 9: Addition of Organometallics to \(\alpha,\beta\)-Unsaturated Carboxylic Acids

Variation 10: Addition of Organometallics to \(\alpha,\beta\)-Unsaturated Carboxylic Amides

Variation 11: Transition-Metal-Catalyzed Coupling of Organometallics with Alkenyl Acid Halides

Variation 12: Transition-Metal-Mediated Coupling of Organometallics with Alkenyl Halides and Carbon Monoxide

Variation 13: Addition of Organometallics to \(\alpha,\beta\)-Unsaturated Nitriles

Method 4: Substitution of Alkenes

Variation 1: Lewis Acid Catalyzed Substitution with Acid Halides

Variation 2: Transition-Metal-Catalyzed Substitution with Acid Halides

Method 5: Elimination Reactions

Variation 1: Oxidative Elimination of Metal Hydride from Enol Derivatives

Variation 2: Elimination of a Hydrogen Halide from \(\alpha\)-Halo Ketones
Variation 1: Addition of Allylmetals to Carboxylic Acids

Variation 2: By Direct Transition-Metal-Promoted Coupling

Variation 1: Using Hexacarbonyldicobalt–Alkyne Complexes

Variation 2: Intermolecular Aldol Reaction of Enamines and Enol Ethers

Variation 2: Horner–Wittig Reaction of Oxophosphine Oxides

Variation 1: Wittig Reaction of Oxophosphoranes

Variation 4: Tandem Michael Addition/Intramolecular Aldol Reaction

Variation 3: Intramolecular Aldol Condensation

Variation 2: Substitution by Addition/Rearrangement

Variation 1: Direct Substitution

Variation 1: Wittig-Type Alkenations

Method 23: Alkene Metathesis

Method 22: Isomerization of Propargylic Alcohols

Method 21: Nazarov Cyclization of Dienones

Method 20: Retro-Diels–Alder Reaction

Method 19: Oxidative Ring Opening of Furans

Method 18: Hydroacylation of Alkynes

Method 17: Alkylation of Umpoled Enal Anion Equivalents

Method 16:

Method 15:

Method 14:

Method 13: Addition of Nucleophiles to Propargylic Ketones

Method 12: Transition-Metal-Catalyzed Addition of Aryl Halides and Carbon Monoxide to Allenes

Method 11: Union of Alkynes, Alkenes, and Carbon Monoxide

Method 10: Cyclocondensation of Danishefsky-Type Dienes with Alkenes

Method 9: Wittig-Type Alkenations

Method 8: Aldol Condensation

Method 7: Organometallic Addition to Heterosubstituted Ketones

Method 6: Reduction of Propargylic Ketones

Method 5: Wittig Alkenations

Method 4: Pericyclic Elimination of

Method 3: Elimination from

Method 2: Substitution by Addition/Rearrangement

Method 1: Acylation of Allyl Organometallics

Variation 1: Addition of Allylmetals to Carboxylic Acids
Variation 2: Addition of Allylmetals to Carboxylic Amides 1106
Variation 3: Addition of Allylmetals to Reactive Carboxylic Acid Derivatives .. 1107
Variation 4: Addition of Allylmetals to Nitriles 1109
Method 2: Deconjugative Alkylation of α,β-Unsaturated Ketones 1109
Method 3: Transition-Metal-Catalyzed Vinylation of Enolates 1110
Product Subclass 3: γ,δ-Unsaturated Ketones 1111
Synthesis of Product Subclass 3 .. 1111
Method 1: Coupling of Enolates with Transition-Metal–Allyl Complexes 1111
Method 2: Claisen Rearrangement .. 1115
Product Subclass 4: δ,ε-Unsaturated Ketones 1115
Product Class 10: Saturated and Unsaturated Ketones with an Additional Carbonyl, Nitrile, or Carboxy Substituent or Equivalent at a β- or More Remote Position: Synthesis of the Ketone Functionality
I. Chataigner, A. Harrison-Marchand, and J. Maddaluno
Product Class 10: Saturated and Unsaturated Ketones with an Additional Carbonyl, Nitrile, or Carboxy Substituent or Equivalent at a β- or More Remote Position: Synthesis of the Ketone Functionality 1123
Product Subclass 1: Oxonitriles .. 1123
Synthesis of Product Subclass 1 .. 1124
Method 1: Oxidation .. 1124
Variation 1: Of Hydroxynitriles .. 1124
Variation 2: Of Nitronitriles ... 1124
Variation 3: Of Unsaturated Nitriles .. 1125
Method 2: Electrophilic Acylation of Nitriles 1126
Variation 1: With Acyl Halides .. 1126
Variation 2: With Carboxylic Acids, Esters, or Anhydrides 1127
Variation 3: With Amides and Nitriles 1128
Method 3: Nucleophilic Acylation of Cyano Derivatives 1129
Variation 1: With Aldehydes and Derivatives (Cyanohydrins) 1129
Variation 2: With Metal–Carbonyl Complexes 1130
Variation 3: With Miscellaneous Nucleophiles 1131
Method 4: Radical Acylation of Cyano Derivatives 1131
Variation 1: With Anhydrides or Aldehydes 1132
Variation 2: With Selenoesters .. 1132
Variation 3: With Transition-Metal Complexes 1133
Variation 4: With β-Acyll Radicals .. 1134
Method 5: Carbonylation of Cyano Compounds 1134
Variation 1: Free-Radical Carbonylation Reactions 1134
Variation 2: With Transition-Metal Complexes 1136
Method 6: Ring-Opening and Ring-Expansion Reactions 1136
Method 7: Cyclizations and Cycloadditions 1138
Variation 1: Thorpe–Ziegler and Related Cyclizations 1138
Variation 2: Cycloaddition Reactions .. 1139
Table of Contents

Variations

<table>
<thead>
<tr>
<th>Variation</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.10.1</td>
<td>Other Concerted Reactions</td>
<td>1140</td>
</tr>
<tr>
<td>26.10.2</td>
<td>Method 8: Hydrolysis</td>
<td>1141</td>
</tr>
<tr>
<td>26.10.3</td>
<td>Methods 9: Miscellaneous Methods</td>
<td>1142</td>
</tr>
<tr>
<td>26.10.4</td>
<td>Product Subclass 2: Oxo Esters and Oxo Amides</td>
<td>1142</td>
</tr>
<tr>
<td>26.10.5</td>
<td>Synthesis of Product Subclass 2</td>
<td>1143</td>
</tr>
<tr>
<td>26.10.6</td>
<td>Method 1: Oxidation</td>
<td>1143</td>
</tr>
<tr>
<td>26.10.7</td>
<td>Variation 1: From Oxygen-Containing Carbonyl Compounds</td>
<td>1143</td>
</tr>
<tr>
<td>26.10.8</td>
<td>Variation 2: From Nitrogen-Containing Carbonyl Compounds</td>
<td>1145</td>
</tr>
<tr>
<td>26.10.9</td>
<td>Variation 3: From Unsaturated Carbonyl Compounds</td>
<td>1146</td>
</tr>
<tr>
<td>26.10.10</td>
<td>Method 2: Electrophilic Acylation</td>
<td>1149</td>
</tr>
<tr>
<td>26.10.11</td>
<td>Variation 1: With Acyl Halides and Acyl Cyanides</td>
<td>1149</td>
</tr>
<tr>
<td>26.10.12</td>
<td>Variation 2: With Carboxylic Acids, Anhydrides, or Esters</td>
<td>1151</td>
</tr>
<tr>
<td>26.10.13</td>
<td>Variation 3: With Amides or Nitriles</td>
<td>1153</td>
</tr>
<tr>
<td>26.10.14</td>
<td>Variation 4: With Miscellaneous Electrophiles</td>
<td>1155</td>
</tr>
<tr>
<td>26.10.15</td>
<td>Method 3: Nucleophilic Acylation</td>
<td>1156</td>
</tr>
<tr>
<td>26.10.16</td>
<td>Variation 1: With Aldehydes (via Cyanohydrins and Related Compounds)</td>
<td>1156</td>
</tr>
<tr>
<td>26.10.17</td>
<td>Variation 2: With Metal–Carbonyl Reagents</td>
<td>1157</td>
</tr>
<tr>
<td>26.10.18</td>
<td>Variation 3: With Miscellaneous Nucleophiles</td>
<td>1158</td>
</tr>
<tr>
<td>26.10.19</td>
<td>Method 4: Radical Acylation of Unsaturated Carbonyl Compounds</td>
<td>1160</td>
</tr>
<tr>
<td>26.10.20</td>
<td>Variation 1: With Aldehydes</td>
<td>1160</td>
</tr>
<tr>
<td>26.10.21</td>
<td>Variation 2: With Anhydrides</td>
<td>1161</td>
</tr>
<tr>
<td>26.10.22</td>
<td>Variation 3: With Selenoesters</td>
<td>1162</td>
</tr>
<tr>
<td>26.10.23</td>
<td>Variation 4: With Cyclopropanols</td>
<td>1164</td>
</tr>
<tr>
<td>26.10.24</td>
<td>Method 5: Carbylation</td>
<td>1164</td>
</tr>
<tr>
<td>26.10.25</td>
<td>Variation 1: The Pauson–Khand Reaction</td>
<td>1165</td>
</tr>
<tr>
<td>26.10.26</td>
<td>Variation 2: Free-Radical Carbylation</td>
<td>1167</td>
</tr>
<tr>
<td>26.10.27</td>
<td>Variation 3: With Organometallic Complexes</td>
<td>1169</td>
</tr>
<tr>
<td>26.10.28</td>
<td>Method 6: By Rearrangement</td>
<td>1170</td>
</tr>
<tr>
<td>26.10.29</td>
<td>Variation 1: Ring Expansions by Radical Methods</td>
<td>1170</td>
</tr>
<tr>
<td>26.10.30</td>
<td>Variation 2: Ring Expansion by Nonradical Methods</td>
<td>1172</td>
</tr>
<tr>
<td>26.10.31</td>
<td>Variation 3: Electroyclic Rearrangements</td>
<td>1174</td>
</tr>
<tr>
<td>26.10.32</td>
<td>Variation 4: Miscellaneous Rearrangements</td>
<td>1176</td>
</tr>
<tr>
<td>26.10.33</td>
<td>Method 7: Cyclization and Cycloaddition</td>
<td>1178</td>
</tr>
<tr>
<td>26.10.34</td>
<td>Variation 1: Dieckmann Condensation</td>
<td>1178</td>
</tr>
<tr>
<td>26.10.35</td>
<td>Variation 2: Cycloadditions and Miscellaneous Cyclizations</td>
<td>1180</td>
</tr>
<tr>
<td>26.10.36</td>
<td>Methods 8: Miscellaneous Methods</td>
<td>1182</td>
</tr>
<tr>
<td>26.10.37</td>
<td>Variation 1: Solvolyses</td>
<td>1182</td>
</tr>
<tr>
<td>26.10.38</td>
<td>Variation 2: Hydration of Alkynes</td>
<td>1184</td>
</tr>
<tr>
<td>26.10.39</td>
<td>Variation 3: Arylation of Baylis–Hillman Adducts</td>
<td>1184</td>
</tr>
<tr>
<td>26.10.40</td>
<td>Product Subclass 3: Diketones and Oxo Imines</td>
<td>1185</td>
</tr>
<tr>
<td>26.10.41</td>
<td>Synthesis of Product Subclass 3</td>
<td>1186</td>
</tr>
<tr>
<td>26.10.42</td>
<td>Method 1: Oxidation</td>
<td>1186</td>
</tr>
<tr>
<td>26.10.43</td>
<td>Variation 1: Of Hydroxy Ketones and Diols</td>
<td>1186</td>
</tr>
<tr>
<td>26.10.44</td>
<td>Variation 2: Of Nitro Ketones</td>
<td>1188</td>
</tr>
<tr>
<td>26.10.45</td>
<td>Variation 3: Of Alkanones and Alkenones</td>
<td>1189</td>
</tr>
<tr>
<td>26.10.46</td>
<td>Variation 4: Of Sulfur-Containing Compounds</td>
<td>1190</td>
</tr>
</tbody>
</table>
26.10.3.1.2 Method 2: Electrophilic Acylation .. 1191
26.10.3.1.2.1 Variation 1: With Acyl Halides and Acyl Cyanides 1191
26.10.3.1.2.2 Variation 2: With Anhydrides, Carboxylic Acids, and Esters 1193
26.10.3.1.2.3 Variation 3: Of Amides .. 1195
26.10.3.1.3 Method 3: Nucleophilic Acylation .. 1195
26.10.3.1.3.1 Variation 1: By Aldehydes (via Cyanohydrins and Related Compounds) .. 1195
26.10.3.1.3.2 Variation 2: By Metal–Carbonyl Reagents 1196
26.10.3.1.4 Method 4: By Radical Acylation of \(\alpha,\beta \)-Unsaturated Ketones 1198
26.10.3.1.4.1 Variation 1: By Acyl Radicals ... 1198
26.10.3.1.4.2 Variation 2: By Carbon Monoxide Gas 1199
26.10.3.1.5 Method 5: Carbonylation of Functionalized Ketones 1200
26.10.3.1.5.1 Variation 1: By the Pauson–Khand Reaction 1200
26.10.3.1.5.2 Variation 2: With Organorhodium and Organopalladium Compounds 1201
26.10.3.1.6 Method 6: Rearrangement ... 1202
26.10.3.1.6.1 Variation 1: Ring Opening of Oxygenated Heterocycles 1202
26.10.3.1.6.2 Variation 2: Ring Opening of Cycloalkanes 1203
26.10.3.1.6.3 Variation 3: Ring Expansion ... 1205
26.10.3.1.6.4 Variation 4: Sigmatropic Rearrangement 1205
26.10.3.1.7 Method 7: Hydration/Hydrolysis .. 1206
26.10.3.1.7.1 Variation 1: From Alkynones ... 1206
26.10.3.1.7.2 Variation 2: From Ene Halides .. 1207
26.10.3.1.7.3 Variation 3: From Nonoxygenated Acetals or Other Functions 1208

26.11 Product Class 11: Saturated and Unsaturated Ketones with a \(\beta \)- or More Remote Heteroatom Substituent
A. Harrison-Marchand, I. Chataigner, and J. Maddaluno

26.11.1 Product Subclass 1: Halo Ketones ... 1225
26.11.1.1 Synthesis of Product Subclass 1 ... 1225
26.11.1.1.1 Method 1: Oxidation of Halo Alcohols 1225
26.11.1.1.2 Method 2: Electrophilic Acylation of Acid Chlorides and Anhydrides 1226
26.11.1.1.3 Method 3: Nucleophilic Acylation of \(\alpha \)-Chloro Ketones 1227
26.11.1.1.4 Method 4: Carbonylation of Aliphatic Dihalides 1227
26.11.1.1.5 Method 5: Rearrangement ... 1228
26.11.1.1.5.1 Variation 1: Ring Opening of Cyclopropyl Silyl Ethers 1228
26.11.1.1.5.2 Variation 2: Decomposition of Tertiary Alkyl Hypochlorites 1228
26.11.1.1.6 Method 6: Hydrolysis of Hydrazones 1229
26.11.1.1.7 Methods 7: Miscellaneous Reactions 1229

26.11.2 Product Subclass 2: Hydroxy and Sulfanyl Ketones and Derivatives 1230
26.11.2.1 Synthesis of Product Subclass 2 ... 1230
26.11.2.1.1 Method 1: Oxidation ... 1230
26.11.2.1.1.1 Variation 1: From Monoprotected Diols and Hydroxy Sulfides 1230
26.11.2.1.1.2 Variation 2: From Unprotected Diols 1232
26.11.2.1.1.3 Variation 3: From Nitro Compounds 1233
26.11.2.1.4 Variation 4: From Alkanes and Alkenes .. 1234
26.11.2.1.2 Method 2: Electrophilic Acylation ... 1236
26.11.2.1.2.1 Variation 1: From Acyl Halides ... 1236
26.11.2.1.2.2 Variation 2: From Hydroxy- and Sulfanyl-Substituted Carboxylic Acids, Esters, and Thioesters ... 1237
26.11.2.1.2.3 Variation 3: From Hydroxy- and Sulfur-Substituted Amides and Nitriles .. 1239
26.11.2.1.3 Method 3: Hetero-Michael Additions ... 1240
26.11.2.1.3.1 Variation 1: Addition of Alcohols ... 1240
26.11.2.1.3.2 Variation 2: Addition of Thiols ... 1241
26.11.2.1.4 Method 4: Nucleophilic Acylation ... 1242
26.11.2.1.4.1 Variation 1: From Cyanohydrins ... 1242
26.11.2.1.4.2 Variation 2: From Isocyanides ... 1243
26.11.2.1.4.3 Variation 3: From α-Sulfanyl Sulfones ... 1243
26.11.2.1.5 Method 5: Radical Acylation ... 1244
26.11.2.1.6 Method 6: Carbonylation .. 1245
26.11.2.1.7 Method 7: Rearrangement .. 1247
26.11.2.1.7.1 Variation 1: Ferrier and Petasis Rearrangement 1247
26.11.2.1.7.2 Variation 2: Pinacol and Related Rearrangements 1248
26.11.2.1.7.3 Variation 3: Ring Opening ... 1249
26.11.2.1.7.4 Variation 4: Ring Expansion ... 1250
26.11.2.1.7.5 Variation 5: Electrocyclic Rearrangements 1251
26.11.2.1.8 Method 8: Cyclization and Cycloaddition ... 1252
26.11.2.1.9 Method 9: Hydrolysis and Hydration Reactions 1253
26.11.2.1.10 Methods 10: Miscellaneous Reactions .. 1254

26.11.3 Product Subclass 3: Amino and Phosphono Ketones and Derivatives 1254
26.11.3.1 Synthesis of Product Subclass 3 .. 1255
26.11.3.1.1 Method 1: Oxidation .. 1255
26.11.3.1.1.1 Variation 1: From Amino Alcohol Derivatives 1255
26.11.3.1.1.2 Variation 2: From Amino Nitrogenated and Related Compounds 1255
26.11.3.1.1.3 Variation 3: From Alkyl-, Alkenyl-, and Alkynylamines 1256
26.11.3.1.1.2 Method 2: Electrophilic Acylations ... 1258
26.11.3.1.1.2.1 Variation 1: From Acyl Halides ... 1258
26.11.3.1.1.2.2 Variation 2: From Carboxylic Acids, Esters, Lactones, and Anhydrides ... 1260
26.11.3.1.1.2.3 Variation 3: From Amino Amides, Lactams, and Aminonitriles 1261
26.11.3.1.1.2.4 Variation 4: Conjugate Additions to α,β-Unsaturated Ketones 1263
26.11.3.1.1.3 Method 3: By Carbonylation ... 1264
26.11.3.1.1.3.1 Variation 1: Via the Pauson–Khand Reaction 1264
26.11.3.1.1.3.2 Variation 2: By Other Carbonylative Methods 1266
26.11.3.1.1.3.4 Method 4: By Rearrangements, Cycloadditions, and Cyclizations 1267
26.11.3.1.1.4.1 Variation 1: Pinacol-Type Rearrangements 1267
26.11.3.1.1.4.2 Variation 2: Ring Openings ... 1267
26.11.3.1.1.4.3 Variation 3: Ring Expansions ... 1268
26.11.3.1.1.4.4 Variation 4: Electrocyclic Rearrangements 1270
26.11.3.1.1.4.5 Variation 5: Cycloadditions and Cyclizations 1270
26.11.3.1.1.4.6 Variation 6: Miscellaneous Rearrangements 1272
26.11.3.1.1.5 Method 5: By Hydration/Hydrolysis .. 1273
26.11.3.1.1.5.1 Variation 1: Hydrolysis ... 1273
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.11.3.15.2</td>
<td>Variation 2: Hydrations</td>
<td></td>
<td>1274</td>
</tr>
<tr>
<td></td>
<td>Keywords Index</td>
<td></td>
<td>1287</td>
</tr>
<tr>
<td></td>
<td>Author Index</td>
<td></td>
<td>1341</td>
</tr>
<tr>
<td></td>
<td>Abbreviations</td>
<td></td>
<td>1417</td>
</tr>
</tbody>
</table>
Volume 27:
Heteroatom Analogues of Aldehydes and Ketones

Preface ... V

Volume Editor’s Preface .. VII

Table of Contents .. XI

Introduction
A. Padwa ... 1

27.1 Product Class 1: Sulfur Ylides
V. Aggarwal and J. Richardson 21

27.2 Product Class 2: Alkylidenesulfonium Salts or α-Sulfanyl Carbocations
C. O. Kappe ... 105

27.3 Product Class 3: Thioaldehyde and Thioketone S,S-Dioxides and Oxyimides (Sulfenes and Derivatives)
B. Zwanenburg ... 123

27.4 Product Class 4: Thioaldehyde and Thioketone S-Oxides and S-Imides (Sulfines and Derivatives)
B. Zwanenburg ... 135

27.5 Product Class 5: Thioaldehydes
S. J. Collier ... 177

27.6 Product Class 6: Thioketones
M. J. Dabdoub ... 215

27.7 Product Class 7: Imines
K. Abbaspour Tehrani and N. De Kimpe 245

27.8 Product Class 8: Iminium Salts
K. Abbaspour Tehrani and N. De Kimpe 313

27.9 Product Class 9: N-Acylimines
L. Fišera ... 349

27.10 Product Class 10: N-Acyliminium Salts
R. A. Pilli and G. B. Rosso .. 375

27.11 Product Class 11: Azomethine Ylides
W. Eberbach .. 441
27.12	**Product Class 12: N-Haloimines**	
	Jie Jack Li	499
27.13	**Product Class 13: Nitrones and Cyclic Analogues**	
	P. Merino	511
27.14	**Product Class 14: Nitronic Acids and Their Derivatives**	
	Jie Jack Li	581
27.15	**Product Class 15: Oximes**	
	M. Yamane and K. Narasaka	605
27.16	**Product Class 16: Azines**	
	D. M. Wilson and Y. Zhang	649
27.17	**Product Class 17: Hydrazones**	
	S. Kim and J.-Y. Yoon	671
27.18	**Product Class 18: Hydrazonium Compounds**	
	Y. Zhang and D. M. Wilson	723
27.19	**Product Class 19: Azomethine Imines**	
	J. G. Schantl	731
27.20	**Product Class 20: N-Nitroimines and N-Nitrosoimines**	
	Jie Jack Li	825
27.21	**Product Class 21: Diazo Compounds**	
	H. Heydt	843
27.22	**Product Class 22: Alkylidene phosphines**	
	E. Niecke, A. Ruban, and M. Raab	937
27.23	**Product Class 23: Alkylidene phosphonium Salts**	
	E. Niecke, A. Ruban, and M. Raab	969
27.24	**Product Class 24: Alkylidene phosphoranes**	
	R. Schobert and G. J. Gordon	973

Keyword Index | 1071

Author Index | 1105

Abbreviations | 1169
Table of Contents

Introduction
A. Padwa

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.1 Product Class 1: Sulfur Ylides</td>
<td></td>
</tr>
<tr>
<td>V. Aggarwal and J. Richardson</td>
<td></td>
</tr>
<tr>
<td>27.1.1 Product Subclass 1: Thiocarbonyl Ylides</td>
<td>21</td>
</tr>
<tr>
<td>27.1.1.1 Synthesis of Product Subclass 1</td>
<td>23</td>
</tr>
<tr>
<td>27.1.1.1.1 Method 1: By Deprotonation of Sulfonium Salts</td>
<td>24</td>
</tr>
<tr>
<td>27.1.1.1.2 Method 2: By 1,3-Elimination Reactions</td>
<td>25</td>
</tr>
<tr>
<td>27.1.1.1.2.1 Variation 1: Thermal Decomposition of Bis[(trimethylsilyl)methyl] Sulfoxides</td>
<td>26</td>
</tr>
<tr>
<td>27.1.1.1.2.2 Variation 2: 1,3-Elimination of Halotrimethylsilanes</td>
<td>26</td>
</tr>
<tr>
<td>27.1.1.1.3 Method 3: By Extrusion of Nitrogen from 2,5-Dihydro-1,3,4-thiadiazoles</td>
<td>27</td>
</tr>
<tr>
<td>27.1.1.1.3.1 Variation 1: Extrusion of Nitrogen from Stable 2,5-Dihydro-1,3,4-thiadiazoles</td>
<td>28</td>
</tr>
<tr>
<td>27.1.1.1.3.2 Variation 2: Extrusion of Nitrogen from 2,5-Dihydro-1,3,4-thiadiazoles Generated In Situ from Thiocarbonyl Compounds and Diazocompounds</td>
<td>28</td>
</tr>
<tr>
<td>27.1.1.1.4 Method 4: By Addition of Carbenes and Carbenoids to Thiocarbonyl Compounds</td>
<td>29</td>
</tr>
<tr>
<td>27.1.1.1.4.1 Variation 1: By Reaction with Dihalocarbenes</td>
<td>29</td>
</tr>
<tr>
<td>27.1.1.1.4.2 Variation 2: Generation of Carbenes by Metal-Catalyzed Decomposition of Diazocompounds</td>
<td>30</td>
</tr>
<tr>
<td>27.1.1.1.4.3 Variation 3: Generation of Thiocarbonyl Ylides from Phenylidonium Ylides</td>
<td>31</td>
</tr>
<tr>
<td>27.1.1.2 Applications of Product Subclass 1 in Organic Synthesis</td>
<td>31</td>
</tr>
<tr>
<td>27.1.1.2.1 Method 1: Synthesis of Five-Membered Sulfur-Containing Heterocycles by 1,3-Dipolar Cycloaddition</td>
<td>32</td>
</tr>
<tr>
<td>27.1.1.2.1.1 Variation 1: From Thiocarbonyl Ylides Generated by Deprotonation of Sulfonium Salts</td>
<td>32</td>
</tr>
<tr>
<td>27.1.1.2.1.2 Variation 2: From Thiocarbonyl Ylides Generated by 1,3-Elimination of Halotrimethylsilane</td>
<td>34</td>
</tr>
<tr>
<td>27.1.1.2.1.3 Variation 3: From Thiocarbonyl Ylides Generated by Cycloreversion of 2,5-Dihydro-1,3,4-thiadiazoles</td>
<td>35</td>
</tr>
<tr>
<td>27.1.1.2.2 Method 2: Synthesis of Sulfides, Thioacetals, Dithioacetals, and Thioaminals from 1,3-Addition Reactions of Thiocarbonyl Ylides</td>
<td>37</td>
</tr>
<tr>
<td>27.1.1.2.2.1 Variation 1: From Thiocarbonyl Ylides Generated by Cycloreversion of 2,5-Dihydro-1,3,4-thiadiazoles</td>
<td>38</td>
</tr>
<tr>
<td>Section</td>
<td>Method</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>27.1.2.3</td>
<td>Method 3: Synthesis of Thiiranes by 1,3-Electrocyclization Reactions of Thiocarbonyl Ylides</td>
</tr>
<tr>
<td>27.1.2.3.1</td>
<td>Variation 1: From Thiocarbonyl Ylides Generated by Extrusion of Nitrogen from 2,5-Dihydro-1,3,4-thiadiazoles</td>
</tr>
<tr>
<td>27.1.2.3.2</td>
<td>Variation 2: From Thiocarbonyl Ylides Generated by Addition of Carbenes to Thiocarbonyl Compounds</td>
</tr>
<tr>
<td>27.1.2.3.3</td>
<td>Variation 3: By Transition-Metal-Catalyzed Decomposition of Diazocompounds</td>
</tr>
<tr>
<td>27.1.2.4</td>
<td>Method 4: Synthesis of 1,3-Oxathiole Derivatives by 1,5-Electrocyclization Reactions of Thiocarbonyl Ylides</td>
</tr>
<tr>
<td>27.1.2.</td>
<td>Product Subclass 2: Sulfoxonium Ylides</td>
</tr>
<tr>
<td>27.1.2.1</td>
<td>Synthesis of Product Subclass 2</td>
</tr>
<tr>
<td>27.1.2.1.1</td>
<td>Method 1: By Deprotonation of Sulfoxonium Salts</td>
</tr>
<tr>
<td>27.1.2.1.1.1</td>
<td>Variation 1: In Organic Solvents</td>
</tr>
<tr>
<td>27.1.2.1.1.2</td>
<td>Variation 2: In a Biphasic System</td>
</tr>
<tr>
<td>27.1.2.1.2</td>
<td>Method 2: By Hydrogen Atom Substitution of Existing Sulfoxonium Ylides</td>
</tr>
<tr>
<td>27.1.2.1.2.1</td>
<td>Variation 1: Synthesis of Carbonyl-Stabilized Sulfoxonium Ylides</td>
</tr>
<tr>
<td>27.1.2.1.2.2</td>
<td>Variation 2: Synthesis of Thiocarbonyl-Stabilized Sulfoxonium Ylides</td>
</tr>
<tr>
<td>27.1.2.1.2.3</td>
<td>Variation 3: Synthesis of Imide- and Imine-Stabilized Sulfoxonium Ylides</td>
</tr>
<tr>
<td>27.1.2.1.2.4</td>
<td>Variation 4: Synthesis of Aryl- or Hetaryl-Stabilized Sulfoxonium Ylides</td>
</tr>
<tr>
<td>27.1.2.1.2.5</td>
<td>Variation 5: Synthesis of Cyano-Stabilized Sulfoxonium Ylides</td>
</tr>
<tr>
<td>27.1.2.1.2.6</td>
<td>Variation 6: Synthesis of Vinyl-Stabilized Sulfoxonium Ylides</td>
</tr>
<tr>
<td>27.1.2.1.3</td>
<td>Method 3: Reaction of Sulfoxides with Carbenes</td>
</tr>
<tr>
<td>27.1.2.1.3.1</td>
<td>Variation 1: Carbenes Generated from Transition-Metal-Catalyzed Decomposition of Diazocompounds</td>
</tr>
<tr>
<td>27.1.2.1.4</td>
<td>Method 4: Sulfoxonium Ylides from Sulfoximides</td>
</tr>
<tr>
<td>27.1.2.2</td>
<td>Applications of Product Subclass 2 in Organic Synthesis</td>
</tr>
<tr>
<td>27.1.2.2.1</td>
<td>Method 1: Reactions with Aldehydes and Ketones</td>
</tr>
<tr>
<td>27.1.2.2.1.1</td>
<td>Variation 1: In Organic Solvents</td>
</tr>
<tr>
<td>27.1.2.2.1.2</td>
<td>Variation 2: Under Solvent-Free Conditions</td>
</tr>
<tr>
<td>27.1.2.2.2</td>
<td>Method 2: Reaction with Imines</td>
</tr>
<tr>
<td>27.1.2.2.2.1</td>
<td>Variation 1: In Organic Solvents</td>
</tr>
<tr>
<td>27.1.2.2.2.2</td>
<td>Variation 2: Under Solvent-Free Conditions</td>
</tr>
<tr>
<td>27.1.2.2.3</td>
<td>Method 3: Reaction with Electron-Deficient Alkenes</td>
</tr>
<tr>
<td>27.1.2.2.3.1</td>
<td>Variation 1: In Organic Solvents</td>
</tr>
<tr>
<td>27.1.2.2.3.2</td>
<td>Variation 2: In the Solid Phase</td>
</tr>
<tr>
<td>27.1.2.2.4</td>
<td>Method 4: Reaction with Aromatic Compounds</td>
</tr>
<tr>
<td>27.1.2.2.5</td>
<td>Method 5: Reaction with Weakly Acidic Heteroatoms: Methylation of R'XH</td>
</tr>
<tr>
<td>27.1.2.2.6</td>
<td>Method 6: Ring Expansion of Epoxides and Aziridines</td>
</tr>
<tr>
<td>27.1.3</td>
<td>Product Subclass 3: Sulfonium Ylides</td>
</tr>
<tr>
<td>27.1.3.1</td>
<td>Synthesis of Product Subclass 3</td>
</tr>
<tr>
<td>27.1.3.1.1</td>
<td>Method 1: By Deprotonation of Sulfonium Salts</td>
</tr>
<tr>
<td>27.1.3.1.1.1</td>
<td>Variation 1: In Organic Solvents</td>
</tr>
</tbody>
</table>
Variation 2: Under Solid–Liquid Phase-Transfer Conditions

Variation 3: In a Biphasic Medium

Method 2: By Hydrogen Atom Substitution of an Existing Sulfonium Ylde

Variation 1: Replacement with Alkyl Groups

Method 3: Substitution of Groups on Sulfonium Salts

Variation 1: From Triarylsulfonium Salts

Variation 2: From Alkoxo- or Aminosulfonium Salts

Method 4: Nucleophilic Attack on Vinyl- and Buta-1,3-dienyl-Substituted Dimethylsulfonium Salts

Method 5: By Reaction of Sulfides with Carbenes and Carbenoids

Variation 1: Transition-Metal-Catalyzed Decomposition of Diazocompounds

Variation 2: By Reaction with Dihalocarbenes

Variation 3: Transylidation Reactions

Variation 4: Reaction with Zinc Carbenoids

Method 6: Desilylation of Æ-Silyl Sulfonium Salts

Applications of Product Subclass 3 in Organic Synthesis

Method 1: Reaction of Sulfonium Ylides with Aldehydes and Ketones

Variation 1: With Ylides Formed by Deprotonation

Variation 2: With Ylides Formed by Reaction with Carbenes

Variation 3: With Ylides Formed by Desilylation

Variation 4: With Ylides Formed by Nucleophilic Attack on Vinylsulfonium Salts

Method 2: Reaction of Sulfonium Ylides with Ketenes

Method 3: Reaction of Sulfonium Ylides with Imines

Variation 1: With Ylides Formed by Deprotonation of Sulfonium Salts

Variation 2: With Ylides Formed by Reactions with Carbenes

Variation 3: With Ylides Formed by Desilylation

Method 4: Reaction of Sulfonium Ylides with Michael Acceptors

Variation 1: With Ylides Formed by Deprotonation

Variation 2: With Ylides Formed from Carbenes

Method 5: Reactions with Alkynes

Method 6: Æ,—C₂—Elimination Reactions

Method 7: Rearrangement Reactions of Sulfonium Ylides

Method 8: Miscellaneous Applications

Product Subclass 4: Cyclic Conjugated Sulfonium Ylides

(1~4-Thiopyran 1-Oxides)

Synthesis of Product Subclass 4

Method 1: From Dimethylsulfonium Alk-2-enylides

Method 2: From 1,3-Diketones and Sulfonium Ylides

Method 3: From Other 1~4-Thiopyran 1-Oxides

Method 4: Miscellaneous Methods

Product Subclass 5: Cyclic Conjugated Sulfonium Ylides (1~4-Thiopyrans)
27.1.2 Method 2: Formation by Nucleophilic Addition of Alkyllithium Reagents to Thiopyrylium Salts .. 96

27.1.2.1 Method 1: Reactions with Electrophilic Alkynes 97

27.1.2.2 Method 2: Rearrangements ... 98

27.1.5 Product Subclass 5 in Organic Synthesis .. 97

27.1.5.1 Method 1: Reactions with Electrophilic Alkynes 97

27.1.5.2 Method 2: Rearrangements ... 98

27.2 Product Class 2: Alkylidenesulfonium Salts or α-Sulfanyl Carbocations
C. O. Kappe

27.2.1 Synthesis of Product Class 2 .. 106

27.2.1.1 Method 1: Alkylation of Thioketones 106

27.2.1.2 Method 2: α-Halo Elimination from α-Halo Sulfides 106

27.2.1.3 Method 3: α-Alkoxy or α-Alkylamino Elimination from O,S- or N,S-Acetals 107

27.2.1.4 Method 4: α-Alkylsulfanyl Elimination from Dithioacetals 107

27.2.1.5 Variation 1: Using Dimethyl(methylsulfanyl)sulfonyl Tetrafluoroborate 108

27.2.1.6 Variation 2: Using Copper(I) Trifluoromethanesulfonate 110

27.2.1.7 Method 5: Protonation of Vinyl Sulfides 110

27.2.1.8 Method 6: Pummerer Rearrangement of Sulfoxides 111

27.2.1.9 Variation 1: Acetic Anhydride Promoted Reaction 112

27.2.1.10 Variation 2: Trifluoroacetic Anhydride Promoted Reaction 113

27.2.1.11 Variation 3: 4-Toluenesulfonic Acid Promoted Reaction 116

27.2.1.12 Variation 4: Trimethylsilyl Trifluoromethanesulfonate Promoted Reaction 117

27.2.1.13 Variation 5: O-Silylated Ketene Acetal Promoted Reaction 118

27.2.5 Product Class 3: Thioaldehyde and Thioketone S,S-Dioxides and
Oxyimides (Sulfenes and Derivatives)
B. Zwanenburg

27.3.1 Product Subclass 1: Thioaldehyde and Thioketone S,S-Dioxides (Sulfenes) 123

27.3.1.1 Synthesis of Product Subclass 1 .. 123

27.3.1.1.1 Method 1: Dehydrohalogenation of Alkanesulfonyl Halides 123

27.3.1.1.2 Method 2: Elimination of Chlorotrtrimethylsilane from
Trimethylsilymethanesulfonyl Chloride 124

27.3.1.1.3 Method 3: Cope Rearrangement of Allyl Vinyl Sulfones 124

27.3.1.1.4 Method 4: Ring Opening of Thiete 1,1-Dioxides 125

27.3.1.1.5 Method 5: Reaction of Diazoalkanes with Sulfur Dioxide 125

27.3.1.1.6 Methods 6: Miscellaneous Methods 126

27.3.1.2 Applications of Product Subclass 1 in Organic Synthesis 126

27.3.1.2.1 Method 1: In Situ Trapping with Enamines 126

27.3.1.2.2 Method 2: In Situ Cycloaddition with Vinyl Ethers 127
Method 3: In Situ Trapping with Ketene Acetals
Method 4: In Situ Trapping with Ketene N,N-Acetals and Ketene O,N-Acetals
Method 5: In Situ Trapping with Carbonyl Compounds
Method 6: In Situ Trapping with Imines
Method 7: In Situ Trapping with Ynamines
Method 8: In Situ Trapping with Nitrones
Method 9: In Situ Trapping with /C226-Oxo Enamines and /C226-Thioxo Enamines
Method 10: In Situ Trapping with 1-(Dialkylamino)-1,3-dienes
Method 11: In Situ Trapping with Sulfonium Ylides
Method 12: In Situ Trapping with Cyclopentadiene
Method 13: Preparation of Thiirane 1,1-Dioxides

Product Subclass 2: Thioaldehyde and Thioketone Oxyimides (Sulfene Imides)

Method 1: Dehydrohalogenation of Sulfonimidoyl Chlorides
Method 2: Alkenation of Sulfur Dioxide with a Phosphonium Ylide (Wittig Reaction)
Method 2.1: Phosphonium Ylides with N-Sulfinylaniline
Method 2.2: Alkenation of Sulfur Dioxide with α-Silyl Carbanions
Method 2.3: α-Silyl Carbanions from Vinylsilanes
Method 3: Oxidation of Thiones
Method 4: Thioaldehyde S-Oxides from Thioacylsilanes
Method 5: Dehydrochlorination of Sulfanyl Chlorides
Method 5.1: Variation 1: α-Oxo Sulfinamides from Active Methylene Compounds and Thionyl Chloride
Method 6: Elimination of Phthalimide from N-Phthaloyl Sulfinamides
Method 7: Elimination of Chloroform from Trichloromethyl Sulfoxides
Method 8: In Situ Generation of Sulfinyl Chlorides by Retro-hetero-Diels–Alder Reactions
Method 9: Miscellaneous Methods
Method 10: In Situ Trapping with Ketene Acetals

Product Class 4: Thioaldehyde and Thioketone S-Oxides and S-Imides (Sulfines and Derivatives)

Method 1: Alkenation of Sulfur Dioxide with a Phosphonium Ylide
Method 2: Alkenation of Sulfur Dioxide with α-Silyl Carbanions
Method 3: Oxidation of Thiones
Method 4: Thioaldehyde S-Oxides from Thioacylsilanes
Method 5: Dehydrochlorination of Sulfanyl Chlorides
Method 5.1: Variation 1: α-Oxo Sulfinamides from Active Methylene Compounds and Thionyl Chloride
Method 6: Elimination of Phthalimide from N-Phthaloyl Sulfinamides
Method 7: Elimination of Chloroform from Trichloromethyl Sulfoxides
Method 8: In Situ Generation of Sulfinyl Chlorides by Retro-hetero-Diels–Alder Reactions
Method 9: Miscellaneous Methods
Method 10: In Situ Trapping with Ketene Acetals
27.4.1.9.2 Variation 2: Sulfines by a Wolff Rearrangement of Sulfinyl Carbenes 155
27.4.1.9.3 Variation 3: Sulfines by Singlet Oxygen Oxidation of Thiophenes 156
27.4.1.9.4 Variation 4: Sulfines by Dehydrodisulfolation of Silyl Sulfinates 156
27.4.1.9.5 Variation 5: Synthesis of α-Disulfines from 1,2-Dithiethers 157
27.4.1.9.6 Variation 6: Synthesis of Chlorosulfines from Alkanesulfonyl Chlorides 158
27.4.1.2 Applications of Product Subclass 1 in Organic Synthesis 158
27.4.1.2.1 Method 1: 1,3-Dipolar Cycloaddition Reactions with Sulfines 158
27.4.1.2.2 Method 2: Sulfines as 1,3-Dipoles .. 161
27.4.1.2.3 Method 3: Diels–Alder Reactions .. 163
27.4.1.2.4 Method 4: Inverse-Electron-Demand Diels–Alder Reactions of α-Oxo Sulfines ... 165
27.4.1.2.5 Method 5: Thiophilic Addition Reactions 166
27.4.2 Product Subclass 2: Thioketone S-Imides ... 167
27.4.2.1 Synthesis of Product Subclass 2 .. 167
27.4.2.1.1 Method 1: N-Sulfinyl-Substituted Sulfonamide with Phosphonium Ylides 167
27.4.2.1.2 Method 2: N-Sulfinylanilines with α-Silyl Carbanions 168
27.4.2.1.3 Method 3: Sulfines with (Trimethylsilyl)amines 168
27.4.2.1.4 Method 4: Thiocarbonyl Compounds with Chloroamines 169
27.4.2.1.5 Method 5: α-Chloro Sulfinyl Chloride with Amines 172
27.4.2.2 Applications of Product Subclass 2 in Organic Synthesis 172
27.4.2.2.1 Method 1: Diels–Alder Reactions .. 173
27.4.2.2.2 Method 2: 1,3-Dipolar Cycloaddition Reactions 173

27.5 Product Class 5: Thioaldehydes
S. J. Collier

27.5.1 Synthesis of Product Class 5 .. 177
27.5.1.1 Method 1: Synthesis from Aldehydes 180
27.5.1.1.1 Variation 1: By Using Hydrogen Sulfide and Acid 180
27.5.1.1.2 Variation 2: By Using Metal and Metalloid Sulfides 182
27.5.1.1.3 Variation 3: Via Phosphorus Sulfides 186
27.5.1.2 Method 2: Photofragmentation of Phenacyl Sulfides 187
27.5.1.3 Method 3: 1,2-Elimination Reactions 190
27.5.1.3.1 Variation 1: From Sodium Thiosulfate S-Esters (Bunte Salts) 191
27.5.1.3.2 Variation 2: From Thiosulfonates 192
27.5.1.3.3 Variation 3: Via Sulfenyl Chlorides 194
27.5.1.3.4 Variation 4: Via N-(Alkylsulfanyl)phthalimide Derivatives 196
27.5.1.3.5 Variation 5: Other 1,2-Eliminations 196
27.5.1.4 Method 4: Synthesis by Cycloreversion Reactions 198
27.5.1.4.1 Variation 1: Retro-Diels–Alder Reactions 198
27.5.1.4.2 Variation 2: Other Cycloreversion Reactions 201
27.5.1.5 Method 5: Modified Vilsmeier Reactions 202
27.5.1.6 Method 6: Synthesis from Acetals and Dihalomethyl Species 203
Method 7: Reaction of Carbanions and Thioformate Esters 205
Method 8: Synthesis from Phosphorus Ylides .. 207
Methods 9: Miscellaneous Syntheses ... 208

Product Class 6: Thioketones
M. J. Dabdoub

Synthesis of Product Class 6 ... 215
Method 1: Direct Transformation of Ketones 216
Variation 1: By Reaction with Hydrogen Sulfide and an Acid 216
Variation 2: By Reaction with Phosphorus-Based Reagents 218
Variation 3: By Reaction with Lawesson’s Reagent and Derivatives 219
Variation 4: By Reaction with Silicon-Based Reagents 221
Variation 5: By Reaction with Hexaorganyldistannanes or Bis(triorganoaluminum) Sulfides 222
Method 2: Synthesis from Ketimine Anions 223
Method 3: Synthesis from Hydrazones ... 224
Variation 1: By Reaction with Sulfur Monochloride 224
Variation 2: By Reaction with Sulfur Dichloride 226
Variation 3: By Thermal Decomposition of (Triphenylphosphoranylidene)-hydrazones in the Presence of Elemental Sulfur 226
Method 4: Synthesis from 1,3-Dithiolanes or Ketals 227
Method 5: Retro-Diels–Alder Reaction .. 229
Variation 1: Reaction of Diels–Alder Adducts in the Presence of a Suitable Unsaturated Compound 229
Variation 2: Flash-Vacuum Thermolysis of Diels–Alder Adducts 230
Variation 3: Thermolysis of Thioketone Dimers 232
Method 6: Synthesis from Noncarbonyl Precursors 233
Variation 1: From Halides via Bunte Salts ... 233
Variation 2: By Reaction of 1,1-Dihalides with Potassium O-Ethyl Dithiocarbonate 234
Variation 3: By Reaction of Alkyl Halides with Elemental Sulfur, Mediated by Cesium Carbonate 235
Variation 4: By Reaction of Alkyl Halides with Elemental Sulfur, Mediated by 1,8-Diazabicyclo[5.4.0]undec-7-ene 236
Variation 5: By Elimination Reactions of Phthalimido Derivatives 237
27.7 **Product Class 7: Imines**
K. Abbaspour Tehrani and N. De Kimpe

27.7.1 Product Subclass 1: N-Unsubstituted Imines

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reaction of Aldehydes and Ketones with Ammonia</td>
</tr>
<tr>
<td>2</td>
<td>From Oximes</td>
</tr>
<tr>
<td>3</td>
<td>Oxidation of Primary Amines</td>
</tr>
<tr>
<td>4</td>
<td>Dehydrohalogenation of N-Haloamines</td>
</tr>
<tr>
<td>5</td>
<td>From Nitriles</td>
</tr>
<tr>
<td>6</td>
<td>Miscellaneous Procedures</td>
</tr>
</tbody>
</table>

27.7.2 Product Subclass 2: N-Silylimines

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reaction of Aldehydes with Lithium Disilazanides</td>
</tr>
<tr>
<td>2</td>
<td>Dehydrohalogenation of N-Silylated N-Haloamines and Dehydrocyanation of N-Silylated α-Amino Cyanides</td>
</tr>
<tr>
<td>3</td>
<td>Reaction of Nitriles with Organometallic Reagents</td>
</tr>
</tbody>
</table>

27.7.3 Product Subclass 3: N-Alkyl- and N-Arylimines

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reaction of Aldehydes and Ketones with Primary Amines</td>
</tr>
<tr>
<td>1.1</td>
<td>Variation 1: With Azeotropic Removal of Water</td>
</tr>
<tr>
<td>1.2</td>
<td>Variation 2: With Titanium(IV) Chloride</td>
</tr>
<tr>
<td>1.3</td>
<td>Variation 3: With Solid-Phase Lewis Acids</td>
</tr>
<tr>
<td>1.4</td>
<td>Variation 4: With Other Lewis Acids</td>
</tr>
<tr>
<td>1.5</td>
<td>Variation 5: With N,N-Bis(dichloroaluminio)aniline</td>
</tr>
<tr>
<td>1.6</td>
<td>Variation 6: With N,N-Bis(trimethylsilyl)amines</td>
</tr>
<tr>
<td>2</td>
<td>Reaction of Imidates with Organometallic Reagents</td>
</tr>
<tr>
<td>3</td>
<td>From Amides</td>
</tr>
<tr>
<td>3.1</td>
<td>Variation 1: By Reduction</td>
</tr>
<tr>
<td>3.2</td>
<td>Variation 2: By Addition of Organometallic Reagents</td>
</tr>
<tr>
<td>3.3</td>
<td>Variation 3: Via Palladium-Catalyzed Cross Coupling</td>
</tr>
<tr>
<td>4</td>
<td>Reaction of Imidoxyl Chlorides</td>
</tr>
<tr>
<td>4.1</td>
<td>Variation 1: By Reduction</td>
</tr>
<tr>
<td>4.2</td>
<td>Variation 2: By Substitution</td>
</tr>
<tr>
<td>4.3</td>
<td>Variation 3: Via Palladium-Catalyzed Cross Coupling</td>
</tr>
<tr>
<td>5</td>
<td>Oxidation of Primary Amines</td>
</tr>
<tr>
<td>5.1</td>
<td>Variation 1: Oxidative Amination of Alkenes</td>
</tr>
<tr>
<td>5.2</td>
<td>Variation 2: Oxidation of Secondary Amines</td>
</tr>
<tr>
<td>6</td>
<td>Dehydrohalogenation of N-Haloamines</td>
</tr>
</tbody>
</table>
27.7.3.8 Method 8: Reaction of Aldehydes and Ketones with Azides

(Aza-Wittig Reaction) ... 281

27.7.3.9 Method 9: Addition of Primary Amines to Alkynes 283

27.7.3.10 Method 10: Addition of Organometallic Compounds to Nitriles 285

27.7.3.11 Method 11: Addition/Rearrangement of Alkenic Azides 286

27.7.3.12 Method 12: From Other Alkyl Azides .. 288

27.7.3.13 Method 13: C-Alkylation of 1-Azaallyl Anions with Alkyl Halides 289

27.7.3.14 Method 14: N-Alkylation of N-Unsubstituted Imines 292

27.7.3.15 Method 15: Halogenation of Imines ... 293

27.7.3.16 Method 16: From Enamines .. 294

27.7.4 Product Subclass 4: 2H-Azirines

Complex Salts of Secondary Amines 296

27.7.4.1 Synthesis of Product Subclass 4 ... 296

27.7.4.2 Method 1: From Oximes and Hydrazonium Salts 296

27.7.4.3 Method 2: Oxidation of Aziridines .. 297

27.7.4.4 Method 3: Elimination from N-Substituted Aziridines 298

27.7.4.5 Method 4: Rearrangement of Isoxazoles 299

27.7.4.6 Method 5: Pyrolysis or Photolysis of Vinyl Azides 299

27.7.4.7 Method 6: From Other Azirines .. 300

27.7.5 Product Subclass 5: 2,3-Dihydroazetes

27.7.5.1 Synthesis of Product Subclass 5 ... 301

27.7.5.2 Method 1: Photochemical Isomerization of Pyridines 301

27.7.5.3 Method 2: Rearrangement of Azidocyclopropanes 301

27.7.5.4 Methods 3: Miscellaneous Procedures 302

27.8 Product Class 8: Iminium Salts

K. Abbaspour Tehrani and N. De Kimpe

27.8.1 Synthesis of Product Class 8 .. 313

27.8.2 Method 1: Reaction of Secondary Amines with Aldehydes or Ketones 314

27.8.2.1 Variation 1: Complex Salts of Secondary Amines 316

27.8.2.2 Variation 2: Silylated Secondary Amines 318

27.8.2.3 Variation 3: O-Alkylation with Lewis Acids 319

27.8.2.4 Variation 4: Reaction of a Sulfynilmethaniminium Salt with Aldehydes and Ketones .. 320

27.8.2.5 Method 2: From Hydrazones .. 321

27.8.2.6 Method 3: Hydride Abstraction of Tertiary Amines 322

27.8.2.7 Variation 1: With Mercury(II) Acetate 322

27.8.2.8 Variation 2: With Carbenium Ions ... 323

27.8.2.9 Method 4: Elimination of Cyanide from α-Aminocarbonitriles 323

27.8.2.10 Method 5: Cleavage of Aminals .. 324

27.8.2.11 Variation 1: With Acid Chlorides ... 324

27.8.2.12 Variation 2: With Hydrogen Halides 325

27.8.2.13 Variation 3: With Iodotrimethylsilane 325
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.8.1.5.4</td>
<td>Variation 4</td>
<td>With Inorganic Acid Halides or Anhydrides</td>
<td>326</td>
</tr>
<tr>
<td>27.8.1.6</td>
<td>Method 6</td>
<td>Cleavage of Hemiaminals</td>
<td>326</td>
</tr>
<tr>
<td>27.8.1.7</td>
<td>Method 7</td>
<td>Cleavage of Acetals</td>
<td>329</td>
</tr>
<tr>
<td>27.8.1.8</td>
<td>Method 8</td>
<td>Fragmentation of Halomethylammonium Halides</td>
<td>329</td>
</tr>
<tr>
<td>27.8.1.9</td>
<td>Method 9</td>
<td>Decarbonylation of α-Amino Acids</td>
<td>330</td>
</tr>
<tr>
<td>27.8.1.10</td>
<td>Method 10</td>
<td>From Aldimines and Ketimines</td>
<td>330</td>
</tr>
<tr>
<td>27.8.1.10.1</td>
<td>Variation 1</td>
<td>By Alkylation</td>
<td>330</td>
</tr>
<tr>
<td>27.8.1.10.2</td>
<td>Variation 2</td>
<td>By Protonation</td>
<td>333</td>
</tr>
<tr>
<td>27.8.1.11</td>
<td>Method 11</td>
<td>From Enamines</td>
<td>333</td>
</tr>
<tr>
<td>27.8.1.11.1</td>
<td>Variation 1</td>
<td>By Alkylation</td>
<td>333</td>
</tr>
<tr>
<td>27.8.1.11.2</td>
<td>Variation 2</td>
<td>By Protonation at Carbon</td>
<td>334</td>
</tr>
<tr>
<td>27.8.1.11.3</td>
<td>Variation 3</td>
<td>By Halogenation</td>
<td>335</td>
</tr>
<tr>
<td>27.8.1.12</td>
<td>Method 12</td>
<td>From Enaminones</td>
<td>336</td>
</tr>
<tr>
<td>27.8.1.13</td>
<td>Method 13</td>
<td>Electrophile-Induced Cyclization of Alk-4-enimines and Oximes</td>
<td>337</td>
</tr>
<tr>
<td>27.8.1.14</td>
<td>Method 14</td>
<td>Addition of Nitrilium Salts to Pyrroles and Indoles</td>
<td>339</td>
</tr>
<tr>
<td>27.8.1.15</td>
<td>Method 15</td>
<td>Vilsmeier Formylation</td>
<td>339</td>
</tr>
<tr>
<td>27.8.1.15.1</td>
<td>Variation 1</td>
<td>Of Alkenes</td>
<td>339</td>
</tr>
<tr>
<td>27.8.1.15.2</td>
<td>Variation 2</td>
<td>Of Aromatic Compounds</td>
<td>340</td>
</tr>
<tr>
<td>27.8.1.15.3</td>
<td>Variation 3</td>
<td>Of Carboxyl Compounds</td>
<td>341</td>
</tr>
<tr>
<td>27.8.1.16</td>
<td>Method 16</td>
<td>From Other Iminium Salts</td>
<td>342</td>
</tr>
<tr>
<td>27.8.1.16.1</td>
<td>Variation 1</td>
<td>By Cycloaddition</td>
<td>342</td>
</tr>
<tr>
<td>27.8.1.16.2</td>
<td>Variation 2</td>
<td>By Anion Exchange</td>
<td>343</td>
</tr>
<tr>
<td>27.8.1.16.3</td>
<td>Variation 3</td>
<td>Miscellaneous Reactions</td>
<td>344</td>
</tr>
</tbody>
</table>

27.9 Product Class 9: N-Acylimines

L. Fišera

<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.9.1</td>
<td>Product Subclass 1: Stable N-Acylimines</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>27.9.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>27.9.1.1.1</td>
<td>Method 1</td>
<td>Reaction of Imidic Acid Esters with Acid Chlorides</td>
<td>349</td>
</tr>
<tr>
<td>27.9.1.1.2</td>
<td>Method 2</td>
<td>Reaction of N-Silylimines with Acid Chlorides</td>
<td>350</td>
</tr>
<tr>
<td>27.9.1.1.3</td>
<td>Method 3</td>
<td>Thermal Dehydrinemethoxylation of N,O-Acetals</td>
<td>350</td>
</tr>
<tr>
<td>27.9.1.1.4</td>
<td>Method 4</td>
<td>Elimination of Hydrogen Chloride from N-(1-Chloroalkyl)amides</td>
<td>351</td>
</tr>
<tr>
<td>27.9.1.1.5</td>
<td>Method 5</td>
<td>From Alkylamides by Condensation with Triethoxymethane</td>
<td>351</td>
</tr>
<tr>
<td>27.9.1.1.5.1</td>
<td>Variation 1</td>
<td>By Condensation with Dimethylformamide Dimethyl Acetal</td>
<td>352</td>
</tr>
<tr>
<td>27.9.1.1.5.2</td>
<td>Variation 2</td>
<td>By Condensation with (Diethoxymethyl)triethylammonium Tetrafluoroborate</td>
<td>353</td>
</tr>
<tr>
<td>27.9.1.1.6</td>
<td>Method 6</td>
<td>From 1-Acyl-1,2-dihydroazetes</td>
<td>353</td>
</tr>
<tr>
<td>27.9.1.1.7</td>
<td>Method 7</td>
<td>Fluorenly-Assisted N–N Bond Cleavage of Pyrazolidinediones</td>
<td>353</td>
</tr>
<tr>
<td>27.9.1.2</td>
<td>Applications of Product Subclass 1 in Organic Synthesis</td>
<td></td>
<td>354</td>
</tr>
<tr>
<td>27.9.1.2.1</td>
<td>Method 1</td>
<td>Synthesis of 1,1-Bisacylaminoalkanes</td>
<td>354</td>
</tr>
<tr>
<td>27.9.1.2.2</td>
<td>Method 2</td>
<td>Synthesis of Substituted Alkylamides</td>
<td>354</td>
</tr>
</tbody>
</table>
Method 3: Synthesis of Malonamides and Dihydropyrimidinediones

Method 4: Synthesis of Enantiopure β-Amidoaldehydes

Method 5: Synthesis of Trifluoromethylated Dipeptides

Method 6: N-Acylimines as Dienophiles in Diels–Alder
 Cycloaddition Reactions

Method 7: N-Acylimines as Dienophiles in Diels–Alder

Method 8: Taxol A-Ring Side Chain

Method 9: Functionalization of Penicillins at C6

Product Subclass 2: N-Acylimines Generated In Situ

Method 1: N-Acyl Hemiaminals as N-Acylimine Equivalents

Method 2: From Bisurethanes of Aldehydes

Method 3: Elimination Reactions of N-Acyl ß-Substituted Amines

Method 4: Elimination Reactions of ß-Amidoalkyl Phenyl Sulfones

Variation 1: Immobilization of N-Acylimines

Method 5: Radical-Based Methodology from N-tert-Butyl-N-(methoxyalkyl)benzamides

Applications of Product Subclass 2 in Organic Synthesis

Method 1: Allylic Primary Amines from N-Acylimine Equivalents

Variation 1: Propargylic Primary Amines

Method 2: Synthesis of β-Amino Ketones

Method 3: Synthesis of α-Amino Acids

Method 4: Synthesis of β-Amino Acid Esters

Variation 1: Immobilization of N-Acylimines

Method 5: Synthesis of Six-Membered Cyclic Carbamates from Immobilized N-Acylimines

Method 6: Synthesis of 1,2,3,4-Tetrahydronaphthalen-1-amines

Variation 1: Synthesis of (±)-Sertraline

Method 7: Alkylcarbamates from N-Acyl Hemiaminals

Variation 1: Alkylcarbamates from Bisurethanes of Aldehydes

Variation 2: Asymmetric Synthesis of Alkylcarbamates

Method 8: Synthesis of α-Amino Ketones

Method 9: Synthesis of Chiral N-Acetylamines

Product Class 10: N-Acyliminium Salts
R. A. Pilli and G. B. Rosso

Method 1: N-Acylation of Imines

Method 2: Reaction of Aldehydes with Amides, Imides, or Carbamates

Method 6: Synthesis of 1,2,3,4-Tetrahydronaphthalen-1-amines

Method 7: Alkylcarbamates from N-Acyl Hemiaminals

Variation 1: Alkylcarbamates from Bisurethanes of Aldehydes

Variation 2: Asymmetric Synthesis of Alkylcarbamates

Method 8: Synthesis of α-Amino Ketones

Method 9: Synthesis of Chiral N-Acetylamines
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.11.16</td>
<td>Method 16: By Addition of Carbenes and Carbenoids to Imines</td>
<td>458</td>
</tr>
<tr>
<td>27.11.17</td>
<td>Methods 17: Miscellaneous Routes</td>
<td>459</td>
</tr>
<tr>
<td>27.11.2</td>
<td>Applications of Product Class 11 in Organic Synthesis</td>
<td>459</td>
</tr>
<tr>
<td>27.11.2.1</td>
<td>Method 1: Dimerization To Form Piperazines</td>
<td>459</td>
</tr>
<tr>
<td>27.11.2.2</td>
<td>Method 2: Cyclization of Conjugated Systems</td>
<td>459</td>
</tr>
<tr>
<td>27.11.2.2.1</td>
<td>Variation 1: 1,3-Electrocyclization</td>
<td>459</td>
</tr>
<tr>
<td>27.11.2.2.2</td>
<td>Variation 2: 1,5-Electrocyclization</td>
<td>460</td>
</tr>
<tr>
<td>27.11.2.2.3</td>
<td>Variation 3: 1,7-Electrocyclization</td>
<td>462</td>
</tr>
<tr>
<td>27.11.2.3</td>
<td>Method 3: 1,4-Hydrogen Shift and Cyclocondensation To Form Pyrroles and Indolizines</td>
<td>465</td>
</tr>
<tr>
<td>27.11.2.4</td>
<td>Method 4: Cycloaddition to Alkenes and Alkynes</td>
<td>466</td>
</tr>
<tr>
<td>27.11.2.4.1</td>
<td>Variation 1: Cycloaddition of Aziridine-Derived Azomethine Ylides</td>
<td>467</td>
</tr>
<tr>
<td>27.11.2.4.2</td>
<td>Variation 2: Cycloaddition of 2,3-Dihydrooxazole-Derived Azomethine Ylides</td>
<td>471</td>
</tr>
<tr>
<td>27.11.2.4.3</td>
<td>Variation 3: Cycloaddition of Azomethine Ylides from 1,2-Prototropic Rearrangements</td>
<td>473</td>
</tr>
<tr>
<td>27.11.2.4.4</td>
<td>Variation 4: Cycloaddition of N-Metalated Azomethine Ylides</td>
<td>475</td>
</tr>
<tr>
<td>27.11.2.4.5</td>
<td>Variation 5: Cycloaddition of Azomethine Ylides Derived from Iminium Salts by Deprotonation</td>
<td>476</td>
</tr>
<tr>
<td>27.11.2.4.6</td>
<td>Variation 6: Cycloaddition of Azomethine Ylides Derived from Amines and Carbonyl Derivatives</td>
<td>477</td>
</tr>
<tr>
<td>27.11.2.4.7</td>
<td>Variation 7: Cycloaddition of Azomethine Ylides Derived from Iminium Salts by Desilylation</td>
<td>479</td>
</tr>
<tr>
<td>27.11.2.4.8</td>
<td>Variation 8: Cycloaddition of Azomethine Ylides Derived from Decarboxylation of Iminium Salts</td>
<td>481</td>
</tr>
<tr>
<td>27.11.2.4.9</td>
<td>Variation 9: Cycloaddition of Azomethine Ylides Synthesized by Other Routes</td>
<td>486</td>
</tr>
<tr>
<td>27.11.2.5</td>
<td>Method 5: Cycloaddition to Hetero Multiple Bonds</td>
<td>487</td>
</tr>
<tr>
<td>27.11.2.6</td>
<td>Method 6: Cycloaddition with Asymmetric Induction</td>
<td>489</td>
</tr>
</tbody>
</table>

27.12 Product Class 12: N-Haloimines

Jie Jack Li

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.12</td>
<td>Product Class 12: N-Haloimines</td>
</tr>
<tr>
<td>27.12.1</td>
<td>Synthesis of Product Class 12</td>
</tr>
<tr>
<td>27.12.1.1</td>
<td>Without C—C Bond Cleavage</td>
</tr>
<tr>
<td>27.12.1.1.1</td>
<td>Method 1: From 4-Aminophenol and Sodium Hypohalites</td>
</tr>
<tr>
<td>27.12.1.1.2</td>
<td>Method 2: From N,N'-Bis(benzylidene)arylmethanediamines and tert-Butyl Hypochlorite</td>
</tr>
<tr>
<td>27.12.1.3</td>
<td>Method 3: From Aldehydes or Ketones and Chloroamine</td>
</tr>
<tr>
<td>27.12.1.4</td>
<td>Method 4: From Dehydrohalogenation of Alkylhaloamines</td>
</tr>
<tr>
<td>27.12.1.5</td>
<td>Method 5: From Imines</td>
</tr>
<tr>
<td>27.12.1.6</td>
<td>Method 6: From Silyl Imines</td>
</tr>
<tr>
<td>27.12.1.7</td>
<td>Method 7: From Nitriles and Grignard Reagents</td>
</tr>
<tr>
<td>27.12.2</td>
<td>Product Class 12: N-Haloimines</td>
</tr>
<tr>
<td>27.12.3</td>
<td>Synthesis of Product Class 12</td>
</tr>
<tr>
<td>27.12.3.1</td>
<td>Without C—C Bond Cleavage</td>
</tr>
<tr>
<td>27.12.3.1.1</td>
<td>Method 1: From 4-Aminophenol and Sodium Hypohalites</td>
</tr>
<tr>
<td>27.12.3.1.2</td>
<td>Method 2: From N,N'-Bis(benzylidene)arylmethanediamines and tert-Butyl Hypochlorite</td>
</tr>
<tr>
<td>27.12.3.3</td>
<td>Method 3: From Aldehydes or Ketones and Chloroamine</td>
</tr>
<tr>
<td>27.12.3.4</td>
<td>Method 4: From Dehydrohalogenation of Alkylhaloamines</td>
</tr>
<tr>
<td>27.12.3.5</td>
<td>Method 5: From Imines</td>
</tr>
<tr>
<td>27.12.3.6</td>
<td>Method 6: From Silyl Imines</td>
</tr>
<tr>
<td>27.12.3.7</td>
<td>Method 7: From Nitriles and Grignard Reagents</td>
</tr>
</tbody>
</table>
27.12. With C–C Bond Cleavage .. 506
27.12.1 Method 1: Oxidative Decarboxylation of Amino Acids 506
27.12.2 Applications of Product Class 12 in Organic Synthesis 507
27.12.1 Method 1: Gibbs Reaction ... 507
27.12.2 Method 2: Neber Rearrangement 509

27.13 Product Class 13: Nitrones and Cyclic Analogues
P. Merino

27.13.1 Synthesis of Product Class 13 .. 511
27.13.1.1 Method 1: Synthesis by Oxidation 512
27.13.1.2 Variation 1: Of Secondary Amines 513
27.13.1.3 Variation 2: Of Imines .. 516
27.13.1.4 Variation 3: Of Hydroxylamines 516
27.13.1.5 Method 2: Synthesis by Condensation of N-Alkylhydroxylamines 519
27.13.1.6 Variation 1: With Aldehydes 520
27.13.1.7 Variation 2: With Ketones ... 522
27.13.1.8 Method 3: Synthesis by N-Alkylation of Oximes 524
27.13.1.9 Method 4: Synthesis by Ring-Closure Reactions 525
27.13.1.10 Methods 5: Miscellaneous Methods 529
27.13.2 Applications of Product Class 13 in Organic Synthesis 530
27.13.2.1 Method 1: 1,3-Dipolar Cycloadditions 530
27.13.2.2 Variation 1: With Heteroatomic Multiple Bonds 531
27.13.2.3 Variation 2: With Alkynes ... 532
27.13.2.4 Variation 3: With Cumulenes 535
27.13.2.5 Variation 4: With Heterocumulenes 536
27.13.2.6 Variation 5: With Alkenes ... 537
27.13.2.7 Variation 6: Intramolecular Cyclizations 542
27.13.2.8 Variation 7: Enantioselective Catalysis 545
27.13.2.9 Method 2: Nucleophilic Additions 550
27.13.2.10 Variation 1: Of sp-Nucleophiles 550
27.13.2.11 Variation 2: Of sp²-Nucleophiles 552
27.13.2.12 Variation 3: Of sp³-Nucleophiles 555
27.13.2.13 Variation 4: Of Enolates ... 558
27.13.2.14 Variation 5: Allylation .. 564
27.13.2.15 Variation 6: Reduction (Hydride Addition) 564
27.13.2.16 Variation 7: Phosphorus Nucleophiles 566
27.13.2.17 Method 3: Metal Complex Formation 567
27.13.2.18 Method 4: Rearrangements 568
27.13.2.19 Method 5: Spin-Trapping ... 569
Table of Contents

27.14 Product Class 14: Nitronic Acids and Their Derivatives
Jie Jack Li

27.14 Product Class 14: Nitronic Acids and Their Derivatives
.......................... 581
27.14.1 Product Subclass 1: Nitronic Acids
................................. 581
27.14.1.1 Synthesis of Product Subclass 1
.. 581
27.14.1.1.1 Method 1: Acidification of Nitronate Salts
.......................... 581
27.14.1.1.2 Method 2: Michael Addition to Nitroalkenes
.......................... 582
27.14.1.1.3 Method 3: Reaction of a Nitroalkane and Formaldehyde
...................... 583
27.14.1.1.4 Method 4: Reaction of 1-Methyl-5-nitropyrimidin-2(1H)-one and Primary Amines
.. 584
27.14.1.2 Applications of Product Subclass 1 in Organic Synthesis
.......................... 584
27.14.1.2.1 Method 1: The Nef Reaction
.. 584
27.14.2 Product Subclass 2: Nitronate Salts
................................. 585
27.14.2.1 Synthesis of Product Subclass 2
.. 585
27.14.2.1.1 Method 1: Reaction of Nitroalkanes with Base
.......................... 585
27.14.2.2 Applications of Product Subclass 2 in Organic Synthesis
.......................... 585
27.14.2.2.1 Method 1: Nitroaldol Reaction (The Henry Reaction)
.......................... 585
27.14.2.2.2 Method 2: Michael Addition of a Nitronate
.......................... 586
27.14.2.2.3 Method 3: Ozonolysis of a Sodium Nitronate Salt To Give a Ketone
.......................... 587
27.14.3 Product Subclass 3: Nitronic Esters
................................. 588
27.14.3.1 Synthesis of Product Subclass 3
.. 588
27.14.3.1.1 Method 1: Alkylation of a Nitronate Salt
.......................... 588
27.14.3.2 Applications of Product Subclass 3 in Organic Synthesis
.......................... 589
27.14.3.2.1 Method 1: Tandem [4 + 2]/[3 + 2] Cycloadditions
.......................... 589
27.14.4 Product Subclass 4: Silyl Nitronates
................................. 590
27.14.4.1 Synthesis of Product Subclass 4
.. 590
27.14.4.1.1 Method 1: O-Silylation of Bidentate Nitronate Ions
.......................... 590
27.14.4.1.1.1 Variation 1: With Chlorotrialkylsilane
.......................... 591
27.14.4.1.1.2 Variation 2: With Trimethylsilyl Trifluoromethanesulfonate
.......................... 593
27.14.4.1.1.3 Variation 3: With N,O-Bis(trimethylsilyl)acetamide
.......................... 594
27.14.4.1.2 Method 2: Reaction of 1-Nitroalk-1-enes with Allylsilanes
.......................... 594
27.14.4.2 Applications of Product Subclass 4 in Organic Synthesis
.......................... 595
27.14.4.2.1 Method 1: Conversion into Nitro Alcohols via the Henry Reaction
.......................... 595
27.14.4.2.2 Method 2: Conversion into 2-(Trialkyloxoy)isoxazolidines
.......................... 597
27.14.4.2.3 Method 3: Conversion into an Aldehyde or a Ketone
.......................... 600
27.14.4.2.4 Method 4: Conversion into Oximes
.. 601
Product Class 15: Oximes
M. Yamane and K. Narasaka

Synthesis of Product Class 15

Method 1: Condensation of Carbonyl Compounds and Hydroxylamine
Method 2: By Nitrosation
Variation 1: Electrophilic Nitrosation of Active Methylene Compounds
Variation 2: Electrophilic Nitrosation of Alkenes
Variation 3: Radical Nitrosation

Method 3: By Oxidation of Amino Compounds
Variation 1: Oxidation of Hydroxylamines
Variation 2: Oxidation of Primary Amines

Method 4: By Reduction of Nitro and Nitroso Compounds
Variation 1: Reduction of Nitroalkanes
Variation 2: Reduction of Conjugated Nitroalkenes
Variation 3: Reduction of gem-Chloronitroso Compounds

Methods 5: Additional Methods

Applications of Product Class 15 in Organic Synthesis

Method 1: Formal Substitution with Cleavage of the O–N Bond
Variation 1: Via Oxidative Addition to Transition Metals
Variation 2: With Nucleophiles
Variation 3: Via Radical Intermediates

Method 2: Formal Elimination
Variation 1: Generation of 1,3-Dipoles
Variation 2: Conversion into Nitriles
Variation 3: Regeneration of Carbonyl Compounds

Method 3: Addition Reactions
Variation 1: Reduction to Primary Amines
Variation 2: Reduction to Hydroxylamines
Variation 3: With Radicals
Variation 4: With Carbon Nucleophiles

Method 4: Rearrangements
Variation 1: Beckmann Rearrangement
Variation 2: Neber Reaction

Method 5: Reactions with Retention of the Oxime Moiety
Variation 1: E/Z-Isomerization
Variation 2: α-Alkylation

Methods 6: Additional Reactions
27.16 **Product Class 16: Azines**
D. M. Wilson and Y. Zhang

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.16.1</td>
<td>Synthesis of Product Class 16</td>
<td>649</td>
</tr>
<tr>
<td>27.16.1.1</td>
<td>Method 1: Monosubstituted Azines from the Reaction of Hydrazones with Formaldehyde</td>
<td>649</td>
</tr>
<tr>
<td>27.16.1.2</td>
<td>Method 2: Geminally Disubstituted Azines from the Reaction of Hydrazones with Formaldehyde</td>
<td>650</td>
</tr>
<tr>
<td>27.16.1.3</td>
<td>Method 3: 1,4-Disubstituted Azines</td>
<td>651</td>
</tr>
<tr>
<td>27.16.1.3.1</td>
<td>Variation 1: From the Reaction of Hydrazine with Aldehydes</td>
<td>651</td>
</tr>
<tr>
<td>27.16.1.3.2</td>
<td>Variation 2: From Diazoalkane Dimerization</td>
<td>652</td>
</tr>
<tr>
<td>27.16.1.3.3</td>
<td>Variation 3: Imine Hydrazinolysis</td>
<td>654</td>
</tr>
<tr>
<td>27.16.1.4</td>
<td>Method 4: Trisubstituted Azines from the Reaction of Hydrazones with Aldehydes</td>
<td>654</td>
</tr>
<tr>
<td>27.16.1.5</td>
<td>Method 5: Tetrasubstituted Azines</td>
<td>655</td>
</tr>
<tr>
<td>27.16.1.5.1</td>
<td>Variation 1: From Ketone Dimerization with Hydrazine</td>
<td>655</td>
</tr>
<tr>
<td>27.16.1.5.2</td>
<td>Variation 2: Reaction of Hydrazones with Ketones</td>
<td>656</td>
</tr>
<tr>
<td>27.16.1.5.3</td>
<td>Variation 3: Diazoalkane Dimerization</td>
<td>657</td>
</tr>
<tr>
<td>27.16.1.5.4</td>
<td>Variation 4: Azine Iminolysis</td>
<td>658</td>
</tr>
<tr>
<td>27.16.2</td>
<td>Applications of Product Class 16 in Organic Synthesis</td>
<td>659</td>
</tr>
<tr>
<td>27.16.2.1</td>
<td>Method 1: Oxidation and Reduction</td>
<td>659</td>
</tr>
<tr>
<td>27.16.2.2</td>
<td>Method 2: Addition Reactions</td>
<td>660</td>
</tr>
<tr>
<td>27.16.2.3</td>
<td>Method 3: Formation of Organometallic Complexes</td>
<td>663</td>
</tr>
<tr>
<td>27.16.2.4</td>
<td>Method 4: Intramolecular Cyclization Reactions</td>
<td>664</td>
</tr>
<tr>
<td>27.16.2.5</td>
<td>Method 5: Cycloaddition Reactions</td>
<td>665</td>
</tr>
<tr>
<td>27.16.2.6</td>
<td>Method 6: Cleavage with Nucleophiles: Hydrolysis and Iminolysis</td>
<td>665</td>
</tr>
</tbody>
</table>

27.17 **Product Class 17: Hydrazones**
S. Kim and J.-Y. Yoon

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.17.1</td>
<td>Product Subclass 1: N-Unsubstituted Hydrazones</td>
<td>672</td>
</tr>
<tr>
<td>27.17.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td>672</td>
</tr>
<tr>
<td>27.17.1.1.1</td>
<td>Method 1: Synthesis from Aldehydes and Ketones</td>
<td>672</td>
</tr>
<tr>
<td>27.17.1.1.1.1</td>
<td>Variation 1: From N,N-Dimethylhydrazones</td>
<td>674</td>
</tr>
<tr>
<td>27.17.1.1.2</td>
<td>Method 2: Synthesis from Diazo Compounds</td>
<td>674</td>
</tr>
<tr>
<td>27.17.1.2</td>
<td>Applications of Product Subclass 1 in Organic Synthesis</td>
<td>675</td>
</tr>
<tr>
<td>27.17.1.2.1</td>
<td>Method 1: Wolff–Kishner Reduction</td>
<td>675</td>
</tr>
<tr>
<td>27.17.1.2.2</td>
<td>Method 2: Synthesis of Nitrogen Heterocycles</td>
<td>676</td>
</tr>
<tr>
<td>27.17.1.2.3</td>
<td>Method 3: Synthesis of Diazo Compounds and Alkynes</td>
<td>677</td>
</tr>
</tbody>
</table>
27.17.2 Product Subclass 2: N-Monosubstituted Hydrazones 678
27.17.2.1 Synthesis of Product Subclass 2 678
27.17.2.1.1 Method 1: Synthesis from Aldehydes and Ketones 678
27.17.2.1.1.1 Variation 1: From Masked Aldehydes 679
27.17.2.1.2 Method 2: Synthesis from Activated Enol Ethers and Enamines 680
27.17.2.1.3 Method 3: Synthesis from Active Methylene and Methinyl Compounds 681
27.17.2.1.3.1 Variation 1: From Enamines 682
27.17.2.1.3.2 Variation 2: From Ketene Silyl Acetals 683
27.17.2.1.4 Method 4: Synthesis from Ketones, Esters, and Tertiary Amide Enolates 684
27.17.2.2 Applications of Product Subclass 2 in Organic Synthesis 685
27.17.2.2.1 Method 1: Fischer Indole Synthesis of N-Arylhydrazones 686
27.17.2.2.2 Method 2: N-Substituted Dihydropyrazoles via 1,3-Dipolar Cycloadditions 687
27.17.2.2.3 Method 3: N-tert-Butylhydrazones as Acyl Anion Equivalents 689
27.17.2.2.4 Method 4: Ene Reactions of Aldehyde N-tert-Butyl- and N-Phenylhydrazones 690
27.17.3 Product Subclass 3: N,N-Disubstituted Hydrazones 690
27.17.3.1 Synthesis of Product Subclass 3 690
27.17.3.1.1 Method 1: Synthesis from Aldehydes and Ketones 691
27.17.3.1.1.1 Variation 1: From Hindered Ketones and N-Dimethylaluminum-N,N'-dimethylhydrazide 691
27.17.3.1.2 Method 2: Synthesis from Azido Compounds 693
27.17.3.1.2.1 Variation 1: From (Trichloromethyl)arenes 694
27.17.3.1.3 Method 3: Palladium-Catalyzed Arylation of N-Unsubstituted Hydrazones 694
27.17.3.1.4 Method 4: N-Alkylation of N-Arylhydrazones 695
27.17.3.1.5 Method 5: Synthesis via Nucleophilic Additions to Other Hydrazones 696
27.17.3.2 Applications of Product Subclass 3 in Organic Synthesis 697
27.17.3.2.1 Method 1: Alkylation of Hydrazone Anions 697
27.17.3.2.2 Method 2: Organometallic Additions to Hydrazones; Primary Amine Synthesis 700
27.17.3.2.3 Method 3: Acylation of Hydrazones 701
27.17.3.2.4 Method 4: Reduction of Hydrazones 702
27.17.3.2.5 Method 5: Conversion of N,N-Dialkylhydrazones into Nitriles 703
27.17.4 Product Subclass 4: N-Sulfonylated Hydrazones 704
27.17.4.1 Synthesis of Product Subclass 4 704
27.17.4.1.1 Method 1: Synthesis from Aldehydes and Ketones 705
27.17.4.1.2 Method 2: Synthesis from N-Unsubstituted Hydrazones 705
27.17.4.2 Applications of Product Subclass 4 in Organic Synthesis 706
27.17.4.2.1 Method 1: Synthesis of Diazoalkanes 706
27.17.4.2.2 Method 2: Synthesis of Alkenes 707
27.17.4.2.2.1 Variation 1: Synthesis of Vinyllithiums 710
Method 3: Fragmentation of \(\alpha,\beta \)-Epoxylation Tosylhydrazones

Method 4: Reduction of Tosylhydrazones

Method 5: Nucleophilic Additions to Tosylhydrazones

Variation 1: Conversion of Arylsulfonylhydrazones into Nitriles

Product Class 18: Hydrazonium Compounds

Y. Zhang and D. M. Wilson

Product Subclass 1: 1,1,1-Trialkyl-2-alkylidenehydrazinium Compounds

Method 1: Alkylation of Hydrazone Compounds

Method 2: Reaction of Carbonyl Compounds with Hydrazines

Applications of Product Subclass 1 in Organic Synthesis

Method 1: Synthesis of Azirines

Method 2: Synthesis of Aziridines

Method 3: Synthesis of Pyrroles

Method 4: Synthesis of 1,2,4-Oxadiazoles

Method 5: Synthesis of Nitriles

Product Subclass 2: 1,2,2-Trialkyl-1-alkylidenehydrazinium Compounds

Method 1: Alkylation of Hydrazone Compounds

Method 2: Reaction of Carbonyl Compounds and Hydrazines

Applications of Product Subclass 2 in Organic Synthesis

Method 1: Nucleophilic Additions to Hydrazonium Compounds

Product Class 19: Azomethine Imines

J. G. Schantl

Product Subclass 1: Acyclic Azomethine Imines

Synthesis of Product Subclass 1

Method 1: In Situ Generation from Hydrazones Followed by [3 + 2] Cycloaddition

Variation 1: Reaction of Aryl- and Hetarylhydrazones with Alkenic and Acetylenic Dipolarophiles

Variation 2: Reaction of Tosylhydrazones with a Diazonium Ion

Variation 3: Reaction of Arylhydrazones with In Situ Generated Cyanic Acid and Thiocyanic Acid

Variation 4: Reaction of Benzaldehyde Phenylhydrazone with 1-Methylene-1H-pyrrolium Ion
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.19.1.1.5</td>
<td>Variation 5</td>
<td>Intramolecular [3 + 2] Cycloaddition of 2-(Allyloxy)- and 2-(Prop-2-ynyl)benzaldehyde Hydrazones</td>
</tr>
<tr>
<td>27.19.1.1.6</td>
<td>Variation 6</td>
<td>Intramolecular [3 + 2] Cycloaddition of Hetarenecarbaldehyde Phenylhydrazones</td>
</tr>
<tr>
<td>27.19.1.1.7</td>
<td>Variation 7</td>
<td>Intramolecular [3 + 2] Cycloaddition of Hetarenecarbaldehyde Tosylhydrazones</td>
</tr>
<tr>
<td>27.19.1.1.8</td>
<td>Variation 8</td>
<td>Reaction of Dihydropyrrole-Substituted α-Oxo Esters and Acylhydrazines Followed by Intramolecular [3 + 2] Cycloaddition</td>
</tr>
<tr>
<td>27.19.1.1.9</td>
<td>Method 2</td>
<td>In Situ Generation from Enehydrazine Followed by [3 + 2] Cycloaddition</td>
</tr>
<tr>
<td>27.19.1.1.10</td>
<td>Method 3</td>
<td>In Situ Generation From 1,2-Disubstituted Hydrazine Derivatives by Condensation with Carbonyl Compounds</td>
</tr>
<tr>
<td>27.19.1.1.11</td>
<td>Variation 1</td>
<td>Reaction of 1,4-Disubstituted Semicarbazide with a (Hemi)acetal</td>
</tr>
<tr>
<td>27.19.1.1.12</td>
<td>Variation 2</td>
<td>Reaction of N-Alkylcarbazates with Hetarenecarbaldehydes Followed by Intermolecular [3 + 2] Cycloaddition</td>
</tr>
<tr>
<td>27.19.1.1.13</td>
<td>Variation 3</td>
<td>Reaction of 3-Benzylcarbazate with Aldehydes</td>
</tr>
<tr>
<td>27.19.1.1.14</td>
<td>Variation 4</td>
<td>Reaction of N-Benzylhydrazide with a (Hemi)acetal</td>
</tr>
<tr>
<td>27.19.1.1.15</td>
<td>Variation 5</td>
<td>Reaction of 2-(Allyloxy)-Substituted Benzaldehyde with 1-Methyl-2-phenylhydrazine</td>
</tr>
<tr>
<td>27.19.1.1.16</td>
<td>Variation 6</td>
<td>Reaction of a 2-(Allylsulfanyl)-Substituted Hetarene-carbaldehyde with N'-Methyl-2-phenylacetohydrazide</td>
</tr>
<tr>
<td>27.19.1.1.17</td>
<td>Variation 7</td>
<td>Reaction of a δ,ε-Unsaturated Aldehyde with Ethyl 3-Benzylcarbazate</td>
</tr>
<tr>
<td>27.19.1.1.18</td>
<td>Method 4</td>
<td>In Situ Generation from 1,2-Disubstituted Hydrazines by Condensation with a Carbene</td>
</tr>
<tr>
<td>27.19.1.1.19</td>
<td>Variation 1</td>
<td>Reaction of 1,2-Disubstituted Hydrazines and Dichlorocarbene Followed by [3 + 2] Cycloaddition</td>
</tr>
<tr>
<td>27.19.1.1.20</td>
<td>Method 5</td>
<td>Reaction of Diazones with Diazoalkanes</td>
</tr>
<tr>
<td>27.19.1.1.21</td>
<td>Variation 1</td>
<td>Reaction of Diazocyanides with Diaryldiazomethanes: Azomethine Imine Trimerization</td>
</tr>
<tr>
<td>27.19.1.1.22</td>
<td>Method 6</td>
<td>Oxidation of N,N,N'-Trisubstituted Hydrazines Followed by [3 + 2] Cycloaddition</td>
</tr>
<tr>
<td>27.19.1.1.23</td>
<td>Variation 1</td>
<td>Catalytic Dehydrogenation of Acyclic Trisubstituted Hydrazines</td>
</tr>
<tr>
<td>27.19.1.1.24</td>
<td>Variation 2</td>
<td>Electrochemical Oxidation of Acyclic Trisubstituted Hydrazines</td>
</tr>
<tr>
<td>27.19.1.1.25</td>
<td>Method 7</td>
<td>1,3-Dipole Metathesis of 1,2-Diaryl diazen-1-im-1-oxides</td>
</tr>
<tr>
<td>27.19.1.1.26</td>
<td>Method 8</td>
<td>In Situ Generation by 1,4-Silatropic Shift of α-Silylnitrosamines and α-Silylnitrosamides Followed by [3 + 2] Cycloaddition</td>
</tr>
</tbody>
</table>

Product Subclass 2: Azomethine Imines with C–N Incorporated in a Ring

<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.19.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td></td>
</tr>
<tr>
<td>27.19.2.1.1</td>
<td>Method 1</td>
<td>N-Alkylation of Hydrazones and Hydrazines</td>
</tr>
<tr>
<td>27.19.2.1.1.1</td>
<td>Variation 1</td>
<td>Intramolecular Michael Addition of Hydrazone Followed by [3 + 2] Cycloaddition</td>
</tr>
</tbody>
</table>
Variation 2: N-Acylation of 1,2-Substituted Hydrazine Followed by Intermolecular [3 + 2] Cycloaddition 762

Method 2: Deprotonation of N-Amino-Substituted Heterocycles 763

Variation 1: Deprotonation of N-Aminopyridinium and N-Aminoisoquinolinium Salts Followed by [3 + 2] Cycloaddition 764

Method 3: Catalytic Dehydrogenation of N-Phenyl-3,4-dihydroisoquinolin-2(1H)-amine Followed by [3 + 2] Cycloaddition 770

Method 4: Alkylation of Diazene by Intramolecular Attack on a Carbenoid 770

Method 5: Nonclassical “Criss-Cross” Reaction: [3 + 2] Cycloaddition of Dialkyl and Diphenyl Azodicarboxylates and Diphenylketenes; [3 + 2] Cycloaddition of Resulting Azomethine Imine 771

Method 6: Nonclassical “Criss-Cross” Reaction: [3 + 2] Cycloaddition of Azoalkenes with Thiocyanic Acid; [1,4]-H Shift of Resulting Azomethine Imine or [3 + 2] Cycloaddition with Thiocyanic Acid 773

Method 7: Base-Induced Partial Reversion of a Nonclassical “Criss-Cross” Product to Generate an Enehydrazine Followed by Reaction with Dipolarophiles 776

Method 8: Ring Transformation 778

Variation 1: Reaction of 1,3,4-Oxadiazol-2(3H)-one with 2H-Azirene 778

Variation 2: Exchange of One Ring Heteroatom in Olium Rings (Five-Membered Heterocycles with Positive Charge) with the Nitrogen Atom of Monosubstituted Hydrazines 778

Method 9: 1,5-Electrocyclization of 1,2-Diaza-1,3,5-heterotrienes 779

Variation 1: Oxidation of 1,2-Bis(hydrazones): Formation of 1,2,3-Triazol-1-ium-1-imides 780

Variation 2: Cyclization of 3-Hydrazonoprop-2-enylthiocyanates: Formation of Isothiazol-2-ium-2-imides 780

Product Subclass 3: Azomethine Imines with N-N Incorporated in a Ring 783

Synthesis of Product Subclass 3 783

Method 1: Intramolecular N-Alkylation of Hydrazine by Dehydrohalogenation of (Haloacyl)hydrazones 783

Variation 1: Dehydrohalogenation of (β-Haloacyl)hydrazones To Form 3-Oxo-1-methyleneprazolidin-1-ium-2-ides and Photoreversible Transformation 787

Method 2: Condensation of 1,2-Disubstituted Hydrazine Derivatives with Carbonyl Compounds 788

Variation 1: Condensation of the Hydrazine Moiety of 1,2-Diazetidinium Tosylates with Carbonyl Compounds 788

Variation 2: Condensation of the Hydrazide Moiety of Pyrazolidin-3-ones with Carbonyl Compounds 790

Variation 3: Reaction of the Hydrazide Moiety in Pyrazolidin-3-ones with Alkynes 799

Variation 4: Condensation of the Hydrazide Moiety of Six-Membered Rings with Carbonyl Compounds 801
27.19.3.1.3 Method 3: Chlorination of 1,2,4-Triazolidine-3,5-dione Followed by Base-Induced Dehydrohalogenation of the N-Chlorohydrazide Moiety ... 804

27.19.3.1.4 Method 4: Reaction of a Diazene with a Carbene 805

27.19.3.1.4.1 Variation 1: Reaction of 2,5-Dihydro-1,3,4-oxadiazole with Carbocycles Followed by Cycloelimination 805

27.19.3.1.4.2 Variation 2: Reaction of Halocarbenes with Cyclic Diazenes Followed by Intramolecular [3 + 2] Cycloaddition 806

27.19.3.1.4.3 Variation 3: Reaction of a 1H,2,4-Triazole-1,5-dione with Benzo[c]furan ... 807

27.19.3.1.5 Method 5: Reaction of a Diazene with a Diazoalkane 807

27.19.3.1.5.1 Variation 1: Reaction of a 3H-1,2,4-Triazole-3,5(4H)-dione with Diazoalkanes ... 807

27.19.3.1.6 Method 6: Classical “Criss-Cross” Reaction (Tandem [3 + 2] Cycloaddition): Reaction of Azines with Two Molecules of Dipolarophile .. 811

27.19.3.1.6.1 Variation 1: Reaction of Aldazine or Ketazine with Cyanic or Thiocyanic Acid To Give Tetrahydro-1H,5H-1,2,4-triazole-1,5-diones or the Corresponding 1,5-Dithiones 811

27.19.3.1.6.2 Variation 2: Reaction of Hexafluoroacetone Azine with Alkenes or Alkynes To Give an Azomethine Imine (1:1 Cycloadduct) and/or “Criss-Cross” (Heterobicyclic) Product (1:2 Cycloadduct) 812

27.19.3.1.6.3 Variation 3: 1,5-Electrocyclization of Allenylazine (Intramolecular “Criss-Cross” Cycloaddition) .. 813

27.19.3.1.7 Method 7: Ring Transformation .. 814

27.19.3.1.7.1 Variation 1: Cycloreversion (Electrocyclic Ring Opening) of 2,3-Dihydro-1H,5H-pyrazole[1,2-a][1,2,4]triazole-1,5-diones or the Corresponding 1,5-Dithiones 814

27.19.3.1.7.2 Variation 2: Thermally Induced [3 + 2] Cycloelimination of Phenyl Isocyanate from 1-Methylene-3,5-dioxy-4-phenyl-1,2,4-triazolidin-1-ium-2-ide Followed by [3 + 2] Cycloaddition To Give 1-Methylene-5-oxo-1H-pyrazol-1-ium-2-ides 815

27.19.3.1.7.3 Variation 3: Azomethine Imines Generated from the Diaziridine Ring in 1,5-Diazabicyclo[3.1.0]hexanes; Reaction with Diphenylpropanone 817

27.19.3.1.8 Method 8: Transformation of Oxo Azomethine Imines into Thioxo Azomethine Imines ... 819

27.19.4 Product Subclass 4: Azomethine Imines with All Three Atoms Embedded in a Ring ... 819

27.19.4.1 Synthesis of Product Subclass 4 ... 819

27.19.4.1.1 Method 1: N-Alkylation of Fused 1,2,4-Triazines 819

27.19.4.1.2 Method 2: Ring Transformation 820

27.19.4.1.2.1 Variation 1: Thermally or Acid-Induced Ring Enlargement of an Azomethine Imine with an Exocyclic Terminal Nitrogen into the Isomer with All Three Atoms in the Ring 820
Table of Contents

27.20 Product Class 20: N-Nitroimines and N-Nitrosoimines
Jie Jack Li

27.20 Product Class 20: N-Nitroimines and N-Nitrosoimines

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.20.1 Product Subclass 1: N-Nitroimines</td>
<td>825</td>
</tr>
<tr>
<td>27.20.1.1 Synthesis of Product Subclass 1</td>
<td>826</td>
</tr>
<tr>
<td>27.20.1.1.1 Method 1: Nitrosation of Oximes</td>
<td>826</td>
</tr>
<tr>
<td>27.20.1.1.1.1 Variation 1: Sodium Nitrite and Protic Acids</td>
<td>826</td>
</tr>
<tr>
<td>27.20.1.1.1.2 Variation 2: Nitrosyl Halides</td>
<td>828</td>
</tr>
<tr>
<td>27.20.1.1.1.3 Variation 3: Fuming Nitric Acid</td>
<td>828</td>
</tr>
<tr>
<td>27.20.1.1.2 Method 2: Nitrosation of Alkenes Using Nitrosyl Fluoride</td>
<td>829</td>
</tr>
<tr>
<td>27.20.1.1.3 Method 3: From Imines Using Acetic Anhydride, Ammonium Chloride, and Nitric Acid</td>
<td>831</td>
</tr>
<tr>
<td>27.20.1.1.4 Method 4: Reaction of Nitroamines with Aldehydes</td>
<td>831</td>
</tr>
<tr>
<td>27.20.1.2 Applications of Product Subclass 1 in Organic Synthesis</td>
<td>832</td>
</tr>
<tr>
<td>27.20.1.2.1 Method 1: Halogenation</td>
<td>832</td>
</tr>
<tr>
<td>27.20.1.2.2 Method 2: Knoevenagel Condensation</td>
<td>832</td>
</tr>
<tr>
<td>27.20.1.2.3 Method 3: Reduction To Form N-Nitroamines</td>
<td>833</td>
</tr>
<tr>
<td>27.20.1.2.4 Method 4: Thermal Rearrangement to Alkynes or Allenes</td>
<td>834</td>
</tr>
<tr>
<td>27.20.1.2.5 Method 5: Exchange with Nucleophiles</td>
<td>834</td>
</tr>
<tr>
<td>27.20.1.2.5.1 Variation 1: Aminolysis with Ammonia; Imine Synthesis</td>
<td>835</td>
</tr>
<tr>
<td>27.20.1.2.5.2 Variation 2: Exchange with Hydrazine; Hydrazone Synthesis</td>
<td>835</td>
</tr>
<tr>
<td>27.20.1.2.5.3 Variation 3: Imine Formation from N-Nitroimines and Primary Amines</td>
<td>835</td>
</tr>
<tr>
<td>27.20.1.2.5.4 Variation 4: Enamine Formation from N-Nitroimines and Secondary Amines</td>
<td>836</td>
</tr>
<tr>
<td>27.20.1.2.6 Method 6: Cycloaddition To Form Pyrrolidine</td>
<td>836</td>
</tr>
<tr>
<td>27.20.2 Product Subclass 2: N-Nitrosoimines</td>
<td>837</td>
</tr>
<tr>
<td>27.20.2.1 Synthesis of Product Subclass 2</td>
<td>838</td>
</tr>
<tr>
<td>27.20.2.1.1 Method 1: Nitrosation of Ketimines</td>
<td>838</td>
</tr>
<tr>
<td>27.20.2.1.1.1 Variation 1: With Nitrosyl Chloride</td>
<td>838</td>
</tr>
<tr>
<td>27.20.2.1.1.2 Variation 2: With Dinitrogen Tetroxide</td>
<td>838</td>
</tr>
<tr>
<td>27.20.2.1.1.3 Variation 3: With Sodium Nitrite and Protic Acids</td>
<td>839</td>
</tr>
<tr>
<td>27.20.2.1.2 Method 2: Nitrosation of Organometallic Ketimines with Nitrosyl Chloride</td>
<td>840</td>
</tr>
<tr>
<td>27.20.2.2 Applications of Product Subclass 2 in Organic Synthesis</td>
<td>840</td>
</tr>
<tr>
<td>27.20.2.2.1 Method 1: Reduction To Form Diazo Compounds</td>
<td>840</td>
</tr>
</tbody>
</table>
Product Class 21: Diazo Compounds .. 843

Method 1: Diazo Compounds by Diazo Transfer (Regitz Diazo Transfer) 844

Variation 1: To Activated Methylene Compounds .. 844

Variation 2: To Activated Methine Compounds .. 850

Method 2: Diazo Compounds by Diazotization Reactions .. 853

Variation 1: Of Heteroaromatic Compounds ... 857

Variation 2: Of 1,3-Dicarbonyl Compounds ... 858

Variation 3: Of Primary Amines ... 854

Variation 4: Of N-Alkyltriphenylphosphine Imides ... 857

Method 3: Diazo Compounds by Oxidation of Oximes (Forster Reaction) 857

Method 4: Diazo Compounds by Oxidation of Hydrazones ... 858

Method 5: Diazo Compounds by Elimination of Hydroxy Anions from Diazenolates (Diazotates) ... 862

Variation 1: Generation of Diazenolates from N-[(Alkyl(nitroso)amino)-methyl]carboxamides and the Corresponding Carbamates 862

Variation 2: Generation of Diazenolates from N-Alkyl-N-nitrosocarboxamides 863

Variation 3: Generation of Diazenolates from N-Alkyl-N-nitrosocarbamates 865

Variation 4: Generation of Diazenolates from 1-Alkyl-1-nitrosoureas 867

Variation 5: Generation of Diazenolates from 1-Alkyl-3-nitro-1-nitrosoguanidine 869

Variation 6: Generation of Diazenolates from N-Alkyl-N-nitroso-4-toluenesulfonamides ... 870

Variation 7: Generation of Diazenolates from β-[Alkyl(nitroso)amino] Ketones or Sulfones .. 871

Method 6: Diazo Compounds by Elimination Reactions of Sulfonates from N-Sulfonylhydrazones (Bamford–Stevens Reaction) .. 872

Method 7: Diazo Compounds by Elimination of Tosylamides from 1-Tosylpentaz-2-enes .. 884

Method 8: Diazo Compounds by Elimination of Hexaethylphosphorimidic Triamide from 1-[Tris(diethylamino)phosphorylidene]-pentaz-2-enes ... 884

Method 9: Diazo Compounds by Rearrangement Reactions .. 885

Variation 1: Of 3H-Diazirines .. 885

Variation 2: Of 4,5-Dihydro-3H-pyrazoles .. 886

Variation 3: Of 3H-Pyrazoles .. 887

Variation 4: Of 2,5-Dihydro-1,3,4-oxadiazoles .. 888

Variation 5: Of 4,5-Dihydro-1H-1,2,3-triazoles ... 888

Variation 6: Of 4,4,4-Triphenyl-4,5-dihydro-3H-1,2,3,4-triazaphospholes 890

Variation 7: Of 1,2,3-Triazoles ... 890
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.21.10</td>
<td>Method 10: Diazo Compounds by Substitution Reactions at the Diazo Carbon Atom</td>
<td>892</td>
</tr>
<tr>
<td>27.21.10.1</td>
<td>Variation 1: By Metalation and Transmetalation</td>
<td>893</td>
</tr>
<tr>
<td>27.21.10.2</td>
<td>Variation 2: By Halogenation Reactions</td>
<td>896</td>
</tr>
<tr>
<td>27.21.10.3</td>
<td>Variation 3: By Nitration Reactions</td>
<td>896</td>
</tr>
<tr>
<td>27.21.10.4</td>
<td>Variation 4: By Alkylation Reactions</td>
<td>897</td>
</tr>
<tr>
<td>27.21.10.5</td>
<td>Variation 5: By Arylation Reactions</td>
<td>906</td>
</tr>
<tr>
<td>27.21.10.6</td>
<td>Variation 6: By Acylation Reactions</td>
<td>906</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.21.11</td>
<td>Method 11: Diazo Compounds by Cleavage Reactions</td>
<td>913</td>
</tr>
<tr>
<td>27.21.12</td>
<td>Method 12: Diazo Compounds by Additional Methods</td>
<td>915</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.21.2</td>
<td>Applications of Product Class 21 in Organic Synthesis</td>
<td>916</td>
</tr>
<tr>
<td>27.22.1</td>
<td>Method 1: Carbenes and Carbenoids from Diazo Compounds</td>
<td>916</td>
</tr>
<tr>
<td>27.22.1.1</td>
<td>Variation 1: Dimerization, Oligomerization, and Polymerization Reactions of Carbenes Including Alkenation Reactions</td>
<td>917</td>
</tr>
<tr>
<td>27.22.1.2</td>
<td>Variation 2: The Wolff Rearrangement and Related Rearrangement Reactions</td>
<td>918</td>
</tr>
<tr>
<td>27.22.1.3</td>
<td>Variation 3: Insertion Reactions into Various X—H Bonds</td>
<td>918</td>
</tr>
<tr>
<td>27.22.1.4</td>
<td>Variation 4: Formation of Ylides (e.g., Carbonyl Ylides)</td>
<td>920</td>
</tr>
<tr>
<td>27.22.1.5</td>
<td>Variation 5: Cyclopropanation and Related Reactions</td>
<td>920</td>
</tr>
<tr>
<td>27.22.2</td>
<td>Method 2: Carbenium Ions from Diazo Compounds</td>
<td>921</td>
</tr>
<tr>
<td>27.22.3</td>
<td>Method 3: Cycloaddition Reactions of Diazo Compounds</td>
<td>921</td>
</tr>
</tbody>
</table>

Product Class 22: Alkylidenephosphines

E. Niecke, A. Ruban, and M. Raab

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.22.1</td>
<td>Product Class 22: Alkylidenephosphines</td>
<td>937</td>
</tr>
<tr>
<td>27.22.1.1</td>
<td>Product Subclass 1: Alkylidenephosphines with a P—H or P—Si Bond</td>
<td>938</td>
</tr>
<tr>
<td>27.22.1.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td>938</td>
</tr>
<tr>
<td>27.22.1.1.2</td>
<td>Method 1: Condensation Reactions of Tris(trimethylsilyl)phosphine or Its Lithium Salt with Acyl Chlorides</td>
<td>938</td>
</tr>
<tr>
<td>27.22.1.1.3</td>
<td>Method 2: Condensation Reaction of Tris(trimethylsilyl)phosphine with Bis(dialkylamino)difluoromethanes</td>
<td>939</td>
</tr>
<tr>
<td>27.22.1.1.4</td>
<td>Method 3: Condensation Reaction of Lithium Bis(trimethylsilyl)-phosphide and a (Methylsulfanyl)carbonium iodide</td>
<td>940</td>
</tr>
<tr>
<td>27.22.1.1.5</td>
<td>Method 4: Silyl–Hydrogen Exchange Reactions from P-(Trimethylsilyl)-Substituted Alkylidenephosphines with Alcohols or Silanols</td>
<td>940</td>
</tr>
<tr>
<td>27.22.2</td>
<td>Product Subclass 2: P-Halo-Substituted Alkylidenephosphines</td>
<td>941</td>
</tr>
<tr>
<td>27.22.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>941</td>
</tr>
<tr>
<td>27.22.2.1.1</td>
<td>Method 1: Condensation Reaction of Phosphorus Trichloride and Tris(trimethylsilyl)methyl lithium</td>
<td>941</td>
</tr>
<tr>
<td>27.22.2.1.2</td>
<td>Method 2: Dehydrohalogenation of Bis(trimethylsilyl)methyl-, Diaryl methyl-, or Aryl(trimethylsilyl)methyl[dihalo-phosphines with Base</td>
<td>942</td>
</tr>
<tr>
<td>27.22.2.2</td>
<td>Applications of Product Subclass 2 in Organic Synthesis</td>
<td>943</td>
</tr>
</tbody>
</table>
27.22.3 Product Subclass 3: Alkylidene phosphines with a P—O, P—S, P—N, or P—P Bond ... 944

27.22.3.1 Synthesis of Product Subclass 3 .. 944

27.22.3.1.1 Method 1: Substitution Reactions of P-Halo-Substituted Alkylidene phosphines with Alcohols, Sulfanyls, and Secondary Amines and Phosphines in the Presence of Base ... 944

27.22.3.1.2 Method 2: Substitution Reactions of P-Halo-Substituted Alkylidene phosphines with Alkoxides, Thiolates, Amides, and Phosphides of Group 1 .. 944

27.22.3.1.3 Method 3: Elimination Reactions of P-Heterosubstituted Organophosphines Containing Active α-Protons .. 945

27.22.4 Product Subclass 4: Alkylidene phosphines with a P—C Bond 945

27.22.4.1 Synthesis of Product Subclass 4 .. 946

27.22.4.1.1 Method 1: 1,2-Elimination of Hydrogen Halides or Halosilanes from Dihalophosphines .. 946

27.22.4.1.2 Method 2: Condensation Reactions of Organo(trimethylsilyl)phosphines or Primary Arylphosphines with Dichloromethane, Nitriles, Aldehydes, Ketones, Their Nitrogen Analogues, or Difluoromethanediamines .. 947

27.22.4.1.3 Method 3: 1,2-Addition Reactions of Bis(trimethylsilyl)phosphines with Acid Chlorides, Imidoyl Chlorides, or Various Heterocumulenes, Followed by 1,3-Silatropic Isomerization 949

27.22.4.1.4 Method 4: 1,2-Addition of Grignard Reagents or Organolithium Compounds to Alkylidynephosphines .. 950

27.22.4.1.5 Method 5: Substitution Reactions of P-Halo- or P-Aminoalkylidene phosphines with Organolithium or Grignard Reagents 952

27.22.4.1.6 Method 6: By Substitution Reactions of (Dichloromethylene)- (2,4,6-tri-tert-butylphenyl)phosphine .. 953

27.22.4.1.7 Method 7: By Photochemical, Thermal, or Anionic Ring Opening of Diphosphiranes .. 955

27.22.4.2 Applications of Product Subclass 4 in Organic Chemistry 956

27.22.5 Product Subclass 5: Phosphaallene Derivatives 956

27.22.5.1 Synthesis of Product Subclass 5 .. 956

27.22.5.1.1 Method 1: Condensation Reactions of Phosphaketenes, Aryl(dichloro)phosphines, or Aryl(diethynyl)phosphines 957

27.22.5.1.1.1 Variation 1: From Aryl(trimethylsilyl)phosphides and Ketenes 957

27.22.5.1.1.2 Variation 2: From Aryl(dichloro)phosphines with Monolithiated Allenes 957

27.22.5.1.1.3 Variation 3: From Aryl(diethynyl)phosphines and Organolithium Reagents 958

27.22.5.1.2 Method 2: Wittig Reaction of Phosphaketenes with Phosphoranyl Ylides 959

27.22.5.1.3 Method 3: By Metal-Catalyzed Prototropic Isomerization 959

27.22.6 Product Subclass 6: Diphosphirenes and Diphosphetes 961

27.22.6.1 Synthesis of Product Subclass 6 .. 961
Method 1: Addition Reactions of Iminophosphines, Phosphinocarbenes, or Phosphinidyls to Alkylidyne phosphines 961

Method 2: Condensation Reactions of Alkylidyne phosphines with Boron Trifluoride in the Presence of Base 962

Method 3: Condensation Reactions of Alkylidyne phosphines with Perfluorinated Alkylidyne phosphines 962

Method 4: Hydrostannylation of Alkylidyne phosphines To Give Stannyl-1,2-dihydro-1,3-diphosphetes 963

Product Class 23: Alkylidyne phosphonium salts
E. Niecke, A. Ruban, and M. Raab

Synthesis of Product Class 23 .. 969

Method 1: 1,2-Addition of an Electrophile to a Nucleophilic Phosphinocarbenes 969

Method 2: Halide Abstraction from Halo(alkylidene)phosphoranes with Lewis Acids 970

Applications of Product Class 23 in Organic Synthesis 970

Product Class 24: Alkylidyne phosphoranes
R. Schobert and G. J. Gordon

Product Subclass 1: C-Heteroatom-Substituted Alkylidyne phosphoranes 974

Synthesis of Product Subclass 1 .. 975

Method 1: From Alkylidyne phosphoranes 975

Variation 1: By Metalation 975

Variation 2: By Halogenation 977

Variation 3: By Sulfonation and Selenation 978

Variation 4: By Silylation 979

Method 2: From Phosphonium salts 981

Variation 1: By Dehydrohalogenation 981

Variation 2: By Dehalogenation 982

Method 3: From Phosphines 983

Applications of Product Subclass 1 in Organic Synthesis 984

Method 1: Synthesis of Enol Ethers from and Homologation of Aldehydes and Ketones with α-Alkoxylated phosphoranes 984

Method 2: Corey–Fuchs Synthesis of Alkynes 986

Product Subclass 2: C-Carbon-Substituted Alkylidyne phosphoranes 987

Synthesis of Product Subclass 2 987

Method 1: From Other Alkylidyne phosphoranes 988
Variation 1: By Replacement of Ylidic Æ-Hydrogen Atoms by Alkylation
Variation 2: By Replacement of Ylidic Æ-Hydrogen Atoms through Arylation or Acylation
Variation 3: By Reactions with Electron-Poor Alkenes and Alkynes
Variation 4: By Replacement of a Hetero Substituent on the Ylidic Carbon Atom with a Carbon Residue
Variation 5: By Addition Across the C=Æ=C_2 Bond of Cumulated Ylides

Method 2: From Quaternary Phosphonium Salts
Variation 1: By Dehydrohalogenation
Variation 2: By Pyrolytic Elimination
Variation 3: By Addition of Nucleophiles
Variation 4: By Electrochemical Reduction

Method 3: From Tertiary Phosphines
Variation 1: By Addition to Carbenes
Variation 2: By Addition to Activated Multiple Bonds

Applications of Product Subclass 2 in Organic Synthesis
Method 1: Synthesis of Carbonyl Compounds
Variation 1: Hydrolysis of Acyl Ylides
Variation 2: Oxidation of Ylides
Variation 3: Reactions of Ylides with Nitriles

Method 2: Synthesis of Alkynes
Variation 1: Wittig–Trippett Pyrolysis of Acyl Ylides
Variation 2: Flash-Vacuum Pyrolysis of Acyl Ylides

Method 3: Synthesis of Alkenes by Reactions Other Than Wittig Procedures
Variation 1: Reaction of Ylides with Carbenes and Carbene Complexes
Variation 2: Allenes from the Reactions of Stabilized Ylides with Acyl Halides
Variation 3: Cycloalkenones from Hydrolysis of Bis[(triphenylphosphoranylidene)acyl] Compounds

Method 4: Alkenes by Wittig Alkenation of Carbonyl Compounds
Variation 1: Wittig Alkenation with Lithium Salt Free Ylides
Variation 2: Wittig Alkenation with Instant Ylides
Variation 3: In Situ Generation of Ylides with Oxiranes
Variation 4: Directed Stereoselective Alkenation Procedures
Variation 5: Cycloalkenes by Intramolecular Wittig Alkenation
Variation 6: Wittig Alkenation with Polymer-Bound Ylides
Variation 7: Wittig Alkenation under Phase-Transfer Conditions
Method 5: Synthesis of Cycloalkanes
Variation 1: Intramolecular S_n Reactions of α-Halogenated Ylides
Variation 2: Cyclopropanes from Ylides and Epoxides
Variation 3: Cyclopropanes from Reactive Ylides and α,β-Unsaturated Carbonyl Compounds
Variation 4: Cyclopropanes from Ester Ylides and cis-cis-γ-Hydroxygenones or 1,2-Dioxins

XXXVIII Table of Contents
27.24.1 Product Subclass 3: Phosphacumulene Ylides ... 1042
 27.24.1.1 Synthesis of Product Subclass 3 ... 1043
 27.24.1.1.1 Method 1: From Phosphonium Methylides 1043
 Variation 1: (Triphenylphosphoranylidene)thioketene and -ketenimines,
 and Allenylidene Ylides by Addition to 1,1-Dichloro(hetero)-
 alkenes ... 1043
 27.24.1.1.2 Variation 2: (Phosphoranylidene)ketenimines by Addition to
 Isothiocyanates .. 1045
 27.24.1.1.2 Method 2: From Phosphonium Alkoxy carbonyl- and
 Alkyldithiocarbonylmethylides 1046
 Variation 1: (Triphenylphosphoranylidene)ketene and (Triphenyl-
 phosphoranylidene)thioketene by Elimination with
 Sodium Hexamethyldisilazanide 1046
 27.24.1.1.2 Variation 2: (Triphenylphosphoranylidene)ketene Acetals by
 O-Alkylation/Deprotonation 1047
 27.24.1.1.3 Method 3: Pyrolysis of Disilylated Ester Ylides 1049
 27.24.1.2 Applications of Product Subclass 3 in Organic Synthesis 1050
 27.24.1.2.1 Method 1: Syntheses with Acyl Ylides Obtained from Addition of
 Acidic Compounds to Cumulated Ylides 1050
 Variation 1: α,β-Unsaturated Esters (or Amides) by a Three-Component
 Reaction of Alcohols (or Amines), Aldehydes, and
 (Triphenylphosphoranylidene)ketene 1050
 27.24.1.2.2 Variation 2: Macrolides from ω-Hydroxy Aldehydes 1051
 27.24.1.2.3 Variation 3: Five- and Six-Membered Carbo- and Heterocycles from
 Cumulated Ylides and Carbonyl Compounds Bearing
 Acidic Functional Groups 1052
 27.24.1.2.4 Variation 4: Five- to Seven-Membered Heterocycles from Triphenyl-
 (phosphoranylidene)ketene and Hydroxy/Amino Esters 1053
 27.24.1.2.5 Variation 5: Oxazol-2(3H)-ones and 1,3,4-Oxadiazoles from (Triphenyl-
 phosphoranylidene)ketene and Amides/Hydrazides 1054
 27.24.1.2.6 Method 2: Syntheses of E-α,β-Unsaturated Ketones by Tandem
 Grignard/Wittig Alkenation Reactions of (Triphenyl-
 phosphoranylidene)ketene 1056
 27.24.1.2.7 Method 3: Synthesis of Carbocycles and Heterocycles by
 Cycloaddition Reactions .. 1057

Keyword Index ... 1071

Author Index .. 1105

Abbreviations ... 1169
Volume 28: Quinones and Heteroatom Analogues

Preface ... V
Volume Editor’s Preface .. VII
Table of Contents ... XIII

Introduction
A. G. Griesbeck ... 1

28.1 Product Class 1: Benzo-1,4-quinones

28.1.1 Product Subclass 1: Metal-Substituted Benzo-1,4-quinones
B. G. Vong and E. A. Theodorakis .. 13

28.1.2 Product Subclass 2: Halogen-Substituted Benzo-1,4-quinones
M. Balci, M. Çelik, and M. S. Gültekin 31

28.1.3 Product Subclass 3: Chalcogen-Substituted Benzo-1,4-quinones
S. H. Kim and E. A. Theodorakis ... 53

28.1.4 Product Subclass 4: Nitrogen- and Phosphorus-Substituted Benzo-1,4-quinones
H. Lee and E. A. Theodorakis .. 71

28.1.5 Product Subclass 5: Benzo-1,4-quinones Substituted with Carbon with Three Bonds to Heteroatoms
M. Balci, M. Çelik, and M. S. Gültekin 87

28.1.6 Product Subclass 6: Benzo-1,4-quinones Substituted with Carbon with Two Bonds to Heteroatoms
M. Balci, M. Çelik, and M. S. Gültekin 105

28.1.7 Product Subclass 7: Benzo-1,4-quinones Substituted with Carbon with One Bond to a Heteroatom
M. Balci, M. S. Gültekin, and M. Çelik 115

28.1.8 Product Subclass 8: Alkynyl-, Aryl-, and Alkenyl-Substituted Benzo-1,4-quinones
M. Balci, M. S. Gültekin, and M. Çelik 131

28.1.9 Product Subclass 9: Alkyl-Substituted Benzo-1,4-quinones
M. Balci, M. S. Gültekin, and M. Çelik 157
28.2 Product Class 2: Benzo-1,2-quinones
V. Nair and K. V. Radhakrishnan ... 181

28.3 Product Class 3: Naphtho-1,4-quinones
E. A. Couladouros and A. T. Strongilos 217

28.4 Product Class 4: Naphtho-1,2-, Naphtho-1,5-, Naphtho-1,7-, Naphtho-2,3-, and Naphtho-2,6-quinones
C.-C. Liao and R. K. Peddinti .. 323

28.5 Product Class 5: Anthra-9,10-quinones, Anthra-1,2-quinones, Anthra-1,4-quinones, Anthra-2,9-quinones, and Their Higher Fused Analogues
K. Krohn and N. Böker ... 367

28.6 Product Class 6: Phenanthrene-9,10-diones, Stilbenequinones, Diphenoquinones, and Related Ring Assemblies
A. M. Echavarren and S. Porcel .. 507

28.7 Product Class 7: Hetarene-Fused Quinones

28.7.1 Product Subclass 1: Nitrogen-Containing Hetarene Quinones
U. Pindur and T. Lemster ... 561

28.7.2 Product Subclass 2: Oxygen- and Sulfur-Containing Hetarene Quinones
A. G. Griesbeck ... 593

28.8 Product Class 8: Sulfur Analogues of Quinones
M. Yoshifuji and S. Kawasaki ... 623

28.9 Product Class 9: Benzo-1,2-, Benzo-1,4-, Naphtho-1,2-, and Naphtho-1,4-quinone Imines and Diimines
M. C. Carreño and M. Ribagorda .. 629

28.10 Product Class 10: Anthraquinone and Phenanthrenedione Imines and Diimines
C. Avendaño and J. C. Menéndez ... 735

28.11 Product Class 11: Quinone Diazides
A. G. Griesbeck and E. Zimmermann 807

28.12 Product Class 12: Quinomethanes

28.12.1 Product Subclass 1: o-Quinomethanes
T. R. R. Pettus and C. Selenski ... 831

28.12.2 Product Subclass 2: p-Quinomethanes
A. G. Griesbeck ... 873
Keyword Index .. 901
Author Index .. 949
Abbreviations .. 1001
Table of Contents

Introduction
A. G. Griesbeck

28.1 Product Class 1: Benzo-1,4-quinones

28.1.1 Product Subclass 1: Metal-Substituted Benzo-1,4-quinones
B. G. Vong and E. A. Theodorakis

28.1.1 Product Subclass 1: Metal-Substituted Benzo-1,4-quinones

28.1.1.1 Method 1:
Tin-Substituted Benzo-1,4-quinones by Cyclobutenone Ring Expansion

28.1.1.2 Method 2:
Tin-Substituted Benzo-1,4-quinones by Stannylation of Benzo-1,4-quinones

28.1.1.3 Method 3:
Silicon-Substituted Benzo-1,4-quinones by Reaction of Organolithium Species

28.1.1.4 Method 4:
Silicon-Substituted Benzo-1,4-quinones by Cyclobutenone Ring Expansion

28.1.1.5 Method 5:
Silicon-Substituted Benzo-1,4-quinones by Carbene Annulation

28.1.1.6 Method 6:
Silicon-Substituted Benzo-1,4-quinones by Nucleophilic Substitution

28.1.1.7 Method 7:
Boron-Substituted Benzo-1,4-quinones by Carbene Benzannulation

28.1.2 Applications of Product Subclass 1 in Organic Synthesis

28.1.2.1 Method 1:
Palladium-Catalyzed Cross-Coupling Reactions of Tin-Substituted Benzo-1,4-quinones

28.1.2.2 Method 2:
Silicon/Halide-Exchange Reactions of Silicon-Substituted Benzo-1,4-quinones

28.1.2.3 Method 3:
Oxidation of the Boron Substituent in Boron-Substituted Benzo-1,4-quinones
28.1.2

Product Subclass 2: Halogen-Substituted Benzo-1,4-quinones
M. Balci, M. Çelik, and M. S. Gültekin

28.1.2

Product Subclass 2: Halogen-Substituted Benzo-1,4-quinones

28.1.2.1

Monohalobenzo-1,4-quinones

28.1.2.1.1

Synthesis of Monohalobenzo-1,4-quinones

28.1.2.1.1.1

Method 1: Oxidation of 4-Amino-3-iodophenol Using Potassium Dichromate

28.1.2.1.1.2

Method 2: Oxidation of 1,4-Hydroquinones with Persulfate or Ammonium Cerium(IV) Nitrate

28.1.2.1.1.3

Method 3: Oxidation of 1,4-Hydroquinones Catalyzed by an Oxovanadium Complex

28.1.2.1.1.4

Method 4: Oxidation of 1,4-Hydroquinones Catalyzed by Gaseous Nitrogen Oxides

28.1.2.1.1.5

Methods 5: Miscellaneous Oxidations of Anilines and 1,4-Hydroquinones

28.1.2.1.2

Applications of Monohalobenzo-1,4-quinones in Organic Synthesis

28.1.2.2

2,3-Dihalobenzo-1,4-quinones

28.1.2.2.1

Synthesis of 2,3-Dihalobenzo-1,4-quinones

28.1.2.2.1.1

Method 1: Halogenation of Benzo-1,4-quinone

28.1.2.2.1.2

Method 2: Oxidation of a 1,4-Hydroquinone Using Ammonium Cerium(IV) Nitrate

28.1.2.2.2

Applications of 2,3-Dihalobenzo-1,4-quinones in Organic Synthesis

28.1.2.3

2,5-Dihalobenzo-1,4-quinones

28.1.2.3.1

Synthesis of 2,5-Dihalobenzo-1,4-quinones

28.1.2.3.1.1

Method 1: Oxidation of 1,2,4,5-Tetrafluorobenzene

28.1.2.3.1.2

Method 2: Oxidation of 1,4-Hydroquinones

28.1.2.3.1.3

Method 3: Oxidative Demethylation of 1,4-Dimethoxybenzenes

28.1.2.4

2,6-Dihalobenzo-1,4-quinones

28.1.2.4.1

Synthesis of 2,6-Dihalobenzo-1,4-quinones

28.1.2.4.1.1

Method 1: Oxidation of Phenols and 1,4-Hydroquinones Catalyzed by Metalated Phthalocyanines

28.1.2.4.1.2

Method 2: Oxidation of a 1,4-Hydroquinone Using Ammonium Cerium(IV) Nitrate

28.1.2.4.1.3

Method 3: Oxidation of Phenols Using Metal Oxides

28.1.2.4.2

Applications of 2,6-Dihalobenzo-1,4-quinones in Organic Synthesis

28.1.2.5

2,3,5-Trihalobenzo-1,4-quinones

28.1.2.5.1

Synthesis of 2,3,5-Trihalobenzo-1,4-quinones

28.1.2.5.1.1

Method 1: Halogenation of Benzo-1,4-quinones

28.1.2.5.1.2

Method 2: Bromination of 2,5-Dichlorobenzo-1,4-quinone

28.1.2.5.1.3

Method 3: Oxidation of a 1,4-Hydroquinone Using Ammonium Cerium(IV) Nitrate

28.1.2.5.2

Applications of 2,3,5-Trihalobenzo-1,4-quinones in Organic Synthesis
Product Subclass 3: Chalcogen-Substituted Benzo-1,4-quinones

S. H. Kim and E. A. Theodorakis

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.1.3.1</td>
<td>Method 1: Oxidative Dearomatization</td>
<td>54</td>
</tr>
<tr>
<td>28.1.3.1.1</td>
<td>Variation 4: Miscellaneous Oxidations</td>
<td>58</td>
</tr>
<tr>
<td>28.1.3.1.2</td>
<td>Method 2: Conjugate Addition/Oxidation</td>
<td>59</td>
</tr>
<tr>
<td>28.1.3.1.2.1</td>
<td>Variation 2: Conjugate Addition–Elimination</td>
<td>61</td>
</tr>
<tr>
<td>28.1.3.1.3</td>
<td>Method 3: Ring Expansion of Cyclobutenediones</td>
<td>61</td>
</tr>
<tr>
<td>28.1.3.2</td>
<td>Applications of Product Subclass 3 in Organic Synthesis</td>
<td>64</td>
</tr>
<tr>
<td>28.1.3.2.1</td>
<td>Method 1: Cycloaddition Reactions of Chalcogen-Substituted Benzo-1,4-quinones</td>
<td>64</td>
</tr>
<tr>
<td>28.1.3.2.2</td>
<td>Method 2: Conjugate Additions of Chalcogen-Substituted Benzo-1,4-quinones</td>
<td>66</td>
</tr>
</tbody>
</table>

Product Subclass 4: Nitrogen- and Phosphorus-Substituted Benzo-1,4-quinones

H. Lee and E. A. Theodorakis

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.1.4.1</td>
<td>Method 1: Nitrogen-Substituted Benzo-1,4-quinones by Nucleophilic Addition/Oxidation</td>
<td>71</td>
</tr>
<tr>
<td>28.1.4.1.2</td>
<td>Method 2: Nitrogen-Substituted Benzo-1,4-quinones by Nucleophilic Substitution</td>
<td>74</td>
</tr>
<tr>
<td>28.1.4.1.3</td>
<td>Method 3: Nitrogen-Substituted Benzo-1,4-quinones by Oxidation of a Benzene Ring</td>
<td>75</td>
</tr>
</tbody>
</table>
28.1.4.1.4 Method 4: Phosphorus-Substituted Benzo-1,4-quinones by
Addition/Elimination and Addition/Oxidation Sequences 76

28.1.4.2 Applications of Product Subclass 4 in Organic Synthesis 77
28.1.4.2.1 Method 1: Ring Contraction of Benzoquinones 77
28.1.4.2.1.1 Variation 1: Synthesis of Cyclopentenediones from Azidoquinones 77
28.1.4.2.1.2 Variation 2: Synthesis of Butenolides from Azidoquinones 78
28.1.4.2.1.3 Variation 3: Cyanoketenes from Aminoquinones and
Their Use in Synthesis .. 79
28.1.4.2.2 Method 2: Formation of Oxazoles 80
28.1.4.2.3 Method 3: Synthesis of Hetarene-Fused Benzo-1,4-quinones 82

28.1.5 Product Subclass 5: Benzo-1,4-quinones Substituted with Carbon
with Three Bonds to Heteroatoms
M. Balci, M. Çelik, and M. S. Gültekin

28.1.5 Product Subclass 5: Benzo-1,4-quinones Substituted with Carbon
with Three Bonds to Heteroatoms 87
28.1.5.1 Benzo-1,4-quinones Substituted with Carbon with Three Bonds to Halogens 87
28.1.5.1.1 Synthesis of Benzo-1,4-quinones Substituted with Carbon with
Three Bonds to Halogens ... 88
28.1.5.1.1.1 Method 1: Oxidation of Phenols with Chlorous Acid 88
28.1.5.1.1.2 Method 2: Oxidation of Phenols with Manganese(IV) Oxide 88
28.1.5.1.1.3 Method 3: Oxidative Demethylation of Dimethoxybenzenes 89
28.1.5.1.1.4 Method 4: Oxidative Debenzylation of Bis(benzyloxy)benzenes 90
28.1.5.1.2 Benzo-1,4-quinones Substituted with Carbon with Three Bonds to Oxygen 91
28.1.5.1.2.1 Synthesis of Benzo-1,4-quinones Substituted with Carbon with
Three Bonds to Oxygen ... 92
28.1.5.1.2.1.1 Method 1: Oxidation of Hydroquinones with Ammonium
Cerium(IV) Salts .. 92
28.1.5.1.2.1.2 Method 2: Oxidation of Hydroquinones with Silver(I) Oxide ... 93
28.1.5.1.2.1.3 Method 3: Oxidation of Hydroquinones with Polymer-Supported
(Diacetoxyiodo)benzene 94
28.1.5.1.2.1.4 Method 4: Oxidative Demethylation of Dimethoxybenzenes 94
28.1.5.1.2.1.5 Method 5: Reaction of Maleylcobalt Complexes with Alkynes ... 95
28.1.5.1.3 Benzo-1,4-quinones Substituted with Carbon with Two Bonds to Oxygen and
One Bond to Nitrogen ... 96
28.1.5.1.3.1 Synthesis of Benzo-1,4-quinones Substituted with Carbon with
Two Bonds to Oxygen and One Bond to Nitrogen 98
28.1.5.1.3.1.1 Method 1: Oxidation of Hydroquinones with
Ammonium Cerium(IV) Nitrate 98
28.1.5.1.3.1.2 Method 2: Oxidation of Hydroquinones with Silver(I) Oxide 98
28.1.5.1.3.1.3 Method 3: Oxidation of Hydroquinones with Fungal Laccase 98
28.1.5.1.3.1.4 Method 4: Oxidative Demethylation of Dimethoxybenzenes 99
28.1.5.1.4 Benzo-1,4-quinones Substituted with Carbon with Three Bonds to Nitrogen 101
28.1.6 Product Subclass 6: Benzo-1,4-quinones Substituted with Carbon with Two Bonds to Heteroatoms

M. Balci, M. Çelik, and M. S. Gültekin

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.1.6.1</td>
<td>Benzo-1,4-quinones Substituted with Carbon with Two Bonds to Halogens</td>
</tr>
<tr>
<td>28.1.6.1.1</td>
<td>Synthesis of Benzo-1,4-quinones Substituted with Carbon with Two Bonds to Halogens</td>
</tr>
<tr>
<td>28.1.6.1.1.1</td>
<td>Method 1: Oxidative Demethylation of a 1,4-Dimethoxybenzene</td>
</tr>
<tr>
<td>28.1.6.2</td>
<td>Benzo-1,4-quinones Substituted with Carbon with Two Bonds to Oxygen</td>
</tr>
<tr>
<td>28.1.6.2.1</td>
<td>Synthesis of Benzo-1,4-quinones Substituted with Carbon with Two Bonds to Oxygen</td>
</tr>
<tr>
<td>28.1.6.2.1.1</td>
<td>Method 1: Oxidation of 1,4-Hydroquinones with Silver(I) Oxide</td>
</tr>
<tr>
<td>28.1.6.2.1.2</td>
<td>Method 2: Oxidation of 1,4-Hydroquinones with Manganese(IV) Oxide</td>
</tr>
<tr>
<td>28.1.6.2.1.3</td>
<td>Method 3: Oxidation of a 1,4-Hydroquinone with 2,3-Dichloro-5,6-dicyanobenzo-1,4-quinone</td>
</tr>
<tr>
<td>28.1.6.2.1.4</td>
<td>Method 4: Oxidation of a 1,4-Hydroquinone Derivative in Aqueous Media</td>
</tr>
<tr>
<td>28.1.6.2.1.5</td>
<td>Method 5: Oxidative Demethylation of 1,4-Dimethoxybenzenes</td>
</tr>
<tr>
<td>28.1.6.2.2</td>
<td>Applications of Benzo-1,4-quinones Substituted with Carbon with Two Bonds to Oxygen in Organic Synthesis</td>
</tr>
<tr>
<td>28.1.6.3</td>
<td>Benzo-1,4-quinones Substituted with Carbon with Two Bonds to Nitrogen</td>
</tr>
<tr>
<td>28.1.6.3.1</td>
<td>Synthesis of Benzo-1,4-quinones Substituted with Carbon with Two Bonds to Nitrogen</td>
</tr>
<tr>
<td>28.1.6.3.1.1</td>
<td>Method 1: Oxidation of a Diol with Manganese(IV) Oxide</td>
</tr>
</tbody>
</table>

28.1.7 Product Subclass 7: Benzo-1,4-quinones Substituted with Carbon with One Bond to a Heteroatom

M. Balci, M. S. Gültekin, and M. Çelik

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.1.7.1</td>
<td>Benzo-1,4-quinones Substituted with Carbon with One Bond to a Heteroatom</td>
</tr>
<tr>
<td>28.1.7.1.1</td>
<td>Synthesis of Benzo-1,4-quinones Substituted with Carbon with One Bond to a Halogen</td>
</tr>
<tr>
<td>28.1.7.1.1.1</td>
<td>Method 1: Demethylation of 1,4-Dimethoxybenzenes by Electrochemical Oxidation</td>
</tr>
</tbody>
</table>
28.1.7.1.2 Method 2: Demethylation of Dimethoxybenzenes by Oxidation with Ammonium Cerium(IV) Nitrate ... 116
28.1.7.1.3 Method 3: Demethylation of Dimethoxybenzenes by Oxidation with Nitric Acid .. 116
28.1.7.1.4 Method 4: Allylic Bromination and Substitution 117
28.1.7.2 Method 3: Demethylation of Dimethoxybenzenes by Oxidation with Nitric Acid .. 116
28.1.7.2.1 Synthesis of Benzo-1,4-quinones Substituted with Carbon with One Bond to Oxygen .. 119
28.1.7.2.1.1 Method 1: (Diacetoxyiodo)benzene Oxidation 119
28.1.7.2.1.2 Method 2: Oxidation of Anilines 120
28.1.7.2.1.3 Method 3: Oxidation of Hydroquinones and 1,4-Dimethoxybenzenes with Nitric Acid .. 120
28.1.7.2.1.4 Method 4: Oxidation of Hydroquinones and 1,4-Dimethoxybenzenes with Ammonium Cerium(IV) Nitrate 121
28.1.7.2.1.5 Method 5: Oxidation of Hydroquinones and 1,4-Dimethoxybenzenes with Silver(I) Oxide .. 122
28.1.7.2.1.6 Method 6: Oxidation of Hydroquinones and 1,4-Dimethoxybenzenes with Iron(III) Chloride .. 125
28.1.7.2.1.7 Methods 7: Additional Methods 126
28.1.7.3 Benzo-1,4-quinones Substituted with Carbon with One Bond to Sulfur .. 129
28.1.7.3.1 Synthesis of Benzo-1,4-quinones Substituted with Carbon with One Bond to Sulfur .. 129

28.1.8 Product Subclass 8: Alkynyl-, Aryl-, and Alkenyl-Substituted Benzo-1,4-quinones
M. Balci, M. S. Gültekin, and M. Çelik

28.1.8 Product Subclass 8: Alkynyl-, Aryl-, and Alkenyl-Substituted Benzo-1,4-quinones .. 131
28.1.8.1 Alkynyl-Substituted Benzo-1,4-quinones .. 131
28.1.8.1.1 Synthesis of Alkynyl-Substituted Benzo-1,4-quinones 131
28.1.8.1.1.1 Method 1: Suzuki Cross Coupling of Benzo-1,4-quinones 131
28.1.8.1.1.2 Method 2: Oxidative Demethylation of 1,4-Dimethoxybenzenes 132
28.1.8.1.1.3 Method 3: Addition of Organolithium Compounds to Benzoquinone Derivatives .. 134
28.1.8.1.1.3.1 Variation 1: Addition to 2,5-Dialkoxybenzo-1,4-quinones 134
28.1.8.1.1.3.2 Variation 2: Addition to Dimethoxybenzo-1,2-quinones 135
28.1.8.2 Aryl-Substituted Benzo-1,4-quinones .. 137
28.1.8.2.1 Synthesis of Aryl-Substituted Benzo-1,4-quinones 137
28.1.8.2.1.1 Method 1: Coupling Reactions of Benzo-1,4-quinones 137
28.1.8.2.1.2 Method 2: Oxidative Demethylation and Coupling of a 1,4-Dimethoxybenzene .. 139
28.1.8.2.1.3 Method 3: Oxidation of 1,4-Hydroquinones Catalyzed by an Oxovanadium Complex .. 139
Table of Contents

28.1.8.2.1.4 Method 4: Oxidation of Phenols and Derivatives Using Metals and Metal Oxides .. 140

28.1.8.2.1.5 Method 5: Oxidation of Phenols with Fremy’s Salt 141

28.1.8.2.1.6 Method 6: Reaction of Fischer Carbene Complexes with Phenylacetylenes .. 142

28.1.8.2.1.7 Method 7: Reaction of Phenylacetylenes with a Tetracarbonyliron Species or with Carbon Monoxide 143

28.1.8.2.1.8 Methods 8: Additional Methods 144

28.1.8.3 Alkenyl-Substituted Benzo-1,4-quinones 147

28.1.8.3.1 Synthesis of Alkenyl-Substituted Benzo-1,4-quinones 147

28.1.8.3.1.1 Method 1: Direct Introduction of a Vinyl Group into Benzo-1,4-quinones 147

28.1.8.3.1.2 Method 2: Suzuki Cross Coupling of Benzo-1,4-quinones 147

28.1.8.3.1.3 Method 3: Oxidation of 1,4-Hydroquinones with Silver(I) Oxide 148

28.1.8.3.1.4 Method 4: Oxidation of a 1,4-Hydroquinone with 2,3-Dichloro-5,6-dicyanobenzo-1,4-quinone 149

28.1.8.3.1.5 Method 5: Oxidative Demethylation of 1,4-Dimethoxybenzenes with Ammonium Cerium(IV) Nitrate 150

28.1.8.3.1.6 Method 6: Electrochemical Oxidation of 1,4-Dimethoxybenzenes 150

28.1.8.3.1.7 Method 7: Thermal Ring Expansion of Cyclobutenedione Derivatives 151

28.1.8.3.1.8 Methods 8: Additional Methods 152

28.1.9 Product Subclass 9: Alkyl-Substituted Benzo-1,4-quinones

M. Balci, M. S. Gültekin, and M. Çelik

28.1.9.1 Monoalkylbenzo-1,4-quinones .. 157

28.1.9.1.1 Synthesis of Monoalkylbenzo-1,4-quinones 157

28.1.9.1.1.1 Method 1: Coupling Reactions of Benzo-1,4-quinones 157

28.1.9.1.1.2 Method 2: Oxidation of 1,4-Hydroquinones with an Organoselenium Reagent 158

28.1.9.1.1.3 Method 3: Oxidation of 1,4-Hydroquinones with Ammonium Cerium(IV) Nitrate .. 159

28.1.9.1.1.4 Method 4: Oxidation of Phenols and Derivatives 160

28.1.9.1.2 2,3-Dialkylbenzo-1,4-quinones .. 161

28.1.9.2 Synthesis of 2,3-Dialkylbenzo-1,4-quinones 161

28.1.9.2.1 Method 1: Oxidation of a 1,4-Hydroquinone with Silver(I) Oxide 161

28.1.9.2.1.1 Method 2: Oxidation of N-Arylsulfonamides 161

28.1.9.2.1.3 Method 3: Reaction of Fischer Carbene Complexes with Alkynes 162

28.1.9.2.1.4 Methods 4: Additional Methods 162

28.1.9.3 2,5-Dialkylbenzo-1,4-quinones .. 165

28.1.9.3.1 Synthesis of 2,5-Dialkylbenzo-1,4-quinones 165

28.1.9.3.1.1 Method 1: Oxidation of Phenols and 1,4-Hydroquinones Using Methyltrioxorhenium(VII) 165
28.1.9.3.1.2 Method 2: Oxidation of 1,4-Hydroquinones with Polymer-Supported (Diacetoxyiodo)benzene .. 166
28.1.9.3.1.3 Method 3: Oxidation of 1,4-Hydroquinones and Derivatives with Ammonium Cerium(IV) Nitrate or Pyridinium Chlorochromate 166
28.1.9.3.1.4 Methods 4: Additional Methods 168
28.1.9.4 2,6-Dialkylbenzo-1,4-quinones ... 170
28.1.9.4.1 Synthesis of 2,6-Dialkylbenzo-1,4-quinones 170
28.1.9.5 2,3,5-Trialkylbenzo-1,4-quinones ... 173
28.1.9.5.1 Synthesis of 2,3,5-Trialkylbenzo-1,4-quinones 173
28.1.9.5.1.1 Method 1: Oxidation of Phenols and 1,4-Hydroquinones 173
28.1.9.5.1.2 Methods 2: Additional Methods 174
28.1.9.6 2,3,5,6-Tetraalkylbenzo-1,4-quinones 175
28.1.9.6.1 Synthesis of 2,3,5,6-Tetraalkylbenzo-1,4-quinones 175
28.1.9.6.1.1 Method 1: Oxidation of 1,4-Hydroquinones and Derivatives 175

28.2 Product Class 2: Benzo-1,2-quinones
V. Nair and K. V. Radhakrishnan

28.2.1 Synthesis of Product Class 2 .. 182
28.2.1.1 Method 1: Oxidation of Catechols Using Silver(I) Salts 182
28.2.1.2 Method 2: Oxidation of Catechols Using Cerium(IV) Reagents 183
28.2.1.3 Method 3: Oxidation of Catechols Using Periodate Salts 184
28.2.1.4 Method 4: Oxidation of Catechols Using N-Chlorosuccinimide 184
28.2.1.5 Method 5: Oxidation of Catechols Using Other Reagents 185
28.2.1.6 Method 6: Oxidation of Phenols Using Benzeneselenenic Anhydride 185
28.2.1.7 Method 7: Oxidation of Phenols Using Fremy’s Salt 186
28.2.1.8 Method 8: Oxidation of Phenols Using Other Reagents 187
28.2.2 Applications of Product Class 2 in Organic Synthesis 187
28.2.2.1 Method 1: Addition of Nucleophiles 187
28.2.2.2 Method 2: Diels–Alder and Related Reactions 195
28.2.2.2.1 Variation 1: Benzo-1,2-quinones as Carbodienes and Heterodiens 195
28.2.2.2.2 Variation 2: Benzo-1,2-quinones as Dienophiles 196
28.2.2.2.3 Variation 3: Benzo-1,2-quinones as Heterodienophiles 198
28.2.2.3 Method 3: Dipolar Cycloadditions 198
28.2.2.3.1 Variation 1: Nitrile Oxide Addition 198
28.2.2.3.2 Variation 2: Diazomethane Addition 200
28.2.2.3.3 Variation 3: Acyclic Carbonyl Ylide Addition 200
28.2.2.3.4 Variation 4: Cyclic Carbonyl Ylide Addition 201
28.2.2.3.5 Variation 5: Addition of Mesoionic Compounds 202
28.2.2.3.6 Variation 6: Addition of Phosphorus Ylides 204
28.3 Product Class 3: Naphtho-1,4-quinones
E. A. Couladouros and A. T. Strongilos

28.3.1 Synthesis of Product Class 3 220
28.3.1.1 Synthesis by Ring-Closure Reactions 220
28.3.1.1.1 Method 1: Reaction of Fischer-Type Carbene Complexes with Alkynes 220
28.3.1.1.2 Method 2: Synthesis from Cyclobutenediones 225
28.3.1.1.2.1 Variation 1: Reaction of Phthaloyl Complexes with Functionalized Alkynes 229
28.3.1.1.3 Method 3: Annulation Reactions of Phthalide Anions with Michael Acceptors 232
28.3.1.1.4 Method 4: [4 + 2]-Cycloaddition Reactions 234
28.3.1.1.4.1 Variation 1: Reaction of Benzo-1,4-quinones with Heterosubstituted Dienes 239
28.3.1.1.4.2 Variation 2: Reaction of Benzo-1,4-quinones with Vinylenes and Vinylhetarenes 241
28.3.1.1.4.3 Variation 3: Reaction of Benzo-1,4-quinones with Dienes of Fixed s-cis Conformation 242
28.3.1.1.4.4 Variation 4: Quinones as Dienes 245
28.3.1.1.5 Method 5: Condensation of Benzaldehydes with Succinic Acid Derivatives 246
28.3.1.1.6 Method 6: Friedel–Crafts Condensation of Hydroquinone Derivatives with Maleic Anhydrides 248
28.3.1.1.7 Method 7: Annulation of ortho-Substituted Tertiary Benzamides 250
28.3.1.2 Synthesis by Oxidative Transformation 251
28.3.1.2.1 Method 1: Oxidation of Naphthalenes 252
28.3.1.2.1.1 Variation 1: Oxidation of Naphthalene Derivatives Bearing Oxidation Directing Groups 255
28.3.1.2.2 Method 2: Oxidation of Naphthols 255
28.3.1.2.3 Method 3: Oxidation of Hydroquinone Derivatives 261
28.3.1.2.3.1 Variation 1: Oxidation of Diprotected Hydroquinone Derivatives 261
28.3.1.2.3.2 Variation 2: Oxidation of Monoprotected Hydroquinone Derivatives 263
28.3.1.2.3.3 Variation 3: Oxidation of Hydroquinones 264
28.3.1.2.4 Method 4: Oxidation of Naphthols Bearing Substituents Other Than Oxygen at the 4-Position 265
28.3.1.2.5 Method 5: Aromatization and Benzyl Oxidation of Fused Carbocycles 267
28.3.1.3 Substitution of Hydrogen 267
28.3.1.3.1 Method 1: Using Nucleophilic Carbon Reagents 268
28.3.1.3.2 Method 2: Using Electrophilic Carbon Reagents 271
28.3.1.3.3 Method 3: Using Carbon Free Radicals 273
28.3.1.3.4 Method 4: Addition of Halides ... 277
28.3.1.3.5 Method 5: Varvogli’s Iodonium Ylides 279
28.3.1.3.6 Method 6: Using Oxygen Nucleophiles 280
28.3.1.3.7 Method 7: The Thiele–Winter Acetoxylation Reaction 282
28.3.1.3.8 Method 8: Using Sulfur Nucleophiles 283
28.3.1.3.9 Method 9: Addition of Amines, Azides, and Ammonia............... 286

28.3.1.4 Substitution of Heteroatoms ... 289
28.3.1.4.1 Method 1: Substitution of Halogen by Another Halogen 289
28.3.1.4.2 Method 2: Substitution of Halogen by Oxygen 289
28.3.1.4.3 Method 3: Substitution of Halogen by Sulfur 291
28.3.1.4.4 Method 4: Substitution of Halogen by Nitrogen 292
28.3.1.4.5 Method 5: Substitution of Halogen by Carbon 294
28.3.1.4.5.1 Variation 1: Palladium-Mediated Coupling of Halogenated Naphtho-1,4-quinones .. 295
28.3.1.4.6 Method 6: Substitution of Oxygen by Halogen, Nitrogen, or Carbon ... 297

28.4 Product Class 4: Naphtho-1,2-, Naphtho-1,5-, Naphtho-1,7-, Naphtho-2,3-, and Naphtho-2,6-quinones
C.-C. Liao and R. K. Peddinti

28.4.1 Product Subclass 1: Naphtho-1,2-quinones 323
28.4.1.1 Synthesis of Product Subclass 1 ... 325
28.4.1.1.1 Method 1: Reaction of Fischer-Type Carbene Complexes with tert-Butyl Isocyanide ... 325
28.4.1.1.2 Method 2: [4 + 2]-Cycloaddition Reactions 325
28.4.1.1.2.1 Variation 1: Reaction of Benzoquinones with 2,3-Dimethylbuta-1,3-diene ... 325
28.4.1.1.2.2 Variation 2: Reaction of Dihalocatechols with 1-(Trimethylsilyloxy)buta-1,3-diene .. 326
28.4.1.1.3 Method 3: Dieckmann Ring Formation with Subsequent Acyloin Cleavage ... 327
28.4.1.1.4 Method 4: Oxidation of α-Tetralones 327
28.4.1.1.5 Method 5: Oxidation of Naphthalenes 328
28.4.1.1.6 Method 6: Oxidation of 1-Naphthols 329
28.4.1.1.6.1 Variation 1: Oxidation of 1-Naphthols with Fremy’s Salt 329
28.4.1.1.6.2 Variation 2: Oxidation of 1-Naphthols with Benzeneseleninic Anhydride .. 332
28.4.1.1.6.3 Variation 3: Oxidation of 1-Naphthols with Cobalt–Salen Complex/Oxygen ... 332
28.4.1.1.6.4 Variation 4: Synthesis of Emmotin-H Using Iodobenzene 333
28.4.1.1.6.5 Variation 5: Oxidation of a 1-Naphthol Derivative with Sodium Periodate .. 333
28.4.1.1.6.6 Variation 6: Oxidation of Halo-1-naphthols with Lead(IV) Acetate .. 334
28.4.1.1.6.7 Variation 7: Transition-Metal-Catalyzed Oxidations of 1-Naphthols ... 334
28.4.1.1.7 Method 7: Oxidation of 2-Naphthols 336
28.4.1.7.1 Variation 1: Oxidation of 2-Naphthol .. 336
28.4.1.7.2 Variation 2: Oxidation of 2-Naphthols with Fremy’s Salt 336
28.4.1.7.3 Variation 3: Synthesis of o-Hibiscanone with Benzeneeseleninic Anhydride 337
28.4.1.7.4 Variation 4: Oxidation of 2-Naphthols with Copper Chloride/Oxygen 337
28.4.1.7.5 Variation 5: Oxidation of 2-Naphthols with 3-Chloroperoxybenzoic Acid 338
28.4.1.7.6 Variation 6: Transition-Metal-Catalyzed Oxidations of 2-Naphthols 339
28.4.1.7.7 Variation 7: Oxidation of 1-Amino-2-naphthol by Polymer-Supported Hypochlorite Ion ... 339
28.4.1.7.8 Method 8: Oxidation of Naphthalene-1,2-diols 339
28.4.1.7.9 Variation 1: Oxidation of Naphthalene-1,2-diol 340
28.4.1.7.10 Variation 2: Synthesis from Naphthalene-1,2-diol Disilyl Ether 340
28.4.1.7.11 Variation 3: Aerial Oxidation of Naphthalene-1,2-diols 341
28.4.1.7.12 Variation 4: Synthesis of Sapororthoquinone via Silver(I) Oxide Oxidation 342
28.4.1.7.13 Variation 5: Oxidation of Naphthalene-1,2-diol with Oxygen and
Bis(propane-1,3-diamine)copper(II) Chloride ... 342
28.4.1.7.14 Method 9: Oxidation of a 1-Methoxynaphthalen-2-amine Derivative 342
28.4.1.7.15 Method 10: Rearrangement of Naphtho-1,4-quinone Adducts 343
28.4.1.7.16 Method 11: Substitution of Hydrogen ... 343
28.4.1.7.17 Variation 1: Reaction of Naphtho-1,2-quinone with Pyroles 343
28.4.1.7.18 Variation 2: Reaction of Naphtho-1,2-quinone with Vinylogous Michael Donors ... 344
28.4.1.7.19 Variation 3: Palladium(II)-Catalyzed Oxidative Coupling of
Naphtho-1,2-quinone and Arenes .. 345
28.4.1.7.20 Variation 4: Photochemical Reactions of Naphtho-1,2-quinones 345
28.4.1.7.21 Variation 5: Reactions of 4-Aminonaphtho-1,2-quinone with Diazenes ... 349
28.4.1.7.22 Variation 6: Metal Chloride Catalyzed Addition of Alcohols to
Naphtho-1,2-quinones ... 350
28.4.1.7.23 Variation 7: Reactions of Naphtho-1,2-quinones with Thiols 351
28.4.1.7.24 Variation 8: Reactions of Sodium 4-Sulfonatonaphtho-1,2-quinone 351
28.4.1.7.25 Variation 9: Reactions of 4-Alkoxynaphtho-1,2-quinones with Amines 352
28.4.1.7.26 Variation 10: Alkylation of the Silver Salt of
2-Hydroxynaphtho-1,4-quinones .. 355
28.4.1.7.27 Variation 11: Substitution of Heteroatoms 356
28.4.1.7.28 Variation 12: Reactions of 2,3-Dihydronaphtho-1,4-quinone Imine 356
28.4.1.7.29 Variation 13: Oxidation of Naphthale-1,5-diols 356
28.4.1.7.30 Variation 14: Air Oxidation of a Naphthale-1,5-diol 356
28.4.1.7.31 Variation 15: 2,3-Dichloro-5,6-dicyanobenzo-1,4-quinone Oxidation of
3,7-Di-tert-butylphenanthrene-1,5-diol .. 357
28.4.1.7.32 Method 3: Substitution of Hydrogen by Halogen 357
28.4.1.7.33 Variation 1: Substitution of Hydrogen by Chlorine 357
28.4.1.7.34 Variation 2: Substitution of Hydrogen by Bromine 358
28.4.1.7.35 Method 4: Substitution of 4,8-Diaminophenanthro-1,5-quinone 358
28.4.3 Product Subclass 3: Naphtho-1,7-quinones .. 358
28.4.3.1 Synthesis of Product Subclass 3 .. 358
28.4.3.1.1 Method 1: 2,3-Dichloro-5,6-dicyanobenzo-1,4-quinone Oxidation of 3,6-Di-tert-butyl-8-methylnaphthalene-1,7-diol .. 358
28.4.4 Product Subclass 4: Naphtho-2,3-quinones 359
28.4.4.1 Synthesis of Product Subclass 4 .. 359
28.4.4.1.1 Method 1: Generation and Trapping through Desilylation–Debromination Induced by Fluoride Ion .. 359
28.4.4.1.2 Method 2: Oxidation of 1,4-Diarylnaphthalene-2,3-diols 360
28.4.5 Product Subclass 5: Naphtho-2,6-quinones 362
28.4.5.1 Synthesis of Product Subclass 5 .. 362
28.4.5.1.1 Method 1: Photooxygenation of Naphthalen-2-amine 362
28.4.5.1.2 Method 2: Oxidation of a Naphthalene-2,6-diol with Lead(IV) Oxide 362

28.5 Product Class 5: Anthra-9,10-quinones, Anthra-1,2-quinones, Anthra-1,4-quinones, Anthra-2,9-quinones, and Their Higher Fused Analogues
K. Krohn and N. Böker

28.5.1 Product Subclass 1: Anthra-9,10-quinones 367
28.5.1.1 Synthesis of Product Subclass 1 .. 369
28.5.1.1.1 Friedel–Crafts Reactions ... 369
28.5.1.1.1.1 Method 1: One-Pot Procedures Using Fused Salts (N-Alkylpyridinium Halides) with Aluminum Trichloride as the Catalyst 371
28.5.1.1.1.2 Method 2: One-Pot Procedures Using Molten Aluminum Trichloride–Potassium Chloride–Sodium Chloride or Aluminum Trichloride–Sodium Chloride as the Catalysts .. 372
28.5.1.1.1.3 Method 3: One-Pot Procedures Using Group 4 or Group 5 Metal Oxides as the Catalysts ... 373
28.5.1.1.1.4 Method 4: One-Pot Procedures Using Phthaloyl Dichlorides as the Electrophiles ... 373
28.5.1.1.1.5 Method 5: Stepwise Procedures with Benzoylbenzoic Acids as the Intermediates ... 374
28.5.1.1.1.5.1 Variation 1: Benzoylbenzoic Acids by Friedel–Crafts Reaction .. 375
28.5.1.1.1.5.2 Variation 2: Benzoylbenzoic Acids by Addition of Grignard Reagents to Phthalic Anhydrides .. 375
28.5.1.1.1.6 Method 6: Stepwise Procedures Involving Direct Cyclization of Benzoylbenzoic Acids .. 376
28.5.1.1.1.7 Method 7: Stepwise Procedures Involving Sequential Cyclization of Benzoylbenzoic Acids and Oxidation 378
28.5.1.1.8 Method 8: Stepwise Procedures Involving Benzylbenzoic Acids Prepared by Displacement of a Methoxy Group in Aryldihydrooxazoles 380

28.5.1.1.9 Method 9: Stepwise Procedures Involving Friedel–Crafts-Type Alkylation of 3-Bromophthalides with Benzenes To Form 3-Arylphthalides ... 381

28.5.1.2 Diels–Alder Reactions ... 382

28.5.1.2.1 Method 1: Reaction of Open-Chain Dienes with Naphtho-1,4-quinones Followed by Elimination or Oxidation of Allylic Hydroxy Groups .. 383

28.5.1.2.2 Method 2: Reaction of Open-Chain Dienes with Naphtho-1,4-quinones Followed by Two β-Eliminations .. 388

28.5.1.2.2.1 Variation 1: Reaction of 1,3-Siloxy-1,3-dienes with Halonaphtho-1,4-quinones .. 388

28.5.1.2.2.2 Variation 2: Reaction of 1,3-Siloxy-1,3-dienes with Dichloronaphtho-1,4-quinones .. 390

28.5.1.2.2.3 Variation 3: Reaction of Vinylketene Acetals with 2- or 3-Halonaphtho-1,4-quinones .. 391

28.5.1.2.2.4 Variation 4: Diels–Alder Reactions of Sulfinylnaphtho-1,4-quinones .. 395

28.5.1.2.3 Method 3: Reaction of Cyclic Dienes with Naphtho-1,4-quinones, Followed by a Retro-Diene Reaction .. 395

28.5.1.2.4 Method 4: Reaction of Cyclic Dienes with Naphtho-1,4-quinones Followed by Hydroxymethylation of 1,4-Ethan anthra-9,10-quinones .. 399

28.5.1.2.5 Method 5: Reaction of Naphtho-1,4-quinones with Ketene Acetals .. 400

28.5.1.2.6 Method 6: Coupling of Naphtho-1,4-quinones with Cyclobutenones .. 401

28.5.1.2.7 Method 7: Thermolytic Rearrangement of Arylcyclobutenones .. 401

28.5.1.2.8 Method 8: Electrocyclization of 2,3-Divinylnaphtho-1,4-quinones .. 402

28.5.1.2.9 Method 9: Electrocyclization of 2,3-Divinylnaphtho-1,4-quinones to 1,4-Diacylanthra-9,10-quinones .. 403

28.5.1.3 Ring-Closing Metathesis ... 404

28.5.1.3.1 Method 1: Cyclization of 2,3-Diallylnaphtho-1,4-quinones .. 404

28.5.1.4 [2 + 2 + 2]-Cycloaddition Reactions .. 406

28.5.1.4.1 Method 1: Rhodium-Catalyzed Cycloaddition of 1,2-Dipropynoylbenzenes with Alkynes .. 406

28.5.1.5 Anionic Condensation Reactions .. 407

28.5.1.5.1 Method 1: Phthalide Annulation with Cyclohex-2-enones .. 407

28.5.1.5.2 Method 2: Phthalide Annulation with Cyclohexadienones .. 408

28.5.1.5.2.1 Variation 1: With Cyclohexa-2,5-dienones .. 409

28.5.1.5.2.2 Variation 2: With Cyclohexa-2,4-dienones .. 410

28.5.1.5.3 Method 3: Phthalide Annulation with Arynes .. 410

28.5.1.6 Cyclization by Nucleophilic Aromatic Substitution/Addition .. 411

28.5.1.6.1 Method 1: Cyclization of 2-(Cyanomethyl)benzophenones (The Hassall Reaction) .. 411

28.5.1.6.2 Method 2: Addition of 2-(Cyanomethyl)benzoates to Arynes .. 412

28.5.1.6.3 Method 3: Cyclization of (Nitromethyl)benzophenones .. 413
<table>
<thead>
<tr>
<th>Method Code</th>
<th>Method Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.5.1.1.6.4</td>
<td>Method 4: Cyclization of Monoalkynaphtho-1,4-quinones</td>
<td>414</td>
</tr>
<tr>
<td>28.5.1.1.6.5</td>
<td>Method 5: Cyclization of 2,3-Disubstituted Naphtho-1,4-quinones by Aldol Condensation</td>
<td>414</td>
</tr>
<tr>
<td>28.5.1.1.6.5.1</td>
<td>Variation 1: Michael Addition of 2-Acetylnaphtho-1,4-quinones</td>
<td>415</td>
</tr>
<tr>
<td>28.5.1.1.6.5.2</td>
<td>Variation 2: Base-Induced Condensation of 2-Acynaphtho-1,4-quinones</td>
<td>415</td>
</tr>
<tr>
<td>28.5.1.1.6.6</td>
<td>Method 6: Cyclization of 2,3-Dialkynaphtho-1,4-quinones by Reaction of Enamines with 2-Acetylnaphtho-1,4-quinones</td>
<td>416</td>
</tr>
<tr>
<td>28.5.1.1.6.7</td>
<td>Method 7: Cyclization of 2,3-Dialkynaphtho-1,4-quinones by Iterative Addition of 1,3-Dicarbonyl Dianions</td>
<td>417</td>
</tr>
<tr>
<td>28.5.1.1.6.7.1</td>
<td>Variation 1: Addition of 1,3-Dicarbonyl Dianions to Homophthalic Diesters</td>
<td>417</td>
</tr>
<tr>
<td>28.5.1.1.6.7.2</td>
<td>Variation 2: Addition of 1,3-Dicarbonyl Dianions to Homophthalic Monoesters</td>
<td>418</td>
</tr>
<tr>
<td>28.5.1.1.7</td>
<td>Oxidation of Anthracenes to Anthra-9,10-quinones</td>
<td>419</td>
</tr>
<tr>
<td>28.5.1.1.7.1</td>
<td>Method 1: Catalytic Oxidation of Anthracene with Dioxygen in the Presence of Nitrogen Dioxide</td>
<td>420</td>
</tr>
<tr>
<td>28.5.1.1.7.2</td>
<td>Method 2: Transition-Metal-Catalyzed Liquid- or Vapor-Phase Aerial Oxidation of Anthracene</td>
<td>421</td>
</tr>
<tr>
<td>28.5.1.1.7.3</td>
<td>Method 3: Anodic Oxidation of Anthracene</td>
<td>421</td>
</tr>
<tr>
<td>28.5.1.1.7.4</td>
<td>Method 4: Catalytic Oxidation of Anthracene with Other Sources of Oxygen</td>
<td>422</td>
</tr>
<tr>
<td>28.5.1.1.7.5</td>
<td>Method 5: Stoichiometric Oxidations of Anthracene</td>
<td>423</td>
</tr>
<tr>
<td>28.5.1.1.8</td>
<td>Oxidative Cyclization Reactions of 2-Benzyl-Substituted Diphenylmethanes</td>
<td>424</td>
</tr>
<tr>
<td>28.5.1.1.8.1</td>
<td>Method 1: Oxidation of 1-Benzyl-2-methylbenzene</td>
<td>424</td>
</tr>
<tr>
<td>28.5.1.1.9</td>
<td>Oxidation of Dihydroanthra-9,10-quinones or Anthracen-9(10H)-ones to Anthra-9,10-quinones</td>
<td>424</td>
</tr>
<tr>
<td>28.5.1.1.9.1</td>
<td>Method 1: Aerial Oxidation of Anthracen-9(10H)-one or 9,10-Dihydroanthracenes</td>
<td>424</td>
</tr>
<tr>
<td>28.5.1.1.9.2</td>
<td>Method 2: Oxidation of Anthracen-9(10H)-ones, 10-Hydroxyanthracen-9(10H)-ones, or Hydroquinone Methyl Ethers by Ammonium Cerium(IV) Nitrate</td>
<td>425</td>
</tr>
<tr>
<td>28.5.1.1.10</td>
<td>Oxidation of meso-Benzanthrones and Aromatic Carbocycles</td>
<td>425</td>
</tr>
<tr>
<td>28.5.1.1.11</td>
<td>Alkylation Reactions</td>
<td>425</td>
</tr>
<tr>
<td>28.5.1.1.11.1</td>
<td>Method 1: Addition of Nitroalkanes to Hydroxyanthra-9,10-quinones</td>
<td>426</td>
</tr>
<tr>
<td>28.5.1.1.11.2</td>
<td>Method 2: Addition of Malonate to Hydroxyanthra-9,10-quinones</td>
<td>426</td>
</tr>
<tr>
<td>28.5.1.1.11.3</td>
<td>Method 3: Alkylation of 1,4-Dihydroxyanthra-9,10-quinone via Anthracene-1,4,9,10-tetronone and a 1,5-Alkyl Shift</td>
<td>427</td>
</tr>
<tr>
<td>28.5.1.1.11.4</td>
<td>Method 4: Alkylation with Intermediate Reduction</td>
<td>427</td>
</tr>
<tr>
<td>28.5.1.1.11.4.1</td>
<td>Variation 1: Alkylation under Strongly Basic Conditions (Marschalk Conditions)</td>
<td>427</td>
</tr>
<tr>
<td>28.5.1.1.11.4.2</td>
<td>Variation 2: Alkylation with Piperidine Acetate as the Catalyst (Lewis Conditions)</td>
<td>429</td>
</tr>
<tr>
<td>28.5.1.1.11.4.3</td>
<td>Variation 3: Alkylation with Pyrrolidine as the Catalyst (Broadbent Conditions)</td>
<td>430</td>
</tr>
<tr>
<td>28.5.1.1.11.4.4</td>
<td>Variation 4: Hydroxyalkylation of peri-Hydroxyanthra-9,10-quinones (Modified Marschalk Reaction)</td>
<td>431</td>
</tr>
</tbody>
</table>
Variation 5: 1,5-Diazabicyclo[5.4.0]undec-7-ene or 1,5-Diazabicyclo[4.3.0]non-5-ene in Tetrahydrofuran in Marschalk Reactions 432

Variation 6: Successive Marschalk Reactions in Syntheses of 2,3-Dialkylanthra-9,10-quinones 434

Variation 7: Addition of 1-Hydroxyanthra-9,10-quinones and Their Tautomers to Michael Acceptors 434

Variation 8: Alkylation of 1-Aminoanthra-9,10-quinones by the Reductive Claisen Rearrangement 436

Variation 9: Alkylation of 1-Hydroxyanthra-9,10-quinones 435

Method 5: Alkylation of Anthra-9,10-quinones by the Reductive Claisen Rearrangement 436

Method 6: Alkylation by a Combination of the Marschalk Reaction and the Reductive Claisen Rearrangement 437

Method 7: Alkylation via Diazonium Ions 438

Arylation Reactions 439

Alkenylation Reactions 439

Alkynylation Reactions 439

Method 1: Isomerization of Allylanthra-9,10-quinones 439

Halogenation Reactions 440

Method 1: Fluorination 440

Method 1: Chlorination 440

Method 3: Bromination 441

Method 4: Iodination 443

Sulfonation Reactions 443

Amination Reactions 444

Hydroxylation Reactions 445

Nitration Reactions 445

Synthesis by Substitution 447

Method 1: Substitution of Fluoride 447

Method 2: Substitution of Chloride 448

Method 3: Substitution of Bromide or Iodide 450

Variation 1: Substitution of Bromide and Iodide by Heteroatoms 450

Variation 2: Substitution of Bromide by Aryl Groups (The Heck Reaction) 450

Variation 3: Substitution of Bromide and Iodide by Acetylene Nucleophiles 451

Variation 4: Substitution of Iodide with Tin Nucleophiles 453

Method 4: Substitution of Nitro Groups 453

Method 5: Substitution of Trifluoromethanesulfonates 454

Product Subclass 2: Anthra-1,2-quinones 455

Synthesis of Product Subclass 2 455

Oxidation Reactions 455

Method 1: Oxidation of 1,2-Dihydroxyanthracenes 455

Method 2: ortho-Specific Oxygenation of 1-Anthrols 456
28.5.3 **Product Subclass 3: Anthra-1,4-quinones** .. 457
28.5.3.1 Synthesis of Product Subclass 3 ... 457
28.5.3.1.1 Fixation of the 1,4-Dicarbonyl Tautomer of 1,4-Dihydroxyanthra-9,10-quinone 457
28.5.3.1.1.1 Method 1: Chlorination of 1,4-Dihydroxyanthra-9,10-quinone 457
28.5.3.1.1.2 Method 2: Transesterification of N,O,O-Triacylated 1,4-Dihydroxy-10-iminoanthracen-9(10H)-ones .. 458
28.5.3.1.2 Diels–Alder Reactions ... 458
28.5.3.1.2.1 Method 1: Addition of Quinodimethanes to Benzoquinones 458
28.5.3.1.2.2 Method 2: Strong-Base-Mediated Addition of Homophthalic Anhydrides to Benzoquinones ... 459
28.5.3.1.2.3 Method 3: Tandem Claisen Diels–Alder Reactions 460
28.5.3.1.2.4 Method 4: Phthalide Annulation 461
28.5.4 **Product Subclass 4: Anthra-2,9-quinones** 461
28.5.5 **Product Subclass 5: Anthraquinones Fused with Other Carbon Rings** 462
28.5.5.1 Synthesis of Product Subclass 5 ... 462
28.5.5.1.1 Synthesis of Anthraquinones Fused with Four-Membered Rings 462
28.5.5.1.1.1 Method 1: Double Aldol Condensation 462
28.5.5.1.2 Synthesis of Anthraquinones Fused with Five-Membered Rings 463
28.5.5.1.2.1 Method 1: Friedel–Crafts Reaction of Phthalic Anhydride with Indanes 463
28.5.5.1.2.2 Method 2: Diels–Alder Reactions of Naphtho-1,4-quinone with 1-Vinylcyclopentenes .. 463
28.5.5.1.2.3 Method 3: Cyclization of Monoalkylantra-9,10-quinones 463
28.5.5.1.2.4 Method 4: Cyclization of 2,3-Dialkylantra-9,10-quinones 464
28.5.5.1.3 Synthesis of Anthraquinones Fused with Six-Membered Rings: Tetracene-5,12-diones .. 465
28.5.5.1.3.1 Method 1: One-Pot Friedel–Crafts Condensation 466
28.5.5.1.3.1.1 Variation 1: Double Friedel–Crafts Condensation with Phthalic Anhydride 466
28.5.5.1.3.1.2 Variation 2: Successive Fries Shift and Friedel–Crafts Reaction 466
28.5.5.1.3.2 Method 2: Multistep Friedel–Crafts Condensation 467
28.5.5.1.3.2.1 Variation 1: Friedel–Crafts Reaction of Benzylbenzoic Acids 467
28.5.5.1.3.2.2 Variation 2: Friedel–Crafts Reaction of a Lactone 468
28.5.5.1.3.2.3 Variation 3: Friedel–Crafts Reaction of Benzoylbenzoic Acids 468
28.5.5.1.3.3 Method 3: Tetracene-5,12-diones by Diels–Alder Reactions: Trapping of o-Quinodimethanes with Dienones 469
28.5.5.1.3.3.1 Variation 1: Intermolecular Trapping of o-Quinodimethanes 470
28.5.5.1.3.3.2 Variation 2: Intramolecular Trapping of o-Quinodimethanes 471
28.5.5.1.3.4 Method 4: Diels–Alder Reactions of Anthra-1,4-quinones and Derivatives as the Dienophiles ... 471
28.5.5.1.3.4.1 Variation 1: Anthra-1,4-quinones as the Dienophiles 471
28.5.5.1.3.4.2 Variation 2: Anthracenetetrones as the Dienophiles 472
28.5.5.1.3.4.3 Variation 3: Anthradiquinone Epoxides as the Dienophiles 473
28.5.5.1.3.4.4 Variation 4: 1,4-Dihydroxyanthra-9,10-quinone and Its 9-Imine as Dienophiles ... 474
28.5.5.1.3.4.5 Variation 5: Partially Hydrogenated or Bridged Anthra-9,10-quinones 474
28.5.1.3.5	Method 5: Diels–Alder Reactions with Benzocyclobutenes as the Diene Precursors	475
28.5.1.3.6	Method 6: Diels–Alder Reactions of Exocyclic Dienes and Exocyclic Vinylketene Acetals	476
28.5.1.3.7	Method 7: Strong-Base-Induced Cycloaddition of Homophthalic Anhydrides to Naphthoquinones	477
28.5.1.3.8	Method 8: Intramolecular Diels–Alder Reactions	478
28.5.1.3.9	Method 9: Anionic Cyclization of Monoalkylanthra-9,10-quinones	479
28.5.1.3.9.1	Variation 1: Cyclization of Nitronatoanthra-9,10-quinones	479
28.5.1.3.9.2	Variation 2: Cyclization of 4-Hydroxy-2-(4-oxobutyl)anthra-9,10-quinone	480
28.5.1.3.10	Method 10: Anionic Cyclization of Dialkylanthra-9,10-quinones	481
28.5.1.3.10.1	Variation 1: Biomimetic Oxo Ester Cyclization	481
28.5.1.3.10.2	Variation 2: Lewis Acid Mediated Cyclization of ortho-Allyl-Substituted Dioxolanyl Anthraquinones and Formylanthaquinones	482
28.5.1.3.10.3	Variation 3: Base-Catalyzed Cyclization of a Nonsymmetrically Substituted 2,3-Diallylanthra-9,10-quinone	482
28.5.1.3.11	Method 11: 1,4-Dipolar Additions to Enones and Arynes	483
28.5.1.4	Synthesis of Anthraquinones Fused with Six-Membered Rings: Tetraphene-7,12-diones	484
28.5.1.4.1	Method 1: Friedel–Crafts Reactions	484
28.5.1.4.2	Method 2: Diels–Alder Reactions	484
28.5.1.4.3	Method 3: Anionic Cyclizations	485
28.5.1.4.3.1	Variation 1: Cyclization of Monoalkylanthra-9,10-quinones	485
28.5.1.4.3.2	Variation 2: Cyclization of Dialkylanthra-9,10-quinones	486
28.5.1.4.4	Method 4: [2 + 2 + 2] Cycloaddition	486
28.5.1.4.5	Method 5: Rearrangement of Spiroanthracenediones	487

28.6 **Product Class 6: Phenanthrene-9,10-diones, Stilbenequinones, Diphenooquinones, and Related Ring Assemblies**

A. M. Echavarren and S. Porcel

<p>| 28.6.1 | Product Subclass 1: Phenanthrene-9,10-diones | 507 |
| 28.6.1.1 | Synthesis of Product Subclass 1 | 508 |
| 28.6.1.1.1 | Method 1: Direct Oxidation of Polycyclic Arenes | 508 |
| 28.6.1.1.1.1 | Variation 1: Oxidation with Stoichiometric Oxidizing Reagents | 508 |
| 28.6.1.1.1.2 | Variation 2: Oxidation with Catalytic Oxidizing Reagents | 511 |
| 28.6.1.1.2 | Method 2: Ring-Closure Reactions | 512 |
| 28.6.1.1.2.1 | Variation 1: Oxidative Biaryl Coupling of α-Dicarbonyl Compounds | 512 |
| 28.6.1.1.2.2 | Variation 2: Photochemical Cyclization | 513 |
| 28.6.1.1.2.3 | Variation 3: Reductive Coupling of Carbonyls | 516 |
| 28.6.1.2 | Applications of Product Subclass 1 in Organic Synthesis | 518 |
| 28.6.1.2.1 | Method 1: Synthesis of Functionalized-Fused Furans | 518 |</p>
<table>
<thead>
<tr>
<th>Subclass</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.6.1.2.2</td>
<td>Method 2</td>
<td>Catalyzed Epoxidation in the Presence of Phenanthrene-9,10-dione</td>
<td>519</td>
</tr>
<tr>
<td>28.6.1.2.3</td>
<td>Method 3</td>
<td>Synthesis of Heterocycles</td>
<td>519</td>
</tr>
<tr>
<td>28.6.1.2.4</td>
<td>Method 4</td>
<td>Synthesis of Biphenyl-2,2'-dicarboxylic Acids</td>
<td>521</td>
</tr>
<tr>
<td>28.6.1.2.5</td>
<td>Method 5</td>
<td>Protection of 1,2-Diols</td>
<td>521</td>
</tr>
<tr>
<td>28.6.1.2.6</td>
<td>Method 6</td>
<td>Synthesis of Polycyclic Arenes via Bis-Wittig Reactions</td>
<td>522</td>
</tr>
<tr>
<td>28.6.2</td>
<td>Product Subclass 2: Heterocyclic Analogues of Phenanthrene-9,10-diones</td>
<td>523</td>
<td></td>
</tr>
<tr>
<td>28.6.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>524</td>
<td></td>
</tr>
<tr>
<td>28.6.2.1.1</td>
<td>Method 1</td>
<td>Oxidation of Hetarenes</td>
<td>524</td>
</tr>
<tr>
<td>28.6.2.1.1.1</td>
<td>Variation 1</td>
<td>Direct Oxidation of Hetarenes</td>
<td>524</td>
</tr>
<tr>
<td>28.6.2.1.1.2</td>
<td>Variation 2</td>
<td>Chlorination of Hetarenes</td>
<td>527</td>
</tr>
<tr>
<td>28.6.2.1.1.3</td>
<td>Variation 3</td>
<td>Oxidation of Hydroxy- and/or Alkoxy-Substituted Hetarenes with Strong Oxidants</td>
<td>528</td>
</tr>
<tr>
<td>28.6.2.1.1.4</td>
<td>Variation 4</td>
<td>Oxidation of Hydroxy- and/or Alkoxy-Substituted Hetarenes with Mild Oxidants</td>
<td>531</td>
</tr>
<tr>
<td>28.6.2.1.1.5</td>
<td>Variation 5</td>
<td>Oxidation of Amino-Substituted Hetarenes</td>
<td>535</td>
</tr>
<tr>
<td>28.6.2.1.2</td>
<td>Method 2</td>
<td>Ring-Closure Reactions</td>
<td>537</td>
</tr>
<tr>
<td>28.6.2.1.2.1</td>
<td>Variation 1</td>
<td>N–C Bond-Forming Reactions</td>
<td>537</td>
</tr>
<tr>
<td>28.6.2.1.2.2</td>
<td>Variation 2</td>
<td>C–C Bond-Forming Reactions</td>
<td>538</td>
</tr>
<tr>
<td>28.6.2.2</td>
<td>Applications of Product Subclass 2 in Organic Synthesis</td>
<td>539</td>
<td></td>
</tr>
<tr>
<td>28.6.2.2.1</td>
<td>Method 1</td>
<td>Oxidation of Functional Groups</td>
<td>539</td>
</tr>
<tr>
<td>28.6.3</td>
<td>Product Subclass 3: Stilbenequinones</td>
<td>541</td>
<td></td>
</tr>
<tr>
<td>28.6.3.1</td>
<td>Synthesis of Product Subclass 3</td>
<td>542</td>
<td></td>
</tr>
<tr>
<td>28.6.3.1.1</td>
<td>Method 1</td>
<td>Oxidation of Dihydroxystilbenes</td>
<td>543</td>
</tr>
<tr>
<td>28.6.3.1.2</td>
<td>Method 2</td>
<td>Oxidative Dimerization of Aromatic Compounds</td>
<td>544</td>
</tr>
<tr>
<td>28.6.3.1.2.1</td>
<td>Variation 1</td>
<td>Oxidation Dimerization of Phenols</td>
<td>544</td>
</tr>
<tr>
<td>28.6.3.1.2.2</td>
<td>Variation 2</td>
<td>Oxidative Dimerization of 2,4,6-Trimethylphenyl Chloroformate</td>
<td>547</td>
</tr>
<tr>
<td>28.6.3.2</td>
<td>Applications of Product Subclass 3 in Organic Synthesis</td>
<td>547</td>
<td></td>
</tr>
<tr>
<td>28.6.3.2.1</td>
<td>Method 1</td>
<td>Acid-Catalyzed Rearrangement of Stilbenequinones</td>
<td>547</td>
</tr>
<tr>
<td>28.6.4</td>
<td>Product Subclass 4: Diphenoquinones</td>
<td>548</td>
<td></td>
</tr>
<tr>
<td>28.6.4.1</td>
<td>Synthesis of Product Subclass 4</td>
<td>550</td>
<td></td>
</tr>
<tr>
<td>28.6.4.1.1</td>
<td>Method 1</td>
<td>Oxidation of Biphenyldiols</td>
<td>550</td>
</tr>
<tr>
<td>28.6.4.1.2</td>
<td>Method 2</td>
<td>Oxidative Coupling of Phenols</td>
<td>551</td>
</tr>
<tr>
<td>28.6.4.1.2.1</td>
<td>Variation 1</td>
<td>Oxidative Coupling Using Stoichiometric Oxidants</td>
<td>551</td>
</tr>
<tr>
<td>28.6.4.1.2.2</td>
<td>Variation 2</td>
<td>Oxidative Coupling with Metal Catalysts</td>
<td>553</td>
</tr>
<tr>
<td>28.6.4.1.2.3</td>
<td>Variation 3</td>
<td>Enzymatic Oxidative Coupling</td>
<td>555</td>
</tr>
</tbody>
</table>
Product Class 7: Hetarene-Fused Quinones

Product Subclass 1: Nitrogen-Containing Hetarene Quinones

U. Pindur and T. Lemster

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.7.1</td>
<td>Product Subclass 1: Nitrogen-Containing Hetarene Quinones</td>
<td>561</td>
</tr>
<tr>
<td>28.7.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td>561</td>
</tr>
<tr>
<td>28.7.1.1.1</td>
<td>Nitrogen-Containing Hetarene p-Quinones</td>
<td>561</td>
</tr>
<tr>
<td>28.7.1.1.1.1</td>
<td>Method 1: Direct Oxidation of Hydroquinone Derivatives</td>
<td>562</td>
</tr>
<tr>
<td>28.7.1.1.1.2</td>
<td>Method 2: Ring-Closure Reactions of Pyrroles</td>
<td>563</td>
</tr>
<tr>
<td>28.7.1.1.1.3</td>
<td>Method 3: Ring-Closure Reactions of Substituted Benzoquinones</td>
<td>564</td>
</tr>
<tr>
<td>28.7.1.1.1.4</td>
<td>Method 4: Ring Expansion of Cyclobutenone Derivatives</td>
<td>566</td>
</tr>
<tr>
<td>28.7.1.1.1.2</td>
<td>Naphthindolizinequinones</td>
<td>567</td>
</tr>
<tr>
<td>28.7.1.1.1.2.1</td>
<td>Method 1: Ring Closure of 2-Pyridinium-Substituted Naphtho-$1,4$-quinones with Nitromethane</td>
<td>567</td>
</tr>
<tr>
<td>28.7.1.1.1.3</td>
<td>Bispyrrolo-Fused Quinones and Further Variants</td>
<td>568</td>
</tr>
<tr>
<td>28.7.1.1.1.3.1</td>
<td>Method 1: Cyclocondensation at Indolequinone</td>
<td>568</td>
</tr>
<tr>
<td>28.7.1.1.1.3.2</td>
<td>Method 2: Diels–Alder Reaction with Indolequinones</td>
<td>569</td>
</tr>
<tr>
<td>28.7.1.1.1.3.3</td>
<td>Method 3: Double Cyclization of 2,5-Bis(arylamino)-3,6-dibromobenzo-$1,4$-quinones</td>
<td>570</td>
</tr>
<tr>
<td>28.7.1.1.4</td>
<td>Isoindolequinones</td>
<td>571</td>
</tr>
<tr>
<td>28.7.1.1.4.1</td>
<td>Method 1: o-Dialkynylarene Annulation</td>
<td>571</td>
</tr>
<tr>
<td>28.7.1.1.4.2</td>
<td>Method 2: Azomethine 1,3-Dipolar Cycloaddition</td>
<td>572</td>
</tr>
<tr>
<td>28.7.1.1.5</td>
<td>Benzoazolequinones</td>
<td>573</td>
</tr>
<tr>
<td>28.7.1.1.5.1</td>
<td>Method 1: Annulation of a Phenol Followed by Oxidation</td>
<td>573</td>
</tr>
<tr>
<td>28.7.1.1.6</td>
<td>Benzothiazolequinones</td>
<td>574</td>
</tr>
<tr>
<td>28.7.1.1.6.1</td>
<td>Method 1: Fremy’s Salt Oxidation Followed by Nucleophilic Addition</td>
<td>574</td>
</tr>
<tr>
<td>28.7.1.1.7</td>
<td>Indazolequinones and Benzindazolequinones</td>
<td>576</td>
</tr>
<tr>
<td>28.7.1.1.7.1</td>
<td>Method 1: Ring-Closure Reactions of Substituted Benzoquinones</td>
<td>576</td>
</tr>
<tr>
<td>28.7.1.1.7.2</td>
<td>Method 2: 1,3-Dipolar Cycloaddition Reactions with Quinones</td>
<td>577</td>
</tr>
<tr>
<td>28.7.1.1.8</td>
<td>Benzimidazolequinones</td>
<td>578</td>
</tr>
<tr>
<td>28.7.1.1.8.1</td>
<td>Method 1: Oxidation Reactions</td>
<td>578</td>
</tr>
<tr>
<td>28.7.1.1.9</td>
<td>Benzotriazolequinones</td>
<td>580</td>
</tr>
<tr>
<td>28.7.1.1.9.1</td>
<td>Method 1: 1,3-Dipolar Cycloaddition of p-Quinones with Sodium Azide</td>
<td>580</td>
</tr>
<tr>
<td>28.7.1.1.10</td>
<td>Quinolinequinones, Isoquinolinequinones, and Higher Analogues</td>
<td>581</td>
</tr>
<tr>
<td>28.7.1.1.10.1</td>
<td>Method 1: Ring-Closure Reactions of Substituted Benzoquinones</td>
<td>581</td>
</tr>
<tr>
<td>28.7.1.1.10.2</td>
<td>Method 2: Intramolecular Acid-Catalyzed Cyclization of 2-[(2-Acetyaryl)amino]benzo-$1,4$-quinones</td>
<td>581</td>
</tr>
<tr>
<td>28.7.1.1.10.3</td>
<td>Method 3: Aza-Diels–Alder Reactions</td>
<td>582</td>
</tr>
</tbody>
</table>
28.7 Isoquinolinequinones ... 583
28.7.1.1.1 Method 1: Oxidative Demethylation 583
28.7.1.1.1.1 Method 2: Ring Expansion of Cyclobutenone Derivatives
Following by Oxidation ... 584
28.7.1.1.12 Quinoxaline- and Quinazolinequinones 585
28.7.1.1.12.1 Method 1: Oxidative Demethylation or Oxidation with
Ammonium Cerium(IV) Nitrate 585
28.7.1.1.12.2 Method 2: Classical Annulation of 2,5-Dimethoxybenzaldehyde 587
28.7.1.1 Nitrogen-Containing Hetarene o-Quinones 587
28.7.1.2 Indolequinones ... 587
28.7.1.2.1 Method 1: Thermolysis of a 3-Azido-4-styrylbenzo-1,2-quinone 587
28.7.1.2.1.1 Method 2: Oxidation 588
28.7.1.2.2 o-Quinones of Quinolines and Isoquinolines 588
28.7.1.2.2.1 Method 1: Fremy’s Salt Oxidation 589

28.7.2 Product Subclass 2: Oxygen- and Sulfur-Containing
Hetarene Quinones

A. G. Griesbeck

28.7.2.1 Synthesis of Product Subclass 2 593
28.7.2.1.1 Benzofuranquinones, Benzothiophenequinones,
and Higher Annulated Analogues 594
28.7.2.1.1.1 Method 1: Oxidation of Benzofurans 595
28.7.2.1.1.1.1 Variation 1: Oxidation with Fremy’s Salt 595
28.7.2.1.1.1.2 Variation 2: Oxidation with Chromium Reagents 597
28.7.2.1.1.1.3 Variation 3: Oxidation with Other Reagents 597
28.7.2.1.1.2 Method 2: Ring-Closure Reactions of Furans 598
28.7.2.1.1.2.1 Variation 1: Furan Metalation and Cyclization 598
28.7.2.1.1.2.2 Variation 2: Fischer Carbene Reactions (Dötz Benzannulation) .. 598
28.7.2.1.1.2.3 Variation 3: Intramolecular Friedel–Crafts Acylation 600
28.7.2.1.1.3 Method 3: Ring-Closure Reactions of Quinones 601
28.7.2.1.1.3.1 Variation 1: Ullmann Reaction of Benzoquinones 601
28.7.2.1.1.3.2 Variation 2: Dehydration of Hydroxylated Quinones 601
28.7.2.1.1.3.3 Variation 3: Nucleophilic Addition of Hydroxyaryl-Substituted Quinones 602
28.7.2.1.1.3.4 Variation 4: Intramolecular Nucleophilic Substitution .. 602
28.7.2.1.1.3.5 Variation 5: Oxidative Cyclization by Mercury(II) Acetate and
3-Chloroperoxybenzoic Acid .. 603
28.7.2.1.1.4 Method 4: Ring Annulation of Quinones 604
28.7.2.1.1.4.1 Variation 1: Michael Addition and Subsequent Cyclization of
CH-Active Methylene Compounds 604
28.7.2.1.1.4.2 Variation 2: Michael Addition and Subsequent Cyclization of Phenols .. 604
28.7.2.1.1.4.3 Variation 3: Addition of Enamines and Vinyl Sulﬁdes 605
28.7.2.1.4.4 Variation 4: Photochemical Addition of Alkenes and Alkynes to Quinones 606
28.7.2.1.4.5 Variation 5: Palladium-Catalyzed Coupling and Ring Closure of Phenylidonium Betaines 607
28.7.2.1.4.6 Variation 6: Diels–Alder Cycloaddition 607
28.7.2.1.5 Method 5: Ring-Closure Reactions of Bi(quinones) 608
28.7.2.1.5.1 Variation 1: Acid- and Base-Induced Ring Closure 608
28.7.2.1.5.2 Variation 2: Thermal and Photochemical Ring Closure 609
28.7.2.1.6 Method 6: Ring Enlargement of Cyclobutenones 609
28.7.2.1.7 Method 7: Modification of Benzo[b]furanquinones 611
28.7.2.1.7.1 Variation 1: Diels–Alder Reactions 611
28.7.2.1.7.2 Variation 2: Hetero-Diels–Alder Reactions 613
28.7.2.1.7.3 Variation 3: Palladium-Catalyzed Coupling of Boronates 613
28.7.2.1.2 Benzo[c]furanquinones 614
28.7.2.1.3 Pyranbenzoquinones and Pyrannaphthoquinones 614
28.7.2.1.4 Benzothiophenequinones 614
28.7.2.1.4.1 Method 1: Oxidation of Benzo[b]thiophene Derivatives 615
28.7.2.1.4.2 Method 2: Intramolecular Condensation of Thiophenecarboxylates 615
28.7.2.1.4.2.1 Variation 1: Using Thiophenecarboxylates 615
28.7.2.1.4.2.2 Variation 2: Using Benzoic Acid Derivatives 616
28.7.2.1.4.3 Method 3: Thiophene Metalation and Tandem Nucleophilic Addition 616
28.7.2.1.4.4 Method 4: Tandem Conjugate Addition and Cyclization 616
28.7.2.1.4.5 Method 5: Intra- and Intermolecular Friedel–Crafts Acylations 617

28.8 Product Class 8: Sulfur Analogues of Quinones
M. Yoshifuji and S. Kawasaki

28.8.1 Product Subclass 1: p-Monothioquinones 623
28.8.1.1 Synthesis of Product Subclass 1 623

28.8.2 Product Subclass 2: o-Monothioquinones 626
28.8.2.1 Synthesis of Product Subclass 2 626

28.8.3 Product Subclass 3: Dithioquinones 627
28.8.3.1 Synthesis of Product Subclass 3 627

28.9 Product Class 9: Benzo-1,2-, Benzo-1,4-, Naphtho-1,2-, and Naphtho-1,4-quinone Imines and Diimines
M. C. Carreño and M. Ribagorda

28.9.1 Product Subclass 1: Benzoquinone Imines and Diimines 629
28.9.1.1 Synthesis of Product Subclass 1 630
28.9.1.1.1 Method 1: Oxidation of Anilines and Benzenediamines 630
Variation 1: Using Lead(IV) Acetate .. 630
Variation 2: Using Hypohalites ... 635
Variation 3: Using Silver(I) Oxide .. 638
Variation 4: Using Iron(III) Chloride 640
Variation 5: Using Manganese(IV) Oxide 642
Variation 6: Using Hypervalent Iodine Reagents 644
Variation 7: Using Peroxides ... 645
Variation 8: Using Cobalt-Mediated Catalytic Oxidation by Oxygen 646
Variation 9: Using Fremy’s Salt ... 647
Variation 10: Using Ammonium Cerium(IV) Nitrate 647
Variation 11: Oxidative Coupling of Phenols and Anilines with Amines 647
Variation 12: Electrooxidation ... 649

Method 2: Condensation of Quinone Derivatives with Amines 658
Variation 1: Intermolecular Processes 658
Variation 2: Intramolecular Processes 663
Method 3: Transition Metal Quinone Diimine Synthesis 667
Method 4: Organometallic C–N Coupling from N-Chloroquinone Imines 669

Product Subclass 2: Naphthoquinone Imines and Diimines 706

Method 1: Oxidative Coupling of Naphthols with Amines 706
Method 2: Oxidative Coupling of 1-Naphthylcyanamide with Anilines 710
Method 3: Substitutions on Naphthoquinones with Amines 712
Variation 1: Substitution of Sulfonic Groups 712
Variation 2: Substitution of Methoxy Groups 714
Method 4: Condensation of Naphthoquinones with Amines 714
Method 5: Condensation of Naphthoquinones with N-Sulfinylarylamines 716
Method 6: Reactions of Naphthoquinones with N-Phenyliminophosphoranes 717
Method 7: Oxidation of Aminonaphthols, Naphthalenediamines, and Naphthylamines 718
Method 8: Diels–Alder Reactions of Isoindoles with Activated Acetylene Derivatives 721
Method 9: Synthesis and Oxidation of N-Hydroxy-N-phenyl-naphthalen-1-amines 722
Method 10: Reactions of Naphthoquinones with Bis(trimethylsilyl)carbodiimide 723
Method 11: Applications of Product Subclass 2 in Organic Synthesis 724
Method 1: Halogenation ... 724
Method 2: [3 + 2] Photoaddition with Alkenes 726
28.9.2.3 Method 3: 1,4-Addition–Aromatization 726
28.9.2.4 Method 4: Oxidative Coupling .. 729
28.9.2.5 Method 5: The Imino Group as Nucleophile 729

28.10 Product Class 10: Anthraquinone and Phenanthrenedione Imines and Diimines
C. Avendaño and J. C. Menéndez

28.10 Product Class 10: Anthraquinone and Phenanthrenedione Imines and Diimines ... 735
28.10.1 Product Subclass 1: Anthra-9,10-quinone Imines and Diimines ... 739
28.10.1.1 Synthesis of Product Subclass 1 .. 739
28.10.1.1.1 Ring-Annulation or Ring-Closure Reactions 739
28.10.1.1.2 Method 1: Diels–Alder Reactions of Naphthoquinone Imines 739
28.10.1.1.3 Method 2: Oxidative Photochemical Cyclization of 9-(2-Iodoanilino)-4,5-phenanthrolin-10-ols 740
28.10.1.1.4 Method 3: Intramolecular Friedel–Crafts Acylation of 1-(2-Carboxyphenyl)isoquinolines 741
28.10.1.1.5 Method 4: Intramolecular Friedel–Crafts Acylation of 10-Hetaryl-2,9-phenanthridine-1-carbonitriles 741
28.10.1.1.6 Method 5: Intramolecular Cyclization of 2,2’-Bis(phthalimido)biphenyls 742
28.10.1.1.7 Method 6: Double Cyclization of 3-(2-Arylethyl)amino]-benzo[c]furan-1(3H)-one 743
28.10.1.1.8 Method 7: Hydrolytic Cyclization of N-(3-{2-(5,8-Dioxo-5,8-dihydroquinolin-6-yl)amino]phenyl}-3-oxopropyl)-2,2,2-trifluoroacetamide ... 744
28.10.1.1.9 Method 8: Oxidation of 9-Anthrones 750
28.10.1.1.10 Method 9: Oxidation of 10-Amino-9-anthrols 750
28.10.1.1.11 Method 10: Condensation of Anthra-9,10-quinones or Anthra-9,10-quinone Acetals with Ammonia or Amines 754
28.10.1.1.12 Method 11: Condensation of 1-Aminoanthra-9,10-quinones with Amides, Amidines, or Nitriles 756
28.10.1.1.2.13 Method 13: Intramolecular Condensations of Anthra-9,10-quinones with Masked Amino Groups .. 757
28.10.1.1.2.14 Method 14: Reactions of Anthra-9,10-quinones with Aryliminodimagnesium Reagents ... 759
28.10.1.1.2.15 Method 15: Reactions of Anthraquinones with Bis(trimethylsilyl)carbodiimide .. 760
28.10.1.1.2.16 Method 16: Intramolecular Cyclization of 1-(Cyanomethyl)- or 1-(Carbamoylmethyl)anthra-9,10-quinones 761
28.10.1.1.2.17 Method 17: Reactions of 9-Aryloxyanthra-1,10-quinones with Amines .. 761
28.10.1.1.2.18 Method 18: Reactions of 1-[2-(Dimethylamino)vinyl]azanthraquinones with Ammonia .. 762
28.10.1.1.2.19 Method 19: Self-Coupling of 1-Aminoanthra-9,10-quinones .. 763
28.10.1.1.2.20 Method 20: Reactions of 1-Substituted Anthra-9,10-quinones with Nucleophiles ... 764
28.10.1.1.2.20.1 Variation 1: Reactions of 1-Haloanthra-9,10-quinones with Hydrazine or 2-Aminobenzenethiol 764
28.10.1.1.2.20.2 Variation 2: Reactions of 1-Alk-1-ynylantha-9,10-quinones with Hydrazines ... 765
28.10.1.1.2.21 Method 21: Copper-Catalyzed Reactions of 1-Haloanthra-9,10-quinones with Amidines, Guanidines, and Related Compounds ... 766
28.10.1.1.2.22 Method 22: Synthesis from Anthracenes and Anthracene Diones Bearing a Nitrogen-Containing Group or Groups ... 767
28.10.1.1.2.22.1 Variation 1: Hydrolysis of Anthra-9,10-quinone Diimines to Monoimines .. 767
28.10.1.1.2.22.2 Variation 2: Dipolar Cycloadditions between Quinomethanes and Azides, and Diazaoalkane Extrusion 768
28.10.1.1.2.22.3 Variation 3: Transformations of Anthra-9,10-quinone Imines and Hydrazones ... 769
28.10.1.1.2.22.4 Variation 4: Transformations of Anthra-9,10-quinone Oximes .. 769
28.10.1.1.2.22.5 Variation 5: Reactions of 10-Diazoanthracen-9(10H)-ones with Nitrogen-Containing Electrophiles 770
28.10.1.1.2.22.6 Variation 6: Reductive Tautomerization of Anthra-1,4-quinone Imines ... 771

28.10.2 Product Subclass 2: Anthra-1,2-quinone and Anthra-1,4-quinone Imines and Diimines ... 771

28.10.2.1 Synthesis of Product Subclass 2 .. 771
28.10.2.1.1 Ring-Closure Reactions .. 771
28.10.2.1.1.1 Method 1: Oxidative Coupling of 1-Phenyl-2,3-bis(pyrimidin-5-yl)benzenes ... 771
28.10.2.1.1.2 Method 2: Cycloaddition of Homophthalic Anhydrides and Benzo-1,4-quinone Imines and Subsequent Oxidation ... 772
28.10.2.1.2 Creation of the Quinone Imine Functionality on a Preexisting Six-Membered Ring ... 774
28.10.2.1.2.1 Method 1: Oxidation of 1-(Acylamino)-2-anthrols .. 774
28.10.2.1.2.2 Method 2: Oxidation of Anthracenamines and Their Derivatives .. 774
28.10.2.1.2.3 Method 3: Rearrangement of 4-Aryloxyanthracen-1-amines and Related Compounds ... 775
Method 4: Condensation of Anthra-9,10-quinone Diamines and Anthracenamines with Carbonyl Compounds

Method 5: Condensation of Anthra-1,2-quinones with Hydrazines

Product Subclass 3: Phenanthrene-9,10-dione Imines and Diimines

Synthesis of Product Subclass 3

Ring-Closure Reactions

Method 1: Transannular Cyclizations of [2\^2]Metacyclophanes with N-Bromosuccinimide

Method 2: Metal-Induced Oxidative Intramolecular Aryl–Aryl Coupling

Method 3: Synthesis of Oxoaporphine Alkaloids by Aryl–Aryl Coupling

Method 4: Pschorr Cyclization of 1-(2-Aminobenzyl)isoquinolines

Method 5: Oxidative Cyclization of Bisarylhydrazones

Creation of the Quinone Imine Functionality on a Preexisting Six-Membered Ring

Method 1: Reaction of Phenanthrene-9,10-diones with Nucleophiles

Variation 1: Reactions with 1,2-Diamines

Variation 2: Condensation of Phenanthrene-9,10-diones with Hydroxylamine or Sodium Hexamethyldisilazanide

Variation 3: Condensation of Phenanthrene-9,10-diones with Imino-hydrazides, Sulfanamide, Thiosemicarbazide, Semicarbazide, or Aminoguanidines

Variation 4: Condensation of Phenanthrene-9,10-diones with S-Alkylisothiosemicarbazides and Related Compounds

Variation 5: Reductive Condensation of Phenanthrene-9,10-diones with Aromatic Nitroso or Nitro Compounds

Method 2: Condensation of Phenanthrene-9,10-diamines with \(\alpha\)-Dicarbonyl Compounds

Method 3: Condensation of Phenanthrene-9,10-diamines with Bis(methyloximes)

Method 4: Reactions of Phenanthrene-9,10-diamines with \(\alpha\)-Nitro Ketones

Method 5: Condensation of Phenanthrene-3,9-diones with 1,2-Diamines

Method 6: Condensation of 9-Nitrophenanthrenes with Anilines

Method 7: Condensation of Iminophenanthren-9(10H)-ones with Amines

Method 8: Reaction of Phenanthrene-9,10-diones with Arsinimines

Method 9: Condensation of Phenanthrene-9,10-dione Monooxime with 1,1-Diarylalkenes

Method 10: Condensation of Phenanthrene-9,10-dione Diimines or Dioximes with gem-Dihalides

Method 11: Reaction of Phenanthrene with Trithiazyl Trichloride

Method 12: Ring Expansion of Phenanthro[9,10-d][1,2,3]triazoles or Phenanthro[9,10-c][1,2,5]oxadiazoles
28.11 Product Class 11: Quinone Diazides
A. G. Griesbeck and E. Zimmermann

28.11 Product Class 11: Quinone Diazides .. 807
28.11.1 Synthesis of Product Class 11 .. 809
28.11.1.1 Method 1: Diazotization of Amino-Substituted Aromatic Alcohols 810
28.11.1.1 Variation 1: Diazotization in Aqueous Media 810
28.11.1.2 Variation 2: Diazotization in Organic Solvents 812
28.11.1.3 Variation 3: Nitration of Substituted Anilines 816
28.11.1.2 Method 2: Aromatic Substitution of Diazonium Salts 818
28.11.1.2.1 Variation 1: Hydrolysis of 2- or 4-Substituted Diazonium Salts 818
28.11.1.2.2 Variation 2: Elimination of HX from Diazonium Salts 819
28.11.1.2.3 Variation 3: Aromatic Substitution of Aryl Fluorides 820
28.11.1.3 Method 3: Oxidation of Arenediazonium Cations 821
28.11.1.4 Method 4: o- or p-Nitrosylation of Phenols 821
28.11.1.5 Method 5: Formation of Tosylhydrazones from Quinones 822
28.11.1.6 Method 6: Electrophilic Substitution of Quinone Diazides 823
28.11.1.7 Method 7: Diazo Group Transfer Reactions 823
28.11.1.8 Methods 8: Additional Methods ... 825
28.11.2 Applications of Product Class 11 in Organic Synthesis 825
28.11.2.1 Method 1: The Süs Reaction ... 825
28.11.2.2 Method 2: Application in Photolithographic Processes 827

28.12 Product Class 12: Quinomethanes

28.12.1 Product Subclass 1: o-Quinomethanes
T. R. R. Pettus and C. Selenski

28.12.1 Product Subclass 1: o-Quinomethanes ... 831
28.12.1.1 Synthesis of Product Subclass 1 .. 835
28.12.1.1.1 Quinone Enolization ... 835
28.12.1.1.1 Method 1: Heat-Assisted Quinone Enolization 835
28.12.1.1.1 Method 2: Base-Assisted Quinone Enolization 836
28.12.1.1.2.1 Variation 1: Using Lithium Methoxide 836
28.12.1.1.2.2 Variation 2: Using Sodium Methanethiolate 837
28.12.1.1.2.3 Variation 3: Using Amines .. 838
28.12.1.1.3 Method 3: Photochemically Assisted Quinone Enolization 839
28.12.1.1.2 Oxidation .. 840
28.12.1.1.2.1 Method 1: Oxidation Using Silver(I) Oxide 840
28.12.1.1.3 Extrusions and Retrocycloadditions ... 843
28.12.1.1.3.1 Method 1: Nucleophilic Displacement 843
28.12.1.1.3.2 Method 2: Mannich Base Precursors 843
Product Subclass 2: p-Quinomethanes

A. G. Griesbeck

28.12.2.1 Synthesis of Product Subclass 2 .. 874
28.12.2.1.1 Method 1: Oxidation of 4-Substituted Phenols 876
28.12.2.1.1.1 Variation 1: Using Silver(I), Lead(IV), or Manganese(IV) Oxide 876
28.12.2.1.1.2 Variation 2: Using Potassium Hexacyanoferrate(III) 877
28.12.2.1.1.3 Variation 3: Using Other Oxidants ... 877
28.12.2.1.2 Method 2: Dehydration of 4-(Hydroxyalkyl)- and 4-(Hydroxyalkyl)phenyl-Substituted Phenols .. 879
28.12.2.1.2.1 Variation 1: Thermal Dehydration of 4-(Hydroxyalkyl)-Substituted Phenols 879
28.12.2.1.2.2 Variation 2: Acid-Catalyzed Dehydration of 4-(Hydroxyalkyl)-Substituted Phenols ... 879
28.12.2.1.2.3 Variation 3: Dehydration of 4-(Hydroxyalkyl)-Substituted Phenols Using Lithium Aluminum Hydride .. 879
28.12.2.1.3 Method 3: Dehydrohalogenation of 4-Halomethyl-Substituted Phenols 880
28.12.2.1.3.1 Variation 1: Using Amine Bases ... 880
28.12.2.1.3.2 Variation 2: Using Weak Bases in Aqueous Media 881
28.12.2.1.3.3 Variation 3: Using Metal Alkoxides .. 881
28.12.2.1.4 Method 4: Acid-Catalyzed Dehydration of 4-Methoxyphenyl-Substituted Alcohols .. 882
28.12.2.1.5 Method 5: Elimination of Chloromethane from 4-Chloroalkyl-Substituted Anisoles ... 882
28.12.2.1.6 Method 6: Acid Elimination from 4-(Acyloxy)alkyl-Substituted Phenols 883
Method 7: Decomplexation of Quinomethanes from \(\pi\)-Palladium Complexes .. 884

Method 8: Condensation of Phenols with Alkyl or Acyl Halides 884

Variation 1: Thermal Condensation .. 885

Variation 2: Lewis Acid Catalyzed Condensation 885

Method 9: Reaction of Phenols with Carbenium Ions 885

Method 10: Reaction of Aryl Carbanions with Carbonyl Compounds 886

Variation 1: Reaction of Metalated Phenols with Carbonyl Compounds 886

Variation 2: Reaction of Metalated Arenes with 4-Acylphenols 887

Method 11: Oxidation of Phenols to \(\rho\)-Diphenoquinones 887

Method 12: Ring-Closure Reactions 888

Method 13: Addition of Nucleophiles to \(\omega\)-Quinones 889

Method 14: Addition of Nucleophiles to \(\rho\)-Quinones 890

Method 15: Knoevenagel Addition to \(\rho\)-Quinones 890

Method 16: Wittig Reaction of \(\rho\)-Quinones 891

Method 17: Ketene Additions to \(\rho\)-Quinones 893

Method 18: Photochemical Addition of Alkynes to \(\rho\)-Quinones 893

Method 19: Modification of \(\rho\)-Quinomethanes 894

Method 20: Condensation of Carbonyl Compounds with Anthrones 894

Method 21: Oxidation of Nitrobenzylic Carbanions 895

Keyword Index ... 901

Author Index ... 949

Abbreviations ... 1001
Volume 29:
Acetals: Hal/X and O/O, S, Se, Te

Preface

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preface</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Volume Editor’s Preface</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Table of Contents</td>
<td></td>
</tr>
</tbody>
</table>

Introduction

S. L. Warriner

1

Product Class 1: F/Hal Acetals

S. Challenger

13

Product Class 2: Hal/Hal Acetals (Hal ≠ F)

G. J. Rowlands

63

Product Class 3: Hal/O Acetals

T. Benneche

117

Product Class 4: Hal/S, Hal/Se, and Hal/Te Acetals

C. M. Diaper

193

Product Class 5: Hal/N and Hal/P Acetals

B. Leroy

251

Product Class 6: Acyclic and Semicyclic O/O Acetals

S. von Angerer and S. L. Warriner

303

Product Class 7: 1,3-Dioxetanes and 1,3-Dioxolanes

C. Cordier, S. Leach, and A. Nelson

407

Product Class 8: 1,3-Dioxanes, 1,3-Dioxepanes, and Larger-Ring O/O Acetals

C. Kouklovsky

487

Product Class 9: Spiroketalts

S. V. Ley, L.-G. Milroy, and R. M. Myers

613

Product Class 10: O/O Acetals with Functionalization Attached to the Acetal Carbon

H. Yorimitsu and K. Oshima

691

Product Class 11: OR₁/OX Acetals

P. Merino

707

Product Class 12: O/S, O/Se, and O/Te Acetals

F. Chemla, F. Ferreira, and B. Roy

801

Product Class 13: Glycosyl Halides

S. J. Gunn, S. L. Warriner, and J. W. White

889
29.14 Product Class 14: Glycosyl Sulfur, Selenium, and Tellurium Compounds
W. B. Turnbull, M. A. Fascione, and S. A. Stalford .. 923

29.15 Product Class 15: Glycosyl Oxygen Compounds
(Except Di- and Oligosaccharides)
B. Kryczka, J. Lewkowski, and A. Zawisza .. 971

29.16 Product Class 16: Glycosyl Oxygen Compounds
(Di- and Oligosaccharides)
A. V. Demchenko and C. De Meo ... 1057

Keyword Index .. 1149
Author Index .. 1203
Abbreviations .. 1281
Table of Contents

Introduction
S. L. Warriner

- Introduction ... 1

29.1 Product Class 1: F/Hal Acetals
S. Challenger

- Product Class 1: F/Hal Acetals ... 13
- Product Subclass 1: F/F Acetals ... 13
 - Synthesis of Product Subclass 1 ... 13
 - Method 1: Fluorination of Alkanes .. 13
 - Variation 1: Fluorination α to a Carbonyl Group .. 13
 - Variation 2: Fluorination at the α-Carbon of Imines and Nitriles and at the β-Carbon of Enamines .. 16
 - Variation 3: Fluorination α to a Phosphonyl or Sulfonyl Group 17
 - Method 2: Fluorodecarboxylation of Carboxylic Acids 18
 - Method 3: Synthesis from Haloalkanes ... 18
 - Method 4: Deoxofluorination of Carbonyl Compounds and Their Derivatives ... 19
 - Variation 1: Deoxofluorination of Aldehydes and Ketones 19
 - Variation 2: From 1,1-Bis(trifluoromethylsulfonyloxy) Compounds 22
 - Method 5: Fluorodesulfurization of Thioketones, Dithioacetals, or Dithioketals ... 23
 - Variation 1: By Fluorodesulfurization of Thioketones 23
 - Variation 2: By Fluorodesulfurization of Dithioacetals or Dithioketals ... 24
 - Method 6: Fluorination of C=N Compounds .. 25
 - Variation 1: By Fluorination of Diazoo Compounds 25
 - Variation 2: Fluorination of Hydrazones, Azines, Oximes, or Oxime Ethers 26
 - Variation 3: Fluorination of 2H-Azirines .. 29
 - Method 7: Synthesis from Alkenes .. 30
 - Variation 1: From 1,1-Difluoroalkanes ... 30
 - Variation 2: Synthesis of Diffurocyclopropanes 30
 - Variation 3: By Fluorination of Alkenes and Fluoroalkenes 34
 - Variation 4: By Fluorination of Alkenylboron Derivatives and Alkenylsilanes 36
 - Method 8: Synthesis from Alkyne .. 37
 - Applications of Product Subclass 1 in Organic Synthesis 38

29.1.2 Product Subclass 2: F/Cl Acetals .. 39

- Synthesis of Product Subclass 2 ... 39
 - Method 1: Halogenation of Alkanes .. 39
 - Method 2: Synthesis from gem-Dihaloalkanes 41
 - Method 3: Synthesis from C—O Compounds ... 41
 - Variation 1: Synthesis from 1,1-Bis(trifluoromethylsulfonyloxy) Compounds 41
29.1.2.1.2 Variation 2: Synthesis from α-Chlorooxiranes .. 42
29.1.2.1.4 Method 4: Synthesis from C=N Compounds .. 42
29.1.2.1.5 Method 5: Synthesis from Alkenes ... 43
29.1.2.1.5.1 Variation 1: Synthesis of 1-Chloro-1-fluorocyclopropanes 43
29.1.2.1.5.2 Variation 2: Synthesis from Haloalkenes .. 44
29.1.2.2 Applications of Product Subclass 2 in Organic Synthesis 45

29.1.3 Product Subclass 3: F/Br Acetals ... 46
29.1.3.1 Synthesis of Product Subclass 3 .. 46
29.1.3.1.1 Method 1: Synthesis from Alkanes ... 46
29.1.3.1.2 Method 2: Bromodecarboxylation of α-Fluorocarboxylic Acid Derivatives 48
29.1.3.1.3 Method 3: Synthesis from Haloalkanes by Halogen Exchange 48
29.1.3.1.4 Method 4: Halogenation of C—O Compounds .. 49
29.1.3.1.5 Method 5: Halogenation of C=N Compounds .. 49
29.1.3.1.6 Method 6: Synthesis from Alkenes ... 50
29.1.3.1.6.1 Variation 1: Synthesis of 1-Bromo-1-fluorocyclopropanes 50
29.1.3.1.6.2 Variation 2: Synthesis from Haloalkenes .. 51
29.1.3.1.7 Method 7: Fragmentation and Bromination of a 2-Deoxy-2-fluoro Carbohydrate Derivative ... 52
29.1.3.2 Applications of Product Subclass 3 in Organic Synthesis 52

29.1.4 Product Subclass 4: F/I Acetals ... 53
29.1.4.1 Synthesis of Product Subclass 4 .. 53
29.1.4.1.1 Method 1: Synthesis from Haloalkanes .. 53
29.1.4.1.2 Method 2: Halogenation of C—O Compounds .. 53
29.1.4.1.3 Method 3: Halogenation of C=N Compounds .. 54
29.1.4.1.4 Method 4: Synthesis from Alkenes ... 54
29.1.4.1.5 Method 5: Synthesis from Fluorinated Alkenes 54
29.1.4.1.6 Method 6: Fragmentation and Iodination of a 2-Deoxy-2-fluoro Carbohydrate Derivative ... 55
29.1.4.2 Applications of Product Subclass 4 in Organic Synthesis 55

29.2 Product Class 2: Hal/Hal Acetals (Hal ≠ F)
G. J. Rowlands

29.2 Product Class 2: Hal/Hal Acetals (Hal ≠ F) ... 63
29.2.1 Product Subclass 1: Cl/Cl Acetals .. 63
29.2.1.1 Synthesis of Product Subclass 1 .. 63
29.2.1.1.1 Method 1: Chlorination of Alkanes ... 63
29.2.1.1.1.1 Variation 1: α-Dichlorination of Aldehydes .. 64
29.2.1.1.1.2 Variation 2: α-Dichlorination of Ketones ... 65
29.2.1.1.1.3 Variation 3: α-Dichlorination of Imines .. 66
29.2.1.1.2 Method 2: Chlorination of the Carbonyl Group 67
29.2.1.1.3 Method 3: Chlorination of Hydrazones ... 68
29.2.1.1.4 Method 4: Synthesis from Dichloroalkanes ... 69
29.2.1.1.4.1 Variation 1: Via Dichloro(metallo)alkanes ... 69

Science of Synthesis Original Edition Volume 29
© Georg Thieme Verlag KG
Method 5: Radical Reactions of Trichloroalkanes

- Variation 1: Intermolecular Radical Reactions
- Variation 2: Intramolecular Radical Reactions

Method 6: Synthesis of gem-Dichlorocyclopropanes

- Variation 1: Synthesis from Chloroform
- Variation 2: Synthesis from Trichloroacetates
- Variation 3: Synthesis from Organomercury Carbene Precursors

Method 7: Trapping of Dichloroketene

- Variation 1: [2 + 2] Cycloaddition of Dichloroketene
- Variation 2: [3,3]-Sigmatropic Rearrangement of Ylides Derived from Dichloroketene

Method 8: Chlorination of Alkynes

Product Subclass 2: Cl/Br Acetals

- Method 1: Synthesis from Chloroalkanes
- Method 2: Synthesis from Bromo(chloro)(metallo)alkanes
- Method 3: Synthesis of gem-Bromo(chloro)cyclopropanes
 - Variation 1: Synthesis from Bromo(chloro)methane
 - Variation 2: Synthesis from Organomercury Carbene Precursors

Methods 4: Miscellaneous Methods

Product Subclass 3: Cl/I Acetals

- Method 1: Synthesis from Haloalkanes
- Method 2: Synthesis from [Chloro(iodo)methyl]lithium
- Method 3: Synthesis from α-Chloro Sulfoxides
- Method 4: Synthesis from 1,2-Halohydrins
- Method 5: Synthesis of gem-Chloro(iodo)cyclopropanes
 - Variation 1: α-Elimination from Bromoform
 - Variation 2: Synthesis from Organomercury Carbene Precursors

Product Subclass 4: Br/Br Acetals

- Method 1: Bromination of Alkanes
 - Variation 1: α-Dibromination of Carbonyl Compounds
- Method 2: Bromination of Aldehydes or Ketones
- Method 3: Bromination of Hydrazones
- Method 4: Synthesis of gem-Dibromocyclopropanes
 - Variation 1: α-Elimination from Bromoform
 - Variation 2: Synthesis from Organomercury Carbene Precursors
- Method 5: Synthesis from Dibromo(metallo)alkanes
- Method 6: Synthesis from Haloalkanes and Haloalkenes
- Method 7: Synthesis from Alkynes
- Method 8: Synthesis from Carboxylic Acids

Applications of Product Subclass 4 in Organic Synthesis

Product Subclass 5: Br/I Acetals
29.2.5.1.1 Method 1: Synthesis from Haloalkanes

- Synthesis from Haloalkanes

- Synthesis from 1,2-Haloalcohols

29.2.6 Product Subclass 6: I/I Acetals

- Synthesis of Product Subclass 6

- Method 2: Synthesis from 1,2-Haloalcohols

29.2.6.1 Method 1: Iodination of Hydrazones

- Variation 1: Oxidation of \(N\)-(tert-Butyldimethylsilyl)hydrazones with Iodine

29.2.6.2 Applications of Product Subclass 6 in Organic Synthesis

- Method 1: Formation of Alkenes

- Method 2: Cyclopropanation (The Simmons–Smith Reaction)

29.3 Product Class 3: Hal/O Acetals

29.3.1 Product Subclass 1: F/O Acetals

- Synthesis of Product Subclass 1

- Method 1: Anodic Fluorination of Ethers

- Method 2: Nucleophilic Substitution with Fluoride Ions

- Method 3: Cleavage of O/S Acetals

- Variation 1: Using Xenon Difluoride

- Variation 2: Using \(N\)-Iodosuccinimide and \(N, N\)-Diethylaminosulfur Trifluoride

- Method 4: Cleavage of O/S(O) Acetals with \(N, N\)-Diethylaminosulfur Trifluoride

- Method 5: Decarboxylation with Xenon Difluoride

- Method 6: Addition of (Benzylxylo)fluorocarbene to Acrylonitrile

- Method 7: Peracid Oxidation of Fluoroalkenes

- Method 8: Transformation of Benzyl Alcohols into (Fluoromethoxy)benzenes Using Xenon Difluoride

- Method 9: Transformation of Epoxy Alcohols into \(\alpha\)-Fluoro Ethers

29.3.2 Product Subclass 2: Cl/O Acetals

- Synthesis of Product Subclass 2

- Method 1: Chlorination of Ethers

- Method 2: Cleavage of O/O Acetals
Table of Contents

29.3.2.1.1 Variation 1: Using Boron Trichloride ... 127
29.3.2.1.2 Variation 2: Using Acid Chlorides .. 127
29.3.2.1.3 Method 3: Cleavage of O/S Acetals ... 129
29.3.2.1.3.1 Variation 1: Using Sulfuryl Chloride ... 129
29.3.2.1.3.2 Variation 2: Using N-Chlorosuccinimide and Chlorotrimethylsilane 130
29.3.2.1.4 Method 4: Cleavage of O/S(O) Acetals with Acetyl Chloride or Thionyl Chloride ... 131
29.3.2.1.5 Method 5: Decarbonylation of Alkoxy- and (Aryloxy)acetyl Chlorides 131
29.3.2.1.6 Method 6: Decarboxylative Chlorination of O-Acyl Thiohydroxamates (Barton–Borodin–Hunsdiecker Reaction) 132
29.3.2.1.7 Method 7: Desulfonation of Aryloxymethanesulfonyl Chlorides 133
29.3.2.1.8 Method 8: Addition of Hydrogen Chloride to Enol Ethers 133
29.3.2.1.9 Method 9: Reaction of Metalated Geminal Dichloroalkanes with Ketones 134
29.3.2.1.10 Method 10: Addition of Alkoxy(chloro)carbenes to Alkenes 134
29.3.2.1.11 Method 11: Addition of Carbon Tetrachloride to Enol Ethers 135
29.3.2.1.12 Method 12: Addition of Chlorine to Enol Ethers 135
29.3.2.1.13 Method 13: Addition of Arenesulfenyl Chlorides to Enol Ethers 136
29.3.2.1.14 Method 14: Oxidation of Chloroalkenes ... 137
29.3.2.1.15 Method 15: Reaction of Alcohols with Aldehydes in the Presence of a Chlorinating Agent ... 137
29.3.2.1.2 Applications of Product Subclass 2 in Organic Synthesis 139
29.3.2.2.1 Method 1: Formation of α-Metalated Ethers 139
29.3.2.2.1.1 Variation 1: Formation of α-Lithio Ethers 139
29.3.2.2.1.2 Variation 2: Formation of α-Silyl, α-Germyl, α-Stannyl, and α-Plumbyl Ethers ... 140
29.3.2.2.1.3 Variation 3: Samarium(II) Iodide Based Reactions 142
29.3.2.2.2 Method 2: Formation of O/O Acetals: Protection of Alcohols 143
29.3.2.2.3 Method 3: Formation of α-Alkoxy Sulfur Compounds 146
29.3.2.2.4 Method 4: Formation of α-Alkoxy Nitrogen Compounds 146
29.3.2.2.5 Method 5: Formation of α-Alkoxy Phosphorus Compounds 148
29.3.2.2.6 Method 6: Formation of Enol Ethers ... 148
29.3.2.2.6.1 Variation 1: Dehalogenation of 1,2-Dihalo Ethers 148
29.3.2.2.6.2 Variation 2: Carbonyl Alkenations with an Alkoxychloromethane/Titanocene(II) System ... 149
29.3.2.2.7 Method 7: Formation of Carboxyl Ylides .. 150
29.3.2.2.8 Method 8: Chloromethylation of Aromatic Compounds 151
29.3.2.2.9 Method 9: Formation of Ethers ... 151
29.3.2.2.9.1 Variation 1: Reaction with Main-Group Organometallic Compounds 151
29.3.2.2.9.2 Variation 2: Transition-Metal-Based Reactions 153
29.3.2.2.9.3 Variation 3: Reaction with Enolates or Enolate Equivalents 154
29.3.2.2.9.4 Variation 4: Addition to Alkenes ... 156
29.3.2.2.10 Method 10: Carbenes/Carbenoid Formation 157
29.3.3 Product Subclass 3: Br/O Acetals ... 159
29.3.3.1.1 Method 1: Bromination of Ethers ... 159
29.3.3.1.2 Method 2: Cleavage of α-Alkoxy Stannanes with Bromine 160

Science of Synthesis Original Edition Volume 29
© Georg Thieme Verlag KG
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.3.1.3</td>
<td>Reaction of α-Chloro Ethers with Lithium Bromide, Hydrogen Bromide, or Bromine</td>
<td>161</td>
</tr>
<tr>
<td>29.3.1.4</td>
<td>Rhodium(II)-Catalyzed Reaction of Diazodicyanobenzene with Dibromomethane</td>
<td>161</td>
</tr>
<tr>
<td>29.3.1.5</td>
<td>Cleavage of O/O Acetals</td>
<td>162</td>
</tr>
<tr>
<td>29.3.1.5.1</td>
<td>Variation 1: Using Boron Compounds</td>
<td>162</td>
</tr>
<tr>
<td>29.3.1.5.2</td>
<td>Variation 2: Using Acetyl Bromide</td>
<td>163</td>
</tr>
<tr>
<td>29.3.1.5.3</td>
<td>Variation 3: Using Bromotrimethylsilane</td>
<td>164</td>
</tr>
<tr>
<td>29.3.1.6</td>
<td>Cleavage of α-Acryloyl Ethers with Bromotrimethylsilane</td>
<td>165</td>
</tr>
<tr>
<td>29.3.1.7</td>
<td>Cleavage of O/S Acetals with Hydrogen Bromide</td>
<td>165</td>
</tr>
<tr>
<td>29.3.1.8</td>
<td>Cleavage of O/S(O) Acetals with Bromotrimethylsilane</td>
<td>166</td>
</tr>
<tr>
<td>29.3.1.9</td>
<td>Addition of Hydrogen Bromide to Enol Ethers</td>
<td>166</td>
</tr>
<tr>
<td>29.3.1.10</td>
<td>Reaction of Lithiated Geminal Dibromoalkanes with Aldehydes</td>
<td>167</td>
</tr>
<tr>
<td>29.3.1.11</td>
<td>Radical Addition to Enol Ethers</td>
<td>167</td>
</tr>
<tr>
<td>29.3.1.12</td>
<td>Bromination of Enol Ethers</td>
<td>168</td>
</tr>
<tr>
<td>29.3.1.13</td>
<td>Peracid Oxidation of Bromoalkenes</td>
<td>169</td>
</tr>
<tr>
<td>29.3.1.14</td>
<td>Reaction of Alcohols with Aldehydes in the Presence of Hydrogen Bromide</td>
<td>169</td>
</tr>
</tbody>
</table>

Applications of Product Subclass 3 in Organic Synthesis

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.3.2.1</td>
<td>Formation of α-Metalated Ethers</td>
<td>170</td>
</tr>
<tr>
<td>29.3.2.2</td>
<td>α-Halo Carbonyl Compounds by Isomerization of 2-Bromooxiranes</td>
<td>171</td>
</tr>
<tr>
<td>29.3.2.3</td>
<td>Formation of O/O Acetals</td>
<td>171</td>
</tr>
<tr>
<td>29.3.2.4</td>
<td>Formation of α-Alkoxy Sulfur Compounds</td>
<td>172</td>
</tr>
<tr>
<td>29.3.2.5</td>
<td>Formation of α-Alkoxy Nitrogen Compounds</td>
<td>173</td>
</tr>
<tr>
<td>29.3.2.6</td>
<td>Formation of α-Alkoxy Phosphorus Compounds</td>
<td>174</td>
</tr>
<tr>
<td>29.3.2.7</td>
<td>Dehydrobromination</td>
<td>174</td>
</tr>
<tr>
<td>29.3.2.8</td>
<td>Bromomethylation of Aromatic Compounds</td>
<td>175</td>
</tr>
<tr>
<td>29.3.2.9</td>
<td>Formation of Ethers</td>
<td>176</td>
</tr>
<tr>
<td>29.3.2.9.1</td>
<td>Variation 1: Reaction with Main-Group Organometallic Compounds</td>
<td>176</td>
</tr>
<tr>
<td>29.3.2.9.2</td>
<td>Variation 2: Transition-Metal-Based Reactions</td>
<td>177</td>
</tr>
<tr>
<td>29.3.2.9.3</td>
<td>Variation 3: Reaction with Enolates or Enolate Equivalents</td>
<td>178</td>
</tr>
<tr>
<td>29.3.2.10</td>
<td>Method 10: Formation of α-Alkoxy Radicals</td>
<td>179</td>
</tr>
</tbody>
</table>

Product Subclass 4: I/O Acetals

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.4.1</td>
<td>Synthesis of Product Subclass 4</td>
<td>180</td>
</tr>
<tr>
<td>29.4.1.1</td>
<td>Nucleophilic Substitution with Iodide Ions</td>
<td>180</td>
</tr>
<tr>
<td>29.4.1.2</td>
<td>Cleavage of O/O Acetals with Iodotrimethylsilane</td>
<td>180</td>
</tr>
<tr>
<td>29.4.2</td>
<td>Applications of Product Subclass 4 in Organic Synthesis</td>
<td>181</td>
</tr>
<tr>
<td>29.4.2.1</td>
<td>Formation of α-Metalated Ethers</td>
<td>181</td>
</tr>
<tr>
<td>29.4.2.2</td>
<td>Formation of α-Alkoxy Nitrogen Compounds</td>
<td>181</td>
</tr>
<tr>
<td>29.4.2.3</td>
<td>Formation of α-Alkoxy Phosphorus Compounds</td>
<td>182</td>
</tr>
<tr>
<td>29.4.2.4</td>
<td>Formation of Carbonyl Ylides</td>
<td>182</td>
</tr>
<tr>
<td>29.4.2.5</td>
<td>Formation of Ethers</td>
<td>183</td>
</tr>
<tr>
<td>29.4.2.5.1</td>
<td>Variation 1: Alkylation of a Lithioferrocene</td>
<td>183</td>
</tr>
<tr>
<td>29.4.2.5.2</td>
<td>Variation 2: Trapping of Vinylcopper Reagents</td>
<td>183</td>
</tr>
<tr>
<td>29.4.2.5.3</td>
<td>Variation 3: Reaction with Enolates</td>
<td>184</td>
</tr>
</tbody>
</table>
29.4 Product Class 4: Hal/S, Hal/Se, and Hal/Te Acetals

C. M. Diaper

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.4.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td>194</td>
</tr>
<tr>
<td>29.4.1.1.1</td>
<td>Method 1: α-Halo Sulfides by α-Halogenation of Sulfides</td>
<td>194</td>
</tr>
<tr>
<td>29.4.1.1.2</td>
<td>Method 2: α-Halo Sulfides by Substitution</td>
<td>195</td>
</tr>
<tr>
<td>29.4.1.1.2.1</td>
<td>Variation 1: Displacement of Halide from Hal/Hal Acetals by an Organothiol or an Organothiolate</td>
<td>196</td>
</tr>
<tr>
<td>29.4.1.1.2.2</td>
<td>Variation 2: Displacement of an Organosulfanyl Substituent from Dithioacetals by Halogen</td>
<td>197</td>
</tr>
<tr>
<td>29.4.1.1.3</td>
<td>Method 3: α-Halo Sulfides by Addition to Alkenes</td>
<td>198</td>
</tr>
<tr>
<td>29.4.1.1.4</td>
<td>Method 4: α-Halo Sulfides by the Addition of Organosulfenyl Halides to α-Diazo Carbonyl Compounds</td>
<td>200</td>
</tr>
<tr>
<td>29.4.1.1.5</td>
<td>Method 5: α-Halo Sulfones from Sulfoxides by Pummerer Rearrangement</td>
<td>200</td>
</tr>
<tr>
<td>29.4.1.1.6</td>
<td>Method 6: Substitution of α-Halosulfenyl Halides with Nucleophiles</td>
<td>201</td>
</tr>
<tr>
<td>29.4.1.1.7</td>
<td>Method 7: α-Halosulfenyl Halides by Addition Reactions</td>
<td>203</td>
</tr>
<tr>
<td>29.4.1.1.8</td>
<td>Method 8: α-Halosulfenyl Halides by Addition to Disulfides</td>
<td>204</td>
</tr>
<tr>
<td>29.4.1.1.2</td>
<td>α-Halo Sulfoxides</td>
<td>204</td>
</tr>
<tr>
<td>29.4.1.1.2.1</td>
<td>Method 1: α-Halo Sulfoxides by the Halogenation of Alkyl Sulfoxides</td>
<td>204</td>
</tr>
<tr>
<td>29.4.1.1.2.2</td>
<td>Method 2: Iodomethyl Sulfoxides from Chloromethyl Sulfoxides by the Finkelstein Reaction</td>
<td>205</td>
</tr>
<tr>
<td>29.4.1.1.2.3</td>
<td>Method 3: α-Halo Sulfoxides by Michael Addition to α-Halovinyl Sulfoxides</td>
<td>206</td>
</tr>
<tr>
<td>29.4.1.1.2.4</td>
<td>Method 4: Halomethyl Sulfoxides by the Addition of Diazomethane to Sulfinyl Halides</td>
<td>207</td>
</tr>
<tr>
<td>29.4.1.1.2.5</td>
<td>Method 5: α-Halo Sulfoxides by the Addition of Halogens to Vinylc Sulfoxides</td>
<td>207</td>
</tr>
<tr>
<td>29.4.1.1.2.6</td>
<td>Method 6: Oxidation of α-Halo Sulfoles</td>
<td>208</td>
</tr>
<tr>
<td>29.4.1.1.2.7</td>
<td>Method 7: Reaction of α-Halo Sulfoxide Anions with Carbon Electrophiles</td>
<td>209</td>
</tr>
<tr>
<td>29.4.1.1.2.8</td>
<td>Method 8: α-Halosulfinyl Halides by the Oxidation of α-Halosulfenyl Halides</td>
<td>211</td>
</tr>
<tr>
<td>29.4.1.1.3</td>
<td>α-Halo Sulfones and S-(α-Haloalkyl)sulfoximidates</td>
<td>211</td>
</tr>
<tr>
<td>29.4.1.1.3.1</td>
<td>Method 1: α-Halo Sulfones by the Halogenation of Sulfones</td>
<td>211</td>
</tr>
<tr>
<td>29.4.1.1.3.1.1</td>
<td>Variation 1: Direct Halogenation of Activated Sulfones</td>
<td>212</td>
</tr>
<tr>
<td>29.4.1.1.3.1.2</td>
<td>Variation 2: Halogenation of Sulfones under Basic Conditions</td>
<td>213</td>
</tr>
<tr>
<td>29.4.1.1.3.2</td>
<td>Method 2: α-Halo Sulfones by Michael Addition to Halovinyl Sulfones</td>
<td>214</td>
</tr>
<tr>
<td>29.4.1.1.3.3</td>
<td>Method 3: α-Halo Sulfones by Addition Reactions</td>
<td>215</td>
</tr>
<tr>
<td>29.4.1.1.3.4</td>
<td>Method 4: α-Halo Sulfones by the α-Oxidation of Halo Sulfides</td>
<td>216</td>
</tr>
<tr>
<td>29.4.1.1.3.4.1</td>
<td>Variation 1: Oxidation of α-Halo Sulfides</td>
<td>216</td>
</tr>
</tbody>
</table>
29.4.1.3.4 Variation 2: Oxidation of α-Halo Sulfoxides .. 217
29.4.1.3.5 Method 5: α-Halo Sulfoxides by the Reaction of α-Halo Sulfone Anions with Carbon Electrophiles .. 217
29.4.1.3.6 Method 6: S-(α-Haloalkyl)sulfoximides by the Halogenation of Sulfoximides .. 219
29.4.1.4 α-Halosulfonyl Chlorides, α-Halosulfonates, and α-Halosulfonamides 220
29.4.1.4.1 Method 1: α-Halosulfonyl Halides by Halogenation ... 220
29.4.1.4.2 Method 2: α-Halosulfonates by the Substitution of Dihalomethanes 221
29.4.1.4.3 Method 3: α-Halosulfonamides by Halogenation of Sulfonamides 222
29.4.1.4.4 Method 4: α,β-Dihalosulfonamides by the Addition of Halogens to α,β-Unsaturated Sulfonamides .. 223
29.4.1.4.5 Method 5: Reaction of α-Halosulfonamide Anions with Carbon Electrophiles .. 223
29.4.1.4.6 Method 6: Substitution of α-Halosulfonyl Halides with Heteroatom Nucleophiles .. 224
29.4.1.2 Applications of Product Subclass 1 in Organic Synthesis 225
29.4.1.2.1 Method 1: Radical Cyclizations in the Total Synthesis of Natural Products 225
29.4.1.2.2 Method 2: Protecting Group Chemistry .. 226
29.4.1.2.3 Method 3: Reactions of Hal/S Acetals with Carbon Nucleophiles 227
29.4.1.2.3.1 Variation 1: Reactions with Carbanion Nucleophiles 227
29.4.1.2.3.2 Variation 2: Lewis Acid Catalyzed Alkylations of Unsaturated Derivatives 228
29.4.1.2.4 Method 4: The Ramberg–Bäcklund Rearrangement 229
29.4.1.2.5 Method 5: Organometallic Reagents Derived from α-Halo Sulfides, Sulfoxides, and Sulfones .. 230
29.4.1.2.5.1 Variation 1: Reagents Derived from α-Chloro Sulfides 230
29.4.1.2.5.2 Variation 2: Reagents Derived from α-Halo Sulfoxides 231
29.4.1.2.5.3 Variation 3: Vicarious Nucleophilic Substitution Reactions 232
29.4.1.2.6 Method 6: The Chloromethylsulfonyloxy Group in the Inversion of Secondary Alcohols .. 233
29.4.2 Product Subclass 2: Hal/Se and Hal/Te Acetals 234
29.4.2.1 Synthesis of Product Subclass 2 .. 234
29.4.2.1.1 Method 1: α-Halo Selenides from Enolates .. 234
29.4.2.1.2 Method 2: α-Halo Selenides by Halogenation of Selenium/Chalcogen Acetals .. 235
29.4.2.1.3 Method 3: α-Halo Selenides and α-Halo Tellurides by Substitution 236
29.4.2.1.4 Method 4: α-Halo Selenides and α-Halo Tellurides by Addition of Selenenyl Halides to Diazooalkanes .. 237
29.4.2.1.5 Method 5: α-Halo Selenides by Addition Reactions 237
29.4.2.1.6 Method 6: α-Halo Selenides by Seleno-Pummerer Rearrangements 238

29.5 Product Class 5: Hal/N and Hal/P Acetals
B. Leroy

29.5 Product Class 5: Hal/N and Hal/P Acetals .. 251
29.5.1 Product Subclass 1: α-Haloamines .. 251
29.5.1 Synthesis of Product Subclass 1 ... 252
 29.5.1.1 Method 1: Halogenation of O/N and N/N Acetals 252
 29.5.1.2 Method 2: Halogenation of Enamines 253
 29.5.1.3 Method 3: Halogenation of Imines .. 253

29.5.2 Product Subclass 2: α-Haloammonium Salts 254
 29.5.2.1 Synthesis of Product Subclass 2 ... 254
 29.5.2.1.1 Method 1: Addition of Amines to 1,1-Dihaloalkanes 254
 29.5.2.1.2 Method 2: Addition of Aromatic Heterocyclic Nitrogen to Aldehydes 254

29.5.3 Product Subclass 3: α-Halo Amides, α-Halo Imides, α-Halocarbamates, and α-Halo Sulfonamides ... 255
 29.5.3.1 Synthesis of Product Subclass 3 ... 256
 29.5.3.1.1 Method 1: Radical Halogenation of Amides and Related Compounds 256
 29.5.3.1.2 Method 2: Deprotonation and Halogenation α to Nitrogen 257
 29.5.3.1.3 Method 3: Electrochemical Halogenation 258
 29.5.3.1.4 Method 4: Addition of Nucleophilic Nitrogen to 1,1-Dihaloalkanes ... 259
 29.5.3.1.5 Method 5: Halogenation of α-Hydroxy Amides and Related Compounds ... 260
 29.5.3.1.6 Method 6: Halogenation of N-Acyl O/N Acetals and Analogues 261
 29.5.3.1.7 Variation 1: Halogenation of O/N Acetals 261
 29.5.3.1.8 Variation 2: Halogenation of S/N Acetals 262
 29.5.3.1.9 Variation 3: Halogenation of N/N Acetals 263
 29.5.3.1.10 Variation 4: Halogenation of Acyl Enamines 264
 29.5.3.1.11 Variation 5: Electrophilic Halogenation 264
 29.5.3.1.12 Variation 6: Radical Halogenation ... 264
 29.5.3.1.13 Variation 7: Halogenation of Imines 265
 29.5.3.1.14 Variation 8: Addition of Acyl Halides 265
 29.5.3.1.15 Variation 9: Addition of Other Chlorocarbonyl Reagents 266

29.5.4 Product Subclass 4: α-Halonitro and Related Compounds 267
 29.5.4.1 Synthesis of Product Subclass 4 ... 267
 29.5.4.1.1 Method 1: Halogenation of Nitroalkanes 267
 29.5.4.1.2 Variation 1: Fluorination ... 267
 29.5.4.1.3 Variation 2: Chlorination, Bromination, and Iodination 268
 29.5.4.1.4 Method 2: Halogenation of Nitroalkenes 269
 29.5.4.1.5 Method 3: Oxidative Halogenation of Oximes 270
 29.5.4.1.6 Variation 1: Preparation of α-Halonitroso Compounds 270
 29.5.4.1.7 Variation 2: Preparation of α-Halonitro Compounds 271
 29.5.4.1.8 Method 4: Halogenation of Hydrazones 273
 29.5.4.1.9 Variation 1: Preparation of α-Haloazo Compounds 273
 29.5.4.1.10 Variation 2: Halogenation of Ketazines 274
 29.5.4.1.11 Method 5: Addition of Diazoolkanes to Vinyl Halides 274
 29.5.4.1.12 Method 6: Functionalization of 1-Halo-1-nitroalkanes 274
 29.5.4.1.13 Method 7: Modification of 1-Halo-1-nitroalkanes 275

29.5.5 Product Subclass 5: α-Halophosphorus(III) Compounds 276
 29.5.5.1 Synthesis of Product Subclass 5 ... 276

29.5.5.1.1 Method 1: Reaction of Alkylphosphorus(III) Compounds with Carbon Tetrahalides ... 276
29.5.5.1.2 Method 2: Addition of Phosphines to 1,1-Dihaloalkanes 278
29.5.5.1.3 Method 3: Reduction of Phosphorus(V) Derivatives 278
29.5.6 Product Subclass 6: α-Halophosphonium Salts 279
29.5.6.1 Synthesis of Product Subclass 6 ... 279
29.5.6.1.1 Method 1: Addition of Phosphines to 1,1-Dihaloalkanes 279
29.5.6.1.2 Method 2: Halogenation of α-Hydroxyphosphonium Salts 280
29.5.6.1.3 Method 3: Halogenation of Phosphonium Ylides 281
29.5.6.2 Synthesis of Product Subclass 7 ... 281
29.5.6.2.1 Method 1: Radical Halogenation .. 282
29.5.6.2.2 Method 2: Deprotonation and Halogenation α to Phosphorus 283
29.5.6.2.3 Variation 1: Addition of Phosphites ... 288
29.5.6.2.4 Variation 2: Addition of Phosphorus Trihalides 288
29.5.6.2.5 Variation 3: Fluorination of Lithium, Sodium, or Potassium Salts 283
29.5.6.2.6 Variation 4: Fluorination Using Palladium Complexes 284
29.5.6.2.7 Variation 5: Chlorination, Bromination, and Iodination 285
29.5.6.2.8 Variation 6: Halogenation of Silyl-Stabilized Carbanions 286
29.5.6.2.9 Method 3: Addition of Nucleophilic Phosphorus to 1,1-Dihaloalkanes ... 288
29.5.6.2.10 Method 4: Halogenation of α-Hydroxyphosphorus(V) Derivatives 289
29.5.6.2.11 Variation 1: Fluorination ... 289
29.5.6.2.12 Variation 2: Chlorination, Bromination, and Iodination ... 290
29.5.6.2.13 Method 5: Halogenation of Vinylphosphorus(V) Derivatives 292
29.5.6.2.14 Method 6: Addition of Halophosphorus(III) Derivatives to Carbonyl Compounds ... 292
29.5.6.2.15 Method 7: Functionalization of α-Halo Phosphorus(V) Compounds ... 293
29.5.6.2.16 Method 8: Modification of α-Haloalk-1-enylphosphorus(V) Compounds .. 294
29.5.6.2.17 Method 9: Selective Dehalogenation of α,α-Dihalophosphorus(V) Compounds .. 295

29.5.7 Product Subclass 7: α-Halophosphorus(V) Compounds 281
29.5.7.1 Synthesis of Product Subclass 7 ... 282
29.5.7.1.1 Method 1: Radical Halogenation .. 282
29.5.7.1.2 Method 2: Deprotonation and Halogenation α to Phosphorus 283
29.5.7.1.2.1 Variation 1: Fluorination of Lithium, Sodium, or Potassium Salts 283
29.5.7.1.2.2 Variation 2: Fluorination Using Palladium Complexes 284
29.5.7.1.2.3 Variation 3: Chlorination, Bromination, and Iodination 285
29.5.7.1.2.4 Variation 4: Halogenation of Silyl-Stabilized Carbanions 286
29.5.7.1.3 Method 3: Addition of Nucleophilic Phosphorus to 1,1-Dihaloalkanes ... 288
29.5.7.1.3.1 Variation 1: Addition of Phosphites ... 288
29.5.7.1.3.2 Variation 2: Addition of Phosphorus Trihalides 288
29.5.7.1.3.3 Variation 3: Fluorination of Lithium, Sodium, or Potassium Salts 283
29.5.7.1.3.4 Variation 4: Fluorination Using Palladium Complexes 284
29.5.7.1.3.5 Variation 5: Chlorination, Bromination, and Iodination ... 290
29.5.7.1.3.6 Variation 6: Halogenation of Silyl-Stabilized Carbanions 296
29.5.7.1.3.7 Method 4: Halogenation of α-Hydroxyphosphorus(V) Derivatives 289
29.5.7.1.3.8 Variation 1: Fluorination ... 289
29.5.7.1.3.9 Variation 2: Chlorination, Bromination, and Iodination ... 290
29.5.7.1.3.10 Variation 3: Chlorination, Bromination, and Iodination ... 290
29.5.7.1.3.11 Method 5: Halogenation of Vinylphosphorus(V) Derivatives 292
29.5.7.1.3.12 Method 6: Addition of Halophosphorus(III) Derivatives to Carbonyl Compounds ... 292
29.5.7.1.3.13 Method 7: Functionalization of α-Halo Phosphorus(V) Compounds ... 293
29.5.7.1.3.14 Method 8: Modification of α-Haloalk-1-enylphosphorus(V) Compounds 294
29.5.7.1.3.15 Method 9: Selective Dehalogenation of α,α-Dihalophosphorus(V) Compounds .. 295

29.6 Product Class 6: Acyclic and Semicyclic O/O Acetals
S. von Angerer and S. L. Warriner

29.6.1 Product Class 6: Acyclic and Semicyclic O/O Acetals 303
29.6.1.1 Synthesis of Product Class 6 ... 304
29.6.1.1.1 Synthesis from Compounds of Higher Oxidation State 304
29.6.1.1.1.1 Method 1: Synthesis by Reduction ... 304
29.6.1.1.1.2 Method 2: Synthesis from CH-Acidic Compounds 305
29.6.1.1.1.2.1 Variation 1: From Alkynes ... 305
29.6.1.1.1.2.2 Variation 2: From Ketones ... 306
29.6.1.1.1.2.3 Variation 3: From β-Oxo Nitriles and Related Compounds 308
29.6.1.1.1.1.3 Method 3: Synthesis from Organometallic Compounds 308
29.6.1.1.1.3 Variation 1: From Organomagnesium Compounds 308
29.6.1.1.1.3.2 Variation 2: From Organoaluminum and Organozinc Compounds 309
Table of Contents

29.6.1.3.3 Variation 3: From Organosilanes .. 310
29.6.1.4 Method 4: Synthesis from Ketenes and Ketene Acetals 311
29.6.1.5 Method 5: Synthesis from Enol Derivatives 311
29.6.1.5.1 Variation 1: From Silyl Enol Ethers 311
29.6.1.5.2 Variation 2: From Enol Ethers .. 312
29.6.1.6 Method 6: Synthesis Using Enamines 313
29.6.1.2 Synthesis from Compounds of the Same Oxidation State 313
29.6.1.2.1 Method 1: Synthesis from 1,1-Dihaloalkanes 313
29.6.1.2.1.1 Variation 1: From Alcohols 314
29.6.1.2.1.2 Variation 2: From Phenols .. 316
29.6.1.2.2 Method 2: Synthesis from Hal/|OR\(^1\) Acetals 316
29.6.1.2.2.1 Variation 1: From Alcohols 317
29.6.1.2.2.2 Variation 2: From Phenols .. 321
29.6.1.2.2.3 Variation 3: From Ketones .. 322
29.6.1.2.3 Method 3: Synthesis from Aldehydes or Ketones and Alcohols 323
29.6.1.2.3.1 Variation 1: From Alcohols without Removal of Water 323
29.6.1.2.3.2 Variation 2: From Alcohols with Removal of Water by Physical Methods 327
29.6.1.2.3.3 Variation 3: From Alcohols with Removal of Water by Chemical Means 328
29.6.1.2.3.4 Variation 4: From Alcohols and Alkylating Agents 334
29.6.1.2.4 Method 4: Synthesis from Aldehydes or Ketones and Alcohol Derivatives 336
29.6.1.2.4.1 Variation 1: From Alkoxy silanes 337
29.6.1.2.4.2 Variation 2: From Titanium or Antimony Alkoxides 337
29.6.1.2.4.3 Variation 3: From Trialkyl Orthoformates 338
29.6.1.2.4.4 Variation 4: From Other Acetals 339
29.6.1.2.4.5 Variation 5: From Dialkoxytriphenylphosphoranes 340
29.6.1.2.5 Method 5: Synthesis from Other O/O Acetals 341
29.6.1.2.5.1 Variation 1: With Other Acetals 341
29.6.1.2.5.2 Variation 2: By Exchange of Both Alkoxy Groups 341
29.6.1.2.5.3 Variation 3: By Exchange of One Alkoxy Group 342
29.6.1.2.6 Method 6: Synthesis from Acetals with Other Heteroatoms 349
29.6.1.2.6.1 Variation 1: From O/S Acetals 349
29.6.1.2.6.2 Variation 2: From S/S Acetals 351
29.6.1.2.6.3 Variation 3: From O/N Acetals 353
29.6.1.2.7 Method 7: Synthesis from Imines, Oximes, and Related Compounds 354
29.6.1.2.8 Method 8: Synthesis from Heterosubstituted Alkenes 355
29.6.1.2.8.1 Variation 1: From Haloalkenes and Alcohols 355
29.6.1.2.8.2 Variation 2: From Acyclic Enol Ethers and Alcohols 356
29.6.1.2.8.3 Variation 3: From Cyclic Enol Ethers and Alcohols 362
29.6.1.2.8.4 Variation 4: From Allenyl Enol Ethers and Alcohols 365
29.6.1.2.8.5 Variation 5: From Enol Ethers via Cycloaddition 366
29.6.1.2.8.6 Variation 6: From Aryl Ethers by Oxidation 368
29.6.1.2.8.7 Variation 7: From Enolates or Enol Esters and Alcohols 370
29.6.1.2.8.8 Variation 8: From Furans and Alcohols 371
29.6.1.2.8.9 Variation 9: From Enol Ethers with Acetals 373
29.6.1.2.8.10 Variation 10: Dimerization of Enol Ethers 374
29.6.1.3 Synthesis from Compounds of Lower Oxidation State 374
29.6.1.3.1 Method 1: Synthesis from Heterosubstituted Alkanes 374
29.6.1.3.1 Variation 1: From Alcohols and Ethers 374
29.6.1.3.2 Variation 2: From Sulfides ... 378
29.6.1.3.3 Variation 3: From Dimethyl Sulfoxide 378
29.6.1.3.4 Variation 4: From Amines and Other Nitrogen Derivatives 379
29.6.1.3.2 Variation 2: Method 2: Synthesis from Alkynes 380
29.6.1.3.2.1 Variation 1: From Alkyl- and Arylalkynes 381
29.6.1.3.2.2 Variation 2: From Vinylacetylenes 383
29.6.1.3.2.3 Variation 3: From Alkenes with Electron-Withdrawing Substituents 384
29.6.1.3.3 Variation 3: Method 3: Synthesis from Alkenes 386
29.6.1.3.3.1 Variation 1: By Oxidation with Thallium(III) Salts 386
29.6.1.3.3.2 Variation 2: By Oxidation with Molecular Oxygen 388
29.6.1.3.3.3 Variation 3: By Oxidation with Ozone 388
29.6.1.3.3.4 Variation 4: By Oxidation with Alkyl Nitrites 389
29.6.1.3.3.5 Variation 5: By Electrochemical Oxidation 389
29.6.1.3.3.6 Variation 6: By Oxidation of Benzenes 390
29.6.1.3.4 Variation 4: Method 4: Synthesis from Alkanes 392

29.7 Product Class 7: 1,3-Dioxetanes and 1,3-Dioxolanes
C. Cordier, S. Leach, and A. Nelson

29.7.1 Product Class 7: 1,3-Dioxetanes and 1,3-Dioxolanes 407
29.7.1.1 Product Subclass 1: 1,3-Dioxetanes .. 407
29.7.1.1.1 Synthesis of Product Subclass 1 ... 407
29.7.1.1.1.1 Method 1: Synthesis by Formation of Two C—O Bonds 407
29.7.1.2 Product Subclass 2: 1,3-Dioxolanes ... 408
29.7.1.2.1 Synthesis of Product Subclass 2 .. 411
29.7.1.2.1.1 Method 1: Synthesis by Formation of Two C—O Bonds 411
29.7.1.2.1.1.1 Variation 1: Reactions of Carbonyl Compounds with 1,2-Diols 411
29.7.1.2.1.1.2 Variation 2: Reactions of Acetals and Ketals with 1,2-Diols 426
29.7.1.2.1.1.3 Variation 3: Reactions of Enol Ethers with 1,2-Diols 437
29.7.1.2.1.1.4 Variation 4: Reactions of Carbonyl Compounds with 1,2-Bis(trimethylsilyl) Ethers .. 442
29.7.1.2.1.1.5 Variation 5: Reactions of Epoxides with Ketones 444
29.7.1.2.1.1.6 Variation 6: By Double Michael Addition of 1,2-Diols to Electron-Deficient Alkenes ... 447
29.7.1.2.1.1.7 Variation 7: Reaction of 1,1-Dihalo Compounds with 1,2-Diols 448
29.7.1.2.1.1.8 Variation 8: Reactions of Ketones and 2-Halo Alcohols 451
29.7.1.2.1.1.9 Variation 9: From But-2-ene-1,4-diols and Ketones 452
29.7.1.2.1.2 Method 2: Synthesis by Formation of One C—O Bond 453
29.7.1.2.1.2.1 Variation 1: From Monoprotected 1,2-Diols 453
29.7.1.2.1.2.2 Variation 2: By Oxidation of Electron-Rich Arenes and Hetarenes and Cyclization ... 456
29.7.1.2.1.2.3 Variation 3: By Cyclization of Hydroxy-Substituted Enol Ethers 458
29.7.1.2.1.2.4 Variation 4: By Intramolecular Transacetalization 459
29.7.1.2.1.2.5 Variation 5: From Stable Acyclic Hemiacetals Derived from Allylic Alcohols 459
29.7.2.6 Variation 6: By Cyclization of 2-Hydroxyalkyl Hal/O Acetals and 2-Haloalkyl Hemiacetals 460

29.7.2.13 Method 3: Exchange of Ligands on Existing Acetals 461
29.7.2.1.3.1 Variation 1: Radical Epimerization .. 461
29.7.2.1.3.2 Variation 2: Radical Reactions .. 461
29.7.2.1.3.3 Variation 3: From Metalated Dioxolanes 464
29.7.2.1.3.4 Variation 4: From Methylenedioxolanes 464
29.7.2.1.3.5 Variation 5: Cycloaddition ... 465
29.7.2.1.3.6 Variation 6: From Ortho Esters ... 466

29.7.2.2 Applications of Product Subclass 2 in Organic Synthesis 469
29.7.2.2.1 Method 1: Deprotection Reactions ... 469
29.7.2.2.1.1 Variation 1: Deprotection to Carbonyl Compounds and 1,2-Diols 469
29.7.2.2.1.2 Variation 2: Conversion into Monofunctionalized 1,2-Diols 476
29.7.2.2.2 Method 2: Chiral 1,3-Dioxolanes in Asymmetric Synthesis 477
29.7.2.2.3 Method 3: Chiral 1,3-Dioxolan-4-ones in Asymmetric Synthesis 479

29.8 Product Class 8: 1,3-Dioxanes, 1,3-Dioxepanes, and Larger-Ring O/O Acetals
C. Kouklovsky

29.8.1.1 Synthesis of Product Subclass 1 ... 491
29.8.1.1.1 Method 1: Synthesis by Formation of Two C—O Bonds 491
29.8.1.1.1.1 Variation 1: From Reactions of Carbonyl Compounds with 1,3-Diols ... 491
29.8.1.1.1.2 Variation 2: From Reactions of 1,3-Diols with Acetals or Ketals 503
29.8.1.1.1.3 Variation 3: From Reactions of Enol Ethers with 1,3-Diols 517
29.8.1.1.1.4 Variation 4: From Reactions of Carbonyl Compounds with 1,3-Diol
Bis(silyl ethers) ... 523
29.8.1.1.5 Variation 5: From Reactions of 1,3-Diols with 1,1-Dihaloalkanes 528
29.8.1.1.6 Variation 6: From Reactions of Alkenes with 1,3-Diols 530
29.8.1.1.7 Variation 7: From Reactions of Phenols and 1,3-Diketones with Aldehydes 532
29.8.1.1.8 Method 2: Synthesis by Formation of One C—O Bond 534
29.8.1.1.8.1 Variation 1: From 3-Hydroxy Hal/O Acetals 534
29.8.1.1.8.2 Variation 2: From Monoprotected 1,3-Diols 535
29.8.1.1.8.3 Variation 3: From Allylic and Homoallylic Alcohols 548
29.8.1.1.8.4 Method 3: Synthesis by Ligand Exchange 554
29.8.1.1.8.4.1 Variation 1: From Ortho Esters .. 554
29.8.1.1.8.4.2 Variation 2: From Substitution at the 4-Position of 1,3-Dioxanes ... 558
29.8.1.1.8.4.3 Variation 3: From 2-Lithio-1,3-dioxane 566
29.8.1.1.8.4.4 Variation 4: From 5-Methylene-1,3-dioxanes 567
29.8.1.1.8.4.5 Variation 5: From Reduction of Dioxins 572
29.8.1.1.8.6 Applications of Product Subclass 1 in Organic Synthesis 575
29.8.1.1.8.6.1 Method 1: Deprotection Reactions of 1,3-Dioxanes 575
29.8.1.1.8.6.2 Variation 1: Cleavage To Give Carbonyl Compounds and 1,3-Diols 576
29.8.1.2.2 Variation 2: Cleavage To Give Monoprotected 1,3-Diols .. 580
29.8.1.2.2 Method 2: Chiral 1,3-Dioxanes in Asymmetric Synthesis .. 583
29.8.1.2.2.1 Variation 1: As Chiral Reagents ... 584
29.8.1.2.2.2 Variation 2: As Chiral Auxiliaries ... 585
29.8.1.2.3 Method 3: Rearrangement of Methylene-1,3-dioxanes .. 585
29.8.1.2.3.1 Variation 1: Claisen Rearrangement ... 586
29.8.1.2.3.2 Variation 2: Ferrier Rearrangement ... 586
29.8.1.2.4 Method 4: Synthesis of Cyclic Ethers from 1,3-Dioxanes .. 587

29.8.2 Product Subclass 2: 1,3-Dioxepanes ... 587
29.8.2.1 Synthesis of Product Subclass 2 .. 588
29.8.2.1.1 Method 1: Synthesis by Formation of Two C—O Bonds ... 588
29.8.2.1.1.1 Variation 1: From Reactions of Carbonyl Compounds and Diols 588
29.8.2.1.1.2 Variation 2: From Reactions of Acetals with 1,4-Diols ... 591
29.8.2.1.1.3 Variation 3: From Reactions of 1,4-Diols with Enol Ethers 593
29.8.2.1.1.4 Variation 4: From Reactions of 1,4-Diols with 1,1-Dihaloalkanes 594
29.8.2.1.2 Method 2: Synthesis by Formation of One C—O Bond .. 595
29.8.2.1.2.1 Variation 1: From Monoprotected 1,4-Diols .. 595
29.8.2.1.2.2 Variation 2: From Homoallylic Alcohols ... 596
29.8.2.2 Applications of Product Subclass 2 in Organic Synthesis ... 597
29.8.2.2.1 Method 1: Deprotection Reactions ... 597
29.8.2.2.1.1 Variation 1: Cleavage To Give 1,4-Diols .. 597
29.8.2.2.1.2 Variation 2: Cleavage To Give Monoprotected 1,4-Diols 598

29.8.3 Product Subclass 3: Larger-Ring O/O Acetals ... 599
29.8.3.1 Synthesis of Product Subclass 3 ... 600
29.8.3.1.1 Method 1: Synthesis by Formation of Two C—O Bonds ... 600
29.8.3.1.1.1 Variation 1: From Reactions of Carbonyl Compounds with Diols 600
29.8.3.1.1.2 Variation 2: From Reactions of Acetals with Diols ... 601
29.8.3.1.1.3 Variation 3: From Reactions of Enol Ethers with Diols ... 602
29.8.3.1.1.4 Variation 4: From Reactions of Dihaloalkanes with Diols 603
29.8.3.1.1.5 Variation 5: From Reactions of Diazooalkanes with Diols 603
29.8.3.1.2 Method 2: Synthesis by Formation of One C—O Bond .. 604
29.8.3.1.3 Method 3: Synthesis by Bond Disconnection ... 605
29.8.3.2 Applications of Product Subclass 3 in Organic Synthesis ... 605
29.8.3.2.1 Method 1: Deprotection to Monoprotected Diols .. 605

29.9 Product Class 9: Spiroketals
S. V. Ley, L.-G. Milroy, and R. M. Myers

29.9 Product Class 9: Spiroketals ... 613
29.9.1 Synthesis of Product Class 9 ... 616
29.9.1.1 Synthesis by Formation of Two C—O Bonds ... 616
29.9.1.1.1 Cyclization of Dihydroxy Ketones ... 616
29.9.1.1.1.1 Method 1: Nucleophilic Addition to Aldehydes ... 617
29.9.1.1.1.1 Variation 1: Using Sulfone-Stabilized Carbanions 617
29.1.2.4.2 Variation 2: β-Lactone Ring-Opening Spirocyclization 655
29.1.2.5 Method 5: Polymer-Supported Ketal Protection 655
29.1.2 Synthesis by Formation of One C—O and One C—C Bond 657
29.1.2.1 Method 1: Carbanion Addition to Lactones 657
29.1.2.2 Method 2: Synthesis from Cyclic Vinyl Ethers 659
29.1.2.2.1 Variation 1: Acylation .. 659
29.1.2.2.2 Variation 2: Alkylation of Phenyl Sulfones 660
29.1.2.2.3 Variation 3: From Enol Ethers via Wittig Alkenation 661
29.1.2.2.4 Variation 4: From Cyclic Ether Phenyl Sulfones as Precursors 662
29.1.2.2.5 Variation 5: Metal-Catalyzed Cross Coupling 664
29.1.2.2.6 Variation 6: Sulfone Alkylation 666
29.1.2.2.7 Variation 7: Asymmetric Oxyselanylation 667
29.1.2.2.8 Method 3: Hetero-Diels–Alder Reactions 668
29.1.2.2.9 Method 4: Silyl-Modified Sakurai Reactions 669
29.1.3 Synthesis by Formation of One C—O Bond 669
29.1.3.1 Method 1: Hydroboration–Cyclization 670
29.1.3.2 Method 2: Rearrangement of Bicyclic Acetals 671
29.1.3.3 Method 3: Synthesis Using Hemiacetals Derived from Oxidation of Furans .. 671
29.1.3.4 Method 4: Intramolecular Epoxide Ring Opening 672
29.1.3.5 Method 5: Intramolecular Conjugate Addition 673
29.1.3.5.1 Variation 1: Using α,β-Unsaturated Sulfoxides 673
29.1.3.5.2 Variation 2: Using α,β-Unsaturated Ketones 674
29.1.3.6 Method 6: Ring Expansion ... 675
29.1.3.7 Method 7: Oxidative Insertion Reactions 675
29.1.4 Synthesis by Formation of One C—C Bond 676
29.1.4.1 Method 1: Norrish Type II Photochemical Reactions 676
29.1.4.2 Method 2: Synthesis from Alkylidenecarbene Complexes 676
29.1.4.3 Method 3: Stereoselective Ketal-Tethered Intramolecular Diels–Alder Reaction .. 677
29.1.4.4 Method 4: Ring-Closing Metathesis 678
29.1.5 Synthesis of Trioxadispiroketalts .. 679
29.1.5.1 Method 1: Sulfone–Lactone Coupling Reactions 680
29.1.5.2 Method 2: Radical Cyclization of Pyran Derivatives Using Hypervalent Iodine .. 680
29.1.5.3 Method 3: Acid-Catalyzed Carbonyl Cascade Process 681

29.10 Product Class 10: O/O Acetals with Functionalization Attached to the Acetal Carbon
H. Yorimitsu and K. Oshima

29.10.1 Product Subclass 1: Halogenated O/O Acetals 691

Science of Synthesis Original Edition Volume 29
© Georg Thieme Verlag KG
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Details</th>
</tr>
</thead>
</table>
| 29.10.1.1 | Synthesis of Product Subclass 1 | Method 1: Haloetherification
Variation 1: Of Alkenes
Variation 2: Of Alkynes |
| 29.10.2 | Product Subclass 2: Chalcogenated O/O Acetals | Method 1: Chalcogenoetherification
Method 2: Addition of an Alcohol to a 1,2-Dialkoxyalkene |
| 29.10.3 | Product Subclass 3: Nitrated O/O Acetals | Method 1: Addition of Alcohols to Nitroalkenes |
| 29.10.4 | Product Subclass 4: Metalated O/O Acetals | Method 1: Alkoxymercuration of Alk-1-enyl Ethers
Method 2: Nucleophilic Substitution Reactions of Halogenated O/O Acetals with a Cobalt-Centered Anion |
| 29.10.5 | Product Subclass 5: O/O Acetals with Alkenyl Functionality | Method 1: Elimination Reactions from Selanyl Acetals
Method 2: Hetero-Diels–Alder Reactions of Alka-1,3-dienyl Ethers with Carbonyl Compounds
Method 3: Mercury-Mediated Addition of Alcohols to Enynes |
| 29.10.6 | Product Subclass 6: O/O Acetals with Alkynyl Functionality | Method 1: Base-Mediated Rearrangement of gem-Dihalocyclopropyl Ethers Followed by Elimination
Method 2: Reaction of Orthoformates with Alkynylmagnesium Compounds
Method 3: Reaction of Orthoformates with Alk-1-yenes under Zinc Salt Catalysis |
| 29.10.7 | Product Subclass 7: O/O Acetals with Carbonyl Functionality | Method 1: 1,4-Addition of Alcohols to β-Halo or β-Alkoxy α,β-Unsaturated Carbonyl Compounds
Method 2: Sequential 1,4-Addition of Alcohols to Electron-Deficient Alkynes
Method 3: Reaction of Enolates or Enamines with Orthoformates |
| 29.11 | Product Class 11: OR¹/OX Acetals | P. Merino |
29.11 Product Subclass 1: OR^1/ON Acetals: Open-Chain Compounds
29.11.1 Synthesis of Product Subclass 1
29.11.1.1 Method 1: Synthesis from N—OH Compounds
29.11.1.1.1 Variation 1: From Oximes
29.11.1.1.2 Variation 2: From Hydroxylamines
29.11.1.1.3 Variation 3: From Hydroxamic Acids and Imides
29.11.1.2 Method 2: Synthesis from Diazenium Diolates
29.11.1.2 Applications of Product Subclass 1 in Organic Synthesis
29.11.1.2.1 Method 1: Use as a N—O Protecting Group
29.11.1.2.2 Method 2: Use as Nitric Oxide Releasing Compounds
29.11.2 Product Subclass 2: OR^1/ON Acetals: 5-Alkoxyisoxazoles and
-isoaxazolidines
29.11.2.1 Synthesis of Product Subclass 2
29.11.2.1.1 Method 1: Synthesis by Cycloaddition Reactions
29.11.2.1.2 Variation 1: From Nitrile Oxides
29.11.2.1.2 Variation 2: From Nitrones
29.11.2.2 Applications of Product Subclass 2 in Organic Synthesis
29.11.2.2.1 Method 1: Use as Synthetic Intermediates
29.11.3 Product Subclass 3: OR^1/ON Acetals: 6-Alkoxy-3H-1,2-oxazines and
Related Compounds
29.11.3.1 Synthesis of Product Subclass 3
29.11.3.1.1 Method 1: Synthesis from Nitroso Compounds and N—OH Derivatives
29.11.3.2 Applications of Product Subclass 3 in Organic Synthesis
29.11.3.2.1 Method 1: Use as Synthetic Intermediates
29.11.4 Product Subclass 4: OR^1/ON Acetals: 1-Aminooxy Carbohydrates and
Related Compounds
29.11.4.1 Synthesis of Product Subclass 4
29.11.4.1.1 Method 1: Glycosylation with Imides
29.11.4.1.2 Method 2: Formation of Glycosyl Nitrates
29.11.4.2 Applications of Product Subclass 4 in Organic Synthesis
29.11.4.2.1 Method 1: Synthesis of Carbohydrates
29.11.5 Product Subclass 5: OR^1/ON Acetals: 1,3,4-Dioxazolidines and Related
Cyclic Compounds
29.11.5.1 Synthesis of Product Subclass 5
29.11.5.1.1 Method 1: Synthesis from N—O Containing Compounds
29.11.5.2 Applications of Product Subclass 5 in Organic Synthesis
29.11.5.2.1 Method 1: Use as Protecting Groups
29.11.6 Product Subclass 6: OR^1/Os Acetals: 1-Alkoxysulfonates
29.11.6.1 Synthesis of Product Subclass 6
29.11.6.1.1 Method 1: Synthesis from Sulfonyl Derivatives
29.11.2 Applications of Product Subclass 6 in Organic Synthesis 758
29.11.7 Product Subclass 7: OR\(^1\)/OO Acetals: 1,2,4-Trioxolanes 760
29.11.7.1 Synthesis of Product Subclass 7 .. 760
29.11.7.1.1 Method 1: Ozonolysis .. 760
29.11.7.1.1 Variation 1: In Protic and Nonparticipating Solvents 760
29.11.7.1.2 Variation 2: In the Presence of Carbonyl Compounds 764
29.11.7.1.3 Variation 3: In Unconventional Media 767
29.11.7.1.2 Method 2: Photooxygenation 769
29.11.7.1.3 Method 3: Cyclization of Hydroperoxides 771
29.11.7.1.4 Method 4: Synthesis of Artemisinin and Related Compounds 773
29.11.7.2 Applications of Product Subclass 7 in Organic Synthesis 776
29.11.7.2.1 Method 1: Synthesis of Carbonyl Compounds 776
29.11.7.2.2 Methods 2: Other Synthetic Applications 777
29.11.8 Product Subclass 8: OR\(^1\)/OSi Acetals: Alkyl Silyl Acetals 779
29.11.8.1 Synthesis of Product Subclass 8 .. 779
29.11.8.1.1 Method 1: Direct Silylation of Alcohols 779
29.11.8.1.2 Method 2: Synthesis from Enolates and Related Compounds 781
29.11.8.1.3 Methods 3: Other Methods .. 784
29.11.8.2 Applications of Product Subclass 8 in Organic Synthesis 787
29.11.8.2.1 Method 1: Use as Protecting Groups 787
29.11.9 Product Subclass 9: OR\(^1\)/OSi Acetals: Oxasilacycles and Related Compounds .. 788
29.11.9.1 Synthesis of Product Subclass 9 .. 788
29.11.9.1.1 Method 1: Synthesis from Carbonyl Compounds 788
29.11.9.2 Applications of Product Subclass 9 in Organic Synthesis 790
29.11.9.2.1 Method 1: Synthesis of 1,3-Diols 790
29.12 Product Class 12: O/S, O/Se, and O/Te Acetals
F. Chemla, F. Ferreira, and B. Roy

29.12.1 Product Class 12: O/S, O/Se, and O/Te Acetals .. 801
29.12.1.1 Product Subclass 1: OH/SR\(^1\) Acetals 801
29.12.1.1.1 Method 1: Oxidation of 1,3-Thiazolidines 801
29.12.1.1.2 Method 2: Synthesis from OR\(^2\)/SR\(^3\) Acetals 801
29.12.1.1.3 Method 3: Synthesis from Vinyl Thioethers 802
29.12.1.1.4 Method 4: Synthesis from Aldehydes or Ketones 803
29.12.1.1.5 Method 5: Pummerer Reaction 804
29.12.1.1.6 Method 6: Synthesis from Thiolactones 804
29.12.1.2 Applications of Product Subclass 1 in Organic Synthesis 805
29.12.2 Product Subclass 2: OR\(^1\)/SH Acetals .. 806
29.12.2.1 Synthesis of Product Subclass 2 .. 801
29.12.2.1.1 Method 1: Synthesis of Carbonyl Compounds 801
29.12.2.1.2 Method 2: Synthesis from OR\(^2\)/SR\(^3\) Acetals 801
29.12.2.1.3 Method 3: Synthesis from Vinyl Thioethers 802
29.12.2.1.4 Method 4: Synthesis from Aldehydes or Ketones 803
29.12.2.1.5 Method 5: Pummerer Reaction 804
29.12.2.1.6 Method 6: Synthesis from Thiolactones 804
29.12.2.2 Applications of Product Subclass 2 in Organic Synthesis 805
Table of Contents

29.12.2.1 Synthesis of Product Subclass 2 .. 806

29.12.2.1.1 Method 1: Synthesis from Aldehydes and Ketones 806

29.12.3 Product Subclass 3: OR/SR Acetals ... 806

29.12.3.1 Synthesis of Product Subclass 3 .. 806

29.12.3.1.1 Method 1: Oxidation of Sulfides ... 806

29.12.3.1.2 Method 2: Synthesis from Ethers ... 807

29.12.3.1.1 Variation 1: From Hal/Hal Acetals ... 809

29.12.3.1.2 Variation 2: From Hal/O Acetals ... 809

29.12.3.1.3 Variation 3: From Hal/S Acetals ... 810

29.12.3.1.4 Variation 4: From O/O Acetals ... 811

29.12.3.1.5 Variation 5: From S/S Acetals ... 813

29.12.3.1.6 Variation 6: From O/S Acetals ... 814

29.12.3.1.7 Method 4: Synthesis from Vinyl Sulfides 815

29.12.3.1.8 Method 5: Synthesis from Aldehydes or Ketones 817

29.12.3.1.9 Method 6: Synthesis from Thiones .. 820

29.12.3.1.10 Method 7: Synthesis from Vinyl Ethers 821

29.12.3.1.11 Method 8: Synthesis from Thionolactones 824

29.12.3.1.12 Method 9: Synthesis from Oxathioliun Salts 825

29.12.3.1.13 Method 10: Synthesis through Cycloaddition Reactions 825

29.12.3.1.14 Variation 1: From Thiiones through Dipolar Cycloadditions 826

29.12.3.1.15 Variation 2: From Thioketones through [4 + 2] Cycloadditions 826

29.12.3.1.16 Variation 3: From Vinyl Sulfides by Cycloaddition Reactions 827

29.12.3.1.17 Variation 4: From 2-(Alkylsulfonyl)- or 2-(Arylsulfonylfurans through 829

Cycloadditions ... 829

29.12.3.1.18 Method 11: Synthesis via the Pummerer Reaction 830

29.12.3.1.19 Method 12: Metalation of OR/SR Acetals 836

29.12.3.1.20 Method 13: Synthesis from Metalated OR/SR Acetals 838

29.12.3.1.21 Method 14: Reduction of OR/SOR Acetals Using Tebbe’s Reagent 839

29.12.3.2 Applications of Product Subclass 3 in Organic Synthesis 839

29.12.4 Product Subclass 4: OR/SOR Acetals .. 844

29.12.4.1 Synthesis of Product Subclass 4 ... 844

29.12.4.1.1 Method 1: Oxidation of OR/SOR Acetals 844

29.12.5 Product Subclass 5: OH/SO Acetals ... 846

29.12.5.1 Synthesis of Product Subclass 5 ... 846

29.12.5.1.1 Method 1: Synthesis from Aldehydes or Ketones 847

29.12.5.1.2 Method 2: [4 + 1]-Cycloaddition Reactions 847

29.12.6 Product Subclass 6: OR/SO Acetals ... 847

29.12.6.1 Synthesis of Product Subclass 6 ... 848

29.12.6.1.1 Method 1: Synthesis from OH/SO Acetals 848

29.12.6.1.2 Method 2: Synthesis from Hal/OR, Hal/SO Acetals, or OR/O Acetals 849

29.12.6.1.2.1 Variation 1: From Hal/OR Acetals 849

29.12.6.1.2.2 Variation 2: From Hal/SO Acetals 849

29.12.6.1.2.3 Variation 3: From OR/O Acetals 850
Method 3: Synthesis from Unsaturated Sulfones

Method 4: Synthesis from Enol Ethers

Method 5: Synthesis from OR1/SR2 Acetals by Oxidation

Method 6: Synthesis by [3 + 2]-Cycloaddition Reactions

Method 7: Synthesis by Carbene Insertions

Method 8: Metalation of OR1/SSR2 Acetals

Method 9: Reactions of Metalated OR1/SSR2 Acetals

Variation 1: With Alkylating Agents

Variation 2: With Carbonyl Compounds

Variation 3: With Acid Derivatives

Applications of Product Subclass 6 in Organic Synthesis

Product Subclass 7: OR1/SeR2 Acetals

Synthesis of Product Subclass 7

Method 1: Oxidation of Selenides

Method 2: Synthesis from Ethers

Method 3: Synthesis from Hal/O, Hal/Se, or O/O Acetals

Variation 1: From Hal/OR1 Acetals

Variation 2: From Hal/SeR2 Acetals

Variation 3: From O/O Acetals

Method 4: Synthesis from Vinyl Ethers

Method 5: Synthesis by Cycloaddition Reactions

Variation 1: From Tungsten-Coordinated Selenoaldehydes by [2 + 2] Cycloaddition

Method 6: Synthesis from Selenoxides by Seleno-Pummerer-Type Reaction

Method 7: Metalation of OR1/SeR2 Acetals

Method 8: Synthesis from Organometallic Compounds

Applications of Product Subclass 7 in Organic Synthesis

Product Class 13: Glycosyl Halides

Synthesis of Product Subclass 1

Method 1: Synthesis from Hemiacetals

Method 2: Synthesis from O-Acyl Glycosides

Method 3: Synthesis from Other O-Glycosides

Method 4: Synthesis from Thio-, Seleno-, and Telluroglycosides

Method 5: Synthesis with Migration

Method 6: Synthesis from Other Glycosyl Halides

Method 7: Synthesis from Glycals

Applications of Product Subclass 1 in Organic Synthesis

Product Subclass 2: Glycosyl Chlorides

Synthesis of Product Subclass 2
29.13.2.1 Method 1: Synthesis from Hemiacetals 899
29.13.2.1.2 Method 2: Synthesis from O-Acyl Glycosides 900
29.13.2.1.2.1 Variation 1: Synthesis Using Dichloromethyl Methyl Ether 901
29.13.2.1.2.2 Variation 2: Synthesis Using Hydrogen Chloride 902
29.13.2.1.2.3 Variation 3: Synthesis Using Lewis Acids or Chlorinating Agents 903
29.13.2.1.3 Method 3: Synthesis from O-Alkyl Glycosides 904
29.13.2.1.4 Method 4: Synthesis from Thioglycosides 905
29.13.2.1.5 Method 5: Synthesis from Other Glycosyl Halides 907
29.13.2.1.6 Method 6: Synthesis from Glycals 908

29.13.3 **Product Subclass 3: Glycosyl Bromides** 908
29.13.3.1 Synthesis of Product Subclass 3 908
29.13.3.1.1 Method 1: Synthesis from Hemiacetals 908
29.13.3.1.2 Method 2: Synthesis from O-Acyl Glycosides 909
29.13.3.1.3 Method 3: Synthesis from O-Glycosides 912
29.13.3.1.4 Method 4: Synthesis from Thio-, Seleno-, and Telluroglycosides 914
29.13.3.1.5 Method 5: Synthesis from Glycals 915

29.13.4 **Product Subclass 4: Glycosyl Iodides** 916
29.13.4.1 Synthesis of Product Subclass 4 916
29.13.4.1.1 Method 1: Synthesis from O-Acyl Glycosides 916
29.13.4.1.2 Methods 2: Miscellaneous Methods 917

29.14 **Product Class 14: Glycosyl Sulfur, Selenium, and Tellurium Compounds**
W. B. Turnbull, M. A. Fascione, and S. A. Stalford

29.14 **Product Class 14: Glycosyl Sulfur, Selenium, and Tellurium Compounds** ··· 923
29.14.1 **Product Subclass 1: Glycosyl Thiols, Glycosyl Selenols, and Glycosyl Tellurols** ... 923
29.14.1.1 Synthesis of Product Subclass 1 924
29.14.1.1.1 Method 1: Formation of the S—H Bond by Substitution of Metals 924
29.14.1.1.4 Method 4: Reduction of Dichalcogenides 926
29.14.2 **Product Subclass 2: O-Alkyl S-Glycosyl Dithiocarbonates and S-Glycosyl N,N-Dialkylidithiocarbamates** ... 927
29.14.2.1 Synthesis of Product Subclass 2 927
29.14.3 **Product Subclass 3: Glycosyl Isothiouronium and Isoselenouronium Salts** 928
29.14.3.1 Synthesis of Product Subclass 3 928

Product Subclass 4: Glycosyl Thioesters and Selenoesters 930

Method 1: Formation of the Glycosyl—Sulfur/Selenium Bond by Substitution of Halides .. 930

Method 2: Formation of the Acyl—Sulfur/Selenium Bond by Substitution of Carbon .. 931

Product Subclass 5: 4,5-Dihydroglycopyranos[2,1-d]-1,3-thiazoles 932

Synthesis of Product Subclass 5 .. 932

Method 1: Intramolecular Substitution of Oxygen by a Thioacetamido Group .. 932

Product Subclass 6: Glycosyl Sulfones .. 933

Synthesis of Product Subclass 6 .. 933

Method 1: Oxidation of Thioglycosides .. 933

Product Subclass 7: Glycosyl Sulfoxides and Selenoxides .. 934

Synthesis of Product Subclass 7 .. 934

Method 1: Oxidation of Thioglycosides and Selenoglycosides 934

Method 2: Substitution of Alkyl with Alkenyl Substituents .. 936

Product Subclass 8: Glycosylsulfimides .. 937

Synthesis of Product Subclass 8 .. 937

Method 1: Oxidation of Thioglycosides with Chloramine-T .. 937

Product Subclass 9: Alkyl/Aryl Thioglycosides, Selenoglycosides, and Telluroglycosides .. 938

Synthesis of Product Subclass 9 .. 938

Method 1: Formation of the S—Aglycone Bond by Substitution of Hydrogen .. 939

Variation 1: Reactions with Aryl Fluorides .. 939

Variation 2: Palladium(0)-Catalyzed Allylation .. 939

Variation 3: From Alkyl Alcohols by the Mitsunobu Reaction .. 940

Method 2: Formation of the S/Se—Aglycone Bond by Substitution of Carbon .. 941

Method 3: Formation of the S/Se/Te—Aglycone Bond by Reduction of Dichalcogenides and Alklylation of the Products In Situ .. 943

Method 4: Formation of the S/Se/Te—Aglycone Bond by Additions to Alkenes .. 943

Variation 1: Michael-Type Conjugate Addition .. 943

Variation 2: Free-Radical Additions .. 944

Method 5: Formation of the Glycosyl—S/Se/Te Bond by Substitution of Halides .. 945
Variation 1: With Thiols and Selenols under Biphasic Conditions

Variation 2: With (Alkylsulfanyl)- and (Arylsulfanyl)tributylstannanes and Trimethylsilanes

Variation 3: With Reduction of Dichalcogenides In Situ

Variation 1: Reactions of Reducing Sugars with Tertiary Alkanethiols in 90% Trifluoroacetic Acid

Variation 2: Reactions of Glycosyl Esters or Thioesters in the Presence of Lewis Acids

Variation 3: Reactions of O-Glycosylphosphine Oxides Generated In Situ

Method 7: Formation of the Glycosyl—S/Se/Te Bond by Addition to Glycals

Variation 1: Via 1,2-Anhydroglycopyranoses

Variation 2: Azidophenylselanylation

Product Subclass 10: Glycosylsulfenyl Halides

Synthesis of Product Subclass 10

Method 1: Formation of the Sulfur—Halogen Bond by Substitution of Carbon

Product Subclass 11: Glycosylsulfonates and Glycosylsulfonamides

Synthesis of Product Subclass 11

Method 1: Oxidation of 4,5-Dihydroglycopyranos[2,1-d]-1,3-thiazoles and Thioacetates

Product Subclass 12: S-Glycosyl/Alkyl Glycosylthiosulfonates and S-Glycosyl Alkane-/Arene-/Glycosylthiosulfonates

Synthesis of Product Subclass 12

Method 1: Formation of the Glycosyl—Sulfur Bond by Displacement of Halides

Method 2: Formation of the S—S Bond: Reactions between Glycosylsulfenyl Bromides and Water

Method 3: Oxidation of Glycosyl Disulfides

Product Subclass 13: Glycosyl Dichalcogenides

Synthesis of Product Subclass 13

Method 1: Air Oxidation of Thiols, Selenols, and Tellurols

Method 2: Reactions of Sulfonyl/Seleneny1 Halides with Thiols/Thiolates

Method 3: Substitution of Thiosulfonates

Method 4: Reductive Elimination of Tungsten/Molybdenum Disulfides

Method 5: Dichalcogenide Exchange

Product Subclass 14: Glycosylsulfinamides and Glycosylsulfonamides

Synthesis of Product Subclass 14

Method 1: Oxidation of Glycosylsulfenamides

Product Subclass 15: Glycosylsulfenamides
Method 1: Substitution of Halide Ion from Glycosylselenenyl Halides Generated In Situ ... 963
Method 2: Substitution of Sulfur in Disulfides and Thiosulfonates 964
Product Subclass 16: O,O-Dialkyl S-Se-Te-Glycosyl Phosphorothioates/ selenoates/-telluroates/-thioselenoates/-dithioates 964
Synthesis of Product Subclass 16 .. 964
Method 1: Formation of the Glycosyl—S/Se/Te Bond 964
Method 2: Formation of the S/Se/Te—P Bond 965

Product Class 15: Glycosyl Oxygen Compounds
(Except Di- and Oligosaccharides)
B. Kryczka, J. Lewkowski, and A. Zawisza

Product Subclass 1: 1-O-Methyl Glycosides 972
Synthesis of Product Subclass 1 .. 972
Method 1: Synthesis from Free Sugars 972
Method 2: Synthesis from Glycosyl Halides 973
Method 3: Synthesis from 1-O-Acetyl Glycosides 975
Method 4: Synthesis from 1,2-Epoxides 976
Method 5: Synthesis from Glycals ... 976
Method 6: Synthesis from 1-Thioglycosides 977
Method 7: Synthesis from 1-Phosphoramidates 978
Method 8: Synthesis from 1-Selenopyranoses 979
Applications of Product Subclass 1 in Organic Synthesis 979
Method 1: Hydrolysis ... 979
Variation 1: Acid Hydrolysis ... 979
Variation 2: Enzymatic Hydrolysis .. 980
Method 2: Conversion of Methyl Glycosides into Glycosyl Halides 981
Method 3: Thiolysis of 1-O-Methyl Glycosides 981
Method 4: Transglycosidation ... 981

Product Subclass 2: 1-O-Nitro Glycosides 982
Synthesis of Product Subclass 2 .. 982
Method 1: Nitrification of 1,2-Deoxy Pyranoses with Ammonium Cerium(IV) Nitrate ... 982
Method 2: Nitrification of 1-Bromo Pyranoses with Silver(I) Nitrate 984
Applications of Product Subclass 2 in Organic Synthesis 984
Method 1: 1-O-Alkylation of 1-O-Nitro Glycosides 984
Method 2: 1-O-Acetylation of 1-O-Nitro Glycosides 985
Method 3: 1-Halogenation of 1-Thioglycosides 986
Method 4: 1-O-Phosphorylation of 1-O-Nitro Glycosides 987
Method 5: 1-O-Denitration of 1-O-Nitro Glycosides 988
Method 6: Formation of 1-S-Glycosides from Azido Nitrates 988
29.15.3 Product Subclass 3: 1-O-Acetyl Glycosides .. 989

29.15.3.1 Synthesis of Product Subclass 3 .. 989

29.15.3.1.1 Method 1: Acetylation of Pyranoses with Acetic Anhydride 989

29.15.3.1.1.1 Variation 1: O-Acetylation of 1-Hydroxy Pyranoses 989

29.15.3.1.1.2 Variation 2: Acetylation of 1-O-Methyl Pyranoses 990

29.15.3.1.2 Method 2: Acetylation of 1-Halo Pyranoses with Metal Acetates 991

29.15.3.1.3 Method 3: Acetylation of 1-O-Nitro Glycosides 991

29.15.3.2 Applications of Product Subclass 3 in Organic Synthesis 992

29.15.3.2.1 Method 1: Hydrolysis of 1-O-Acetyl Glycosides 992

29.15.3.2.2 Method 2: 1-Halogenation of 1-O-Acetyl Glycosides 992

29.15.3.2.3 Method 3: 1-O-Alkylation/Arylation of 1-O-Acetyl Glycosides 993

29.15.3.2.3.1 Variation 1: Formation of 1-O-Phenyl Glycosides 993

29.15.3.2.3.2 Variation 2: Formation of 1-O-Allyl Glycosides 994

29.15.3.2.4 Method 4: Synthesis of 1-Thioglycosides from 1-O-Acetyl Glycosides 995

29.15.3.2.5 Method 5: Synthesis of N-Glycosides from 1-O-Acetyl Glycosides 996

29.15.3.2.6 Method 6: Synthesis of C-Glycosides from 1-O-Acetyl Glycosides 997

29.15.3.2.7 Method 7: Synthesis of 1,2-Ortho Esters from 1-O-Acetyl Glycosides 997

29.15.3.2.8 Method 8: Cyclization Reactions .. 998

29.15.3.2.9 Method 9: Formation of 1-Azido Pyranoses 999

29.15.3.2.10 Method 10: Synthesis of 1-Selenopyranoses from 1-O-Acetyl Glycosides 1000

29.15.4 Product Subclass 4: 1-O-Vinyl Glycosides 1000

29.15.4.1 Synthesis of Product Subclass 4 .. 1000

29.15.4.1.1 Method 1: Transetherification and Related Reactions 1001

29.15.4.1.2 Method 2: Reactions of Pyranoses with Organometallic Vinyl Group Carriers .. 1002

29.15.4.1.3 Method 3: Isomerization of 1-O-Allyl Glycosides 1003

29.15.4.2 Applications of Product Subclass 4 in Organic Synthesis 1003

29.15.4.2.1 Method 1: Additions to the Vinylic Double Bond 1003

29.15.4.2.2 Method 2: Substitution Reactions Using the Oxyvinyl Unit as a Leaving Group .. 1004

29.15.5 Product Subclass 5: 1-O-Allyl Glycosides 1004

29.15.5.1 Synthesis of Product Subclass 5 .. 1004

29.15.5.1.1 Method 1: Reactions of Free Pyranoses 1004

29.15.5.1.2 Method 2: Reactions of 1-Halo Pyranoses with Allyl Alcohol 1005

29.15.5.1.3 Method 3: Reactions of 1-O-Trichloroacetimidyl Pyranoses with Allyl Alcohol .. 1006

29.15.5.1.4 Method 4: Reactions of 1-Azido Pyranoses with Allyl Alcohol 1007

29.15.5.1.5 Method 5: Reactions of 1,3-Dioxolanes 1008

29.15.5.1.6 Method 6: Reactions of 1,6-Anhydro Pyranoses with Allyl Alcohol Derivatives .. 1008

29.15.5.1.7 Method 7: Reactions of Dihydrooxazole Derivatives 1009

29.15.5.1.8 Method 8: Alkenylation of Free Pyranoses in the Presence of Palladium(0) Complexes .. 1009

29.15.5.2 Applications of Product Subclass 5 in Organic Synthesis 1010
<table>
<thead>
<tr>
<th>Page</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1010</td>
<td>Method 1:</td>
<td>Hydrogenation of the Double Bond of an Allyl Group</td>
</tr>
<tr>
<td>1010</td>
<td>Method 2:</td>
<td>Removal of the Allyl Group and the Synthesis of 1-Hydroxy Pyranoses</td>
</tr>
<tr>
<td>1011</td>
<td>Method 3:</td>
<td>Other Transformations</td>
</tr>
<tr>
<td>1013</td>
<td>Product Subclass 6:</td>
<td>1-O-Phenyl Glycosides</td>
</tr>
<tr>
<td>1013</td>
<td>Method 1:</td>
<td>Reactions of 1-Hydroxy Pyranoses with Phenols</td>
</tr>
<tr>
<td>1014</td>
<td>Method 2:</td>
<td>Reactions of 1-Halo Pyranoses with Phenol</td>
</tr>
<tr>
<td>1015</td>
<td>Method 3:</td>
<td>Reactions of 1-O-Acetyl Pyranoses with Phenoxides</td>
</tr>
<tr>
<td>1016</td>
<td>Method 4:</td>
<td>Reactions of 1,2-Anhydro Pyranoses with Phenols</td>
</tr>
<tr>
<td>1017</td>
<td>Method 5:</td>
<td>Reactions of 1,6-Lactones with Either Phenol or Trimethylsilyl Phenoxide</td>
</tr>
<tr>
<td>1017</td>
<td>Method 6:</td>
<td>Reactions of 1-O-Silyl Pyranoses with Silyl Ethers</td>
</tr>
<tr>
<td>1018</td>
<td>Applications of Product Subclass 6 in Organic Synthesis</td>
<td></td>
</tr>
<tr>
<td>1018</td>
<td>Method 1:</td>
<td>Hydrolysis of 1-O-Phenyl Glycosides</td>
</tr>
<tr>
<td>1018</td>
<td>Method 2:</td>
<td>Formation of 1,6-Anhydro Pyranoses</td>
</tr>
<tr>
<td>1019</td>
<td>Method 3:</td>
<td>Substitution Reactions of the Phenyl Group</td>
</tr>
<tr>
<td>1019</td>
<td>Method 4:</td>
<td>Transglycosidation</td>
</tr>
<tr>
<td>1020</td>
<td>Product Subclass 7:</td>
<td>1-O-Pent-4-enyl Glycosides</td>
</tr>
<tr>
<td>1020</td>
<td>Method 1:</td>
<td>Reactions of Pyranoses with Pent-4-en-1-ol</td>
</tr>
<tr>
<td>1022</td>
<td>Method 2:</td>
<td>Reactions of 1-O-Acetyl Pyranoses with Pent-4-en-1-ol</td>
</tr>
<tr>
<td>1023</td>
<td>Method 3:</td>
<td>Reactions of 1-Halo Pyranoses with Pent-4-en-1-ol</td>
</tr>
<tr>
<td>1023</td>
<td>Method 4:</td>
<td>Reactions of 2-Deoxy Pyranoses with Pent-4-en-1-ol</td>
</tr>
<tr>
<td>1024</td>
<td>Method 5:</td>
<td>Reactions of 1-O-Nitro Pyranoses with Pent-4-en-1-ol</td>
</tr>
<tr>
<td>1024</td>
<td>Method 6:</td>
<td>Reactions of 1-O-Trichloroacetimidyl Pyranoses with Pent-4-en-1-ol</td>
</tr>
<tr>
<td>1025</td>
<td>Applications of Product Subclass 7 in Organic Synthesis</td>
<td></td>
</tr>
<tr>
<td>1025</td>
<td>Method 1:</td>
<td>Substitutions in which the Pent-4-enyloxy Unit Acts as a Leaving Group</td>
</tr>
<tr>
<td>1026</td>
<td>Variation 1:</td>
<td>Formation of Disaccharides</td>
</tr>
<tr>
<td>1026</td>
<td>Variation 2:</td>
<td>Miscellaneous Reactions</td>
</tr>
<tr>
<td>1027</td>
<td>Method 2:</td>
<td>Reactions at the Double Bond of 1-O-Pent-4-enyl Glycosides</td>
</tr>
<tr>
<td>1027</td>
<td>Product Subclass 8:</td>
<td>1-O-Trichloroacetimidyl Glycosides</td>
</tr>
<tr>
<td>1027</td>
<td>Synthesis of Product Subclass 8</td>
<td></td>
</tr>
<tr>
<td>1027</td>
<td>Method 1:</td>
<td>Reactions of 1-Hydroxy Pyranoses with Trichloroacetonitrile</td>
</tr>
<tr>
<td>1028</td>
<td>Method 2:</td>
<td>Reactions of 1-O-Acetyl Pyranoses with Trichloroacetonitrile</td>
</tr>
<tr>
<td>1029</td>
<td>Method 3:</td>
<td>Reactions of 1-Thioglycosides with Trichloroacetonitrile</td>
</tr>
<tr>
<td>1030</td>
<td>Applications of Product Subclass 8 in Organic Synthesis</td>
<td></td>
</tr>
<tr>
<td>1030</td>
<td>Method 1:</td>
<td>Reactions with Alcohols</td>
</tr>
<tr>
<td>1031</td>
<td>Method 2:</td>
<td>Reactions with Phenols</td>
</tr>
<tr>
<td>1032</td>
<td>Method 3:</td>
<td>Reactions with Phosphoric Acid Derivatives</td>
</tr>
<tr>
<td>1033</td>
<td>Method 4:</td>
<td>Reactions with Silyl Enol Ethers</td>
</tr>
</tbody>
</table>
29.15.8.2.5 Method 5: Reactions with Thiols ... 1033

29.15.9 **Product Subclass 9: 1,2-O-Methylene Pyranoses** 1033

29.15.9.1 Synthesis of Product Subclass 9 .. 1033

29.15.9.1.1 Method 1: Synthesis from Pyranoses 1033

29.15.9.1.2 Method 2: Synthesis from 1-Halo-2-O-acyl Pyranoses 1034

29.15.9.1.3 Method 3: Synthesis from 3,4,6-Tri-O-acetyl-2-O-(alkoxycarbonyl)-
α-D-glucopyranosyl Bromides ... 1036

29.15.9.1.4 Method 4: Synthesis from 1,2-Unsaturated Pyranoses 1037

29.15.9.1.5 Method 5: Synthesis from 1-O-Trichloroacetimidyl Pyranoses 1037

29.15.9.1.6 Method 6: Synthesis from Glycosyl Phosphites 1038

29.15.9.2 Applications of Product Subclass 9 in Organic Synthesis 1039

29.15.9.2.1 Method 1: Cleavage of 1,2-O-Methylene Pyranoses 1039

29.15.9.2.1.1 Variation 1: Formation of 1-Hydroxy Pyranoses 1039

29.15.9.2.1.2 Variation 2: Formation of 1-O-Acetyl Pyranoses 1040

29.15.9.2.1.3 Variation 3: Reactions with Carboxylic Acids 1040

29.15.9.2.1.4 Variation 4: Formation of 1-Halo Pyranoses 1041

29.15.9.2.1.5 Variation 5: Formation of 1-Cyano Pyranoses 1041

29.15.9.2.1.6 Variation 6: Formation of 1-Azido Pyranoses 1042

29.15.9.2.1.7 Variation 7: Formation of 1-Thioglycosides 1042

29.16 **Product Class 16: Glycosyl Oxygen Compounds**

(Di- and Oligosaccharides)

A. V. Demchenko and C. De Meo

29.16.1 **Product Subclass 1: Disaccharides** .. 1057

29.16.1.1 Synthesis of Product Subclass 1 .. 1059

29.16.1.1.1 Method 1: Synthesis from Anomeric Halides 1059

29.16.1.1.1.1 Variation 1: From Fluorides ... 1059

29.16.1.1.1.2 Variation 2: From Chlorides and Bromides 1060

29.16.1.1.1.3 Variation 3: From Iodides .. 1064

29.16.1.1.2 Method 2: Synthesis from 1-Oxygen-Substituted Derivatives 1064

29.16.1.1.2.1 Variation 1: From Hemiacetics .. 1064

29.16.1.1.2.2 Variation 2: From O-Acyl, O-Carbonyl, and Related Compounds 1067

29.16.1.1.2.3 Variation 3: From O-Imidates ... 1068

29.16.1.1.2.4 Variation 4: From Phosphites, Phosphates, and Other O—P Derivatives .. 1070

29.16.1.1.2.5 Variation 5: From O-Sulfonyl Derivatives 1073

29.16.1.1.2.6 Variation 6: By O-Transglycosidation 1073

29.16.1.1.3 Method 3: Synthesis from 1-Sulfur-Substituted Derivatives 1077

29.16.1.1.3.1 Variation 1: From Alkylsulfanyl and Arylsulfanyl Glycosides
(Thioglycosides) ... 1077

29.16.1.1.3.2 Variation 2: From Thiimidates ... 1081

29.16.1.1.3.3 Variation 3: From Sulfoxides, Sulfinimides, and Sulfoines 1083

29.16.1.1.3.4 Variation 4: From Xanthates and Related Derivatives 1084
Volume 30:
Acetals: O/N, S/S, S/N, and N/N and Higher Heteroatom Analogues

Preface ... V
Table of Contents .. IX

Introduction
J. Otera .. 1

30.1 Product Class 1: O,N-Acetals

30.1.1 Product Subclass 1: Acyclic O,N-Acetals
C. Kibayashi and N. Yamazaki 7

30.1.2 Product Subclass 2: Cyclic O,N-Acetals
C. Kibayashi and N. Yamazaki 21

30.1.3 Product Subclass 3: Carbohydrate Derivatives (Including Nucleosides)
H. Yamada ... 47

30.2 Product Class 2: O,P- and S,P-Acetals
M. Yamashita ... 83

30.3 Product Class 3: S,S-Acetals
T.-Y. Luh and M.-k. Leung .. 111

30.3.1 Product Subclass 1: Acyclic S,S-Acetals
T. Takeda and A. Tsubouchi .. 119

30.3.2 Product Subclass 2: 1,3-Dithietanes
T.-Y. Luh and M.-k. Leung .. 203

30.3.3 Product Subclass 3: 1,3-Dithiolanes
M.-k. Leung and T.-Y. Luh .. 221

30.3.4 Product Subclass 4: 1,3-Dithianes
M. Nakata ... 351

30.3.5 Product Subclass 5: 1,3-Dithiepanes
M. Nakata ... 435

30.3.6 Product Subclass 6: Acyclic and Cyclic S,S-Acetal S-Oxides and S,S-Dioxides
K. Ogura ... 447
30.3.7 Deprotection of S,S-Acetals
H. Firouzabadi and N. Iranpoor 505

30.4 Product Class 4: S,N-Acetals (α-Amino Sulfur Derivatives)
C. Kibayashi and N. Yamazaki .. 587

30.5 Product Class 5: Selenium- and Tellurium-Containing Acetals
T. Murai and M. Yoshimatsu ... 597

30.6 Product Class 6: N,N-Acetals
C. Kibayashi and N. Yamazaki .. 639

30.7 Product Class 7: N,P- and P,P-Acetals
M. Yamashita .. 649

Keyword Index .. 681

Author Index .. 765

Abbreviations .. 795
Table of Contents

Introduction
J. Otera

30.1
Product Class 1: O,N-Acetals
C. Kibayashi and N. Yamazaki

30.1.1 Product Subclass 1: Acyclic O,N-Acetals
C. Kibayashi and N. Yamazaki

30.1.2
Product Subclass 2: Cyclic O,N-Acetals
C. Kibayashi and N. Yamazaki

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>30.1 Product Class 1: O,N-Acetals</td>
<td></td>
</tr>
<tr>
<td>30.1.1 Product Subclass 1: Acyclic O,N-Acetals</td>
<td>7</td>
</tr>
<tr>
<td>30.1.1.1 Synthesis of Product Subclass 1</td>
<td>8</td>
</tr>
<tr>
<td>30.1.1.1.1 Method 1: Addition to Imine Bonds</td>
<td>8</td>
</tr>
<tr>
<td>30.1.1.1.2 Method 2: Addition to Carbonyl Bonds</td>
<td>9</td>
</tr>
<tr>
<td>30.1.1.2.1 Variation 1: Addition of Amines to Carbonyl Bonds</td>
<td>9</td>
</tr>
<tr>
<td>30.1.1.2.2 Variation 2: Addition of Carbanions to Carbonyl Bonds</td>
<td>10</td>
</tr>
<tr>
<td>30.1.1.2.3 Variation 3: Addition of Hydrides to Carbonyl Bonds</td>
<td>10</td>
</tr>
<tr>
<td>30.1.1.3 Method 3: Transacetalization Reactions</td>
<td>11</td>
</tr>
<tr>
<td>30.1.1.4 Methods 4: Miscellaneous Syntheses</td>
<td>12</td>
</tr>
<tr>
<td>30.1.1.2 Applications of Product Subclass 1 in Organic Synthesis</td>
<td>14</td>
</tr>
<tr>
<td>30.1.1.2.1 Method 1: Preparation of Acyclic Compounds via C–C Bond Formation with Cleavage of a C–O Bond</td>
<td>14</td>
</tr>
<tr>
<td>30.1.1.2.2 Method 2: Preparation of Cyclic Compounds via C–C Bond Formation with Cleavage of a C–O Bond</td>
<td>16</td>
</tr>
<tr>
<td>30.1.1.2.3 Methods 3: Miscellaneous Transformations</td>
<td>17</td>
</tr>
<tr>
<td>30.1.2 Product Subclass 2: Cyclic O,N-Acetals</td>
<td>21</td>
</tr>
<tr>
<td>30.1.2.1 Synthesis of Product Subclass 2</td>
<td>21</td>
</tr>
<tr>
<td>30.1.2.1.1 Method 1: Addition to Imine Bonds</td>
<td>21</td>
</tr>
<tr>
<td>30.1.2.1.2 Method 2: Addition to Carbonyl Bonds</td>
<td>22</td>
</tr>
<tr>
<td>30.1.2.2.1 Variation 1: Addition of Hydrides to Carbonyl Bonds</td>
<td>22</td>
</tr>
<tr>
<td>30.1.2.2.2 Variation 2: Addition of Amines to Carbonyl Bonds</td>
<td>24</td>
</tr>
<tr>
<td>30.1.2.2.3 Variation 3: Addition of Silirane to Carbonyl Bonds</td>
<td>24</td>
</tr>
<tr>
<td>30.1.2.3 Method 3: O,N-Acetalization of Carbonyl Compounds</td>
<td>24</td>
</tr>
<tr>
<td>30.1.2.3.1 Variation 1: Acetalization of Carbonyl Compounds with 8-Aminomenth</td>
<td>25</td>
</tr>
<tr>
<td>30.1.2.3.2 Variation 2: Acetalization of Carbonyl Compounds with (S)-Proline</td>
<td>25</td>
</tr>
<tr>
<td>30.1.2.3.3 Variation 3: Acetalization of Carbonyl Compounds with (Hydroxymethyl)pyrrolidinone</td>
<td>25</td>
</tr>
</tbody>
</table>
30.1.3.4 Variation 4: Acetalization of Carbonyl Compounds with N-Mesylalanine 26
30.1.3.5 Variation 5: Acetalization of Carbonyl Compounds with Phenylglycinol 26
30.1.3.6 Variation 6: Acetalization of Carbonyl Compounds with Aminophenols 28
30.1.3.4.1 Method 4: Preparation of O,N-Acetals via Transacetalization 29
30.1.3.4.2 Variation 1: Via Intermolecular Transacetalization 29
30.1.3.4.2 Variation 2: Via Intramolecular Transacetalization 31
30.1.3.5 Methods 5: Miscellaneous Methods 32
30.1.3.5.1 Variation 1: Preparation of O,N-Acetals by Oxidation 32
30.1.3.5.2 Variation 2: Addition of Alcohols to Alkenyl Bonds 33
30.1.3.5.3 Variation 3: Addition of Amines to Alkenyl Bonds 34
30.1.3.5.4 Variation 4: Nucleophilic Substitution of Alcohols 34
30.1.3.6 Applications of Product Subclass 2 in Organic Synthesis 35
30.1.3.6.1 Method 1: Preparation of Acyclic Compounds via C–C Bond Formation with Cleavage of a C–O Bond 35
30.1.3.6.2 Method 2: Preparation of Cyclic Compounds via C–C Bond Formation with Cleavage of a C–O Bond 35
30.1.3.6.2.1 Variation 1: C–C Bond Formation Using Organometallic Reagents 35
30.1.3.6.2.2 Variation 2: C–C Bond Formation Using Allyltrimethylsilane 37
30.1.3.6.2.3 Variation 3: Insertion of Internal π-Nucleophiles 38
30.1.3.6.3 Method 3: Reductive Cleavage of the C–O Bond 39
30.1.3.6.3.1 Variation 1: Reductive Cleavage by Hydrogenation 40
30.1.3.6.3.2 Variation 2: Reductive Cleavage with Bis(2-methoxyethoxy)aluminum Hydride 40
30.1.3.6.3.3 Variation 3: Reductive Cleavage with Sodium Borohydride–Boron Trifluoride–Diethyl Ether Complex 41
30.1.3.6.4 Variation 4: Reductive Cleavage with Alane 41
30.1.3.6.5 Variation 5: Reductive Cleavage with Calcium in Liquid Ammonia 42
30.1.3.6.6 Method 4: Protection of Carbonyl Compounds 42
30.1.3.6.6 Methods 5: Miscellaneous Transformations 43

Product Subclass 3: Carbohydrate Derivatives (Including Nucleosides)

H. Yamada

30.1.3.1 Synthesis of Product Subclass 3 47
30.1.3.1.1 Pyrimidine Nucleosides 47
30.1.3.1.1.1 Method 1: Substitution of Furanosyl Acetates with Silylated Pyrimidines 47
30.1.3.1.1.2 Method 2: Synthesis from Furanosyl Halides (Hilbert–Johnson Method) 50
30.1.3.1.1.2.1 Variation 1: Substitution by Silylated Pyrimidines 51
30.1.3.1.1.2.2 Variation 2: Substitution by Pyrimidine Mercury Salts 55
30.1.3.1.1.2.3 Variation 3: Activation with Mercury(II) Cyanide in Nitromethane 55
30.1.3.1.1.3 Method 3: Synthesis from Sulfanylated Furanosides (Thiofuranosides) 56
30.1.3.1.1.3.1 Variation 1: Synthesis from Sulfanylated Furanosides 60
30.1.3.1.1.3.2 Variation 2: Intramolecular Glycosylation 60
30.1.3.1.1.4 Method 4: Synthesis from Furanosyl Trichloroacetimidates 61
30.1.3.1.1.5 Method 5: Synthesis from Pentenoses 62
30.1.3.1.6 Method 6: Synthesis from N-Furanosyl Derivatives 63
30.1.3.1.2 Purine Nucleosides ... 64
30.1.3.1.2.1 Method 1: Substitution of Furanosyl Acetates with Silylated Purines 64
30.1.3.1.1.1 Variation 1: Fusion of Sugars and Purines 67
30.1.3.1.2.2 Method 2: Synthesis from Furanosyl Halides 68
30.1.3.1.2.2.1 Variation 1: Substitution by Purine Silver and Mercury Salts 69
30.1.3.1.2.3 Method 3: Synthesis from 1-Sulfanylated Furanosides (1-Thiofuranosides) ... 69
30.1.3.1.2.3.1 Variation 1: Synthesis from 1-Sulfinylated Furanosides 70
30.1.3.1.2.4 Method 4: Synthesis from Furanosyl Trichloroacetimidates 71
30.1.3.1.2.5 Method 5: Synthesis from Pentenoses 72
30.1.3.1.3 Glycosyl Asparagine Derivatives ... 72
30.1.3.1.3.1 Method 1: Synthesis from Glycosyl Azides 72
30.1.3.1.3.1.1 Variation 1: The Staudinger Reaction 74
30.1.3.1.3.2 Method 2: Synthesis from Hexenoses 75
30.1.3.1.3.3 Method 3: Synthesis from Glycosyl Isothiocyanates 76
30.1.3.1.3.4 Method 4: Synthesis from Pentenyl Glycosides 77
30.1.3.1.3.5 Method 5: Synthesis from Glycosyl Phenyltrifluoroacetimidates 78

30.2 Product Class 2: O,P- and S,P-Acetals
M. Yamashita

30.2 Product Class 2: O,P- and S,P-Acetals ... 83
30.2.1 Product Subclass 1: O,P-Acetals ... 83
30.2.1.1 Synthesis of Product Subclass 1 .. 83
30.2.1.1.1 Method 1: Addition of Phosphorus Compounds to Ketones or Aldehydes 83
30.2.1.1.2 Method 2: Substitution Reactions of α,β-Epoxy Phospholane 1-Oxides with Alcohols ... 88
30.2.1.1.3 Method 3: Oxidation of 2,3-Dihydro-1H-phosphole 1-Oxides 89
30.2.1.1.3.1 Variation 1: Using Osmium(VIII) Oxide 89
30.2.1.1.3.2 Variation 2: Using Peroxides .. 90
30.2.1.1.4 Method 4: Addition of Phosphorus Compounds to O,O-Acetals and Related Compounds ... 91
30.2.1.1.5 Methods 5: Miscellaneous Methods ... 93
30.2.2 Product Subclass 2: S,P-Acetals ... 96
30.2.2.1 Synthesis of Product Subclass 2 .. 96
30.2.2.1.1 Method 1: Reaction of α-Lithio Sulfoxides with Chlorophosphines 96
30.2.2.1.2 Method 2: Reaction of Trialkyl Phosphites with Cl,S-Acetals 97
30.2.2.1.3 Method 3: Reaction of α-Lithio Phosphonates or Phosphine Oxides with Sulfur Compounds ... 98
30.2.2.1.4 Method 4: Substitution Reactions of 1-Diazoalkylphosphonates 100
30.2.2.1.5 Method 5: Synthesis from Other S,P-Acetals 102
30.2.2.1.6 Methods 6: Miscellaneous Methods ... 105
30.3 Product Class 3: \(S,S \)-Acetals
T.-Y. Luh and M.-k. Leung

30.3 Product Class 3: \(S,S \)-Acetals .. 111

30.3.1 Product Subclass 1: Acyclic \(S,S \)-Acetals
T. Takeda and A. Tsubouchi

30.3.1 Product Subclass 1: Acyclic \(S,S \)-Acetals 119

30.3.1.1 Synthesis of Product Subclass 1 ... 119

30.3.1.1 Method 1: Thioacetalization of Carbonyl and Related Compounds ... 119
30.3.1.1.1 Variation 1: With Protic Acid Catalysts ... 120
30.3.1.1.2 Variation 2: With Metal Salt Based Lewis Acid Catalysts ... 121
30.3.1.1.3 Variation 3: With Other Lewis Acid Catalysts ... 125
30.3.1.1.4 Variation 4: With Solid Acid Catalysts ... 128
30.3.1.1.5 Variation 5: In Ionic Liquids ... 128
30.3.1.1.6 Variation 6: With Functionalized Thiols ... 129
30.3.1.1.7 Variation 7: With Reagents Other Than Thiols ... 131
30.3.1.1.2 Method 2: Conversion of Acetals and Related Compounds ... 134
30.3.1.1.2 Variation 1: \(O,O \)-Acetals ... 134
30.3.1.1.2 Variation 2: \(O,S \)-Acetals ... 137
30.3.1.1.2 Variation 3: \(O,N \)-Acetals ... 137
30.3.1.1.2 Variation 4: \(N,N \)-Acetals ... 138
30.3.1.1.2 Variation 5: Enol Ethers ... 139
30.3.1.1.3 Method 3: Substitution of Halides with Thiolates ... 140
30.3.1.1.3 Variation 1: Of \(\alpha \)-Haloalkyl Sulfides ... 140
30.3.1.1.3 Variation 2: Of \(\text{gem} \)-Dihalides ... 142
30.3.1.1.4 Method 4: Pummerer Reaction ... 144
30.3.1.1.5 Method 5: Addition of Thiols to \(C=C \) Multiple Bonds ... 147
30.3.1.1.5 Variation 1: Addition to Alkenyl Sulfides ... 147
30.3.1.1.5 Variation 2: Addition to Alkynes ... 148
30.3.1.1.6 Method 6: Sulfenylation of Methylene Groups Activated by Electron-Withdrawing Groups ... 149
30.3.1.1.7 Method 7: Reaction of Bis(alkylsulfanyl)methyl lithium and \(-sodium Compounds with Electrophiles ... 155
30.3.1.1.7.1 Variation 1: With Halides ... 155
30.3.1.1.7.2 Variation 2: With Aldehydes and Ketones ... 157
30.3.1.1.7.3 Variation 3: With Carboxylic Acid Derivatives ... 158
30.3.1.1.7.4 Variation 4: With Nitriles ... 161
30.3.1.1.7.5 Variation 5: With Epoxides ... 161
30.3.1.1.8 Method 8: Addition of Organometallic Reagents to Dithiocarboxylates ... 163
30.3.1.1.8.1 Variation 1: By Thiophilic Addition ... 163
30.3.1.1.8.2 Variation 2: By Carbophilic Addition ... 167
30.3.1.1.9 Method 9: Cycloadition of Dithioesters ... 168
30.3.1.1.10 Method 10: Synthesis from Ketene Dithioacetals ... 175
30.3.1.1.10.1 Variation 1: Reduction of \(C=C \) Bonds ... 175
Variation 2: Addition of Organometallic Reagents to C=C Bonds

Method 11: Carbene Insertion into Disulfides and Thiols

Methods 12: Miscellaneous Methods

Applications of Product Subclass 1 in Organic Synthesis

Method 1: Acyl Anion Equivalents

Method 2: Reductive Desulfurization

Method 3: Dithioacetals as Thionium Ion Precursors

Method 4: Transformation of Diphenyl Dithioacetals into Titanium–Carbene Complexes

Product Subclass 2: 1,3-Dithietanes

T.-Y. Luh and M.-k. Leung

Synthesis of Product Subclass 2

Symmetrical Dithietanes

Method 1: Dimerization of Thioketones

Variation 1: Thioketones Formed In Situ from Ketones

Variation 2: Thioketones Formed In Situ from Disulfides

Variation 3: Thioketones Formed In Situ from \(-\)Chlorosulfenyl Chloride

Variation 4: Thioketones Formed In Situ from Carbon Suboxide

Method 2: Dimerization of Dithioacetic Acid

Method 3: Dimerization of 1,2-Dithiole-3-thiones

Method 4: Synthesis from Thiophosgene

Method 5: Dimerization of Thioketenes

Variation 1: Thioketenes Formed In Situ from Isothiazole-5(2H)-thione

Variation 2: Thioketenes Formed In Situ from Terminal Alkynes

Variation 3: Thioketenes Formed In Situ from Octafluoroisobutene

Method 6: Dimerization of Isothiocyanates

Method 7: Synthesis Using Carbon Disulfide

Variation 1: Reaction with Ketones

Variation 2: Reaction with Wittig Reagents

Variation 3: Reaction with Diazo Compounds

Unsymmetrical Dithietanes

Method 1: Synthesis from Ethene-1,1-dithiols

Method 2: Synthesis from Xanthates

Method 3: Synthesis from Thioketenes and Imines

Method 4: Synthesis from Ketones

Method 5: Synthesis from Bis(chloromethyl) Sulfoxide

Method 6: Cycloaddition of a Sulfinylalkane with a Thioketone

Variation 1: Sequential Oxidation of Disulfides

Variation 2: Thermolysis of Sulfenic Esters

Variation 3: Rearrangement Reactions

Method 7: Substitution Reactions of Dithietane

Variation 1: Fluoro-Substituted Dithietanes
Acid Hydrolysis

Variation 2: Acid Hydrolysis

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Synthesis from Bis(chloromethyl) Sulfone via Reduction of Dithietane 1-Oxide</td>
<td>216</td>
</tr>
<tr>
<td>9</td>
<td>Oxidation of Dithietane</td>
<td>216</td>
</tr>
</tbody>
</table>

Synthesis from Bis(chloromethyl) Sulfoxide via Reduction of Dithietane 1-Oxide

Method 8: Synthesis from Bis(chloromethyl) Sulfoxide via Reduction of Dithietane 1-Oxide

<table>
<thead>
<tr>
<th>Variation</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Synthesis of Dithietane 1-Oxides</td>
<td>216</td>
</tr>
<tr>
<td>2</td>
<td>Synthesis of Dithietane 1,3-Dioxides</td>
<td>217</td>
</tr>
<tr>
<td>3</td>
<td>Synthesis of Dithietane 1,1-Dioxides</td>
<td>217</td>
</tr>
<tr>
<td>4</td>
<td>Synthesis of Dithietane Trioxides</td>
<td>218</td>
</tr>
<tr>
<td>5</td>
<td>Synthesis of Dithietane Tetroxides</td>
<td>218</td>
</tr>
</tbody>
</table>

Oxidation of Dithietane

Method 9: Oxidation of Dithietane

<table>
<thead>
<tr>
<th>Variation</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Synthesis of Dithietane 1-Oxides</td>
<td>216</td>
</tr>
<tr>
<td>2</td>
<td>Synthesis of Dithietane 1,3-Dioxides</td>
<td>217</td>
</tr>
<tr>
<td>3</td>
<td>Synthesis of Dithietane 1,1-Dioxides</td>
<td>217</td>
</tr>
<tr>
<td>4</td>
<td>Synthesis of Dithietane Trioxides</td>
<td>218</td>
</tr>
<tr>
<td>5</td>
<td>Synthesis of Dithietane Tetroxides</td>
<td>218</td>
</tr>
</tbody>
</table>

Product Subclass 3: 1,3-Dithiolanes

M.-K. Leung and T.-Y. Luh

<table>
<thead>
<tr>
<th>Product Subclass</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1,3-Dithiolanes</td>
<td>221</td>
</tr>
</tbody>
</table>

Synthesis of Product Subclass 3

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reaction of Ethane-1,2-dithiol with Aldehydes or Ketones Catalyzed by Protic Acids</td>
<td>221</td>
</tr>
<tr>
<td>2</td>
<td>4-Toluenesulfonyl Acids Catalysis</td>
<td>222</td>
</tr>
<tr>
<td>3</td>
<td>Trifluoroacetic Acid Catalysis</td>
<td>226</td>
</tr>
<tr>
<td>4</td>
<td>Solid Protic Acid Catalysis</td>
<td>227</td>
</tr>
<tr>
<td>5</td>
<td>Lewis Acid Catalyzed Reactions of Ethane-1,2-dithiol with Aldehydes</td>
<td>230</td>
</tr>
<tr>
<td>6</td>
<td>Catalyzed by Lithium Salts</td>
<td>230</td>
</tr>
<tr>
<td>7</td>
<td>Catalyzed by Magnesium Salts</td>
<td>232</td>
</tr>
<tr>
<td>8</td>
<td>Catalyzed by Boron Trifluoride–Diethyl Ether Complex</td>
<td>235</td>
</tr>
<tr>
<td>9</td>
<td>Catalyzed by Aluminum Trichloride</td>
<td>240</td>
</tr>
<tr>
<td>10</td>
<td>Catalyzed by Indium(III) Reagents</td>
<td>241</td>
</tr>
<tr>
<td>11</td>
<td>Catalyzed by Silicon-Based Reagents</td>
<td>243</td>
</tr>
<tr>
<td>12</td>
<td>Catalyzed by Tin(II) Chloride</td>
<td>245</td>
</tr>
<tr>
<td>13</td>
<td>Catalyzed by Bismuth(III) Salts</td>
<td>247</td>
</tr>
<tr>
<td>14</td>
<td>Catalyzed by Tellurium Tetrachloride</td>
<td>248</td>
</tr>
<tr>
<td>15</td>
<td>Catalyzed by Scandium(III) Salts</td>
<td>249</td>
</tr>
<tr>
<td>16</td>
<td>Catalyzed by Yttrium(III) Trifluoromethanesulfonate</td>
<td>251</td>
</tr>
<tr>
<td>17</td>
<td>Catalyzed by Lanthanum(III) Chloride</td>
<td>251</td>
</tr>
<tr>
<td>18</td>
<td>Catalyzed by Titanium(IV) Chloride</td>
<td>252</td>
</tr>
<tr>
<td>19</td>
<td>Catalyzed by Zirconium(IV) Chloride</td>
<td>253</td>
</tr>
<tr>
<td>20</td>
<td>Catalyzed by Ammonium Cerium(IV) Nitrate</td>
<td>254</td>
</tr>
<tr>
<td>21</td>
<td>Catalyzed by Vanadyl Trifluoromethanesulfonate</td>
<td>255</td>
</tr>
<tr>
<td>22</td>
<td>Catalyzed by Molybdenum Compounds</td>
<td>256</td>
</tr>
<tr>
<td>23</td>
<td>Catalyzed by Tungsten(VI) Chloride</td>
<td>257</td>
</tr>
<tr>
<td>24</td>
<td>Catalyzed by Iron(III) Chloride on Silica Gel</td>
<td>258</td>
</tr>
<tr>
<td>25</td>
<td>Catalyzed by Ruthenium(III) Chloride</td>
<td>259</td>
</tr>
<tr>
<td>26</td>
<td>Catalyzed by Cobalt(II) Halides</td>
<td>260</td>
</tr>
<tr>
<td>27</td>
<td>Catalyzed by Nickel(II) Chloride</td>
<td>262</td>
</tr>
<tr>
<td>28</td>
<td>Catalyzed by Copper(II) Salts</td>
<td>262</td>
</tr>
<tr>
<td>29</td>
<td>Catalyzed by Zinc(II) Salts</td>
<td>265</td>
</tr>
</tbody>
</table>
Variation 25: Catalyzed by Cadmium(II) Iodides .. 269
Variation 26: Catalyzed by Lanthanide(III) Trifluoromethanesulfonates 270
Method 3: Reaction of Ethane-1,2-dithiol with Aldehydes or Ketones
Catalyzed Using Heterogeneous Catalysts .. 271
Method 4: Reaction of Ethane-1,2-dithiol with Aldehydes or Ketones
Catalyzed by Halogens and Derivatives .. 273
Variation 1: Catalyzed by Iodine ... 273
Variation 2: Catalyzed by Tetrabutylammonium Tribromide 276
Variation 3: Catalyzed by N-Bromosuccinimide 277
Variation 4: Catalyzed by Bromo(dimethyl)sulfonium Bromide 277
Variation 5: Catalyzed by 2,3,5,6-Tetrabromobenzo-1,4-quinone 278
Variation 6: Catalyzed by Trichloroisocyanuric Acid 280
Variation 7: Catalyzed by Thiouyl Chloride 281
Method 5: Reaction of Ethane-1,2-dithiol with Aldehydes or Ketones
Catalyzed by Ionic Liquids .. 282
Method 6: Reaction of Ethane-1,2-dithiol with Aldehydes or Ketones
Catalyzed by Surfactant .. 283
Method 7: Reaction of Ethane-1,2-dithiol with Masked Carbonyl Groups
Variation 1: Reactions with Enol Ethers ... 284
Variation 2: Reactions with Enamines, Imines, and Related Compounds 285
Variation 3: Double Michael Addition of Ethane-1,2-dithiol to
Dinitroalkenes and Related Compounds .. 287
Variation 4: Displacement of Geminal Dichloro Compounds 288
Method 8: Reaction of O,O-Acetals or Hemiacetals with
Ethane-1,2-dithiol .. 289
Variation 1: Catalyzed by Protic Acid ... 289
Variation 2: Catalyzed by Lewis Acids ... 290
Variation 3: Catalyzed by Heterogeneous Catalysts 297
Variation 4: Catalyzed by Halogens and Derivatives 299
Variation 5: Catalyzed by Phosphoryl Chloride on Montmorillonite 304
Method 9: Reaction of O,S-Acetals with Ethane-1,2-dithiol 305
Method 10: Reaction of S,S-Acetals with Ethane-1,2-dithiol 306
Method 11: Reaction of N,N-Acetals with Ethane-1,2-dithiol 306
Method 12: Reaction of Ethane-1,2-dithiol with Oxazolidine Derivatives 307
Method 13: Reactions of Carbonyl Compounds or Masked Carbonyl
Compounds with Modified Ethane-1,2-dithiols 308
Variation 1: With Silyl Thioethers ... 308
Variation 2: With Thiostannanes .. 309
Variation 3: With 2-Substituted 1,3,2-Dithiaborolanes 311
Variation 4: With Bis(diisobutylaluminum) Ethane-1,2-dithiolate 312
Variation 5: Dithioacetalization from a 1,3-Dithiolane to
Another Carbonyl Group .. 313
Method 14: Nucleophilic Displacements Using S,S’-Ethane-1,2-diyld
Bis(4-toluenesulfonothioate) ... 316
Variation 1: Reaction with 2-Naphthol .. 316
Variation 2: Reactions with α-Hydroxymethylene Ketones 316
Method 15: Reactions of Carbonyl Compounds with Substituted
Ethane-1,2-dithiols .. 317
30.3.3.15.1 Variation 1: Catalyzed by Protic Acids ... 317
30.3.3.15.2 Variation 2: Catalyzed by Lewis Acids ... 318
30.3.3.15.3 Variation 3: Catalyzed by Sulfur Dioxide ... 319
30.3.3.15.16 Method 16: Cycloaddition of Thiranes with Thiocarbonyl Compounds 320
30.3.3.15.17 Method 17: Reaction of Dithioacetic Acid with 3-Methylbut-3-en-1-yne 320
30.3.3.15.18 Method 18: 1,3-Dipolar Cycloaddition of Ylides with Thiocarbonyl Compounds ... 321
30.3.3.15.19 Method 19: Metalation ... 324
30.3.3.15.20 Variation 1: Electrophilic Addition of [1,3-Dithiolan-2-ylidene(ethoxy)- methoxy]trimethylsilane .. 326
30.3.3.15.21 Variation 2: 2-(Trimethylsilyl)-1,3-dithiolane as a Masked 1,3-Dithiolane Anion .. 327
30.3.3.15.22 Method 20: Reaction of 2-Ethoxy-1,3-dithiolane with Nucleophiles 328
30.3.3.15.23 Method 21: Reaction of 1,3-Dithiolan-2-ylidium Tetrafluoroborate with Nucleophiles .. 330
30.3.3.15.24 Method 22: Reduction of Ketene S,S-Acetals 331
30.3.3.15.25 Method 23: Cycloadditions of Ketene S,S-Acetals 332
30.3.3.15.26 Method 24: [2 + 2] Cycloaddition .. 332
30.3.3.15.27 Method 25: [4 + 2] Cycloaddition .. 333
30.3.3.15.28 Method 26: [3 + 2] Cycloaddition .. 338
30.3.3.15.29 Method 27: [8 + 2] Cycloaddition .. 340

30.3.4 Product Subclass 4: 1,3-Dithianes
M. Nakata

30.3.4.1 Synthesis of Product Subclass 4 ... 351
30.3.4.1.1 Method 1: Thioacetalization of Carbonyl Compounds 351
30.3.4.1.1.1 Variation 1: Using Hydrogen Chloride, Zinc(II) Chloride, or Boron Trifluoride–Diethyl Ether Complex .. 351
30.3.4.1.1.2 Variation 2: Using Lewis Acids Other than Zinc(II) Chloride 352
30.3.4.1.1.3 Variation 3: Using Solid-Supported Catalysts 353
30.3.4.1.1.4 Variation 4: Using Other Catalysts or Reagents 354
30.3.4.1.2 Method 2: Thioacetalization of Hemiacetals, O,O-Acetals, O,N-Acetals, and Enol Ethers .. 355
30.3.4.1.3 Method 3: Thioacetalization with Polymer-Supported Propane-1,3-dithiol .. 357
30.3.4.1.4 Method 4: Conjugate Addition of Propane-1,3-dithiol to Alk-1-ynyl Ketones and Esters .. 357
30.3.4.1.5 Method 5: Synthesis from 1,3-Dithia-2-silacyclohexanes, 1,3-Dithia- 2-stannacyclohexanes, and 1,3,2-Dithiaborinane 359
30.3.4.1.6 Method 6: Other Syntheses ... 360
30.3.4.1.7 Method 7: Metalation of 1,3-Dithianes .. 362
30.3.4.1.7.1 Variation 1: Using Butyllithium .. 362
30.3.4.1.7.2 Variation 2: Using Other Metalation Reagents 363
30.3.4.1.7.3 Variation 3: Transmetalation of 2-Lithio-1,3-dithianes 366

Product Subclass 4: 1,3-Dithianes
M. Nakata
Variation 4: Metalation of 1,3-Dithianes Containing an Electron-Withdrawing Substituent

Variation 5: Synthesis of 2-Stannyl-1,3-dithianes

Variation 6: Metalation of 2-Methylene-1,3-dithianes

Variation 7: Conformational Preference of 2-Metallo-1,3-dithianes

Method 8: Substitution Reactions

Variation 1: Of 2-Lithio-1,3-dithiane Derivatives with Primary Alkyl Halides

Variation 2: Of 2-Lithio-1,3-dithiane Derivatives with Secondary Alkyl Halides

Variation 3: Of 2-Lithio-1,3-dithiane Derivatives with Primary Sulfonates

Variation 4: Of 2-Lithio-1,3-dithiane with Monosubstituted Epoxides

Variation 5: Of 2-Lithio-1,3-dithiane with 1,1- and 1,2-Disubstituted Epoxides

Variation 6: Of 2-Lithio-1,3-dithiane Derivatives with Monosubstituted Epoxides

Variation 7: Of 2-Lithio-1,3-dithiane Derivatives with 1,2-Disubstituted Epoxides

Variation 8: Of 2-Lithio-1,3-dithiane Derivatives with Aziridines

Method 9: Addition Reactions

Variation 1: Of 2-Lithio-1,3-dithianes to Aldehydes

Variation 2: Of 2-Lithio-1,3-dithianes to Ketones

Variation 3: Of 2-Lithio-1,3-dithianes to Carboxylic Acid Derivatives

Variation 4: Of 2-Lithio-1,3-dithiane Derivatives to $\text{C}=\text{N}$ and $\text{C}=\text{C}$ Compounds

Method 10: 1,2- and 1,4-Addition Reactions

Variation 1: Of 2-Lithio-1,3-dithiane Derivatives to α,β-Unsaturated Carbonyl Compounds

Variation 2: 1,2-Addition Reactions of 2-Lithio-1,3-dithiane Derivatives to α,β-Unsaturated Carbonyl Compounds

Variation 3: 1,4-Addition Reactions of 2-Lithio-1,3-dithiane Derivatives to α,β-Unsaturated Carbonyl Compounds

Variation 4: 1,4-Addition Reactions of 2-Lithio-1,3-dithiane Derivatives to Other α,β-Unsaturated Compounds

Method 11: Double Alkylation of 1,3-Dithiane with Two Electrophiles

Method 12: Multicomponent Coupling of 2-Silyl-1,3-dithianes

Method 13: Reactions of 2-Silyl- and 2-Silylidene-1,3-dithianes

Method 14: Synthesis and Reactions of 2-Phosphoryl-1,3-dithiane Derivatives

Method 15: Reactions of 2-Vinyl- and 2-Vinylidene-1,3-dithiane Derivatives

Methods 18: Other Methods

Applications of Product Subclass 4 in Organic Syntheses

Method 1: Reductive Desulfurizations
30.3.4.2.2 Method 2: Ring-Expansion Reactions .. 422
30.3.4.2.3 Methods 3: Miscellaneous Reactions ... 425

30.3.5 Product Subclass 5: 1,3-Dithiepanes
M. Nakata

30.3.6 Product Subclass 6: Acyclic and Cyclic S,S-Acetal S-Oxides and S,S-Dioxides
K. Ogura
30.3.6.1.9.2 Variation 2: Dialkylation with Alkyl Halides .. 472
30.3.6.1.9.3 Variation 3: Condensations with Carbonyl Compounds 474
30.3.6.1.9.4 Variation 4: Acylation Reactions .. 475
30.3.6.1.9.5 Variation 5: Addition to Carbonyl Compounds 476
30.3.6.1.10 Method 10: Oxidation Reactions ... 479
30.3.6.1.10.1 Variation 1: Oxidation of S,S-Acetals ... 479
30.3.6.1.10.2 Variation 2: Oxidation of S,S-Acetal S-Oxides 483
30.3.6.1.10.3 Variation 3: Oxidation of Ketene Dithioacetals 484
30.3.6.2 Applications of Product Subclass 6 in Organic Synthesis 485

30.3.6.2.1 Method 1: Synthesis of Aldehydes .. 485
30.3.6.2.1.1 Variation 1: Synthesis from S,S-Acetan S-Oxides 485
30.3.6.2.2 Method 2: Synthesis of Ketones ... 488
30.3.6.2.2.1 Variation 1: Synthesis from S,S-Acetan S-Oxides 488
30.3.6.2.2.2 Variation 2: Synthesis from S,S-Acetan S-Dioxides 489
30.3.6.2.3 Method 3: Synthesis of Carboxylic Acid Derivatives 492
30.3.6.2.3.1 Variation 1: Synthesis from S,S-Acetan S-Oxides 492
30.3.6.2.3.2 Variation 2: Synthesis from S,S-Acetan S-Dioxides 495
30.3.6.2.4 Method 4: Synthesis of α-Amino Acid Derivatives 496
30.3.6.2.5 Method 5: Synthesis of α-Oxo Esters .. 498

30.3.7 Deprotection of S,S-Acetals

H. Firouzabadi and N. Iranpoor

30.3.7 Deprotection of S,S-Acetals ... 505
30.3.7.1 Method 1: Generation of Carbonyl Compounds by Oxidation of
S,S-Acetals .. 505
30.3.7.1.1 Variation 1: Using Molecular Oxygen Catalyzed by Bismuth(III) Nitrate or
Trichloroarsenate(V) ... 506
30.3.7.1.2 Variation 2: Using Periodic Acid .. 507
30.3.7.1.3 Variation 3: Using 3-Chloroperoxybenzoic Acid/Trifluoroacetic Acid 508
30.3.7.1.4 Variation 4: Using tert-Butyl Hydroperoxide in Aqueous Methanol 509
30.3.7.1.5 Variation 5: Using Nitrogen Oxides ... 510
30.3.7.1.6 Variation 6: Using Dinitrogen Tetroxide Complexes of Iron(III) and
Copper(II) Nitrates ... 511
30.3.7.1.7 Variation 7: Using [Bis(trifluoroacetyl)iodo]benzene 512
30.3.7.1.8 Variation 8: Using 2-Iodobenzoic Acid ... 513
30.3.7.1.9 Variation 9: Using Selenium Dioxide ... 514
30.3.7.1.10 Variation 10: Using Solventless Microwave-Irradiated Ammonium Persulfate
Supported on Wet Montmorillonite K 10 Clay .. 515
30.3.7.1.11 Variation 11: Using Potassium Peroxymonosulfate (Oxone) on Wet Alumina 517
30.3.7.1.12 Variation 12: Using Lead(IV) Oxide/Boron Trifluoride 518
30.3.7.1.13 Variation 13: Using Dimethyl Sulfoxide .. 519
30.3.7.1.14 Variation 14: Using Silica Chloride/Dimethyl Sulfoxide 521
30.3.7.1.15 Variation 15: Using Bromotrimethylsilane or Iodotrimethylsilane in
Dimethyl Sulfoxide .. 522
<table>
<thead>
<tr>
<th>Section Number</th>
<th>Variation</th>
<th>Method</th>
<th>Reagents/Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.3.7.1.16</td>
<td>Variation 16:</td>
<td>Using tert-Butyl Bromide or tert-Butyl Iodide in Dimethyl Sulfoxide</td>
<td>522</td>
</tr>
<tr>
<td>30.3.7.1.17</td>
<td>Variation 17:</td>
<td>Using Molybdenum(V) Chloride/Dimethyl Sulfoxide</td>
<td>523</td>
</tr>
<tr>
<td>30.3.7.1.18</td>
<td>Variation 18:</td>
<td>Using Sodium Chlorite/Sodium Dihydrogen Phosphate</td>
<td>524</td>
</tr>
<tr>
<td>30.3.7.1.19</td>
<td>Variation 19:</td>
<td>Using Silica Chloride/Potassium Permanganate</td>
<td>525</td>
</tr>
<tr>
<td>30.3.7.1.20</td>
<td>Variation 20:</td>
<td>Using Zinc Dichromate Trihydrate</td>
<td>526</td>
</tr>
<tr>
<td>30.3.7.2.1</td>
<td>Method 2:</td>
<td>Lewis Acid Assisted Hydrolysis of S,S-Acetals</td>
<td>527</td>
</tr>
<tr>
<td>30.3.7.2.2</td>
<td>Variation 1:</td>
<td>Using Mercury(II) Chloride/Mercury(II) Oxide</td>
<td>527</td>
</tr>
<tr>
<td>30.3.7.2.3</td>
<td>Variation 2:</td>
<td>Using Mercury(II) Salts in the Presence of Calcium Carbonate or Collidine</td>
<td>528</td>
</tr>
<tr>
<td>30.3.7.2.4</td>
<td>Variation 3:</td>
<td>Using Red Mercury(II) Oxide/Boron Trifluoride</td>
<td>530</td>
</tr>
<tr>
<td>30.3.7.2.5</td>
<td>Variation 4:</td>
<td>Using Miscellaneous Lewis Acids</td>
<td>532</td>
</tr>
<tr>
<td>30.3.7.2.6</td>
<td>Variation 5:</td>
<td>Using Natural Kaolinitic Clay</td>
<td>535</td>
</tr>
<tr>
<td>30.3.7.3.1</td>
<td>Method 3:</td>
<td>Photochemical Reactions</td>
<td>536</td>
</tr>
<tr>
<td>30.3.7.3.2</td>
<td>Variation 1:</td>
<td>Using Methylene Green and Visible Light</td>
<td>537</td>
</tr>
<tr>
<td>30.3.7.3.3</td>
<td>Variation 2:</td>
<td>Using 2,4,6-Tris(4-chlorophenyl)pyrylium</td>
<td>538</td>
</tr>
<tr>
<td>30.3.7.3.3</td>
<td>Variation 3:</td>
<td>Using 2,3-Dichloro-5,6-dicyanobenzo-1,4-quinone and Visible Light</td>
<td>539</td>
</tr>
<tr>
<td>30.3.7.4</td>
<td>Method 4:</td>
<td>Using Supported Reagents</td>
<td>540</td>
</tr>
<tr>
<td>30.3.7.4.1</td>
<td>Variation 1:</td>
<td>Using Clay-Supported Ammonium Nitrate (Clayan)</td>
<td>540</td>
</tr>
<tr>
<td>30.3.7.4.2</td>
<td>Variation 2:</td>
<td>Using Clay-Supported Iron(III) Nitrate (Clayfen)</td>
<td>541</td>
</tr>
<tr>
<td>30.3.7.4.3</td>
<td>Variation 3:</td>
<td>Using Clay-Supported Copper(II) Nitrate Trihydrate (Claycop)</td>
<td>543</td>
</tr>
<tr>
<td>30.3.7.4.4</td>
<td>Variation 4:</td>
<td>Using In Situ Generated Clay-Supported Iron(III) Nitrate</td>
<td>543</td>
</tr>
<tr>
<td>30.3.7.4.5</td>
<td>Variation 5:</td>
<td>Using Iron(III) Nitrate Nonahydrate/Silica Gel</td>
<td>544</td>
</tr>
<tr>
<td>30.3.7.5.1</td>
<td>Method 5:</td>
<td>Reaction with Alkylation Agents</td>
<td>545</td>
</tr>
<tr>
<td>30.3.7.5.2</td>
<td>Variation 1:</td>
<td>Using Iodomethane</td>
<td>545</td>
</tr>
<tr>
<td>30.3.7.5.3</td>
<td>Variation 2:</td>
<td>Using Triethylxonium Tetrafluoroborate</td>
<td>549</td>
</tr>
<tr>
<td>30.3.7.5.4</td>
<td>Variation 3:</td>
<td>Using Methyl Fluorosulfonate</td>
<td>551</td>
</tr>
<tr>
<td>30.3.7.6</td>
<td>Method 6:</td>
<td>Reaction with Electrophilic Reagents</td>
<td>551</td>
</tr>
<tr>
<td>30.3.7.6.1</td>
<td>Variation 1:</td>
<td>Using N-Halosuccinimides</td>
<td>551</td>
</tr>
<tr>
<td>30.3.7.6.2</td>
<td>Variation 2:</td>
<td>Using N-Halosuccinimide/Silver(I) Salts</td>
<td>552</td>
</tr>
<tr>
<td>30.3.7.6.3</td>
<td>Variation 3:</td>
<td>Using Trichloroisocyanuric Acid/Silver(I) Nitrate</td>
<td>554</td>
</tr>
<tr>
<td>30.3.7.6.4</td>
<td>Variation 4:</td>
<td>Using Electrophilic Halogens/Dimethyl Sulfoxide</td>
<td>554</td>
</tr>
<tr>
<td>30.3.7.6.5</td>
<td>Variation 5:</td>
<td>Using Ammonium and Phosphonium Tribromide Salts</td>
<td>556</td>
</tr>
<tr>
<td>30.3.7.6.6</td>
<td>Variation 6:</td>
<td>Using Selectfluoro</td>
<td>557</td>
</tr>
<tr>
<td>30.3.7.6.7</td>
<td>Variation 7:</td>
<td>Using Bromodimethylsulphonium Bromide</td>
<td>558</td>
</tr>
<tr>
<td>30.3.7.6.8</td>
<td>Variation 8:</td>
<td>Using Hydrochloric Acid Hydrogen Peroxide</td>
<td>558</td>
</tr>
<tr>
<td>30.3.7.6.9</td>
<td>Variation 9:</td>
<td>Using Electrophilic Nitrosonium or Nitronium Ions</td>
<td>559</td>
</tr>
<tr>
<td>30.3.7.6.10</td>
<td>Variation 10:</td>
<td>Using Sodium Nitrite/Acetyl Chloride</td>
<td>562</td>
</tr>
<tr>
<td>30.3.7.6.11</td>
<td>Variation 11:</td>
<td>Using Silver(I) Nitrite/Iodine</td>
<td>563</td>
</tr>
<tr>
<td>30.3.7.6.12</td>
<td>Variation 12:</td>
<td>Using Sulfuryl Chloride Fluoride</td>
<td>564</td>
</tr>
<tr>
<td>30.3.7.6.13</td>
<td>Variation 13:</td>
<td>Using Methylbis(methylsulfanyl)sulphonium Hexachloroantimonate</td>
<td>565</td>
</tr>
<tr>
<td>30.3.7.6.14</td>
<td>Variation 14:</td>
<td>Using Benzeneoseleninic Anhydride</td>
<td>566</td>
</tr>
<tr>
<td>30.3.7.6.15</td>
<td>Variation 15:</td>
<td>Using Tantalum(V) Chloride Catalyzed Oxidation of Iodide</td>
<td>567</td>
</tr>
<tr>
<td>30.3.7.6.16</td>
<td>Variation 16:</td>
<td>Using Oxone/Potassium Bromide in Aqueous Acetonitrile</td>
<td>567</td>
</tr>
<tr>
<td>30.3.7.7</td>
<td>Method 7:</td>
<td>Reaction with Single-Electron-Transfer Agents</td>
<td>568</td>
</tr>
<tr>
<td>30.3.7.7.1</td>
<td>Variation 1:</td>
<td>Using 2,3-Dichloro-5,6-dicyanobenzo-1,4-quinone</td>
<td>568</td>
</tr>
</tbody>
</table>
30.3.7.2 Variation 2: Using N-Fluoro-2,4,6-trimethylpyridinium Trifluoromethanesulfonate/Water .. 569
30.3.7.3 Variation 3: Using an Iron(III) Phenanthroline Complex ... 570
30.3.7.4 Variation 4: Using Antimony(V) Chloride .. 571
30.3.7.5 Variation 5: Using Ammonium Cerium(IV) Nitrate ... 572
30.3.7.8 Method 8: Reaction with Brønsted Acids .. 573
30.3.7.8.1 Variation 1: Using Sulfuric Acid .. 573
30.3.7.8.2 Variation 2: Using Amberlyst 15/Dowex-50W and Paraformaldehyde 574
30.3.7.9 Method 9: Electrochemical Oxidation ... 576
30.3.7.9.1 Variation 1: Direct Electrochemical Oxidation .. 576
30.3.7.9.2 Variation 2: Indirect Electrochemical Oxidation .. 579
30.3.7.10 Methods 10: Miscellaneous Methods ... 579
30.3.7.10.1 Variation 1: Using 4-Nitrobenzaldehyde/Trimethylsilyl Trifluoromethanesulfonate 580
30.3.7.10.2 Variation 2: Using Phenyl Dichlorophosphate/Sodium Iodide .. 580
30.3.7.10.3 Variation 3: Using Zirconium Sulfinophenyl Phosphonate .. 581

30.4 Product Class 4: S,N-Acetals (α-Amino Sulfur Derivatives)
C. Kibayashi and N. Yamazaki

30.4 Product Class 4: S,N-Acetals (α-Amino Sulfur Derivatives) .. 587
30.4.1 Synthesis of Product Class 4 ... 587
30.4.1.1 Method 1: S,N-Acetalization of Carbonyl Compounds .. 587
30.4.1.2 Method 2: Sulfanylmethylation of Secondary Amines ... 588
30.4.1.3 Method 3: Phenylsulfanylmethylation of Carbazole ... 589
30.4.1.4 Method 4: Reduction of ([Alkylsulfanyl)methylene]iminium Salts .. 589
30.4.1.5 Method 5: Condensation of N-(Hydroxymethyl)amides with Thiols 589
30.4.1.6 Method 6: Nucleophilic Substitution of the Methoxy Group of O,N-Acetals by Thiols 590
30.4.1.7 Method 7: Reaction of 2,3-Dihydrobenzothiazole-2-thione with Grignard Reagents and Organolithiums .. 591
30.4.1.8 Method 8: 1,3-Dipolar Cycloaddition of an Azomethine Ylide with Thiobenzophenone 591
30.4.2 Applications of Product Class 4 in Organic Synthesis ... 592
30.4.2.1 Method 1: Reaction with Grignard Reagents .. 592
30.4.2.2 Method 2: Reaction with Organolithium Reagents .. 592
30.4.2.3 Method 3: Alkylation of N-[[Phenylsulfanyl)methyl]carbazole .. 593
30.4.2.4 Method 4: Addition to Benzaldehyde ... 593
30.4.2.5 Method 5: Rhodium-Catalyzed Carbonylation .. 594
30.5 Product Class 5: Selenium- and Tellurium-Containing Acetals
T. Murai and M. Yoshimatsu

30.5.1 Product Subclass 1: S,Se- and S,Te-Acetals

30.5.1.1 Synthesis of Product Subclass 1

30.5.1.1.1 Method 1: Sulfanylation of α-(Organoselanyl)methylithium Reagents

30.5.1.1.2 Method 2: Selanylation of α-Chloromethyl Sulfides

30.5.1.1.3 Method 3: Reaction of Alkyneselenolates or S-Alkyl Selenothioacetates with Electrophiles

30.5.1.2 Applications of Product Subclass 1 in Organic Synthesis

30.5.2 Product Subclass 2: Se,Se- and Se,Te-Acetals

30.5.2.1 Synthesis of Product Subclass 2

30.5.2.1.1 Method 1: Diselanylation of Dihaloalkanes

30.5.2.1.2 Method 2: Selenoacetalization of Aldehydes and Ketones with Organoselenols

30.5.2.1.2.1 Variation 1: Acid-Mediated Selenoacetalization

30.5.2.1.2.2 Variation 2: Selenoacetalization with Selenium-Containing Reagents

30.5.2.1.3 Method 3: Reaction of Diazocompounds with Diorganodiselenides or Diphenyl Selenatelluride

30.5.2.1.4 Method 4: Addition of Butyllithium to Vinyl Selenides Followed by Selenylation

30.5.2.1.5 Method 5: Alkylation of Bis(organoselanyl)alkylmetals

30.5.2.1.6 Method 6: Reaction of Bis(organoselanyl)methyl Carbenium Ions with Soft Nucleophiles

30.5.2.2 Applications of Product Subclass 2 in Organic Synthesis

30.5.3 Product Subclass 3: Te,Te-Acetals

30.5.3.1 Synthesis of Product Subclass 3

30.5.3.1.1 Method 1: Ditellanylation of Dihaloalkanes

30.5.3.1.2 Method 2: Reaction of Aluminum Tellurolates with Acetals

30.5.3.1.3 Method 3: Reaction of Diazomethane with Diorganoditellurides

30.5.3.1.4 Method 4: Alkylation of Bis(organotellanyl)methylithium

30.5.3.1.5 Method 5: Halogenation of Bis(organotellanyl)methanes

30.5.4 Product Subclass 4: Se,N- and Se,P-Acetals

30.5.4.1 Synthesis of Product Subclass 4

30.5.4.1.1 Method 1: Phosphinomethylation of Benzeneselenenyl Chloride

30.5.4.1.2 Method 2: Aminomethylation of Benzeneselenol

30.5.4.1.3 Method 3: Organoselenylation of O,N-Acetals

30.5.4.1.4 Method 4: Alkyselenylation of N,N-Acetals

30.5.5 Product Subclass 5: Te,N- and Te,P-Acetals

30.5.5.1 Synthesis of Product Subclass 5

30.5.5.1.1 Method 1: Aminomethylation of Sodium Hydrogen Telluride
30.6 **Product Class 6: N,N-Acetals**
C. Kibayashi and N. Yamazaki

30.6.1 Synthesis of Product Class 6 .. 639
30.6.1.1 Method 1: Reaction of Methyl (Benzoylamino)bromoacetate with Methyl l-Valinate ... 639
30.6.1.2 Method 2: N,N-Acetalization of Aldehydes 640
30.6.1.3 Method 3: Condensation of l-Asparagine with Pivalaldehyde 640
30.6.1.4 Method 4: Reaction of O,N-Acetals with Amines 641
30.6.1.5 Method 5: Cyclization of Imines 642
30.6.1.6 Method 6: Treatment of (3R,5S,8aR)-3-Phenylhexahydro-5H-[1,3]-oxazolo[3,2-a]pyridine-5-carbonitrile with Phenyllithium 643
30.6.1.7 Method 7: Reaction of 3-Bromo-3-phenyl-3H-diazirine with Secondary Amines ... 643

30.6.2 Applications of Product Class 6 in Organic Synthesis 644
30.6.2.1 Method 1: Aminomethylation of Aryl-Substituted Alkenes 644
30.6.2.2 Method 2: Aminomethylation of Alkynes 645
30.6.2.3 Method 3: Rhodium-Catalyzed Reaction with Diethyl(methyl)silane and Carbon Monoxide 645
30.6.2.4 Method 4: Enantioselective Synthesis of α-Substituted β-Amino Acids 646

30.7 **Product Class 7: N,P- and P,P-Acetals**
M. Yamashita

30.7.1 Product Subclass 1: N,P-Acetals ... 649
30.7.1.1 Synthesis of Product Subclass 1 .. 649
30.7.1.1.1 Method 1: Addition of P—H Compounds to Aldehydes or Ketones in the Presence of Amines, or to Imines 649
30.7.1.1.2 Method 2: Substitution Reaction of α,β-Epoxides with Amines 662
30.7.1.1.3 Method 3: Synthesis from O,P-Acetals 663
30.7.1.1.4 Method 4: Synthesis from O,N-Acetals 664
30.7.1.1.5 Method 5: Synthesis from O,P-Acetals 664
30.7.1.1.6 Method 6: Synthesis from Other N,P-Acetals 664
30.7.1.1.7 Methods 7: Miscellaneous Methods 666

30.7.2 Product Subclass 2: P,P-Acetals ... 668
30.7.2.1 Synthesis of Product Subclass 2 .. 669
30.7.2.1.1 Method 1: Addition of P—H Compounds to Acylphosphorus Compounds 669
30.7.2.1.2 Method 2: Substitution Reactions of α-Haloalkylphosphorus and Related Compounds with Phosphorus Anions or Phosphites (Michaelis–Arbuzov Reaction) 671
30.7.2.1.3 Method 3: Substitution Reaction of α,β-Epoxyalkylphosphorus Compounds with Phosphorus Anions 672
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.7.2.1.4</td>
<td>Phosphorylation of Lithiated α-Anions of Alkylphosphonates</td>
<td>673</td>
</tr>
<tr>
<td>30.7.2.1.5</td>
<td>Addition of P—H Compounds to Vinylphosphorus Compounds</td>
<td>674</td>
</tr>
<tr>
<td>30.7.2.1.6</td>
<td>Michael-Type Addition of Nucleophiles to Alk-1-ene-1,1-diylbisphosphonates</td>
<td>674</td>
</tr>
<tr>
<td>30.7.2.1.7</td>
<td>Alklation of Alkane-1,1-diylbisphosphonates</td>
<td>675</td>
</tr>
</tbody>
</table>

Keyword Index .. 681

Author Index ... 765

Abbreviations .. 795
Volume 31a: Arene—X (X = Hal, O, S, Se, Te)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>□</td>
<td>□</td>
<td>V</td>
</tr>
<tr>
<td>Volume Editor’s Preface</td>
<td>□</td>
<td>□</td>
<td>VII</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>□</td>
<td>□</td>
<td>XIII</td>
</tr>
<tr>
<td>Introduction</td>
<td>C. A. Ramsden</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>31.1</td>
<td>Product Class 1: Fluoroarenes</td>
<td>G. Sandford</td>
<td>21</td>
</tr>
<tr>
<td>31.2</td>
<td>Product Class 2: Chloroarenes</td>
<td>S. P. Stanforth</td>
<td>79</td>
</tr>
<tr>
<td>31.3</td>
<td>Product Class 3: Bromoarenes</td>
<td>S. P. Stanforth</td>
<td>121</td>
</tr>
<tr>
<td>31.4</td>
<td>Product Class 4: Aryl Iodine Compounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.4.1</td>
<td>Product Subclass 1: Hypervalent Iodoarenes and Aryliodonium Salts</td>
<td>V. V. Zhdankin</td>
<td>161</td>
</tr>
<tr>
<td>31.4.2</td>
<td>Product Subclass 2: Iodoarenes</td>
<td>S. R. Waldvogel and K. M. Wehming</td>
<td>235</td>
</tr>
<tr>
<td>31.5</td>
<td>Product Class 5: Phenols and Phenolates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.5.1</td>
<td>Product Subclass 1: Monohydric Phenols and Corresponding Phenolates</td>
<td>C. González-Bello and L. Castedo</td>
<td>275</td>
</tr>
<tr>
<td>31.5.1.1</td>
<td>Synthesis by Substitution</td>
<td>C. González-Bello and L. Castedo</td>
<td>277</td>
</tr>
<tr>
<td>31.5.1.2</td>
<td>Synthesis by Elimination</td>
<td>C. González-Bello and L. Castedo</td>
<td>305</td>
</tr>
<tr>
<td>31.5.1.3</td>
<td>Synthesis by Rearrangement</td>
<td>C. González-Bello and L. Castedo</td>
<td>319</td>
</tr>
<tr>
<td>31.5.1.4</td>
<td>Synthesis with Retention of the Functional Group</td>
<td>C. González-Bello and L. Castedo</td>
<td>331</td>
</tr>
<tr>
<td>31.5.1.5</td>
<td>Synthesis from Nonaromatic Precursors</td>
<td>A. W. Thomas</td>
<td>337</td>
</tr>
</tbody>
</table>
31.5.2 Product Subclass 2: Polyhydric Phenols and Corresponding Phenolates
M. A. Marsini and T. R. R. Pettus ... 403

31.5.2.1 Synthesis by Substitution
M. A. Marsini and T. R. R. Pettus ... 405

31.5.2.2 Synthesis by Elimination
M. A. Marsini and T. R. R. Pettus ... 415

31.5.2.3 Synthesis by Addition
M. A. Marsini and T. R. R. Pettus ... 421

31.5.2.4 Synthesis by Rearrangement
M. A. Marsini and T. R. R. Pettus ... 431

31.5.2.5 Synthesis with Retention of the Functional Group
M. A. Marsini and T. R. R. Pettus ... 441

31.6 Product Class 6: Aryl Ethers

31.6.1 Product Subclass 1: Diaryl Ethers
A. W. Thomas .. 469

31.6.2 Product Subclass 2: Alkyl Aryl Ethers
C. M. R. Low .. 545

31.6.2.1 Synthesis by Substitution
C. M. R. Low .. 547

31.6.2.2 Synthesis by Elimination
C. M. R. Low .. 627

31.6.2.3 Synthesis by Rearrangement
C. M. R. Low .. 633

31.6.2.4 Synthesis with Retention of the Functional Group
C. M. R. Low .. 637

31.6.2.5 Synthesis from Nonaromatic Precursors
M. Gerster and A. W. Thomas ... 643

31.7 Product Class 7: Aryl Hypohalites, Aryl Peroxides,
and Aryloxy Sulfur Compounds
J. Chen and C. K.-F. Chiu .. 665

31.8 Product Class 8: Cyclic Aryl Ethers
D. Craig ... 705
31.9
Product Class 9: Arenesulfonic Acids and Derivatives

31.9.1
Product Subclass 1: Arenesulfonic Acids and Arenesulfonate Salts
B. Fravel, R. Murugan, and E. F. V. Scriven
.. 739

31.9.2
Product Subclass 2: Arenesulfonic Acid Derivatives
I. Shcherbakova
.. 775

31.10
Product Class 10: Aryl Sulfones and Nitrogen Derivatives
S. Nakamura and T. Toru
.. 833

31.11
Product Class 11: Arenesulfinic Acids and Derivatives
S. Nakamura and T. Toru
.. 879

31.12
Product Class 12: Aryl Sulfoxides and S-Arylsulfimides
S. G. Collins and A. R. Maguire
.. 907

31.13
Product Class 13: Arenethiols and Arenethiolates
O. A. Rakitin
.. 949

31.14
Product Class 14: Aryl Sulfides
O. A. Rakitin
.. 975

31.15
Product Class 15: Arylsulphonium Salts and Derivatives
I. Fernández and N. Khiar
.. 1001

31.16
Product Class 16: Arenesulfenic Acids and Derivatives
S. Perrio, V. Reboul, and P. Metzner
.. 1041

31.17
Product Class 17: Aryl Polysulfides
O. A. Rakitin
.. 1085

31.18
Product Class 18: Cyclic Aryl Sulfides
O. A. Rakitin
.. 1097

31.19
Product Class 19: Aryl Selenium Compounds
S. Watanabe and T. Kataoka
.. 1107

31.20
Product Class 20: Aryl Tellurium Compounds
T. Kataoka and S. Watanabe
.. 1159

Keyword Index
.. i

Author Index
.. lxv

Abbreviations
.. cxxv
Table of Contents

Introduction
C. A. Ramsden

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.1</td>
<td>Product Class 1: Fluoroarenes</td>
<td>21</td>
</tr>
<tr>
<td>31.1.1</td>
<td>Synthesis of Product Class 1</td>
<td>24</td>
</tr>
<tr>
<td>31.1.1.1</td>
<td>Method 1: Direct Fluorination with Elemental Fluorine</td>
<td>24</td>
</tr>
<tr>
<td>31.1.1.2</td>
<td>Method 2: Reaction with Electrophilic N–F Reagents</td>
<td>31</td>
</tr>
<tr>
<td>31.1.1.2.1</td>
<td>Variation 1: With 1-Fluoropyridinium Salts</td>
<td>31</td>
</tr>
</tbody>
</table>
| 31.1.1.2.2| Variation 2: With 1-(Chloromethyl)-4-fluoro-1,4-diazi
| 31.1.1.2.3| Variation 3: With Other Electrophilic N–F Reagents | 34 |
| 31.1.1.3| Method 3: Reaction with Xenon Difluoride | 36 |
| 31.1.1.4| Method 4: Reaction with Organic Hypofluorites | 37 |
| 31.1.1.5| Method 5: Reaction with Cesium Fluoroxysulfate | 41 |
| 31.1.1.2| Synthesis by Substitution of Organometallic Groups | 42 |
| 31.1.1.2.1| Method 1: Reaction of Aryllithium Derivatives | 42 |
| 31.1.1.2.2| Method 2: Reaction of Phenylmagnesium Halides | 43 |
| 31.1.1.2.3| Method 3: Reactions of Aryl–Group 14 Derivatives | 44 |
| 31.1.1.3| Synthesis by Substitution of Halogen Atoms | 45 |
| 31.1.1.3.1| Method 1: Reaction with Alkali Metal Fluorides | 46 |
| 31.1.1.4| Synthesis by Substitution of Sulfur | 52 |
| 31.1.1.4.1| Method 4: Reaction of Sulfonyl Derivatives | 52 |
| 31.1.1.5| Synthesis by Substitution of Nitrogen | 53 |
| 31.1.1.5.1| Method 1: Replacement of Nitro Groups | 53 |
| 31.1.1.5.1.1| Variation 1: Reaction with Potassium Fluoride | 53 |
| 31.1.1.5.1.2| Variation 2: Reaction with Tetraalkylammonium Fluorides | 56 |
| 31.1.1.5.2| Method 2: Replacement of Diazo Groups | 56 |
| 31.1.1.5.2.1| Variation 1: Reaction with Hydrogen Fluoride | 57 |
| 31.1.1.5.2.2| Variation 2: Reaction with Hydrogen Fluoride/Pyridine Mixtures | 58 |
| 31.1.1.5.2.3| Variation 3: Reaction of Diazonium Tetrafluoroborates | 61 |
| 31.1.1.5.2.4| Variation 4: Reaction of Diazonium Hexafluoroantimonates | 63 |
| 31.1.1.5.2.5| Variation 5: Reaction with Nitrosonium Tetrafluoroborate | 64 |
| 31.1.1.5.2.6| Variation 6: Reaction of Triazenes | 65 |
| 31.1.1.6| Synthesis by Elimination | 66 |
| 31.1.1.6.1| Method 1: Elimination of Hydrogen Fluoride | 66 |
31.1.6.2 Method 2: Elimination of Fluorine ... 66
31.1.17 Synthesis with Retention of Fluorine .. 68
 31.1.17.1 Method 1: Reactions of Fluoroarenes .. 68
 31.1.17.2 Method 2: Reactions of Perfluoroarenes .. 70

31.2 Product Class 2: Chloroarenes
S. P. Stanforth

31.2.1 Synthesis of Product Class 2 .. 79
 31.2.1.1 Synthesis by Substitution ... 79
 31.2.1.1.1 Method 1: Electrophilic Chlorination .. 80
 31.2.1.1.1.1 Variation 1: Of Phenols and Anisoles 80
 31.2.1.1.1.2 Variation 2: Of Anilines and Acetanilides 82
 31.2.1.1.3 Variation 3: Of Alkylbenzenes .. 84
 31.2.1.1.4 Variation 4: Of Polycyclic Aromatics .. 85
 31.2.1.2 Method 2: The Sandmeyer Reaction .. 86
 31.2.1.3 Method 3: Substitution of a Nitro Group 87
 31.2.1.4 Method 4: Substitution of a Phenolic Hydroxy Group 88
 31.2.1.2 Synthesis by Elimination ... 89
 31.2.1.2.1 Method 1: Dehydrohalogenation ... 89
 31.2.1.2.2 Method 2: Dehalogenation ... 90
 31.2.1.2.3 Method 3: Pyrolytic Loss of a Small Molecule 91
 31.2.1.2.4 Method 4: Transition-Metal-Catalyzed Decarbonylation 92
 31.2.1.3 Synthesis by Cycloaddition .. 93
 31.2.1.3.1 Method 1: Cycloadditions Reactions of Tetrachlorothiophene Dioxide 94
 31.2.1.3.2 Method 2: Cobalt-Catalyzed Reactions 95
 31.2.1.4 Synthesis by Rearrangement .. 95
 31.2.1.4.1 Method 1: Rearrangement During Chlorination 95
 31.2.2 Applications of Product Class 2 in Organic Synthesis 96
 31.2.2.1 Method 1: Cross-Coupling Reactions .. 96
 31.2.2.1.1 Variation 1: Synthesis of Biaryls .. 97
 31.2.2.1.2 Variation 2: Synthesis of Arylalkenes 106
 31.2.2.1.3 Variation 3: Synthesis of Arylalkynes 108
 31.2.2.1.4 Variation 4: Synthesis of Arylalkanes 109
 31.2.2.1.5 Variation 5: Carbonylation and Cyanation Reactions 110
 31.2.2.1.6 Variation 6: Metal-Catalyzed Heterosubstitution Reactions 111
 31.2.2.2 Method 2: Nucleophilic Substitution Reactions 114
 31.2.2.2.1 Variation 1: The S_NAr Reaction 114
 31.2.2.2.2 Variation 2: The S_{RN}1 Reaction 115
 31.2.2.2.3 Variation 3: Substitution via Benzyne Intermediates 115
 31.2.2.3 Method 3: Enzymatic Oxidation Reactions 117
31.3 **Product Class 3: Bromoarenes**
S. P. Stanforth

31.3.1 Synthesis of Product Class 3 ... 121
31.3.1.1 Synthesis by Substitution ... 121
31.3.1.1.1 Method 1: Electrophilic Bromination 121
31.3.1.1.1.1 Variation 1: Of Phenols and Anisoles 122
31.3.1.1.1.2 Variation 2: Of Anilines 125
31.3.1.1.1.3 Variation 3: Of Benzene and Alkylbenzenes 126
31.3.1.1.1.4 Variation 4: Of Deactivated Benzenes 128
31.3.1.1.1.5 Variation 5: Of Polycyclic Aromatics 129
31.3.1.1.2 Method 2: Synthesis from Organometallics 130
31.3.1.1.2.1 Variation 1: From Aryllithiums 130
31.3.1.1.2.2 Variation 2: From Arylsilanes 131
31.3.1.1.2.3 Variation 3: From Arystannanes 132
31.3.1.1.3 Method 3: The Sandmeyer Reaction 132
31.3.1.1.4 Method 4: Substitution of a Phenolic Group 134
31.3.1.2 Synthesis by Elimination ... 134
31.3.1.2.1 Method 1: Dehydrohalogeneration 135
31.3.1.2.2 Method 2: Dehalogenation 135
31.3.1.2.3 Method 3: Transition-Metal-Catalyzed Decarbonylation 136
31.3.1.2.4 Method 4: The Cristol–Firth–Hunsdiecker Reaction 136
31.3.1.3 Synthesis by Cycloaddition .. 137
31.3.2 Applications of Product Class 3 in Organic Synthesis 139
31.3.2.1 Cross-Coupling Reactions ... 139
31.3.2.1.1 Method 1: Synthesis of Biaryls 139
31.3.2.1.2 Method 2: Synthesis of Arylalkenes 144
31.3.2.1.3 Method 3: Synthesis of Arylalkynes 146
31.3.2.1.4 Method 4: Synthesis of Arylalkanes 147
31.3.2.1.5 Method 5: Carbonylation and Cyanation Reactions 149
31.3.2.1.6 Method 6: Metal-Catalyzed Heterosubstitution Reactions 150
31.3.2.2 Nucleophilic Substitution Reactions 153
31.3.2.2.1 Method 1: The S_{Ar}Ar Reaction 153
31.3.2.2.2 Method 2: The S_{En}1 Reaction 153
31.3.2.2.3 Method 3: Substitution via Benzyne Intermediates 154
31.3.2.3 Generation of Aryl Radicals ... 155
31.3.2.4 Generation of Organometallic Reagents 156
31.3.2.5 Enzymatic Oxidation Reactions 156
31.4 Product Class 4: Aryl Iodine Compounds

31.4.1 Product Subclass 1: Hypervalent Iodoarenes and Aryliodonium Salts
V. V. Zhdankin

31.4.1.1 Synthesis of Product Subclass 1

31.4.1.1.1 Method 1: Iodylarenes by Oxidation of Iodoarenes

31.4.1.1.2 Method 2: (Difluoroiodo)arenes by Fluorination of Iodoarenes

31.4.1.1.2.1 Variation 1: Fluorination by Powerful Fluorinating Reagents

31.4.1.1.2.2 Variation 2: Electrochemical Fluorination

31.4.1.1.3 Method 3: (Dichloroiodo)arenes by Chlorination of Iodoarenes

31.4.1.1.4 Method 4: (Diacyloxyiodo)arenes by the Oxidation of Iodoarenes in the Presence of a Carboxylic Acid

31.4.1.1.5 Method 5: Benziodazoles by Oxidation of 2-Iodobenzamides

31.4.1.2 Synthesis by Ligand Exchange of Hypervalent Iodine Compounds

31.4.1.2.1 Method 1: Aryliodine(V) Carboxylates from Iodylarenes

31.4.1.2.2 Method 2: (Dicycloxioxy)arenes from (Diaketoxyiodo)benzene by Ligand Exchange with a Carboxylic Acid

31.4.1.2.3 Method 3: Aryliodine(III) Peroxides by Exchange with tert-Butyl Hydroperoxide

31.4.1.2.4 Method 4: Aryliodine(III) Sulfonates from Arenes

31.4.1.2.4.1 Variation 1: [Hydroxy(organosulfonyloxy)iodo]arenes from (Diacetoxyiodo)arenes

31.4.1.2.4.2 Variation 2: Oxygen-Bridged Derivatives from (Diacetoxyiodo)benzene or Iodosylbenzene

31.4.1.2.4.3 Variation 3: (Organosulfonyloxy)benziodoxoles from 1-Hydroxybenziodoxoles

31.4.1.2.5 Method 5: Iodosylarenes by Hydrolysis of Aryliodine(III) Derivatives

31.4.1.2.5.1 Variation 1: Iodosylarenes by Hydrolysis of (Dicycloxioiodo)arenes

31.4.1.2.5.2 Variation 2: Iodosylarenes by Hydrolysis of (Dichloroiodo)arenes

31.4.1.2.6 Method 6: Aryliodine(III) Amides from (Acyloxyiodo)arenes

31.4.1.2.7 Method 7: Aryliodine(III) Azides from (Acyloxyiodo)arenes

31.4.1.2.8 Method 8: (Difluoroiodo)arenes from Hypervalent Iodoarenes

31.4.1.2.9 Method 9: Alkynyl(aryl)iodonium Salts from Hypervalent Iodoarenes

31.4.1.2.9.1 Variation 1: Alkynyl(aryl)iodonium Tetrafluoroborates

31.4.1.2.9.2 Variation 2: Alkynyl(aryl)iodonium Arenesulfonates

31.4.1.2.9.3 Variation 3: Alkynyl(aryl)iodonium Trifluoromethanesulfonates

31.4.1.2.10 Method 10: Aryl- and Hetaryliodonium Salts from Hypervalent Iodoarenes

31.4.1.2.10.1 Variation 1: Diaryliodonium Tetrafluoroborates

31.4.1.2.10.2 Variation 2: Aryl- and Hetaryliodonium Sulfates and Sulfonates

31.4.1.2.10.3 Variation 3: Aryl- and Hetaryliodonium Halides

31.4.1.2.11 Method 11: Alkenyl(aryl)iodonium Salts from Hypervalent Iodoarenes

31.4.1.2.11.1 Variation 1: Alkenyl(aryl)iodonium Tetrafluoroborates
31.4.1.2.11.2 Variation 2: Alkenyl(aryl)iodonium Organosulfonates 190
31.4.1.2.12 Method 12: Synthesis of Alkyl(aryl)iodonium Salts 192
31.4.1.2.12.1 Variation 1: Aryl(polyfluoroalkyl)iodonium Organosulfonates 193
31.4.1.2.12.2 Variation 2: [(Arylsulfonyl)methyl](phenyl)iodonium Trifluoromethanesulfonates 194
31.4.1.2.13 Method 13: Aryl(cyano)iodonium Derivatives from Hypervalent Iodoarenes 195
31.4.1.2.13.1 Variation 1: Aryl(cyano)iodonium Organosulfonates 195
31.4.1.2.13.2 Variation 2: Cyanobenziodoxoles .. 195
31.4.1.2.14 Method 14: Aryliodonium Ylides from Hypervalent Iodoarenes 196
31.4.1.2.15 Method 15: Aryliodonium Imides from Hypervalent Iodoarenes 197
31.4.1.2 Applications of Product Subclass 1 in Organic Synthesis 198
31.4.1.2.1 Preparation of Products with a New C—C Bond .. 199
31.4.1.2.1.1 Method 1: Reactions of Alkynyl(aryl)iodonium Salts 199
31.4.1.2.1.1.1 Variation 1: Preparation of Substituted Alkynes 199
31.4.1.2.1.1.2 Variation 2: Synthesis of Substituted Cyclopentenes via Intramolecular Carbene Insertion 201
31.4.1.2.1.1.3 Variation 3: Synthesis of Nitrogen and Oxygen Heterocycles via Carbene Cyclizations ... 202
31.4.1.2.1.2 Method 2: Reactions of Diaryliodonium Salts ... 204
31.4.1.2.1.2.1 Variation 1: Reactions via a Benzyne Intermediate 204
31.4.1.2.1.2.2 Variation 2: Arylations ... 205
31.4.1.2.1.3 Method 3: Reactions of Alkenyl(aryl)iodonium Salts 206
31.4.1.2.1.3.1 Variation 1: Alkenylations .. 206
31.4.1.2.1.3.2 Variation 2: Reactions via Alkylidenecarbene Intermediates 208
31.4.1.2.1.4 Method 4: Reactions of Aryl(aryl)iodonium Derivatives 208
31.4.1.2.1.4.1 Variation 1: Fluoroalkylations with Aryl(polyfluoroalkyl)iodonium Organosulfonates ... 208
31.4.1.2.1.4.2 Variation 2: Reactions of [(Arylsulfonyl)methyl](phenyl)iodonium Trifluoromethanesulfonates with Nucleophiles 209
31.4.1.2.1.5 Method 5: Reactions of (β-Oxoalkyl)phenyliodonium Salts 210
31.4.1.2.1.5.1 Variation 1: Reactions via Carbene Intermediates 210
31.4.1.2.1.5.2 Variation 2: Cycloadditions ... 211
31.4.1.2.2 Preparation of Products with a New C—F Bond .. 211
31.4.1.2.2.1 Method 1: Fluorination with (Difluoroiodo)arenes 211
31.4.1.2.2.1.1 Variation 1: α-Fluorination of Carbonyl Compounds 211
31.4.1.2.2.1.2 Variation 2: Fluorination of Alkenes .. 212
31.4.1.2.3 Preparation of Products with a New C—Cl Bond 212
31.4.1.2.3.1 Method 1: Chlorination with (Dichloroiodo)arenes 212
31.4.1.2.4 Preparation of Products with a New C—I Bond 213
31.4.1.2.4.1 Method 1: Oxidative Iodination Using Hypervalent Iodoarenes 213
31.4.1.2.5 Oxidations and Oxidative Rearrangements .. 214
31.4.1.2.5.1 Method 1: Oxidations with Iodylarenes and Aryliodine(V) Carboxylates 214
31.4.1.2.5.1.1 Variation 1: Oxidation of Alcohols to Aldehydes 214
31.4.1.2.5.1.2 Variation 2: Oxidation at a Benzylic Position 214
31.4.1.2.5.1.3 Variation 3: Oxidative Cyclizations .. 215
31.4.1.2.5.1.4 Variation 4: Oxidation of Sulfides to Sulfoxides 215
31.4.1.2.5.2 Method 2: Oxidations with (Acyloxyiodo)arenes 216
31.4.1.2.5.2.1 Variation 1: Hydroxylation of Enolizable Ketones 216
31.4.1.2.5.2.2 Variation 2: Oxidation of Phenols and Phenol Ethers 217
31.4.1.2.5.3 Method 3: Oxidations with Peroxybenziodoxole 218
31.4.1.2.5.4 Method 4: Oxidations with [Hydroxy(organosulfonyloxy)iodo]benzenes 219
31.4.1.2.5.4.1 Variation 1: Tosyloxylation of Enolizable Ketones 219
31.4.1.2.5.4.2 Variation 2: Oxidative Rearrangements .. 220
31.4.1.2.5.5 Method 5: Oxidations with Iodosylarenes .. 221
31.4.1.2.5.5.1 Variation 1: Oxidation of Alcohols .. 221
31.4.1.2.5.5.2 Variation 2: Oxidative Rearrangements .. 221
31.4.1.2.6 Preparation of Products with a New C—S Bond 221
31.4.1.2.6.1 Method 1: Oxidative Thiocyanation Using Hypervalent Iodoarenes 221
31.4.1.2.7 Synthesis of Product Subclass 2 ... 222
31.4.1.2.7.1 Method 1: Reactions of Aryliodine(III) Amides 222
31.4.1.2.7.2 Method 2: Reactions of Aryliodine(III) Azides 222
31.4.1.2.7.2.1 Variation 1: Azidations with (Diazidoiodo)benzene In Situ 222
31.4.1.2.7.2.2 Variation 2: Azidations with Azidobenziodoxole 223
31.4.1.2.7.3 Method 3: Reactions of Aryliodonium Imides ... 223
31.4.1.2.7.3.1 Variation 1: C—H Amidation .. 224
31.4.1.2.7.3.2 Variation 2: Aziridination of Alkenes .. 224
31.4.1.2.7.4 Method 4: Hypervalent Iodoarenes as Reagents for Hofmann Rearrangements ... 225

31.4.2 Product Subclass 2: Iodoarenes
S. R. Waldvogel and K. M. Wehming

31.4.2 Product Subclass 2: Iodoarenes ... 235
31.4.2.1 Synthesis of Product Subclass 2 ... 235
31.4.2.1.1 Method 1: Electrophilic Iodination .. 235
31.4.2.1.1.1 Variation 1: Of Phenols .. 235
31.4.2.1.1.2 Variation 2: Of Naphthols .. 239
31.4.2.1.1.3 Variation 3: Of Alkoxyarenes ... 240
31.4.2.1.1.4 Variation 4: Of Naphthyl Ethers .. 242
31.4.2.1.1.5 Variation 5: Of Anilines ... 243
31.4.2.1.1.6 Variation 6: Of Benzenes and Their Alkyl Derivatives 245
31.4.2.1.1.7 Variation 7: Of Halobenzenes ... 248
31.4.2.1.1.8 Variation 8: Of Electron-Deficient Arenes ... 250
31.4.2.1.2 Method 2: Iodination by Electrophilic Metalation 252
31.4.2.1.2.1 Variation 1: Iododethallation ... 253
31.4.2.1.2.2 Variation 2: Iododemercuration .. 254
31.4.2.1.2.3 Variation 3: Iododepalladation
31.4.2.1.3 Method 3: Iodination by ortho-Lithiation
31.4.2.1.3.1 Variation 1: With ortho-Directing Halogen Substituents
31.4.2.1.3.2 Variation 2: With ortho-Directing Alkoxy Substituents
31.4.2.1.3.3 Variation 3: With Strong Directing Groups for ortho-Metalation
31.4.2.1.4 Method 4: Sandmeyer-Type Reactions
31.4.2.1.4.1 Variation 1: Direct Conversion of Amino Groups or Diazonium Salts
31.4.2.1.4.2 Variation 2: Substitution of Triazenes
31.4.2.1.4.3 Variation 3: Reactions of 2,5-Dimethyl-1H-pyrrole-Substituted Aryls
31.4.2.1.5 Method 5: Replacement of Bromine
31.4.2.1.6 Method 6: Iododesilylation
31.4.2.1.7 Method 7: Iododestannylation

31.5 Product Class 5: Phenols and Phenolates

31.5.1 Product Subclass 1: Monohydric Phenols and Corresponding Phenolates
C. González-Bello and L. Castedo

31.5.1.1 Synthesis by Substitution
C. González-Bello and L. Castedo

31.5.1.1 Synthesis by Substitution
31.5.1.1.1 Method 1: Substitution of Hydrogen via Metal-Catalyzed Oxidation
31.5.1.1.1.1 Variation 1: Using Oxygen/Air
31.5.1.1.1.2 Variation 2: Using Nitrous Oxide
31.5.1.1.1.3 Variation 3: Using Hydrogen Peroxide
31.5.1.1.2 Method 2: Substitution of Hydrogen via Reductive Oxidation
31.5.1.1.3 Method 3: Substitution of Hydrogen via Electrochemical Hydroxylation
31.5.1.1.4 Method 4: Substitution of Hydrogen via Electrophilic Hydroxylation
31.5.1.1.4.1 Variation 1: Using Hydrogen Peroxide and Superacids
31.5.1.1.4.2 Variation 2: Using Peroxy Acids
31.5.1.1.5 Method 5: Substitution of Hydrogen via Nucleophilic Hydroxylation of Nitroarenes Using Alkyl Peroxides
31.5.1.1.6 Method 6: Substitution of Hydrogen via Biomimetic Processes
31.5.1.1.7 Method 7: Substitution of Organometallic Groups via Direct Oxidation
31.5.1.1.7.1 Variation 1: Using Oxygen
31.5.1.1.7.2 Variation 2: Using Hydroperoxides
31.5.1.1.7.3 Variation 3: Using Molybdenum Peroxides
31.5.1.1.7.4 Variation 4: Using 2-Sulfonyloxaziridines
31.5.1.1.8 Method 8: Substitution of Organometallic Groups via Indirect Oxidation
31.5.1.1.8.1 Variation 1: Oxidation of Boronic Esters
31.5.1.1.8.2 Variation 2: Using Bis(trimethylsilyl) Peroxide
31.5.1.9 Method 9: Substitution of Aryl Aldehydes .. 290
31.5.1.10 Method 10: Substitution of Alkyl Aryl Ketones 293
31.5.1.11 Method 11: Substitution of Sulfonic Acids via Alkaline Fusion 293
31.5.1.12 Method 12: Hydrolysis of Diazonium Salts 293
31.5.1.12.1 Variation 1: Thermal Hydrolysis .. 294
31.5.1.12.2 Variation 2: Copper–Redox Hydrolysis 294
31.5.1.13 Method 13: Substitution of Sulfonic Acids via Alkaline Fusion 295
31.5.1.14 Method 14: Substitution of Halides via Alkaline Fusion 296
31.5.1.15 Method 15: Substitution of Halides via Metal-Catalyzed Carbon–Oxygen Coupling Reactions .. 297
31.5.1.16 Method 16: Nucleophilic Hydroxylation of Fluoroarenes 299
31.5.1.16.1 Variation 1: Reaction of Fluoronitroarenes with Alkyl Hydroperoxides 299
31.5.1.16.2 Variation 2: Reaction of Fluoroarenes with Alkoxides 299
31.5.1.17 Method 17: Reaction of Substituted 1,2-Dichloroarenes with Nitrites .. 301

31.5.1.2 Synthesis by Elimination
C. González-Bello and L. Castedo

31.5.1.2 Synthesis by Elimination ... 305
31.5.1.2.1 Method 1: Elimination of Esters by Hydrolysis 305
31.5.1.2.1.1 Variation 1: By Acid Alcoholysis/Hydrolysis 305
31.5.1.2.1.2 Variation 2: By Basic Alcoholysis/Hydrolysis 306
31.5.1.2.2 Method 2: Elimination of Esters by Addition of Metallic Hydrides .. 307
31.5.1.2.3 Method 3: Elimination of Alkyl Ethers 307
31.5.1.2.3.1 Variation 1: Reaction with Brønsted Acids 308
31.5.1.2.3.2 Variation 2: Reaction with Lewis Acids 308
31.5.1.2.3.3 Variation 3: Reaction with Nucleophiles 309
31.5.1.2.4 Method 4: Elimination from Benzyl Ethers 310
31.5.1.2.4.1 Variation 1: Hydrogenolysis of Benzyl Ethers 310
31.5.1.2.4.2 Variation 2: Radical Cleavage of Aryl 4-Methoxybenzyl Ethers 310
31.5.1.2.4.3 Variation 3: Photocleavage of Nitrobenzyl Ethers 311
31.5.1.2.5 Method 5: Elimination of Sulfonates 312
31.5.1.2.5.1 Variation 1: By Basic Hydrolysis 312
31.5.1.2.5.2 Variation 2: By Reaction with Nucleophiles 313
31.5.1.2.6 Method 6: Aromatization of Cyclohexanones and Cyclohexenones 314

31.5.1.3 Synthesis by Rearrangement
C. González-Bello and L. Castedo

31.5.1.3 Synthesis by Rearrangement ... 319
31.5.1.3.1 Method 1: Rearrangement of Alkyl Aryl Ethers 319
31.5.1.3.2 Method 2: Rearrangement of Alkyl and Benzyl Aryl Ethers 322
31.5.1.3.3 Method 3: Rearrangement of Diaryl Ethers 323
31.5.1.3.4 Method 4: Rearrangement of Dienones 324
31.5.1.3.5 Method 5: Rearrangement of Phenolic Esters 326
31.5.4 Synthesis with Retention of the Functional Group
C. González-Bello and L. Castedo

31.5.4 Synthesis with Retention of the Functional Group 331
31.5.4.1 Method 1: Electrophilic Substitution of Phenols 331
31.5.4.2 Method 2: Synthesis of Phenolates 334
31.5.4.2.1 Variation 1: Reaction of Phenols with Alkali Metal Hydrides 334
31.5.4.2.2 Variation 2: Reaction of Phenols with Metal Complexes 334

31.5.5 Synthesis from Nonaromatic Precursors
A. W. Thomas

31.5.5 Synthesis from Nonaromatic Precursors 337
31.5.5.1 Method 1: Benzannulation Reactions 337
31.5.5.1.1 Variation 1: Of Vinylketenes Derived from Cyclobutenones 337
31.5.5.1.2 Variation 2: Of Vinylketenes Derived from Diazo Ketones 339
31.5.5.1.3 Variation 3: Of Vinylketenes Derived from Benzo-1,4-quinones 340
31.5.5.1.4 Variation 4: Of Vinlycyclopropanes and Vinlycyclopropenes 341
31.5.5.1.5 Variation 5: Of Chromium Carbenes 343
31.5.5.1.6 Variation 6: Of Chromium Carbynes 343
31.5.5.2 Method 2: Cycloaromatization Reactions 344
31.5.5.2.1 Variation 1: Diels–Alder Reactions 344
31.5.5.2.2 Variation 2: Of Siloxy Dienes 356
31.5.5.3 Method 3: Cyclocondensation Reactions 364
31.5.5.3.1 Variation 1: Classical Cyclocondensation Reactions 364
31.5.5.3.2 Variation 2: Other Cyclization Reactions 374
31.5.5.4 Method 4: Free-Radical Methods 378
31.5.5.5 Method 5: Synthesis from Heterocyclic Precursors 379
31.5.5.6 Method 6: Synthesis from Cyclohexenones 379
31.5.5.7 Method 7: Synthesis from Cyclohexadienones 383
31.5.5.8 Method 8: Synthesis from Cyclohexene Oxides 387
31.5.5.9 Method 9: Synthesis from Cyclohexanones 389
31.5.5.10 Method 10: Synthesis from Benzo-1,2-quinones or Benzo-1,4-quinones 389
31.5.5.11 Method 11: Synthesis from Polyenes and Related Compounds 393

31.5.2 Product Subclass 2: Polyhydric Phenols and Corresponding Phenolates
M. A. Marsini and T. R. R. Pettus

31.5.2 Product Subclass 2: Polyhydric Phenols and Corresponding Phenolates 403

31.5.2.1 Synthesis by Substitution
M. A. Marsini and T. R. R. Pettus

31.5.2.1 Synthesis by Substitution 405
31.5.2.1.1 Method 1: Oxidation of Phenols with 1-Hydroxy-1,2-benziodoxol-3(1H)-one 1-Oxide 405
31.5.2 Method 2: Palladium-Catalyzed Substitution of Halides by Hydroxide

408

31.5.3 Method 3: Copper(I)-Mediated Phenol Oxidation

409

31.5.4 Method 4: Biooxidation of Arenes

409

31.5.5 Method 5: Dakin Oxidation

410

31.5.5.1 Variation 1: Under Basic Conditions

411

31.5.5.2 Variation 2: Using Urea/Hydrogen Peroxide

411

31.5.5.3 Variation 3: Using Catalytic Selenium Dioxide

411

31.5.6 Method 6: Elb’s Persulfate Oxidation

412

31.5.7 Method 7: Oxidation–Reduction with Frémy’s Salt and Sodium Dithionite

412

31.5.2 Synthesis by Elimination

M. A. Marsini and T. R. R. Pettus

31.5.2.1 Method 1: Condensation–Aromatization of Cyclohexane-1,4-diones

415

31.5.2.2 Method 2: Aromatization of myo-2-Inosose

416

31.5.2.3 Method 3: Aromatization of 3-Hydroxycyclohex-2-enone Derivatives

416

31.5.2.4 Method 4: Oxidation of Cyclohexane-1,3-dione

417

31.5.2.5 Method 5: Reductive Aromatization of an Epoxy Enone

418

31.5.3 Synthesis by Addition

M. A. Marsini and T. R. R. Pettus

31.5.3.1 Method 1: Reduction of Quinones

421

31.5.3.1.1 Variation 1: Reduction with Sodium Dithionite

421

31.5.3.1.2 Variation 2: Reduction with Sodium Borohydride

421

31.5.3.1.3 Variation 3: Reduction by Catalytic Hydrogenation

422

31.5.3.1.4 Variation 4: Reduction with Raney Nickel

422

31.5.3.1.5 Variation 5: Reduction with Tin(II) Chloride

423

31.5.3.1.6 Variation 6: Reduction with Chromium(II) Chloride

423

31.5.3.2 Method 2: Reductive Alkylation of Quinones

424

31.5.3.2.1 Variation 1: 1,4-Addition of Trialkylboranes

424

31.5.3.2.2 Variation 2: 1,4-Addition of Organonickel Reagents

424

31.5.3.2.3 Variation 3: 1,4-Addition of Heterocyclic Amines

424

31.5.3.2.4 Variation 4: Addition of Trimethylsilyl Cyanide

425

31.5.3.2.5 Variation 5: Sulfenylation in Ionic Liquids

426

31.5.3.2.6 Variation 6: Addition to an o-Quinomethane

426

31.5.3.2.7 Variation 7: Arene Addition to 2-Formylbenzo-1,4-quinone

427

31.5.3.3 Method 3: Photoacylation of Quinones

428

31.5.3.4 Method 4: Benzopyran Reduction

428
31.5.2.4 Synthesis by Rearrangement
M. A. Marsini and T. R. R. Pettus

31.5.2.4 Synthesis by Rearrangement ... 431
31.5.2.4.1 Method 1: Claisen Rearrangement 431
31.5.2.4.1.1 Variation 1: Under Thermal Conditions 431
31.5.2.4.1.2 Variation 2: Under Lewis Acidic Conditions 432
31.5.2.4.1.3 Variation 3: Under Basic Conditions 432
31.5.2.4.1.4 Variation 4: Using a Chiral Reagent 433
31.5.2.4.2 Method 2: Fries Rearrangement 433
31.5.2.4.2.1 Variation 1: Using Zinc/Microwave Radiation 433
31.5.2.4.2.2 Variation 2: Using a Lewis Acid 434
31.5.2.4.2.3 Variation 3: Photo-Fries Rearrangement 435
31.5.2.4.3 Method 3: 1,2-Addition with Dienone–Phenol Rearrangement 435
31.5.2.4.3.1 Variation 1: Using Boron Trifluoride–Diethyl Ether Complex/Allylstannanes 436
31.5.2.4.3.2 Variation 2: Using Bismuth(III) Trifluoromethanesulfonate/Allylsilanes 437
31.5.2.4.3.3 Variation 3: By Addition of an Allylindium Reagent 437
31.5.2.4.3.4 Variation 4: Using Tetrabutylammonium Fluoride/Trifluoro(3-methyl-but-2-ethyl)silane 438
31.5.2.4.4 Method 4: Base-Induced Benzoyl Migration 438

31.5.2.5 Synthesis with Retention of the Functional Group
M. A. Marsini and T. R. R. Pettus

31.5.2.5 Synthesis with Retention of the Functional Group 441
31.5.2.5.1 Method 1: Friedel–Crafts Formylation 441
31.5.2.5.1.1 Variation 1: Under Gattermann Conditions 441
31.5.2.5.1.2 Variation 2: Under Vilsmeier–Haack Conditions 442
31.5.2.5.1.3 Variation 3: Under Duff Formylation Conditions 443
31.5.2.5.2 Method 2: Friedel–Crafts Acylation 443
31.5.2.5.2.1 Variation 1: By Houben–Hoesch Condensation 444
31.5.2.5.2.2 Variation 2: Using Boron Trifluoride–Diethyl Ether Complex with Carboxylic Acid or Acid Anhydride 444
31.5.2.5.2.3 Variation 3: Using Aluminum Trichloride with an Acid Anhydride or Acid Chloride 446
31.5.2.5.2.4 Variation 4: Using Aluminum Trichloride/(Trichloromethyl)benzene 447
31.5.2.5.2.5 Variation 5: Using Zinc Dust with Microwave Irradiation 448
31.5.2.5.2.6 Variation 6: Using N-Alkyltrinitrile Salts 448
31.5.2.5.2.7 Variation 7: Using Protic Acid 449
31.5.2.5.2.8 Variation 8: Using Zinc(II) Chloride/Phosphoryl Chloride 449
31.5.2.5.3 Method 3: Friedel–Crafts Alkylation 450
31.5.2.5.3.1 Variation 1: By Protic Acid Catalyzed Condensation 450
31.5.2.5.3.2 Variation 2: By Alkylation Catalyzed by Bis(trifluoromethylsulfonyl)amine 451
31.5.2.5.3.3 Variation 3: Using Solid-Supported Reagents 452
31.5.2.5.3.4 Variation 4: Using Titanium(IV) Chloride with Imines 453
31.5.2.5.3.5 Variation 5: By Mannich Reaction 453
31.5.2.5.3.6 Method 4: Alkylation of Phenolates 454
31.5.2.5.4.1 Variation 1: By Aldol Reaction with Aldehydes ... 454
31.5.2.5.4.2 Variation 2: By Michael Reaction with Enones .. 456
31.5.2.5.4.3 Variation 3: By Prenylation .. 457
31.5.2.5.4.4 Variation 4: By Addition of an Iron–Dienyl Complex .. 457
31.5.2.5.4.5 Variation 5: By Addition of an Aryllithium Followed by Deprotection 458
31.5.2.5.4.6 Variation 6: By Carboxylation ... 458
31.5.2.5.4.7 Variation 7: By Buffer-Mediated Addition ... 459
31.5.2.5.4.8 Variation 8: By Glycosylation under Basic Conditions .. 460
31.5.2.5.4.9 Variation 9: By Glycosylation under Lewis Acidic Conditions 460
31.5.2.5.5 Method 5: Enzymatic Alkylation .. 461
31.5.2.5.6 Method 6: Transition-Metal-Promoted Aryl Coupling .. 462
31.5.2.5.6.1 Variation 1: Under Heck Conditions .. 462
31.5.2.5.6.2 Variation 2: Palladium-Catalyzed Allylation .. 463
31.5.2.5.6.3 Variation 3: Under Stille Coupling Conditions ... 463
31.5.2.5.6.4 Variation 4: Rhodium(I)-Catalyzed Alkenylation ... 464
31.5.2.5.6.5 Variation 5: Copper-Mediated Biaryl Formation ... 464
31.5.2.5.6.6 Variation 6: Ruthenium(III)-Mediated Benzylolation ... 465
31.5.2.5.7 Method 7: Decarboxylation .. 465

31.6 Product Class 6: Aryl Ethers

31.6.1 Product Subclass 1: Diaryl Ethers

A. W. Thomas

31.6.1.1 Synthesis of Product Subclass 1 ... 469
31.6.1.1.1 Method 1: Reaction of Phenols with Arylbismuth Compounds 469
31.6.1.1.2 Method 2: Reaction of Phenols with Arylboron Compounds 471
31.6.1.1.3 Method 3: Reaction of Phenols with Thallium(III) Nitrate and Some Related Oxidative Coupling Reactions ... 480
31.6.1.1.4 Method 4: Reaction of Phenols with Aryl Halides ... 486
31.6.1.1.4.1 Variation 1: With Aryl Fluorides ... 486
31.6.1.1.4.2 Variation 2: With Aryl Chlorides ... 496
31.6.1.1.4.3 Variation 3: With Aryl Bromides ... 499
31.6.1.1.4.4 Variation 4: With Aryl Iodides .. 505
31.6.1.1.4.5 Variation 5: With Hypervalent Aryliodine Compounds 509
31.6.1.1.5 Method 5: Reaction of Phenols with Aryl Sulfides ... 512
31.6.1.1.6 Method 6: Reactions of Sulfonyl- or Silicon-Activated Phenols 512
31.6.1.1.7 Method 7: Synthesis Using Metal–Arene Complexes .. 517
31.6.1.1.8 Method 8: Pummerer-Type Rearrangements ... 522
31.6.1.1.9 Method 9: Benzannulation Methods ... 523
31.6.1.1.9.1 Variation 1: Chromium Carbene Induced Benzannulation 523
31.6.1.1.9.2 Variation 2: Robinson Annulation .. 525
31.6.1.1.9.3 Variation 3: Other Benzannulation Methods ... 525
31.6.1.1.10 Method 10: Diels–Alder and Related Cycloaddition Reactions 526
31.6.1.11 Method 11: Reactions of Benzo-1,2-quinones with Aryl Grignard and Other Reagents ... 529
31.6.1.12 Method 12: Synthesis from Benzo-1,4-quinones 531
31.6.1.13 Method 13: Synthesis from Cyclohexenones and Their Derivatives 534

31.6.2 Product Subclass 2: Alkyl Aryl Ethers
C. M. R. Low

31.6.2.1 Synthesis by Substitution
C. M. R. Low

31.6.2.1 Synthesis by Substitution ... 547
31.6.2.1.1 Method 1: Synthesis by Substitution of Hydrogen 547
31.6.2.1.1.1 Variation 1: Oxidation of Arenes ... 547
31.6.2.1.1.2 Variation 2: Methylation of Phenols ... 550
31.6.2.1.1.3 Variation 3: Alkylation of Phenols ... 559
31.6.2.1.1.4 Variation 4: Addition of Phenols to Alkenes ... 576
31.6.2.1.1.5 Variation 5: Arylation of Alcohols ... 578
31.6.2.1.2 Method 2: Synthesis by Substitution of Organometallic Groups 579
31.6.2.1.2.1 Variation 1: Copper-Catalyzed Cross Coupling 579
31.6.2.1.2.2 Variation 2: The Ullmann Ether Synthesis 581
31.6.2.1.2.3 Variation 3: The Hartwig–Buchwald Reaction 588
31.6.2.1.2.4 Variation 4: π-Allylpalladium Reactions (Trost Reaction) 594
31.6.2.1.2.5 Variation 5: Reactions with Other Metals 603
31.6.2.1.3 Method 3: Synthesis by Substitution of Heteroatoms 609
31.6.2.1.3.1 Variation 1: Nucleophilic Aromatic Substitution of Fluorine 609
31.6.2.1.3.2 Variation 2: Nucleophilic Aromatic Substitution of Chlorine 617
31.6.2.1.3.3 Variation 3: Nucleophilic Aromatic Substitution of a Nitro Group 619
31.6.2.1.3.4 Variation 4: Cleavage of a Siloxy Group (Si–O Bond Cleavage) 620
31.6.2.1.3.5 Variation 5: Nucleophilic Aromatic Substitution of a Trifluoroacetoxy Group ... 621

31.6.2.2 Synthesis by Elimination
C. M. R. Low

31.6.2.2 Synthesis by Elimination ... 627
31.6.2.2.1 Method 1: Synthesis of Anisole from Cyclohexanone 627
31.6.2.2.2 Method 2: Synthesis of (Aryloxy)alkynes from Trihaloethenes and Phenols and of Halogenated (Aryloxy)alkenals and Derivatives 627
31.6.2.2.3 Method 3: 1-(Aryloxy)perfluoroalk-1-ynes from Phosphoranes 630
31.6.2.3 Synthesis by Rearrangement

C. M. R. Low

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author(s)</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.6.2.3</td>
<td>Synthesis by Rearrangement</td>
<td>C. M. R. Low</td>
<td>633</td>
</tr>
<tr>
<td>31.6.2.3.1</td>
<td>Method 1: Synthesis from Alkynyl(phenyl)iodonium salts</td>
<td></td>
<td>633</td>
</tr>
<tr>
<td>31.6.2.3.2</td>
<td>Method 2: Synthesis by Enyne–Diyne Benzannulation</td>
<td></td>
<td>635</td>
</tr>
</tbody>
</table>

31.6.2.4 Synthesis with Retention of the Functional Group

C. M. R. Low

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author(s)</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.6.2.4</td>
<td>Synthesis with Retention of the Functional Group</td>
<td>C. M. R. Low</td>
<td>637</td>
</tr>
<tr>
<td>31.6.2.4.1</td>
<td>Method 1: Elimination of Hydrogen Halides from the Alkyl Group</td>
<td></td>
<td>637</td>
</tr>
<tr>
<td>31.6.2.4.2</td>
<td>Method 2: Addition of an Aluminate to an Epoxide</td>
<td></td>
<td>638</td>
</tr>
<tr>
<td>31.6.2.4.3</td>
<td>Method 3: Cleavage from a Polymer-Supported Reagent</td>
<td></td>
<td>638</td>
</tr>
<tr>
<td>31.6.2.4.4</td>
<td>Method 4: Synthesis by Dimerization</td>
<td></td>
<td>640</td>
</tr>
</tbody>
</table>

31.6.2.5 Synthesis from Nonaromatic Precursors

M. Gerster and A. W. Thomas

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author(s)</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.6.2.5</td>
<td>Synthesis from Nonaromatic Precursors</td>
<td>M. Gerster and A. W. Thomas</td>
<td>643</td>
</tr>
<tr>
<td>31.6.2.5.1</td>
<td>Method 1: Synthesis from Cyclohex-2-enones</td>
<td></td>
<td>643</td>
</tr>
<tr>
<td>31.6.2.5.1.1</td>
<td>Variation 1: Aromatization of Cyclohex-2-enones Using Iodine in Methanol</td>
<td></td>
<td>643</td>
</tr>
<tr>
<td>31.6.2.5.1.2</td>
<td>Variation 2: Aromatization of Cyclohex-2-enones Using Iodine and Ammonium Cerium(IV) Nitrate in an Alcohol</td>
<td></td>
<td>644</td>
</tr>
<tr>
<td>31.6.2.5.1.3</td>
<td>Variation 3: Aromatization of Cyclohex-2-enones Using Oxovanadium Reagents in an Alcohol</td>
<td></td>
<td>645</td>
</tr>
<tr>
<td>31.6.2.5.1.4</td>
<td>Variation 4: Oxidation of 3-Methoxycyclohex-2-enones</td>
<td></td>
<td>646</td>
</tr>
<tr>
<td>31.6.2.5.1.5</td>
<td>Variation 5: Oxidative Rearrangement of Isophorone</td>
<td></td>
<td>647</td>
</tr>
<tr>
<td>31.6.2.5.1.6</td>
<td>Variation 6: Isomerization of α-Alkenyl-Substituted Cyclohexane-1,3-dione Enols</td>
<td></td>
<td>647</td>
</tr>
<tr>
<td>31.6.2.5.2</td>
<td>Method 2: Synthesis from Cyclohexadienones</td>
<td></td>
<td>648</td>
</tr>
<tr>
<td>31.6.2.5.2.1</td>
<td>Variation 1: Photorearrangement of Cyclohexa-2,5-dienones</td>
<td></td>
<td>648</td>
</tr>
<tr>
<td>31.6.2.5.2.2</td>
<td>Variation 2: Reaction of 6-Acetoxy cyclohexa-2,4-dienone with Organometallic Reagents</td>
<td></td>
<td>648</td>
</tr>
<tr>
<td>31.6.2.5.3</td>
<td>Method 3: Synthesis from Benzoquinones</td>
<td></td>
<td>649</td>
</tr>
<tr>
<td>31.6.2.5.3.1</td>
<td>Variation 1: Synthesis from Benzo-1,4-quinones by Cycloaddition</td>
<td></td>
<td>649</td>
</tr>
<tr>
<td>31.6.2.5.3.2</td>
<td>Variation 2: Synthesis from Benzo-1,4-quinones by Radical Addition</td>
<td></td>
<td>649</td>
</tr>
<tr>
<td>31.6.2.5.3.3</td>
<td>Variation 3: Synthesis from Benzo-1,2-quinones by [4+2] Cycloaddition with Sinapyl Alcohol Derivatives</td>
<td></td>
<td>650</td>
</tr>
<tr>
<td>31.6.2.5.3.4</td>
<td>Variation 4: Synthesis from 4,5-Dimethoxybenzo-1,2-quinone</td>
<td></td>
<td>650</td>
</tr>
<tr>
<td>31.6.2.5.4</td>
<td>Method 4: Synthesis from Cyclohexadienones</td>
<td></td>
<td>651</td>
</tr>
<tr>
<td>31.6.2.5.4.1</td>
<td>Variation 1: Oxidation of Cyclohexa-1,3- and Cyclohexa-1,4-dienes</td>
<td></td>
<td>651</td>
</tr>
<tr>
<td>31.6.2.5.4.2</td>
<td>Variation 2: Reductive Aromatization of 4,4-Dimethoxycyclohexa-2,5-dienols</td>
<td></td>
<td>652</td>
</tr>
<tr>
<td>31.6.2.5.5</td>
<td>Method 5: Benzannulation Methods</td>
<td></td>
<td>652</td>
</tr>
</tbody>
</table>
31.6.5.5.1
Variation 1: Synthesis of Resorcinol Derivatives by Diels–Alder Reactions

31.6.5.5.2
Variation 2: Other Cycloaromatizations

31.6.5.5.3
Variation 3: From Vinylketenes Derived from Cyclobuteneones

31.6.5.5.4
Variation 4: From Vinylketenes Derived from Tricarbonyliron Complexes

31.6.5.5.5
Variation 5: From Vinylketenes Derived from α',β-Unsaturated α'-Diazo-α'-silyl Ketones

31.6.5.5.6
Variation 6: Synthesis from Vinylcyclobuteneones

31.6.5.6
Method 6: Synthesis from Chromium–Carbene Complexes

31.6.5.6.1
Variation 1: Dötz Benzannulation of α,β-Unsaturated Fischer Carbene Complexes with Alkynes

31.6.5.6.2
Variation 2: Dötz Benzannulation of α,β-Unsaturated Fischer Carbene Complexes with Ketene Acetals

31.6.5.6.3
Variation 3: Dötz Benzannulation of Chromium–Arylcarbene Complexes with Alkynes

31.6.5.6.4
Variation 4: Cycloaddition/Benzannulation Reactions of Chromium–Alkynylcarbene Complexes with Dienes

31.6.5.6.5
Variation 5: [5 + 5] Cycloadditions of Chromium–(Alkynylaryl)carbene Complexes with Enyne Aldehydes

31.6.5.6.6
Variation 6: Intramolecular Dötz Reactions

31.7
Product Class 7: Aryl Hypohalites, Aryl Peroxides, and Aryloxy Sulfur Compounds

J. Chen and C. K.-F. Chiu

31.7.1
Product Subclass 1: Aryl Hypohalites

31.7.1.1
Synthesis of Product Subclass 1

31.7.1.1.1
Method 1: Synthesis by Formation of the Ar1O–Hal Bond

31.7.2
Product Subclass 2: Aryl Peroxides

31.7.2.1
Synthesis of Product Subclass 2

31.7.2.1.1
Method 1: Synthesis by Formation of the Ar1–OOR1 Bond

31.7.2.1.2
Variation 2: Photo-Oxygenation

31.7.2.1.3
Variation 3: Oxidation with 3-Chloroperoxybenzoic Acid

31.7.2.1.4
Variation 4: S_n2 Displacement of Activated Aryl Halides by Hydroperoxides

31.7.2.1.2
Method 2: Synthesis by Formation of the Ar1O–OR1 Bond

31.7.3
Product Subclass 3: (Aryloxy)sulfur Polyhalides

31.7.3.1
Synthesis of Product Subclass 3

31.7.3.1.1
Method 1: Synthesis by Formation of the Ar1–OSHal1 Bond

31.7.3.1.2
Method 2: Synthesis by Formation of the Ar1O–SHal1 Bond

31.7.4
Product Subclass 4: Aryl Halosulfonates

31.7.4.1
Synthesis of Product Subclass 4
31.7.4.1 Method 1: Synthesis by Formation of the Ar—OSO₂Hal Bond 673
 Variation 1: Via Arenediazonium Salts 673
 Variation 2: Via Oxidation of Arenes 673

31.7.4.2 Method 2: Synthesis by Formation of the Ar'O—SO₂Hal Bond 674

31.7.5 Product Subclass 5: Aryl Sulfates 679

31.7.5.1 Synthesis of Product Subclass 5 679
 Method 1: Synthesis by Formation of the Ar—OSO₂OR Bond 679
 Method 2: Synthesis by Formation of the Ar'O—SO₂OR Bond 680
 Variation 1: Via an Amine–Sulfur Trioxide Complex 680
 Variation 2: Via Alkyl Chlorosulfonates 681
 Variation 3: Via Sulfuryl Chloride 684
 Method 3: Synthesis by Formation of the ArO—SO₂OR Bond 685

31.7.5.2 Applications of Product Subclass 5 in Organic Synthesis 685
 Method 1: Synthesis of Sulfamates Using Catechol Sulfate 686
 Method 2: Synthesis of 5'-Aminoadenosines Using Bis(1H-benzotriazol-1-yl) Sulfate 686

31.7.6 Product Subclass 6: Aryl Thiosulfates 687

31.7.7 Product Subclass 7: Aryl Sulfamates 687

31.7.7.1 Synthesis of Product Subclass 7 688
 Method 1: Synthesis by Formation of the Ar—OS(O)NR Bond 688
 Variation 1: O-4-Nitrophenyl Sulfamates from 4-Nitrophenyl Chlorosulfonate 688
 Variation 2: O-2-Hydroxyphenyl Sulfamates from Catechol Sulfate 689
 Variation 3: O-Aryl Sulfamates from O-Aryl Chlorosulfonates: Lewis Acid Catalyzed Amination 689
 Method 2: Synthesis by Formation of the Ar'O—S(O)₂NR Bond 690
 Variation 1: O-Aryl Sulfamates via Reaction of Phenols with Sulfamoyl Chloride 690
 Variation 2: O-Aryl Sulfamates via Reaction of Phenols with Chlorosulfonyl Isocyanate Followed by Hydrolysis 691
 Variation 3: O-Aryl Sulfamates via Aryloxysulfonyl Azides 691

31.7.7.2 Applications of Product Subclass 7 in Organic Synthesis 691
 Method 1: Synthesis of Hydroxyaryl Sulfonamides via Fries-Type Rearrangement of N,N-Dialkylsulfamates 692
 Method 2: Synthesis of Sulfamates and Sulfamides via Nucleophilic Displacement of O-Aryl Sulfamates 692
 Method 3: O-Aryl Sulfamates as Precursors of Nitrenes for C—H Bond Insertion: Elaboration of Complex O-Aryl Sulfamates 693
31.7.8 Product Subclass 8: (Aryloxy)trifluorooxo-Δ^6-Sulfanes .. 694
31.7.8.1 Synthesis of Product Subclass 8 .. 694
31.7.8.1.1 Method 1: Formation of the $\text{Ar}^1\text{O}--\text{S(O)}\text{Hal}_3$ Bond 694
31.7.9 Product Subclass 9: Aryl Halosulfites ... 695
31.7.9.1 Synthesis of Product Subclass 9 .. 695
31.7.9.1.1 Method 1: Synthesis by Formation of the $\text{Ar}^1\text{O}--\text{S(O)}\text{Hal}$ Bond 695
31.7.9.1.2 Method 2: Synthesis by Formation of the $\text{Ar}^1\text{OS(O)}--\text{Hal}$ Bond 695
31.7.9.1.3 Method 3: Synthesis by Formation of the $\text{Ar}^1\text{OS(=O)}\text{Hal}$ Bond 696
31.7.9.2 Applications of Product Subclass 9 in Organic Synthesis 696
31.7.9.2.1 Method 1: Activation of Dimethyl Sulfoxide by Phenyl Chlorosulfite
Leading to Selective ortho-(Methylsulfanyl)methylation of the Parent Phenol 696
31.7.10 Product Subclass 10: Aryl Sulfites .. 697
31.7.10.1 Synthesis of Product Subclass 10 ... 698
31.7.10.1.1 Method 1: Symmetrical Diaryl Sulfites by Formation of
($\text{Ar}^1\text{O})_2--\text{S(O)}$ Bonds ... 698
31.7.10.2 Applications of Product Subclass 10 in Organic Synthesis 699
31.7.10.2.1 Method 1: Use of Di(2-pyridyl) Sulfite in Dehydration Reactions 699
31.7.10.2.2 Method 2: Use of Di(2-pyridyl) Sulfite in Condensation Reactions 699
31.7.11 Product Subclass 11: O-Aryl Thiosulfites .. 700
31.7.11.1 Synthesis of Product Subclass 11 ... 700
31.7.11.1.1 Method 1: Synthesis by Formation of the $\text{Ar}^1\text{OS(O)}--\text{SR}^1$ Bond 700
31.7.11.1.1.1 Variation 1: Reaction of Aryl Halosulfites with Alkanethiols 700
31.7.11.1.1.2 Variation 2: Reaction of an Aryl Halosulfite with a Thiocarboxylic Acid . 701
31.7.12 Product Subclass 12: Aryl Amidosulfites .. 701
31.7.12.1 Synthesis of Product Subclass 12 ... 701
31.7.12.1.1 Method 1: Synthesis by Formation of the $\text{Ar}^1\text{OS(O)}--\text{NR}^1\text{Hal}$ Bond 701

31.8 Product Class 8: Cyclic Aryl Ethers
D. Craig

31.8 Product Class 8: Cyclic Aryl Ethers .. 705
31.8.1 Product Subclass 1: Cyclic Aryl Ethers with One sp^2-Carbon–Oxygen Bond
and One sp^3-Carbon–Oxygen Bond ... 706
31.8.1.1 Synthesis of Product Subclass 1 .. 706
31.8.1.1.1 Method 1: Synthesis by Noncatalytic Ring Closure via Formation of
an sp^2-Carbon–Oxygen Bond .. 706
31.8.1.1.1.1 Variation 1: Intramolecular Addition of Alcohols to Benzyne Intermediates 706
31.8.1.1.1.2 Variation 2: Intramolecular Nucleophilic Aromatic Substitution Reactions 707
31.8.1.1.2 Method 2: Synthesis by Catalytic Ring Closure via Formation of
an sp^2-Carbon–Oxygen Bond .. 709
31.8.1.2.1 Variation 1: Palladium-Catalyzed Reactions 709
31.8.1.2.2 Variation 2: Copper-Catalyzed Reactions 711
31.8.1.3 Method 3: Synthesis by Ring Closure via Formation of an sp^3-Carbon—Oxygen Bond ... 712
31.8.1.3.1 Variation 1: Intramolecular Nucleophilic Substitution 712
31.8.1.4 Method 4: Synthesis by Ring Closure via Formation of an Aryl Carbon—Non-Aryl Carbon Bond .. 718
31.8.1.4.1 Variation 1: Metal-Catalyzed Cyclization 718
31.8.1.4.2 Variation 2: Heck Reaction ... 719
31.8.1.4.3 Variation 3: Radical Cyclization .. 720
31.8.1.5 Method 5: Synthesis by Ring Closure via Formation of a Non-Aryl Carbon—Non-Aryl Carbon Bond .. 720
31.8.1.5.1 Variation 1: Ring-Closing Alkene Metathesis 720
31.8.1.6 Method 6: Synthesis by Cycloaddition ... 721
31.8.2 Product Subclass 2: Cyclic Aryl Ethers with Two sp^2-Carbon—Oxygen Bonds .. 722
31.8.2.1 Synthesis of Product Subclass 2 ... 722
31.8.2.1.1 Method 1: Synthesis by Ring Closure via Formation of a Carbon—Oxygen Bond ... 722
31.8.2.1.2 Method 2: Synthesis by Ring Closure via Formation of an Aryl Carbon—Non-Aryl Carbon Bond .. 724
31.8.2.1.2.1 Variation 1: Aromatic Substitution .. 725
31.8.2.1.2.2 Variation 2: Metal-Assisted Processes 725
31.8.2.1.3 Method 3: Synthesis by Ring Closure via Formation of a Non-Aryl Carbon—Non-Aryl Carbon Bond .. 726
31.8.2.1.4 Method 4: Synthesis by Reduction .. 726
31.8.3 Product Subclass 3: Cyclic Aryl Ethers with Two sp^2-Carbon—Oxygen Bonds and Two sp^3-Carbon—Oxygen Bonds .. 727
31.8.3.1 Synthesis of Product Subclass 3 ... 727
31.8.3.1.1 Method 1: Synthesis by Ring Closure via Formation of an sp^2-Carbon—Oxygen Bond ... 727
31.8.3.1.2 Method 2: Synthesis by Ring Closure via Formation of an sp^3-Carbon—Oxygen Bond ... 729
31.8.4 Product Subclass 4: Cyclic Aryl Ethers with Three sp^2-Carbon—Oxygen Bonds and One sp^3-Carbon—Oxygen Bond .. 732
31.8.4.1 Synthesis of Product Subclass 4 ... 732
31.8.4.1.1 Method 1: Synthesis by Ring Closure via Formation of an sp^2-Carbon—Oxygen Bond ... 732
31.8.4.1.2 Method 2: Synthesis by Ring Closure via Formation of an sp^3-Carbon—Oxygen Bond ... 733
31.8.5 Product Subclass 5: Cyclic Aryl Ethers with One sp^2-Carbon—Oxygen Bond and Three sp^3-Carbon—Oxygen Bonds .. 733
31.8.5.1 Synthesis of Product Subclass 5 ... 733
31.8.5.1.1 Method 1: Synthesis by Ring Closure via Formation of an sp^3-Carbon—Oxygen Bond ... 733
31.9 Product Class 9: Arenesulfonic Acids and Derivatives

31.9.1 Product Subclass 1: Arenesulfonic Acids and Arenesulfonate Salts
B. Fravel, R. Murugan, and E. F. V. Scriven

31.9.1.1 Synthesis of Product Subclass 1

31.9.1.1.1 Method 1: Sulfonation

31.9.1.1.1.1 Variation 1: With Sulfur Trioxide

31.9.1.1.1.2 Variation 2: With Sulfur Trioxide Complexes

31.9.1.1.1.3 Variation 3: With Oleum

31.9.1.1.1.4 Variation 4: With Fuming Sulfuric Acid

31.9.1.1.1.5 Variation 5: With Concentrated Sulfuric Acid or Chlorosulfonic Acid

31.9.1.1.1.6 Variation 6: With Sulfamic Acid

31.9.1.1.2 Method 2: Substitution of Halogen by Sulfite Ions

31.9.1.1.3 Method 3: The Jacobsen Reaction

31.9.1.1.4 Method 4: Oxidation of Sulfur-Containing Substituents

31.9.1.1.4.1 Variation 1: Of Thiols

31.9.1.1.4.2 Variation 2: Of Sulfides

31.9.1.1.4.3 Variation 3: Of Disulfides

31.9.1.1.4.4 Variation 4: Of Sulfoxides

31.9.1.1.4.5 Variation 5: Of Sulfones

31.9.1.1.4.6 Variation 6: Of Sulfonic Acids

31.9.1.1.5 Method 5: Hydrolysis of Sulfonic Acid Chlorides, Esters, and Amides

31.9.1.1.6 Method 6: Removal of Halogens by Reduction

31.9.1.1.7 Method 7: Removal of Amino Groups

31.9.1.1.8 Method 8: Synthesis of Haloarenesulfonic Acids by Diazo Reaction

31.9.1.1.9 Method 9: Synthesis Mediated by Diazonium Salts

31.9.1.1.9.1 Variation 1: Of Hydroxysulfonic Acids

31.9.1.1.9.2 Variation 2: Of Alkoxy sulfonic Acids

31.9.1.1.10 Method 10: Synthesis from Organometallic Compounds

31.9.1.2 Applications of Product Subclass 1 in Organic Synthesis

31.9.2 Product Subclass 2: Arenesulfonic Acid Derivatives
I. Shcherbakova

31.9.2.1 Synthesis of Product Subclass 2

31.9.2.1.1 Arylsulfur Pentahalides

31.9.2.1.1.1 Method 1: Synthesis via Fluorination of Diaryl Disulfides

31.9.2.1.1.1.1 Variation 1: Oxidative Fluorination with Silver(II) Fluoride

31.9.2.1.1.1.2 Variation 2: Oxidative Fluorination with Fluorine
31.9.2.1.2 Method 2: Synthesis from Cyclohexylsulfur Pentafluorides or Cyclohexa-1,4-dienylsulfur Pentafluorides .. 777
31.9.2.1.2.1 Variation 1: Dehydrohalogenation of 2,4,5-Trihalocyclohexylsulfur Pentafluorides .. 777
31.9.2.1.2.2 Variation 2: Dehydrogenation of Cyclohexa-1,4-dienylsulfur Pentafluorides .. 778
31.9.2.1 Arenesulfonyl Halides ... 779
31.9.2.1.2 Method 1: Synthesis from Arenes via Electrophilic Aromatic Substitution of Hydrogen .. 779
31.9.2.1.2.1 Variation 1: Reaction with Halosulfonic Acids .. 780
31.9.2.1.2.2 Variation 2: Reaction with Chlorosulfonic Acid and Sodium Chloride .. 781
31.9.2.1.2.2 Method 2: Synthesis from Arenes via Electrophilic Substitution of Aryl Organometallic Compounds .. 781
31.9.2.1.2.2.1 Variation 1: Synthesis from Aryltrimethylsilanes and Trimethylsilyl Chlorosulfonate .. 781
31.9.2.1.2.2.2 Variation 2: Synthesis from Aryl Grignard Reagents, Sulfur Dioxide, and Sulfuryl Chloride 782
31.9.2.1.2.2.3 Variation 3: Synthesis from Aryllithium Reagents and Sulfuryl Chloride .. 783
31.9.2.1.2.2.4 Variation 4: Synthesis from Aryllithium Reagents, Sulfur Dioxide, and Sulfuryl Chloride 783
31.9.2.1.2.2.5 Variation 5: Synthesis from Aryllithium Reagents, Sulfur Dioxide, and N-Chlorosuccinimide .. 784
31.9.2.1.2.3 Method 3: Electrophilic Substitution of Trialkyl(aryl)stannanes with Sulfuryl Chloride .. 785
31.9.2.1.2.4 Method 4: Synthesis from Arenediazonium Halides (Meerwein Reaction) .. 786
31.9.2.1.2.5 Method 5: Halogenation of Arenesulfonic Acids .. 788
31.9.2.1.2.5.1 Variation 1: Reaction with Chlorosulfonic Acid and Thionyl Chloride .. 788
31.9.2.1.2.5.2 Variation 2: Reaction with Phosphorus Pentachloride ... 789
31.9.2.1.2.5.6 Method 6: Halogenation of Arenesulfonic Acid Salts .. 789
31.9.2.1.2.6.1 Variation 1: Reaction with Halosulfonic Acids .. 789
31.9.2.1.2.6.2 Variation 2: Reaction with Phosphorus Pentachloride ... 790
31.9.2.1.2.6.3 Variation 3: Reaction with Phosphoryl Chloride .. 790
31.9.2.1.2.7 Method 7: Halogenation of Arenesulfonylhydrazides .. 791
31.9.2.1.2.8 Method 8: Oxidative Halogenation of Arenethiols .. 792
31.9.2.1.2.9 Method 9: Oxidative Cleavage of Aryl Sulfides and Diaryl Disulfides .. 792
31.9.2.1.2.9.1 Variation 1: Reaction with Chlorine ... 792
31.9.2.1.2.9.2 Variation 2: Reaction with N-Chlorosuccinimide .. 793
31.9.2.1.2.9.3 Variation 3: Reaction with Iodosobenzene, Hydrogen Chloride, and Silica Gel .. 793
31.9.2.1.2.10 Method 10: Oxidative Halogenation of Arenesulfonic Acids or Arenesulfonic Acid Salts .. 794
31.9.2.1.2.10.1 Variation 1: Reaction with Halogens ... 794
31.9.2.1.2.10.2 Variation 2: Reaction with N-Chlorosuccinimide .. 794
31.9.2.1.2.11 Method 11: Halogen Exchange of Arenesulfonyl Chlorides .. 795
31.9.2.1.2.11.1 Variation 1: Chlorine–Fluorine Exchange ... 795
31.9.2.1.2.11.2 Variation 2: Chlorine–Bromine Exchange ... 796
31.9.2.1.3 Arenesulfonates, Arenesulfonic Anhydrides, and Arenesulfonyl Peroxides .. 796
31.9.2.1.3.1 Method 1: Arenesulfonates from Arenesulfonyl Halides 796
31.9.2.1.3.2 Method 2: Arenesulfonates via Alkylation of Arenesulfonic Acids 797
31.9.2.1.3.2.1 Variation 1: Reaction with Diazooalkanes .. 798
31.9.2.1.3.2.2 Variation 2: Reaction with Resin-Bound Primary N-Alkyltriazenes 798
31.9.2.1.3.2.3 Variation 3: Reaction with Ortho Esters ... 799
31.9.2.1.3.2.4 Variation 4: Reaction with Diethyl Carbonate 799
31.9.2.1.3.2.5 Variation 5: Reaction with Trialkyl Phosphates 800
31.9.2.1.3.2.6 Variation 6: Reaction with Dialkyl Acylphosphonates 800
31.9.2.1.3.3 Method 3: Arenesulfonates via Reaction of Arenesulfonic Acids with
Alcohols ... 801
31.9.2.1.3.3.1 Variation 1: Synthesis Catalyzed by Silica Chloride 801
31.9.2.1.3.3.2 Variation 2: Synthesis Catalyzed by Iron(III)-Exchanged
Montmorillonite Clay .. 802
31.9.2.1.3.4 Method 4: Arenesulfonates from Arenesulfonic Acid Salts 802
31.9.2.1.3.4.1 Variation 1: Reaction with Alkyl Halides ... 802
31.9.2.1.3.4.2 Variation 2: Reaction with Pentafluorophenol 803
31.9.2.1.3.5 Method 5: Arenesulfonates from Arenesulfonic Anhydrides 803
31.9.2.1.3.6 Method 6: Arenesulfonates from Arenesulfonamides 804
31.9.2.1.3.7 Method 7: Arenesulfonates via Oxidation of Arenesulfenates 805
31.9.2.1.3.8 Method 8: Arenesulfonic Anhydrides from Arenes 805
31.9.2.1.3.9 Method 9: Arenesulfonic Anhydrides from Arenesulfonic Acids 806
31.9.2.1.3.10 Method 10: Arenesulfonic Anhydrides via Oxidation of Diaryl Disulfides 806
31.9.2.1.3.11 Method 11: Arenesulfonyl Peroxides via Oxidation of
Arenesulfonyl Chlorides ... 807
31.9.2.1.4 Arenesulfonamides, N-Haloarenesulfonamides, N-Hydroxyarenesulfonamides,
and N-Oxoarenesulfonamides 807
31.9.2.1.4.1 Method 1: Arenesulfonamides from Arenes via
Electrophilic Substitution of Hydrogen ... 808
31.9.2.1.4.1.1 Variation 1: Reaction with Sulfamoyl Chlorides 808
31.9.2.1.4.1.2 Variation 2: Thia-Fries Rearrangement of Phenyl Dialkylsulfamates 809
31.9.2.1.4.2 Method 2: Electrophilic Substitution of Aryltrimethylsilanes with
Sulfamoyl Chloride .. 810
31.9.2.1.4.3 Method 3: Electrophilic Substitution of Trialkyl(aryl)stannanes with
Chlorosulfonyl Isocyanate ... 810
31.9.2.1.4.4 Method 4: Arenesulfonamides from Arenesulfonic Acid Salts 811
31.9.2.1.4.4.1 Variation 1: Reaction with N-Chlorodialkylamines 811
31.9.2.1.4.4.2 Variation 2: Reaction with Hydroxylamine-O-sulfonic Acid 811
31.9.2.1.4.5 Method 5: Arenesulfonamides from Arenesulfonyl Halides 812
31.9.2.1.4.5.1 Variation 1: Reaction with Ammonia .. 812
31.9.2.1.4.5.2 Variation 2: Reaction with Amino-Functionalized Resins 813
31.9.2.1.4.5.3 Variation 3: Reaction with Primary Amines 813
31.9.2.1.4.5.4 Variation 4: Reaction with Resin-Bound Secondary Amines 814
31.9.2.1.4.5.5 Variation 5: Reaction with Secondary Amines 814
31.9.2.1.4.6 Method 6: Arenesulfonamides from Arenesulfonic Acid Salts 815
31.9.2.1.4.7 Method 7: Arenesulfonamides via Reduction of Arenesulfonyl Azides 815
31.9.2.1.4.8 Method 8: N-Substituted Arenesulfonamides from Arenesulfonamides 817
31.9.2.1.4.8.1 Variation 1: N-Alkylation with Alkyl Halides 817

Science of Synthesis Original Edition Volume 31a
© Georg Thieme Verlag KG
31.9.2.1.4.8.2 Variation 2: N-Alkylation with Alcohols

31.9.2.1.4.8.3 Variation 3: N-Arylation with Trimethylsilylaryl Trifluoromethanesulfonates

31.9.2.1.4.8.4 Variation 4: N-Arylation with Aryloboronic Acids

31.9.2.1.4.8.5 Variation 5: N-Arylation with Bromoarenes

31.9.2.1.4.9 Method 9: Arenesulfonamides from N-Substituted Arenesulfonamides

31.9.2.1.4.9.1 Variation 1: N-Dealkylation of N-Alkylarenesulfonamides

31.9.2.1.4.9.2 Variation 2: Reaction of 1-(Phenylsulfonyl)-1H-Benzotriazole or 1-(Arylsulfonyl)-3-methylimidazolium Chlorides with Amines

31.9.2.1.4.10 Method 10: N-Haloarenesulfonamides via N-Halogenation of Arenesulfonamides

31.9.2.1.4.10.1 Variation 1: Reaction with Halogens

31.9.2.1.4.10.2 Variation 2: Reaction with Hypohalites

31.9.2.1.4.11 Method 11: N-Hydroxyarenesulfonamides via Reaction of Arenesulfonyl Chlorides with Hydroxylamines

31.9.2.1.4.12 Method 12: N-Oxoarenesulfonamides via Reaction of Arenesulfonic Acids with Dinitrogen Tetroxide

31.9.2.1.5 Arenesulfonylhydrazides, N-Nitrosoarenesulfonamides, and N-Nitroarenesulfonamides

31.9.2.1.5.1 Method 1: Arenesulfonylhydrazides from Arenesulfonyl Halides

31.9.2.1.5.2 Method 2: N-Nitrosoarenesulfonamides via Nitrosation of Arenesulfonamides with Nitrous Acid

31.9.2.1.5.3 Method 3: N-Nitroarenesulfonamides via Nitration of Arenesulfonamides with Nitric Acid

31.9.2.1.6 Arenesulfonyl Azides

31.9.2.1.6.1 Method 1: Synthesis from Arenesulfonyl Chlorides and Sodium Azide

31.9.2.1.6.2 Method 2: Synthesis from Arenesulfonylhydrazides and Nitrous Acid

31.10 Product Class 10: Aryl Sulfones and Nitrogen Derivatives

31.10.1 Product Subclass 1: Aryl Sulfones

31.10.1.1 Synthesis of Product Subclass 1

31.10.1.1.1 Method 1: Synthesis by Formation of the C—S Bond

31.10.1.1.2 Variation 1: Addition of Arenesulfonic Acids to Alkenes and Alkynes

31.10.1.1.3 Variation 2: Nucleophilic Displacement with Arenesulfinates

31.10.1.1.4 Variation 3: Addition of Arenesulfonyl Radicals to Alkenes and Alkynes

31.10.1.1.5 Variation 4: Reaction of Arenesulfonic Esters or Arenesulfonyl Halides with Nucleophiles

31.10.1.1.6 Variation 5: Rearrangement of Arenesulfonic Esters

31.10.1.2 Method 2: Oxidation of Aryl Sulfides and Sulfoxides

31.10.1.3 Method 3: Synthesis from α,β-Unsaturated Sulfones

31.10.1.3.1 Variation 1: Nucleophilic Addition to α,β-Unsaturated Sulfones

31.10.1.3.2 Variation 2: Radical Addition to α,β-Unsaturated Sulfones

31.10 Product Class 10: Aryl Sulfones and Nitrogen Derivatives

31.10. Product Class 10: Aryl Sulfones and Nitrogen Derivatives

31.10.1 Product Subclass 1: Aryl Sulfones

31.10.1.1 Synthesis of Product Subclass 1

31.10.1.1.1 Method 1: Synthesis by Formation of the C—S Bond

31.10.1.1.2 Variation 1: Addition of Arenesulfonic Acids to Alkenes and Alkynes

31.10.1.1.3 Variation 2: Nucleophilic Displacement with Arenesulfinates

31.10.1.1.4 Variation 3: Addition of Arenesulfonyl Radicals to Alkenes and Alkynes

31.10.1.1.5 Variation 4: Reaction of Arenesulfonic Esters or Arenesulfonyl Halides with Nucleophiles

31.10.1.1.6 Variation 5: Rearrangement of Arenesulfonic Esters

31.10.1.2 Method 2: Oxidation of Aryl Sulfides and Sulfoxides

31.10.1.3 Method 3: Synthesis from α,β-Unsaturated Sulfones

31.10.1.3.1 Variation 1: Nucleophilic Addition to α,β-Unsaturated Sulfones

31.10.1.3.2 Variation 2: Radical Addition to α,β-Unsaturated Sulfones

31.10 Product Class 10: Aryl Sulfones and Nitrogen Derivatives

31.10.1 Product Subclass 1: Aryl Sulfones

31.10.1.1 Synthesis of Product Subclass 1

31.10.1.1.1 Method 1: Synthesis by Formation of the C—S Bond

31.10.1.1.2 Variation 1: Addition of Arenesulfonic Acids to Alkenes and Alkynes

31.10.1.1.3 Variation 2: Nucleophilic Displacement with Arenesulfinates

31.10.1.1.4 Variation 3: Addition of Arenesulfonyl Radicals to Alkenes and Alkynes

31.10.1.1.5 Variation 4: Reaction of Arenesulfonic Esters or Arenesulfonyl Halides with Nucleophiles

31.10.1.1.6 Variation 5: Rearrangement of Arenesulfonic Esters

31.10.1.2 Method 2: Oxidation of Aryl Sulfides and Sulfoxides

31.10.1.3 Method 3: Synthesis from α,β-Unsaturated Sulfones

31.10.1.3.1 Variation 1: Nucleophilic Addition to α,β-Unsaturated Sulfones

31.10.1.3.2 Variation 2: Radical Addition to α,β-Unsaturated Sulfones

31.10 Product Class 10: Aryl Sulfones and Nitrogen Derivatives

31.10.1 Product Subclass 1: Aryl Sulfones

31.10.1.1 Synthesis of Product Subclass 1

31.10.1.1.1 Method 1: Synthesis by Formation of the C—S Bond

31.10.1.1.2 Variation 1: Addition of Arenesulfonic Acids to Alkenes and Alkynes

31.10.1.1.3 Variation 2: Nucleophilic Displacement with Arenesulfinates

31.10.1.1.4 Variation 3: Addition of Arenesulfonyl Radicals to Alkenes and Alkynes

31.10.1.1.5 Variation 4: Reaction of Arenesulfonic Esters or Arenesulfonyl Halides with Nucleophiles

31.10.1.1.6 Variation 5: Rearrangement of Arenesulfonic Esters

31.10.1.2 Method 2: Oxidation of Aryl Sulfides and Sulfoxides

31.10.1.3 Method 3: Synthesis from α,β-Unsaturated Sulfones

31.10.1.3.1 Variation 1: Nucleophilic Addition to α,β-Unsaturated Sulfones

31.10.1.3.2 Variation 2: Radical Addition to α,β-Unsaturated Sulfones
31.10.1.3.3 Variation 3: Cycloaddition of α,β-Unsaturated Sulfones

31.10.1.2 Applications of Product Subclass 1 in Organic Synthesis

31.10.1.2.1 Method 1: Reaction of α-Arylsulfonyl Carbanions

31.10.1.2.1.1 Variation 1: Protonation of α-Arylsulfonyl Carbanions

31.10.1.2.1.2 Variation 2: Alkylation of α-Arylsulfonyl Carbanions

31.10.1.2.1.3 Variation 3: Michael Addition of α-Arylsulfonyl Carbanions

31.10.1.2.1.4 Variation 4: Reaction of α-Arylsulfonyl Carbanions with Carbonyl Compounds

31.10.1.2.2 Method 2: Elimination of Arylsulfonyl Groups To Give Alkenes

31.10.1.2.3 Method 3: Reductive Elimination of Arylsulfonyl Groups

31.10.2 Product Subclass 2: S-Arylsulfoximides

31.10.2.1 Synthesis of Product Subclass 2

31.10.2.1.1 Method 1: Nucleophilic Substitution of Arenesulfonimidoyl Halides and Sulfonimidates

31.10.2.1.2 Method 2: Oxidation of S-Arylsulfoximides

31.10.2.1.3 Method 3: Imination of Aryl Sulfoxides

31.10.2.1.4 Method 4: N-Alkylation and N-Arylation of S-Arylsulfoximides

31.10.2.1.5 Method 5: Optical Resolution of Chiral S-Arylsulfoximides

31.10.2.2 Applications of Product Subclass 2 in Organic Synthesis

31.10.2.2.1 Method 1: Reactions of α-Carbanions Derived from S-Arylsulfoximides

31.10.2.2.2 Method 2: Reductive Elimination of S-Arylsulfoximides

31.10.2.2.3 Method 3: Catalytic Enantioselective Reactions Using Chiral S-Arylsulfoximides

31.10.3 Product Subclass 3: Arylsulfonediimines

31.10.3.1 Synthesis of Product Subclass 3

31.10.3.1.1 Method 1: Imination of S-Arylsulfoximides

31.10.3.2 Applications of Product Subclass 3 in Organic Synthesis

31.10.3.2.1 Method 1: Reactions of Arylsulfonediimines

31.11 Product Class 11: Arenesulfonic Acids and Derivatives

31.11.1 Product Subclass 1: Arenesulfinyl Chlorides

31.11.1.1 Synthesis of Product Subclass 1

31.11.1.1.1 Method 1: Synthesis from Arenesulfonic Acids and Their Derivatives

31.11.1.1.2 Method 2: Chlorination of Diaryl Disulfides

31.11.1.1.3 Method 3: Sulfinylation of Aromatic Compounds

31.11.1.2 Applications of Product Subclass 1 in Organic Synthesis

31.11.1.2.1 Method 1: Reaction of Arenesulfinyl Chlorides with Nucleophiles

31.11.2 Product Subclass 2: Arenesulfonic Acids

31.11.2.1 Synthesis of Product Subclass 2
31.11.2.1 Method 1: Reduction of Arenesulfonyl Halides ... 883
31.11.2.1.2 Method 2: Hydrolysis of Arenesulfonic Acid Esters and Arenesulfonyl Halides ... 884
31.11.2.1.3 Method 3: Reaction of Sulfur Dioxide with Nucleophiles 884
31.11.2.2 Applications of Product Subclass 2 in Organic Synthesis 884
31.11.2.2.1 Method 1: Nucleophilic Reaction of Arenesulfonic Acids and Their Salts with Electrophiles ... 884
31.11.2.2.2 Method 2: Oxidation and Reduction of Arenesulfonic Acids 886
31.11.3 Product Subclass 3: Arenesulfonic Acid Esters .. 887
31.11.3.1 Synthesis of Product Subclass 3 ... 887
31.11.3.1.1 Method 1: Condensation of Arenesulfonic Acids and Alcohols 887
31.11.3.1.2 Method 2: Oxidation of Arenethiols or Aryl Disulfides 888
31.11.3.1.3 Method 3: Reaction of Arenesulfonyl Chlorides with Alcohols 888
31.11.3.1.3.1 Variation 1: Reaction of Arenesulfonyl Chlorides with Menthol 888
31.11.3.1.3.2 Variation 2: Reaction of Arenesulfonyl Chlorides with Other Chiral Alcohols 889
31.11.3.1.3.3 Variation 3: Reaction of Arenesulfonyl Chlorides with Chiral Alcohols through Reduction of Arenesulfonyl Chlorides 890
31.11.3.1.3.4 Variation 4: Enantioselective Reaction of Arenesulfonyl Chlorides and Alcohols with Chiral Bases 891
31.11.3.1.4 Method 4: Ring Opening of Chiral Sulfites .. 893
31.11.3.2 Applications of Product Subclass 3 in Organic Synthesis 894
31.11.3.2.1 Method 1: Reaction with Organometallic Reagents 894
31.11.4 Product Subclass 4: Arenesulfinamides .. 896
31.11.4.1 Synthesis of Product Subclass 4 ... 896
31.11.4.1.1 Method 1: Reaction of Arenesulfinyl Chlorides with Amines 896
31.11.4.1.2 Method 2: Substitution Reactions of Various Arenesulfinyl Derivatives 898
31.11.4.1.3 Method 3: Oxidation of Arenesulfenamides .. 899
31.11.4.1.4 Method 4: Nucleophilic Addition of Grignard Reagents to N-Thionylanilines ... 900
31.11.4.2 Applications of Product Subclass 4 in Organic Synthesis 900
31.11.4.2.1 Method 1: Reaction with Nucleophiles .. 900
31.11.4.2.2 Method 2: Reaction with Alcohols and Thiols .. 901
31.11.4.2.3 Method 3: Oxidation of Arenesulfinamides to Arenesulfonimidates 902
31.11.4.2.4 Method 4: Desulfinylation of Arenesulfenamides 902
31.11.4.2.5 Method 5: Direct ortho-Lithiation of Arenesulfenamides 902
31.11.4.2.6 Method 6: Thermal Treatment of Arenesulfenamides 903

31.12 Product Class 12: Aryl Sulfoxides and S-Arylsulfimides
S. G. Collins and A. R. Maguire

31.12.1 Product Subclass 1: Symmetrical and Racemic Aryl Sulfoxides 907
31.12.1.1 Synthesis of Product Subclass 1 ... 907
<table>
<thead>
<tr>
<th>Variation</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1.1</td>
<td>31.12.1</td>
<td>Variation 1: With Thionyl Chloride</td>
<td>907</td>
</tr>
<tr>
<td>1.1.1.2</td>
<td>31.12.1</td>
<td>Variation 2: With Sulfinyl Chlorides</td>
<td>909</td>
</tr>
<tr>
<td>1.1.1.3</td>
<td>31.12.1</td>
<td>Variation 3: With Sulfur Dioxide</td>
<td>911</td>
</tr>
<tr>
<td>1.1.1.4</td>
<td>31.12.1</td>
<td>Variation 4: With Sodium Sulfinates</td>
<td>912</td>
</tr>
<tr>
<td>1.1.2</td>
<td>31.12.1</td>
<td>Method 2: Reduction of Sulfones</td>
<td>912</td>
</tr>
<tr>
<td>1.1.2.1</td>
<td>31.12.1</td>
<td>Variation 1: By Hydride Reduction</td>
<td>912</td>
</tr>
<tr>
<td>1.1.2.2</td>
<td>31.12.1</td>
<td>Variation 2: Using Titanium(IV) Oxide</td>
<td>913</td>
</tr>
<tr>
<td>1.1.3</td>
<td>31.12.1</td>
<td>Method 3: Reactions of Organometallic Compounds</td>
<td>913</td>
</tr>
<tr>
<td>1.1.3.1</td>
<td>31.12.1</td>
<td>Variation 1: With Sulfurous Acid Derivatives</td>
<td>914</td>
</tr>
<tr>
<td>1.1.3.2</td>
<td>31.12.1</td>
<td>Variation 2: With Sulfinic Acid Derivatives</td>
<td>915</td>
</tr>
<tr>
<td>1.1.3.3</td>
<td>31.12.1</td>
<td>Variation 3: With Sulfonyl Acid Derivatives</td>
<td>916</td>
</tr>
<tr>
<td>1.1.4</td>
<td>31.12.1</td>
<td>Method 4: Oxidation of Sulfoxides</td>
<td>916</td>
</tr>
<tr>
<td>1.1.4.1</td>
<td>31.12.1</td>
<td>Variation 1: Using Hydrogen Peroxide</td>
<td>916</td>
</tr>
<tr>
<td>1.1.4.2</td>
<td>31.12.1</td>
<td>Variation 2: Using Organic Peroxides</td>
<td>918</td>
</tr>
<tr>
<td>1.1.4.3</td>
<td>31.12.1</td>
<td>Variation 3: Using Organic Peracids</td>
<td>919</td>
</tr>
<tr>
<td>1.1.4.4</td>
<td>31.12.1</td>
<td>Variation 4: Using Sodium Perborate</td>
<td>920</td>
</tr>
<tr>
<td>1.1.4.5</td>
<td>31.12.1</td>
<td>Variation 5: Using Nitrogen-Containing Oxidants</td>
<td>920</td>
</tr>
<tr>
<td>1.1.4.6</td>
<td>31.12.1</td>
<td>Variation 6: Using Molecular Halogens</td>
<td>921</td>
</tr>
<tr>
<td>1.1.4.7</td>
<td>31.12.1</td>
<td>Variation 7: Using Hypochlorites</td>
<td>923</td>
</tr>
<tr>
<td>1.1.4.8</td>
<td>31.12.1</td>
<td>Variation 8: Using Chlorites</td>
<td>923</td>
</tr>
<tr>
<td>1.1.4.9</td>
<td>31.12.1</td>
<td>Variation 9: Using Iodine-Containing Oxidants</td>
<td>924</td>
</tr>
<tr>
<td>1.1.4.10</td>
<td>31.12.1</td>
<td>Variation 10: Using Periodates</td>
<td>925</td>
</tr>
<tr>
<td>1.1.4.11</td>
<td>31.12.1</td>
<td>Variation 11: Using N-Halo Compounds</td>
<td>926</td>
</tr>
<tr>
<td>1.1.5</td>
<td>31.12.1</td>
<td>Methods 5: Miscellaneous Methods</td>
<td>927</td>
</tr>
<tr>
<td>1.2</td>
<td>31.12.1</td>
<td>Applications of Product Subclass 1 in Organic Synthesis</td>
<td>927</td>
</tr>
<tr>
<td>1.2.1</td>
<td>31.12.2</td>
<td>Method 1: α-Halogenation of Sulfoxides</td>
<td>927</td>
</tr>
<tr>
<td>1.2.2</td>
<td>31.12.2</td>
<td>Method 2: Modification of the α-Heteroatom Substituent of α-Heteroatom-Substituted Sulfoxides</td>
<td>928</td>
</tr>
<tr>
<td>1.2.3</td>
<td>31.12.2</td>
<td>Method 3: Substitution Reactions of Aryl Sulfoxides</td>
<td>928</td>
</tr>
<tr>
<td>1.2.4</td>
<td>31.12.2</td>
<td>Method 4: Generation and Reactions of α-Sulfinyl Carbanions</td>
<td>929</td>
</tr>
<tr>
<td>1.2.2.1</td>
<td>31.12.2</td>
<td>Method 1: Nucleophilic Displacement at Sulfur</td>
<td>929</td>
</tr>
<tr>
<td>1.2.2.1.1</td>
<td>31.12.2</td>
<td>Variation 1: Nucleophilic Substitutions of Chiral Acyclic Sulfinylating Agents</td>
<td>929</td>
</tr>
<tr>
<td>1.2.2.1.2</td>
<td>31.12.2</td>
<td>Variation 2: Nucleophilic Substitution on Chiral, Diastereomerically Pure Cyclic Sulfinylating Agents</td>
<td>931</td>
</tr>
<tr>
<td>1.2.2.2</td>
<td>31.12.2</td>
<td>Method 2: Chemical Oxidation of Prochiral Sulfoxides</td>
<td>932</td>
</tr>
<tr>
<td>1.2.2.2.1</td>
<td>31.12.2</td>
<td>Variation 1: Stoichiometric Enantioselective Oxidation of Sulfoxides</td>
<td>932</td>
</tr>
<tr>
<td>1.2.2.2.2</td>
<td>31.12.2</td>
<td>Variation 2: Catalytic Enantioselective Oxidation of Sulfoxides</td>
<td>933</td>
</tr>
<tr>
<td>1.2.2.3</td>
<td>31.12.2</td>
<td>Variation 3: Oxidation of Sulfoxides Bearing a Removable Chiral Auxiliary</td>
<td>935</td>
</tr>
<tr>
<td>1.2.2.4</td>
<td>31.12.2</td>
<td>Variation 4: Biological Sulfoxidations</td>
<td>936</td>
</tr>
<tr>
<td>1.2.3</td>
<td>31.12.2</td>
<td>Method 3: Optical Resolution</td>
<td>937</td>
</tr>
<tr>
<td>1.2.3.1</td>
<td>31.12.2</td>
<td>Variation 1: Using Classical Methods</td>
<td>937</td>
</tr>
<tr>
<td>1.2.3.2</td>
<td>31.12.2</td>
<td>Variation 2: Using Nonclassical Methods</td>
<td>937</td>
</tr>
</tbody>
</table>
Method 4: Kinetic Resolution of Sulfoxides

Applications of Product Subclass 2 in Organic Synthesis

Product Subclass 3: S-Arylsulfimides

Synthesis of Product Subclass 3

Method 1: Reaction of Dialkoxyl(diaryl)-\(\lambda^4\)-sulfanes with Amines and Amides

Method 2: Reactions of Aryl Sulfoxides with N-Sulfinylsulfonamides

Method 3: Reaction of Sulfides with N-Halo Compounds

Method 4: Preparation of N-Unsubstituted Sulfimides

Method 5: Asymmetric Sulfimidation

Applications of Product Subclass 3 in Organic Synthesis

Product Class 13: Arenethiols and Arenethiolates

O. A. Rakitin

Synthesis of Product Class 13

Method 1: Lithiation of Arenes Followed by Sulfur Addition

Method 2: Reduction of Thiocyanates Formed by the Reaction of Arenes with Bromine and Inorganic Thiocyanates

Method 3: Reaction of Activated Aryl Halides with Sodium Sulfide, Sodium Hydrosulfide, or Disodium Disulfide

Method 4: Reaction of Aryl Iodides with Thiourea and a Nickel Catalyst

Method 5: Reaction of Grignard Reagents with Sulfur

Method 6: Newman–Kwart Rearrangement of Phenols

Method 7: Diazotization of Anilines Followed by Reaction with Potassium Ethyl Dithiocarbonate

Method 8: Hydrolysis of Aryl Trialkylsilyl Sulfides

Method 9: Dealkylation of Alkyl Aryl Sulfides

Method 10: Debenzylation of Aryl Benzyl Sulfides with Lewis Acids

Method 11: Hydrolysis of tert-Butyl or Acetoxyethyl Aryl Sulfides

Method 12: Hydrolysis of Acyl Aryl Sulfides

Method 13: Debenzyolation of S-Aryl Thiobenzoates with Titanium(IV) Chloride and Zinc

Method 14: Reduction of Arenesulfonyl Chlorides

Method 15: Reduction of Arenesulfonic Acids with a Triphenylphosphine/Iodine Mixture

Method 16: Reduction of Sodium Arenesulfimates with Tin

Method 17: Reduction of Diaryl Disulfides

Method 18: Reduction of Sodium Aryl Sulfides with Zinc

Method 19: Reduction with Sodium Sulfide

Method 20: Reduction with Zinc in Acids
Variation 3: Reduction with Lithium Tri-tert-butoxyaluminum Hydride
Method 19: Reduction of N-(Arylsulfanyl)phthalimides with Lithium Aluminum Hydride
Variation 2: Ring Opening Accompanied by Ring-Forming Reactions of N-Acetonylbenzothiazol-2-ones with Aliphatic Amines
Variation 1: Hydrolysis with Sodium Hydroxide
Variation 2: Reaction of Dibenzothiophenes with Grignard Reagents
Method 23: Ring Opening of 1,4,2-Benzodithiazin-3-amine 1,1-Dioxides by Hydrolysis with Hydrazine Hydrate

Product Class 14: Aryl Sulfides
O. A. Rakitin

Method 1: Reaction of Arenes with Sulfur and Aluminum Trichloride
Method 2: Reaction of Arenes with Sulfur Chlorides
Method 3: Reaction of Arenes with Dialkyl Disulfides
Method 4: Reaction of Arylboronic Acids with Alkanethiols
Method 5: Reaction of Arylboronic Acids with N-Sulfanylated Succinimides
Method 6: Reaction of Arylboronic Acids with Diaryl Disulfides
Method 7: Synthesis of Symmetrical Aryl Sulfides by Reaction of Aryl Halides with Sodium Sulfide
Method 8: Synthesis of Alkyl Aryl Sulfides by Reaction of Aryl Halides with Alkanethiolates
Method 9: Reaction of Haloarenes with Thiolates under Copper or Nickel Catalysis
Method 10: Reaction of Haloarenes with Dialkyl Disulfides
Method 11: Synthesis of Alkyl Aryl Sulfides from Aryl Iodides and Organoboron Compounds
Method 12: Reaction of Aryl Trifluoromethanesulfonates with Alkyl Sulfides in the Presence of Palladium Catalysts
Method 13: Reaction of Phenols with Thiols
Method 14: Substitution of Amino Groups via Diazonium Salts
Method 15: Nucleophilic Substitutions of Alkyl and Aryl Halides with Arenethiols
Method 16: Reaction of Arenethiols with Diazo Compounds
Method 17: Reaction of Arenethiols with Quinones
Method 18: Oxidative Coupling Reactions between Arenethiols and Arenes
Method 19: Reaction of Activated Alkenes with Arenethiols

Table of Contents XXXIX
Method 20: Radical Additions of Arenethiols to Alkenes 988
Method 21: Reaction of Aryl Trimethylsilyl Sulfides and Haloarenes 989
Method 22: Reduction of Sulfoxides ... 990
Variation 1: With Zinc ... 990
Variation 2: With Phosphites ... 990
Variation 3: With Sodium Borohydride ... 991
Method 23: Reduction of Sulfones ... 992
Method 24: Reaction of Aryl Thiocyanates with Haloarenes 992
Method 25: Reaction of N-(Arylsulfanyl)phthalimides with Arenes 993
Method 26: Reaction between Arenesulfenyl Chlorides and Arenes 994
Method 27: Reaction of Diaryl Disulfides with Arenes 994
Variation 1: Sulfenylation of Arenes with Diaryl Disulfides Catalyzed by
Lewis Acids .. 995
Variation 2: Sulfenylation of Arenes with Diaryl Disulfides in
the Presence of a Butyllithium .. 995
Method 28: Reaction of Diaryl Disulfides with Haloalkanes or Haloarenes 996
Variation 1: Synthesis of Aryl Sulfoxides from Grignard Reagents and
Diaryl Disulfides .. 996
Variation 2: Synthesis of Aryl Sulfoxides from Aryl Iodides, Butyllithium,
and Diaryl Disulfides ... 996
Method 29: Reaction of Diaryl Disulfides with Organoboron Compounds ... 997
Method 30: Reaction of Diaryl Disulfides with Alkyl 4-Toluenesulfonates 997

Product Class 15: Arylsulfonium Salts and Derivatives
I. Fernández and N. Khiar

Synthesis of Product Subclass 1 ... 1001
Method 1: Reactions of Arenethiols with Diaryliodonium Salts 1001
Method 2: Synthesis from Phenols and Thionyl Chloride 1002
Method 3: Synthesis from Arenes and Sulfur Monochloride 1003
Method 4: Synthesis from Arenes and Diaryl(halo)sulfonium Salts 1003
Method 5: Synthesis from Activated Diaryl Sulfoxides by
Electrophilic Aromatic Substitution .. 1004
Variation 1: Using Sulfuric Acid as the Activator 1004
Variation 2: Using a Lewis Acid as the Activator 1004
Variation 3: Using Phosphorus Pentoxide/Methanesulfonic Acid as
the Activators .. 1005
Variation 4: Using Acetic Anhydride and Sulfuric Acid as the Activators 1005
Method 6: Synthesis from Activated Diaryl Sulfoxides by
Reactions with Grignard Reagents ... 1006
Method 7: Synthesis from Diaryl(ethoxy)sulfonium Salts by
Reactions with Grignard Reagents ... 1007
Method 8: Synthesis from Sulfinimides .. 1007
Variation 1: By Treatment with Arenes and Aluminum Trichloride 1007
Variation 2: By Reactions with Grignard Reagents

Method 9: Arylation of Diaryl Sulfides

Product Subclass 2: Alkyl- and Alkenyl(diaryl)sulfonium Salts

Synthesis of Product Subclass 2

Method 1: Synthesis from Alkyl(aryl)(halo)sulfonium Salts by Electrophilic Aromatic Substitution

Method 2: Synthesis from Sodium Methanesulfinate by Electrophilic Aromatic Substitution

Method 3: Synthesis from Activated Sulfoxides by Reactions with Alkenes Using Trifluoromethanesulfonic Anhydride

Method 4: Synthesis from Alkoxysulfonium Salts by Reactions with Grignard Reagents

Method 5: Arylation of Aryl Sulfides Using Activated Quinones

Method 6: Alkylation of Diaryl Sulfides

Variation 1: Using Alkyl Halides in the Presence of Silver(I) Salts

Variation 2: Intramolecular Cyclization of Diazo Ketones

Method 7: Synthesis from Sulfonium Salts via Sulfonium Ylides (C-Alkylation)

Product Subclass 3: Dialkyl(aryl)sulfonium Salts

Synthesis of Product Subclass 3

Method 1: Synthesis from Arenes and Dialkyl(halo)sulfonium Salts

Method 2: Synthesis from Benzo-1,4-quinone, a Dialkyl Sulfide, and Perchloric Acid

Method 3: Synthesis from Arenes and Dialkyl Sulfoxides

Variation 1: Using Hydrogen Chloride

Variation 2: Using Phosphorus Pentoxide/Methanesulfonic Acid

Method 4: Synthesis from Dialkyl Sulfoxides Using Nitrilium Salts

Method 5: Synthesis from Alkoxysulfonium Salts by Reactions with Grignard Reagents

Method 6: Synthesis from Arenes or Hetarenes and Azasulfonium Salts

Method 7: Synthesis from Dialkyl(nitrosyl)sulfonium Salts and Arenes

Method 8: Arylation of Dialkyl Sulfides with 4-Nitrophenyl 4-Toluensulfonate

Method 9: S-Alkylation of Alkyl Aryl Sulfides

Variation 1: Using Alkyl Halides

Variation 2: Using Dialkyl Sulfates

Method 10: Reactions of Sulfides with Diazo Ketones

Method 11: Synthesis via Sulfonium Ylides by Reactions of Dialkyl Sulfides with Benzylene

Product Subclass 4: Arylsulfonium Derivatives

Synthesis of Product Subclass 4

Halosulfonium Salts

Method 1: Reactions between Sulfides and Halides

Alkox(diaryl)sulfonium Salts
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.15.4.1.2.1</td>
<td>Method 1:</td>
<td>Synthesis from Alkoxylated Sulfuranes</td>
<td>1022</td>
</tr>
<tr>
<td>31.15.4.1.2.2</td>
<td>Method 2:</td>
<td>Synthesis via the O-Alkylation of Sulfoxides</td>
<td>1023</td>
</tr>
<tr>
<td>31.15.4.1.2.2.1</td>
<td>Variation 1:</td>
<td>Using Trialkyloxonium Salts</td>
<td>1023</td>
</tr>
<tr>
<td>31.15.4.1.2.2.2</td>
<td>Variation 2:</td>
<td>Using Dialkoxy carbenium Salts</td>
<td>1023</td>
</tr>
<tr>
<td>31.15.4.1.3</td>
<td>Method 2:</td>
<td>Synthesis via the O-Alkylation of Sulfoxides</td>
<td>1023</td>
</tr>
<tr>
<td>31.15.4.1.3.1</td>
<td>Method 1:</td>
<td>Using Trialkyloxonium Salts</td>
<td>1023</td>
</tr>
<tr>
<td>31.15.4.1.3.2</td>
<td>Method 2:</td>
<td>Using Dialkoxy carbenium Salts</td>
<td>1023</td>
</tr>
<tr>
<td>31.15.4.1.3.3</td>
<td>Method 3:</td>
<td>Synthesis from N-Alkysulfimides</td>
<td>1024</td>
</tr>
<tr>
<td>31.15.4.1.3.4</td>
<td>Method 4:</td>
<td>Synthesis from N-Tosylsulfimides</td>
<td>1025</td>
</tr>
<tr>
<td>31.15.4.1.3.5</td>
<td>Method 5:</td>
<td>Synthesis from N-Chlorosulfimides</td>
<td>1026</td>
</tr>
<tr>
<td>31.15.4.1.3.6</td>
<td>Method 6:</td>
<td>Reactions of Sulfoxides with O-(Mesitylsulfonyl)hydroxylamine</td>
<td>1026</td>
</tr>
<tr>
<td>31.15.4.1.3.7</td>
<td>Method 7:</td>
<td>Modification of Existing Azasulfonium Salts</td>
<td>1027</td>
</tr>
<tr>
<td>31.15.4.1.4</td>
<td>Method 1:</td>
<td>Reactions of Sulfoxides with Hydrobromic Acid</td>
<td>1028</td>
</tr>
<tr>
<td>31.15.4.1.4.2</td>
<td>Method 2:</td>
<td>Reactions of Sulfoxides with Halogens</td>
<td>1028</td>
</tr>
<tr>
<td>31.15.4.1.4.5</td>
<td>Method 3:</td>
<td>S-Alkylation of Arenesulfenic Esters</td>
<td>1030</td>
</tr>
<tr>
<td>31.15.4.1.4.6</td>
<td>Method 4:</td>
<td>Synthesis from Sulfides via Sulfuranes</td>
<td>1030</td>
</tr>
<tr>
<td>31.15.4.1.4.7</td>
<td>Method 5:</td>
<td>Synthesis from Alkoxylated Sulfuranes</td>
<td>1030</td>
</tr>
<tr>
<td>31.15.4.1.5</td>
<td>Method 1:</td>
<td>Reactions of Sulfoxides with Alkyl Halides</td>
<td>1029</td>
</tr>
<tr>
<td>31.15.4.1.5.2</td>
<td>Method 2:</td>
<td>Reactions of Sulfoxides with Trialkyloxonium Salts</td>
<td>1029</td>
</tr>
<tr>
<td>31.15.4.1.5.3</td>
<td>Method 3:</td>
<td>Synthesis from Arenesulfinate Esters</td>
<td>1030</td>
</tr>
<tr>
<td>31.15.4.1.5.4</td>
<td>Method 4:</td>
<td>Synthesis from Sulfides via Sulfuranes</td>
<td>1030</td>
</tr>
<tr>
<td>31.15.4.1.6</td>
<td>Method 1:</td>
<td>Reactions between Sulfoxides and Dialkyl(sulfinyl) ammonium Salts</td>
<td>1030</td>
</tr>
<tr>
<td>31.15.4.1.6.2</td>
<td>Method 2:</td>
<td>Reactions between Sulfoxides and O-(Mesitylsulfonyl) hydroxylamine</td>
<td>1031</td>
</tr>
<tr>
<td>31.15.4.1.6.3</td>
<td>Method 3:</td>
<td>Reactions between Sulfoxides, 1-Chlorobenzotriazole, and an Amine</td>
<td>1031</td>
</tr>
<tr>
<td>31.15.4.1.7</td>
<td>Method 1:</td>
<td>Synthesis from Arenesulfinate Esters</td>
<td>1032</td>
</tr>
<tr>
<td>31.15.4.1.8</td>
<td>Method 2:</td>
<td>Synthesis from Sulfuranes</td>
<td>1032</td>
</tr>
<tr>
<td>31.15.4.1.9</td>
<td>Method 1:</td>
<td>Synthesis from Arenesulfiminamides</td>
<td>1033</td>
</tr>
<tr>
<td>31.15.4.1.10</td>
<td>Method 2:</td>
<td>Synthesis from Arenesulfenamides</td>
<td>1034</td>
</tr>
<tr>
<td>31.15.4.1.11</td>
<td>Method 1:</td>
<td>Synthesis from Alkoxy(aryl)(aza)sulfonium Salts</td>
<td>1035</td>
</tr>
<tr>
<td>31.15.4.1.12</td>
<td>Method 2:</td>
<td>Synthesis from Arenesulfenamides via Sulfinimidamides</td>
<td>1036</td>
</tr>
<tr>
<td>31.15.4.1.13</td>
<td>Method 3:</td>
<td>Modification of Existing Arylsulfonium Salts</td>
<td>1037</td>
</tr>
</tbody>
</table>
31.16 Product Class 16: Arenesulfenic Acids and Derivatives
S. Perrio, V. Reboul, and P. Metzner

31.16.1 Product Subclass 1: Arenesulfenyl Chlorides

31.16.1.1 Method 1: Synthesis from Thiols

31.16.1.1.1 Variation 1: By Reaction with Chlorine

31.16.1.1.2 Variation 2: By Reaction with Sulfuryl Chloride

31.16.1.1.3 Variation 3: By Reaction with N-Chlorosuccinimide

31.16.1.1.4 Variation 4: By Reaction with (Dichloroiodo)benzene

31.16.1.2 Method 2: Synthesis from Thioesters and Sulfuryl Chloride

31.16.1.3 Method 3: Synthesis from Sulfides

31.16.1.3.1 Variation 1: By Reaction with Sulfuryl Chloride

31.16.1.4 Method 4: Synthesis from Disulfides

31.16.1.4.1 Variation 1: By Reaction with Chlorine

31.16.1.4.2 Variation 2: By Reaction with Thionyl Chloride

31.16.1.4.3 Variation 3: By Reaction with Sulfuryl Chloride

31.16.2 Product Subclass 2: Arenesulfenyl Bromides

31.16.2.1 Synthesis of Product Subclass 2

31.16.3 Product Subclass 3: Arenesulfenyl Iodides

31.16.3.1 Synthesis of Product Subclass 3

31.16.3.1.1 Method 1: Reaction of Thiols with Iodine

31.16.4 Product Subclass 4: Arenesulfenic Acids

31.16.4.1 Synthesis of Product Subclass 4

31.16.4.1.1 Method 1: Oxidation of Thiols

31.16.4.1.2 Method 2: Alkaline Hydrolysis of Sulfenic Acid Esters

31.16.4.1.3 Method 3: Thermolysis of Sulfoxides

31.16.4.1.4 Method 4: Thermolysis of N-(Sulfinyl)phenylmethanimines

31.16.5 Product Subclass 5: Arenesulfenic Acid Salts

31.16.5.1 Synthesis of Product Subclass 5

31.16.5.1.1 Method 1: Oxidation of Thiols

31.16.5.1.2 Method 2: Synthesis from Silylated Sulfenic Acid Esters and Tetrabutylammonium Fluoride

31.16.5.1.3 Method 3: Addition/Elimination Reactions of Sulfoxides

31.16.5.1.4 Method 4: Deprotonation/Elimination Reactions of Sulfoxides

31.16.5.1.5 Method 5: Synthesis from a 4-Tolylsulfinylacetylene by Transmetalation with Diethylzinc and a Palladium Catalyst

31.16.6 Product Subclass 6: Arenesulfenic Acid Esters

31.16.6.1 Synthesis of Product Subclass 6

31.16.6.1.1 Method 1: Reactions of Sulfenic Acid Salts with Hard Electrophiles
31.16.6.1.2 Method 2: Synthesis from Sulfenyl Chlorides 1055
31.16.6.1.2.1 Variation 1: By Reaction with Alcohols ... 1055
31.16.6.1.2.2 Variation 2: By Reaction with Alkoxides .. 1056
31.16.6.1.3 Method 3: Reaction of Sulfenic Acid Esters with Alcohols 1057
31.16.7 Product Subclass 7: Arenesulfenamides .. 1057
31.16.7.1 Synthesis of Product Subclass 7 .. 1057
31.16.7.1.1 Method 1: Synthesis from Thiols ... 1057
31.16.7.1.1.1 Variation 1: By Reaction with Hydroxylamine-O-sulfonic Acids 1057
31.16.7.1.1.2 Variation 2: By Reaction with N-Chlorosuccinimide or N-Bromophthalimide 1058
31.16.7.1.2 Method 2: Synthesis from Sulfenyl Chlorides 1059
31.16.7.1.2.1 Variation 1: By Reaction with Amines ... 1059
31.16.7.1.2.2 Variation 2: By Reaction with Amides or Lactams 1061
31.16.7.1.3 Method 3: Reactions of Sulfenic Acid Esters with Amines 1061
31.16.7.1.4 Method 4: Synthesis from Disulfides .. 1062
31.16.7.1.4.1 Variation 1: By Reaction with Amines ... 1062
31.16.7.1.4.2 Variation 2: By Reaction with Lithium Amides 1063
31.16.7.1.4.3 Variation 3: By Electrosynthesis .. 1064
31.16.7.1.4.4 Variation 4: By Reaction with N-Chloro- or N-Bromosuccinimide or N-Bromophthalimide .. 1064
31.16.7.1.5 Method 5: Reaction of Thiosulfonates with Amines 1065
31.16.7.1.6 Method 6: Reaction of N-Sulfanylated Imines with Organolithiums 1065
31.16.7.1.7 Method 7: 2,3-Sigmatropic Rearrangements of Sulfinimides 1066
31.16.7.1.8 Method 8: Pummerer Rearrangement of β-Sulfinylated Amines 1067
31.16.7.1.9 Method 9: Synthesis from Sulfenamides .. 1068
31.16.7.1.9.1 Variation 1: By Acylation ... 1068
31.16.7.1.9.2 Variation 2: By Amino Transfer ... 1069
31.16.7.8 Product Subclass 8: N-(Arylsulfanyl)imines .. 1071
31.16.7.8.1 Synthesis of Product Subclass 8 .. 1071
31.16.7.8.1.1 Method 1: Synthesis from Sulfenic Acid Chlorides 1071
31.16.7.8.1.1.1 Variation 1: By Reaction with Amines ... 1071
31.16.7.8.1.1.2 Variation 2: By Reaction with Imines .. 1072
31.16.7.8.1.2 Method 2: Synthesis from Disulfides .. 1073
31.16.7.8.1.2.1 Variation 1: By Reaction with Ammonia and Carbonyl Compounds or with Imines 1073
31.16.7.8.1.2.2 Variation 2: By Reaction with Oximes ... 1074
31.16.7.8.1.2.3 Variation 3: From α-Aminoalkanoates .. 1075
31.16.7.8.1.3 Method 3: Synthesis from Sulfenamides .. 1075
31.16.7.8.1.3.1 Variation 1: By Reaction with Carbonyl Compounds 1075
31.16.7.8.1.3.2 Variation 2: By Oxidation .. 1076
31.16.7.8.1.3.3 Variation 3: By Fluoride-Catalyzed Reactions 1076
31.16.7.8.1.4 Method 4: Reaction of a Sulfenamide Enolate Equivalent with Electrophiles .. 1077
31.16.7.8.1.5 Method 5: Synthesis from Tris(phenylsulfanyl)amine 1078
31.16.9 Product Subclass 9: S-Nitrosoarenethiols ... 1078
31.16.9.1 Synthesis of Product Subclass 9 ... 1078
31.16.9.1.1 Method 1: Nitrosation of Thiols ... 1078
31.16.10 Product Subclass 10: S-Nitroarenethiols ... 1079
31.16.10.1 Synthesis of Product Subclass 10 .. 1079
31.16.10.1.1 Method 1: Oxidation of Arenethiols ... 1079
31.16.10.1.2 Method 2: Oxidation of S-Nitrosoarenethiols 1079
31.16.11 Product Subclass 11: (Arylsulfanyl)diazenes .. 1079
31.16.11.1 Synthesis of Product Subclass 11 ... 1080
31.16.11.1.1 Method 1: Reaction of Thiols with Anilines 1080

31.17 Product Class 17: Aryl Polysulfides

31.17.1 Product Subclass 1: Aryl Hydrodisulfides .. 1085
31.17.1.1 Synthesis of Product Subclass 1 .. 1085
31.17.1.1.1 Method 1: Synthesis of Aryl Hydrodisulfides by Hydrolysis of Acetyl Aryl Disulfides ... 1085

31.17.2 Product Subclass 2: Diaryl Disulfides ... 1086
31.17.2.1 Synthesis of Product Subclass 2 ... 1086
31.17.2.1.1 Method 1: Symmetrical Diaryl Disulfides by Oxidation of Arenethiols 1086
31.17.2.1.1.1 Variation 1: Oxidation with Iodine ... 1086
31.17.2.1.1.2 Variation 2: Oxidation with Bromine ... 1087
31.17.2.1.1.3 Variation 3: Oxidation with Air .. 1087
31.17.2.1.1.4 Variation 4: Oxidation with Hydrogen Peroxide 1088
31.17.2.1.1.5 Variation 5: Oxidation with Potassium Hexacyanoferrate(III) 1088
31.17.2.1.1.6 Variation 6: Oxidation with Iron(III) Chloride 1089
31.17.2.1.1.7 Variation 7: Oxidation with Dimethyl Sulfoxide 1089
31.17.2.1.2 Method 2: Symmetrical Diaryl Disulfides by Reduction of Arenesulfonyl Chlorides .. 1089
31.17.2.1.2.1 Variation 1: Reduction with Phosphorus and Iodine 1090
31.17.2.1.2.2 Variation 2: Reduction with Zinc in Acids 1090
31.17.2.1.2.3 Variation 3: Reduction with Phenol in Hydrobromic Acid 1091
31.17.2.1.2.4 Variation 4: Reduction with Hydriodic Acid 1091
31.17.2.1.3 Method 3: Symmetrical Diaryl Disulfides by Reaction of Aryl Halides with Disodium Disulfide .. 1092
31.17.2.1.3.1 Variation 1: Reaction of Arenediazonium Salts with Disodium Disulfide ... 1092
31.17.2.1.4 Method 4: Symmetrical Diaryl Disulfides by Reaction of Arenediazonium Salts with Disodium Disulfide .. 1092
31.17.2.1.5 Method 5: Unsymmetrical Diaryl Disulfides by Reaction of N-(Arylsulfanyl)trifluoroacetamides with Arenethiols 1093
31.17.2.1.6 Method 6: Unsymmetrical Diaryl Disulfides by Reaction of Arenethiols with Arenesulfenyl Chlorides 1094
Product Subclass 3: Diaryl Polysulfides

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.17.3</td>
<td>Synthesis of Product Subclass 3</td>
<td>1094</td>
</tr>
<tr>
<td>31.17.3.1</td>
<td>Method 1: Synthesis of Aryl Tri- and Tetrasulfides from Arenethiols</td>
<td>1094</td>
</tr>
</tbody>
</table>

Product Class 18: Cyclic Aryl Sulfides

O. A. Rakitin

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.18</td>
<td>Synthesis of Product Subclass 1</td>
<td>1097</td>
</tr>
<tr>
<td>31.18.1</td>
<td>Method 1: Cyclization of S-Substituted 2-Arylethyl Sulfides</td>
<td>1097</td>
</tr>
<tr>
<td>31.18.1.1</td>
<td>Method 2: Friedel–Crafts Reaction of (Arylsulfanyl)acetyl Chlorides</td>
<td>1098</td>
</tr>
<tr>
<td>31.18.1.2</td>
<td>Method 3: Dehydration of (Arylsulfanyl)acetic Acids</td>
<td>1098</td>
</tr>
<tr>
<td>31.18.1.3</td>
<td>Method 4: Cyclization of N,N-Diethyl-2-(methylsulfanyl)-arenecarboxamides</td>
<td>1099</td>
</tr>
<tr>
<td>31.18.1.4</td>
<td>Method 5: Diazotization of 2-Substituted Ethylanilines</td>
<td>1100</td>
</tr>
<tr>
<td>31.18.2</td>
<td>Synthesis of Product Subclass 2</td>
<td>1100</td>
</tr>
<tr>
<td>31.18.2.1</td>
<td>Method 1: Oxidative Cyclization of Aryl Benzyl Polysulfides</td>
<td>1100</td>
</tr>
<tr>
<td>31.18.2.2</td>
<td>Method 2: Friedel–Crafts Reaction of (Arylsulfanyl)propanoyl Chlorides</td>
<td>1101</td>
</tr>
<tr>
<td>31.18.2.3</td>
<td>Method 3: Dehydration of (Arylsulfanyl)propanoic Acids</td>
<td>1102</td>
</tr>
<tr>
<td>31.18.3</td>
<td>Synthesis of Product Subclass 3</td>
<td>1102</td>
</tr>
<tr>
<td>31.18.3.1</td>
<td>Method 1: Dehydration of 4-(2-Sulfanylphenyl)butan-1-ols</td>
<td>1102</td>
</tr>
<tr>
<td>31.18.3.2</td>
<td>Method 2: Reaction of Arenethiols with γ-Butyrolactone</td>
<td>1103</td>
</tr>
<tr>
<td>31.18.4</td>
<td>Synthesis of Product Subclass 4</td>
<td>1103</td>
</tr>
<tr>
<td>31.18.4.1</td>
<td>Method 1: Reaction of Arene-1,2-dithiols with Sulfur</td>
<td>1103</td>
</tr>
<tr>
<td>31.18.4.2</td>
<td>Method 2: Reaction of Nucleophilic Heterocycles with Sulfur Monochloride</td>
<td>1104</td>
</tr>
</tbody>
</table>

Product Class 19: Aryl Selenium Compounds

S. Watanabe and T. Kataoka

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.19</td>
<td>Synthesis of Product Subclass 1</td>
<td>1107</td>
</tr>
<tr>
<td>31.19.1</td>
<td>Method 1: Areneselenonic Acids by Oxidation of the Selenium Atom</td>
<td>1108</td>
</tr>
<tr>
<td>31.19.1.1</td>
<td>Method 2: Synthesis of Areneselenonic Acid Derivatives from Areneselenonic Acids</td>
<td>1108</td>
</tr>
</tbody>
</table>
31.19.2 Applications of Product Subclass 1 in Organic Synthesis

31.19.2 Product Subclass 2: Aryl Selenones and Their Nitrogen Derivatives

31.19.2.1 Method 1: Aryl Selenones by Oxidation of the Selenium Atom

31.19.2.2 Method 2: Se-Arylselenoximides by Addition of N-Sulfinyl-4-toluenesulfonamide to Selenones

31.19.2.2 Applications of Product Subclass 2 in Organic Synthesis

31.19.2.2.1 Method 1: Synthesis of Small-Ring Compounds

31.19.2.2.2 Method 2: Alkylation

31.19.3 Product Subclass 3: Areneseleninic Acids and Derivatives

31.19.3.1 Method 1: Areneseleninic Acids and Derivatives by Oxidation of the Selenium Atom

31.19.3.1.1 Variation 1: Synthesis of Areneseleninic Acids

31.19.3.1.2 Variation 2: Synthesis of Areneseleninic Anhydrides

31.19.3.1.3 Variation 3: Synthesis of Areneperoxyseleninic Acids

31.19.3.2 Applications of Product Subclass 3 in Organic Synthesis

31.19.4 Product Subclass 4: Aryl Selenoxides and Their Nitrogen Derivatives

31.19.4.1 Method 1: Aryl Selenoxides by Oxidation of the Selenium Atom

31.19.4.1.1 Variation 1: Using 3-Chloroperoxybenzoic Acid

31.19.4.1.2 Variation 2: Using Hydrogen Peroxide

31.19.4.1.3 Variation 3: Using Sodium Periodate

31.19.4.1.4 Variation 4: Using tert-Butyl Hypochlorite

31.19.4.1.5 Variation 5: Using Other Oxidants

31.19.4.1.6 Variation 6: Synthesis of Chiral Selenoxides

31.19.4.1.7 Method 2: Se-Arylselenimides by Addition of 4-Toluenesulfonamide to Selenoxides

31.19.4.1.8 Method 3: Se-Arylselenimides by Addition of Chloramine-T to Selenides

31.19.4.2 Applications of Product Subclass 4 in Organic Synthesis

31.19.4.2.1 Method 1: Selenoxide Elimination

31.19.4.2.2 Method 2: [2,3]-Sigmatropic Rearrangement

31.19.5 Product Subclass 5: Areneselenols and Areneselenolates

31.19.5.1 Synthesis of Product Subclass 5

31.19.5.1.1 Method 1: Areneselenols and Areneselenolates by Substitution

31.19.5.1.2 Variation 1: Synthesis of Areneselenols

31.19.5.1.3 Variation 2: Synthesis of Areneselenolates

31.19.5.1.4 Method 2: Areneselenols by Addition of Metal Carbanions

31.19.5.2 Applications of Product Subclass 5 in Organic Synthesis

31.19.5.2.1 Method 1: Synthesis of Aryl Silyl Selenides

31.19.5.2.2 Method 2: Synthesis of Areneselenol Esters
31.19.6 Product Subclass 6: Aryl Selenides ... 1132
31.19.6.1 Synthesis of Product Subclass 6 .. 1133
31.19.6.1.1 Method 1: Synthesis of Diaryl Selenides by Substitution 1133
31.19.6.1.2 Method 2: Synthesis of Alkyl Aryl Selenides by Substitution 1135
31.19.6.1.3 Method 3: Synthesis of Diaryl Selenides by Elimination 1138
31.19.6.2 Applications of Product Subclass 6 in Organic Synthesis 1138
31.19.6.2.1 Method 1: Utilization of Aryl Selenides as Catalysts 1138
31.19.7 Product Subclass 7: Arylselenonium Salts 1139
31.19.7.1 Synthesis of Product Subclass 7 .. 1139
31.19.7.1.1 Method 1: Synthesis of Arylselenonium Salts by Substitution 1139
31.19.7.1.2 Method 2: Synthesis of Arylselenonium Salts by Addition Reactions ... 1140
31.19.7.2 Applications of Product Subclass 7 in Organic Synthesis 1141
31.19.7.2.1 Method 1: Vinylselenonium Ylide Formation 1141
31.19.8 Product Subclass 8: Areneselenenic Acids and Derivatives 1141
31.19.8.1 Synthesis of Product Subclass 8 .. 1142
31.19.8.1.1 Method 1: Areneselenenic Acids by Oxidation of the Selenium Atom 1142
31.19.8.1.2 Method 2: Areneselenenamides by Substitution 1143
31.19.8.2 Applications of Product Subclass 8 in Organic Synthesis 1144
31.19.8.2.1 Method 1: Synthesis of β-Hydroxy Selenides Using Diselenides 1145
31.19.9 Product Subclass 9: Areneselenenyl Halides 1145
31.19.9.1 Synthesis of Product Subclass 9 .. 1145
31.19.9.1.1 Method 1: Areneselenenyl Halides by Substitution Reactions 1145
31.19.9.2 Applications of Product Subclass 9 in Organic Synthesis 1147
31.19.10 Product Subclass 10: Diaryl Diselenides 1147
31.19.10.1 Synthesis of Product Subclass 10 .. 1148
31.19.10.1.1 Method 1: Diaryl Diselenides by Substitution Reactions 1148
31.19.10.2 Applications of Product Subclass 10 in Organic Synthesis 1149

31.20 Product Class 20: Aryl Tellurium Compounds
T. Kataoka and S. Watanabe

31.20 Product Class 20: Aryl Tellurium Compounds 1159
31.20.1 Product Subclass 1: Aryl Tellurones ... 1159
31.20.1.1 Synthesis of Product Subclass 1 .. 1159
31.20.1.1.1 Method 1: Tellurones by Oxidation of the Tellurium Atom 1160
31.20.2 Product Subclass 2: Arenetellurinic Acids and Derivatives 1160
31.20.2.1 Synthesis of Product Subclass 2 .. 1160
31.20.2.1.1 Method 1: Synthesis by Oxidation 1161
31.20.3 Product Subclass 3: Aryl Telluroxides

31.20.3.1 Synthesis of Product Subclass 3

31.20.3.1.1 Method 1: Synthesis by Oxidation

31.20.3.1.2 Method 2: Synthesis by Hydrolysis of Diaryltellurium Dichlorides

31.20.3.2 Applications of Product Subclass 3 in Organic Synthesis

31.20.4 Product Subclass 4: Arenetellurolates

31.20.5 Product Subclass 5: Aryl Tellurides

31.20.5.1 Synthesis of Product Subclass 5

31.20.5.1.1 Method 1: Synthesis by Substitution

31.20.5.1.2 Method 2: Synthesis by Elimination

31.20.5.2 Applications of Product Subclass 5 in Organic Synthesis

31.20.6 Product Subclass 6: Aryltelluronium Salts

31.20.6.1 Synthesis of Product Subclass 6

31.20.6.1.1 Method 1: Synthesis by Substitution

31.20.6.2 Applications of Product Subclass 6 in Organic Synthesis

31.20.7 Product Subclass 7: Arenetellurolenic Acid Derivatives

31.20.7.1 Synthesis of Product Subclass 7

31.20.7.1.1 Method 1: Synthesis by Substitution

31.20.7.2 Applications of Product Subclass 7 in Organic Synthesis

31.20.8 Product Subclass 8: Diaryl Ditellurides

31.20.8.1 Synthesis of Product Subclass 8

31.20.8.1.1 Method 1: Synthesis by Substitution

31.20.8.2 Applications of Product Subclass 8 in Organic Synthesis

Keyword Index

Author Index

Abbreviations
Volume 31b: Arene—X (X = N, P)

Preface .. V

Volume Editor’s Preface .. VII

Table of Contents .. XI

31.21 Product Class 21: Nitroarenes
K. M. Aitken and R. A. Aitken .. 1183

31.22 Product Class 22: Nitrosoarenes
K. Rück-Braun and B. Priewisch 1321

31.23 Product Class 23: Arenediazonium Salts
P. O’Leary ... 1361

31.24 Product Class 24: Azoxyarenes (Di- and Monoaryldiazene Oxides)
K. Rück-Braun and B. Priewisch 1401

31.25 Product Class 25: Azoarenes
K. Rück-Braun, S. Dietrich, S. Kempa, and B. Priewisch 1425

31.26 Product Class 26: (Arylimino)phosphines and (Arylimino)phosphoranes
M. Alajarín, C. López-Leonardo, and J. Berná 1539

31.27 Product Class 27: Arylamine N-Oxides and Arylaminoxyl Radicals
A. Schmidt .. 1555

31.28 Product Class 28: Arylamines
U. Scholz and B. Schlummer .. 1565

31.29 Product Class 29: Arylammonium Salts
B. Schlummer and U. Scholz .. 1679

31.30 Product Class 30: N-Silylarylamines
J. L. Chiara .. 1697

31.31 Product Class 31: N-Borylarylamines
J. L. Chiara .. 1711

31.32 Product Class 32: N-Haloarylamines
J. L. Chiara .. 1725

31.33 Product Class 33: N-Arylhydroxylamines
A. Schmidt .. 1739
31.34 Product Class 34: Arylhydrazines
M. Begtrup and L. K. Rasmussen ... 1773

31.35 Product Class 35: Aryl Azides
S. Bräse, D. Keck ... 1827

31.36 Product Class 36: Aryltriazenes, Aryltetrazenes, and Related Compounds
S. Bräse and T. Muller ... 1845

31.37 Product Class 37: N-Phosphinoarylamines
M. Alajarín, C. López-Leonardo, and J. Berná 1873

31.38 Product Class 38: Cyclic Arylamines
P. J. Stevenson ... 1885

31.39 Product Class 39: Arylphosphonic Acids and Derivatives
I. B. Gorrell and T. P. Kee ... 1939

31.40 Product Class 40: Arylphosphinic Acids and Derivatives
H.-J. Cristau and D. Virieux .. 1963

31.41 Product Class 41: Arylphosphine Oxides
C. A. Ramsden ... 2035

31.42 Product Class 42: Arylphosphines and Derivatives
P. J. Murphy and H. Böckemeier ... 2057

31.43 Product Class 43: Arylphosphonium Salts and Derivatives
J. C. Tebby and D. W. Allen .. 2083

31.44 Product Class 44: P-Heteroatom-Substituted Arylphosphines
M. Alajarín, C. López-Leonardo, and J. Berná 2105

Keyword Index ... 2155

Author Index ... 2203

Abbreviations ... 2269
Table of Contents

31.21 Product Class 21: Nitroarenes K. M. Aitken and R. A. Aitken

31.21.1 Method 1: Substitution of Hydrogen Using Nitric Acid Alone 1183
31.21.1.1 Variation 1: Using Dilute Nitric Acid 1183
31.21.1.2 Variation 2: Using Concentrated Nitric Acid 1185
31.21.1.3 Variation 3: Using Fuming Nitric Acid 1186
31.21.1.4 Variation 4: Using Nitric Acid on a Solid Support 1188
31.21.1.5 Variation 5: Using Nitric Acid in an Ionic Liquid 1190
31.21.1.6 Method 2: Substitution of Hydrogen Using Nitric and Sulfuric Acids 1191
31.21.1.7 Method 3: Substitution of Hydrogen Using Nitric and Acetic Acids 1194
31.21.1.8 Method 4: Substitution of Hydrogen Using Nitric and Acetic Acids with Additional Acid Catalysts 1196
31.21.1.9 Method 5: Substitution of Hydrogen Using Nitric Acid and Acetic Anhydride 1197
31.21.1.10 Method 6: Substitution of Hydrogen Using Nitric Acid and Acetic Anhydride–Acetic Acid 1198
31.21.1.11 Method 7: Substitution of Hydrogen Using Nitric and Trifluoroacetic Acids 1198
31.21.1.12 Method 8: Substitution of Hydrogen Using Nitric Acid and Trifluoroacetic Anhydride 1198
31.21.1.13 Method 9: Substitution of Hydrogen Using Nitric Acid and Other Acids 1199
31.21.1.14 Variation 1: Using Nitric and Trifluoromethanesulfonic Acids 1199
31.21.1.15 Variation 2: Using Nitric and Hydrochloric Acids 1199
31.21.1.16 Variation 3: Using Nitric and Fluorosulfonic Acids 1200
31.21.1.17 Variation 4: Using Nitric and Triflatoboric Acids 1200
31.21.1.18 Variation 5: Using Nitric Acid and Trifluoromethanesulfonic Anhydride 1201
31.21.1.19 Variation 6: Using Nitric Acid and Phosphorus Pentoxide 1202
31.21.1.20 Variation 7: Using Nitric Acid and Brønsted Acidic Ionic Liquids 1202
31.21.1.21 Method 10: Substitution of Hydrogen Using Alkali Metal Nitrates and Bronsted Acids 1202
31.21.1.22 Variation 1: Using Sulfuric Acid 1203
31.21.1.23 Variation 2: Using Acetic Acid 1206
31.21.1.24 Variation 3: Using Hydrofluoric Acid 1206
31.21.1.25 Variation 4: Using Hydrochloric Acid 1207
31.21.1.26 Variation 5: Using Trifluoroacetic Acid 1207
31.21.1.27 Variation 6: Using Boron Trifluoride Monohydrate 1208
31.21.1.28 Method 11: Substitution of Hydrogen Using Nitric Acid or Its Salts and Lewis Acid Catalysts 1209
31.21.1.29 Variation 1: Using Nitric Acid and Tin(IV) Chloride 1209
31.21.1.30 Variation 2: Using Alkali Metal Nitrates, Aluminum Trichloride, and Chlorotrimethylsilane 1210
Variation 3: Using Alkali Metal Nitrates and Iron(III) Chloride or Titanium(IV) Chloride

Variation 4: Using Nitric Acid and Indium(III) Bis(trifluoromethylsulfonyl)amide

Variation 5: Using Nitric Acid and Lanthanide or Group 4 Metal Trifluoromethanesulfonates

Variation 6: Using Nitric Acid and Other Lanthanide Perfluoroalkanesulfonates

Variation 7: Using Nitric Acid and Lanthanide Arenesulfonates

Variation 1: Using Sodium Nitrate, Hydrogen Chloride, and Lanthanum(III) Nitrate

Variation 2: Using Nitric Acid and Mercury(II) Nitrate with an Acid Resin

Method 12: Substitution of Hydrogen Using Nitric Acid or Its Sodium Salt with Another Metal Nitrate

Method 13: Substitution of Hydrogen Using Nitric Acid and Mercury(II), Thallium(III), or Lead(IV) Acetate

Method 14: Substitution of Hydrogen Using Nitric Acid and Ammonium Molybdate

Method 15: Substitution of Hydrogen Using Vanadyl Nitrate

Method 16: Substitution of Hydrogen Using Transition Metal Nitrates

Variation 1: Using Iron(III) Nitrate

Variation 2: Using Copper(II) Nitrate

Variation 3: Using Chromium(III) Nitrate

Method 17: Substitution of Hydrogen Using Yttrium or Lanthanide Nitrates

Method 18: Substitution of Hydrogen Using Clay-Supported Metal Nitrates

Variation 1: Using Ammonium Nitrate

Variation 2: Using Iron(III) Nitrate

Variation 3: Using Copper(II) and Chromium(III) Nitrates

Variation 4: Using Bismuth(III) Nitrate

Method 19: Substitution of Hydrogen Using Bismuth Subnitrate and Thionyl Chloride

Method 20: Substitution of Hydrogen Using Sodium Nitrate and Phosphorus Pentoxide

Method 21: Substitution of Hydrogen Using Silver(I) Nitrate and Boron Trifluoride

Method 22: Substitution of Hydrogen Using Silver(I) Nitrate and Benzeneselenenyl Chloride

Method 23: Substitution of Hydrogen Using Copper(II) or Lead(II) Nitrate and Acetic Acid with Microwave Irradiation

Method 26: Substitution of Hydrogen Using Ammonium Nitrate and Trifluoroacetic or Trifluoromethanesulfonic Anhydride
Method 27: Substitution of Hydrogen Using Clay-Supported Metal Nitrates and Acetic Anhydride ... 1225

Variation 1: Using Copper(II) Nitrate .. 1225
Variation 2: Using Other Metal Nitrates ... 1226

Method 29: Substitution of Hydrogen Using Ammonium Cerium(IV) Nitrate Alone .. 1227
Variation 1: Using Acetic Anhydride .. 1229
Variation 2: Using Hydrogen Peroxide .. 1228

Method 30: Substitution of Hydrogen Using Ammonium Cerium(IV) Nitrate with Oxidizing Agents 1228
Variation 1: Using Iodine .. 1228
Variation 2: Using Hydrogen Peroxide .. 1228

Method 31: Substitution of Hydrogen Using Ammonium Cerium(IV) Nitrate with Dehydrating Agents 1229
Variation 1: Using Acetic Anhydride .. 1229
Variation 2: Using Sulfuric Acid ... 1229
Variation 3: Using Sulfuric Acid and an Additive 1230

Method 32: Substitution of Hydrogen Using Ammonium Cerium(IV) on Silica Gel ... 1230

Method 33: Substitution of Hydrogen Using Acyl and Alkyl Nitrates .. 1231
Variation 1: Using Acetyl Nitrate .. 1231
Variation 2: Using Benzoyl Nitrate ... 1231
Variation 3: Using 1-Alkyl-3-[(nitrooxy)carbonyl]pyridinium Salts 1231

Method 34: Substitution of Hydrogen Using Nitroalkanes 1232
Variation 1: Using Tetranitromethane .. 1232
Variation 2: Using Nitrocyclohexadienones ... 1233

Method 35: Substitution of Hydrogen Using Organic Nitrates 1234
Variation 1: Using Pyridinium Nitrate ... 1234
Variation 2: Using Urea Nitrate .. 1234
Variation 3: Using Guanidinium Nitrate .. 1235

Method 36: Substitution of Hydrogen Using Nitrogen Dioxide Alone 1236

Method 37: Substitution of Hydrogen Using a Photochemical Reaction with Nitrogen Dioxide .. 1237

Method 38: Substitution of Hydrogen Using Nitrogen Dioxide with Bronsted Acids ... 1237
Variation 1: Using Sulfuric Acid .. 1237
Variation 2: Using Trifluoroacetic Acid .. 1237

Method 39: Substitution of Hydrogen Using Nitrogen Dioxide with Lewis Acids .. 1237
Variation 1: Using Boron Trifluoride ... 1237
Variation 2: Using Aluminum Trichloride .. 1238

Variation 1: Using Silica Gel .. 1240
Variation 2: Using Silica Acetate 1240
Method 42: Substitution of Hydrogen Using Nitrogen Dioxide with Oxygen .. 1241
Variation 1: Iron-Catalyzed Reaction 1241
Variation 2: Zeolite-Catalyzed Reaction 1241
Method 43: Substitution of Hydrogen Using Nitrogen Dioxide with Ozone: “Kyodai” Nitration .. 1242
Method 44: Substitution of Hydrogen Using Dinitrogen Pentoxide .. 1245
Variation 1: Using Zeolites ... 1246
Variation 2: Using Iron(III) Acetylacetonate 1246
Variation 3: Using Zirconium(IV) Acetylacetonate 1247
Variation 4: In Perfluorinated Solvents 1247
Method 48: Substitution of Hydrogen Using Nitronium Salts and Complexes .. 1248
Variation 1: Using Nitronium Tetrafluoroborate 1248
Variation 2: Using Nitronium Hexafluorophosphate 1250
Variation 3: Using Nitronium Hydrogen Sulfate 1250
Variation 4: Using Nitronium Fluoride 1250
Variation 5: Using Sodium Nitrite and Selectfluor 1251
Variation 6: Using Nitronium Chloride 1251
Variation 7: Using Nitrodiazonium Tetrafluoroborate 1252
Variation 8: Using Heterocyclic N-Nitro Salts 1252
Method 49: Substitution of Hydrogen Using Nitric Oxide and Oxygen .. 1254
Method 50: Substitution of Hydrogen Using Nitrosonium Salts and Oxygen .. 1254
Variation 1: Using Sulfuric Acid 1254
Variation 2: Using Acetic Acid .. 1255
Variation 3: Using Trifluoroacetic Acid 1256
Variation 4: Using Ammonium Peroxydisulfate 1257
Variation 5: Using Silica Sulfuric Acid 1257
Variation 6: Using Trichloroisocyanuric Acid and Silica Gel 1258
Variation 7: Using Sodium or Magnesium Hydrogen Sulfate and Silica Gel .. 1258
Variation 8: Using Oxone and Silica Gel 1259
Method 52: Substitution of Hydrogen Using Electrochemical Reactions .. 1259
Variation 1: With Nitric Acid .. 1259
Variation 2: With Nitrogen Dioxide 1259
Method 53: Substitution of Lithium by Reaction of Aryllithium Reagents with Nitrogen Dioxide 1260
Method 54: Substitution of Copper by Reaction of Phenylcopper with Nitric Acid .. 1260
Method 55: Substitution of Boron by Reaction of an Arylboronic Acid with a Metal Nitrate and a Dehydrating Agent 1260
Variation 1: Using Ammonium Nitrate and Trifluoroacetic Anhydride 1260
Variation 2: Using Ammonium or Silver(I) Nitrate and Chlorotrimethylsilane ... 1261
Method 56: Substitution of Silicon by Reaction of an Aryltrimethylsilane with a Nitrating Agent .. 1261
Variation 1: Using Nitric Acid and Acetic Anhydride 1262
Variation 2: Using Nitric and Sulfuric Acids 1263
Variation 3: Using Nitronium Tetrafluoroborate 1263
Method 57: Substitution of Tin by Reaction of an Aryltrimethylstannane with Nitrosyl Chloride Followed by Potassium Permanganate Oxidation ... 1263
Method 58: Substitution of a Carboxylic Acid Group Using Nitric Acid ... 1264
Method 59: Substitution of a Carboxylic Acid Group Using Nitric and Acetic Acids .. 1264
Method 60: Substitution of a Carboxylic Acid Group Using Nitric Acid and 2,2'-Azobisisobutyronitrile 1265
Method 61: Substitution of an Aldehyde Group Using Nitric and Sulfuric Acids ... 1265
Method 62: Substitution of a tert-Butyl Group in a Calixarene or a [2.2.2]Metacyclophane .. 1266
Variation 1: Using Nitric and Sulfuric Acids 1266
Variation 2: Using Nitric and Acetic Acids 1267
Variation 3: Using Nitric and Trifluoroacetic Acids 1268
Variation 4: Using Copper(II) Nitrate and Trifluoroacetic Acid 1269
Variation 5: Using Copper(II) Nitrate and Trifluoroacetic Acid 1270
Method 63: Substitution of a tert-Butyl or an Isopropyl Group Using Nitronium Tetrafluoroborate 1271
Method 64: Substitution of a Methyl Group Using Nitric and Sulfuric Acids ... 1271
Method 65: Substitution of Chlorine Using Nitric Acid 1272
Method 66: Substitution of Chlorine Using Nitric and Acetic Acids 1272
Method 67: Substitution of Chlorine Using Alkali Metal Nitrites 1272
Method 68: Substitution of Bromine Using Nitric Acid 1273
Method 69: Substitution of Bromine Using Nitric and Sulfuric Acids 1274
Method 70: Substitution of Bromine Using Nitric Acid and Acetic Anhydride .. 1275
Method 71: Substitution of Bromine Using Sodium Nitrite and Acetic Acid ... 1276
Method 72: Substitution of Bromine Using Ethyl Nitrite 1276
Method 73: Substitution of Bromine Using Sodium Nitrite and Sulfuric Acid ... 1278
Method 74: Substitution of Iodine Using Nitric Acid 1277
Method 75: Substitution of Iodine Using Nitric and Acetic Acids 1278
Method 76: Substitution of Iodine Using Sodium Nitrite and Sulfuric Acid ... 1278
Method 77: Substitution of Iodine Using Silver(I) Nitrate 1278
31.21.1.78 Method 78: Substitution of Sulfur by Reaction of an Arenesulfonic Acid with Nitric Acid .. 1278
31.21.1.79 Method 79: Substitution of Nitrogen by Reaction of Diazonium Salts with Sodium Nitrite .. 1279
31.21.1.80 Method 80: Substitution of Nitrogen by Reaction of Diazonium Salts with Sodium Nitrite and Copper Metal 1280
31.21.1.80.1 Variation 1: Using Conventional Diazotization 1280
31.21.1.80.2 Variation 2: Using Nitrosonium Tetrafluoroborate 1281
31.21.1.81 Method 81: Substitution of Nitrogen by Reaction of Diazonium Salts with Sodium Nitrite and Copper(I) Oxide 1282
31.21.1.81.1 Variation 1: Using Conventional Diazotization 1282
31.21.1.81.2 Variation 2: Using Diazonium Hexanitrocobaltates(III) 1283
31.21.1.82 Method 82: Substitution of Nitrogen by Reaction of Diazonium Salts with Sodium Nitrite and Copper(II) Sulfate 1283
31.21.1.82.1 Variation 1: Using Conventional Diazotization 1283
31.21.1.82.2 Variation 2: Using Isopentyl Nitrite .. 1283
31.21.1.83 Method 83: Substitution of Nitrogen by Reaction of Diazonium Salts with Sodium Nitrite, Copper(I) Oxide, and Copper(II) Sulfate 1284
31.21.1.83.1 Variation 1: Using Diazonium Sulfates or Chlorides 1284
31.21.1.83.2 Variation 2: Using Diazonium Hexanitrocobaltates(III) 1285
31.21.1.84 Method 84: Substitution of Nitrogen by Reaction of Diazonium Salts with Sodium Nitrite and Copper(I,II) Sulfite 1286
31.21.1.85 Method 85: Oxidation of Primary Amines Using Oxygen with a Metal Catalyst .. 1287
31.21.1.86.1 Variation 1: With a Transition Metal Complex Catalyst 1287
31.21.1.86.2 Variation 2: With Ruthenium(III) Chloride and a Phase-Transfer Catalyst 1288
31.21.1.86.3 Variation 3: With Enzymatic Catalysis 1288
31.21.1.86.4 Variation 4: With an Acetylcholine Catalyst 1288
31.21.1.86.5 Variation 5: With a Silica Gel Supported Fluoro Ketone Catalyst 1289
31.21.1.87 Method 87: Oxidation of Primary Amines Using Sodium Peroxide 1289
31.21.1.88 Method 88: Oxidation of Primary Amines Using Hypofluorous Acid 1289
31.21.1.89 Method 89: Oxidation of Primary Amines Using Nitrogen Oxides 1290
31.21.1.90 Method 90: Oxidation of Primary Amines Using Peroxydisulfuric Acid or Peroxysulfuric Acid .. 1290
31.21.1.91 Method 91: Oxidation of Primary Amines Using Sodium Perborate 1292
31.21.1.92 Method 92: Oxidation of Primary Amines Using Sodium Peroxycarbonate 1293
31.21.1.93 Method 93: Oxidation of Primary Amines Using Quaternary Ammonium Bromates .. 1293
31.21.1.94 Method 94: Oxidation of Primary Amines Using Potassium Permanganate .. 1293
31.21.1.95 Method 95: Oxidation of Primary Amines Using Potassium Ferrate 1293
31.21.1.96 Method 96: Oxidation of Primary Amines Using Organic Peroxides 1294
31.21.1.96.1 Variation 1: Using Dimethyldioxirane 1294
31.21.1.96.2 Variation 2: Using a Polymer-Bound Dioxirane 1295
31.21.1.96.3 Variation 3: Using Other Dioxiranes ... 1295
31.21.1.96.4 Variation 4: Using tert-Butyl Hydroperoxide with a Metal Catalyst 1295
31.21.1.96.5 Variation 5: Using Oxaziridinium Salts 1296
31.21.97 Method 97: Oxidation of Primary Amines Using Organic Peroxy Acids 1296
31.21.97.1 Variation 1: Using Performic Acid 1296
31.21.97.2 Variation 2: Using Peracetic Acid 1296
31.21.97.3 Variation 3: Using Trifluoroperoxyacetic Acid 1297
31.21.97.4 Variation 4: Using Peroxymaleic Acid 1299
31.21.97.5 Variation 5: Using 3-Chloroperoxybenzoic Acid 1299
31.21.97.6 Variation 6: Using Peroxytrifluoromethanesulfonic Acid 1300
31.21.98 Method 98: Oxidation of Tertiary Amines Using Trifluoroperoxyacetic Acid 1300
31.21.100 Method 100: Oxidation of Acetanilides Using Ozone in Oleum 1301
31.21.101 Method 101: Oxidation of Nitroso Compounds Using Oxygen with a Transition Metal Catalyst 1301
31.21.102 Method 102: Oxidation of Nitroso Compounds Using Aqueous
Hydrogen Peroxide 1302
31.21.102.1 Variation 1: With a Base 1302
31.21.102.2 Variation 2: With a Transition Metal Catalyst 1302
31.21.103 Method 103: Oxidation of Nitroso Compounds Using Nitrogen Oxides 1303
31.21.104 Method 104: Oxidation of Nitroso Compounds Using Nitrous Acid 1303
31.21.105 Method 105: Oxidation of Nitroso Compounds Using Nitric Acid 1303
31.21.106 Method 106: Oxidation of Nitroso Compounds Using Sulfuric Acid 1304
31.21.107 Method 107: Oxidation of Nitroso Compounds Using Fluorosulfonic Acid 1305
31.21.110 Method 110: Oxidation of Nitroso Compounds Using Potassium Permanganate 1306
31.21.111 Method 111: Oxidation of Nitroso Compounds Using Potassium Hexacyanoferrate(III) with a Base 1307
31.21.112 Method 112: Oxidation of Nitroso Compounds Using Peracetic Acid 1307
31.21.113 Method 113: Oxidation of Nitroso Compounds Using Trifluoroperoxyacetic Acid 1308
31.21.114 Method 114: Oxidation of Nitroso Compounds Using 3-Chloroperoxybenzoic Acid 1309
31.21.115 Method 115: Oxidation of Nitroso Compounds Using Iodosylbenzene with a Metal Catalyst 1309
31.21.116 Method 116: Oxidation of Sulfimides Using 3-Chloroperoxybenzoic Acid 1309

31.22 Product Class 22: Nitrosoarenes
K. Rück-Braun and B. Priewisch

31.22 Product Class 22: Nitrosoarenes 1321
31.22.1 Synthesis of Product Class 22 1321
31.22.1.1 Nitrosation Reactions 1321
31.22.1.1.1 Method 1: Nitrosation of Phenols by Nitrous Acid 1322
31.22.1.1.1.1 Variation 1: Nitrosation of Phenols by Alkyl Nitrites 1325

Product Class 22: Nitrosoarenes
K. Rück-Braun and B. Priewisch

31.22 Product Class 22: Nitrosoarenes 1321
31.22.1 Synthesis of Product Class 22 1321
31.22.1.1 Nitrosation Reactions 1321
31.22.1.1.1 Method 1: Nitrosation of Phenols by Nitrous Acid 1322
31.22.1.1.1.1 Variation 1: Nitrosation of Phenols by Alkyl Nitrites 1325
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.22.1.2</td>
<td>Method 2:</td>
<td>Nitrosation of Arylamines by Nitrous Acid</td>
<td>1325</td>
</tr>
<tr>
<td>31.22.1.2.1</td>
<td>Variation 1:</td>
<td>Of Tertiary Arylamines</td>
<td>1326</td>
</tr>
<tr>
<td>31.22.1.2.2</td>
<td>Variation 2:</td>
<td>Of Secondary Arylamines</td>
<td>1327</td>
</tr>
<tr>
<td>31.22.1.2.3</td>
<td>Variation 3:</td>
<td>Of Primary Arylamines</td>
<td>1328</td>
</tr>
<tr>
<td>31.22.1.3</td>
<td>Method 3:</td>
<td>Nitrosation by Nitrosonium Tetrafluoroborate</td>
<td>1329</td>
</tr>
<tr>
<td>31.22.1.4</td>
<td>Method 4:</td>
<td>Nitrosation of Arylmetal Compounds</td>
<td>1331</td>
</tr>
<tr>
<td>31.22.1.4.1</td>
<td>Variation 1:</td>
<td>Of Arylsilanes</td>
<td>1332</td>
</tr>
<tr>
<td>31.22.1.4.2</td>
<td>Variation 2:</td>
<td>Of Arylstannanes</td>
<td>1333</td>
</tr>
<tr>
<td>31.22.1.4.3</td>
<td>Variation 3:</td>
<td>Of Arylthallium Compounds</td>
<td>1334</td>
</tr>
<tr>
<td>31.22.1.4.4</td>
<td>Variation 4:</td>
<td>Of Arylmercury Compounds</td>
<td>1335</td>
</tr>
<tr>
<td>31.22.1.2</td>
<td>Reduction of Nitroarenes</td>
<td></td>
<td>1336</td>
</tr>
<tr>
<td>31.22.1.2.1</td>
<td>Method 1:</td>
<td>Reductions with Alkyl Grignard Reagents</td>
<td>1336</td>
</tr>
<tr>
<td>31.22.1.2.2</td>
<td>Method 2:</td>
<td>Reduction with Metals or Metal Oxides</td>
<td>1338</td>
</tr>
<tr>
<td>31.22.1.2.3</td>
<td>Method 3:</td>
<td>Nucleophilic Aromatic Substitution of Nitroarenes with Concomitant Reduction</td>
<td>1338</td>
</tr>
<tr>
<td>31.22.1.2.4</td>
<td>Method 4:</td>
<td>Electrochemical Reduction</td>
<td>1339</td>
</tr>
<tr>
<td>31.22.1.2.5</td>
<td>Method 5:</td>
<td>Photochemical Reduction</td>
<td>1339</td>
</tr>
<tr>
<td>31.22.1.3</td>
<td>Oxidation of Arylamines</td>
<td></td>
<td>1339</td>
</tr>
<tr>
<td>31.22.1.3.1</td>
<td>Method 1:</td>
<td>Oxidation by Peracids</td>
<td>1339</td>
</tr>
<tr>
<td>31.22.1.3.1.1</td>
<td>Variation 1:</td>
<td>Using Caro’s Acid</td>
<td>1340</td>
</tr>
<tr>
<td>31.22.1.3.1.2</td>
<td>Variation 2:</td>
<td>Using Oxone</td>
<td>1340</td>
</tr>
<tr>
<td>31.22.1.3.1.3</td>
<td>Variation 3:</td>
<td>Using Peracetic Acid</td>
<td>1341</td>
</tr>
<tr>
<td>31.22.1.3.1.4</td>
<td>Variation 4:</td>
<td>Using 3-Chloroperoxybenzoic Acid</td>
<td>1343</td>
</tr>
<tr>
<td>31.22.1.3.2</td>
<td>Method 2:</td>
<td>Oxidation by Hydrogen Peroxide and a Transition-Metal Catalyst</td>
<td>1344</td>
</tr>
<tr>
<td>31.22.1.3.2.1</td>
<td>Variation 1:</td>
<td>With Tungsten Catalysts</td>
<td>1344</td>
</tr>
<tr>
<td>31.22.1.3.2.2</td>
<td>Variation 2:</td>
<td>With Molybdenum Catalysts</td>
<td>1345</td>
</tr>
<tr>
<td>31.22.1.4</td>
<td>Oxidation of N-Arylhydroxylamines</td>
<td></td>
<td>1346</td>
</tr>
<tr>
<td>31.22.1.4.1</td>
<td>Method 1:</td>
<td>Oxidation by Iron(III) Chloride</td>
<td>1346</td>
</tr>
<tr>
<td>31.22.1.4.2</td>
<td>Method 2:</td>
<td>Oxidation by Sodium or Potassium Dichromate</td>
<td>1347</td>
</tr>
<tr>
<td>31.22.1.4.3</td>
<td>Method 3:</td>
<td>Oxidation by tert-Butyl Hypochlorite</td>
<td>1347</td>
</tr>
<tr>
<td>31.22.1.4.4</td>
<td>Method 4:</td>
<td>Electrochemical Oxidation</td>
<td>1348</td>
</tr>
<tr>
<td>31.22.1.5</td>
<td>Rearrangement Reactions</td>
<td></td>
<td>1349</td>
</tr>
<tr>
<td>31.22.1.5.1</td>
<td>Method 1:</td>
<td>Rearrangement of N-Nitrosoarylaminas (Fischer–Hepp Rearrangement)</td>
<td>1349</td>
</tr>
<tr>
<td>31.22.1.5.2</td>
<td>Method 2:</td>
<td>Photochemical Rearrangement of Nitroarenes</td>
<td>1349</td>
</tr>
<tr>
<td>31.22.1.5.3</td>
<td>Method 3:</td>
<td>Acid- or Base-Catalyzed Rearrangements of Nitroarenes</td>
<td>1350</td>
</tr>
<tr>
<td>31.22.1.6</td>
<td>Synthesis from Other Nitrosoarenes</td>
<td></td>
<td>1352</td>
</tr>
<tr>
<td>31.22.1.6.1</td>
<td>Method 1:</td>
<td>Electrophilic Halogenation or Nitration of Nitrosobenzene</td>
<td>1352</td>
</tr>
<tr>
<td>31.22.1.6.2</td>
<td>Method 2:</td>
<td>Nucleophilic Aromatic Substitution Reactions of Nitrosoarenes</td>
<td>1352</td>
</tr>
<tr>
<td>31.22.1.6.3</td>
<td>Method 3:</td>
<td>Reactions at the Side Chains of Aryl Nitroso Compounds: Etherification of 4-Nitrosophenol</td>
<td>1354</td>
</tr>
<tr>
<td>31.22.2</td>
<td>Applications of Product Class 22 in Organic Synthesis</td>
<td></td>
<td>1355</td>
</tr>
</tbody>
</table>
31.23 Product Class 23: Arenediazonium Salts
P. O’Leary

31.23 Product Class 23: Arenediazonium Salts .. 1361
31.23.1 Product Subclass 1: Simple Arenediazonium Salts 1362
31.23.1.1 Synthesis of Product Subclass 1 ... 1363
31.23.1.1.1 Method 1: Direct Introduction of the Diazonium Group 1363
31.23.1.1.2 Method 2: Diazotization of Primary Aromatic Amines 1364
31.23.1.1.2.1 Variation 1: Diazotization Using 2,2-Dimethylpropane-1,3-diy1 Dinitrite 1364
31.23.1.1.2.2 Variation 2: Formation of Arenediazonium Salts by Diazotization in Acidic Solution .. 1365
31.23.1.1.3 Method 3: Reactions of Anilines with Sodium Nitrite in Acidic Media, Followed by Anion Exchange ... 1369
31.23.1.1.3.1 Variation 1: Use of an Inorganic Salt To Alter the Anion 1370
31.23.1.1.3.2 Variation 2: Use of an Acid To Alter the Anion 1373
31.23.1.1.4 Method 4: Diazotization of Weakly Basic Amines by Dissolution in Pyridine, Prior to Treatment with Sodium Nitrite and Sulfuric Acid .. 1374
31.23.1.1.5 Method 5: Diazotization of Aromatic Amines under “Anhydrous” Conditions .. 1375
31.23.1.1.5.1 Variation 1: Diazotization Using Alkyl Nitrates and an Acid as the Anion Donor .. 1375
31.23.1.1.5.2 Variation 2: Reactions Using Boron Trifluoride as the Anion Source 1377
31.23.1.1.5.3 Variation 3: Reactions Using Organic Compounds as the Anion Source 1378
31.23.1.1.5.4 Variation 4: Diazotization Using Nitrosonium Tetrafluoroborate 1379
31.23.1.1.5.5 Variation 5: Diazotization Using Nitric Oxide or Nitric Oxide and Lead(IV) Oxide .. 1380
31.23.1.1.6 Method 6: Synthesis and Isolation of Arenediazonium Salts by Amine Diazotization under Solvent-Free Conditions .. 1381
31.23.1.1.6.1 Variation 1: Diazotization with Nitrogen Dioxide Gas 1381
31.23.1.1.6.2 Variation 2: Diazotization Using Liquid Nitrogen Dioxide 1382
31.23.1.1.6.3 Variation 3: Diazotization with Nitrosyl Chloride 1383
31.23.1.1.7 Method 7: Synthesis of Arenediazonium Salts with Simultaneous Modification of Other Substituents .. 1384
31.23.1.1.7.1 Variation 1: With Ester Cleavage .. 1384
31.23.1.1.7.2 Variation 2: Diazotization and Heterocyclization 1384
31.23.1.1.8 Method 8: Synthesis from N-Acylarylamines Using Nitrosyl Reagents 1385
31.23.1.1.9 Method 9: Synthesis of Diazonium Salts from Imines, N-Sulfinylamines, Nitrosoarenes, or N,N-Disilylanilines with Nitrosyl Compounds .. 1386
31.23.1.1.9.1 Variation 1: From Benzaldehyde Arylimines and a Nitrosyl Reagent .. 1386
31.23.1.1.9.2 Variation 2: From N-Sulfinylamines and Nitrosonium Perchlorate or Nitrosonium Hexachloroantimonate .. 1387
31.23.1.1.9.3 Variation 3: From Nitrosoarenes and Nitrosyl Halides 1387
31.23.1.1.9.4 Variation 4: From N,N-Bis(trimethylsilyl)anilines 1388
31.23.1.1.10 Method 10: Synthesis from 1-Alkyl-2-aryl- or 1,2-Diaryldiazenes 1388
31.23.1.1.11 Method 11: Synthesis from Alkyl(aryl)triazenes 1389
31.23.12 Method 12: Synthesis from Other Arenediazonium Salts 1390

31.23.2 Product Subclass 2: Arenediazonium Inner Salts 1391

31.23.2.1 Synthesis of Product Subclass 2 1391

31.23.2.1.1 Method 1: Hydration of Halo- or Nitrodiazonium Salts 1391

31.23.2.1.2 Method 2: Diazotization of Aminophenols, Aminonaphthols, Aminobenzenesulfonic Acids, and Aminoarencarboxylic Acids in Acidic Media 1392

31.23.2.1.3 Method 3: Diazotization and Oxidation of Aminoaarenes in Acidic Media 1394

31.23.3 Product Subclass 3: Polymeric and Immobilized Arenediazonium Salts 1394

31.24 Product Class 24: Azoxyarenes (Di- and Monoaryldiazenone Oxides)
K. Rück-Braun and B. Priewisch

31.24.1 Product Subclass 1: Symmetrically Substituted Diaryldiazenone Oxides 1401

31.24.1.1 Synthesis of Product Subclass 1 1402

31.24.1.1.1 Method 1: Reduction of Nitroarenes 1402

31.24.1.1.1.1 Variation 1: Reduction with Glucose 1403

31.24.1.1.1.2 Variation 2: Reduction with Zinc/Aluminum Trichloride 1403

31.24.1.1.1.3 Variation 3: Reduction with Bismuth 1404

31.24.1.1.4 Variation 4: Catalytic Hydrogenation 1405

31.24.1.1.5 Variation 5: Electrochemical Reduction 1406

31.24.1.1.2 Method 2: Condensation of Nitrosoarenes with N-Arylhydroxylamines 1407

31.24.1.1.3 Method 3: Oxidation of Anilines 1408

31.24.1.1.3.1 Variation 1: Oxidation with Peroxy Acids 1408

31.24.1.1.3.2 Variation 2: Catalytic Oxidation with Hydrogen Peroxide 1408

31.24.1.1.4 Method 4: Oxidation of Diaryldiazenes with Peroxy Acids 1409

31.24.2 Product Subclass 2: Unsymmetrically Substituted Diaryldiazenone Oxides 1410

31.24.2.1 Synthesis of Product Subclass 2 1411

31.24.2.1.1 Method 1: Oxidation of Diaryldiazenes 1411

31.24.2.1.2 Method 2: Reaction of Nitroarenes with (Arylimino)dimagnesium Reagents 1412

31.24.2.1.3 Method 3: Reaction of 1-Aryl-2-(tosyloxy)diazenone 1-Oxides and 1-Aryl-2-fluorodiazenone 1-Oxides with Aryl Grignard Reagents 1413

31.24.2.1.4 Method 4: Oxidation of Indazole Oxides 1413

31.24.2.1.5 Method 5: Electrophilic Substitution of Diaryldiazene Oxides 1414

31.24.3 Product Subclass 3: Monoaryldiazenone Oxides 1416

31.24.3.1 Synthesis of Product Subclass 3 1416

31.24.3.1.1 Method 1: Condensation of Nitrosoarenes with N,N-Dihaloalkylamines 1416

31.24.3.1.2 Method 2: Reaction of 1-Aryl-2-(tosyloxy)diazenone 1-Oxides and 1-Aryl-2-fluorodiazenone 1-Oxides with Alkyl Grignard Reagents 1417

31.24.3.1.3 Method 3: Oxidation of Alkyl(aryl)diazenes 1417

31.24.3.1.4 Method 4: Oxidation of Hydrazones 1418
Method 5: Condensation of Nitrosoarenes with N-Alkylhydroxylamines 1419
Method 6: Functional-Group Transformations 1419

Product Class 25: Azoarenes
K. Rück-Braun, S. Dietrich, S. Kempa, and B. Priewisch

Product Subclass 1: Diaryldiazenes
Synthesis of Product Subclass 1 1426
Coupling of Arenediazonium Salts 1426
Method 1: Coupling with Phenols 1427
Method 2: Coupling with Aryl Ethers 1434
Method 3: Coupling with Arylamines 1438
Variation 1: Coupling of (Arylamino)methanesulfonic Acids 1443
Variation 2: Rearrangement of Triazenes 1445
Method 4: Coupling with Arylhydrazine Derivatives 1446
Method 5: Coupling with Nonactivated Arenes and Hetarenes 1447
Method 6: Coupling of Diazonium Salts with Elimination of Nitrogen 1451
Method 7: Synthesis of Polyazo Compounds 1452
Variation 1: Coupling with Azo Compounds 1455
Condensation Reactions 1457
Method 1: Condensation of Nitrosoarenes with Arylamines in Acetic Acid 1457
Method 2: Condensation of Nitrosoarenes with Arylamines in the Presence of a Base 1459
Method 3: Condensation of Nitroarenes with Arylamines in Aqueous Sodium Hydroxide 1461
Variation 1: Condensation of Nitroarenes with Arylamines in the Presence of Powdered Sodium Hydroxide 1462
Method 4: Condensation of Nitroarenes with Acetylated Arylamines 1463
Method 5: Condensation of Arylhydrazines with Quinones 1464
Variation 1: Condensation with Cyclohexadienones 1466
Variation 2: Condensation with Quinone Diacetals 1468
Reduction of Nitroarenes 1468
Method 1: Reduction with Zinc 1469
Method 2: Reduction with Glucose 1470
Method 3: Catalytic Hydrogenation 1471
Variation 1: Catalytic Transfer Hydrogenation 1471
Method 4: Reduction with Lithium Aluminum Hydride 1472
Variation 1: Reduction with Sodium Bis(2-methoxyethoxy)aluminum Hydride 1474
Variation 2: Reduction with Sodium Borohydride 1474
Method 5: Electrochemical Reduction 1475
Reduction of Diaryldiazene Oxides 1476
Method 1: Reduction of Diaryldiazene Oxides 1476
31.25.1.1.5 Oxidation of Arylamines .. 1478
31.25.1.1.5.1 Method 1: Oxidation Using Hypohalites 1479
31.25.1.1.5.2 Method 2: Oxidation Using Manganese(IV) Oxide 1480
31.25.1.1.5.2.1 Variation 1: Using Manganates or Permanganese 1481
31.25.1.1.5.3 Method 3: Oxidation Using Oxygen 1482
31.25.1.1.5.4 Method 4: Oxidation Using Sodium Perborate in Acetic Acid 1484
31.25.1.1.5.5 Method 5: Oxidation Using Potassium Hexacyanoferrate(III) 1485
31.25.1.1.6 Oxidation of 1,2-Diarylhydrazines 1486
31.25.1.1.6.1 Method 1: Oxidation Using Hypohalites 1486
31.25.1.1.6.2 Method 2: Oxidation Using Oxygen 1487
31.25.1.1.6.3 Method 3: Oxidation Using Manganese(IV) Oxide 1489
31.25.1.1.7 Oxidation of tert-Butyl 1,2-Diarylhydrazinecarboxylates 1490
31.25.1.1.7.1 Method 1: Oxidation Using N-Bromosuccinimide 1490
31.25.1.1.7.2 Method 2: Oxidation Using Copper(I) Iodide in the Presence of Cesium Carbonate 1490
31.25.1.1.8 Transformations with Retention of the Functional Group 1493
31.25.1.1.8.1 Method 1: Electrophilic Aromatic Substitution of Hydrogen 1493
31.25.1.1.8.2 Method 2: C–H Bond Activation by Transition Metals 1494
31.25.1.1.8.3 Method 3: Nucleophilic Aromatic Substitution Reactions 1495
31.25.1.1.8.3.1 Variation 1: Substitution of Halogens 1496
31.25.1.1.8.3.2 Variation 2: Substitution of Amino and Hydroxy Groups 1497
31.25.1.1.8.3.3 Variation 3: Displacement of Hydroxy Groups by Phosphoryl Chloride 1497
31.25.1.1.8.4 Method 4: Palladium-Catalyzed Cross-Coupling Reactions 1499
31.25.1.1.8.5 Method 5: Transformation of Functional Groups Attached to the Aromatic Ring 1502
31.25.2 Product Subclass 2: 1-Alkyl-2-aryldiazenes 1502
31.25.2.1 Synthesis of Product Subclass 2 ... 1502
31.25.2.1.1 Formation of the N=N Bond .. 1503
31.25.2.1.1.1 Method 1: Condensation of Nitrosobenzene with Aliphatic Amines 1503
31.25.2.1.2 Synthesis from Compounds Containing a N–N Bond 1505
31.25.2.1.2.1 Method 1: Condensation of Arenediazonium Salts with CH-Acidic Compounds .. 1505
31.25.2.1.2.2 Method 2: Reaction of Arenediazonium Salts with Organometallic Compounds .. 1509
31.25.2.1.2.3 Method 3: Reductive Alkylation of Arenediazonium Salts 1510
31.25.2.1.2.4 Method 4: Oxidation of Arylhydrazones 1514
31.25.2.1.2.5 Method 5: Ene-Type Reactions of Arylhydrazones 1518
31.25.2.1.2.6 Method 6: Allylation of Arylhydrazones 1520
31.25.2.1.2.7 Method 7: Oxidation of 1-Alkyl-2-arylhydrazines 1520
31.25.2.1.2.8 Method 8: Rearrangement of 1-Alkyl-3-arylureas 1523
31.25.2.1.2.9 Method 9: Reduction of 1-Alkyl-2-aryldiazen Oxides 1524
Product Class 26: (Arylimino)phosphines and (Arylimino)phosphoranes

M. Alajarín, C. López-Leonardo, and J. Berná

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.26.1</td>
<td>Product Subclass 1: (Arylimino)phosphines</td>
<td>1539</td>
</tr>
<tr>
<td>31.26.2</td>
<td>Product Subclass 2: (Arylimino)phosphoranes</td>
<td>1544</td>
</tr>
</tbody>
</table>

Product Subclass 1: (Arylimino)phosphines

<table>
<thead>
<tr>
<th>Method</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.26.2.1.1</td>
<td>Method 1: One-Pot Reaction of Arylamines with Di- or Trihalophosphines</td>
<td>1540</td>
</tr>
<tr>
<td>31.26.2.1.3</td>
<td>Method 3: β-Elimination of Secondary Amines</td>
<td>1542</td>
</tr>
</tbody>
</table>

Product Subclass 2: (Arylimino)phosphoranes

<table>
<thead>
<tr>
<th>Method</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.26.2.1.4</td>
<td>Method 4: Reaction of Activated Aryl Fluorides with (Silylimino)phosphoranes</td>
<td>1549</td>
</tr>
</tbody>
</table>

Product Class 27: Arylamine N-Oxides and Arylaminoxyl Radicals

A. Schmidt

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.27.1</td>
<td>Product Subclass 1: Arylamine N-Oxides</td>
<td>1555</td>
</tr>
<tr>
<td>31.27.2</td>
<td>Product Subclass 2: Arylaminoxyl Radicals</td>
<td>1557</td>
</tr>
</tbody>
</table>

Product Subclass 1: Arylamine N-Oxides

<table>
<thead>
<tr>
<th>Method</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.27.2.1.1</td>
<td>Method 1: Oxidation of Tertiary Amines with Oxygen</td>
<td>1555</td>
</tr>
</tbody>
</table>

Product Subclass 2: Arylaminoxyl Radicals

<table>
<thead>
<tr>
<th>Method</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.27.2.2.2</td>
<td>Method 2: Reaction of Nitrosoarenes with Tricarbonyl-(12-cyclohexadienyl)iron(II)</td>
<td>1563</td>
</tr>
</tbody>
</table>
31.28 **Product Class 28: Arylamines**
U. Scholz and B. Schlummer

31.28 **Synthesis of Product Class 28** 1565

31.28.1 Method 1: Direct Introduction of Nitrogen Using Bases 1565
31.28.1.1 Variation 1: Using Aluminum Trichloride and Sodium Azide .. 1567
31.28.1.2 Variation 2: Using Aluminum Trichloride and Trichloroamine . 1568
31.28.1.3 Variation 3: Using Aluminum Trichloride and Dichloroamine . 1569
31.28.1.4 Variation 4: Using Dialkylchloroamines and Metal Salts 1569
31.28.1.5 Variation 5: Using Trifluoromethanesulfonic Acid and Azides ... 1570
31.28.1.6 Variation 6: Using Hydroxylamine Derivatives and Acids 1571

31.28.1.7 Method 2: Direct Introduction of Nitrogen Using Acids 1572
31.28.1.8 Variation 1: Using Aluminum Trichloride and Sodium Azide .. 1572
31.28.1.9 Variation 2: Using Aluminum Trichloride and Trichloroamine . 1572
31.28.1.10 Variation 3: Using Aluminum Trichloride and Dichloroamine . 1572
31.28.1.11 Variation 4: Using Dialkylchloroamines and Metal Salts 1572
31.28.1.12 Variation 5: Using Trifluoromethanesulfonic Acid and Azides ... 1572
31.28.1.13 Variation 6: Using Hydroxylamine Derivatives and Acids 1572

31.28.2 Method 3: Catalytic Direct Amination 1572

31.28.3 Method 4: Direct Amination of Activated Aromatic Systems 1572
31.28.3.1 Variation 1: Using Ammonia–Potassium Amide and Potassium Permanganate 1572
31.28.3.2 Variation 2: Using Cobalt(II) Chloride, Oxygen, and Hydrogen Sulfide ... 1573
31.28.3.3 Variation 3: Using Hydroxylamine 1574
31.28.3.4 Method 5: Substitution of Fluoroarenes 1574
31.28.3.5 Variation 1: Using Ammonia ... 1574
31.28.3.6 Variation 2: Using Primary or Secondary Amines 1576
31.28.3.7 Variation 3: Using Tertiary Amines 1577
31.28.3.8 Variation 4: Using Amides, Metal Amides, or Imides 1578
31.28.3.9 Variation 5: Using Ammonium Salts 1579
31.28.3.10 Method 6: Substitution of Chloroarenes 1579
31.28.3.11 Variation 1: Using Ammonia ... 1579
31.28.3.12 Variation 2: Using Primary or Secondary Amines 1581
31.28.3.13 Variation 3: Using Tertiary Amines 1587
31.28.3.14 Variation 4: Using Amides, Metal Amides, or Imides 1588
31.28.3.15 Variation 5: Using Ammonium Salts 1589
31.28.3.16 Method 7: Substitution of Bromoarenes 1589
31.28.3.17 Variation 1: Using Ammonia ... 1589
31.28.3.18 Variation 2: Using Primary or Secondary Amines 1591
31.28.3.19 Variation 3: Using Amides, Metal Amides, or Imides 1595
31.28.3.20 Method 8: Substitution of Iodoarenes 1597
31.28.3.21 Variation 1: Using Ammonia ... 1597
31.28.3.22 Variation 2: Using Primary or Secondary Amines 1598
31.28.3.23 Variation 3: Using Amides, Metal Amides, or Imides 1601
31.28.3.24 Method 9: Substitution of Phenols 1601
31.28.3.25 Variation 1: Using Ammonia ... 1601
31.28.3.26 Variation 2: Using Primary or Secondary Amines 1603
31.28.3.27 Variation 3: Using Amides, Metal Amides, or Imides 1605
31.28.3.28 Variation 4: Using Ammonium Salts 1605
31.28.3.29 Method 10: Substitution of Aryl Ethers and Esters 1606
31.28.3.30 Variation 1: Using Ammonia ... 1606
31.28.3.31 Variation 2: Using Primary or Secondary Amines 1606
Table of Contents

Variation 3: Using Amides, Metal Amides, or Imides 1609
Variation 4: Using Ammonium Salts ... 1610
Method 11: Substitution of Aryl Sulfides and Sulfonates 1611
Method 1: Using Primary or Secondary Amines ... 1611
Variation 2: Using Amides, Metal Amides, or Imides 1611
Method 12: Substitution of Nitroarenes ... 1611
Variation 1: Using Ammonia .. 1611
Variation 2: Using Primary or Secondary Amines ... 1612
Method 13: Substitution of Other Aryl Derivatives ... 1613
Variation 1: Substitution of Arylplumanes .. 1613
Variation 2: Substitution of Arylbismuthanes .. 1613
Variation 3: Substitution of Arylsiloxanes ... 1614
Variation 4: Substitution of Arylstannanes .. 1615
Variation 5: Substitution of Arylboronic Acids .. 1615
Variation 6: Substitution of Arylmagnesium Compounds 1616
Variation 7: Substitution of Arenecarbonitriles ... 1616
Variation 8: Substitution of Arylzincates ... 1617
Variation 9: Substitution of Arylantimonates ... 1617
Method 14: Reduction of Nitroarenes ... 1618
Variation 1: Using Transfer Hydrogenation .. 1618
Variation 2: Using Direct Hydrogenation ... 1619
Variation 3: Using Iron .. 1621
Variation 4: Using Sulfur .. 1622
Variation 5: Using Tin ... 1623
Variation 6: Using Hydrazine ... 1624
Variation 7: Using Complex Metal Hydrides ... 1625
Variation 8: Using Zinc ... 1625
Variation 9: Using Aluminum ... 1626
Variation 10: Using Alkali Metals .. 1627
Variation 11: Using Electrochemical Methods ... 1627
Method 15: Reduction of Nitrosoarenes .. 1628
Method 16: Reduction of Arylamine N-Oxides .. 1629
Method 17: Reduction of Azo Compounds ... 1630
Method 18: Reduction of Azides .. 1631
Method 19: Reduction of Isocyanates .. 1631
Method 20: Reduction of Imines ... 1632
Method 21: Reduction of N-Nitrosoanilines .. 1634
Method 22: Reduction of Azoxy Compounds ... 1635
Method 23: Reduction of Hydrazines .. 1636
Method 24: Reduction of Aminals ... 1637
Method 25: Reduction of Amides ... 1637
Method 26: Reduction of Carbamates ... 1638
Method 27: Reduction of Imidoyl Chlorides .. 1638
Method 28: Partial Reduction of Quinolines .. 1639
Method 29: Alkylation of Benzo-1,4-quinone Derivatives 1640
Variation 1: Aromatic Alkylation of Benzo-1,4-quinone Diimines 1640
Variation 2: Aromatization of Benzo-1,4-quinone Oximes 1641
Variation 3: Aromatization of Benzo-1,2-quinones .. 1641

Science of Synthesis Original Edition Volume 31b
© Georg Thieme Verlag KG
Method 30: Synthesis from Cyclic Oximes 1642
Method 31: Synthesis from Cyclohexanones 1642
Method 32: Cyclization of Nitriles .. 1644
Method 33: Synthesis by Rearrangement 1644
Variation 1: Replacement of an Aromatic C—H Bond by a C—S Bond ... 1644
Variation 2: Replacement of an Aromatic C—H Bond by a C—N Bond ... 1645
Variation 3: Replacement of an Aromatic C—H Bond by a C—C Bond ... 1646
Variation 4: Replacement of an Aromatic C—C Bond by a C—N Bond ... 1649
Variation 5: Replacement of an Aromatic C—O Bond by a C—N Bond ... 1652
Variation 6: Replacement of an Aromatic C—S Bond by a C—N Bond ... 1653
Variation 7: Replacement of an Aromatic C—H Bond by a C—O Bond ... 1654
Method 34: Synthesis by Transamination 1654
Variation 1: Using Primary or Secondary Amines 1654
Variation 2: Using Ammonium Salts 1657
Method 35: Reaction of Arylamines with Alkyl Halides or Pseudohalides 1657
Method 36: Reaction of Arysilanamines with Alkyl Halides 1658
Method 37: Reaction of Arylamines with Aliphatic Alcohols 1659
Method 38: Reaction of Arylamines with Aldehydes or Ketones 1659
Method 39: Reaction of Arylamines with Esters 1660
Variation 1: Using Reactive Esters 1660
Variation 2: Using Carboxylic Esters 1661
Method 40: Reaction of Arylamines with Alkenes 1662
Variation 1: Hydroamination Reactions 1662
Variation 2: Michael Addition Reactions 1663
Method 41: Reaction of Arylamines with Alkynes 1665
Method 42: Reaction of Arylamines with Epoxides, Cyclic Ethers, 1665
or Aziridines ... 1666
Variation 1: Using Reactive Esters 1666
Variation 2: Using Carboxylic Esters 1667
Method 43: Reaction of Arylamines with Lactones 1667
Method 44: Dealkylation Reactions ... 1667

Product Class 29: Arylammonium Salts
B. Schlummer and U. Scholz

Synthesis of Product Class 29 ... 1679
31.29.1.4.1	Variation 1:	Anion Exchange	1686
31.29.1.4.2	Variation 2:	Quaternary Ammonium Hydroxide Formation	1686
31.29.1.4.3	Variation 3:	Halogen Addition	1688
31.29.1.4.4	Variation 4:	Formation of Betaines	1688
31.29.2	Applications of Product Class 29 in Organic Synthesis	1688	
31.29.2.1	Method 1:	Formation of Tertiary Amines	1689
31.29.2.2	Method 2:	Quaternary Ammonium Compounds as Alkylating Agents	1689
31.29.2.3	Method 3:	Rearrangements	1690
31.29.2.4	Method 4:	Hofmann Elimination	1691
31.29.2.5	Method 5:	Phase-Transfer Catalysts	1692
31.30	Product Class 30: \(N\)-Silylarylamines	J. L. Chiara	
31.30	Product Class 30: \(N\)-Silylarylamines	1697	
31.30.1	Synthesis of Product Class 30	1697	
31.30.1.1	Method 1:	Reaction of Organosilanes with Arylamines	1697
31.30.1.1.1	Variation 1:	Using Cesium Fluoride	1697
31.30.1.1.2	Variation 2:	Using Transition-Metal Catalysts	1697
31.30.1.2	Method 2:	Reaction of Halosilanes with Arylamines	1698
31.30.1.2.1	Variation 1:	Reaction of Chloro[2-[chloro(dimethyl)silyl]ethyl]-dimethylsilane with Primary \(N\)-Arylamines	1700
31.30.1.3	Method 3:	Synthesis Using Silyl Trifluoromethanesulfonates	1700
31.30.1.3.1	Variation 1:	Reaction with Arylamines	1700
31.30.1.3.2	Variation 2:	Reaction with \(N\)-Arylimines	1701
31.30.1.4	Method 4:	Synthesis from Silyl Trichloroacetates and Arylamines	1701
31.30.1.5	Method 5:	Synthesis from \(N,N\)-Dialkylaminosilanes and Arylamines	1701
31.30.1.6	Method 6:	Synthesis from Hexamethyldisilazane and Arylamines	1702
31.30.1.7	Method 7:	Synthesis from Haloarenes and Metal Hexamethyldisilazanides	1702
31.30.1.8	Method 8:	Hydrosilylation of Imines	1703
31.30.1.9	Method 9:	Reductive Silylation of Trifluoromethylamines	1704
31.30.1.10	Method 10:	Reductive Silylation of Azo Compounds	1705
31.30.1.11	Method 11:	Reductive Silylation of Nitroarenes	1706
31.30.1.11.1	Variation 1:	Reduction with Triethylsilane	1706
31.30.1.11.2	Variation 2:	Reduction with Chromium(II)/Manganese(0)	1707
31.30.1.12	Method 12:	Synthesis of Stable \(N\)-Arylsilamides	1707
31.30.1.13	Method 13:	Synthesis of Lithium \(N\)-Arylsilamides	1707
31.30.1.14	Method 14:	Synthesis of \(N,N\)-Neopentyl-1,2-phenylenediaminosilylene	1708
31.30.1.15	Method 15:	Aza-Brook Rearrangement of (\(\alpha\)-Silylallyl)amines to \(N\)-Silylenamines	1709
31.31 Product Class 31: N-Borylarylamines
J. L. Chiara

31.31 Product Class 31: N-Borylarylamines ... 1711
31.31.1 Synthesis of Product Class 31 .. 1712
31.31.1.1 Method 1: Synthesis from Arylamines 1712
31.31.1.1.1 Variation 1: By Reaction with Boranes 1713
31.31.1.1.2 Variation 2: By Reaction with Trialkylboranes 1715
31.31.1.1.3 Variation 3: By Reaction with Haloboranes 1715
31.31.1.1.4 Variation 4: By Reaction with Organooxyboranes 1717
31.31.1.1.5 Variation 5: By Reaction with Sulfanylboranes 1718
31.31.1.1.6 Variation 6: By Reaction with Aminoboranes 1719
31.31.1.2 Method 2: Redistribution and Exchange Reactions 1719
31.31.1.3 Method 3: Reductive Alkylation of Azides 1719
31.31.1.4 Method 4: Synthesis from Imines 1719
31.31.1.4.1 Variation 1: By Hydroboration 1720
31.31.1.4.2 Variation 2: By Diboration 1721
31.31.1.5 Method 5: Borylation of Organometallic Reagents 1721

31.32 Product Class 32: N-Haloarylamines
J. L. Chiara

31.32 Product Class 32: N-Haloarylamines ... 1725
31.32.1 Synthesis of Product Class 32 .. 1727
31.32.1.1 Method 1: Synthesis from Arylamines 1727
31.32.1.1.1 Variation 1: By Reaction with Halogens 1727
31.32.1.1.2 Variation 2: By Reaction with Inorganic or Organic Hypochlorites 1729
31.32.1.1.3 Variation 3: By Reaction with Dichlorine Monoxide 1731
31.32.1.1.4 Variation 4: By Reaction with N-Halosuccinimides 1731
31.32.1.1.5 Variation 5: By Reaction with Sulfuryl Chloride 1732
31.32.1.2 Method 2: Synthesis from N-Haloarylamines by Halogen Exchange 1732
31.32.1.3 Method 3: Synthesis from Imines 1733
31.32.1.3.1 Variation 1: By Reaction with Halogens 1733
31.32.1.3.2 Variation 2: By Reaction with Hypofluorites 1733
31.32.1.3.3 Variation 3: By Reaction with Cyanogen Bromide 1734
31.32.1.4 Method 4: Synthesis from Orthoamides 1735

31.33 Product Class 33: N-Arylhydroxylamines
A. Schmidt

31.33 Product Class 33: N-Arylhydroxylamines ... 1739
31.33.1 Synthesis of Product Class 33 .. 1739
31.33.1.1 Method 1: Substitution of Hydrogen at the the N–H Group of Hydroxylamine and N-Alkylhydroxylamines by Aryl Groups 1739
31.33.1.1.1 Variation 1: From Aryl and Hetaryl Halides 1739
31.33.1.2 Variation 2: From Hydroxy- or Alkoxy-Substituted Arenes 1744
31.33.1.3 Variation 3: From a Nitrobenzene ... 1744
31.33.1.4 Variation 4: From an Arenesulfonate ... 1745
31.33.1.5 Variation 5: From 4-(Nitroamino)pyrimidines 1745
31.33.1.2 Method 2: Oxidation of a Dihyroindole To Give an N-Hydroxyindole 1745
31.33.1.3 Method 3: Reaction of an Aniline with N-(Trifluorooracetoxy)succinimide To Give an O-Acyl-N-phenylhydroxylamine 1746
31.33.1.4 Method 4: Substitution Reaction between N-Benzylhydroxylamine and Hexafluorobenzene To Give N-(Pentafluorophenyl)hydroxylamine ... 1746
31.33.1.5 Method 5: Reduction of Nitro Compounds 1747
31.33.1.5.1 Variation 1: By Catalytic Reduction ... 1747
31.33.1.5.2 Variation 2: With Hydrazine ... 1748
31.33.1.5.3 Variation 3: With Hypophosphites .. 1750
31.33.1.5.4 Variation 4: With Zinc Dust .. 1750
31.33.1.5.5 Variation 5: With Tin(II) Chloride ... 1752
31.33.1.5.6 Variation 6: With Titanium(III) Chloride 1753
31.33.1.5.7 Variation 7: With Ammonium(Ill) Chloride 1754
31.33.1.5.8 Variation 8: By Addition of Grignard Reagents 1754
31.33.1.5.9 Variation 9: Indium-Mediated Reductive Acylations and Allylations 1755
31.33.1.5.10 Variation 10: By Borohydride ... 1756
31.33.1.5.11 Variation 11: Electrochemical Reduction 1756
31.33.1.5.12 Variation 12: With Baker’s Yeast .. 1756
31.33.1.6 Method 6: Synthesis from Nitroso Compounds 1756
31.33.1.6.1 Variation 1: Reaction with Grignard and Organolithium Reagents 1756
31.33.1.6.2 Variation 2: Addition of Lithium or Tin Enolates to Nitrosobenzene (Nitroso Aldol Synthesis) .. 1757
31.33.1.6.3 Variation 3: O-Selective Nucleophilic Addition of Silyl Enol Ethers Promoted by Lewis Acids ... 1759
31.33.1.6.4 Variation 4: By α-Oxyamination of Aldehydes and Ketones with Proline and Other Asymmetric Organocatalysts 1760
31.33.1.6.5 Variation 5: By α-Oxyamination of Enamines 1763
31.33.1.6.6 Variation 6: By Allylboration of Nitrosobenzene 1764
31.33.1.6.7 Variation 7: Reaction between Nitrosobenzene and 2- and 3-Vinylindoles 1764
31.33.1.7 Method 7: Nucleophilic Addition to Nitrones 1765
31.33.1.8 Method 8: Rearrangement Reactions .. 1766
31.33.1.9 Method 9: Ring Cleavage of Isoxazoles 1768
31.33.1.10 Method 10: N-Hetarylhydroxylamines from 4-Hydroxythiosemicarbazides ... 1768

31.34 Product Class 34: Arylhydrazines
M. Begtrup and L. K. Rasmussen

31.34 Product Class 34: Arylhydrazines ... 1773
31.34.1 Product Subclass 1: Unsubstituted Arylhydrazines 1774
31.34.1.1 Synthesis of Product Subclass 1 .. 1774
31.34.1.1.1 Method 1: Reduction of Arenediazonium Salts Derived from Arylamines 1774
31.34.1.1.1 Variation 1: Using Sodium Sulfite or Sodium Hydrogen Sulfite 1774
31.34.1.1.2 Variation 2: Using Tin(II) Chloride 1775
31.34.1.1.2 Method 2: Nucleophilic Aromatic Substitution 1776
31.34.1.1.3 Method 3: Transition-Metal-Catalyzed N-Arylation of Hydrazine Derivatives 1777
31.34.1.1.3.1 Variation 1: Palladium-Catalyzed N-Arylation of Benzophenone Hydrazone Followed by Hydrolysis 1777
31.34.1.1.3.2 Variation 2: Copper-Catalyzed N-Arylation of tert-Butyloxycarbonylhydrazine 1778
31.34.1.1.3.3 Variation 3: Copper-Assisted N-Arylation of tert-Butyloxycarbonylhydrazine with a Triarylbumine or a Triarylbumine Diacetate 1779
31.34.1.1.4 Method 4: Electrophilic Hydrazination of Arenes 1780
31.34.1.1.5 Method 5: Electrophilic Hydrazination of Metalated Arenes 1781
31.34.1.1.6 Method 6: Electrophilic N-Amination of Anilines 1782
31.34.1.1.7 Methods 7: Miscellaneous Methods 1782
31.34.2 Product Subclass 2: 1-Alkyl-1-arylhydrazines 1783
31.34.2.1 Synthesis of Product Subclass 2 1783
31.34.2.1.1 Method 1: Nucleophilic Aromatic Substitution 1783
31.34.2.1.2 Method 2: Alkylation of Arylhydrazines 1783
31.34.2.1.3 Method 3: Alkylation of Sodium Hydrazides 1784
31.34.2.1.4 Method 4: Reduction of N-Nitrosoanilines 1784
31.34.2.1.5 Methods 5: Miscellaneous Methods 1785
31.34.3 Product Subclass 3: 1-Alkyl-2-arylhydrazines 1785
31.34.3.1 Synthesis of Product Subclass 3 1785
31.34.3.1.1 Method 1: Alkylation of Arylhydrazines 1785
31.34.3.1.2 Method 2: Alkylation and Arylation of Protected Hydrazine Derivatives 1786
31.34.3.1.3 Method 3: Reduction of Arylhydrazides and Arylhydrazones 1787
31.34.4 Product Subclass 4: 1,2-Dialkyl-1-arylhydrazines 1787
31.34.4.1 Synthesis of Product Subclass 4 1787
31.34.4.1.1 Method 1: Alkylation of (2-Phenylhydrazino)triphenylphosphorane 1788
31.34.4.1.2 Method 2: Reduction of 2-Alkyl-2-arylhydrazones 1788
31.34.4.1.2.1 Variation 1: Using Lithium 1789
31.34.4.1.2.2 Variation 2: Using Lithium Aluminum Hydride 1789
31.34.4.1.3 Method 3: Reduction of 2-Acy1-2-arylhydrazones 1789
31.34.5 Product Subclass 5: 1,1-Dialkyl-2-arylhydrazines 1790
31.34.5.1 Synthesis of Product Subclass 5 1790
31.34.5.1.1 Method 1: N-Arylation 1790
31.34.5.1.1.1 Variation 1: Of 1,1-Disubstituted Hydrazines Using an Activated Arene 1790
31.34.5.1.1.2 Variation 2: Of 1,1-Dialkylhydrazines Using Bromoarenes 1791
31.34.5.1.1.3 Variation 3: Of 1,1-Dialkylhydrazines with Halides or Trifluoromethanesulfonates 1792
31.34.5.1.2 Method 2: Electrophilic Amination of Secondary Amines with N-Aryl-O-(diphenylphosphoryl)hydroxylamine 1792
31.34.5.1.3 Methods 3: Miscellaneous Methods 1793
31.34.6 **Product Subclass 6: 1,1,2-Trialkyl-2-arylhydrazines** .. 1793

31.34.6.1 Synthesis of Product Subclass 6 ... 1793

31.34.6.1.1 Method 1: Alkylation of 1,1-Dialkyl-2-arylhydrazines 1793

31.34.7 **Product Subclass 7: 1,1-Diarylhydrazines** .. 1794

31.34.7.1 Synthesis of Product Subclass 7 .. 1794

31.34.7.1.1 Method 1: Reduction of N-Nitroso Compounds 1794

31.34.7.1.2 Method 2: Rearrangement Reactions ... 1795

31.34.7.1.3 Methods 3: Miscellaneous Methods .. 1796

31.34.8 **Product Subclass 8: 1-Alkyl-2,2-diarylhydrazines** 1796

31.34.8.1 Synthesis of Product Subclass 8 .. 1796

31.34.8.1.1 Method 1: Copper-Catalyzed Ethylation of 1,1-Diarylhydrazines Using Diethylzinc(II) ... 1796

31.34.8.1.2 Method 2: Alkylation of 1,1-Diarylhydrazines Using Lithium Alkylcyanocuprates ... 1796

31.34.9 **Product Subclass 9: 1,1-Dialkyl-2,2-diarylhydrazines** 1797

31.34.9.1 Synthesis of Product Subclass 9 .. 1797

31.34.10 **Product Subclass 10: 1,2-Diarylhydrazines** 1797

31.34.10.1 Synthesis of Product Subclass 10 ... 1797

31.34.10.1.1 Method 1: Reduction of Nitroarenes ... 1797

31.34.10.1.1.1 Variation 1: Using Zinc ... 1798

31.34.10.1.1.2 Variation 2: Using Magnesium .. 1798

31.34.10.1.1.3 Variation 3: Using Aluminum ... 1798

31.34.10.1.2 Method 2: Reduction of Azoxybenzenes 1799

31.34.10.1.2.1 Variation 1: Using an Aromatic Secondary Alcohol and Sodium Hydroxide 1799

31.34.10.1.2.2 Variation 2: Using Sodium Dithionite and 1,1′-Dioctyl-4,4′-bipyridinium Dichloride (Dioctyliolgen) as an Electron-Transfer Catalyst 1800

31.34.10.1.2.3 Variation 3: Using Sodium Borohydride and Iodine in Tetrahydrofuran 1800

31.34.10.1.2.4 Variation 4: Electrochemical Reduction of Azoxybenzenes 1800

31.34.10.1.3 Method 3: Reduction of Azoarenes .. 1800

31.34.10.1.3.1 Variation 1: Using Zinc ... 1801

31.34.10.1.3.2 Variation 2: Using Zinc and Ammonium Formate in an Ionic Liquid 1801

31.34.10.1.3.3 Variation 3: Using Sodium Amalgam .. 1802

31.34.10.1.3.4 Variation 4: Using Samarium(II) Iodide 1802

31.34.10.1.3.5 Variation 5: By Hydrogenation .. 1802

31.34.10.1.3.6 Variation 6: Using Borane in Tetrahydrofuran 1803

31.34.10.1.3.7 Variation 7: Using Sodium Borohydride–Iodine or Sodium Borohydride–Ammonium Iodide .. 1804

31.34.10.1.3.8 Variation 8: Using Lithium Aluminum Hydride 1804

31.34.10.1.3.9 Variation 9: Using Tributyltin Hydride .. 1804

31.34.10.1.3.10 Variation 10: Using Tellurium Reagents 1805

31.34.10.1.3.11 Variation 11: Using Hydrazine .. 1805

31.34.10.1.3.12 Variation 12: Using Raney Nickel and Hydrazinium Monoformate 1806

31.34.10.1.3.13 Variation 13: Using Zinc Dust and Hydrazinium Monoformate 1807

31.34.10.1.3.14 Variation 14: Using Hydrazine and Hydrated Zirconium(IV) Oxide 1808
Variation 15: Using Sodium Dithionite with Dioctylviologen as an Electron-Transfer Catalyst .. 1808
Variation 16: Using Formamidinesulfinic Acid ... 1809
Method 4: Reduction of Nitrosobenzenes ... 1809
Method 5: N-Arylation .. 1809
Variation 1: Copper(I)-Catalyzed N-Arylation of 1,2-Bis(tert-butoxy-carbonyl)-1-phenylhydrazines .. 1809
Variation 2: Palladium-Catalyzed N-Arylation of 1-Aryl-1-(tert-butoxy-carbonyl)hydrazines .. 1810
Variation 3: N-Arylation of Aryl- and Hetarylhdyrazines by Arenes Possessing Activated Leaving Groups ... 1811
Method 6: Electrophilic Amination of Primary Anilines Using N-Aryl-O-(diphenylphosphoryl)hydroxylamines .. 1812
Method 7: Treatment of Phenols with Phenylhydrazine and Sodium Hydrogen Sulfite ... 1812
Methods 8: Miscellaneous Methods .. 1813
Product Subclass 11: 1-Alkyl-1,2-diarylhydrazines ... 1813
Synthesis of Product Subclass 11 .. 1813
Method 1: Addition of Organometallic Reagents to Azobenzenes 1813
Method 2: Arylation of 1-Alkyl-1-arylhydrazines .. 1814
Methods 3: Miscellaneous Methods .. 1814
Product Subclass 12: 1,2-Dialkyl-1,2-diarylhydrazines 1815
Synthesis of Product Subclass 12 ... 1815
Method 1: Addition of Organometallic Reagents to Azobenzenes Followed by Alkylation ... 1815
Method 2: Alkylation of Azobenzene Metal Adducts 1815
Methods 3: Miscellaneous Methods .. 1816
Product Subclass 13: 1,1,2-Triarylhydrazines ... 1816
Synthesis of Product Subclass 13 ... 1816
Method 1: Addition of Organometallic Reagents to Azobenzenes 1816
Method 2: Arylation of 1,1-Diarylhydrazines .. 1816
Product Subclass 14: 1-Alkyl-1,2,2-triarylhydrazines 1816
Synthesis of Product Subclass 14 ... 1817
Method 1: Addition of Aryllithium Reagents to Azoarenes Followed by Addition of a Primary Alkyl Iodide .. 1817
Product Subclass 15: 1,1,2,2-Tetraarylhydrazines ... 1817
Synthesis of Product Subclass 15 ... 1817
Method 1: Oxidative Coupling of Diarylamines .. 1817
Variation 1: Copper(II)-Promoted Oxidative Coupling of Secondary Arylamines Using Oxygen .. 1817
Variation 2: Oxidative Dimerization of Amines Using Potassium Permanganate ... 1818
Variation 3: Oxidative Dimerization of Amines Using Lead(IV) Oxide 1818
31.35 **Product Class 35: Aryl Azides**
S. Bräse, D. Keck

31.35 **Product Class 35: Aryl Azides**

31.35.1 Synthesis of Product Class 35

31.35.1.1 Method 1: Synthesis from Aryl Organometallic Compounds

31.35.1.2 Variation 1: From Aryllithium Compounds

31.35.1.3 Variation 2: From Arylthallium Compounds

31.35.1.4 Method 2: Synthesis by Nucleophilic Substitution of Aryl Halides

31.35.1.2.1 Variation 1: From Activated Arenes

31.35.1.2.2 Variation 2: By Copper-Catalyzed Reactions

31.35.1.3 Method 3: Synthesis by Modification of Triazenes

31.35.1.4 Method 4: Synthesis from Tetrazenes

31.35.1.5 Method 5: Synthesis from Arenediazonium Salts

31.35.1.6 Method 6: Synthesis from Hydrazines and Related Compounds

31.35.1.7 Method 7: Synthesis from Anilines and Related Compounds

31.35.1.8 Method 8: Synthesis from Nitrosoarenes

31.35.1.9 Method 9: Synthesis by Rearrangement

31.35.2 Applications of Product Class 35 in Organic Synthesis

31.35.2.1 Method 1: Reactions with All-Carbon Functional Groups

31.35.2.2 Method 2: Reactions with Heteroatom-Containing Groups

31.36 **Product Class 36: Aryltriazenes, Aryltetrazenes, and Related Compounds**
S. Bräse and T. Muller

31.36 **Product Class 36: Aryltriazenes, Aryltetrazenes, and Related Compounds**

31.36.1 **Product Subclass 1: Aryltetrazenes**

31.36.1.1 Synthesis of Product Subclass 1

31.36.1.1.1 Method 1: Dimerization of Hydrazines and Hydrazones

31.36.1.1.2 Method 2: Reaction between Hydrazides and Hydrazones

31.36.1.3 Method 3: Reaction of Azo Compounds with Hydrazones

31.36.2 **Product Subclass 2: Aryltriazenes**

31.36.2.1 Synthesis of Product Subclass 2

31.36.2.1.1 Method 1: Synthesis from N-Nitrosoureas or Aryl Isocyanates

31.36.2.1.2 Method 2: Synthesis from Aryl Azides

31.36.2.1.3 Method 3: Synthesis from Alkyl or Acyl Azides and Arylating Agents

31.36.2.1.4 Method 4: Synthesis from Arenediazonium Salts

31.36.2.1.5 Method 5: Ring Opening of Cyclic Compounds

31.36.2.1.6 Method 6: Modification of Triazenes by Formation of Complexes with Organometallic Reagents and Triazene Salts

31.36.2.1.7 Method 7: Exchange of the Amine Functional Group in Triazenes

31.36.2.1.8 Method 8: N-Alkylation of Aryltriazenes

31.36.2.1.9 Method 9: N-Acylation of Aryltriazenes
Product Subclass 3: Aryltriazene N-Oxides

Synthesis of Product Subclass 3

Method 1: Synthesis from Diazonium Salts and Hydroxylamines
Method 2: Synthesis from Hydrazines and Nitroso Compounds

Product Subclass 4: Aryltetrazenes

Synthesis of Product Subclass 4

Method 1: Dimerization of Hydrazines
Method 2: Modification of Tetrazenes
Method 3: Reaction of Diazonium Salts with Hydrazines

Product Subclass 5: Arylpentazenes

Synthesis of Product Subclass 5

Method 1: Reaction of Arenediazonium Salts

Product Subclass 6: Arylhexazenes

Synthesis of Product Subclass 6

Method 1: Synthesis from Arenediazonium Salts and Hydrazines
Method 2: Synthesis from 1,3-Diaryltriazenes

Product Class 37: N-Phosphinoarylamines

M. Alajarín, C. López-Leonardo, and J. Berná
Product Class 38: Cyclic Arylamines

P. J. Stevenson

Table of Contents

31.38 Product Class 38: Cyclic Arylamines 1885

31.38.1 Product Subclass 1: Cyclic Monoarylamines 1886

31.38.1.1 Synthesis of Product Subclass 1 .. 1886

31.38.1.1.1 Method 1: Formation of One C(sp3)—N and Two C—C Bonds 1886

31.38.1.1.1.1 Variation 1: Condensation of Two Aldehydes with an Arylamine 1886

31.38.1.1.1.1.1 Variation 2: Condensation between an Aldehyde and an Arylamine in the Presence of 1H-Benzotriazole 1886

31.38.1.1.1.1.3 Variation 3: Reaction of an Arylamine with Two Equivalents of a Masked Aldehyde 1887

31.38.1.1.1.1.4 Variation 4: Intermolecular Condensation of an Arylamine, an Aldehyde, and an Alkene 1888

31.38.1.1.1.1.5 Variation 5: Intramolecular Condensations between Anilines and Hex-5-enals .. 1889

31.38.1.1.2 Method 2: Formation of One C(sp3)—N and One C—C Bond .. 1890

31.38.1.1.2.1 Variation 1: 1-Alkyl-3-(trifluoromethyl)-2,3-dihydro-1H-indol-3-ols by Reactions of Alkoxyoxiranes with N-Alkylanilines 1890

31.38.1.1.2.2 Variation 2: Tetrahydroquinolines by the Cycloaddition of ortho-Azaxylylenes ... 1891

31.38.1.1.2.3 Variation 3: Tetrahydroquinolines by the Annulation of 2-Iodoanilines 1892

31.38.1.1.3 Method 3: Formation of Two C—C Bonds 1893

31.38.1.1.3.1 Variation 1: Intramolecular Diels–Alder Reactions of Furan-2-azines and Diazin-2-azines 1893

31.38.1.1.3.2 Variation 2: Intermolecular Diels–Alder Reactions between Imines and Alkenes .. 1894

31.38.1.1.3.3 Variation 3: Diels–Alder Reactions of N,N-, O,N-, or S,N-Acetals Derived from Arylamines with Alkenes 1895

31.38.1.1.3.4 Variation 4: Reactions of Nitrones with Electron-Deficient Alkenes .. 1896

31.38.1.1.4 Method 4: Noncatalytic Ring Closure via Formation of a C(sp2)—N Bond ... 1897

31.38.1.1.4.1 Variation 1: Benzyl-2,3-dihydro-1H-indol-3-ols by Aryl Radical Cyclizations onto Imines 1897

31.38.1.1.4.2 Variation 2: Reactions of Aryllithiums with Electrophilic Nitrogen Compounds ... 1897

31.38.1.1.4.3 Variation 3: Intramolecular Nucleophilic Aromatic Substitution Reactions .. 1898

31.38.1.1.5 Method 5: Catalytic Ring Closure via the Formation of a C(sp3)—N Bond ... 1899

31.38.1.1.5.1 Variation 1: Palladium-Catalyzed N-Arylation Reactions 1900

31.38.1.1.5.2 Variation 2: Copper-Catalyzed Intramolecular N-Arylation Reactions 1901

31.38.1.1.5.3 Variation 3: Nickel-Catalyzed Intramolecular N-Arylation Reactions .. 1902

31.38.1.1.6 Method 6: Ring Closure via the Formation of a C(sp3)—N Bond .. 1903

31.38.1.1.6.1 Variation 1: Carboamination of Alkenes 1903

31.38.1.1.6.2 Variation 2: Tandem Reduction of a Nitro Group and Cyclization of the Resulting Amine 1904

31.38.1.1.6.3 Variation 3: Intramolecular N-Alkylation with Acetamides or Tosylamides .. 1906

31.38.1.1.6.4 Variation 4: Intramolecular N-Alkylation of Alcohols 1907

31.38.1.1.6.5 Variation 5: Intramolecular N-Alkylation of Epoxides 1907
Variation 4: Annulation with Oxirane-2-carbonitriles
Variation 3: Annulations with Oxirane-2-carbonitriles
Variation 2: 1,2,3,4-Tetrahydroquinoxalines by Reactions of Benzene-
Variation 2: Reduction of Acridines
Variation 1: Oxidative Cleavage of C
Variation 4: Palladium-Catalyzed Cyclizations of
Variation 3: Radical Cyclization
Variation 2: Intramolecular Electrophilic Substitution
Variation 1: Asymmetric Lithiation Followed by Trapping with Electrophiles
Variation 4: Palladium-Catalyzed Cyclizations of N-Allyl-2-iodoanilines
Variation 5: Cyclization of N,N-Diallyl-2-bromoanilines
Variation 6: Zirconium-Mediated Cyclizations Involving Arynes
Method 10: Synthesis by Ring Transformation
Method 4: Formation of One C(sp²) Bond
Method 5: Synthesis from Aromatic Heterocycles
Method 8: Ring Closure via the Formation of a C(sp²)−C(sp²) Bond
Method 11: Synthesis by Substituent Modification
Method 1: Formation of Two C(sp²)−C(sp²) Bonds
Method 2: Formation of One C(sp²)−N Bond
Method 3: Formation of One C(sp²)−C(sp²) Bond
Method 4: Formation of One C(sp²)−C(sp²) Bond
Method 5: Synthesis from Aromatic Heterocycles
Method 6: Formation of One C(sp²)−N(sp²) Bonds
Method 7: Formation of Two C(sp²)−C(sp²) Bonds
Method 2: Formation of One C(sp²)−N Bond
Method 3: Formation of One C(sp²)−C(sp²) Bond
Method 4: Formation of One C(sp²)−C(sp²) Bond
Method 5: Synthesis from Aromatic Heterocycles
Method 1: Reactions of Acridines with Nucleophiles
Method 2: Reduction of Acridines
Method 1: Formation of Two C(sp²)−N(sp²) Bonds
Method 2: Formation of One C(sp²)−N Bond
Method 3: Formation of One C(sp²)−C(sp²) Bond
Method 4: Formation of One C(sp²)−C(sp²) Bond
Method 5: Synthesis from Aromatic Heterocycles
Method 1: Reactions of Acridines with Nucleophiles
Method 2: Reduction of Acridines
Method 1: Formation of Two C(sp²)−N(sp²) Bonds
Method 2: Formation of One C(sp²)−N Bond
Method 3: Formation of One C(sp²)−C(sp²) Bond
Method 4: Formation of One C(sp²)−C(sp²) Bond
Method 5: Synthesis from Aromatic Heterocycles
Method 1: Reactions of Acridines with Nucleophiles
Method 2: Reduction of Acridines
Method 1: Formation of Two C(sp²)−N(sp²) Bonds
31.39 **Product Class 39: Arylphosphonic Acids and Derivatives**
I. B. Gorrell and T. P. Kee

31.39 **Product Class 39: Arylphosphonic Acids and Derivatives**
1939

31.39.1 Synthesis of Product Class 39
1939

31.39.1.1 Synthesis via P—C Bond Formation
1939

31.39.1.1.1 Method 1: Reactions of Nucleophilic Phosphorus
1939

31.39.1.1.1.1 Variation 1: The Arbuzov Reaction and Related Reactions
1939

31.39.1.1.1.2 Variation 2: Synthesis from Diazonium Salts
1944

31.39.1.1.2 Method 2: Reactions of Electrophilic Phosphorus
1946

31.39.1.1.2.1 Variation 1: Reactions of Phosphorus(V) Compounds with Organometallic Reagents
1946

31.39.1.1.2.2 Variation 2: Reactions of Phosphorus(III) Compounds with Organometallic Reagents
1949

31.39.1.1.2.3 Variation 3: Preparation via a Modified Friedel–Crafts Procedure
1951

31.39.1.1.2.4 Variation 4: The Phospho-Fries Rearrangement
1953

31.39.1.1.2.5 Variation 5: Direct Phosphonation of Arenes with Phosphorus Pentoxide or Pentasulfide
1956

31.39.1.1.3 Method 3: Synthesis via Free-Radical Phosphonation
1958

31.39.1.2 Synthesis via Modification of a Preformed P—C Bond Containing Framework
1958

31.39.1.2.1 Method 1: Synthesis via Transformations of Existing Arylphosphonic Acids
1958

31.39.1.2.2 Method 2: Oxidation of Arylphosphinic Acids
1960

31.40 **Product Class 40: Arylphosphinic Acids and Derivatives**
H.-J. Cristau and D. Virieux

31.40 **Product Class 40: Arylphosphinic Acids and Derivatives**
1963

31.40.1 **Product Subclass 1: Arylphosphinic Acids and Derivatives with a P=O Bond**
1963

31.40.1.1 Synthesis of Product Subclass 1
1963

31.40.1.1.1 Method 1: Arylphosphinic Halides from Trivalent Arylphosphorus Halides
1963

31.40.1.1.1.1 Variation 1: Oxidation of Aryl(monochloro)phosphines
1963

31.40.1.1.1.2 Variation 2: Alkylation of Aryldichlorophosphines
1964

31.40.1.1.1.3 Variation 3: Addition of Aryldichlorophosphines to Activated C=C Bonds
1965

31.40.1.1.1.4 Variation 4: α-Functional Alkylation of Aryldichlorophosphines
1966

31.40.1.1.2 Method 2: Arylphosphinic Halides from Tetracoordinated Phosphorus Acids and Their Derivatives
1968

31.40.1.1.2.1 Variation 1: Arylphosphinic Halides from Phosphonic Dihalides
1968

31.40.1.1.2.2 Variation 2: Arylphosphinic Halides from Phosphinic Acids and Esters
1969

31.40.1.1.2.3 Variation 3: Arylphosphinic Halides from Hydrogenophosphine Oxides
1970

31.40.1.1.3 Method 3: Arylphosphinic Halides from Pentacoordinated Phosphorus Compounds
1972

31.40.1.1.4 Method 4: Arylphosphinic Acids from Phosphorus(III) Derivatives
1973
Variation 1: Arylphosphinic Acids from Phosphorus(III) Halides by Reaction with Arenediazonium Salts 1973

Variation 2: Arylphosphinic Acids from Phosphorus(III) Halides by Reaction with Organometallic Compounds 1974

Variation 3: Arylphosphinic Acids from Phosphorus(III) Halides by α-Aminoalkylation 1975

Method 5: Arylphosphinic Acids from Tetracoordinated Phosphorus Derivatives 1978

Variation 1: Arylphosphinic Acids from Tetracoordinated Phosphorus Halides 1978

Variation 2: Arylphosphinic Acids from Tetracoordinated Phosphorus Acids or Their Derivatives 1980

Method 6: Arylphosphinic Esters from Phosphorus(III) Derivatives 1981

Variation 1: Arylphosphinic Esters from Aryldichlorophosphines by Reactions with Enolizable Ketones 1981

Variation 2: Arylphosphinic Esters from Phosphorus(III) Esters by Arbuzov Reaction or Rearrangement 1984

Variation 3: Arylphosphinic Esters from Phosphines and Polyphosphines 1987

Method 7: Arylphosphinic Esters from Tetracoordinated Phosphorus Derivatives 1987

Variation 1: Arylphosphinic Esters from Tetracoordinated Phosphorus Halides by Reaction with Organometallic Compounds 1987

Variation 2: Arylphosphinic Esters by α-Hydroxyalkylation of Aryl(hydrogeno)phosphinates 1988

Variation 3: α-Aminoalkylation of Aryl(hydrogeno)phosphonates 1991

Variation 4: Arylphosphinic Esters by Reaction of Hydrogenophosphinates with Alkenes 1993

Variation 5: Arylphosphinic Esters by Alkylation of Hydrogenophosphonic Esters 1995

Variation 6: Arylphosphinic Esters or Acids by Arylation of Hydrogenophosphinates 1995

Variation 7: Arylphosphinic Esters by Hydrophosphination of Alkynes 1998

Method 8: Arylphosphinic Esters from Phosphinic Acids 1998

Method 9: Symmetrical Arylphosphinic Anhydrides from Tetracoordinated Phosphorus Acids and Their Derivatives 2000

Variation 1: Symmetrical Arylphosphinic Anhydrides from Diarylphosphine Dioxides 2000

Variation 2: Symmetrical Arylphosphinic Anhydrides from Arylphosphinic Acids and Their Derivatives 2000

Method 10: Mixed Arylphosphinic–Carboxylic Anhydrides from Phosphinic Acids and Their Derivatives 2001

Variation 1: Mixed Arylphosphinic–Carboxylic Anhydrides by Oxidation of Arylphosphinous–Carboxylic Anhydrides 2001

Variation 2: Mixed Arylphosphinic–Carboxylic Anhydrides from Phosphinic Acids and Their Derivatives 2001

Method 11: Synthesis of Arylphosphinothioic S-Esters 2002
31.40.1.1.1.1 Variation 1: Synthesis of Arylphosphinothioic S-Esters from Hydrogenophosphine Oxides 2002

31.40.1.1.1.2 Variation 2: Synthesis of Arylphosphinothioic S-Esters from Arylphosphinic Chlorides 2003

31.40.1.1.12 Method 12: \(\text{P-} \) Arylphosphinic Amides and Their Analogues from Phosphorus(III) Derivatives 2003

31.40.1.1.12.1 Variation 1: \(N \)-Alkylidene-\(\text{P-} \) arylphosphinic Amides from Diaryl(chloro)phosphines and Oximes 2003

31.40.1.1.12.2 Variation 2: \(\text{P-} \) Arylphosphinic Amides by Reaction of Electrophiles with Dichlorophosphines 2005

31.40.1.1.12.3 Variation 3: \(\text{P-} \) Arylphosphinic Amides by Reactions of Aminophosphonites .. 2006

31.40.1.1.12.4 Variation 4: \(\text{P-} \) Arylphosphinic Amides by Oxidation of Aminophosphines .. 2007

31.40.1.1.13.1 Variation 1: \(\text{P-} \) Arylphosphinic Amides and Their Analogues from Phosphinic Chlorides .. 2008

31.40.1.1.13.2 Variation 2: \(\text{P-} \) Arylphosphinic Amides from Phosphonamidic Chlorides ... 2009

31.40.1.1.14 Method 14: \(\text{P-} \) Arylphosphinic Amides from Pentacoordinated Phosphorus Derivatives .. 2009

31.40.2 Product Subclass 2: Arylphosphinothioic and Arylphosphinoselenoic \(\text{O-} \) Acids and Derivatives .. 2010

31.40.2.1 Synthesis of Product Subclass 2 .. 2010

31.40.2.1.1 Method 1: Arylphosphinothioic and Arylphosphinoselenoic Halides from Phosphorus Precursors without a Sulfur or Selenium Atom .. 2010

31.40.2.1.1.1 Variation 1: Arylphosphinothioic or Arylphosphinoselenoic Halides by Sulfuration or Selenation of Tricoordinated Phosphorus Chlorides ... 2010

31.40.2.1.1.2 Variation 2: Arylphosphinothioic Halides by a One-Pot Arylation–Sulfuration Reaction .. 2011

31.40.2.1.1.3 Variation 3: Arylphosphinothioic Halides by Thioallylation–Allylic Rearrangement ... 2011

31.40.2.1.1.4 Variation 4: Arylphosphinoselenoic Halides by a One-Pot Selenation–Grignard Reaction from Tricoordinated Phosphorus Compounds ... 2011

31.40.2.1.1.5 Variation 5: Arylphosphinothioic Halides by Sulfuration of Tetracoordinated Phosphorus Compounds 2012

31.40.2.1.2 Method 2: Arylphosphinothioic or Arylphosphinoselenoic Halides from Phosphorus Precursors Containing a Sulfur or Selenium Atom .. 2013

31.40.2.1.2.1 Variation 1: Halogenation of Tetracoordinated Phosphinothioic or Phosphinoselenoic Derivatives 2013

31.40.2.1.2.2 Variation 2: Oxidation of Hydrogenophosphine Sulfides .. 2014

31.40.2.1.2.3 Variation 3: Oxidation of Diphosphine Disulfides ... 2014

31.40.2.1.3 Method 3: Arylphosphinothioic \(\text{O-} \) Acids from Phosphorus Precursors Lacking Sulfur Atoms ... 2015
Method 4: Arylphosphinothioic or Arylphosphinoselenoic O-Acids from Phosphorus Precursors Containing a Sulfur or Selenium Atom .. 2016

Method 5: Arylphosphinothioic or Arylphosphinoselenoic O-Esters from Phosphorus Precursors Lacking a Sulfur or Selenium Atom .. 2016

Variation 1: Sulfitation or Selenation of Tricoordinated Phosphorus Compounds .. 2016

Variation 2: Sulfitation or Selenation of Tetracoordinated Phosphorus Compounds .. 2018

Variation 3: Sulfitation of Dicoordinated Phosphorus Compounds .. 2019

Method 6: Arylphosphinothioic or Arylphosphinoselenoic O-Acids or O-Esters from Phosphorus Precursors with a Sulfur or Selenium Atom .. 2019

Variation 1: Synthesis from Arylphosphinothioic or Arylphosphinoselenoic Chlorides .. 2019

Variation 2: Synthesis of Phosphinothioic O-Esters by Activation of Acids .. 2020

Variation 3: Reaction of Hydrogenophosphinothioates .. 2021

Variation 4: Ring Opening of Cyclic Derivatives .. 2021

Variation 5: α-Alkylation of Phosphinothioates .. 2022

Variation 6: Other Methods Involving Rearrangements .. 2022

Product Class 41: Arylphosphine Oxides

C. A. Ramsden

Method 1: Synthesis from Phosphoryl Chloride .. 2035

Method 2: Synthesis from Phosphonic Acid Esters .. 2035

Variation 1: By Reaction with Organometallic Reagents .. 2035

Variation 2: By Rearrangement .. 2036

Method 3: Synthesis from Phosphinic Chlorides .. 2036

Method 4: Synthesis from Phosphinic Acid Esters .. 2036

Variation 1: By Reaction with Organometallic Reagents .. 2036

Variation 2: By Rearrangement .. 2037

Method 5: Synthesis from Halophosphines (Phosphinous Halides) .. 2037

Method 6: Synthesis from Phosphinous Acids and Esters .. 2037

Variation 1: Michaelis–Arbuzov Reaction of Alkyl Phosphinites .. 2038

Variation 2: By Alkylation of Phosphinite Anions .. 2038

Variation 3: By Metal-Catalyzed Coupling Reactions .. 2039

Variation 4: By 1,2-Hydrophosphination of Unsaturated Compounds .. 2040

Variation 5: By Rearrangement of Allyl Phosphinites .. 2040

Method 7: Synthesis from Phosphonium Salts .. 2040

Method 8: Synthesis from Phosphines .. 2040

Product Subclass 2: Optically Active Arylphosphine Oxides .. 2048

Synthesis of Product Subclass 2 .. 2048
31.41 Product Class 42: Arylphosphines and Derivatives

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Nucleophilic Displacement at Phosphorus</td>
<td>2049</td>
</tr>
<tr>
<td>1.2</td>
<td>Alkylation at Phosphorus</td>
<td>2050</td>
</tr>
<tr>
<td>1.3</td>
<td>Optical Resolution</td>
<td>2050</td>
</tr>
<tr>
<td>1.4</td>
<td>Kinetic Resolution</td>
<td>2053</td>
</tr>
</tbody>
</table>

31.42 Synthesis of Product Class 42

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Electrochemical Synthesis</td>
<td>2057</td>
</tr>
<tr>
<td>1.2</td>
<td>Nickel-Catalyzed Coupling of Arylphosphines and Aryl Trifluoromethanesulfonates</td>
<td>2059</td>
</tr>
<tr>
<td>1.3</td>
<td>Synthesis from Metalated Arylphosphines</td>
<td>2060</td>
</tr>
<tr>
<td>1.4</td>
<td>Reaction of Halophosphines with Organometallic Reagents</td>
<td>2065</td>
</tr>
<tr>
<td>1.5</td>
<td>Preparation of Chiral Phosphines by Substitution of Arylphosphinites</td>
<td>2073</td>
</tr>
<tr>
<td>1.6</td>
<td>Reduction of Arylphosphine Oxides</td>
<td>2074</td>
</tr>
</tbody>
</table>

31.43 Product Class 43: Arylphosphonium Salts and Derivatives

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Direct Quaternization of Arylphosphines by Nucleophilic Substitution</td>
<td>2083</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Quaternization by Alkyl Halides, Alkyl Trifluoromethanesulfonates, and Activated Aryl Halides</td>
<td>2083</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Quaternization by Quaternary Ammonium Salts</td>
<td>2086</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Quaternization by Protonated Alcohols, Esters, and Oxonium Salts</td>
<td>2086</td>
</tr>
<tr>
<td>1.1.4</td>
<td>Quaternization by Acetals, Epoxides, and Other Cyclic Compounds</td>
<td>2087</td>
</tr>
<tr>
<td>1.2</td>
<td>Quaternization of Arylphosphines by Addition</td>
<td>2088</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Addition to Alkenes</td>
<td>2088</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Addition to Alkynes</td>
<td>2089</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Addition to Carbonyl, Imino, and Iminium Groups</td>
<td>2090</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Addition to Carbocations</td>
<td>2090</td>
</tr>
<tr>
<td>1.3</td>
<td>Aroylation, Alkenylation, and Alkynylation of Tertiary Phosphines</td>
<td>2091</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Catalytic Quaternization by Aryl and Vinyl Halides</td>
<td>2091</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Quaternization by Iodonium Salts</td>
<td>2093</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Quaternization by Arynes</td>
<td>2094</td>
</tr>
<tr>
<td>1.3.4</td>
<td>Quaternization by Radicals</td>
<td>2094</td>
</tr>
<tr>
<td>1.4</td>
<td>Quaternization by Electrochemical Methods</td>
<td>2094</td>
</tr>
</tbody>
</table>
Method 5: Interconversion and Intramolecular Cyclization of Phosphonium Salts

Methods 6: Miscellaneous Methods

Variation 1: Quaternization of Phosphines by Acyl Halides

Variation 2: Quaternization of Phosphides and Chlorophosphines

Variation 3: Conversions from Phosphonium Ylides and Vinylphosphonium Salts

Variation 4: Generation of Specific Counterions

Product Class 44: P-Heteroatom-Substituted Arylphosphines

Synthesis of Product Subclass 1

Method 1: Friedel–Crafts Reaction of Arenes with Phosphorus Trihalides

Method 2: Aryl(halo)phosphines by Reaction of Aryl(dihalo)phosphines with Aliphatic Hydrocarbons

Method 3: Halogenation of Phosphines

Method 4: Nucleophilic Substitution of Halogens with Organometallic Reagents

Method 5: Halogen Exchange of Chlorophosphines

Method 6: Reaction of Aminophosphines and Diaminophosphines with Hydrogen Halides

Method 7: Reduction of Aryl(trihalo)phosphonium Salts

Method 8: Reaction of Arylphosphinous and Arylphosphonous Acids and Their Esters with Halogens and Phosphorus Trihalides

Method 9: Reduction of Halophosphoranes

Method 10: Cleavage of P–C Bonds in Bis(phosphino)methanes

Method 11: Cleavage of the P–P Bond of Diphosphines

Method 12: Addition Reactions of Phosphaalkenes and Related Compounds

Product Subclass 2: Arylphosphinous Esters, Arylphosphonous Esters, and Thio Analogues

Synthesis of Product Subclass 2

Method 1: Reaction of Aryl(halo)phosphines, Aryl(dihalo)phosphines, Alkox(aryl)(halo)phosphines, or (Alkylsulfanyl)(aryl)(halo)-phosphines with Alcohols or Thiols

Method 2: Reaction of Aryl(dihalo)phosphines with Epoxides

Method 3: Reaction of Aryl(dihalo)phosphines with Cyclic Siloxanes and Related Species

Method 4: Reaction of Aryl(halo)phosphines and Aryl(dihalo)-phosphines with Dithiocarbonates

Method 5: Reaction of Primary Arylphosphines with Dialkyl Disulfides

Method 6: Reaction of Chlorophosphates and Dichlorophosphates with Organometallic Reagents
Method 7: Reaction of Phosphites with Organometallic Reagents

Method 8: Alcoholysis of the P—N Bond of Aminophosphines

Method 9: Reduction of Phosphinotioates

Method 10: Transesterification of Arylphosphonous Diesters

Product Subclass 3: Amino(aryl)phosphines and Diamino(aryl)phosphines

Synthesis of Product Subclass 3

Method 1: Reaction of Aryl(halo)phosphines and Aryl(dihalo)phosphines with Amines

Variation 1: With Silylamines

Method 2: Reaction of Diamino(chloro)phosphines with Aryl Grignard or Organolithium Reagents

Method 3: Reaction of Arylphosphonites with Amines

Method 4: Cleavage of the P—P Bond of Diphosphines and Related Compounds

Method 5: Addition of Amines to Aryl(imino)phosphines

Method 6: Amino Interchange of Amino and Diaminophosphines

Product Subclass 4: Alkoxy(aryl)(halo)phosphines and (Alkylsulfanyl)(aryl)(halo)phosphines

Synthesis of Product Subclass 4

Method 1: Friedel–Crafts Reaction

Method 2: Reaction of Aryl(dihalo)phosphines with Alcohols and Thiols

Method 3: Reaction of Aryl(dihalo)phosphines with Epoxides

Method 4: Interchange Reaction between Aryl(dihalo)phosphines and Arylphosphonous Diesters

Method 5: Reaction of Arylphosphonous Diesters with Halogens or Hydrogen Halides

Product Subclass 5: Amino(aryl)(halo)phosphines

Synthesis of Product Subclass 5

Method 1: Friedel–Crafts Reaction

Method 2: Reaction of Aryl(dihalo)phosphines with Amines

Method 3: Reaction of Diamino(aryl)phosphines with Phosphorus Trihalides

Method 4: Halogen Exchange of Chlorophosphines

Method 5: Cleavage of the P—P Bond of Diphosphines

Method 6: Addition of Hydrogen Halides to Aryl(imino)phosphines

Product Subclass 6: Alkoxy(amino)(aryl)phosphines and (Alkylsulfanyl)(amino)(aryl)phosphines

Synthesis of Product Subclass 6

Method 1: Reaction of Alkoxy(aryl)(halo)phosphines with Secondary Amines

Method 2: Reaction of Amino(aryl)(halo)phosphines with Alcohols

Method 3: Partial Alcoholysis of Diamino(aryl)phosphines

Method 4: Addition of Alcohols to Aryl(imino)phosphines

Method 5: Transamidation of Alkoxy(amino)phosphines
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyword Index</td>
<td>2155</td>
</tr>
<tr>
<td>Author Index</td>
<td>2203</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>2269</td>
</tr>
</tbody>
</table>
Volume 32:
X–Ene–X (X = F, Cl, Br, I, O, S, Se, Te, N, P),
Ene–Hal, and Ene–O Compounds

Preface ... V

Volume Editor’s Preface ... VII

Table of Contents .. XIII

Introduction
J. Mulzer ... 1

32.1 Product Class 1: 1,3-Bis(heteroatom-substituted) Allenes and Analogous Higher Cumulenes
A. S. K. Hashmi ... 13

32.2 Product Class 2: Monofunctionalized Allenes and Higher Cumulenes
A. S. K. Hashmi ... 23

32.3 Product Class 3: 1,2-Bis(heteroatom-substituted) Alkenes

32.3.1 Product Subclass 1: 1,2-Dihaloalkenes
U. Nubbemeyer .. 57

32.3.2 Product Subclass 2: 1-Halo-2-(organooxy)alkenes
U. Nubbemeyer .. 169

32.3.3 Product Subclass 3: 1-Halo-2-(organochalcogeno)alkenes
U. Nubbemeyer .. 201

32.3.4 Product Subclass 4: 1-Nitrogen-Functionalized 2-Haloalkenes
U. Nubbemeyer .. 235

32.3.5 Product Subclass 5: 1-Phosphorus-Functionalized 2-Haloalkenes
U. Nubbemeyer .. 289

32.3.6 Product Subclass 6: 1,2-Bis(organooxy)alkenes
M. Sainsbury ... 299

32.3.7 Product Subclass 7: 1-(Organochalcogeno)-2-(organooxy)alkenes
B. List, C. Chandler, R. R. Torres, and A. Erkkilä ... 335

32.3.8 Product Subclass 8: 1-Nitrogen-Functionalized 2-(Organooxy)alkenes
B. List, C. Chandler, R. R. Torres, and A. Erkkilä ... 351

32.3.9 Product Subclass 9: 1-Phosphorus-Functionalized 2-(Organooxy)alkenes
B. List, C. Chandler, R. R. Torres, and A. Erkkilä ... 361
Product Subclass 10: 1,2-Bis(sulfur-functionalized) Alkenes
C. Chandler, R. R. Torres, A. Erkkilä, and B. List 365

Product Subclass 11: 1-Sulfur-Functionalized 2-(Organochalcogeno)-alkenes
C. Chandler, R. R. Torres, A. Erkkilä, and B. List 381

Product Subclass 12: 1-Sulfur-Functionalized 2-Nitrogen-Functionalized Alkenes
C. Chandler, R. R. Torres, A. Erkkilä, and B. List 385

Product Subclass 13: 1-Sulfur-Functionalized 2-Phosphorus-Functionalized Alkenes
C. Chandler, R. R. Torres, A. Erkkilä, and B. List 399

Product Subclass 14: 1,2-Bis(nitrogen-functionalized) Alkenes
B. List, C. Chandler, R. R. Torres, and A. Erkkilä 405

Product Subclass 15: 1-Nitrogen-Functionalized 2-Phosphorus-Functionalized Alkenes
B. List, C. Chandler, R. R. Torres, and A. Erkkilä 421

Product Subclass 16: 1,2-Bis(phosphorus-functionalized) Alkenes
B. List, C. Chandler, R. R. Torres, and A. Erkkilä 427

Product Class 4: Haloalkenes
A. Pollex .. 431

Product Class 5: (Organooxy)alkenes

Product Subclass 1: Enols
D. Trauner ... 533

Product Subclass 2: Enolates
D. Trauner ... 547

Product Subclass 3: Enol Ethers
V. Milata, S. Rádl, and S. Voltrová ... 589

Product Subclass 4: Ene−OX Compounds (X = O, S, Se, Te)
G. Sartori and R. Maggi ... 757

Product Subclass 5: Ene−ON Compounds
G. Sartori and R. Maggi ... 783

Product Subclass 6: Ene−OP Compounds
G. Sartori and R. Maggi ... 795
Keyword Index ... 815
Author Index ... 867
Abbreviations ... 909
Table of Contents

Introduction
J. Mulzer

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.1</td>
<td>Product Class 1: 1,3-Bis(heteroatom-substituted) Allenes and Analogous Higher Cumulenes</td>
<td>13</td>
</tr>
<tr>
<td>32.1.1</td>
<td>Product Subclass 1: 1,3-Dihaloallenes</td>
<td>13</td>
</tr>
<tr>
<td>32.1.1.1</td>
<td>Method 1: Synthesis Using Alkyllithium Reagents and Pyran-2-ones</td>
<td>13</td>
</tr>
<tr>
<td>32.1.2</td>
<td>Product Subclass 2: 1-Halo-3-(organooxy)allenes</td>
<td>15</td>
</tr>
<tr>
<td>32.1.3</td>
<td>Product Subclass 3: 1-Halo-3-(organochalcogeno)allenes</td>
<td>15</td>
</tr>
<tr>
<td>32.1.3.1</td>
<td>Method 1: Synthesis Using Sulfonoselenoate Reagents and Alkynes</td>
<td>15</td>
</tr>
<tr>
<td>32.1.4</td>
<td>Product Subclass 4: 1-Nitrogen-Functionalized 3-Haloallenes</td>
<td>16</td>
</tr>
<tr>
<td>32.1.5</td>
<td>Product Subclass 5: 1-Phosphorus-Functionalized 3-Haloallenes</td>
<td>17</td>
</tr>
<tr>
<td>32.1.6</td>
<td>Product Subclass 6: 1,3-Bis(organooxy)allenes</td>
<td>17</td>
</tr>
<tr>
<td>32.1.7</td>
<td>Product Subclass 7: 1-(Organochalcogeno)-3-(organooxy)allenes</td>
<td>17</td>
</tr>
<tr>
<td>32.1.7.1</td>
<td>Method 1: Synthesis Using Silyl Ketene Reagents and Alkynes</td>
<td>17</td>
</tr>
<tr>
<td>32.1.8</td>
<td>Product Subclass 8: 1-Nitrogen-Functionalized 3-(Organooxy)allenes</td>
<td>18</td>
</tr>
<tr>
<td>32.1.9</td>
<td>Product Subclass 9: 1-Phosphorus-Functionalized 3-(Organooxy)allenes</td>
<td>18</td>
</tr>
<tr>
<td>32.1.10</td>
<td>Product Subclass 10: 1,3-Bis(organochalcogeno)allenes</td>
<td>18</td>
</tr>
<tr>
<td>32.1.11</td>
<td>Product Subclass 11: 1-Nitrogen-Functionalized 3-(Organochalcogeno)-allenes</td>
<td>19</td>
</tr>
<tr>
<td>32.1.12</td>
<td>Product Subclass 12: 1-Phosphorus-Functionalized 3-(Organochalcogeno)-allenes</td>
<td>19</td>
</tr>
<tr>
<td>32.1.13</td>
<td>Product Subclass 13: 1,3-Bis(nitrogen-functionalized) Allenes</td>
<td>19</td>
</tr>
<tr>
<td>32.1.14</td>
<td>Product Subclass 14: 1-Nitrogen-Functionalized 3-Phosphorus-Functionalized Allenes</td>
<td>19</td>
</tr>
<tr>
<td>32.1.15</td>
<td>Product Subclass 15: 1,3-Bis(phosphorus-functionalized) Allenes</td>
<td>19</td>
</tr>
<tr>
<td>32.1.16</td>
<td>Product Subclass 16: 1,0-Bis(heteroatom-functionalized) Cumulenes</td>
<td>20</td>
</tr>
</tbody>
</table>
32.2 Product Class 2: Monofunctionalized Allenes and Higher Cumulenes
A. S. K. Hashmi

32.2.1 Product Subclass 1: Haloallenes

32.2.1.1 Synthesis of Product Subclass 1

32.2.1.1.1 Method 1: Fluoroallenes by Fluoride Substitution with Organocuprates

32.2.1.1.2 Method 2: Chloroallenes by Isomerization of Propargylic Chlorides

32.2.1.1.2.1 Variation 1: Using a Copper(I)/Copper(0) Catalyst

32.2.1.1.2.2 Variation 2: Using Only a Copper(I) Catalyst

32.2.1.1.3 Method 3: Chloroallenes from Propargylic Alcohols and Thionyl Chloride

32.2.1.1.4 Method 4: Chloroallenes from Propargylic Alcohols and Hydrogen Chloride

32.2.1.1.5 Method 5: Flash-Vacuum Thermolysis of 1-Chlorocyclopropenes

32.2.1.1.6 Method 6: Chloroallenes from Benzyne and Propargyl Chloride

32.2.1.1.7 Method 7: Chloroallenes from Ketene Silyl Acetals

32.2.1.1.8 Method 8: Chloroallenes from Alkynes and Benzil

32.2.1.1.9 Method 9: Chloroallenes from Propargylic Alcohols and Titanium(IV) Chloride

32.2.1.1.10 Method 10: Bromoallenes by Alkynylogous Ring Opening of Oxiranes

32.2.1.1.11 Method 11: Bromoallenes by Copper-Mediated Nucleophilic Substitution of Propargylic Methanesulfonates

32.2.1.1.12 Method 12: Bromoallenes from Acid Chlorides

32.2.1.1.13 Method 13: Bromoallenes from Phosphonium Bromides

32.2.1.1.14 Method 14: Iodoallenes from Propargylic Alcohols

32.2.1.1.14.1 Variation 1: Activation of the Propargylic Alcohol by a Phosphonium Species

32.2.1.1.14.2 Variation 2: Using a Copper(I)/Copper(0) Catalyst

32.2.1.1.15 Method 15: Iodoallenes from Acid Chlorides

32.2.1.1.16 Method 16: Iodoallenes from Phosphonium Bromides

32.2.1.1.17 Method 17: Iodoallenes from Alkynes and Benzil

32.2.1.1.18 Method 18: Iodoallenes from Propargylic Alcohols and Titanium(IV) Chloride

32.2.1.1.19 Method 19: Iodoallenes from Acid Chlorides

32.2.1.2 Method 2: Chloroallenes by Isomerization of Propargylic Chlorides

32.2.1.2.1 Variation 1: Using a Copper(I)/Copper(0) Catalyst

32.2.1.2.2 Variation 2: Using Only a Copper(I) Catalyst

32.2.1.3 Method 3: Chloroallenes from Propargylic Alcohols and Thionyl Chloride

32.2.1.4 Method 4: Chloroallenes from Propargylic Alcohols and Hydrogen Chloride

32.2.1.5 Method 5: Chloroallenes from Propargylic Alcohols and Titanium(IV) Chloride

32.2.1.6 Method 6: Chloroallenes by Alkynylogous Ring Opening of Oxiranes

32.2.1.7 Method 7: Chloroallenes from Acid Chlorides

32.2.1.8 Method 8: Chloroallenes from Phosphonium Bromides

32.2.1.9 Method 9: Chloroallenes from Alkynes and Benzil

32.2.1.10 Method 10: Chloroallenes from Propargylic Alcohols and Titanium(IV) Chloride

32.2.2 Product Subclass 2: (Organochalcogeno)allenes

32.2.2.1 Synthesis of Product Subclass 2

32.2.2.1.1 Method 1: Isomerization of Propargyl Ethers by Potassium tert-Butoxide/tert-Butyl Alcohol

32.2.2.1.2 Method 2: Isomerization of Propargyl Ethers by Potassium tert-Butoxide/Pentane

32.2.2.1.3 Method 3: Isomerization–Elimination of Propargyl Ethers by Potassium tert-Butoxide/Benzene

32.2.2.1.4 Method 4: Metalation of Alkoxyallenes and Addition to Aldehydes

32.2.2.1.5 Method 5: Alkylation of the Intermediate Obtained from Acylsilanes and Acetylides

32.2.2.1.6 Method 6: Wittig Alkenation of Chromium–Carbene Complexes

32.2.2.1.7 Method 7: Alkylation–Isomerization of Propargyl Sulfides

32.2.2.1.8 Method 8: Allenyl Sulfides and Selenides by the Wittig Route

32.2.2.1.9 Method 9: Allenyl Sulfides by a Three-Component Reaction

32.2.2.1.10 Method 10: Allenyl Sulfides by Palladium-Catalyzed Coupling
32.2.3 Product Subclass 3: Nitrogen-Functionalized Allenes .. 43

32.2.3.1 Synthesis of Product Subclass 3 .. 43

32.2.3.1.1 Method 1: Allenyl Amides by Base-Catalyzed Rearrangement 43
32.2.3.1.2 Method 2: Morpholinoallenes by Conjugate Addition 44
32.2.3.1.3 Method 3: 4-Vinylideneoxazolidin-2-ones by Palladium Catalysis 45
32.2.3.1.4 Method 4: Copper-Catalyzed Coupling of Allenyl Halides with Amides, Carbamates, and Ureas ... 46
32.2.3.1.5 Method 5: Rhodium-Catalyzed Coupling of Propargylic Carbonates and Sulfonamides ... 48

32.2.4 Product Subclass 4: Phosphorus-Functionalized Allenes 49

32.2.4.1 Synthesis of Product Subclass 4 .. 50

32.2.4.1.1 Method 1: Isomerization of Propargylphosphines under Basic Conditions 50

32.2.5 Product Subclass 5: Monofunctionalized Cumulenes 50

32.2.5.1 Synthesis of Product Subclass 5 .. 50

32.2.5.1.1 Method 1: Wittig Route to Bromobutatrienes 50
32.2.5.1.2 Method 2: Elimination/Deprotonation/Regioselective Reprotonation 52

32.3 Product Class 3: 1,2-Bis(heteroatom-substituted) Alkenes

32.3.1 Product Subclass 1: 1,2-Dihaloalkenes

U. Nubbemeyer

32.3.1.1 Synthesis of Product Subclass 1 ... 57

32.3.1.1.1 Method 1: Synthesis by Oxidation of Arenes or Hetarenes 58
32.3.1.1.1 Variation 1: Oxidation of 3,4-Dibromo-2,5-bis(phenylsulfanyl)furan 58
32.3.1.1.2 Variation 2: Oxidation of Halogenated Azatriquinacenes 58
32.3.1.1.3 Variation 3: Oxidation of Phenols ... 59
32.3.1.1.4 Variation 4: Oxidation of Aniline ... 60
32.3.1.1.2 Method 2: Synthesis by Reduction ... 60
32.3.1.1.2.1 Variation 1: Reductive Defluorination ... 60
32.3.1.1.2.2 Variation 2: Reductive Dechlorination ... 61
32.3.1.1.2.3 Variation 3: Reductive Elimination of Mixed Halogen Atoms 62
32.3.1.1.2.4 Variation 4: Reductive Coupling ... 64
32.3.1.1.3 Method 3: Synthesis by Substitution .. 68
32.3.1.1.3.1 Variation 1: Substitution of Fluorine ... 68
32.3.1.1.3.2 Variation 2: Substitution of Chlorine or Bromine Atoms 69
32.3.1.1.3.3 Variation 3: Substitution of Halogens by Alkyl or Aryl Groups 79
32.3.1.1.3.4 Variation 4: Substitution of Oxygen ... 83
32.3.1.1.4 Method 4: Synthesis by Elimination ... 88
32.3.1.1.4.1 Variation 1: Dehydrofluorination ... 88
32.3.1.1.4.2 Variation 2: Dehydrochlorination ... 92
32.3.1.1.4.3 Variation 3: Dehydrobromination ... 94
32.3.1.4.4 Variation 4: Dehydroiodination .. 98
32.3.1.4.5 Variation 5: Elimination of Sulfur ... 99
32.3.1.4.6 Variation 6: Elimination with Fragmentation 100
32.3.1.1.5 Method 5: Synthesis by Addition .. 101
32.3.1.1.5.1 Variation 1: Addition of Methyl Hypofluorite to Allenes or Butadienes · 101
32.3.1.1.5.2 Variation 2: Addition of Chlorine to Alkenes 102
32.3.1.1.5.3 Variation 3: Addition of Bromine to Alkenes 103
32.3.1.1.5.4 Variation 4: Addition of Iodine to Alkenes 107
32.3.1.1.5.5 Variation 5: Addition of Bromine Monofluoride to Alkenes 108
32.3.1.1.5.6 Variation 6: Addition of an Iodine and a Fluorine Atom to Alkenes 109
32.3.1.1.5.7 Variation 7: Addition of Halogen Chlorides or Halogen Bromides to Alkenes ... 112
32.3.1.1.5.8 Variation 8: Addition of Nucleophiles to vic-Dihaloquinones and Related Systems ... 115
32.3.1.1.5.9 Variation 9: Carbene Dimerization .. 117
32.3.1.1.6 Method 6: Synthesis by Cycloaddition 118
32.3.1.1.6.1 Variation 1: Synthesis by [2+2] Cycloaddition 118
32.3.1.1.6.2 Variation 2: Synthesis by [2+2+1] Cycloaddition 121
32.3.1.1.6.3 Variation 3: Synthesis by [3+2] Cycloaddition 122
32.3.1.1.6.4 Variation 4: Synthesis by [4+2] Cycloaddition 123
32.3.1.1.6.5 Variation 5: Synthesis by [5+2] Cycloaddition 132
32.3.1.1.6.6 Variation 6: Synthesis by [4+3] Cycloaddition 133
32.3.1.1.7 Method 7: Synthesis by Rearrangement 134
32.3.1.1.7.1 Variation 1: Migration of Fluorine 134
32.3.1.1.7.2 Variation 2: Cyclopropane Isomerization 135
32.3.1.1.7.3 Variation 3: Carbon Framework Rearrangements 137
32.3.1.1.7.4 Variation 4: Sigmatropic Rearrangement 139
32.3.1.1.7.5 Variation 5: Electrocyclic Reactions 139
32.3.1.1.7.6 Variation 6: Miscellaneous Rearrangements 141
32.3.1.1.8 Method 8: Synthesis from Alkenyl Compounds with Retention of C=C Bond Configuration ... 143
32.3.1.1.8.1 Variation 1: Boron Replacement .. 143
32.3.1.1.8.2 Variation 2: Silane Replacement .. 145
32.3.1.1.8.3 Variation 3: Silane Replacement with Rearrangement 146
32.3.1.1.8.4 Variation 4: Stannane Replacement 148
32.3.1.1.8.5 Variation 5: Hydroxyalkylation of (E)- or (Z)-Iodo(pentafluoropropenyl)zinc Intermediates .. 149
32.3.1.1.8.6 Variation 6: Zinc Displacement ... 150
32.3.1.1.8.7 Variation 7: Zinc/Copper Displacement 152
32.3.1.2 Applications of Product Subclass 1 in Organic Synthesis 153

32.3.2 Product Subclass 2: 1-Halo-2-(organooxy)alkenes

U. Nubbemeyer

32.3.2.2 Product Subclass 2: 1-Halo-2-(organooxy)alkenes 169
32.3.2.1 Synthesis of Product Subclass 2 ... 169
32.3.2.1 Method 1: Synthesis by Oxidation and Reduction 169
32.3.2.1.2 Method 2: Synthesis by Substitution of a Leaving Group 171
32.3.2.1.3 Method 3: Synthesis by Substitution of a Metal 173
32.3.2.1.3.1 Variation 1: Substitution of Tin 173
32.3.2.1.3.2 Variation 2: Substitution of Rhodium (via Carbenoid Intermediates) 175
32.3.2.1.4 Method 4: Synthesis by Enolate Alkylation or Acylation 180
32.3.2.1.5 Method 5: Synthesis by Elimination 180
32.3.2.1.6 Method 6: Synthesis by Addition 185
32.3.2.1.6.1 Variation 1: Intermolecular Additions to Alkynes 185
32.3.2.1.6.2 Variation 2: Addition to Alkynes/Halocyclization 186
32.3.2.1.7 Method 7: Synthesis by C—C Bond Formation 189
32.3.2.1.7.1 Variation 1: Nazarov Cyclization 189
32.3.2.1.7.2 Variation 2: Cycloadditions ... 191
32.3.2.1.8 Method 8: Synthesis by Rearrangement 192
32.3.2.1.9 Method 9: Synthesis with Retention of the Functional Group 193

32.3.3 Product Subclass 3: 1-Halo-2-(organochalcogeno)alkenes
U. Nubbemeyer

32.3.3.1 Synthesis of Product Subclass 3 ... 201
32.3.3.1.1 Method 1: Synthesis by Oxidation 201
32.3.3.1.1.1 Variation 1: Oxidation of Aryl Sulfides or Sulfoxides 201
32.3.3.1.1.2 Variation 2: β-Halogenation of Vinyl Sulfides 203
32.3.3.1.2 Method 2: Synthesis by Reduction 203
32.3.3.1.3 Method 3: Synthesis by Substitution 204
32.3.3.1.3.1 Variation 1: Replacement of a Halogen 204
32.3.3.1.3.2 Variation 2: Replacement of a Metal 206
32.3.3.1.4 Method 4: Synthesis by Elimination 208
32.3.3.1.5 Method 5: Synthesis by the Addition of Halogens to Allenes 209
32.3.3.1.5.1 Variation 1: Addition to Allenyl Sulfides or Selenides 210
32.3.3.1.5.2 Variation 2: Addition to Allenyl Sulfoxides with Concomitant Reduction 213
32.3.3.1.5.3 Variation 3: Addition to Allenyl Sulfoxides 214
32.3.3.1.5.4 Variation 4: Addition to Allenesulfenic Acids and Allenyl Sulfones 217
32.3.3.1.6 Method 6: Synthesis by Addition to Alkynes 218
32.3.3.1.6.1 Variation 1: Chloroalkylation of Selanylalkynes 218
32.3.3.1.6.2 Variation 2: Addition of Sulfenyl Halides to Alkynes 219
32.3.3.1.6.3 Variation 3: Addition of Selanyl Halides to Alkynes 223
32.3.3.1.6.4 Variation 4: Addition of Tellurium Halides to Alkynes 225
32.3.3.1.6.5 Variation 5: Addition of Sulfonyl Halides to Alkynes 226
32.3.3.1.6.6 Variation 6: Addition of Sulfur(VI) Halopentafluorides to Alkynes 227
32.3.3.1.6.7 Variation 7: Addition of Tellurium(IV) Chlorto Propargyl Alcohols 229
32.3.3.1.7 Method 7: Cycloaddition .. 229
32.3.3.1.8 Method 8: Synthesis by Rearrangement 230
32.3.3.1.9 Method 9: Synthesis with Retention of the Functional Group 231
32.3.4 Product Subclass 4: 1-Nitrogen-Functionalized 2-Haloalkenes
U. Nubbemeyer

32.3.4.1 Synthesis of Product Subclass 4 ... 235
32.3.4.1.1 Method 1: Synthesis by Oxidation 235
32.3.4.1.1.1 Variation 1: β-Halogenation of Enamines 235
32.3.4.1.1.2 Variation 2: α-Halogenation of Enamino Ketones 236
32.3.4.1.1.3 Variation 3: β-Halogenation of N-Alkenylated Amides 242
32.3.4.1.1.4 Variation 4: β-Halogenation of N-Vinylcarbamates 245
32.3.4.1.1.5 Variation 5: Synthesis of Enamino(phenyl)iodonium Salts 248
32.3.4.1.2 Method 2: Synthesis by Reduction 248
32.3.4.1.2.1 Variation 1: Reduction of Chlorides 248
32.3.4.1.2.2 Variation 2: Reduction of Aromatic Heterocycles 249
32.3.4.1.2.3 Variation 3: Reductive Alkylation 249
32.3.4.1.3 Method 3: Synthesis by Substitution 250
32.3.4.1.3.1 Variation 1: Substitution of Chloride 254
32.3.4.1.3.2 Variation 2: Substitution of a Chlorine Atom Bonded to C3 of a Cyclopentenone .. 254
32.3.4.1.3.3 Variation 3: Substitution of Chlorine or Bromine Atoms Bonded to Heterocycles .. 256
32.3.4.1.3.4 Variation 4: Substitution of Iodine 259
32.3.4.1.3.5 Variation 5: Substitution of Hydroxy or Alkoxy Groups 261
32.3.4.1.3.6 Variation 6: Substitution of Acyloxy Functions 263
32.3.4.1.3.7 Variation 7: Synthesis of β-Halo Vinyl Azides 265
32.3.4.1.3.8 Variation 8: Substitution of Silicon or Tin 266
32.3.4.1.4 Method 4: Synthesis by Elimination 267
32.3.4.1.5 Method 5: Synthesis by Addition ... 269
32.3.4.1.5.1 Variation 1: Additions to Allenes 269
32.3.4.1.5.2 Variation 2: Intermolecular Additions to Alkynes 269
32.3.4.1.5.3 Variation 3: Chlorocyclization of Alkynes 271
32.3.4.1.5.4 Variation 4: Bromo- and Iodocyclization of Alkynes 272
32.3.4.1.5.5 Variation 5: Vilsmeier Reactions 275
32.3.4.1.5.6 Variation 6: Condensations of α-Halo Ketones 276
32.3.4.1.6 Method 6: Synthesis by Rearrangement 277
32.3.4.1.6.1 Variation 1: Thermolyses of Cyclopropanes 277
32.3.4.1.6.2 Variation 2: Electrocyclic Ring Opening 277
32.3.4.1.7 Method 7: Synthesis with Retention of the Functional Group 278
32.3.4.1.7.1 Variation 1: Additions to Arenes 278
32.3.4.1.7.2 Variation 2: Additions to Hetarenes 279

32.3.5 Product Subclass 5: 1-Phosphorus-Functionalized 2-Haloalkenes
U. Nubbemeyer

32.3.5.1 Synthesis of Product Subclass 5 ... 289
32.3.1.1 Method 1: Synthesis by Substitution .. 289
32.3.1.1.1 Variation 1: Substitution of a Halogen 289
32.3.1.1.2 Variation 2: Substitution of a Metal .. 290
32.3.1.2 Method 2: Synthesis by Elimination .. 291
32.3.1.3 Method 3: Synthesis by Addition ... 292
32.3.1.3.1 Variation 1: Intermolecular Additions to Alkynes 292
32.3.1.3.2 Variation 2: Intramolecular Additions to Allenes 293
32.3.1.4 Method 4: Synthesis of 2-Chlorovinyl Dichlorophosphonates and Dichlorothiophosphonates .. 297

32.3.6 Product Subclass 6: 1,2-Bis(organooxy)alkenes
M. Sainsbury

32.3.6 Product Subclass 6: 1,2-Bis(organooxy)alkenes 299
32.3.6.1 Synthesis of Product Subclass 6 .. 300
32.3.6.1.1 1,2-Dioxyethenes ... 300
32.3.6.1.1.1 Method 1: Dehalogenation or Dehydrohalogenation of 1,2-Dialkoxy- or 1,2-Diaryloxy-1,2-dihaloalkanes .. 300
32.3.6.1.1.2 Method 2: Elimination of Alcohols from Acetals or Ortho Esters 305
32.3.6.1.1.3 Method 3: Selective Reduction of 1,2-Dialkoxyacetylenes 306
32.3.6.1.1.4 Method 4: Synthesis from 2-Acetoxyvinylmercury(II) Chlorides 306
32.3.6.1.1.5 Method 5: Synthesis from Carbenes and Related Species 307
32.3.6.1.1.6 Method 6: Carbonylation and Sulfanylation of 2,3-Dimethoxybuta- 1,3-diene .. 310
32.3.6.1.1.7 Method 7: Synthesis of Polycyclic Systems Containing a 1,2-Dialkoxyethene Component .. 310
32.3.6.1.2 1,3-Dioxoles .. 311
32.3.6.1.2.1 Method 1: Addition of Diazomethane to α,β-Dicarbonyl Compounds 311
32.3.6.1.2.2 Method 2: Synthesis from α-Diazocarbonyl Compounds 312
32.3.6.1.2.3 Method 3: Cathodic Reduction of 1,2-Diarylethanediones in the Presence of N-Arylcarbonimidic Dichlorides 314
32.3.6.1.2.4 Method 4: Synthesis from α-Hydroxy Ketones 314
32.3.6.1.2.5 Method 5: Synthesis by the Intermediacy of Carbenes or Their Equivalents .. 315
32.3.6.1.2.6 Method 6: Retro-Diels–Alder Reactions 317
32.3.6.1.2.7 Method 7: Synthesis from 1,3-Dioxolanes 318
32.3.6.1.2.8 Method 8: Modification of Other 1,3-Dioxoles 320
32.3.6.1.3 2,3-Dihydro-1,4-dioxins .. 321
32.3.6.1.3.1 Method 1: Synthesis from α,β-Dicarbonyl Compounds 321
32.3.6.1.3.2 Method 2: Cycloannulation .. 321
32.3.6.1.3.3 Method 3: Cyclization of 2-(1,3-Dioxolan-2-yl)ethanols, Bis(2-hydroxyethyl) Ethers, or 2-(Propargyloxy)ethanols 322
32.3.6.1.3.4 Method 4: Fragmentation and Concomitant Recyclization of a 2,2'-Bioxirane .. 323
32.3.6.1.3.5 Method 5: Synthesis from 1,4-Dioxanes ... 323
32.3.6.1.3.6 Method 6: Synthesis from Other 2,3-Dihydro-1,4-dioxins 325
32.3.6.2 Applications of Product Subclass 6 .. 326
32.3.6.2.1 Method 1: Cycloaddition Reactions ... 326
32.3.6.2.2 Method 2: Reactions of Metal Complexes or Lithium Salts 328
32.3.6.2.3 Method 3: Addition Reactions ... 329
32.3.6.2.4 Method 4: Polymerization .. 331

32.3.7 Product Subclass 7: 1-(Organochalcogeno)-2-(organooxy)alkenes
B. List, C. Chandler, R. R. Torres, and A. Erkkilä

32.3.7.1 Synthesis of Product Subclass 7 ... 335
32.3.7.1.1 Method 1: Synthesis by Substitution ... 335
32.3.7.1.1.1 Variation 1: Substitution of Haloalkenes 335
32.3.7.1.1.2 Variation 2: Substitution of Sulfonylalkenes 336
32.3.7.1.3 Variation 3: Synthesis from Alkylsulfonyl Ketones (Perkow-Type Reaction) 336
32.3.7.1.4 Variation 4: Synthesis from Bis(dialkylsulfonyl) Salts 337
32.3.7.1.2 Method 2: Synthesis by O-Sulfonylation of Acyl Sulfonium Ylides 337
32.3.7.1.3 Method 3: Synthesis by O-Acylation of α-Alkylsulfonyl Derivatives 337
32.3.7.1.3.1 Variation 1: O-Acylation of α-Sulfonium Enones 337
32.3.7.1.3.2 Variation 2: Synthesis from α-Sulfonyl Ketones 338
32.3.7.1.3.3 Variation 3: Synthesis from Dihydrothiopyranones 338
32.3.7.1.3.4 Variation 4: Synthesis from α-Oxosulfonium Aldehydes 338
32.3.7.1.4 Method 4: Synthesis by O-Phosphorylation of α-Sulfanyl Enolates 338
32.3.7.1.5 Method 5: Synthesis from α-Chloro Ketones 339
32.3.7.1.6 Method 6: Synthesis from Alkynes ... 339
32.3.7.1.6.1 Variation 1: Synthesis by Halotosyloxylation 339
32.3.7.1.6.2 Variation 2: Addition of Alcohols to Alkynes 340
32.3.7.1.6.3 Variation 3: Synthesis by Electrophilic Cycloization of Acetylenic Aldehydes 340
32.3.7.1.6.4 Variation 4: Synthesis from Alkynylelenonium Salts 340
32.3.7.1.6.5 Variation 5: Synthesis from Alkynylidonium Salts 341
32.3.7.1.6.6 Variation 6: Synthesis Using Dimethyl Sulfide Ditrifluoromethane- sulfonate ... 341
32.3.7.1.6.7 Variation 7: Synthesis by Electrophilic–Nucleophilic Addition to Triple Bonds 342
32.3.7.1.6.8 Variation 8: Synthesis by Addition of O-Sulfonyl Arenesulfonates to Alkynes ... 342
32.3.7.1.7 Method 7: Synthesis from Allenes .. 343
32.3.7.1.7.1 Variation 1: Synthesis by Nucleophilic Addition 343
32.3.7.1.7.2 Variation 2: Synthesis by Inverse-Electron-Demand Diels–Alder Reaction 343
32.3.7.1.7.3 Variation 3: Synthesis from Thioaldehydes 343
32.3.7.1.8 Method 8: Synthesis from 1,2-Thiazetidine 1,1-Dioxide 344
32.3.7.1.9 Method 9: Synthesis from 2-(Methylsulfonyl)benzoxazole 344
32.3.7.1.10 Method 10: Synthesis by Double-Bond Migration 344
32.3.7.1.11 Method 11: Synthesis by Chain Elongation 345
32.3.7.1.12 Method 12: Synthesis by Cycloaddition 345
32.3.7.13 Method 13: Synthesis from Methyl(dimethylamino)sulfoxonium Methylide and Acyl Chlorides .. 345
32.3.7.14 Method 14: Synthesis from Allenyl Sulfones .. 346
32.3.7.15 Method 15: Synthesis from α-Diazo Ketones .. 346
32.3.7.16 Method 16: Synthesis from α-(Dioxidosulfanylidene) Ketones 346
32.3.7.17 Method 17: Synthesis of 2,3-Dihydro-1,4-oxathiin .. 347
32.3.7.18 Method 18: Synthesis by Thio- and Seleno-Lactonizations of Alkynoic Acids .. 347
32.3.7.19 Method 19: Synthesis from (Phenyltellanyl)acetaldehyde Diethyl Acetal 347

32.3.8 Product Subclass 8: 1-Nitrogen-Functionalized 2-(Organooxy)alkenes
B. List, C. Chandler, R. R. Torres, and A. Erkkilä

32.3.8.1 Synthesis of Product Subclass 8 .. 351
32.3.8.1.1 Method 1: Synthesis by Substitution of Diazonium Salts 351
32.3.8.1.2 Method 2: Synthesis by Reduction of Arenes 351
32.3.8.1.3 Method 3: Synthesis by Amino Enolate Alkylation 351
32.3.8.1.4 Method 4: Synthesis by C–O Bond Formation 352
32.3.8.1.5 Method 5: Synthesis by Rearrangement 353
32.3.8.1.6 Method 6: Synthesis by Ring Opening of Oxazoles 353
32.3.8.1.7 Method 7: Synthesis of Oxazol-2(3H)-ones 353
32.3.8.1.7.1 Variation 1: Synthesis from α-Amino Ketones 354
32.3.8.1.7.2 Variation 2: Synthesis from α-Hydroxy Ketones 354
32.3.8.1.7.3 Variation 3: Synthesis from 2-Oxoalkyl Dialkylcarbamates 354
32.3.8.1.7.4 Variation 4: Synthesis by Intramolecular Cyclization 354
32.3.8.1.7.5 Variation 5: Synthesis by Elimination of Hydrogen Chloride 355
32.3.8.1.7.6 Variation 6: Synthesis by Elimination of Diphenylphosphine Oxide 355
32.3.8.1.7.7 Variation 7: Synthesis by Curtius Rearrangement 356
32.3.8.1.7.8 Variation 8: Synthesis from 2-(Allyloxy)oxazoles 356
32.3.8.1.8 Method 8: Synthesis from Oximes 357
32.3.8.1.9 Method 9: Synthesis by Intramolecular Cyclization 357
32.3.8.1.10 Method 10: Synthesis by Elimination 358
32.3.8.1.11 Method 11: Synthesis of 3-Hydroxypyridin-4(1H)-ones 358
32.3.8.1.12 Method 12: Synthesis from tert-Butyl Isocyanide 359

32.3.9 Product Subclass 9: 1-Phosphorus-Functionalized 2-(Organooxy)alkenes
B. List, C. Chandler, R. R. Torres, and A. Erkkilä

32.3.9.1 Synthesis of Product Subclass 9 .. 361
32.3.9.1.1 Method 1: Phosphorylation of Alkynyl Ethers 361
32.3.9.1.2 Method 2: Phosphorylation of Vinyl Ethers 361
32.3.9.1.3 Method 3: Synthesis by O-Alkylation of α-Oxo Ylides 361
32.3.9.1.4 Method 4: O-Phosphorylation of an α-Oxo Ylide 362
32.3.9.1.5 Method 5: Cleavage of Cyclic Phosphonium Salts 362
32.3.9.1.6 Method 6: Synthesis from Enol Ethers .. 362
32.3.9.1.7 Method 7: Synthesis from 1,2-Bis(triorganophosphonio)ethene Dihalides .. 363
32.3.9.1.8 Method 8: Synthesis from Alkynyl Ethers .. 363
32.3.9.1.8.1 Variation 1: Addition of Alkyl- or Aryldichlorophosphines 363
32.3.9.1.8.2 Variation 2: Addition of Trihalophosphines 363

32.3.10 Product Subclass 10: 1,2-Bis(sulfur-functionalized) Alkenes
C. Chandler, R. R. Torres, A. Erkkilä, and B. List

32.3.10 Product Subclass 10: 1,2-Bis(sulfur-functionalized) Alkenes .. 365
32.3.10.1 Synthesis of Product Subclass 10 ... 365
32.3.10.1.1 Method 1: Synthesis from Vinyl Sulfides 365
32.3.10.1.2 Method 2: Synthesis by Reduction .. 365
32.3.10.1.3 Method 3: Synthesis by Substitution of Ammonium Salts 365
32.3.10.1.4 Method 4: Synthesis by Substitution of a Halogen 366
32.3.10.1.5 Method 5: Synthesis from 3-Oxotetrahydrothiophene-2-carboxylates . 366
32.3.10.1.6 Method 6: Synthesis from Cyclopropanes 367
32.3.10.1.7 Method 7: Synthesis from Cyclopropenes 367
32.3.10.1.8 Method 8: Synthesis by Elimination of Hydrogen Bromide 367
32.3.10.1.9 Method 9: Synthesis by Elimination of Water 368
32.3.10.1.10 Method 10: Synthesis by Elimination of Thiols 368
32.3.10.1.11 Method 11: Synthesis by Addition to Alkenes 369
32.3.10.1.12 Method 12: Synthesis by Addition to Alkynes 370
32.3.10.1.13 Method 13: Synthesis from Alkynes and Carbon Disulfide 371
32.3.10.1.14 Method 14: Synthesis by Carbene Dimerization 372
32.3.10.1.15 Method 15: Synthesis by Double-Bond Migration 373
32.3.10.1.16 Method 16: Synthesis by Rearrangement of 1,3-Dithiolane 1-Oxides . 373
32.3.10.1.17 Method 17: Synthesis by Rearrangement of 1,1-Bis(sulfonyl)ethenes . 373
32.3.10.1.18 Method 18: Synthesis from Dithiins .. 374
32.3.10.1.19 Method 19: Synthesis with Retention of the Functional Group 377
32.3.10.1.19.1 Variation 1: S-Alkylation .. 377
32.3.10.1.19.2 Variation 2: Synthesis by Chain Elongation 377
32.3.10.1.19.3 Variation 3: Ring Enlargement of Dithioles 378
32.3.10.1.19.4 Variation 4: Nucleophilic Addition to Dithiolium Salts 378

32.3.11 Product Subclass 11: 1-Sulfur-Functionalized 2-(Organochalcogeno)alkenes
C. Chandler, R. R. Torres, A. Erkkilä, and B. List

32.3.11 Product Subclass 11: 1-Sulfur-Functionalized 2-(Organochalcogeno)alkenes ... 381
32.3.11.1 Synthesis of Product Subclass 11 .. 381
32.3.11.1.1 Method 1: Addition to Alkynyl Sulfoxides 381
32.3.11.1.2 Method 2: Selenosulfonylation of Alkynes 382
32.3.11.1.3 Method 3: Synthesis of Cyclic 1-Sulfanyl-2-tellanylenethenes 383
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Subsections</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.3.12.1</td>
<td>Synthesis of Product Subclass 12</td>
<td>385</td>
</tr>
<tr>
<td>32.3.12.1.1</td>
<td>Method 1:</td>
<td>Synthesis from Enamines</td>
</tr>
<tr>
<td>32.3.12.1.2</td>
<td>Method 2:</td>
<td>Synthesis from Vinyl Azides</td>
</tr>
<tr>
<td>32.3.12.1.3</td>
<td>Method 3:</td>
<td>Synthesis from Imines and Derivatives</td>
</tr>
<tr>
<td>32.3.12.1.4</td>
<td>Method 4:</td>
<td>Synthesis from β-Oxo Sulfones and Amines</td>
</tr>
<tr>
<td>32.3.12.1.5</td>
<td>Method 5:</td>
<td>Synthesis by Substitution from Heteroatom-Substituted Alkenes</td>
</tr>
<tr>
<td>32.3.12.1.6</td>
<td>Method 6:</td>
<td>Synthesis from Aldehydes and Tosylmethyl Isocyanide</td>
</tr>
<tr>
<td>32.3.12.1.7</td>
<td>Method 7:</td>
<td>Synthesis from Ylides and Thiocyanogen</td>
</tr>
<tr>
<td>32.3.12.1.8</td>
<td>Method 8:</td>
<td>Synthesis by Elimination of Hydrogen Chloride</td>
</tr>
<tr>
<td>32.3.12.1.9</td>
<td>Method 9:</td>
<td>Synthesis by Elimination of Ethanethiol</td>
</tr>
<tr>
<td>32.3.12.1.10</td>
<td>Method 10:</td>
<td>Synthesis by Aminomercuration of Alkynes</td>
</tr>
<tr>
<td>32.3.12.1.11</td>
<td>Method 11:</td>
<td>Synthesis by Addition of Aziridines to Alk-1-ynyl Sulfoxides, Allenyl Sulfoxides, or Allenyl Sulfones</td>
</tr>
<tr>
<td>32.3.12.1.12</td>
<td>Method 12:</td>
<td>Synthesis by Ring Opening of Azirines</td>
</tr>
<tr>
<td>32.3.12.1.13</td>
<td>Method 13:</td>
<td>Synthesis from Sulfur Ylides and Nitriles</td>
</tr>
<tr>
<td>32.3.12.1.14</td>
<td>Method 14:</td>
<td>Synthesis by Cycloaddition of α-Imino Thiones</td>
</tr>
<tr>
<td>32.3.12.1.15</td>
<td>Method 15:</td>
<td>Synthesis by Rearrangement of Thietales</td>
</tr>
<tr>
<td>32.3.12.1.16</td>
<td>Method 16:</td>
<td>Synthesis by S-Oxidation</td>
</tr>
<tr>
<td>32.3.12.1.17</td>
<td>Method 17:</td>
<td>Synthesis from Thiazolium Salts and Nucleophiles or Electrophiles</td>
</tr>
<tr>
<td>32.3.12.1.18</td>
<td>Method 18:</td>
<td>Synthesis from Thiazines</td>
</tr>
<tr>
<td>32.3.12.1.19</td>
<td>Method 19:</td>
<td>Synthesis by C-Imidoylation of Sulfoxides</td>
</tr>
<tr>
<td>32.3.13.1</td>
<td>Synthesis of Product Subclass 13</td>
<td>399</td>
</tr>
<tr>
<td>32.3.13.1.1</td>
<td>Method 1:</td>
<td>Synthesis by Substitution</td>
</tr>
<tr>
<td>32.3.13.1.1.1</td>
<td>Variation 1:</td>
<td>Of Chloroalkenes</td>
</tr>
<tr>
<td>32.3.13.1.1.2</td>
<td>Variation 2:</td>
<td>Of Vinyl Sulfones</td>
</tr>
<tr>
<td>32.3.13.1.1.3</td>
<td>Variation 3:</td>
<td>Of Vinylphosphonium Salts</td>
</tr>
<tr>
<td>32.3.13.1.2</td>
<td>Method 2:</td>
<td>Synthesis by Elimination</td>
</tr>
<tr>
<td>32.3.13.1.3</td>
<td>Method 3:</td>
<td>Synthesis by Addition to Alkenes, Alkenes, or Allenes</td>
</tr>
<tr>
<td>32.3.13.1.4</td>
<td>Method 4:</td>
<td>Synthesis by Cycloaddition</td>
</tr>
<tr>
<td>32.3.13.1.5</td>
<td>Method 5:</td>
<td>Synthesis by Isomerization</td>
</tr>
<tr>
<td>32.3.13.1.6</td>
<td>Methods 6:</td>
<td>Other Methods</td>
</tr>
</tbody>
</table>
32.3.14 Product Subclass 14: 1,2-Bis(nitrogen-functionalized) Alkenes
B. List, C. Chandler, R. R. Torres, and A. Erkkilä

32.3.14 Product Subclass 14: 1,2-Bis(nitrogen-functionalized) Alkenes

32.3.14.1 Synthesis of Product Subclass 14

32.3.14.1.1 Method 1: Synthesis of 1,2-Dinitroalkenes

32.3.14.1.2 Method 2: Synthesis of 1-Amino-2-nitroalkenes

32.3.14.1.2.1 Variation 1: Synthesis from Ortho Esters and Nitroalkanes

32.3.14.1.2.2 Variation 2: Synthesis from Imines

32.3.14.1.2.3 Variation 3: Synthesis from Carboxylic Acid Derivatives

32.3.14.1.2.4 Variation 4: Synthesis from 4-Nitrocyclobut-1-en-1-amines

32.3.14.1.2.5 Variation 5: Synthesis from Haloalkenes

32.3.14.1.2.6 Variation 6: Synthesis by Rearrangement

32.3.14.1.3 Method 3: Synthesis of 4-Nitro-1,2-dihydro-3H-pyrazol-3-ones

32.3.14.1.4 Method 4: Synthesis of 1,2-Bis(diazenyl)alkenes

32.3.14.1.5 Method 5: Synthesis of 1-Amino-2-diazenylalkenes

32.3.14.1.6 Method 6: Synthesis of Alkene-1,2-diamines

32.3.14.1.6.1 Variation 1: Synthesis from 1-Alkoxymethanediamines

32.3.14.1.6.2 Variation 2: Synthesis by Amine Elimination

32.3.14.1.6.3 Variation 3: Synthesis from α-Halo or α-Dialkylamino Aldehydes

32.3.14.1.6.4 Variation 4: Synthesis from 1-Amino-2-haloalkenes

32.3.14.1.6.5 Variation 5: Synthesis from 1,2-Diols

32.3.14.1.6.6 Variation 6: Synthesis from Cyclopropenium Ion Derivatives

32.3.14.1.7 Method 7: Synthesis of Dihydroimidazoles

32.3.14.1.8 Method 8: Synthesis of 1,4-Dihydropyrazines

32.3.14.1.9 Method 9: Synthesis of Tetrahydropyrazines

32.3.14.1.10 Method 10: Synthesis of 4,5,6,7-Tetrahydro-1H-1,4-diazepines

32.3.14.1.11 Method 11: Synthesis of 1,2,4-Triazines

32.3.14.1.12 Method 12: Synthesis of 1,2-Di azidoalkenes

32.3.15 Product Subclass 15: 1-Nitrogen-Functionalized 2-Phosphorus-Functionalized Alkenes
B. List, C. Chandler, R. R. Torres, and A. Erkkilä

32.3.15 Product Subclass 15: 1-Nitrogen-Functionalized 2-Phosphorus-Functionalized Alkenes

32.3.15.1 Synthesis of Product Subclass 15

32.3.15.1.1 Method 1: Synthesis by Substitution

32.3.15.1.1.1 Variation 1: Substitution of Chloroalkenes

32.3.15.1.1.2 Variation 2: Substitution of Bromoalkenes

32.3.15.1.1.3 Variation 3: Substitution of Alkylphosphonium Salts

32.3.15.1.2 Method 2: Synthesis from Phosphorus Ylides

32.3.15.1.3 Method 3: Condensation of β-Oxo Phosphonium Salts with Amines

32.3.15.1.4 Method 4: Synthesis by Addition to Phosphorus-Functionalized Alkynes

32.3.15.1.5 Method 5: Synthesis of 1-(Isothiocyanato/isocyanato)-2-(difluoro-phosphoryl)alkenes
32.3.16 **Product Subclass 16: 1,2-Bis(phosphorus-functionalized) Alkenes**
B. List, C. Chandler, R. R. Torres, and A. Erkkilä

32.3.16 **Product Subclass 16: 1,2-Bis(phosphorus-functionalized) Alkenes**
Synthesis of Product Subclass 16
Method 1: Substitution of Chloroalkenes
Method 2: Synthesis from Acyl Halides
Method 3: Addition to Alkynes
Method 4: Synthesis from 2,3-Dihydro-1H-1,3,2-diphosphasiloles

32.4 **Product Class 4: Haloalkenes**
A. Pollex

32.4 **Product Class 4: Haloalkenes**
Synthesis of Product Subclass 1
Method 1: Synthesis from Organometallic Compounds
Variation 1: Fluorodestannylation with Xenon Difluoride
Variation 2: Fluorodestannylation with Cesium Fluoroxysulfate
Variation 3: Fluorodestannylation with Selectfluor
Method 2: Synthesis from Vinylborates
Method 3: Synthesis from Vinyllithiums
Method 1: Dehydrohalogenation
Variation 1: Dehydrofluorination
Variation 2: Dehydrohalogenation
Method 2: Reductive Dehalogenation Using Reducing Metals or Hydrogen
Method 3: Dehalogenation with Phosphites and Phosphines
Method 4: Thermal syn Elimination
Method 1: Addition/Elimination Reactions
Variation 1: Using N-Fluorobis(trifluoromethane)sulfonimide
Variation 2: Using Trifluoromethyl Hypofluorite
Variation 3: Using Acetyl Hypofluoride
Method 2: Dihalocarbene Addition and Subsequent Ring Opening
Variation 1: Formation of α-Fluoro α,β-Unsaturated Carbonyl Compounds or Acetals
Variation 2: Formation of Simple Fluoroalkenes
Variation 3: Formation of Conjugated Fluorodienes
Synthesis from Aldehydes and Ketones
Method 1: Alkenation Reactions
Variation 1: Wittig Alkenation
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.4.1.4.1.2</td>
<td>Variation 2: Horner–Wadsworth–Emmons Alkenation</td>
<td>448</td>
</tr>
<tr>
<td>32.4.1.4.1.3</td>
<td>Variation 3: Julia Alkenation</td>
<td>449</td>
</tr>
<tr>
<td>32.4.1.4.1.4</td>
<td>Variation 4: Miscellaneous Alkenations</td>
<td>450</td>
</tr>
<tr>
<td>32.4.1.4.2</td>
<td>Method 2: Substitution of Oxygen in Carbonyl Compounds</td>
<td>450</td>
</tr>
<tr>
<td>32.4.1.5</td>
<td>Synthesis from Carboxylic Acids and Their Derivatives</td>
<td>450</td>
</tr>
<tr>
<td>32.4.1.5.1</td>
<td>Method 1: Wittig Alkenation</td>
<td>451</td>
</tr>
<tr>
<td>32.4.1.5.2</td>
<td>Method 2: Horner–Wadsworth–Emmons Alkenation</td>
<td>451</td>
</tr>
<tr>
<td>32.4.1.6</td>
<td>Synthesis from Alkynes and Allenes</td>
<td>452</td>
</tr>
<tr>
<td>32.4.1.6.1</td>
<td>Method 1: Addition of Hydrogen Fluoride to Alkynes</td>
<td>452</td>
</tr>
<tr>
<td>32.4.1.6.2</td>
<td>Method 2: Addition of Halogen Fluorides to Alkynes</td>
<td>453</td>
</tr>
<tr>
<td>32.4.1.6.3</td>
<td>Method 3: Formal Addition of Benzenesulphenyl Fluoride to Alkynes</td>
<td>454</td>
</tr>
<tr>
<td>32.4.1.6.4</td>
<td>Method 4: Formal Addition of Benzeneselenenyl Fluoride to Alkynes</td>
<td>454</td>
</tr>
<tr>
<td>32.4.1.6.5</td>
<td>Method 5: Addition to Allenes</td>
<td>455</td>
</tr>
<tr>
<td>32.4.1.7</td>
<td>Modifications of Compounds Already Containing a Fluorovinyl Substituent</td>
<td>455</td>
</tr>
<tr>
<td>32.4.1.7.1</td>
<td>Method 1: Cross-Coupling Reactions</td>
<td>456</td>
</tr>
<tr>
<td>32.4.1.7.1.1</td>
<td>Variation 1: Suzuki–Miyaura Cross Coupling</td>
<td>456</td>
</tr>
<tr>
<td>32.4.1.7.1.2</td>
<td>Variation 2: Stille Cross Coupling</td>
<td>456</td>
</tr>
<tr>
<td>32.4.1.7.1.3</td>
<td>Variation 3: Negishi Cross Coupling</td>
<td>458</td>
</tr>
<tr>
<td>32.4.1.7.1.4</td>
<td>Variation 4: Sonogashira Cross Coupling</td>
<td>459</td>
</tr>
<tr>
<td>32.4.1.7.2</td>
<td>Method 2: Functional-Group Exchange</td>
<td>459</td>
</tr>
<tr>
<td>32.4.1.7.2.1</td>
<td>Variation 1: Dehalogenation</td>
<td>459</td>
</tr>
<tr>
<td>32.4.1.7.2.2</td>
<td>Variation 2: Hydrideflourination with Trialkylphosphines</td>
<td>460</td>
</tr>
<tr>
<td>32.4.1.7.2.3</td>
<td>Variation 3: Iodideflourination with Trialkylphosphines</td>
<td>460</td>
</tr>
<tr>
<td>32.4.1.7.2.4</td>
<td>Variation 4: Hydrodestannyligation</td>
<td>460</td>
</tr>
<tr>
<td>32.4.1.7.3</td>
<td>Method 3: Allylic Substitution with N,N-Diethlyaminosulfur Trifluoride</td>
<td>461</td>
</tr>
<tr>
<td>32.4.1.7.4</td>
<td>Method 4: Isomerization</td>
<td>461</td>
</tr>
<tr>
<td>32.4.1.7.5</td>
<td>Method 5: Rearrangement</td>
<td>461</td>
</tr>
<tr>
<td>32.4.2</td>
<td>Product Subclass 2: Chloro-, Bromo-, and Iodoalkenes</td>
<td>462</td>
</tr>
<tr>
<td>32.4.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>463</td>
</tr>
<tr>
<td>32.4.2.1.1</td>
<td>Synthesis from Organometallic Compounds</td>
<td>463</td>
</tr>
<tr>
<td>32.4.2.1.1.1</td>
<td>Method 1: Synthesis from Vinylstannanes</td>
<td>464</td>
</tr>
<tr>
<td>32.4.2.1.1.2</td>
<td>Method 2: Stepwise Replacement of Zirconium or Tin</td>
<td>467</td>
</tr>
<tr>
<td>32.4.2.1.1.3</td>
<td>Method 3: Synthesis from Vinylsilanes</td>
<td>468</td>
</tr>
<tr>
<td>32.4.2.1.1.4</td>
<td>Method 4: Synthesis from Vinylaluminum Compounds</td>
<td>470</td>
</tr>
<tr>
<td>32.4.2.1.1.5</td>
<td>Method 5: Synthesis from Vinylborates</td>
<td>471</td>
</tr>
<tr>
<td>32.4.2.1.1.6</td>
<td>Method 6: Synthesis from Vinylzirconium Compounds</td>
<td>473</td>
</tr>
<tr>
<td>32.4.2.1.1.7</td>
<td>Method 7: Synthesis from Vinlymagnesium Compounds</td>
<td>474</td>
</tr>
<tr>
<td>32.4.2.1.2</td>
<td>Synthesis from Alkanes</td>
<td>475</td>
</tr>
<tr>
<td>32.4.2.1.2.1</td>
<td>Method 1: Dehydrohalogenation</td>
<td>475</td>
</tr>
<tr>
<td>32.4.2.1.2.1.1</td>
<td>Variation 1: Under Basic Conditions</td>
<td>475</td>
</tr>
<tr>
<td>32.4.2.1.2.1.2</td>
<td>Variation 2: Under Thermal Conditions</td>
<td>477</td>
</tr>
<tr>
<td>32.4.2.1.2.2</td>
<td>Method 2: Electoreduction</td>
<td>477</td>
</tr>
<tr>
<td>32.4.2.1.2.3</td>
<td>Method 3: Dehalogenation with Reducing Metals</td>
<td>478</td>
</tr>
<tr>
<td>32.4.2.1.2.4</td>
<td>Method 4: Dehalogenation with Phosphites and Phosphines</td>
<td>479</td>
</tr>
<tr>
<td>32.4.2.1.2.5</td>
<td>Method 5: Thermal syn Elimination</td>
<td>479</td>
</tr>
</tbody>
</table>
32.4.2.1.3 Synthesis from Alkenes ... 480
32.4.2.1.3.1 Method 1: C-Halogenation .. 480
32.4.2.1.3.2 Method 2: Dihalocarbene Addition and Subsequent Ring Opening 480
32.4.2.1.3.2.1 Variation 1: Formation of Haloalkenes 480
32.4.2.1.3.2.2 Variation 2: Formation of α-Halo α,β-Unsaturated Carbonyl Compounds 481
32.4.2.1.3.2.3 Variation 3: Formation of Conjugated Halodienes 482
32.4.2.1.4 Synthesis from Halocarbenes .. 482
32.4.2.1.5 Synthesis from Aldehydes and Ketones .. 483
32.4.2.1.5.1 Method 1: Wittig Alkenation .. 483
32.4.2.1.5.1.1 Variation 1: Formation of Chloroalkenes 483
32.4.2.1.5.1.2 Variation 2: Formation of Bromoalkenes 483
32.4.2.1.5.1.3 Variation 3: Formation of Iodoalkenes 485
32.4.2.1.5.1.4 Variation 4: Formation of α-Halo α,β-Unsaturated Esters 486
32.4.2.1.5.2 Method 2: Horner–Wadsworth–Emmons Alkenation 486
32.4.2.1.5.3 Method 3: Takai Alkenation ... 488
32.4.2.1.5.4 Method 4: Halo-Julia Alkenation .. 490
32.4.2.1.5.5 Method 5: Chromium(II)- and Iron(0)-Mediated Alkenation 490
32.4.2.1.5.6 Method 6: Morita–Baylis–Hillman Addition 491
32.4.2.1.5.7 Method 7: Vilsmeier Haloformylation .. 491
32.4.2.1.5.8 Method 8: Substitution of Oxygen in Carbonyl Compounds 492
32.4.2.1.5.8.1 Variation 1: Using Phosphorus Pentachloride 492
32.4.2.1.5.8.2 Variation 2: Via Vinyl Trifluoromethanesulfonates 492
32.4.2.1.5.8.3 Variation 3: Via Vinyl Phosphates .. 493
32.4.2.1.5.8.4 Variation 4: Reaction of Enolizable Aldehydes with 2-Chlorobenzoxazolium Salts ... 493
32.4.2.1.5.9 Method 9: Allylboration .. 494
32.4.2.1.6 Synthesis from Carboxylic Acids and Derivatives 494
32.4.2.1.6.1 Method 1: The Hunsdiecker Reaction 494
32.4.2.1.6.2 Method 2: Wittig Alkenation .. 495
32.4.2.1.7 Synthesis from Alkynes and Allenes ... 495
32.4.2.1.7.1 Method 1: Hydrohalogenation of Alkynes 496
32.4.2.1.7.1.1 Variation 1: Addition of Halogen Acids 496
32.4.2.1.7.1.2 Variation 2: Hydrohalogenation with Alkali Metal Halides 496
32.4.2.1.7.2 Method 2: Halogenation of Alkynes ... 498
32.4.2.1.7.3 Method 3: Addition of a Halogen and a Heteroatom 500
32.4.2.1.7.3.1 Variation 1: Addition of Halogen and Nitrogen 500
32.4.2.1.7.3.2 Variation 2: Addition of Halogen and Oxygen 500
32.4.2.1.7.3.3 Variation 3: Addition of Halogen and Sulfur or Selenium 501
32.4.2.1.7.4 Method 4: Transformations of haloalkynes 501
32.4.2.1.7.4.1 Variation 1: Using Boranes ... 501
32.4.2.1.7.4.2 Variation 2: Using Lithium Aluminum Hydride 502
32.4.2.1.7.4.3 Variation 3: Using Diimides .. 502
32.4.2.1.7.5 Method 5: Alkene–Alkyne Coupling .. 502
32.4.2.1.7.6 Method 6: Iodocyclization of Alkynes 504
32.4.2.1.7.7 Method 7: Hydrohalogenation of Allenes 504
32.4.2.1.8 Method 8: Halogenation of Allenes .. 505
32.4.2.1.7.9 Method 9: Addition of Halogen and Oxygen to Allenes 505
32.4.2.1.7.9.1 Variation 1: Halohydroxylation ... 505
32.4.2.1.7.9.2 Variation 2: Haloacetylation ... 506
32.4.2.1.7.10 Method 10: S$_2^\text{N}$’ Reactions of Allenols 506
32.4.2.1.8 Modification of Compounds Already Containing a Halogenated
Alkenyl Function ... 507
32.4.2.1.8.1 Method 1: Cross-Coupling Reactions 507
32.4.2.1.8.1.1 Variation 1: Suzuki–Miyaura Cross Coupling 507
32.4.2.1.8.1.2 Variation 2: Stille Cross Coupling 509
32.4.2.1.8.1.3 Variation 3: Negishi Cross Coupling 511
32.4.2.1.8.1.4 Variation 4: Sonogashira Cross Coupling 512
32.4.2.1.8.1.5 Variation 5: Kumada Cross Coupling 512
32.4.2.1.8.2 Method 2: Carbonyl Addition of Vinylithium Reagents 513
32.4.2.1.8.3 Method 3: Substitution of Halogens by Other Nucleophiles 514
32.4.2.1.8.4 Method 4: Halodemetalation ... 515
32.4.2.1.8.4.1 Variation 1: Halodestannylation or Halodeboration 515
32.4.2.1.8.5 Method 5: Dehalogenation ... 516
32.4.2.1.8.5.1 Variation 1: Using Lithium Aluminum Hydride 516
32.4.2.1.8.5.2 Variation 2: Using Reducing Metals 516
32.4.2.1.8.5.3 Variation 3: Via Stannanes ... 517
32.4.2.1.8.5.4 Variation 4: Using Organolithiums 517
32.4.2.1.8.5.5 Variation 5: Using Diethyl Phosphonates 518
32.4.2.1.8.6 Method 6: Ring Opening of 1,2-Dihalo cyclopropenes 518

32.5 Product Class 5: (Organooxy)alkenes

32.5.1 Product Subclass 1: Enols
D. Trauner

32.5.1 Product Subclass 1: Enols ... 533
32.5.1.1 Synthesis of Product Subclass 1 .. 535
32.5.1.1.1 Method 1: Equilibration from the Corresponding Carbonyl Form .. 535
32.5.1.1.2 Method 2: Transition-Metal-Catalyzed Isomerization of Allylic Alcohols 536
32.5.1.1.3 Method 3: Photochemical Cleavage 536
32.5.1.1.4 Method 4: Mild Hydrolysis of Enol Ketene Acetals or Enol Ortho Esters 536
32.5.1.1.5 Method 5: Sigmatropic Rearrangements 537
32.5.1.2 Applications of Product Subclass 1 in Organic Synthesis 537
32.5.1.2.1 Method 1: Deprotonation and Subsequent Reaction as an Enolate 537
32.5.1.2.2 Method 2: O-Alkylation and O-Silylation under Neutral Conditions 538
32.5.1.2.3 Method 3: Hydrogenation ... 539
32.5.1.2.4 Method 4: Reaction with Carbon Electrophiles under Neutral or
Acidic Conditions .. 540
32.5.1.2.5 Method 5: Reaction with Nitrogen Electrophiles 541
32.5.2

Product Subclass 2: Enolates
D. Trauner

32.5.2.1

Synthesis of Product Subclass 2

32.5.2.1.1

Method 1: Synthesis by Deprotonation

32.5.2.1.1.1

Variation 1: Kinetic Deprotonation of a Ketone

32.5.2.1.1.2

Variation 2: Deprotonation under Thermodynamic Conditions

32.5.2.1.1.3

Variation 3: Double Deprotonation of a 1,4-Dicarbonyl Compound

32.5.2.1.1.4

Variation 4: Enantioselective Deprotonation of Symmetrical Ketones

32.5.2.1.1.5

Variation 5: Deprotonation with Organozinc Compounds

32.5.2.1.2

Method 2: Synthesis by Cleavage of Enol Esters and Ethers

32.5.2.1.2.1

Variation 1: Cleavage of Enol Esters

32.5.2.1.2.2

Variation 2: Cleavage of Enol Ethers

32.5.2.1.2.3

Variation 3: Cleavage of Silyl Enol Ethers

32.5.2.1.3

Method 3: Synthesis by Reduction of α-Halocarbonyl and Related Compounds

32.5.2.1.4

Method 4: Synthesis by Conjugate Reduction

32.5.2.1.5

Method 5: Synthesis by Conjugate Addition

32.5.2.1.6

Method 6: Synthesis by Nucleophilic Addition to Ketenes

32.5.2.1.7

Method 7: Synthesis by Base-Induced Rearrangement of Epoxides

32.5.2.1.8

Method 8: Synthesis by Anionic Oxy-Cope Rearrangement

32.5.2.1.9

Method 9: Synthesis by Rearrangement of Allylic Alkoxides

32.5.2.2

Applications of Product Subclass 2 in Organic Synthesis

32.5.2.2.1

Method 1: Transmetalation To Form Transition Metal Enolates and Zinc Enolates

32.5.2.2.1.1

Variation 1: Transmetalation with Organotitanium or Organozirconium Complexes

32.5.2.2.1.2

Variation 2: Transmetalation with Nickel(II) or Palladium(II) Complexes

32.5.2.2.1.3

Variation 3: Transmetalation with Magnesium, Titanium, Manganese, or Zinc Salts

32.5.2.2.2

Method 2: Formation of Boron Enolates

32.5.2.2.3

Method 3: O-Alkylation and O-Acylation To Form Enol Ethers and Enol Esters

32.5.2.2.4

Method 4: Formation of Silyl Enol Ethers and Tin Enolates

32.5.2.2.5

Method 5: Reaction with S-Electrophiles: Formation of Enol Trifluoromethanesulfonates

32.5.2.2.6

Method 6: Protonation and Deuteration of Enolates

32.5.2.2.7

Method 7: Reaction on the C-Terminus with C-Electrophiles

32.5.2.2.7.1

Variation 1: Alkylation
Product Subclass 3: Enol Ethers
V. Milata, S. Rádl, and S. Voltrová

Synthesis of Product Subclass 3

Method 1: Alkylation of Carbonyl Compounds

Variation 1: Reactions of Enolates with Alkylating Agents

Variation 2: Reactions of Enolates with Diazooalkanes

Variation 3: Reaction of Ketones with Ethyl Diazoacetate

Method 2: Alkylation of Silyl Ethers

Method 1: Reaction of Vinyl Halides or Activated Vinyl Derivatives with Alcohols or Phenols

Variation 1: Nucleophilic Displacement

Variation 2: Copper-Catalyzed C–O Bond-Forming Reactions

Variation 3: Palladium-Catalyzed C–O Bond-Forming Reactions

Variation 4: Reaction of Perfluorovinyl Fluorides with Alcohols or Phenols

Method 2: Addition to Alkynes

Variation 1: Addition of Alcohols to Alkynes

Variation 2: cis Addition of Alcohols to Alkynones and Alkynoic Acid Derivatives

Variation 3: trans Addition of Alcohols to Alkynones and Alkynoic Acid Derivatives

Variation 4: Addition of Carbonyl Compounds to Alkynones and Alkynoic Acid Derivatives

Variation 5: Addition to Alkynes with Formation of Cyclic Enol Ethers

Method 3: Addition to Allenes or Methyleneyclopropanes

Variation 1: Addition to Sulfonyl-Stabilized Allenes

Variation 2: Reactions Involving Phosphorus-Based Anion-Stabilizing Groups

Variation 3: Photochemically Induced Reactions of Allenes Involving the Addition of an Alcohol

Variation 4: Palladium-Catalyzed Cascade Reaction of 4-(Alkoxy carbonyloxy)but-2-yn-1-ols with Phenols
32.5.3.1.10.1.1 Variation 1: Reaction of Dienophiles with Propenal, Alkylpropenals, or Methyl Vinyl Ketone .. 735
32.5.3.1.10.1.2 Variation 2: Reaction of Dienophiles with Substituted 2-Oxobut-3-enoic Acid Esters .. 737
32.5.3.1.10.1.3 Variation 3: Reaction of Dienophiles with 2-Methylene 1,3-Diketones or 2-Benzoaacrylonitriles .. 739
32.5.3.1.10.1.4 Variation 4: Treatment of Dienophiles with Phosphonoheterodienes .. 741
32.5.3.1.10.1.5 Variation 5: Reaction of Dienophiles with α-Sulfanyl, α-Sulfinyl, or α-Sulfonyl Heterodienes .. 742
32.5.3.1.10.1.6 Variation 6: Reaction of Dienophiles with α-Trifluoromethyl Heterodienes .. 744
32.5.3.1.10.1.7 Method 2: Intramolecular Hetero-Diels–Alder Reactions .. 745
32.5.3.1.11 Miscellaneous Methods .. 746
32.5.3.1.11.1 Method 1: Retro-Nazarov Reaction .. 746

32.5.4 Product Subclass 4: Ene—OX Compounds (X = O, S, Se, Te)
G. Sartori and R. Maggi

32.5.4.1 Synthesis of Product Subclass 4 .. 757
32.5.4.1.1 Method 1: Enolate Tosylation .. 757
32.5.4.1.2 Method 2: Addition to Alkynes .. 758
32.5.4.1.2.1 Variation 1: Halotosyloxylation of Alkynes .. 758
32.5.4.1.2.2 Variation 2: Selenotosyloxylation of Alkynes .. 759
32.5.4.1.3 Method 3: Dehydrofluorination of Polyfluoropropyl 4-Toluenesulfonates .. 760
32.5.4.1.4 Method 4: Substituent Modification of Polyfluoro-1-(tosyloxy)-prop-1-enes .. 760
32.5.4.1.5 Method 5: Enolate Trifluoromethylsulfonylation by Trifluoromethanesulfonic Anhydride .. 761
32.5.4.1.6 Method 6: Enolate Trifluoromethylsulfonylation by N-Aryl Trifluoromethanesulfonylimides .. 766
32.5.4.1.7 Method 7: Enolate Trifluoromethylsulfonylation by N-Phenylbis(trifluoro-methane)sulfonimide .. 771
32.5.4.1.8 Method 8: Enolate Perfluoroalkylsulfonylation .. 774
32.5.4.1.9 Methods 9: Miscellaneous Reactions .. 777

32.5.5 Product Subclass 5: Ene—ON Compounds
G. Sartori and R. Maggi

32.5.5.1 Synthesis of Product Subclass 5 .. 783
32.5.5.1.1 Method 1: Cycloaddition Reactions .. 783
32.5.5.1.1.1 Variation 1: 1,3-Dipolar Cycloaddition of Nitriles to Electron-Deficient Allenes .. 783
32.5.5.1.1.2 Variation 2: Addition of Hydroxylamines to Electron-Deficient Allenes .. 785
32.5.5.1.1.3 Variation 3: Cycloaddition of Nitriles to Acetylenic Compounds .. 787
32.5.1.4 Variation 4: Cyclization of N-Propargylhydroxylamines 789
32.5.1.2 Method 2: Addition of Oximes to Acetylene 790

32.5.6 Product Subclass 6: Ene—OP Compounds
G. Sartori and R. Maggi

32.5.6 Product Subclass 6: Ene—OP Compounds 795
32.5.6.1 Synthesis of Product Subclass 6 795
32.5.6.1.1 Method 1: Enolate Phosphorylation 795
32.5.6.1.1.4 Variation 1: Synthesis from Aldehydes 795
32.5.6.1.1.2 Variation 2: Synthesis from Ketones 797
32.5.6.1.1.3 Variation 3: Synthesis from Imides 802
32.5.6.1.2 Method 2: Addition of Nucleophilic Reagents to Alkynes 803
32.5.6.1.2.1 Variation 1: Addition to Terminal Alkynes 803
32.5.6.1.2.2 Variation 2: Addition to Internal Alkynes 805
32.5.6.1.3 Method 3: Perkow Reaction 807
32.5.6.1.4 Method 4: Skeleton Modification of P-Oxyalkenes 808
32.5.6.1.4.1 Variation 1: Diels–Alder Reactions 808
32.5.6.1.4.2 Variation 2: [2,3]-Sigmatropic Rearrangements 809
32.5.6.1.5 Methods 5: Miscellaneous Reactions 811

Keyword Index 815

Author Index 867

Abbreviations 909
Volume 33:
Ene—X Compounds (X = S, Se, Te, N, P)

Preface ... V

Volume Editor’s Preface ... VII

Table of Contents .. XIII

Introduction
G. A. Molander ... 1

33.1 Product Class 1: Alk-1-enyl Sulfur Compounds

33.1.1 Product Subclass 1: Alk-1-enesulfonic Acids and Derivatives
J. C. Carretero and R. G. Arrayás 13

33.1.2 Product Subclass 2: Alk-1-enyl Sulfones
J. C. Carretero and R. G. Arrayás 19

33.1.3 Product Subclass 3: 5-Alk-1-enylsulfoximides
J. C. Carretero and R. G. Arrayás 51

33.1.4 Product Subclass 4: Alk-1-enesulfinic Acids and Derivatives
J. C. Carretero and R. G. Arrayás 59

33.1.5 Product Subclass 5: Alk-1-enyl Sulfoxides, Sulfinides,
and Related Compounds
J. C. Carretero and R. G. Arrayás 65

33.1.6 Product Subclass 6: Alk-1-enethiols
J. Drabowicz, P. Kiełbasiński, and M. Mikołajczyk 101

33.1.7 Product Subclass 7: Metal Alk-1-enethiolates
J. Drabowicz, P. Kiełbasiński, and M. Mikołajczyk 109

33.1.8 Product Subclass 8: Alk-1-enyl Sulfides
J. Drabowicz, P. Kiełbasiński, and M. Mikołajczyk 113

33.1.9 Product Subclass 9: Alk-1-enylsulphonium Salts
J. Drabowicz, P. Kiełbasiński, and M. Mikołajczyk 169

33.1.10 Product Subclass 10: Alk-1-enesulfinic Acid Derivatives
J. Drabowicz, P. Kiełbasiński, and M. Mikołajczyk 177

33.1.11 Product Subclass 11: Alk-1-enyl Disulfides
J. Drabowicz, P. Kiełbasiński, and M. Mikołajczyk 183
<table>
<thead>
<tr>
<th>Section</th>
<th>Product</th>
<th>Subclass</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.1.12</td>
<td>Product</td>
<td>12</td>
<td>Subclass 12: Thietes and Derivatives</td>
<td>E. Block</td>
</tr>
<tr>
<td>33.1.13</td>
<td>Product</td>
<td>13</td>
<td>Subclass 13: 2,3-Dihydrothiophenes and Derivatives</td>
<td>E. Block</td>
</tr>
<tr>
<td>33.1.14</td>
<td>Product</td>
<td>14</td>
<td>Subclass 14: 3,4-Dihydro-2H-thiopyrans and Derivatives</td>
<td>E. Block</td>
</tr>
<tr>
<td>33.1.15</td>
<td>Product</td>
<td>15</td>
<td>Subclass 15: 2,3,4,5-Tetrahydrothiepins, Larger Rings, and Derivatives</td>
<td>E. Block</td>
</tr>
<tr>
<td>33.2</td>
<td>Product</td>
<td></td>
<td>Class 2: Alk-1-enyl Selenium Compounds</td>
<td>D. Avilov and D. Dittmer</td>
</tr>
<tr>
<td>33.3</td>
<td>Product</td>
<td></td>
<td>Class 3: Alk-1-enyl Tellurium Compounds</td>
<td>D. Avilov and D. Dittmer</td>
</tr>
<tr>
<td>33.4</td>
<td>Product</td>
<td></td>
<td>Class 4: Alk-1-enyl Nitrogen Compounds</td>
<td></td>
</tr>
<tr>
<td>33.4.1</td>
<td>Product</td>
<td>1</td>
<td>Subclass 1: 1-Nitroalkenes</td>
<td>N. Ono</td>
</tr>
<tr>
<td>33.4.2</td>
<td>Product</td>
<td>2</td>
<td>Subclass 2: 1-Nitrosaalkenes</td>
<td>H.-U. Reissig and R. Zimmer</td>
</tr>
<tr>
<td>33.4.3</td>
<td>Product</td>
<td>3</td>
<td>Subclass 3: N-Alk-1-enyliminosulfur Compounds</td>
<td>H.-U. Reissig and R. Zimmer</td>
</tr>
<tr>
<td>33.4.4</td>
<td>Product</td>
<td>4</td>
<td>Subclass 4: Alk-1-enediazonium Salts, Alkeneazoxy, and Alkeneazo Compounds</td>
<td></td>
</tr>
<tr>
<td>33.4.5</td>
<td>Product</td>
<td>5</td>
<td>Subclass 5: N-Alk-1-enyliminophosphorus Compounds</td>
<td>H.-U. Reissig and R. Zimmer</td>
</tr>
<tr>
<td>33.4.6</td>
<td>Product</td>
<td>6</td>
<td>Subclass 6: Enamines</td>
<td>T. Sammakia, J. A. Abramite, and M. F. Sammons</td>
</tr>
<tr>
<td>33.4.7</td>
<td>Product</td>
<td>7</td>
<td>Subclass 7: Enammonium Salts</td>
<td>T. Sammakia, J. A. Abramite, and M. F. Sammons</td>
</tr>
<tr>
<td>33.4.8</td>
<td>Product</td>
<td>8</td>
<td>Subclass 8: N-Silylenamines</td>
<td>S. J. Collier</td>
</tr>
<tr>
<td>33.4.9</td>
<td>Product</td>
<td>9</td>
<td>Subclass 9: N-Borylenamines</td>
<td>S. J. Collier</td>
</tr>
<tr>
<td>33.4.10</td>
<td>Product Subclass 10: (N)-Haloenamines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S. J. Collier</td>
<td>487</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>33.4.11</th>
<th>Product Subclass 11: (N)-Alk-1- enylhydroxylamines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. J. Collier</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>33.4.12</th>
<th>Product Subclass 12: (N)-Alk-1- enylaminosulfur Compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. J. Collier</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>33.4.13</th>
<th>Product Subclass 13: Alk-1- enylhydrazines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. J. Collier and M. D. McLaws</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>33.4.14</th>
<th>Product Subclass 14: Alk-1- enyl Azides</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. J. Collier</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>33.4.15</th>
<th>Product Subclass 15: (N)-Alk-1- enaminophosphorus Compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. J. Collier</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>33.4.16</th>
<th>Product Subclass 16: 1,2-Dihydroazetes and Derivatives</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P. Jubault, E. Leclerc, and J.-C. Quirion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>33.4.17</th>
<th>Product Subclass 17: 2,3-Dihydro-1(H)-pyroles and Derivatives</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P. Jubault, E. Leclerc, and J.-C. Quirion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>33.4.18</th>
<th>Product Subclass 18: 1,2-Dihydropyridines, 1,4-Dihydropyridines, and Derivatives</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J.-C. Quirion, E. Leclerc, and P. Jubault</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>33.4.19</th>
<th>Product Subclass 19: 1,2,3,4-Tetrahydropyridines and Derivatives</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J.-C. Quirion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>33.4.20</th>
<th>Product Subclass 20: 2,3,4,5-Tetrahydro-1(H)-azepines, Larger Rings, and Derivatives</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J.-C. Quirion, E. Leclerc, and P. Jubault</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>33.5</th>
<th>Product Class 5: Alk-1-enyl Phosphorus Compounds</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>33.5.1</th>
<th>Product Subclass 1: Alk-1-enlyphosphonic Acids and Derivatives</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A. C. Gaumont and M. Gulea</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>33.5.2</th>
<th>Product Subclass 2: Alk-1-enlyphosphinic Acids and Derivatives</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A. C. Gaumont and M. Gulea</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>33.5.3</th>
<th>Product Subclass 3: Alk-1-enlyphoshine Oxides and Derivatives</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A. C. Gaumont and M. Gulea</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>33.5.4</th>
<th>Product Subclass 4: Alk-1-enlyphosphines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A. C. Gaumont and M. Gulea</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>33.5.5</td>
<td>Product Subclass 5: Alk-1-enylphosphonium Salts</td>
</tr>
<tr>
<td>33.5.6</td>
<td>Product Subclass 6: P-Heteroatom-Substituted Alk-1-enylphosphines</td>
</tr>
<tr>
<td>33.5.7</td>
<td>Product Subclass 7: 1,2-Dihydrophosphetes and Derivatives</td>
</tr>
<tr>
<td>33.5.8</td>
<td>Product Subclass 8: 2,3-Dihydro-1H-phospholes and Derivatives</td>
</tr>
<tr>
<td>33.5.9</td>
<td>Product Subclass 9: 1,2,3,4-Tetrahydrophosphinines and Derivatives</td>
</tr>
<tr>
<td>33.5.10</td>
<td>Product Subclass 10: 1,4-Dihydrophosphinines and Derivatives</td>
</tr>
</tbody>
</table>

Keyword Index ... 773

Author Index .. 817

Abbreviations .. 861
Table of Contents

Introduction
G. A. Molander

Introduction ... 1

33.1 Product Class 1: Alk-1-enyl Sulfur Compounds

33.1.1 Product Subclass 1: Alk-1-enesulfonic Acids and Derivatives
J. C. Carretero and R. G. Arrayás

33.1.1.1 Method 1: Synthesis from 2-Chloroalkanesulfonic Acid Derivatives 13
33.1.1.2 Method 2: Condensations of the Carbanions of Sulfonic Acid Derivatives with Carbonyl Compounds 14
33.1.1.2.1 Variation 1: Aldol-Type Condensations and Related Processes 14
33.1.1.2.2 Variation 2: Wadsworth–Emmons Alkenation Reactions 15
33.1.1.3 Method 3: Cyclic Alk-1-enesulfonic Esters and Sulfonamides by Metathesis Reactions 16
33.1.1.4 Methods 4: Miscellaneous Syntheses of Alk-1-enesulfonic Acid Derivatives from Other Sulfur Compounds 17

33.1.2 Product Subclass 2: Alk-1-enyl Sulfones
J. C. Carretero and R. G. Arrayás

33.1.2.1 Method 1: Sulfonylation of Nucleophilic Alkenyl Reagents 19
33.1.2.2 Method 2: Condensation of Sulfonyl Carbanions with Carbonyl Compounds 20
33.1.2.2.1 Variation 1: Aldol-Type Condensation and Dehydration 20
33.1.2.2.2 Variation 2: Knoevenagel Condensation of Activated Sulfones 22
33.1.2.2.3 Variation 3: Condensation of Sulfinyl(sulfonyl)methanes with Aldehydes 23
33.1.2.2.4 Variation 4: Horner–Wadsworth–Emmons Alkenation of α-Sulfonyl Phosphonates 24
33.1.2.2.5 Variation 5: Peterson Alkenation of α-Silylalkyl Sulfones 26
33.1.2.3 Method 3: Sulfonylation of Alkenes Followed by Elimination 28
33.1.2.3.1 Variation 1: Chlorosulfenylation of Alkenes, Followed by Sulfur Oxidation and Elimination 28
33.1.2.3.2 Variation 2: Sulfonomercuration of Alkenes Followed by Demercuration 29
33.1.2.3.3 Variation 3: Selenosulfonylation of Alkenes Followed by Selenium Oxidation 30
33.1.2.1.3.4 Variation 4: Iodosulfonylation of Alkenes Followed by Dehydroiodination 31
33.1.2.1.4 Method 4: Sulfonylation of Alkynes .. 33
33.1.2.1.5 Method 5: Functionalization of Alk-1-ynyl Sulfones 34
33.1.2.1.5.1 Variation 1: Addition Reactions .. 35
33.1.2.1.5.2 Variation 2: Cycloaddition Reactions 37
33.1.2.1.6 Method 6: Oxidation of Alk-1-ynyl Sulfides and Sulfoxides 37
33.1.2.1.7 Method 7: Functionalization of Allyl Sulfones and Derivatives 38
33.1.2.1.8 Method 8: Functionalization of Simple Alk-1-ynyl Sulfones 40
33.1.2.1.8.1 Variation 1: α-Functionalization 40
33.1.2.1.8.2 Variation 2: Heck Reaction .. 42
33.1.2.1.8.3 Variation 3: Cross-Metathesis Reactions 43
33.1.2.1.8.4 Variation 4: Diels–Alder Reactions of Dienyl Sulfones 44
33.1.2.1.8.5 Variation 5: Substitution of β-Functionalized Alk-1-ynyl Sulfones 45
33.1.3 Product Subclass 3: S-Alk-1-enylsulfoximides
J. C. Carretero and R. G. Arrayás

33.1.3.1 Synthesis of Product Subclass 3 .. 51
33.1.3.1.1 Method 1: Condensation of Sulfonimidoyl Carbanions with Carbonyl Compounds .. 51
33.1.3.1.1.1 Variation 1: Aldol-Type Condensations of α-Sulfonimidoyl Carbanions and the Dehydration of the Intermediate β-Hydroxylated Sulfoximides .. 52
33.1.3.1.1.2 Variation 2: Peterson and Wadsworth–Emmons Alkenation Reactions 54
33.1.3.1.2 Method 2: Imination of Alk-1-ynyl Sulfoxides 55
33.1.3.1.3 Method 3: Functionalization of Simple S-Alk-1-ynyl- and S-Alk-2-enylsulfoximides ... 56

33.1.4 Product Subclass 4: Alk-1-enesulfinic Acids and Derivatives
J. C. Carretero and R. G. Arrayás

33.1.4.1 Synthesis of Product Subclass 4 .. 59
33.1.4.1.1 Method 1: Reaction of Allenes and Alkynes with Sulfur Dioxide 59
33.1.4.1.2 Method 2: Oxidative Fragmentation of Alk-1-ynyl Benzyl Sulfoxides 60
33.1.4.1.3 Method 3: S-Oxidation of Isothiazol-3(2H)-ones 61

33.1.5 Product Subclass 5: Alk-1-ynyl Sulfoxides, Sulfinimides, and Related Compounds
J. C. Carretero and R. G. Arrayás

33.1.5.1 Synthesis of Product Subclass 5 .. 66
Product Subclass 6: Alk-1-enethiols
J. Drabowicz, P. Kiełbasiński, and M. Mikołajczyk

Product Subclass 7: Metal Alk-1-enethiolates
J. Drabowicz, P. Kiełbasiński, and M. Mikołajczyk
33.1.8 Product Subclass 8: Alk-1-enyl Sulfides
J. Drabowicz, P. Kiełbasiński, and M. Mikołajczyk

33.1.8 Synthesis of Product Subclass 8 .. 113
33.1.8.1 Synthesis of Acyclic Alk-1-enyl Sulfides 113
33.1.8.1.1 Method 1: Alkylation of Alk-1-enethiolates 113
33.1.8.1.2 Method 2: Transformations of 1-Haloalkenes and Their Analogues 114
33.1.8.1.2.1 Variation 1: Nucleophilic Substitution by Thiolate Anions and Their Analogues 114
33.1.8.1.2.2 Variation 2: Reactions of 1-Bromoalkenes with Trialkylstannyl Sulfides ... 115
33.1.8.1.2.3 Variation 3: Reactions with Copper Thiolates 116
33.1.8.1.2.4 Variation 4: Palladium-Catalyzed Reactions with Thiolanes and Their Equivalents 116
33.1.8.1.2.5 Variation 5: Photochemical Reactions between 1-Bromoalk-1-enes and Sulfides 119
33.1.8.1.2.6 Variation 6: Using Alk-1-enylmercury(II) Halides 119
33.1.8.1.2.7 Variation 7: Using Alk-1-enyltributylstannanes 120
33.1.8.1.2.8 Variation 8: Using (Trimethylsiloxy)alkenes 121
33.1.8.1.3 Method 3: Syntheses from Alkyl Sulfides 121
33.1.8.1.3.1 Variation 1: Dehydrohalogenation of Haloalkyl Sulfides 121
33.1.8.1.3.2 Variation 2: Manganese(IV) Oxide Promoted Reactions of Sulfides with Acetyl Chloride 125
33.1.8.1.3.3 Variation 3: Peterson Reactions of α-Silyl Derivatives 125
33.1.8.1.3.4 Variation 4: Decarboxylation of 2-(Methylsulfanyl)propanoic Acid 127
33.1.8.1.4 Method 4: Syntheses from Dithioacetals and Trithioorthoformates 128
33.1.8.1.4.1 Variation 1: Reactions with Sulfenyl Chlorides 128
33.1.8.1.4.2 Variation 2: Copper- or Lewis Acid Mediated Cleavages of Sulfides 129
33.1.8.1.4.3 Variation 3: Stereoselective Reduction of Ketene Dithioacetals 129
33.1.8.1.4.4 Variation 4: Phosphite-Mediated Elimination Reactions 130
33.1.8.1.4.5 Variation 5: From Trithioorthoformates 130
33.1.8.1.5 Method 5: Aldol Condensations of Sulfides Bearing an Electron-Withdrawing α-Substituent 131
33.1.8.1.6 Method 6: Syntheses via Organophosphorus Reagents 131
33.1.8.1.6.1 Variation 1: From Phosphorus Ylides 131
33.1.8.1.6.2 Variation 2: Wadsworth–Emmons–Horner Reactions 132
33.1.8.1.7 Method 7: Synthesis from Alkyl Sulfoxides 134
33.1.8.1.7.1 Variation 1: Pummerer-Type Rearrangement of α-Chloroalkyl Sulfoxides 134
33.1.8.1.7.2 Variation 2: Iodotrimethylsilyl-Induced Elimination–Deoxygenation of Sulfoxides 135
33.1.8.1.8 Method 8: Deoxygenation of Alk-1-enyl Sulfoxides 135
33.1.8.1.9 Method 9: Synthesis from Alkynyl Sulfoxides 136
33.1.8.1.9.1 Variation 1: Reduction of Alkynyl Sulfides 136
Variation 2: Hydroboration of Alkynyl Sulfides .. 137
Variation 3: Tantalum-Mediated Additions to Alkynyl Sulfides 137
Variation 4: Stereoselective Addition of Grignard Reagents to Alkynyl Sulfides ... 138
Variation 5: Addition of Organocopper Reagents to Alkynyl Sulfides 138
Method 10: Addition of Thiols or Their Derivatives to Alkynes 139
Variation 1: Free-Radical Additions .. 139
Variation 2: Addition of Thiolates to Alkynes .. 141
Variation 3: Metal-Catalyzed Addition of Thiols and Their Borabicyclo Derivatives to Alkynes ... 143
Variation 4: Addition of Sulfeny Halides or Sulfenamides to Alkynes 147
Method 11: Ring Opening of Epoxy Sulfides .. 149
Method 12: Reaction of Benzyne with Thiiranes 151
Method 13: Reaction of N-Tosylsulfimides with Potassium tert-Butoxide 151
Method 1: Reaction of Chlorotropylium Salts with Thiols 152
Method 2: Alkylation of Cycloalk-1-ene-1-thiolates 152
Method 3: Dehydrochlorination of Cyclic Sulfides 152
Variation 1: Chlorosulfenylation–Dehydrochlorination of Cycloalkenes 152
Variation 2: Addition of Thiols to Cycloalk-2- enones, Followed by Chlorination–Dehydrochlorination of the Adducts 153
Method 4: Synthesis from Cycloalkanones and Dithioacetals or Thiols 154
Method 5: Pummerer Reaction of Cyclic Sulfoxides 155
Method 6: Intramolecular Cyclization of Sulfines Derived from S- Unsaturated Dithioesters ... 156
Method 7: Intramolecular Trapping Reactions of Enethiols Functionalized by a Silyl Group ... 157
Method 1: Synthesis of Cyclic Alk-1-enyl Sulfides 157
Method 2: Addition of Thiols to But-1- en-3-ynes 162
Method 3: Reduction of (1E)-But-1-en-3-ynyl Ethyl Sulfides 163
Method 4: Base-Catalyzed Ring-Opening Reactions of Sulfur-Containing Heterocycles ... 163
Method 5: Horner–Wittig Reaction of Alkenyl Phosphine Oxides Functionalized with a Phenylsulfanyl Substituent 165
33.1.9 **Product Subclass 9: Alk-1-enylsulfonium Salts**
J. Drabowicz, P. Kiełbasiński, and M. Mikolażyck

33.1.9.1 **Synthesis of Product Subclass 9** .. 169

33.1.9.1.1 Method 1: Dehydrohalogenation of (2-Haloalkyl)sulfonium Salts 169

33.1.9.1.2 Method 2: S-Alkylation of Alk-1-enyl Sulfides 172

33.1.9.1.3 Method 3: Synthesis from Dithioacetals 173

33.1.9.1.4 Method 4: Synthesis from Alkenes .. 173

33.1.9.1.5 Method 5: Synthesis from Sulfonium Ylides Stabilized by a Phosphoryl Substituent 174

33.1.10 **Product Subclass 10: Alk-1-enesulfenic Acid Derivatives**
J. Drabowicz, P. Kiełbasiński, and M. Mikolażyck

33.1.10.1 **Synthesis of Product Subclass 10** .. 177

33.1.10.1.1 Method 1: Alk-1-enesulfenyl Chlorides by Chlorination of Enethiols or Alk-1-enyl Sulfides 177

33.1.10.1.2 Method 2: Alk-1-enesulfenyl Chlorides from Allenes and Sulfur Dichloride .. 178

33.1.10.1.3 Method 3: Alk-1-enesulfenyl Chlorides from Alkynes and Sulfur Dichloride .. 178

33.1.10.1.4 Method 4: Alkenesulfenamides by Addition of Amidosulfenyl Chlorides to Alkynes 179

33.1.10.1.5 Method 5: Alk-1-enesulfenamides from Alk-1-enesulfenate Anions .. 180

33.1.10.1.6 Method 6: Alk-1-enesulfenic Acids by the Enethiolization of Sulfines .. 181

33.1.11 **Product Subclass 11: Alk-1-enyl Disulfides**
J. Drabowicz, P. Kiełbasiński, and M. Mikolażyck

33.1.11.1 **Synthesis of Product Subclass 11** .. 183

33.1.11.1.1 Method 1: Sulfenylation of Alkenethiolate Anions 183

33.1.11.1.2 Method 2: Addition of Nucleophiles to Sulfines 185

33.1.12 **Product Subclass 12: Thietes and Derivatives**
E. Block

33.1.12.1 **Synthesis of Product Subclass 12** .. 188

33.1.12.1.1 **Synthesis by Ring-Closure Reactions** 188

33.1.12.1.1.1 Method 1: Reaction of Sulfenes and Ynamines or Ketene O,N-Acetals .. 188

33.1.12.1.1.2 Method 2: Photocycloaddition of Thiones to Alkynes 189

33.1.12.1.1.3 Method 3: Reaction of a Perfluorinated Alkene and tert-Butanethiol .. 190
33.1.13.1.6.1 Variation 1: Using Base or Hexacarbonylchromium Catalysis 206
33.1.13.1.6.2 Variation 2: From Halocyclizations 207
33.1.13.1.7 Method 7: Synthesis from 4,4-Dihalobut-3-enethiols 208
33.1.13.1.7.1 Variation 1: From 3-(Difluoromethylene)-2-methyl-6-phenylhexane-1-thiol 208
33.1.13.1.7.2 Variation 2: From 4,4-Dibromo-3-methylbut-3-ene-1-thiol 208
33.1.13.1.8 Method 8: Synthesis from 5-Substituted Pentan-2-ones 208
33.1.13.1.8.1 Variation 1: From 5-Sulfanylated Pentan-2-ones or 5-Bromopentan-2-ones 208
33.1.13.1.8.2 Variation 2: From O-Ethyl S-(4-Oxobutyl) Dithiocarbonates 209
33.1.13.1.9 Method 9: Intramolecular Michael Additions 210
33.1.13.1.10 Method 10: Cyclization of α-Phosphonovinyl Radicals 210
33.1.13.1.11 Method 11: Base-Induced Cyclizations of Alkynyl Benzyl Sulfides 211
33.1.13.1.12 Method 12: Intramolecular Wittig Reactions of Thioesters 212
33.1.13.1.13 Method 13: Intramolecular Titanocene(II)-Promoted Alkenations of Thioesters 212
33.1.13.1.14 Method 14: Photocyclization of Bis(2-phenylvinyl) Sulfide 213
33.1.13.1.2 Synthesis by Ring Transformation 214
33.1.13.1.2.1 Method 1: Formal Exchange of Ring Members with Retention of Ring Size 214
33.1.13.1.2.2 Method 2: Light-Induced Ring Contraction of 1,2-Dithiins 214
33.1.13.1.2.3 Method 3: Electrocyclic Ring Closure of Thionins 215
33.1.13.1.3 Synthesis by the Elimination Reactions of Thiolanes 215
33.1.13.1.3.1 Method 1: Synthesis from 2-Acetoxy- and 2-(Benzoyloxy)tetrahydrothiophenes 215
33.1.13.1.3.2 Method 2: Synthesis from 2- or 3-Hydroxy-, 3-Bromo-, or 2-(Alkylsulfanyl)tetrahydrothiophenes 216
33.1.13.1.3.3 Method 3: Bamford–Stevens Elimination of the Tosylhydrazone of Dihydrothiophen-3(2H)-one 217
33.1.13.1.4 Synthesis by Substituent Modification 218
33.1.13.1.4.1 Substitution of Hydrogen or Metals 218
33.1.13.1.4.1.1 Method 1: Lithiation of 2,3-Dihydrothiophene and Its Reactions with Electrophiles 218
33.1.13.1.4.1.2 Method 2: Replacement of Tin by Hydroxyalkyl Groups 218
33.1.13.1.4.2 Substitution of Heteroatoms 219
33.1.13.1.4.2.1 Method 1: Nucleophilic Substitutions of 3-Bromo-2,3-dihydrothiophene 1,1-Dioxide 219
33.1.13.1.4.2.2 Method 2: Substitution of a Trifluoromethylsulfonyloxy Group by a Metal 220
33.1.13.1.4.3 Addition Reactions 221
33.1.13.1.4.3.1 Method 1: Reduction of Thiophenes 221
33.1.13.1.4.3.1.1 Variation 1: Birch Reduction 221
33.1.13.1.4.3.1.2 Variation 2: Samarium(II) Iodide Mediated Double Electrophilic Reduction 221
33.1.13.1.4.3.2 Method 2: Dimerization of 2,3-Dihydrothiophene and Its 1,1-Dioxide 222
33.1.13.1.4.3.3 Method 3: Addition Reactions Involving Thiophene 1-Oxides 223
33.1.13.1.4.3.3.1 Variation 1: Dihydrodiol Formation or Oxidation/Dimerization 223
33.1.13.1.4.3.4 Method 4: Nucleophilic Additions to Thiophene 1-Oxides or 1,1-Dioxides 224
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.1.4.3.5</td>
<td>Method 5</td>
<td>Electrophilic Additions to Thiophene 1,1-Dioxides</td>
<td>225</td>
</tr>
<tr>
<td>33.1.4.3.6</td>
<td>Method 6</td>
<td>Diels–Alder Additions</td>
<td>226</td>
</tr>
<tr>
<td>33.1.4.3.7</td>
<td>Method 7</td>
<td>Ylide Formation</td>
<td>226</td>
</tr>
<tr>
<td>33.1.4.3.8</td>
<td>Method 8</td>
<td>Oxidation of the Sulfur Atom</td>
<td>227</td>
</tr>
<tr>
<td>33.1.4.3.9</td>
<td>Method 9</td>
<td>Sulfilimine Formation</td>
<td>227</td>
</tr>
<tr>
<td>33.1.4.4</td>
<td>Modification of Substituents</td>
<td></td>
<td>228</td>
</tr>
<tr>
<td>33.1.4.4.1</td>
<td>Method 1</td>
<td>Reduction of the Sulfoxide Group</td>
<td>228</td>
</tr>
<tr>
<td>33.1.4.4.2</td>
<td>Method 2</td>
<td>4,5-Dihydro-2-thienyl 2-Trifluoromethanesulfonate by Enolization of Thiophen-2(3H)-one</td>
<td>228</td>
</tr>
<tr>
<td>33.1.4.4.3</td>
<td>Method 3</td>
<td>Isomerization of 2,5-Dihydrothiophenes</td>
<td>228</td>
</tr>
<tr>
<td>33.1.4.4.4</td>
<td>Method 4</td>
<td>Base-Catalyzed Isomerization of 2,5-Dihydrothiophene 1,1-Dioxides</td>
<td>229</td>
</tr>
<tr>
<td>33.1.4.4</td>
<td>Modification of Substituents</td>
<td></td>
<td>228</td>
</tr>
<tr>
<td>33.1.4.4.1</td>
<td>Method 1</td>
<td>Reduction of the Sulfoxide Group</td>
<td>228</td>
</tr>
<tr>
<td>33.1.4.4.2</td>
<td>Method 2</td>
<td>4,5-Dihydro-2-thienyl 2-Trifluoromethanesulfonate by Enolization of Thiophen-2(3H)-one</td>
<td>228</td>
</tr>
<tr>
<td>33.1.4.4.3</td>
<td>Method 3</td>
<td>Isomerization of 2,5-Dihydrothiophenes</td>
<td>228</td>
</tr>
<tr>
<td>33.1.4.4.4</td>
<td>Method 4</td>
<td>Base-Catalyzed Isomerization of 2,5-Dihydrothiophene 1,1-Dioxides</td>
<td>229</td>
</tr>
<tr>
<td>33.1.4.4.5</td>
<td>Method 5</td>
<td>Modification of Substituents</td>
<td></td>
</tr>
<tr>
<td>33.1.4.5</td>
<td>Applications of Product Subclass 13 in Organic Synthesis</td>
<td></td>
<td>229</td>
</tr>
<tr>
<td>33.1.4.5.1</td>
<td>Method 1</td>
<td>Use as a Protecting Group for Alcohols</td>
<td>229</td>
</tr>
<tr>
<td>33.1.4.5.2</td>
<td>Method 2</td>
<td>Nickel-Catalyzed Replacement of a Vinylic C—S Bond with a C—C Bond</td>
<td>230</td>
</tr>
<tr>
<td>33.1.4.5.3</td>
<td>Method 3</td>
<td>Aromatization of 2,3-Dihydrothiophenes</td>
<td>230</td>
</tr>
<tr>
<td>33.1.4.5.4</td>
<td>Method 4</td>
<td>Photoisomerism of 2,3-Dihydrothiophenes to 2-Alkylidenediethynediol</td>
<td>230</td>
</tr>
<tr>
<td>33.1.4.5.5</td>
<td>Method 5</td>
<td>Conversion of 2,3-Dihydrothiophenes into 6-Oxo-2-thiabicyclo[3.2.0]heptane-4-carboxylic Acids</td>
<td>230</td>
</tr>
<tr>
<td>33.1.4.5.6</td>
<td>Method 6</td>
<td>[2 + 2]-Photochemical Cycloadditions to 2,3-Dihydrothiophene 1,1-Dioxide</td>
<td>231</td>
</tr>
<tr>
<td>33.1.4.5.7</td>
<td>Method 7</td>
<td>3,4-Dihydro-2H-thiopyrans from 2,3-Dihydrothiophenium Methylides</td>
<td>232</td>
</tr>
</tbody>
</table>

33.1.14 Product Subclass 14: 3,4-Dihydro-2H-thiopyrans and Derivatives
E. Block

<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.1.14</td>
<td>Product Subclass 14: 3,4-Dihydro-2H-thiopyrans and Derivatives</td>
<td></td>
<td>235</td>
</tr>
<tr>
<td>33.1.14.1</td>
<td>Synthesis of Product Subclass 14</td>
<td></td>
<td>235</td>
</tr>
<tr>
<td>33.1.14.1.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td></td>
<td>235</td>
</tr>
<tr>
<td>33.1.14.1.1.1</td>
<td>Method 1</td>
<td>Synthesis from 1,5-Diketones and Hydrogen Sulfide/Hydrogen Chloride, Phosphorus Pentasulfide, or Hexamethyldisilathiane</td>
<td>236</td>
</tr>
<tr>
<td>33.1.14.1.1.2</td>
<td>Method 2</td>
<td>Synthesis from 1,4-Dien-3-ones and 1-En-4-yne-3-ones by Michael Addition</td>
<td>237</td>
</tr>
<tr>
<td>33.1.14.1.1.3</td>
<td>Method 3</td>
<td>Synthesis from Propenethial</td>
<td>238</td>
</tr>
<tr>
<td>33.1.14.1.1.4</td>
<td>Method 4</td>
<td>Synthesis from Propenethial 5,5-Dioxide</td>
<td>239</td>
</tr>
<tr>
<td>33.1.14.1.1.5</td>
<td>Method 5</td>
<td>Synthesis from Other Enethiones</td>
<td>239</td>
</tr>
<tr>
<td>33.1.14.1.1.6</td>
<td>Method 6</td>
<td>Synthesis from Benzothietes</td>
<td>242</td>
</tr>
<tr>
<td>33.1.14.1.1.7</td>
<td>Method 7</td>
<td>Double Michael Additions of Malonate Anions to Alk-1-enyl Alk-1-yne Sulfones</td>
<td>242</td>
</tr>
<tr>
<td>33.1.14.1.1.8</td>
<td>Method 8</td>
<td>Combination of Enones and Two Three-Atom Fragments</td>
<td>243</td>
</tr>
<tr>
<td>33.1.14.1.1.9</td>
<td>Method 9</td>
<td>Photolysis of Pent-4-yne-thiol</td>
<td>243</td>
</tr>
</tbody>
</table>
Method 10: Synthesis from \(\omega \)-Halothioacylsilanes

Method 11: Synthesis from 3-Methyl-6-sulfanylhexan-2-ones

Method 12: Synthesis from a 5,5-Dibromopent-4-enethiol or a 5,5-Dibromopent-4-enyl Sulfide

Method 13: Synthesis from 1-(Arene sulfonyl)-5-iodobut-1-enyl Methyl Sulfides

Method 14: Thermal Rearrangement of Prop-2-ynyl Vinyl Sulfide

Method 15: Cope Rearrangement of Thiocarbonyl Compounds

Method 16: Electrocyclic Ring Closure of (3E,5Z)-1,1,1,7,7,7-Hexafluoro-3,4,5-tris(trifluoromethyl)hepta-3,5-diene-2-thione

Method 17: Cyclization of S-Allyl \(\alpha \)-Phosphonovinyl Radicals

Method 1: Ring Enlargement of Acyldihydrothiophenes

Method 2: Ring Enlargement of 4,5-Dihydrothiophenium and Thiophenium 1-Methylides

Synthesis from Dihydro- and Tetrahydrothiopyrans

Method 1: Rearrangement and/or Elimination Reactions

Substitution of Hydrogen

Method 1: Lithiation of 3,4-Dihydro-2\(H \)-thiopyrans, 2\(H \)-Thiopyrans, and 4\(H \)-Thiopyrans

Method 1: Replacement of Lithium by Organostannyl and Organosilyl Groups

Addition Reactions

Method 1: Dimerization of 3,4-Dihydro-2\(H \)-thiopyran

Method 2: Oxidation of the Sulfur Atom

Method 3: Sulfilimine Formation

Modification of Substituents

Method 1: Enolization of Dihydrothiopyranones

Method 2: Cationic Interconversion of 4\(H \)-Thiopyrans into 2\(H \)-Thiopyrans

Method 3: Base-Induced Conversions of 2\(H \)-Thiopyrans into 4\(H \)-Thiopyrans

Method 4: Photochemical Conversion of a 2\(H \)-Thiopyran into a 4\(H \)-Thiopyran

Applications of Product Subclass 14 in Organic Synthesis

Method 1: Nickel-Catalyzed Replacement of a Vinylic C–S Bond with a C–C Bond

Method 2: Synthesis of Thiopyrylium Salts

Method 3: Synthesis of 4-Methylene-2,6-diphenyl-4\(H \)-thiopyrans

Method 4: Synthesis of Chiral Auxiliaries for Corey–Chaykovsky Epoxidation

Method 5: Protecting Group for Alcohols
Product Subclass 15: 2,3,4,5-Tetrahydrothiepins, Larger Rings, and Derivatives
E. Block

33.1.15

33.1.15

33.1.15.1

33.1.15.1.1

33.1.15.1.2

33.1.15.1.3

33.1.15.1.4

33.1.15.1.5

33.1.15.1.6

33.1.15.1.7

33.1.15.1.8

33.1.15.1.9

33.1.15.2

33.1.15.2.1

33.1.15.2.2

33.1.15.2.3

33.1.15.2.4

33.1.15.2.5

33.1.15.2.6

33.1.15.3

33.1.15.3.1

33.1.15.3.2

33.1.15.3.3

33.1.15.3.4

33.1.15.3.5

33.1.15.3.6

33.1.15.4

33.1.15.4.1

33.1.15.4.2
33.1.15.1.4.2 Substitution of Metals .. 270
33.1.15.1.4.2.1 Method 1: Replacement of Lithium by Alkyl and Hydroxyalkyl Groups 270
33.1.15.1.4.3 Addition Reactions .. 271
33.1.15.1.4.3.1 Method 1: Oxidation of the Sulfur Atom 271

33.2 Product Class 2: Alk-1-enyl Selenium Compounds
D. Avilov and D. Dittmer

33.2 Product Class 2: Alk-1-enyl Selenium Compounds ... 275
33.2.1 Product Subclass 1: Alk-1-enyl Selenones .. 275
33.2.1.1 Synthesis of Product Subclass 1 .. 275
33.2.1.1.1 Method 1: Oxidation of Alk-1-enyl Selenides 275
33.2.2 Product Subclass 2: Alk-1-enyl Selenoxides ... 276
33.2.2.1 Synthesis of Product Subclass 2 .. 276
33.2.2.1.1 Method 1: Oxidation of Alk-1-enyl Selenides 276
33.2.3 Product Subclass 3: Alk-1-eneselenols ... 277
33.2.3.1 Synthesis of Product Subclass 3 .. 277
33.2.3.1.1 Method 1: Reaction of Divinyl Diselenides with Tributyltin Hydride 277
33.2.4 Product Subclass 4: Metal Alk-1-eneselenolates ... 277
33.2.4.1 Synthesis of Product Subclass 4 .. 278
33.2.4.1.1 Method 1: Reaction of Metal Complexes with 1,2,3-Selenadiazoles 278
33.2.4.1.2 Method 2: Addition of Metal Complexes Containing Selenium Ligands to Alkynes ... 279
33.2.4.1.3 Method 3: Exchange of Selenolate Ligands in Metal Complexes 279
33.2.4.1.4 Methods 4: Other Methods .. 280
33.2.5 Product Subclass 5: Alk-1-enyl Selenides ... 280
33.2.5.1 Synthesis of Product Subclass 5 .. 281
33.2.5.1.1 Method 1: Coupling of Organoselenenyl Halides or Diorgano Diselenides with Alk-1-enyl Heteroatom Derivatives 281
33.2.5.1.1.1 Variation 1: Reaction of Organoselenenyl Halides with Alk-1-enylMagnesium Halides .. 281
33.2.5.1.1.2 Variation 2: Reaction of Areneselenenyl Halides and Related Compounds with Alk-1-enylzirconocenes .. 282
33.2.5.1.1.3 Variation 3: Reaction of an Areneselenenyl Halide with Vinylboronic Acids and Esters .. 282
33.2.5.1.1.4 Variation 4: Reaction of Areneselenenyl Halides with Alk-1-enyl(trialkyl)stannanes and Related Reactions 283
33.2.5.1.1.5 Variation 5: Reaction of Areneselenenyl Halides and Related Compounds with Alk-1-enyllithiums .. 283
33.2.5.1.2 Method 2: Coupling of Metal Selenides or Metal Alkane- or Areneselenolates with Alk-1-enyl Heteroatom Derivatives and Related Reactions 283
33.2.5.1.3 Method 3: Addition–Elimination of Organoselenium Compounds to Alkenes ... 284
33.2.5.1.3.1 Variation 1: Addition–Elimination of Organoselenenyl Halides and Related Compounds .. 285
33.2.5.1.3.2 Variation 2: Addition–Elimination of Selenols .. 285
33.2.5.1.4 Method 4: Wittig, Horner–Wadsworth–Emmons, and Related Reactions of Selenium Precursors with Carbonyl Compounds 286
33.2.5.1.5 Method 5: Addition of Selenium Compounds to Alkynes 287
33.2.5.1.5.1 Variation 1: Addition of Selenols .. 287
33.2.5.1.5.2 Variation 2: Addition of Arene- or Alkaneselenenyl Halides, Selenosulfonates, and Related Compounds 288
33.2.5.1.5.3 Variation 3: Addition of Diselenides .. 289
33.2.5.1.5.4 Variation 4: Addition of Other Compounds Containing a Selenium–Heteroatom Bond .. 290
33.2.5.1.5.5 Variations 5: Other Variations .. 291
33.2.5.1.6 Method 6: Addition of Selenium Compounds to Allenes .. 291
33.2.5.1.7 Method 7: Addition to Alk-1-ynylselenium Compounds .. 291
33.2.5.1.7.1 Variation 1: Addition to Alk-1-ynyl Selenides .. 291
33.2.5.1.7.2 Variation 2: Addition to Metal Alk-1-yneselenolates .. 294
33.2.5.1.8 Method 8: Double Bond Shift of Allyl Selenides and Related Reactions .. 295
33.2.5.1.9 Methods 9: Other Methods .. 295
33.2.6 Product Subclass 6: Alk-1-enylselenonium Salts .. 295
33.2.6.1 Synthesis of Product Subclass 6 .. 295
33.2.6.1.1 Method 1: Alkylation of Alken-1-yl Selenides .. 295
33.2.6.1.2 Method 2: Addition of Nucleophiles to Alk-1-ynylselenonium Salts .. 296
33.2.7 Product Subclass 7: Alk-1-enyl Polyeselenides .. 296
33.2.7.1 Synthesis of Product Subclass 7 .. 296
33.2.7.1.1 Method 1: Oxidation of Metal Alk-1-eneselenolates .. 297
33.3 Product Class 3: Alk-1-enyl Tellurium Compounds
D. Avilov and D. Dittmer
33.3 Product Class 3: Alk-1-enyl Tellurium Compounds .. 303
33.3.1 Product Subclass 1: Alk-1-enyl-º6-tellanes .. 303
33.3.1.1 Synthesis of Product Subclass 1 .. 303
33.3.1.1.1 Method 1: Substitution of Pentaaryltellurium Trifluoromethanesulfonates .. 303
33.3.2 Product Subclass 2: Alk-1-enyl Telluroxides .. 304
33.3.2.1 Synthesis of Product Subclass 2 .. 304
33.3.2.1.1 Method 1: Addition of Benzenetellurinyl Trifluoromethanesulfonate to Alkynes .. 304
33.3.2.1.2 Method 2: Oxidation of Alk-1-enyl Tellurides .. 304
33.3.3 Product Subclass 3: Alk-1-enyl-º4-tellanes .. 305
33.3.3.1 Synthesis of Product Subclass 3 .. 305
33.3.3.1.1 Method 1: Metal–Tellurium Exchange .. 305
33.3.3.1.2 Method 2: Addition of Halogens to Alk-1-enyl Tellurides 305
33.3.3.1.3 Method 3: Addition of Tellurium(IV) Halides or Organotellurium Trihalides to Alkynes .. 306
33.3.3.1.4 Method 4: Exchange of Groups on Tellurium in Alk-1-enyl-\(\lambda^4\)-tellanes 307
33.3.3.2 Applications of Product Subclass 3 in Organic Synthesis 308
33.3.4 Product Subclass 4: Alk-1-enyl Tellurides ... 308
33.3.4.1 Synthesis of Product Subclass 4 .. 308
33.3.4.1.1 Method 1: Coupling of Organotellurenyl Halides or Diorganoditellanes with Alk-1-enyl Anions or Radical Equivalents 308
33.3.4.1.1.1 Variation 1: Reaction of Organotellurenyl Halides with Grignard Reagents .. 309
33.3.4.1.1.2 Variation 2: Reaction of Organotellurenyl Halides with Alkynylboranes or Vinylaluminum Compounds .. 309
33.3.4.1.1.3 Variation 3: Reaction of Organotellurenyl Halides with Alk-1-enyl Zirconocenes .. 310
33.3.4.1.1.4 Variation 4: Reaction of Organotellurenyl Halides and Derivatives with Alk-1-enyl Cuprates or Alk-1-enyl Mercury Derivatives 311
33.3.4.1.1.5 Variation 5: Reaction of 1,2-Bis[(Z)-2-lithiovinyl]benzene Derivatives and [(1Z,3Z)-1-Lithio-4-(2-lithiophenyl)buta-1,3-dienyl]-(trimethyl)silane with Tellurium Tetrachloride .. 312
33.3.4.1.1.6 Variation 6: Intramolecular Baylis–Hillman Reactions of Organotellurenyl Bromides .. 313
33.3.4.1.2 Method 2: Alkylation of Alk-1-enyltelluride Anions 313
33.3.4.1.3 Method 3: Displacement Reactions on Alk-1-enyl Derivatives by Telluride Anions .. 314
33.3.4.1.4 Method 4: Wittig and Related Reactions ... 315
33.3.4.1.5 Method 5: Addition of Tellurium Compounds to Alkynes or Allenes ... 316
33.3.4.1.5.1 Variation 1: Addition of Tellurols and Metal Tellurides ... 316
33.3.4.1.5.2 Variation 2: Addition of Organotellurenyl Halides and Amides 318
33.3.4.1.5.3 Variation 3: Free-Radical Additions of Tellurium Species 319
33.3.4.1.5.4 Variation 4: Addition of Iron–Telluride Complexes 320
33.3.4.1.6 Method 6: Reductions of Tellurium Compounds 320
33.3.4.1.6.1 Variation 1: Reduction of Alk-1-enyl Telluroxides 320
33.3.4.1.6.2 Variation 2: Reduction of Alk-1-enyltellurium Halides 321
33.3.4.1.6.3 Variation 3: Reduction of Alk-1-enylditellanes 322
33.3.4.1.6.4 Variation 4: Reduction of Alkynyl Tellurides 322
33.3.4.1.7 Method 7: Additions to Alkynyl Tellurides 322
33.3.4.1.8 Method 8: Modifications of Existing Alk-1-enyl Tellurium Species 323
33.3.4.1.8.1 Variation 1: Addition Reactions to the C=C Bond of Alk-1-enyl Tellurides 323
33.3.4.1.8.2 Variation 2: Replacement or Modification of Substituents on the C=C Bond of Alk-1-enyl Tellurides .. 324
33.3.4.1.9 Methods 9: Other Methods ... 326
33.3.4.2 Applications of Product Subclass 4 in Organic Synthesis 327
33.3.5 Product Subclass 5: Alk-1-enyltelluronium Salts 328
33.3.5.1 Synthesis of Product Subclass 5 .. 328
33.3.5.1.1 Method 1: Alkylation of Alk-1-enyl Tellurides

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 1</td>
<td>Alkylation of Alk-1-enyl Tellurides</td>
<td>328</td>
</tr>
</tbody>
</table>

33.3.5.1.2 Method 2: Displacement of Stannanes, Boronic Acids, and Iodophenyl Groups

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 2</td>
<td>Displacement of Stannanes, Boronic Acids, and Iodophenyl Groups</td>
<td>328</td>
</tr>
</tbody>
</table>

33.3.6 Product Subclass 6: Dialk-1-enylditellanes

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 1</td>
<td>Oxidation of Alk-1-enyl Metal Tellurides</td>
<td>329</td>
</tr>
</tbody>
</table>

33.3.6.1 Synthesis of Product Subclass 5

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 1</td>
<td>Oxidation of Alk-1-enyl Metal Tellurides</td>
<td>329</td>
</tr>
</tbody>
</table>

33.4 Product Class 4: Alk-1-enyl Nitrogen Compounds

33.4.1 Product Subclass 1: 1-Nitroalkenes

N. Ono

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 1</td>
<td>Nitration of Alkenes</td>
<td>337</td>
</tr>
</tbody>
</table>

33.4.1.1 Synthesis of Product Subclass 1

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 1</td>
<td>Nitration of Alkenes</td>
<td>337</td>
</tr>
</tbody>
</table>

33.4.1.1.1 Variation 1: Nitration of Vinyllsilanes or Vinylstannanes

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 1</td>
<td>Nitration of Vinyllsilanes or Vinylstannanes</td>
<td>342</td>
</tr>
</tbody>
</table>

33.4.1.1.2 Variation 2: Nitration of α,β-Unsaturated Carboxylic Acids

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 1</td>
<td>Nitration of α,β-Unsaturated Carboxylic Acids</td>
<td>343</td>
</tr>
</tbody>
</table>

33.4.1.2 Method 2: Oxidation of Oximes and Amines

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 2</td>
<td>Oxidation of Oximes and Amines</td>
<td>344</td>
</tr>
</tbody>
</table>

33.4.1.3 Method 3: Elimination Reactions of β-Substituted Nitro Compounds

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 3</td>
<td>Elimination Reactions of β-Substituted Nitro Compounds</td>
<td>345</td>
</tr>
</tbody>
</table>

33.4.1.3.1 Variation 1: Dehydration of β-Nitro Alcohols

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 1</td>
<td>Dehydration of β-Nitro Alcohols</td>
<td>346</td>
</tr>
</tbody>
</table>

33.4.1.3.2 Variation 2: Elimination of Acids from β-Nitro Esters

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 2</td>
<td>Elimination of Acids from β-Nitro Esters</td>
<td>350</td>
</tr>
</tbody>
</table>

33.4.1.3.3 Variation 3: Elimination of HX from β-Nitro Halides

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 3</td>
<td>Elimination of HX from β-Nitro Halides</td>
<td>353</td>
</tr>
</tbody>
</table>

33.4.1.3.4 Variation 4: Wittig-Type Reaction

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 4</td>
<td>Wittig-Type Reaction</td>
<td>354</td>
</tr>
</tbody>
</table>

33.4.1.3.5 Variation 5: Elimination from β-Nitro Sulfides and Sulfoxides

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 5</td>
<td>Elimination from β-Nitro Sulfides and Sulfoxides</td>
<td>355</td>
</tr>
</tbody>
</table>

33.4.1.3.6 Variation 6: Elimination from α-Nitro Selenoxides and β-Nitro Selenoxides

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 6</td>
<td>Elimination from α-Nitro Selenoxides and β-Nitro Selenoxides</td>
<td>356</td>
</tr>
</tbody>
</table>

33.4.1.4 Method 4: Synthesis from α-Nitro Ketones

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 4</td>
<td>Synthesis from α-Nitro Ketones</td>
<td>357</td>
</tr>
</tbody>
</table>

33.4.1.4.1 Variation 1: Synthesis of β-Nitroenamines and β-Nitrovinyl Sulfides

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 1</td>
<td>Synthesis of β-Nitroenamines and β-Nitrovinyl Sulfides</td>
<td>359</td>
</tr>
</tbody>
</table>

33.4.1.5 Method 5: Addition–Elimination Reactions of Nitroalkenes

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 5</td>
<td>Addition–Elimination Reactions of Nitroalkenes</td>
<td>360</td>
</tr>
</tbody>
</table>

33.4.1.5.1 Variation 1: Using Carbon Nucleophiles

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 1</td>
<td>Using Carbon Nucleophiles</td>
<td>360</td>
</tr>
</tbody>
</table>

33.4.1.5.2 Variation 2: Using Heteroatom Nucleophiles

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 2</td>
<td>Using Heteroatom Nucleophiles</td>
<td>365</td>
</tr>
</tbody>
</table>

33.4.2 Product Subclass 2: 1-Nitrosoalkenes

H.-U. Reissig and R. Zimmer

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 1</td>
<td>Nitrosation Reactions</td>
<td>371</td>
</tr>
</tbody>
</table>

33.4.2.1 Synthesis of Product Subclass 2

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 1</td>
<td>Nitrosation Reactions</td>
<td>371</td>
</tr>
</tbody>
</table>

33.4.2.1.1 Variation 1: Nitrosation of Alkenes

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 1</td>
<td>Nitrosation of Alkenes</td>
<td>371</td>
</tr>
</tbody>
</table>

33.4.2.1.2 Variation 2: Nitrosation of Alkynes

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 1</td>
<td>Nitrosation of Alkynes</td>
<td>372</td>
</tr>
</tbody>
</table>

33.4.2.1.3 Variation 3: Nitrosation of Allenes

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 1</td>
<td>Nitrosation of Allenes</td>
<td>372</td>
</tr>
</tbody>
</table>

33.4.2.1.4 Method 2: Elimination Reactions

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 2</td>
<td>Elimination Reactions</td>
<td>372</td>
</tr>
</tbody>
</table>

33.4.2.1.5 Variation 1: Dehydrohalogenation of α-Halooximes

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method 1</td>
<td>Dehydrohalogenation of α-Halooximes</td>
<td>372</td>
</tr>
</tbody>
</table>
33.4.2.1.2 Variation 2: Elimination of Trialkylsilanol from Silyl Nitronates 373
33.4.2.1.3 Method 3: Thermolysis Reactions ... 375
33.4.2.1.4 Method 4: Photolysis Reactions .. 375
33.4.2.1.5 Method 5: Reductions of Nitroalkenes 376
33.4.2.1.5.1 Variation 1: Electrochemical Reduction 376
33.4.2.1.5.2 Variation 2: Reduction with Phosphorus Compounds 376
33.4.2.1.6 Method 6: Oxidation Reactions ... 377
33.4.2.1.7 Method 7: Ring-Opening Reactions ... 377
33.4.2.1.7.1 Variation 1: From Epoxides .. 377
33.4.2.1.7.2 Variation 2: From Isoxazoles .. 378
33.4.2.1.8 Method 8: Isomerization Reactions ... 378
33.4.2.1.9 Method 9: Skeletal Rearrangement Reactions 379
33.4.2.1.10 Method 10: Alkylation of Oximes ... 379
33.4.2.1.11 Method 11: Derivatization of Stable Nitrosoalkenes 380
33.4.2.2 Applications of Product Subclass 2 in Organic Synthesis 381
33.4.2.2.1 Method 1: Reactions with Nucleophiles 381
33.4.2.2.2 Method 2: Synthesis of \(\alpha,\beta \)-Unsaturated Oximes 382
33.4.2.2.3 Method 3: \([4 + 2]\) Cycloadditions .. 383
33.4.2.2.4 Method 4: Electrocyclic Ring-Closure Reactions 385

33.4.3 Product Subclass 3: N-Alk-1-enyliminosulfur Compounds
H.-U. Reissig and R. Zimmer

33.4.3.1 Synthesis of Product Subclass 3 .. 391
33.4.3.1.1 Method 1: Reaction of \(\beta \)-Alkoxy Michael Acceptors with
 Sulfoximides and Sulfodiimines .. 391
33.4.3.1.1.1 Variation 1: Reactions with Sulfoximides 391
33.4.3.1.1.2 Variation 2: Reactions with Sulfodiimines 392
33.4.3.1.2 Method 2: Reaction of Alkynes with Dialkylsulfonium Salts 392
33.4.3.1.3 Method 3: Reaction of Ethyl Bromoacetate with Sulfoximides 393
33.4.3.1.4 Method 4: Reaction of 4-Amino-1,2-dihydropyrazol-3-one with
 Thionyl Chloride ... 393

33.4.4 Product Subclass 4: Alk-1-enediazonium Salts, Alkeneazoxy,
and Alkeneazo Compounds

33.4.4.1 Product Subclass 4: Alk-1-enediazonium Salts, Alkeneazoxy,
and Alkeneazo Compounds .. 395
33.4.5 Product Subclass 5: N-Alk-1-enyliminophosphorus Compounds
H.-U. Reissig and R. Zimmer

33.4.5 Product Subclass 5: N-Alk-1-enyliminophosphorus Compounds

33.4.5.1 Method 1: Reactions of β-Alkox Michael Acceptors with Triphenyl-
phosphine Imide

33.4.5.1.2 Method 2: Reactions of Azides with Triarylphosphines and
Triorganyl Phosphites

33.4.5.1.2.1 Variation 1: With Triarylphosphines

33.4.5.1.2.2 Variation 2: With Triorganyl Phosphites

33.4.5.1.3 Method 3: Reactions of Nitriles with Triarylphosphines

33.4.5.1.4 Method 4: Reactions of Heterocycles Bearing β-Acceptor-Substituted
Enamine Moieties with Triarylphosphines

33.4.5.1.5 Method 5: Elimination Reactions of (α-Azidoalkyl)benzotriazoles

33.4.5.2 Applications of Product Subclass 5 in Organic Synthesis

33.4.5.2.1 Method 1: Aza-Wittig Reactions

33.4.5.2.2 Method 2: Synthesis of Heterocycles

33.4.6 Product Subclass 6: Enamines
T. Sammakia, J. A. Abramite, and M. F. Sammons

33.4.6 Product Subclass 6: Enamines

33.4.6.1 Method 1: Condensation of a Ketone or Aldehyde with an Amine

33.4.6.1.1 Variation 1: Via Benzotriazole Aminals

33.4.6.1.2 Variation 2: Using Azeotropic Removal of Water

33.4.6.1.3 Variation 3: By the Action of Protic Acid Catalysis

33.4.6.1.4 Variation 4: By the Action of Molecular Sieves as Catalysts and Desiccants

33.4.6.1.5 Variation 5: By the Action of Calcium Chloride as a Desiccant

33.4.6.1.6 Variation 6: By the Action of Titanium(IV) Chloride as a Promoter

33.4.6.1.7 Variation 7: By the Action of Boron Trifluoride–Diethyl Ether Complex as
a Catalyst

33.4.6.1.2 Method 2: Oxidative Amination

33.4.6.1.3 Method 3: Cross-Coupling Reactions

33.4.6.1.3.1 Variation 1: Of Bromides

33.4.6.1.3.2 Variation 2: Of Chlorides

33.4.6.1.3.3 Variation 3: Of Sulfonates

33.4.6.1.4 Method 4: Substitution and Addition–Elimination Reactions

33.4.6.1.5 Method 5: Elimination of Hydrogen

33.4.6.1.5.1 Variation 1: Dehydrogenation

33.4.6.1.5.2 Variation 2: Transfer Dehydrogenation

33.4.6.1.6 Method 6: Elimination of a Metal Hydroxide

33.4.6.1.7 Method 7: Addition of Hydrogen

33.4.6.1.7.1 Variation 1: Reduction of Enamides
33.4.6.1.7.2 Variation 2: Dissolving Metal Reduction of Aromatic Amines 423
33.4.6.1.8 Method 8: Hydroamination ... 423
33.4.6.1.9 Method 9: Addition of Organometallic Reagents to Nitriles 426
33.4.6.1.10 Method 10: Hydroaminomethylation ... 428
33.4.6.1.11 Method 11: Isomerization ... 429
33.4.6.1.12 Method 12: Wittig Reaction of Amides .. 432
33.4.6.1.13 Method 13: Horner–Wittig Reaction of Ketones and Aldehydes 433
33.4.6.1.14 Method 14: Alkylideneation of Carbonyl Groups via Titanium Carbenes 434
33.4.6.1.14.1 Variation 1: Using Dialkyltitanocenes ... 435
33.4.6.1.14.2 Variation 2: Using Tebbe’s Reagent .. 436
33.4.6.1.14.3 Variation 3: Takai Alkylideneation ... 436
33.4.6.1.14.4 Variation 4: Alkylideneation of Amides with Thioacetals Using a Titanium(II) Complex .. 437

33.4.7 Product Subclass 7: Enammonium Salts
T. Sammakia, J. A. Abramite, and M. F. Sammons

33.4.7.1 Synthesis of Product Subclass 7 ... 443
33.4.7.1.1 Method 1: Alkylation of Enamines .. 443
33.4.7.1.2 Method 2: Conjugate Addition/Elimination 444
33.4.7.1.3 Method 3: Alkylation/Elimination ... 445
33.4.7.1.4 Method 4: Copper-Catalyzed S$_{N}$2’ Substitution of Propargyl Chlorides 445
33.4.7.1.5 Method 5: Elimination of a Hydrogen Halide or Water 446
33.4.7.1.6 Method 6: Addition of Trialkylammonium Salts to Activated Alkynes ... 447
33.4.7.1.7 Method 7: Cyclopropyliminium Ion Rearrangement 447

33.4.8 Product Subclass 8: N-Silylenamines
S. J. Collier

33.4.8.1 Synthesis of Product Subclass 8 ... 451
33.4.8.1.1 Method 1: Synthesis from Imines ... 451
33.4.8.1.1.1 Variation 1: Direct Silylation of Imines or Enamines 453
33.4.8.1.1.2 Variation 2: Other Approaches Involving Imines 458
33.4.8.1.2 Method 2: Synthesis from Nitriles ... 460
33.4.8.1.2.1 Variation 1: Nucleophilic Attack on Nitriles 460
33.4.8.1.2.2 Variation 2: Other Approaches Involving Nitriles 466
33.4.8.1.3 Method 3: Isomerization Reactions .. 467
33.4.8.1.4 Methods 4: Miscellaneous Methods ... 469
33.4.9 Product Subclass 9: N-Borylenamines
S. J. Collier

33.4.9 Product Subclass 9: N-Borylenamines .. 475
33.4.9.1 Synthesis of Product Subclass 9 ... 477
33.4.9.1.1 Method 1: Direct Borylation of Imines (or Enamines) 477
33.4.9.1.2 Method 2: Synthesis from 1,2-Azaborolium Salts 480
33.4.9.1.3 Method 3: Synthesis from Other N-Borylenamines 481
33.4.9.1.4 Methods 4: Miscellaneous Procedures 483

33.4.10 Product Subclass 10: N-Haloenamines
S. J. Collier

33.4.10 Product Subclass 10: N-Haloenamines 487
33.4.10.1 Synthesis of Product Subclass 10 ... 487
33.4.10.1.1 Method 1: Halogenation of Enamides 487
33.4.10.1.2 Method 2: N-Halopyridinones and Related Compounds by
Direct Halogenation ... 488

33.4.11 Product Subclass 11: N-Alk-1-enylhydroxylamines
S. J. Collier

33.4.11 Product Subclass 11: N-Alk-1-enylhydroxylamines 493
33.4.11.1 Synthesis of Product Subclass 11 .. 494
33.4.11.1.1 Method 1: Conjugate Addition Reactions of Hydroxylamines 494
33.4.11.1.1.1 Variation 1: With Alkenes .. 494
33.4.11.1.1.2 Variation 2: With Alkynes ... 496
33.4.11.1.2 Method 2: Synthesis from Hydroxylamines and Aldehydes or
Ketones 498
33.4.11.1.3 Methods 3: Miscellaneous Methods 500

33.4.12 Product Subclass 12: N-Alk-1-enylaminosulfur Compounds
S. J. Collier

33.4.12 Product Subclass 12: N-Alk-1-enylaminosulfur Compounds 503
33.4.12.1 Synthesis of Product Subclass 12 .. 504
33.4.12.1.1 Method 1: Synthesis from Imines and Enamines and
Electrophilic Sulfur Agents .. 504
33.4.12.1.2 Method 2: Synthesis from N-Sulfonylimines and Related
Compounds ... 505
33.4.12.1.2.1 Variation 1: Through Deprotonation and Quenching of
N-Sulfanyl- and N-Sulfinylimines .. 505
33.4.12.1.2.2 Variation 2: Through Nucleophilic Attack on N-Sulfonylimines . 506
33.4.12.1.3 Method 3: Synthesis from Primary and Secondary Sulfonamides . 509
33.4.12.1.4 Method 4: Synthesis through 1,2-Elimination Reactions of Amines . 511
33.4.12.1.5 Method 5: Synthesis through Cross-Coupling Reactions 512
Product Subclass 13: Alk-1-enylhydrazines
S. J. Collier and M. D. McLaws

Product Subclass 13: Alk-1-enylhydrazines

Synthesis of Product Subclass 13

Method 1: Synthesis from Hydrazines and Carbonyl Compounds
Variation 1: Monosubstituted or N,N-Disubstituted Hydrazines
Variation 2: N,N'-Disubstituted Hydrazines or Trisubstituted Hydrazines
Method 2: Synthesis by Conjugate Addition
Variation 1: Of Hydrazines to Alkynes
Variation 2: Of Hydrazines to β-Substituted Alkenes
Methods 3: Miscellaneous Methods

Product Subclass 14: Alk-1-enyl Azides
S. J. Collier

Product Subclass 14: Alk-1-enyl Azides

Synthesis of Product Subclass 14

Method 1: Condensation of Arylaldehydes with α-Azido-Esters
Method 2: 1,2-Elimination Reactions
Method 3: 1,4-Addition Reactions
Methods 4: Miscellaneous Methods

Product Subclass 15: N-Alk-1-enylaminophosphorus Compounds
S. J. Collier

Product Subclass 15: N-Alk-1-enylaminophosphorus Compounds

Synthesis of Product Subclass 15

Method 1: Synthesis from Imines or Enamines and Phosphorus Electrophiles
Method 2: Synthesis from Phosphamides and Aldehydes
Method 3: Synthesis from N-Allylphosphoric Triamides
Method 4: Synthesis from Nitriles
Methods 5: Miscellaneous Methods

Product Subclass 16: 1,2-Dihydroazetes and Derivatives
P. Jubault, E. Leclerc, and J.-C. Quirion

Product Subclass 16: 1,2-Dihydroazetes and Derivatives

Synthesis of Product Subclass 16

Synthesis by Ring-Closure Reactions
33.4.16.1.1 Method 1: Addition of Amines to a Perfluoroenone 577
33.4.16.1.2 Method 2: Addition of Amines to Hexafluoropropene Trimers 578
33.4.16.1.3 Method 3: [2 + 2] Cycloaddition between an Imine and a Ketene Aminal 579
33.4.16.1.2 Elimination Reactions from Azetidines ... 579
33.4.16.1.2.1 Method 1: Elimination of a Methanesulfonate Group 579
33.4.16.1.2.1.1 Variation 1: Synthesis of N-Acyl-1,2-dihydroazetes 579
33.4.16.1.2.1.2 Variation 2: Synthesis of N-Mesyl- and N-Nitro-1,2-dihydroazetes 580
33.4.16.1.2.2 Method 2: 1,2-Photoaromatization Reaction of an Azabicyclohexane-Type Diels–Alder Adduct 580
33.4.16.1.3 Synthesis by Substituent Modification .. 581
33.4.16.1.3.1 Method 1: Addition of Malonate Derivatives to Azetes 581
33.4.17 Product Subclass 17: 2,3-Dihydro-1H-pyrroles and Derivatives
P. Jubault, E. Leclerc, and J.-C. Quirion

33.4.17 Product Subclass 17: 2,3-Dihydro-1H-pyrroles and Derivatives 583
33.4.17.1 Synthesis of Product Subclass 17 .. 583
33.4.17.1.1 Synthesis by Ring-Closure Reactions ... 583
33.4.17.1.1.1 Method 1: Addition/Cyclization of Sulfonamide Anions with Alkynyliodonium Trifluoromethanesulfonates ... 583
33.4.17.1.1.2 Method 2: Iodocyclization of Alk-3-ynylsulfonamides 584
33.4.17.1.1.3 Method 3: Palladium-Catalyzed Cyclization of α-Propargyl α-Amino Esters .. 585
33.4.17.1.1.4 Method 4: Ring-Closing Metathesis of N-Alk-3-ethyl-N-alk-1-ynylsulfonamides ... 585
33.4.17.1.1.5 Method 5: Ring-Closing Metathesis of N-Alk-3- enylenamines 586
33.4.17.1.2 Elimination Reactions from Pyrrolidines .. 587
33.4.17.1.2.1 Method 1: Reduction of Lactams Followed by Elimination 587
33.4.17.1.2.2 Method 2: Dehydration of Pyrrolidin-3-ols .. 591
33.4.17.1.3 Synthesis by Substituent Modification ... 592
33.4.17.1.3.1 Method 1: Heck Reactions of 2,3-Dihydropyroles 592
33.4.17.1.3.2 Method 2: Isomerizing Heck Reactions of 2,5-Dihydropyroles 593
33.4.17.1.3.3 Method 3: Coupling Reactions of Lactam-Derived Alkenyl Trifluoromethanesulfonates ... 595

33.4.18 Product Subclass 18: 1,2-Dihydropyridines, 1,4-Dihydropyridines, and Derivatives
J.-C. Quirion, E. Leclerc, and P. Jubault

33.4.18 Product Subclass 18: 1,2-Dihydropyridines, 1,4-Dihydropyridines, and Derivatives .. 601
33.4.18.1 Synthesis of Product Subclass 18 ... 601
33.4

33.4.18.1.1 Synthesis by Ring-Closure Reactions .. 601

33.4.18.1.1 Method 1: Three-Component Hantzsch Synthesis 601
33.4.18.1.1.1 Variation 1: Classical Hantzsch Reaction ... 601
33.4.18.1.1.2 Variation 2: Microwave Activation ... 602
33.4.18.1.1.3 Variation 3: Miscellaneous Approaches ... 603
33.4.18.1.1.4 Variation 4: Solid-Phase Hantzsch Synthesis 604
33.4.18.1.2 Method 2: Addition/Cyclization of Nitrogen Nucleophiles to Dicarbonyl Compounds .. 605
33.4.18.1.3 Method 3: Aza-Diels–Alder Reaction of 1-Azadienes 607
33.4.18.1.4 Method 4: Asymmetric Two-Component Hantzsch Reaction 609
33.4.18.1.5 Method 5: 6π-Electrocyclization of 1-Azatrienes 610

33.4.18.1.2 Synthesis by Ring Transformation .. 611
33.4.18.1.2.1 Method 1: Rearrangement of a 3,6,7-Triazatricyclo[3.2.1.0^2,4]octane Derivative ... 611
33.4.18.1.2.2 Method 2: Radical Deoxygenation of 3-Azatricyclo[2.2.1.0^2,6]-heptan-5-ols ... 612

33.4.18.1.3 Synthesis by Substituent Modification .. 612
33.4.18.1.3.1 Addition Reactions ... 612
33.4.18.1.3.1.1 Method 1: Hydride Reductions ... 612
33.4.18.1.3.1.2 Method 2: Dissolving-Metal Reductions ... 614
33.4.18.1.3.1.3 Method 3: Dithionite Reductions ... 615
33.4.18.1.3.1.4 Method 4: Addition of Grignard Reagents 615
33.4.18.1.3.1.5 Method 5: Addition of Organotin Reagents 617
33.4.18.1.3.1.6 Method 6: Addition of Organocopper and Organocuprate Reagents ... 618
33.4.18.1.3.1.7 Method 7: Addition of Enolates and Enol Ethers 620
33.4.18.1.3.1.8 Method 8: Addition of Other Carbon Nucleophiles 621
33.4.18.1.3.1.9 Method 9: Asymmetric Addition of Nucleophiles to Pyridinium Salts ... 622
33.4.18.1.3.1.9.1 Variation 1: Chirality on the Nitrogen Atom 622
33.4.18.1.3.1.9.2 Variation 2: Addition to Chiral Nicotinic Acid Derivatives 624
33.4.18.1.3.1.9.3 Variation 3: Catalytic Asymmetric Reissert Reaction 625

33.4.19 Product Subclass 19: 1,2,3,4-Tetrahydropyridines and Derivatives
J.-C. Quirion

33.4.19 Product Subclass 19: 1,2,3,4-Tetrahydropyridines and Derivatives 629
33.4.19.1 Synthesis of Product Subclass 19 ... 629
33.4.19.1.1 Synthesis by Ring-Closure Reactions .. 629
33.4.19.1.1.1 Method 1: [4 + 2]-Cycloaddition Reactions of 1-Azabutadienes 630
33.4.19.1.1.1.1 Variation 1: Cyclization of N-Acyl-2-cyano-1-azabutadienes 630
33.4.19.1.1.1.2 Variation 2: Cyclization of N-Phenyl-2-cyano-1-azabutadienes 631
33.4.19.1.1.1.3 Variation 3: Cyclization of 2-Cyano-N-(ethoxycarbonyl)-1-azabutadienes 632
33.4.19.1.2 Method 2: Photochemical Cycloaddition of 3-Aminopropenals and Alkenes ... 632
33.4.19.1.3 Method 3: Cyclization/Isomerization of δ-Chloroimines 633
33.4.19.1.3.1 Variation 1: In Situ Preparation of δ-Chloroimines 633
33.4.19.1.3.2 Variation 2: Cyclization after Isolation of δ-Chloroimines 633
33.4.19.1.3.3 Variation 3: Nucleophile-Induced Cyclization of δ-Chloroimines 634
33.4.19.1.4 Method 4: Intramolecular Cyclization of Aminoaldehydes and Derivatives ... 635
33.4.19.1.4.1 Variation 1: Intramolecular Cyclization of Amino Acetals 635
33.4.19.1.4.2 Variation 2: Intramolecular Cyclization of an Amide and an Aldehyde or Acetal .. 636
33.4.19.1.4.3 Variation 3: Intramolecular Cyclization of Carbamates and Aldehydes 637
33.4.19.1.4.4 Variation 4: Intramolecular Condensation of Tosylamines and Acetals 638
33.4.19.1.5 Method 5: Palladium-Induced Intramolecular Cyclization of an \(\omega \)-Alkenic Tosylamide .. 639
33.4.19.1.6 Method 6: Transition-Metal-Catalyzed Cyclization 639
33.4.19.1.6.1 Variation 1: Platinium-Mediated Cycloisomerization of Ene-Ynamides 639
33.4.19.1.6.2 Variation 2: Ring-Closing Metathesis of Ene-Ynamides 640
33.4.19.1.6.3 Variation 3: Ring-Closing Metathesis of Ene-Enamides 640
33.4.19.1.7 Method 7: Intramolecular Cyclization of Enamino Esters, Ketones, or Sulfones ... 641
33.4.19.1.7.1 Variation 1: Cyclization Involving a Halogen Leaving Group 641
33.4.19.1.2 Synthesis by Transformation of a Cyclic Substrate 643
33.4.19.1.2.1 Method 1: Reduction/Elimination of a Lactam 643
33.4.19.1.2.1.1 Variation 1: Reduction of Unsatuated Lactams 643
33.4.19.1.2.2 Method 2: Elimination of a Phenylselanyl Group 644
33.4.19.1.2.3 Method 3: Hydrogenation of Pyridine, Pyridinium Salts, and Dihydropyridines ... 644
33.4.19.1.2.4 Method 4: Hydride Reduction of Pyridines and Dihydropyridines 646
33.4.19.1.2.5 Method 5: Addition Reactions to 2,3-Dihydropyridinium Salts 647
33.4.19.1.2.5.1 Variation 1: Addition of Organometallic Compounds 648
33.4.19.1.2.5.2 Variation 2: Addition of Alcohols, Thiols, and Amines 649
33.4.19.1.2.5.3 Variation 3: Addition of \(\beta \)-Dicarbonyl Anions 650
33.4.19.1.2.6 Method 6: 2-Carbamoylation of 1,4-Dihydropyridines 650
33.4.19.1.3 Functionalization of 1,2,3,4-Tetrahydropyridines 651
33.4.19.1.3.1 Method 1: Carboxymethylation of Substituted Vinyl Trifluoromethanesulfonates .. 652
33.4.19.1.3.2 Method 2: Suzuki Reactions of Vinyl Trifluoromethanesulfonates 653
33.4.19.1.3.3 Method 3: Functionalization of Boronates 654
33.4.19.1.3.4 Method 4: Coupling Reactions of Vinyl Phosphates 655
33.4.20 Product Subclass 20: 2,3,4,5-Tetrahydro-1H-azepines, Larger Rings, and Derivatives
J.-C. Quirion, E. Leclerc, and P. Jubault

33.4.20 Product Subclass 20: 2,3,4,5-Tetrahydro-1H-azepines, Larger Rings, and Derivatives .. 659
33.4.20.1 Synthesis of Product Subclass 20 ... 659
33.4.20.1.1 Synthesis by Ring-Closure Reactions .. 659
33.4.20.1.1.1 Method 1: Rhodium-Catalyzed Alkene–Allene Carbocyclization 659
33.4.20.1.2 Elimination Reactions .. 660
33.4.20.1.2.1 Method 1: Elimination Reactions of 2-Hydroxyazepanes and Derivatives 660
33.4.20.1.3 Synthesis by Substituent Modification 660
33.4.20.1.3.1 Method 1: Hydrodesulfurization of a Thiolactam-Derived Enol Ether 660
33.4.20.1.3.2 Method 2: Coupling Reactions of Lactam-Derived Vinyl Trifluoromethanesulfonates .. 661
33.4.20.1.3.3 Method 3: Reduction and Suzuki Coupling Reactions of Lactam-Derived Vinyl Phosphates .. 662

33.5 Product Class 5: Alk-1-enyl Phosphorus Compounds

33.5.1 Product Subclass 1: Alk-1-enylphosphonic Acids and Derivatives
A. C. Gaumont and M. Gulea

33.5.1 Product Subclass 1: Alk-1-enylphosphonic Acids and Derivatives 665
33.5.1.1 Synthesis of Product Subclass 1 .. 665
33.5.1.1.1 Method 1: Hydrophosphorylation of Alkynes 665
33.5.1.1.1.1 Variation 1: Metal-Catalyzed Hydrophosphorylation 665
33.5.1.1.1.2 Variation 2: Base-Catalyzed Hydrophosphorylation 666
33.5.1.1.2 Method 2: P–C Bond Formation from Dialkyl Phosphonates or Trialkyl Phosphites and Vinyl Halides 667
33.5.1.1.2.1 Variation 1: Michaelis–Arbuzov-Type Reaction 668
33.5.1.1.2.2 Variation 2: Metal-Catalyzed Reaction of Dialkyl Phosphonates and Vinyl Halides .. 668
33.5.1.1.3 Method 3: Wittig–Horner-Type Alkenation 669
33.5.1.1.3.1 Variation 1: Deprotonation of Methylenebis(phosphonates) 669
33.5.1.1.3.2 Variation 2: Halogen–Lithium Exchange from (Halomethyl)phosphonates 671
33.5.1.1.3.3 Variation 3: Synthesis from (Dialkoxyphosphoryl)phosphoniomethanides 672
33.5.1.1.4 Method 4: Peterson-Type Alkenylation 673
33.5.1.1.4.1 Variation 1: Synthesis from (1-Silylalkyl)phosphonates 673
33.5.1.1.4.2 Variation 2: Synthesis from Alkylphosphonates by In Situ Silylation 673
33.5.1.1.4.3 Variation 3: Synthesis from Bis-silylated Methylphosphonates 674
33.5.1.1.5 Method 5: Other Alkenation Reactions .. 675
33.5.1.1.5.1 Variation 1: Synthesis from α-Stannylated Carbanions 675
33.5.1.1.5.2 Variation 2: Synthesis from \(\text{\textalpha-}\text{Sulfinyl Carbanions} \) .. 676

33.5.1.1.6 Method 6: Knoevenagel-Type Reactions .. 677

33.5.1.1.6.1 Variation 1: Using an Aldehyde and a Base–Titanium(IV) Chloride System 677

33.5.1.1.6.2 Variation 2: Using Bis-aminals and \(\text{\textalpha-}\text{Haloacetic Acids} \) 678

33.5.1.1.6.3 Variation 3: Using Aldehydes and Tributylarsine 679

33.5.1.1.7 Method 7: Mannich-Type Reaction .. 679

33.5.1.1.8 Method 8: Oxidative Elimination of Sulfanyl or Selanyl Moieties 680

33.5.1.1.9 Method 9: Elimination from \(\beta\)-Heteroatom-Substituted Alkylphosphonates .. 680

33.5.1.1.9.1 Variation 1: Dehydrohalogenation .. 680

33.5.1.1.9.2 Variation 2: Dehydration .. 681

33.5.1.1.9.3 Variation 3: Elimination of Nitrous Acid 681

33.5.1.1.10 Method 10: Hydrogenation of Alk-1-ynylphosphonates 682

33.5.1.1.11 Method 11: 1,4-Addition of Nucleophiles to Alk-1-ynylphosphonates 683

33.5.1.1.12 Method 12: Synthesis from Organometallic Intermediates Generated from Alk-1-ynylphosphonates .. 683

33.5.1.1.12.1 Variation 1: Synthesis from (Borylalk-1- enyl)phosphonates 684

33.5.1.1.12.2 Variation 2: Synthesis from (Phosphorylalk-1- enyl)copper(I) Compounds 685

33.5.1.1.12.3 Variation 3: Synthesis from (Tellanylalk-1- enyl)phosphonates 686

33.5.1.1.12.4 Variation 4: Synthesis from Zirconacyclic and Titanacyclic Phosphonates 686

33.5.1.1.13 Method 13: Modification of the Existing Double Bond in Alk-1- enylphosphonates .. 688

33.5.1.1.13.1 Variation 1: Metal-Catalyzed Cross-Coupling Reactions 689

33.5.1.1.13.2 Variation 2: Alkene Cross Metathesis 690

33.5.1.1.14 Method 14: Transformation of Alk-1- enylphosphonates into the Corresponding Phosphonic Acids .. 690

33.5.1.1.14.1 Variation 1: Acidic Hydrolysis .. 691

33.5.1.1.14.2 Variation 2: Using Bromotrtrimethylsilane 691

33.5.2 Product Subclass 2: Alk-1- enylphosphinic Acids and Derivatives
A. C. Gaumont and M. Gulea

33.5.2 Product Subclass 2: Alk-1- enylphosphinic Acids and Derivatives 695

33.5.2.1 Synthesis of Product Subclass 2 .. 695

33.5.2.2 Method 1: Hydrophosphinylation of Alkynes 695

33.5.2.2.1 Method 1: Hydrophosphinylation of Alkynes 695

33.5.2.2.2 Method 2: Synthesis from Alkylphosphonochloridates and Vinlyc Organometallic Compounds .. 696

33.5.2.2.1.3 Method 3: Metal-Catalyzed Phosphorus–Carbon Cross-Coupling Reactions .. 697

33.5.2.2.4 Method 4: Alkenylation Reactions .. 698

33.5.2.2.1.5 Method 5: Elimination from \(\beta\)-Heteroatom-Substituted Alkylphosphinic Esters .. 699
33.5.3 Product Subclass 3: Alk-1-enylphosphine Oxides and Derivatives
A. C. Gaumont and M. Gulea

33.5.3 Product Subclass 3: Alk-1-enylphosphine Oxides and Derivatives 701

33.5.3.1 Synthesis of Product Subclass 3 ... 701

33.5.3.1.1 Method 1: Hydrophosphinylation of Alkynes 701

33.5.3.1.2 Method 2: Metal-Catalyzed Phosphorus–Carbon Cross-Coupling Reaction ... 702

33.5.3.1.3 Method 3: Alkenation Reactions ... 703

33.5.3.1.4 Method 4: Elimination from \(\alpha \)-Oxygenated Alkylphosphine Oxides 704

33.5.3.1.4.1 Variation 1: From \((1\text{-Hydroxyalkyl}) \)phosphine Oxides 704

33.5.3.1.4.2 Variation 2: From \((1,2\text{-Epoxyalkyl}) \)phosphine Oxides 704

33.5.3.1.5 Method 5: Elimination from \(\beta \)-Heteroatom-Substituted Alkylphosphine Oxides ... 705

33.5.3.1.6 Method 6: Nucleophilic 1,4-Addition to Alk-1-ynylphosphine Oxides 705

33.5.3.1.7 Method 7: Synthesis from Organometallic Intermediates Generated from Alk-1-ynylphosphine Oxides ... 706

33.5.3.1.8 Method 8: Modification of an Existing Double Bond 707

33.5.3.1.9 Method 9: Oxidation of Alk-1-enylphosphines 708

33.5.3.1.10 Method 10: Acidic Hydrolysis of \(P \)-Alk-1-enylphosphinous Amides 709

33.5.4 Product Subclass 4: Alk-1-enylphosphines
A. C. Gaumont and M. Gulea

33.5.4 Product Subclass 4: Alk-1-enylphosphines ... 711

33.5.4.1 Synthesis of Product Subclass 4 .. 711

33.5.4.1.1 Method 1: Hydrophosphination of Alkynes with Primary or Secondary Phosphines ... 711

33.5.4.1.1.1 Variation 1: Hydrophosphination under Basic Conditions 712

33.5.4.1.1.2 Variation 2: Radical-Catalyzed Hydrophosphination 713

33.5.4.1.1.3 Variation 3: Thermal Hydrophosphination ... 714

33.5.4.1.1.4 Variation 4: Metal-Catalyzed Hydrophosphination 714

33.5.4.1.2 Method 2: Metal-Catalyzed Phosphorus–Carbon Cross-Coupling Reactions ... 716

33.5.4.1.2.1 Variation 1: Palladium-Catalyzed Phosphorus–Carbon Cross-Coupling Reactions ... 716

33.5.4.1.2.2 Variation 2: Nickel-Catalyzed Phosphorus–Carbon Cross-Coupling Reactions ... 718

33.5.4.1.3 Method 3: Reaction between Halophosphines and Vinylvic Organometallic Derivatives ... 719

33.5.4.1.4 Method 4: Reduction of Phosphorus Compounds 720

33.5.4.1.4.1 Variation 1: Reduction of Phosphonates and Phosphinates 720

33.5.4.1.4.2 Variation 2: Reduction of Chlorophosphines 721

33.5.4.1.5 Methods 5: Miscellaneous Methods ... 722
33.5.5 Product Subclass 5: Alk-1-enylphosphonium Salts
A. C. Gaumont and M. Gulea

33.5.5 Product Subclass 5: Alk-1-enylphosphonium Salts

33.5.5.1 Synthesis of Product Subclass 5

33.5.5.1.1 Method 1: Alkenylation of Tertiary Phosphines

33.5.5.1.1.1 Variation 1: Nucleophilic Addition of Triphenylphosphine to Activated Alkynes

33.5.5.1.2 Variation 2: Metal-Catalyzed Addition of Triphenylphosphine to Alkynes

33.5.5.1.2.1 Method 2: Modification of Phosphoranes or Phosphonium Salts

33.5.5.1.2.2 Variation 1: Addition–Elimination Reactions of Phosphoranes

33.5.5.1.2.2 Variation 2: Elimination–Addition from Vinylidene Bisphosphonium Salts

33.5.5.1.3 Methods 3: Miscellaneous Methods

33.5.6 Product Subclass 6: P-Heteroatom-Substituted Alk-1-enylphosphines
A. C. Gaumont and M. Gulea

33.5.6 Product Subclass 6: P-Heteroatom-Substituted Alk-1-enylphosphines

33.5.6.1 Synthesis of Product Subclass 6

33.5.6.1.1 Method 1: Alk-1-enyl(aminophosphines by Vinylation of Halophosphines

33.5.6.1.1 Variation 1: Synthesis from Amino(chloro)phosphines

33.5.6.1.2 Variation 2: Synthesis from Amino(chloro)phosphines Generated In Situ

33.5.6.1.2 Method 2: Alk-1-enylphosphonous Diamides by Reaction between Enamines, Phosphorus Trihalides, and Amines

33.5.6.1.3 Method 3: Alk-1-enylphosphonous Dihalides by the Reaction of Phosphorus Trihalides and Organometallic Derivatives

33.5.6.1.4 Method 4: Alk-1-enyl(halo)phosphines by the Reaction of Tungsten–Phosphinidene Complexes and Chloroalkenes

33.5.7 Product Subclass 7: 1,2-Dihydrophosphetes and Derivatives
Gy. Keglevich and H. Szélke

33.5.7 Product Subclass 7: 1,2-Dihydrophosphetes and Derivatives

33.5.7.1 Synthesis of Product Subclass 7

33.5.7.1.1 Synthesis by Ring-Closure Reactions

33.5.7.1.1 Method 1: Ring-Fused 1,2-Dihydrophosphetes by Cycloaddition of 1,2-Thiaphospholes and Ynamines

33.5.7.1.1.2 Method 2: A 1-Imino-1,2-dihydro-1\(^5\)-phosphet-1-amine by Cycloaddition of an Imino(methylene)phosphorane and an Acetylene

33.5.7.1.1.3 Method 3: A 1-Imino-1,2-dihydro-1\(^5\)-phosphet-1-amine by Ring Closure of a Phosphabuta-1,3-diene Effected by an Azide

33.5.7.1.1.4 Method 4: Phosphetium Salts of Ring-Fused 1,2-Dihydrophosphetes by Ring Closure of (Arylmethylene)chlorophosphoranes

Science of Synthesis Original Edition Volume 33 © Georg Thieme Verlag KG
Method 5: Synthesis of a 2-Methylene-1,2-dihydrophosphete via a Zirconium-Containing Tricyclic 1,2-Dihydrophosphete

Synthesis by Ring Transformation

Method 1: Ring Expansion of Cycloprop-2-enylidenephosphines with Azides

Method 2: 1,2-Dihydrophosphetes by Titanium-Phosphorus Exchange of a Titanacyclobutene

Method 3: A 1,2-Dihydrophosphete 1-Oxide by Ring Contraction of a 2,3-Dihydro-1,2-thiaphosphole Using Ethanol

Product Subclass 8: 2,3-Dihydro-1H-phospholes and Derivatives

Synthesis of Product Subclass 8

Synthesis by Ring-Closure Reactions

Variation 1: Reaction of Phosphorus Trihalides and Buta-1,3-dienes Followed by Reaction with Alcohols

Variation 2: Reaction of a Dichlorophosphite and a Buta-1,3-diene

Method 2: 1-Chloro-4-methyl-2,3-dihydro-1H-phospholes by Reduction of the Phosphorus Trichloride–Isoprene McCormack Cycloadduct

Method 3: 1-Phenyl-2,3-dihydro-1H-phosphole 1-Oxides by McCormack Reaction of Dichloro(phenyl)phosphine and Buta-1,3-dienes Followed by Hydrolysis

Method 4: 1-Substituted 2,3-Dihydro-1H-phosphole 1-Oxides by Cyclization of Benzylphosphine Oxides and α,β-Unsaturated Ketones

Method 5: 1-Phenyl-2,3-dihydro-1H-phospholes by Intramolecular Cyclization of But-3-enylchloro(phenyl)phosphines

Synthesis by Double-Bond Rearrangement of 2,5-Dihydro-1H-phosphole Derivatives

Method 1: 1-Methyl-2,3-dihydro-1H-phosphate 1-Oxides and Sulfides by Acid- or Base-Catalyzed Isomerization

Method 2: A 5-(Diphenylphosphoryl)-2,3-dihydro-1H-phosphate 1-Oxide by Isomerization with Substitution of a 2,5-Dihydro-1H-phosphole 1-Oxide

Method 3: Annulated 2,3-Dihydro-1H-phospholes by Isomerization with Substitution of 2,5-Dihydro-1H-phospholes Followed by Ring Closure

Method 4: 3-Aryl-2,3-dihydro-1H-phosphate 1-Oxides by Isomerization with Arylation of 2,5-Dihydro-1H-phosphate 1-Oxides
33.5.8.1.2.5 Method 5: 3-Bromo-1-phenyl-2,3-dihydro-1H-phosphole 1-Oxide by Isomerization with Bromination of 1-Phenyl-2,5-dihydro-1H-phosphole 1-Oxide 751

33.5.8.1.2.6 Method 6: 4-Methoxy-1-methyl-2,3-dihydro-1H-phosphole 1-Oxide by Isomerization with Chloro Substitution of 3-Chloro-1-methyl-2,5-dihydro-1H-phosphole 1-Oxide .. 752

33.5.8.1.3 Synthesis by Elimination Reactions .. 752

33.5.8.1.3.1 Method 1: 2,3-Dihydro-1H-phosphole 1-Oxides by Base-Catalyzed Rearrangement of 6-Oxa-3-phosphabicyclo[3.1.0]hexanes 752

33.5.8.1.3.2 Method 2: A 3-Substituted 2,3-Dihydro-1H-phosphole 1-Oxide by Reaction of a 6-Oxa-3-phosphabicyclo[3.1.0]hexane with a Malonic Ester Derivative ... 753

33.5.8.1.3.3 Method 3: A 2,3-Dihydro-1H-phosphole 1-Oxide by Dehydration of a 2,3,4,5-Tetrahydro-1H-phosphol-2-ol 1-Oxide .. 753

33.5.8.1.4 Synthesis by Double-Bond Rearrangement of Phosphole Derivatives 754

33.5.8.1.4.1 Method 1: 3-Methylene-2,3-dihydro-1H-phosphole Sulfides by Isomerization of 3-Methyl-1H-phosphole 1-Sulfides .. 754

33.5.8.1.4.2 Method 2: 3-Methylene-2,3-dihydro-1H-phosphole 1-Oxides by Thallium Ethoxide Mediated Conversion of 1-Benzyl-3-methyl-1H-phospholium Salts ... 754

33.5.8.1.5 Synthesis of Fused 2,3-Dihydro-1H-phospholes by Cyclopropanation of 1H-Phospholes .. 755

33.5.8.1.5.1 Method 1: 2-Phosphabicyclo[3.1.0]hex-3-ene 2-Oxides by Cyclopropanation of 1H-Phospholes with Diazomethane ... 755

33.5.8.1.5.2 Method 2: A 2-Phosphabicyclo[3.1.0]hex-3-ene 2-Oxide by Intramolecular Cyclopropanation of a 1-(Iodomethyl)phospholium Salt .. 756

33.5.8.1.5.3 Method 3: 2-Phosphabicyclo[3.1.0]hex-3-ene 2-Sulfides by Cyclopropanation of 1H-Phosphole 1-Sulfides with Ethyl Diazoacetate .. 756

33.5.9 Product Subclass 9: 1,2,3,4-Tetrahydrophosphinines and Derivatives

33.5.9.1 Synthesis of Product Subclass 9 ... 759

33.5.9.1.1 Synthesis by Ring-Closure Reactions ... 759

33.5.9.1.1.1 Method 1: 1,2,3,4-Tetrahydrophosphinines by Cycloaddition of an In Situ Formed Phosphabuta-1,3-diene and Unsaturated Esters .. 759

33.5.9.1.1.2 Method 2: A 1,2,3,4-Tetrahydrophosphinine 1-Oxide by Cyclization of a Diallylphosphine Oxide with Isomerization ... 759

33.5.9.1.2 Synthesis by Double-Bond Rearrangement of Tetrahydrophosphinines 760

33.5.9.1.2.1 Method 1: 1,2,3,4-Tetrahydrophosphinines via Bromination of the Corresponding 1,2,3,6-Tetrahydrophosphinines .. 760
33.5.9.1.3 Synthesis by Selective Saturation .. 761
33.5.9.1.3.1 Method 1: A 1,2,3,4-Tetrahydrophosphinine 1-Oxide by Hydrogenation of a 1,2-Dihydrophosphinine 1-Oxide 761
33.5.9.1.3.2 Method 2: A 4-(Dichloromethylene)-1,2,3,4-tetrahydrophosphinine 1-Oxide via Hydroboration of the Corresponding 1,4-Dihydrophosphinine 1-Oxide ... 761
33.5.9.1.3.3 Method 3: A 1,2,3,4-Tetrahydrophosphinin-4-one 1-Oxide by Hydrolysis of a λ³-Phosphinine .. 761

33.5.10 Product Subclass 10: 1,4-Dihydrophosphinines and Derivatives
Gy. Keglevich and H. Szelke

33.5.10 Product Subclass 10: 1,4-Dihydrophosphinines and Derivatives 765
33.5.10.1 Synthesis of Product Subclass 10 ... 765
33.5.10.1.1 Synthesis by Ring-Closure Reactions ... 765
33.5.10.1.1.1 Method 1: 1,4-Dihydrophosphinines by Reaction of 1,4-Dienes with Arylphosphines .. 765
33.5.10.1.1.2 Method 2: 1,4-Dihydrophosphinines by Reaction of Dilithiated Penta-1,4-dienes with Dichlorophosphines 766
33.5.10.1.2 Synthesis by Ring Transformation .. 766
33.5.10.1.2.1 Method 1: A Biphosphinin-4(1H)-ylidene 1,1'-Dioxide by Photolysis of a 2-Phosphabicyclo[3.1.0]hexane Oxide 766
33.5.10.1.3 Synthesis from λ⁵-Phosphinines and λ³-Phosphinines 767
33.5.10.1.3.1 Method 1: 1,4-Dihydrophosphinines 1-Oxides by Isomerization of λ³-Phosphinines .. 767
33.5.10.1.3.2 Method 2: A 1,4-Dihydrophosphinine 1-Oxide via the Chlorination of a λ³-Phosphinine ... 767
33.5.10.1.3.3 Method 3: A 4-Methylene-1,4-dihydrophosphinine 1-Oxide by a Lewis Acid Catalyzed Rearrangement of a 4-Methyl-λ³-phosphinine .. 768
33.5.10.1.3.4 Method 4: 4-Methylene-1,4-dihydrophosphine 1-Oxides via Enolization of a λ³-Phosphinine-4-carbaldehyde 768
33.5.10.1.3.5 Method 5: A 1',4'-Dihydro-2,4'-biphosphinine by Special Reaction of a λ³-Phosphinine in the Presence of Lithium 2,2,6,6-Tetramethylpiperidide .. 769
33.5.10.1.4 Synthesis by Substituent Modification .. 770
33.5.10.1.4.1 Method 1: A Biphosphinin-4(1H)-ylidene 1,1'-Dioxide by Coupling of Two Units of a Phosphinin-4(1H)-one 1-Oxide 770

Keyword Index ... 773
Author Index ... 817
Abbreviations ... 861
Volume 34: Fluorine

Preface ... V

Volume Editor’s Preface .. VII

Table of Contents .. IX

Introduction
J. M. Percy ... 1

34.1 Product Class 1: Fluoroalkanes
J. M. Percy ... 11

34.1.1 Synthesis by Substitution of Hydrogen
G. Sandford ... 21

34.1.2 Synthesis by Substitution of Metals
V. Gouverneur and M. Tredwell 39

34.1.3 Synthesis by Substitution of Carbon Functionalities
M. A. Carroll .. 49

34.1.4 Synthesis by Substitution of Heteroatoms
... 57

34.1.4.1 Synthesis by Substitution of a Halogen
T. P. Lequeux .. 57

34.1.4.2 Synthesis by Substitution of Hydroxy Groups in Alcohols
K. Dax ... 71

34.1.4.3 Synthesis by Substitution of Oxygen and Sulfur Functionalities
T. P. Lequeux .. 149

34.1.5 Synthesis by Addition Reactions to Alkenes
G. Haufe ... 169

34.1.6 Synthesis with Retention of the Functional Group
T. Yamazaki .. 225

34.2 Product Class 2: Fluorocyclopropanes
J. M. Percy ... 245

34.3 Product Class 3: (Fluoromethyl)cyclopropanes
J. M. Percy ... 267

34.4 Product Class 4: Fluorocyclobutanes
J. M. Percy ... 271

34.5 Product Class 5: Propargylic Fluorides
J. A. L. Miles and J. M. Percy 277
<table>
<thead>
<tr>
<th>Section</th>
<th>Product Class</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.6</td>
<td>6: Benzylic Fluorides</td>
<td>A. Sai Krishna Murthy, R. Tardivel, and R. Grée</td>
<td>295</td>
</tr>
<tr>
<td>34.7</td>
<td>7: Allylic Fluorides</td>
<td>R. Roig and J. M. Percy</td>
<td>319</td>
</tr>
<tr>
<td>34.8</td>
<td>8: Homoallylic Fluorides</td>
<td>J. M. Percy</td>
<td>341</td>
</tr>
<tr>
<td>34.9</td>
<td>9: β-Fluoro Alcohols</td>
<td>G. Haufe</td>
<td>345</td>
</tr>
<tr>
<td>34.10</td>
<td>10: β-Fluoroamines</td>
<td>J. M. Percy</td>
<td>379</td>
</tr>
</tbody>
</table>

Keyword Index .. 387
Author Index .. 403
Abbreviations ... 419
Table of Contents

Introduction
J. M. Percy

34.1
Product Class 1: Fluoroalkanes
J. M. Percy

34.1
Synthesis by Substitution of Hydrogen
G. Sandford

34.1.1
Synthesis by Substitution of Hydrogen
21
34.1.1.1 Method 1:
Direct Fluorination with Elemental Fluorine
21
34.1.1.2 Method 2:
Reaction with Selectfluor
29
34.1.1.3 Method 3:
Reaction with Xenon Difluoride
32
34.1.1.4 Method 4:
Reaction with Organic Hypofluorites
33
34.1.1.5 Method 5:
Reaction with Cesium Fluoroxyulfate
35
34.1.1.6 Method 6:
Reaction with Hydrogen Fluoride/Pyridine and Nitrosonium Tetrafluoroborate
37

34.1.2
Synthesis by Substitution of Metals
V. Gouverneur and M. Tredwell

34.1.2
Synthesis by Substitution of Metals
39
34.1.2.1 Method 1:
Synthesis from Organosilanes
40
34.1.2.2 Method 2:
Synthesis from an Organothallium Compound
42
34.1.2.3 Method 3:
Synthesis from Organomercury Compounds
43
34.1.2.4 Method 4:
Synthesis from Organomagnesium Compounds
44
34.1.2.5 Method 5:
Synthesis from Organolithium Compounds
45
34.1.2.5.1 Variation 1:
Using Molecular Fluorine
45
34.1.2.5.2 Variation 2:
Using Perchloryl Fluoride
46

34.1.3
Synthesis by Substitution of Carbon Functionalities
M. A. Carroll

34.1.3
Synthesis by Substitution of Carbon Functionalities
49
34.1.3.1 Method 1:
Synthesis from Alkanecarboxylates Using Fluorine
49
34.1.3.2 Method 2:
Synthesis from Alkanecarboxylic Acids
50
34.1.3.2.1 Variation 1:
Using Titanium(IV) Oxide/Silver(I) Fluoride
50
34.1.3.2.2 Variation 2:
Using Xenon Difluoride
51
34.1.3.2.3 Variation 3:
Using Bromine Trifluoride
53
34.1.3.2.4 Variation 4:
Using Triethylamine Trihydrofluoride
54
34.1.3.3 Method 3:
Synthesis from Cyclopropanes
54
34.1.4 Synthesis by Substitution of Heteroatoms

34.1.4.1 Synthesis by Substitution of a Halogen
T. P. Lequeux

34.1.4.1 Synthesis by Substitution of a Halogen 57
34.1.4.1.1 Method 1: Substitution of Primary Halides 57
34.1.4.1.1.1 Variation 1: Using Metal Fluorides 57
34.1.4.1.1.2 Variation 2: Using Hydrogen Fluoride Complexes 60
34.1.4.1.1.3 Variation 3: Using Tetraalkylammonium Fluorides 61
34.1.4.1.1.4 Variation 4: Using Fluorsilicate Derivatives 62
34.1.4.1.2 Method 2: Substitution of Secondary Halides 62
34.1.4.1.2.1 Variation 1: Using Metal Fluorides 63
34.1.4.1.2.2 Variation 2: Using Hydrogen Fluoride Complexes 65
34.1.4.1.3 Method 3: Substitution of Tertiary Halides 66
34.1.4.1.3.1 Variation 1: Using Metal Fluorides 66
34.1.4.1.3.2 Variation 2: Using Base–Hydrogen Fluoride Complexes 67
34.1.4.1.3.3 Variation 3: Using Silver(I) Tetrafluoroborate 67
34.1.4.1.3.4 Variation 4: Using Ruthenium Complexes 68

34.1.4.2 Synthesis by Substitution of Hydroxy Groups in Alcohols
K. Dax

34.1.4.2 Synthesis by Substitution of Hydroxy Groups in Alcohols 71
34.1.4.2.1 Method 1: Reaction with Fluoro-\(\lambda^4\)-sulfanes 72
34.1.4.2.1.1 Variation 1: With \(N,N\)-Diethylaminosulfur Trifluoride 76
34.1.4.2.1.2 Variation 2: With \(N,N\)-Bis(2-methoxyethyl)aminosulfur Trifluoride (Deoxo-Flour) 108
34.1.4.2.1.3 Variation 3: With Morpholinosulfur Trifluoride 111
34.1.4.2.1.4 Variation 4: With \(N,N\)-Dimethylaminosulfur Trifluoride 113
34.1.4.2.1.5 Variation 5: With Other Dialkylaminofluoro-\(\lambda^4\)-sulfanes 113
34.1.4.2.1.6 Variation 6: With Sulfur Tetrafluoride 114
34.1.4.2.1.7 Variation 7: With Alkoxy sulfur Trifluorides 116
34.1.4.2.2 Method 2: Reaction with Selenium Tetrafluoride 117
34.1.4.2.3 Method 3: Reaction with Fluorophosphoranes 118
34.1.4.2.3.1 Variation 1: With Dipfluoro(triphenyl)phosphorane 119
34.1.4.2.3.2 Variation 2: With Trifluoro(diphenyl)phosphorane 119
34.1.4.2.3.3 Variation 3: With Tetrafluoro(phenyl)phosphorane 119
34.1.4.2.4 Method 4: Reaction with Fluoroalkylamine Reagents 121
34.1.4.2.4.1 Variation 1: With 2-Chloro-\(N,N\)-diethyl-1,1,2-trifluoroethylamine (Yarovenko Reagent) 122
34.1.4.2.4.2 Variation 2: With \(N,N\)-Diethyl-1,1,2,3,3-hexafluoropropylamine (Ishikawa Reagent) 124
34.1.4.2.4.3 Variation 3: With \(N,N\)-Diethyl(trifluoromethyl)amine 125
34.1.4.2.4.4 Variation 4: With 1,1-Difluoro-\(N,N\)-dimethyl-1-phenylmethanamine 126
34.1.4.2.4.5 Variation 5: With \(N,N\)-Dimethyl(1,1,2,2-tetrafluoroethyl)amine 126
34.1.4.2.4.6 Variation 6: With \(N,N\)-Diethyl-1,1-difluoro-1-(3-toly)methanamine 127
34.1.4.2.4.7 Variation 7: With 2,2-Difluoro-1,3-dimethylimidazolidine 129

Science of Synthesis Original Edition Volume 34
© Georg Thieme Verlag KG
Variation 8: With Other Fluoroalkylamine Reagents

Method 5: Reaction with Perfluorocyclobutane Ylides

Method 6: Reaction with Perfluoro(2-methylpent-2-ene)

Method 7: One-Pot Versions of the Sulfonate Displacement Route

Using Alkane- or Arenesulfonyl Fluorides

Method 8: Reaction with Hydrogen Fluoride

Variation 1: In Combination with Organic Bases (Amines or Ethers)

Synthesis by Substitution of Oxygen and Sulfur Functionalities

T. P. Lequeux

Method 1: Substitution of Trifluoromethanesulfonates and Imidazolesulfonates

Variation 1: Using Difluorosilicate Derivatives

Variation 2: Using Tetrabutylammonium Fluoride

Variation 3: Using Base–Hydrogen Fluoride Complexes

Method 2: Substitution of Cyclic Sulfates

Variation 1: Using Ammonium Fluoride

Variation 2: Using Tetrabutylammonium Fluoride for the Substitution of Cyclic Sulfamates

Method 3: Substitution of Carboxylic Esters and Cyclic Carbonates

Variation 1: Using Potassium Fluoride

Variation 2: Using Ammonium Fluorides

Variation 3: Using Reagents Containing Hydrogen Fluoride

Method 4: Substitution of O,S-Dialkyl Dithiocarbonates

Variation 1: Using Potassium Fluoride

Variation 2: Using Ammonium Fluorides

Variation 3: Using Reagents Containing Hydrogen Fluoride

Method 5: Substitution of Primary Sulfonates

Variation 1: Using Potassium Fluoride

Variation 2: Using Ammonium Fluorides

Variation 3: Using Base–Hydrogen Fluoride Complexes

Variation 4: Using Ammonium Fluorides or Hydrogen Difluorides

Variation 5: Using Difluorosilicate Derivatives

Method 6: Substitution of Secondary Sulfonates

Variation 1: Using Potassium Fluoride

Variation 2: Using Ammonium Fluorides

Variation 3: Using Reagents Containing Hydrogen Fluoride

Variation 4: Using Ammonium Fluorides or Hydrogen Difluorides

Variation 5: Using Difluorosilicate Derivatives

Method 7: Substitution of Sulfides

Synthesis by Addition Reactions to Alkenes

G. Haufe

Method 1: Synthesis Using N-Chloro Imides and a Fluoride Source

Variation 1: Using N-Chlorosuccinimide or N-Chlorosaccharin, and Hydrogen Fluoride/Pyridine

Variation 2: Using N-Chlorosuccinimide and Triethylamine Trihydrofluoride

Variation 3: Using Hexachlororomelamine and Anhydrous Hydrogen Fluoride

Method 2: Synthesis Using Chlorine and Silver(I) Fluoride

Method 3: Synthesis Using Alkyl Hypochlorites and Boron Trifluoride
34.1.5.2 Vicinal Bromofluoroalkanes from Alkenes .. 179
34.1.5.2.1 Method 1: Synthesis Using N-Bromo Imides and a Fluoride Source 179
34.1.5.2.1.1 Variation 1: Using N-Bromosuccinimide and Anhydrous Hydrogen Fluoride in Coordinating Solvents .. 179
34.1.5.2.1.2 Variation 2: Using N-Bromosuccinimide or 1,3-Dibromo-5,5-dimethylimidazolidine-2,4-dione, and Hydrogen Fluoride/Pyridine or Polymer-Supported Hydrogen Fluoride/Pyridine 181
34.1.5.2.1.3 Variation 3: Using N-Bromosuccinimide or 1,3-Dibromo-5,5-dimethylimidazolidine-2,4-dione, and Triethylamine Trihydrofluoride or a Related Amine–Hydrogen Fluoride Reagent 184
34.1.5.2.1.4 Variation 4: N-Bromosuccinimide or 1,3-Dibromo-5,5-dimethylimidazolidine-2,4-dione, and Tetrabutylammonium and Tetrabutylphosphonium Hydrogen Fluorides 187
34.1.5.2.1.5 Variation 5: 1,3-Dibromo-5,5-dimethylimidazolidine-2,4-dione and Metal Fluoride–Hydrogen Fluoride Salts 189
34.1.5.2.2 Method 2: Synthesis Using Bromine Monofluoride Prepared In Situ 190
34.1.5.2.2.1 Variation 1: Preparation from Bromine and Fluorine 190
34.1.5.2.2.2 Variation 2: Preparation from Bromine and Silver(I) Fluoride 192
34.1.5.2.3 Method 3: Synthesis Using Other Fluoride Sources 193
34.1.5.3 Vicinal Fluoroiodoalkanes from Alkenes .. 194
34.1.5.3.1 Method 1: Reaction with Iodine Monofluoride Prepared In Situ 194
34.1.5.3.1.1 Variation 1: Prepared from Iodine and Fluorine 194
34.1.5.3.1.2 Variation 2: Prepared from Iodine and Metal Fluorides 196
34.1.5.3.2 Method 2: Reaction with N-Iodosuccinimide and Hydrogen Fluoride 197
34.1.5.3.2.1 Variation 1: In Coordinating Solvents .. 197
34.1.5.3.2.2 Variation 2: In Water with Phase-Transfer Catalysis 198
34.1.5.3.2.3 Variation 3: Using Hydrogen Fluoride/Pyridine 200
34.1.5.3.2.4 Variation 4: Using Polymer-Supported Hydrogen Fluoride/Pyridine 200
34.1.5.3.2.5 Variation 5: Using Triethylamine Trihydrofluoride 201
34.1.5.3.2.6 Variation 6: Using Metal Fluoride–Hydrogen Fluoride Salts 202
34.1.5.3.2.7 Variation 7: Using Ammonium Hydrogen Fluorides 203
34.1.5.3.2.8 Variation 8: Using Tetrabutylphosphonium Hydrogen Fluorides 204
34.1.5.3.2.9 Variation 9: Using Hexafluoropropene/Diethylamine Complex 205
34.1.5.3.3 Method 3: Reaction with Iodonium Equivalents Other Than Iodine or N-Iodosuccinimide and a Fluoride Source 206
34.1.5.4 Vicinal Fluoro(sulfanyl)alkanes .. 207
34.1.5.4.1 Method 1: Fluorosulfanylation of Alkenes 208
34.1.5.4.1.1 Variation 1: Using Dimethyl(methylsulfanyl)sulfonium Tetrafluoroborate and Triethylamine Trihydrofluoride 208
34.1.5.4.1.2 Variation 2: Using Benzenesulfenyl Chloride and Silver(I) Fluoride 210
34.1.5.4.1.3 Variation 3: Using N-(Phenylsulfanyl)phthalimide and Hydrogen Fluoride/Pyridine 211
34.1.5.4.1.4 Variation 4: Using Trifluoromethanesulfonyl Fluoride 212
34.1.5.5 Vicinal Fluoro(selanyl)alkanes .. 213
34.1.5.5.1 Method 1: Synthesis Using Benzeneselenenyl Bromide or Chloride and Silver(I) Fluoride 213

Science of Synthesis Original Edition Volume 34
© Georg Thieme Verlag KG
34.1.5.5.2 Method 2: Synthesis Using N-(Phenylselenyl)phthalimide and Triethylamine Trihydrofluoride ... 214
34.1.5.5.3 Method 3: Synthesis Using Diphenyl Diselenide and Xenon Difluoride .. 216
34.1.5.6 Vicinal Nitro- and Nitriminofluoroalkanes .. 218
34.1.5.6.1 Method 1: Nitrofluorination of Alkenes .. 218
34.1.5.6.2 Method 2: Nitriminofluorination of Alkenes .. 219

34.1.6 Synthesis with Retention of the Functional Group
T. Yamazaki

34.1.6 Synthesis with Retention of the Functional Group 225
34.1.6.1 Method 1: α-Functional Group Elimination .. 225
34.1.6.1.1 Variation 1: Free-Radical-Mediated Dehalogenation with Tributyltin Hydride .. 225
34.1.6.1.2 Variation 2: Ring Expansion with Dehalogenation Mediated by Palladium Oxide or Acid .. 228
34.1.6.1.3 Variation 3: By Desulfonylation ... 230
34.1.6.1.4 Variation 4: By Denitration ... 230
34.1.6.2 Method 2: β-Functional Group Elimination .. 231
34.1.6.2.1 Variation 1: By Dehalogenation .. 231
34.1.6.2.2 Variation 2: By Ionic Deoxygenation .. 232
34.1.6.2.3 Variation 3: By Radical Deoxygenation .. 233
34.1.6.2.4 Variation 4: By Deselenation ... 235
34.1.6.3 Method 3: Hydrogenation of Unsaturated Compounds Containing Fluorine ... 236
34.1.6.3.1 Variation 1: Hydrogenation of Vinylic Fluorides 236
34.1.6.3.2 Variation 2: Hydrogenation of Allylic and Propargylic Fluorides 238
34.1.6.3.3 Variation 3: Reduction of Fluorinated Arenes .. 240

34.2 Product Class 2: Fluorocyclopropanes
J. M. Percy

34.2 Product Class 2: Fluorocyclopropanes ... 245
34.2.1 Synthesis of Product Class 2 ... 246
34.2.1.1 Method 1: Radical Dechlorination of Chlorofluorocyclopropanes Using Tributyltin Hydride .. 246
34.2.1.2 Method 2: Debromination of Bromofluorocyclopropanes with Zinc Powder ... 247
34.2.1.3 Method 3: Carbene and Carbenoid Additions to Fluoroalkenes 248
34.2.1.3.1 Variation 1: Simmons–Smith Reaction of Fluoroallylic Alcohols Using a Zinc/Copper Couple 249
34.2.1.3.2 Variation 2: Diastereoselective Simmons–Smith Reaction Using Diethylzinc(II)/Diiodomethane .. 250
34.2.1.3.3 Variation 3: Addition of Diazoacetic Esters to Fluoroalkenes 251
34.2.1.3.4 Variation 4: Diastereoselective Addition of Diazooacetic Esters to Fluoroalkenes .. 251
34.2.1.3.5 Variation 5: Addition of Diazomethane to Ethyl (2E)-3-Fluoro-2-phenylacrylate with Adduct Photolysis

34.2.1.3.6 Variation 6: Intramolecular Carbenoid Addition to an Ethyl (2Z)-2-Fluoroalk-2-enoate

34.2.1.4 Method 4: Fluorohalocyclopropanes via Fluorohalocarbene Addition to Alkenes

34.2.1.4.1 Variation 1: Phase-Transfer-Catalyzed Formation of Chlorofluorocyclopropanes

34.2.1.4.2 Variation 2: Titanium-Mediated Formation of Chlorofluorocyclopropanes

34.2.1.4.3 Variation 3: Generation of Chlorofluorocyclopropanes from Methyl Dichlorofluoroacetate

34.2.1.4.4 Variation 4: Bromofluorocarbene Addition to Alkenes Using Phase-Transfer Catalysis

34.2.1.5 Method 5: Direct Fluorocarbene Addition to Alkenes

34.2.1.6 Method 6: Intermolecular Addition of Fluoriodoacetate to Alkenes and Subsequent Anionic Cyclization

34.2.1.7 Method 7: Fluorination of Cyclopropanes and Their Conjugate Bases

34.2.1.7.1 Variation 1: Electrophilic Fluorination of Methylene cyclopropane Carboxylate Esters with N-Fluorobis(phenylsulfonyl)amine

34.3 Product Class 3: (Fluoromethyl)cyclopropanes

34.3.1 Synthesis of Product Class 3

34.3.1.1 Method 1: Fluorodehydroxylation of Cyclopropylmethanol with N,N-Diethylaminosulfur Trifluoride

34.3.1.2 Method 2: In Situ Formation and Fluoride Ion Displacement of a Cyclopropylmethyl 4-Toluenesulfonate

34.3.1.3 Method 3: Ring Contraction of Cyclobutanols

34.3.1.4 Method 4: Transannular Epoxide Opening with Trimethylamine Trihydrofluoride

34.4 Product Class 4: Fluorocyclobutanes

34.4.1 Synthesis of Product Class 4

34.4.1.1 Method 1: Fluorodehydroxylation of Cyclobutanols by Reaction with N,N-Diethylaminosulfur Trifluoride

34.4.1.2 Method 2: Reaction of Halocyclobutanes with Fluorinating Agents

34.4.1.2.1 Variation 1: Reaction of Iodocubane with Xenon Difluoride

34.4.1.3 Method 3: Reaction of (Iodomethyl)cyclopropane with Xenon Difluoride

34.4.1.4 Method 4: Addition of Iodine Fluoride to Methylene cyclobutanes
34.5 **Product Class 5: Propargylic Fluorides**
J. A. L. Miles and J. M. Percy

34.5.1 Synthesis of Product Class 5 ... 277

34.5.1.1 Method 1: Nucleophilic Substitution of Propargylic Alcohols with 1-Flouro-N,N-diisopropyl-2-methylprop-1-en-1-amine 277

34.5.1.2 Method 2: Nucleophilic Substitution of Silyl Ethers with Piperidinosulfur Trifluoride ... 278

34.5.1.3 Method 3: Reaction of Prop-2-yn-1-ol with 2-Chloro-N,N-diethyl-1,1,2-trifluoroethanamine 280

34.5.1.4 Method 4: Nucleophilic Substitution with Tetrabutylammonium Fluoride 281

34.5.1.5 Method 5: Ring Opening of Oxetanes Using Silicon Tetrafluoride 282

34.5.1.6 Method 6: Nucleophilic Substitution Using Sulfur Tetrafluoride 282

34.5.1.7 Method 7: Nucleophilic Substitution of Propargylic Alcohols with N,N-Diethylenaminosulfur Trifluoride 283

34.5.1.7.1 Variation 1: Inverse Addition of a Propargylic Alcohol Precursor to a Cold Solution of N,N-Diethylenaminosulfur Trifluoride without Low Temperature Quenching .. 284

34.5.1.7.2 Variation 2: Inverse Addition of a Propargylic Alcohol Precursor to a Cold Solution of N,N-Diethylenaminosulfur Trifluoride with Low Temperature Quenching ... 286

34.5.1.7.3 Variation 3: From Propargylic Alcohols by Inverse Addition to a Cooled Solution of N,N-Diethylenaminosulfur Trifluoride 287

34.5.1.7.4 Variation 4: From Hexacarbonyldicobalt-Protected Propargylic Alcohols ... 288

34.5.1.8 Method 8: Synthesis From 3-Substituted 1,1,3-Tribromo-1-fluoropropanes via (Alk-1-ynyl)fluorocarbenes 291

34.6 **Product Class 6: Benzylic Fluorides**
A. Sai Krishna Murthy, R. Tardivel, and R. Grée

34.6.1 Synthesis of Product Class 6 ... 295

34.6.1.1 Nucleophilic Fluorination ... 295

34.6.1.1.1 Method 1: Dehydrofluorination ... 295

34.6.1.1.1.1 Variation 1: Electrochemical Methods .. 295

34.6.1.1.2 Variation 2: Photochemical Methods ... 300

34.6.1.1.2 Method 2: Dehydroxyfluorination .. 300

34.6.1.1.2.1 Variation 1: With N,N-Diethylenaminosulfur Trifluoride and Related Reagents 301

34.6.1.1.2.2 Variation 2: With Nonfluorobutanesulfonyl Fluoride with a Trialkylamine Trihydrofluoride and a Base .. 304

34.6.1.1.2.3 Variation 3: With Fluroalkylamines and Related Reagents 304

34.6.1.1.2.4 Variation 4: Fluorination with Rearrangement 305

34.6.1.1.3 Method 3: Desulfurative Fluorinations .. 307

34.6.1.1.4 Method 4: Halogen-Exchange Reactions .. 307

34.6.1.1.5 Method 5: Nucleophilic Substitutions ... 311
Electrophilic Fluorination .. 313

Method 1: Fluorination of Alkylbenzenes with Cesium Fluoroxyacetate ... 313

C–C Bond Formation of Fluorinated Compounds .. 314

Method 1: Transition-Metal-Catalyzed Reactions ... 314

Method 2: Cycloadditions to Vinylic Fluorides ... 315

Product Class 7: Allylic Fluorides
R. Roig and J. M. Percy

Product Subclass 1: Allyl Fluorides ... 319

Synthesis of Product Subclass 1 ... 319

Method 1: Deoxofluorination of Allylic Alcohols with N,N-Diethylaminosulfur Trifluoride ... 319

Variation 1: Deoxofluorination of Allylic Alcohols with Bis(dialkylamino)sulfur Difluorides ... 322

Method 2: Addition to α-Fluoroalkynes ... 323

Method 3: Electrophilic Fluorination of Alkenes ... 325

Variation 1: Electrophilic Fluorination of Alkenes with Acetyl Hypofluorite ... 325

Variation 2: Electrophilic Fluorination of Activated Alkenes with Elemental Fluorine ... 326

Variation 3: Electrophilic Fluorination of Alkenes with N-Fluoropyridinium Salts ... 326

Method 4: Nucleophilic Substitution of Allylic Halides ... 328

Variation 1: Nucleophilic Substitution of Allylic Halides with Tetraethylammonium Fluoride ... 328

Variation 2: Heterogeneous Fluorination of Allylic Halides by the Combination of Lead(II) Fluoride and a Sodium Salt ... 329

Variation 3: A Facile Method for the Fluorination of Phenyl Thioethers via Sulfonium Salts Using Cesium Fluoride ... 330

Method 5: Fluoroalkenation of 1,3-Bis(tert-butyldimethylsilyl) Ethers ... 331

Method 6: Oxidative Elimination of β-Fluoro Selenides ... 332

Methods 7: Additional Methods ... 332

Product Subclass 2: α-Fluoroallyl- and 3-Fluoroalk-1-enylphosphonate Esters ... 333

Synthesis of Product Subclass 2 ... 334

Method 1: Deoxofluorination of α-Hydroxyallylphosphonate Esters with N,N-Diethylaminosulfur Trifluoride ... 334

Method 2: Coupling of α-Fluoro Phosphonate Esters with Vinylic Halides ... 334

Method 3: Catalytic Hydrogenation of α-Fluoropropargylphosphonate Esters ... 335

Product Subclass 3: γ-Fluoro α,β-Unsaturated Esters ... 337

Synthesis of Product Subclass 3 ... 337

Method 1: Horner–Emmons Condensation of α-Fluoro Aldehydes and Ketones ... 337
34.8 Product Class 8: Homoallylic Fluorides
J. M. Percy

34.8 Product Class 8: Homoallylic Fluorides .. 341
34.8.1 Synthesis of Product Class 8 ... 341
34.8.1.1 Method 1: Ring Opening of Cyclopropylmethanols with a Fluoride Ion Source .. 341

34.9 Product Class 9: β-Fluoro Alcohols
G. Haufe

34.9 Product Class 9: β-Fluoro Alcohols ... 345
34.9.1 Synthesis of Product Class 9 ... 345
34.9.1.1 Method 1: Synthesis Using Hydrogen Fluoride 348
34.9.1.1.1 Variation 1: Aqueous Hydrogen Fluoride ... 348
34.9.1.1.2 Variation 2: Anhydrous Hydrogen Fluoride in Coordinating Solvents ... 349
34.9.1.1.3 Variation 3: Anhydrous Hydrogen Fluoride in the Presence of Lewis Acids 350
34.9.1.2 Method 2: Synthesis Using Metal Fluorides and Metal Hydrogen Fluorides 351
34.9.1.2.1 Variation 1: Alkali Metal Hydrogen Fluorides in Coordinating Solvents ... 351
34.9.1.2.2 Variation 2: Potassium Hydrogen Difluoride or Silver(I) Fluoride in the Presence of a Chiral Lewis Acid ... 355
34.9.1.3 Method 3: Synthesis Using Alkylammonium and Alkylphosphonium Fluorides ... 357
34.9.1.3.1 Variation 1: Tetrabutylammonium and Tetrabutylphosphonium Fluorides 357
34.9.1.3.2 Variation 2: Tetraethylammonium Fluorides .. 360
34.9.1.4 Method 4: Synthesis Using Amine Polyhydrofluorides 361
34.9.1.4.1 Variation 1: Hydrogen Fluoride/Pyridine .. 362
34.9.1.4.2 Variation 2: Alkylamine Hydrofluorides ... 367
34.9.1.5 Method 5: Synthesis Using Boron Trifluoride–Diethyl Ether Complex 374

34.10 Product Class 10: β-Fluoroamines
J. M. Percy

34.10 Product Class 10: β-Fluoroamines .. 379
34.10.1 Synthesis of Product Class 10 .. 379
34.10.1.1 Method 1: Reduction of β-Fluoro Azides .. 379
34.10.1.2 Method 2: Displacement of β-Fluoro 4-Toluenesulfonates by Amines 380
34.10.1.3 Method 3: Ring Opening of Aziridines with Hydrogen Fluoride Equivalents 381
34.10.1.3.1 Variation 1: Ring Opening of Aziridines by Fluoride Ion 382
34.10.1.3.2 Variation 2: Ring Opening of Azabicyclo[1.1.0]butanes with Hydrogen Fluoride/Pyridine ... 383
34.10.4 Method 4: Ring Opening of Cyclic Sulfamates with Fluoride Ion 384
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyword Index</td>
<td>387</td>
</tr>
<tr>
<td>Author Index</td>
<td>403</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>419</td>
</tr>
</tbody>
</table>
Volume 35: Chlorine, Bromine, and Iodine

Preface ... V

Volume Editor’s Preface .. VII

Table of Contents .. XV

Introduction
E. Schaumann ... 1

35.1 Product Class 1: One Saturated Carbon—Chlorine Bond

35.1.1 Product Subclass 1: Chloroalkanes
E. Schaumann ... 15

35.1.1.1 Synthesis by Substitution of Hydrogen
J. Hartung .. 19

35.1.1.2 Synthesis by Substitution of Metals
P. Margaretha ... 47

35.1.1.3 Synthesis by Substitution of Carbon Functionalities
P. Margaretha ... 49

35.1.1.4 Synthesis by Substitution of Other Halogens
P. Margaretha ... 59

35.1.1.5 Synthesis by Substitution of Oxygen Functionalities
P. Margaretha ... 63

35.1.1.6 Synthesis by Substitution of Sulfur, Selenium, or Tellurium Functionalities
P. Margaretha ... 95

35.1.1.7 Synthesis by Substitution of Nitrogen Functionalities
P. Margaretha ... 99

35.1.1.8 Synthesis by Addition to \(\pi \)-Type C—C Bonds
K.-M. Roy ... 103

35.1.1.9 Synthesis from Other Chlorine Compounds
H. Ulrich ... 117

35.1.2 Product Subclass 2: Propargylic Chlorides
P. Margaretha ... 133

35.1.3 Product Subclass 3: Benzylic Chlorides
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.1.3.1</td>
<td>Synthesis by Substitution of Hydrogen</td>
<td>W. D. Pfeiffer</td>
<td>139</td>
</tr>
<tr>
<td>35.1.3.2</td>
<td>Synthesis by Substitution of Carbonyl Oxygen</td>
<td>W. D. Pfeiffer</td>
<td>155</td>
</tr>
<tr>
<td>35.1.3.3</td>
<td>Synthesis by Substitution of σ-Bonded Heteroatoms</td>
<td>P. Margaretha</td>
<td>167</td>
</tr>
<tr>
<td>35.1.4</td>
<td>Product Subclass 4: Allylic Chlorides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.1.4.1</td>
<td>Synthesis by Substitution of Hydrogen α to a C=C Bond</td>
<td>W. D. Pfeiffer</td>
<td>173</td>
</tr>
<tr>
<td>35.1.4.2</td>
<td>Synthesis by Substitution of σ-Bonded Heteroatoms</td>
<td>P. Margaretha</td>
<td>181</td>
</tr>
<tr>
<td>35.1.5</td>
<td>Product Subclass 5: 1-Chloro-n-Heteroatom-Functionalized Alkanes ($n \geq 2$) with Both Functions Formed Simultaneously</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.1.5.1</td>
<td>Synthesis by Addition across C=C Bonds</td>
<td>R. Göttlich</td>
<td>189</td>
</tr>
<tr>
<td>35.1.5.2</td>
<td>Synthesis by Addition across C=O Bonds</td>
<td>K. Rück-Braun and T. Freysoldt</td>
<td>251</td>
</tr>
<tr>
<td>35.1.5.3</td>
<td>Synthesis by Addition across C=S Bonds</td>
<td>K. Rück-Braun and T. Freysoldt</td>
<td>271</td>
</tr>
<tr>
<td>35.1.5.4</td>
<td>Synthesis by Addition across C=N Bonds</td>
<td>K. Rück-Braun and T. Freysoldt</td>
<td>275</td>
</tr>
<tr>
<td>35.1.5.5</td>
<td>Synthesis by Addition across C=C Bonds</td>
<td>K. Rück-Braun and T. Freysoldt</td>
<td>281</td>
</tr>
<tr>
<td>35.2</td>
<td>Product Class 2: One Saturated Carbon—Bromine Bond</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.2.1</td>
<td>Product Subclass 1: Bromoalkanes</td>
<td>E. Schaumann</td>
<td>283</td>
</tr>
<tr>
<td>35.2.1.1</td>
<td>Synthesis by Substitution of Hydrogen</td>
<td>J. Hartung</td>
<td>287</td>
</tr>
<tr>
<td>35.2.1.2</td>
<td>Synthesis by Substitution of Metals</td>
<td>P. Margaretha</td>
<td>301</td>
</tr>
<tr>
<td>35.2.1.3</td>
<td>Substitution of Carbon Functionalities</td>
<td>P. Margaretha</td>
<td>303</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Author(1)</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>-------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>35.2.1.4</td>
<td>Synthesis by Substitution of Other Halogens</td>
<td>M. Braun</td>
<td>313</td>
</tr>
<tr>
<td>35.2.1.5</td>
<td>Synthesis by Substitution of Oxygen Functionalities</td>
<td>M. Braun</td>
<td>323</td>
</tr>
<tr>
<td>35.2.1.6</td>
<td>Synthesis by Substitution of Sulfur, Selenium, or Tellurium Functionalities</td>
<td>M. Braun</td>
<td>355</td>
</tr>
<tr>
<td>35.2.1.7</td>
<td>Synthesis by Substitution of Nitrogen Functionalities</td>
<td>M. Braun</td>
<td>357</td>
</tr>
<tr>
<td>35.2.1.8</td>
<td>Synthesis by Addition to (\pi)-Type C–C Bonds</td>
<td>K.-M. Roy</td>
<td>361</td>
</tr>
<tr>
<td>35.2.1.9</td>
<td>Synthesis from Other Bromo Compounds</td>
<td>H. Ulrich</td>
<td>379</td>
</tr>
<tr>
<td>35.2.2</td>
<td>Product Subclass 2: Propargylic Bromides</td>
<td>M. Braun</td>
<td>387</td>
</tr>
<tr>
<td>35.2.3</td>
<td>Product Subclass 3: Benzylic Bromides</td>
<td>M. Braun</td>
<td>387</td>
</tr>
<tr>
<td>35.2.3.1</td>
<td>Synthesis by Substitution of Hydrogen</td>
<td>W. D. Pfeiffer</td>
<td>391</td>
</tr>
<tr>
<td>35.2.3.2</td>
<td>Synthesis by Substitution of Carbonyl Oxygen</td>
<td>W. D. Pfeiffer</td>
<td>409</td>
</tr>
<tr>
<td>35.2.3.3</td>
<td>Synthesis by Substitution of (\sigma)-Bonded Heteroatoms</td>
<td>M. Braun</td>
<td>417</td>
</tr>
<tr>
<td>35.2.4</td>
<td>Product Subclass 4: Allylic Bromides</td>
<td>M. Braun</td>
<td></td>
</tr>
<tr>
<td>35.2.4.1</td>
<td>Synthesis by Substitution of Hydrogen (\alpha) to a C–C Bond</td>
<td>W. D. Pfeiffer</td>
<td>423</td>
</tr>
<tr>
<td>35.2.4.2</td>
<td>Synthesis by Substitution of (\sigma)-Bonded Heteroatoms</td>
<td>M. Braun</td>
<td>435</td>
</tr>
<tr>
<td>35.2.5</td>
<td>Product Subclass 5: 1-Bromo-n-Heteroatom-Functionalized Alkanes ((n \geq 2)) with Both Functions Formed Simultaneously</td>
<td>M. Braun</td>
<td>503</td>
</tr>
<tr>
<td>35.2.5.1</td>
<td>Synthesis by Addition across C=C Bonds</td>
<td>T. Troll</td>
<td>439</td>
</tr>
<tr>
<td>35.2.5.2</td>
<td>Synthesis by Addition across C=O Bonds</td>
<td>K. Rück-Braun and T. Freysoldt</td>
<td>503</td>
</tr>
</tbody>
</table>
35.2.5.3 Synthesis by Addition across C–S Bonds
K. Rück-Braun and T. Freysoldt .. 523

35.2.5.4 Synthesis by Addition across C–N Bonds
K. Rück-Braun and T. Freysoldt .. 527

35.2.5.5 Synthesis by Addition across C–C Bonds
K. Rück-Braun and T. Freysoldt .. 535

35.3 Product Class 3: One Saturated Carbon–Iodine Bond

35.3.1 Product Subclass 1: Iodoalkanes
E. Schaumann .. 537

35.3.1.1 Synthesis by Substitution of Hydrogen
J. Hartung ... 541

35.3.1.2 Synthesis by Substitution of Metals
S. Härtinger and M. Härtinger ... 549

35.3.1.3 Synthesis by Substitution of Carbon Functionalities
S. Härtinger and M. Härtinger ... 565

35.3.1.4 Synthesis by Substitution of Other Halogens
S. Härtinger and M. Härtinger ... 579

35.3.1.5 Synthesis by Substitution of Oxygen Functionalities
S. Härtinger ... 589

35.3.1.6 Synthesis by Substitution of Sulfur, Selenium, or Tellurium Functionalities
S. Härtinger and M. Härtinger ... 673

35.3.1.7 Synthesis by Substitution of Nitrogen Functionalities
S. Härtinger and M. Härtinger ... 679

35.3.1.8 Synthesis by Addition to π-Type C–C Bonds
K.-M. Roy ... 685

35.3.1.9 Synthesis from Other Iodo Compounds
H. Ulrich ... 697

35.3.2 Product Subclass 2: Propargylic Iodides
S. Härtinger ... 701

35.3.3 Product Subclass 3: Benzylic Iodides

35.3.3.1 Synthesis by Substitution of Carbonyl Oxygen
W. D. Pfeiffer ... 705
35.3.2 Substitution of σ-Bonded Heteroatoms
S. Härtinger and M. Härtinger .. 707

35.3.4 Product Subclass 4: Allylic Iodides
S. Härtinger .. 711

35.3.5 Product Subclass 5: 1-Iodo-n-Heteroatom-Functionalized Alkanes ($n \geq 2$) with Both Functions Formed Simultaneously

35.3.5.1 Synthesis by Addition across C=C Bonds
T. Troll ... 717

35.3.5.2 Synthesis by Addition across C=O Bonds
K. Rück-Braun and T. Freysoldt .. 741

35.3.5.3 Synthesis by Addition across C=S Bonds
K. Rück-Braun and T. Freysoldt .. 753

35.3.5.4 Synthesis by Addition across C=N Bonds
K. Rück-Braun and T. Freysoldt .. 757

35.3.5.5 Synthesis by Addition across C=C Bonds
K. Rück-Braun and T. Freysoldt .. 763

Keyword Index ... 767

Author Index .. 805

Abbreviations ... 845
Table of Contents

Introduction
E. Schaumann

Introduction ... 1

35.1 Product Class 1: One Saturated Carbon—Chlorine Bond

35.1.1 Product Subclass 1: Chloroalkanes
E. Schaumann

35.1.1 Product Subclass 1: Chloroalkanes .. 15

35.1.1.1 Synthesis by Substitution of Hydrogen
J. Hartung

35.1.1.1 Synthesis by Substitution of Hydrogen .. 19
35.1.1.1.1 Alkanes and Cycloalkanes ... 21
35.1.1.1.1 Method 1: Reactions with Molecular Chlorine 21
35.1.1.1.1 Method 2: Reactions with Sulfuryl Chloride 23
35.1.1.1.1 Method 3: Reactions with Trichloromethanesulfonyl Chloride 24
35.1.1.1.1 Method 4: Reactions with Trichloromethanesulfenyl Chloride 25
35.1.1.1.1 Method 5: Chlorination Reagents Containing an O—Cl Bond 26
35.1.1.1.1 Variation 1: tert-Butyl Hypochlorite as Chlorine-Atom Donor 26
35.1.1.1.1 Variation 2: Chlorination with Chlorine Monoxide 26
35.1.1.1.6 Method 6: Reactions with Chloroamines 27
35.1.1.1.7 Method 7: Chlorination with Phosphorus Pentachloride 28
35.1.1.1.8 Method 8: Chlorination Reagents Containing an I—Cl Bond 28
35.1.1.1.8.1 Variation 1: (Dichloroiodo)benzene as Chlorine-Atom Donor 28
35.1.1.1.8.2 Variation 2: Iodine Trichloride as Chlorine-Atom Donor 29
35.1.1.1.9 Method 9: Chlorination with Carbon Tetrachloride in the Presence of Transition-Metal Carbonyl Complexes 29
35.1.1.1.2 Haloalkanes and Halocycloalkanes 30
35.1.1.1.2.1 Method 1: Reactions with Molecular Chlorine 30
35.1.1.1.3 Alcohols .. 31
35.1.1.1.3.1 Method 1: Reactions with Molecular Chlorine 31
35.1.1.1.3.2 Method 2: Reactions with Chloroamines 32
35.1.1.1.4 Ethers .. 32
35.1.1.1.4.1 Method 1: Reactions with Molecular Chlorine 32
35.1.1.1.4.2 Method 2: Reactions with Hypohalites 34
35.1.1.1.4.3 Method 3: Chlorination with (Dichloroiodo)arenes 35
<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Method 1</th>
<th>Method 2</th>
<th>Method 3</th>
<th>Method 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.1.1.4.4</td>
<td>Aldehydes</td>
<td>Reactions with Phosphorus Pentachloride</td>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>35.1.1.5</td>
<td>Ketones</td>
<td></td>
<td></td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>35.1.1.5</td>
<td>Aldehydes</td>
<td>Reactions with Sulfuryl Chloride</td>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>35.1.1.5.1</td>
<td></td>
<td>Method 1:</td>
<td>Reactions with N-Chlorosuccinimide</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>35.1.1.5.2</td>
<td></td>
<td>Method 2:</td>
<td></td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>35.1.1.6.1</td>
<td>Ketones</td>
<td>Reactions with Molecular Chlorine</td>
<td></td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>35.1.1.6.2</td>
<td>Ketones</td>
<td>Reactions with Manganese(III) Acetate and Lithium Chloride</td>
<td></td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>35.1.1.6.3</td>
<td>Ketones</td>
<td>Chlorination with Sulfuryl Chloride</td>
<td></td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>35.1.1.7</td>
<td>Carboxylic Acids and Derivatives</td>
<td></td>
<td></td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>35.1.1.7.1</td>
<td>Carboxylic Acids and Derivatives</td>
<td>Reactions with Molecular Chlorine</td>
<td></td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>35.1.1.7.2</td>
<td>Carboxylic Acids and Derivatives</td>
<td>Reactions with Sulfuryl Chloride</td>
<td></td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>35.1.1.7.3</td>
<td>Carboxylic Acids and Derivatives</td>
<td>Reactions with Chloroamines</td>
<td></td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>35.1.1.8</td>
<td>Amines</td>
<td></td>
<td></td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>35.1.1.8.1</td>
<td>Amines</td>
<td>Reactions with Molecular Chlorine</td>
<td></td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>35.1.2</td>
<td>Synthesis by Substitution of Metals</td>
<td></td>
<td></td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>35.1.2.1</td>
<td>Synthesis from Organo-Group 15 Derivatives</td>
<td></td>
<td></td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>35.1.2.2</td>
<td>Synthesis from Trialkylboranes</td>
<td></td>
<td></td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>35.1.3</td>
<td>Synthesis by Substitution of Carbon Functionalities</td>
<td></td>
<td></td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>35.1.3.1</td>
<td>Decarbonylation of Acyl Chlorides</td>
<td></td>
<td></td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>35.1.3.2</td>
<td>Chlorodecarboxylation of the Heavy Metal Salts of Carboxylic Acids</td>
<td></td>
<td></td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>35.1.3.3</td>
<td>Chlorodecarboxylation of Carboxylic Acids by Lead(IV) Acetate</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>35.1.3.3.1</td>
<td>Chlorodecarboxylation in the Presence of Lithium Chloride</td>
<td></td>
<td></td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>35.1.3.3.2</td>
<td>Chlorodecarboxylation in the Presence of N-Chlorosuccinimide</td>
<td></td>
<td></td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>35.1.3.4</td>
<td>Chlorodecarboxylation of 1-(Acyloxy)pyridine-2(1H)-thiones</td>
<td></td>
<td></td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>35.1.4</td>
<td>Synthesis by Substitution of Other Halogens</td>
<td></td>
<td></td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>35.1.4.1</td>
<td>Substitution of Bromine</td>
<td></td>
<td></td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>35.1.4.2</td>
<td>Substitution of Bromine or Iodine</td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
</tbody>
</table>
35.1.5 Synthesis by Substitution of Oxygen Functionalities

P. Margaretha

35.1.5 Synthesis by Substitution of Oxygen Functionalities .. 63
35.1.5.1 Method 1: Decarboxylation of Chloroformates 63
35.1.5.2 Method 2: Synthesis from Alkanesulfonates and a Source of Chloride Ion 64
35.1.5.2.1 Variation 1: Using Lithium Chloride .. 64
35.1.5.2.2 Variation 2: Using Sodium or Potassium Chloride 65
35.1.5.2.3 Variation 3: Using Calcium Chloride .. 65
35.1.5.2.4 Variation 4: Using Pyridinium Hydrochloride 66
35.1.5.2.5 Variation 5: Using Tetraalkylammonium Chlorides 66
35.1.5.3 Method 3: Synthesis from Alkyl Xanthates (O-Alkylidithiocarbonates) or from Thionocarbonates (O,O-Dialkylthiocarbonates) 67
35.1.5.4 Method 4: Replacement of an Alcoholic Hydroxy Group with Hydrogen Chloride or a Metal Halide ... 68
35.1.5.4.1 Variation 1: Using Hydrochloric Acid or Hydrogen Chloride 68
35.1.5.4.2 Variation 2: Using Sodium Chloride .. 69
35.1.5.4.3 Variation 3: Using Tin(IV) Chloride .. 70
35.1.5.5 Method 5: Replacement of an Alcoholic Hydroxy Group with Thionyl Chloride ... 70
35.1.5.5.1 Variation 1: In an Inert Solvent in the Absence of a Base 71
35.1.5.5.2 Variation 2: In the Absence of a Solvent .. 72
35.1.5.5.3 Variation 3: In the Presence of an Equimolar Amount of Pyridine 72
35.1.5.5.4 Variation 4: In the Presence of an Equimolar Amount of 1H-Benzotriazole 73
35.1.5.5.5 Variation 5: In the Presence of Excess Triethylamine 74
35.1.5.6 Method 6: Replacement of an Alcoholic Hydroxy Group with Selenium Tetrachloride ... 75
35.1.5.7 Method 7: Replacement of an Alcoholic Hydroxy Group with Chlorides of Phosphoric Acid and Related Compounds ... 76
35.1.5.7.1 Variation 1: Using Phosphorus Pentachloride 76
35.1.5.7.2 Variation 2: Using Phosphoryl Chloride---------- 77
35.1.5.8 Method 8: Replacement of an Alcoholic Hydroxy Group via Oxyphosphonium Intermediates ... 78
35.1.5.8.1 Variation 1: Using Triphenylphosphine and Tetrachloromethane 79
35.1.5.8.2 Variation 2: Using Triphenylphosphine/2,3-Dichloro-5,6-dicyanobenzo-
1,4-quinone and a Quaternary Ammonium Chloride 81
35.1.5.8.3 Variation 3: Using Triphenylphosphine and Cyclic N-Chloroimides 82
35.1.5.8.4 Variation 4: Using Triphenylphosphine and Dichloroselenuranes 83
35.1.5.8.5 Variation 5: Using Triphenylphosphine, Diethyl Azodicarboxylate, and Zinc(II) Chloride ... 84
35.1.5.9 Method 9: Replacement of an Alcoholic Hydroxy Group with Acetyl Chloride .. 84
35.1.5.10 Method 10: Replacement of an Alcoholic Hydroxy Group with Chloro-
methylenedimethyliminium Chloride and Related Reagents 85
35.1.5.11 Method 11: Replacement of an Alcoholic Hydroxy Group with tert-Butyl Chloride in an Ionic Liquid ... 90
35.1.8.8.1 Variation 1: Synthesis with Hydrogen Chloride .. 111
35.1.8.8.2 Variation 2: Synthesis with Metal Chlorides ... 112
35.1.8.9 Method 9: Hydrochlorination of Cyclopropanes .. 112
35.1.8.10 Method 10: Carbochlorination ... 113

35.1.9 Synthesis from Other Chlorine Compounds
H. Ulrich

35.1.9 Synthesis from Other Chlorine Compounds ... 117
35.1.9.1 Method 1: Synthesis from Chloroalkynes by Hydrogenation 117
35.1.9.2 Method 2: Synthesis from Chloroalkenes ... 117
35.1.9.2.1 Variation 1: By Hydrogenation .. 117
35.1.9.2.2 Variation 2: By Polymerization .. 118
35.1.9.2.3 Variation 3: Coupling Reactions .. 120
35.1.9.2.4 Variation 4: [2 + 2]-Cycloaddition Reactions .. 120
35.1.9.2.5 Variation 5: [2 + 3]-Cycloaddition Reactions .. 125
35.1.9.2.6 Variation 6: [2 + 4]-Cycloaddition Reactions .. 126
35.1.9.3 Method 3: Synthesis from Chlorocarbenes ... 127
35.1.9.4 Method 4: Synthesis from Chloroalkanes ... 129
35.1.9.4.1 Variation 1: By Insertion of Methylene into C–Cl Bonds 129
35.1.9.4.2 Variation 2: Chloroalkylation Reactions .. 129
35.1.9.4.3 Variation 3: By Isomerization Reactions .. 130
35.1.9.4.4 Variation 4: Elimination of Benzeneseleninic Acid 130

35.1.2 Product Subclass 2: Propargylic Chlorides
P. Margaretha

35.1.2 Product Subclass 2: Propargylic Chlorides .. 133
35.1.2.1 Synthesis by Heteroatom Substitution .. 133
35.1.2.1.1 Synthesis by Deoxidative Halogenation of Ketones 133
35.1.2.1.1 Method 1: Addition of Chlorodimethylsilane to Ketones 133
35.1.2.1.2 Synthesis by Substitution of α-Bonded Heteroatoms 134
35.1.2.1.2 Method 1: Synthesis from Propargylic Alcohols and Hydrochloric Acid 134
35.1.2.1.2.1 Variation 1: Chlorination Using Hydrochloric Acid, Calcium Chloride, Copper(I) Chloride, and Copper Metal 134
35.1.2.1.2.2 Variation 2: Chlorination Using Gaseous Hydrogen Chloride 135
35.1.2.1.2.2 Method 2: Synthesis from Propargylic Alcohols and Thionyl Chloride 136
35.1.2.1.2.3 Method 3: Synthesis from Propargylic Alcohols and 1-Chloro-N,N,2-trimethylprop-1-en-1-amine .. 136
35.1.3 Product Subclass 3: Benzylic Chlorides

35.1.3.1 Synthesis by Substitution of Hydrogen
W. D. Pfeiffer

35.1.3.1 Synthesis by Substitution of Hydrogen 139
35.1.3.1 Method 1: Reaction with Chlorine under Irradiation 139
35.1.3.1 Method 2: Reaction with Chlorine and a Catalyst 141
35.1.3.1 Method 3: Reaction with Liquid Chlorine 142
35.1.3.1 Method 4: Reaction with Benzytrimethylammonium Tetrachloroiodate 143
35.1.3.1 Method 5: Reaction with tert-Butyl Hypochlorite 144
35.1.3.1 Method 6: Reaction with Sulfuryl Chloride and a Catalyst 144
35.1.3.1 Method 7: Reaction with Benzenesulfonyl Chloride 146
35.1.3.1 Method 8: Reaction with Trichloromethanesulfonyl Chloride 147
35.1.3.1 Method 9: Reaction with N-Chlorosuccinimide 147
35.1.3.1 Method 10: Reaction with 1,3,5-Trichloro-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (Trichloroisocyanuric Acid) 149
35.1.3.1 Method 11: Reaction with Ammonium Cerium(IV) Nitrate–Lithium Chloride or Cobalt(III) Acetate–Lithium Chloride 149
35.1.3.1 Method 12: Reaction with Phosphorus Pentachloride 150
35.1.3.1 Method 13: Reaction with Phosphoryl Chloride 151
35.1.3.1 Method 14: Reaction with Trichloroacetyl Chloride, Chloroacetyl Chloride, Benzyol Chloride, or Ethyl Chloroformate 151
35.1.3.1 Method 15: Reaction with Trichloromethyl Chloroformate or Bis(trichloromethyl) Carbonate ... 152

35.1.3.2 Synthesis by Substitution of Carbonyl Oxygen
W. D. Pfeiffer

35.1.3.2 Synthesis by Substitution of Carbonyl Oxygen 155
35.1.3.2.1 Method 1: Chloroalkylation with Aldehydes 155
35.1.3.2.1 Variation 1: Chloromethylation with Paraformaldehyde and Hydrogen Chloride .. 155
35.1.3.2.1 Variation 2: Chloromethylation with Formaldehyde and Hydrogen Chloride ... 158
35.1.3.2.1 Variation 3: Chloromethylation with 1,3,5-Trioxide 159
35.1.3.2.1 Variation 4: Chloroalkylation with Acetaldehyde 159
35.1.3.2.2 Method 2: Chloromethylation with Chloromethyl Methyl Ether or Bis(chloromethyl) Ether ... 160
35.1.3.2.3 Method 3: Chloromethylation with Methoxyacetyl Chloride and Aluminum Trichloride ... 161
35.1.3.2.4 Method 4: Chloromethylation with 1-Chloro-4-(chloromethoxy)butane or 1,4-Bis(chloromethoxy)butane 162
35.1.3.2.5 Method 5: Chloroalkylation of Arenecarbaldehydes Using Alkylboron Dichlorides in the Presence of Oxygen 162
35.1.3.3 Synthesis by Substitution of α-Bonded Heteroatoms
P. Margaretha

35.1.3.3 Synthesis by Substitution of α-Bonded Heteroatoms ... 167
35.1.3.3.1 Benzylc Chlorides from Other Benzylc Halides .. 167
35.1.3.3.1.1 Method 1: Benzylc Chlorides from Benzylc Bromides Using Tin(IV) Chloride .. 167
35.1.3.3.2 Benzylc Chlorides from Benzylc Alcohols .. 167
35.1.3.3.2.1 Method 1: Synthesis Using Thionyl Chloride .. 168
35.1.3.3.2.2 Method 2: Synthesis Using 4-Toluenesulfonyl Chloride .. 168
35.1.3.3.2.3 Method 3: Synthesis Using Carbon Tetrachloride .. 169
35.1.3.3.2.4 Method 4: Synthesis Using Silica Chloride .. 169
35.1.3.3.2.5 Method 5: Synthesis Using Chlorotrimethylsilane .. 170
35.1.3.3.2.5.1 Variation 1: With Tellurium Dioxide .. 170
35.1.3.3.2.5.2 Variation 2: With Dimethyl Sulfoxide .. 171
35.1.3.3 Benzylc Chlorides from Benzylc Ethers .. 171
35.1.3.3.1 Method 1: Cleavage with Zinc and Acetyl Chloride .. 171

35.1.4 Product Subclass 4: Allylic Chlorides

35.1.4.1 Synthesis by Substitution of Hydrogen α to a $C=C$ Bond
W. D. Pfeiffer

35.1.4.1 Synthesis by Substitution of Hydrogen α to a $C=C$ Bond .. 173
35.1.4.1.1 Method 1: Reaction with Chlorine .. 173
35.1.4.1.2 Method 2: Reaction with Hypochlorous Acid .. 174
35.1.4.1.3 Method 3: Reaction with Chlorine Monoxide .. 175
35.1.4.1.4 Method 4: Reaction with tert-Butyl Hypochlorite .. 176
35.1.4.1.5 Method 5: Reaction with N-Chloro-N-cyclohexylbenzenesulfonamide .. 177
35.1.4.1.6 Method 6: Reaction with N-Chlorosuccinimide .. 177
35.1.4.1.7 Method 7: Reaction with a Vilsmeier Reagent and Hydrogen Peroxide .. 178
35.1.4.1.8 Method 8: Synthesis by Electrochemical Chlorination .. 179

35.1.4.2 Synthesis by Substitution of α-Bonded Heteroatoms
P. Margaretha

35.1.4.2 Synthesis by Substitution of α-Bonded Heteroatoms .. 181
35.1.4.2.1 Method 1: Allylic Chlorides from Other Allylic Halides .. 181
35.1.4.2.2 Method 2: Allylic Chlorides from Allylic Alcohols .. 181
35.1.4.2.2.1 Variation 1: With Thionyl Chloride .. 182
35.1.4.2.2.2 Variation 2: With Methanesulfonyl Chloride .. 182
35.1.4.2.2.3 Variation 3: With N-Chlorosuccinimide and Dimethyl Sulfide .. 183
Variation 4: With Carbon Tetrachloride or Hexachloroacetone and Triphenylphosphine .. 183
Variation 5: With 1-Chloro-\textsubscript{N},N,2-trimethylprop-1-enylamine 185
Variation 6: With Chlorotrimethylsilane in the Presence of Bismuth(III) Chloride 186
Variation 7: Allylic Chlorides from Allylic Phosphates ... 186
Method 3: Allylic Chlorides from Allyloxybenzenes ... 187

Product Subclass 5: 1-Chloro-\textsubscript{n}-Heteroatom-Functionalized Alkanes (n ≥2) with Both Functions Formed Simultaneously

Synthesis by Addition across C\textsubscript{=}C Bonds
R. Göttlich

Method 1: Chlorination of Arenes ... 189
Method 2: Chlorination of Alkenes ... 192
Variation 1: Using Chlorine ... 192
Variation 2: Using Sulfuryl Chloride ... 198
Variation 3: Using Other Reagents ... 200
Method 3: Bromochlorination of Alkenes ... 203
Method 4: Iodochlorination of Alkenes ... 206
Method 5: Fluorochlorination of Alkenes ... 208
Method 6: Oxychlorination of Alkenes ... 210
Variation 1: Intermolecular Addition ... 210
Variation 2: Intramolecular Cyclization ... 215
Method 7: Sulfochlorination of Alkenes ... 219
Method 8: Selenochlorination of Alkenes ... 223
Method 9: Tellurochlorination of Alkenes ... 227
Method 10: Aminochlorination of Alkenes ... 228
Variation 1: Intermolecular Additions ... 228
Variation 2: Intramolecular Cyclization ... 238
Method 11: Phosphochlorination of Alkenes ... 242

Synthesis by Addition across C\textsubscript{=}O Bonds
K. Rück-Braun and T. Freysoldt

Method 1: Hydrochlorination of Epoxides Using Hydrogen Chloride ... 251
Method 2: Hydrochlorination of Epoxides Using Elemental Chlorine ... 252
Method 3: Hydrochlorination of Epoxides Using Alkali Metal Chlorides ... 253
Method 4: Hydrochlorination of Epoxides Using Chloro(imido)metal Complexes ... 254
Method 5: Hydrochlorination of Epoxides Using Silicon Tetrachloride ... 254
Variation 1: Enantioselective Transformations and Desymmetrization ... 255
35.1.5.2.6 Method 6: Hydrochlorination of Epoxides Using Trialkylchlorosilanes \[\cdots\] 256
35.1.5.2.7 Method 7: Hydrochlorination of Epoxides Using Chloroorganostannanes 258
35.1.5.2.8 Method 8: Hydrochlorination of Epoxides Using Organoaluminum Chlorides \[\cdots\] 259
35.1.5.2.9 Method 9: Hydrochlorination of Epoxides Using Lithium Tetrachlorocuprate(II) \[\cdots\] 260
35.1.5.2.10 Method 10: Hydrochlorination of Epoxides Using Niobium(V) Chloride \[\cdots\] 260
35.1.5.2.11 Method 11: Hydrochlorination of Epoxides Using Titanium(IV) Chloride 261
35.1.5.2.12 Method 12: Hydrochlorination of Epoxides Using Cerium(III) Chloride \[\cdots\] 262
35.1.5.2.13 Method 13: Hydrochlorination of Epoxides Using Tetraalkylammonium Chlorides \[\cdots\] 262
35.1.5.2.14 Method 14: Hydrochlorination of Epoxides Using Phosphorus Chlorides, Phosphonium Chlorides, Thionyl Chloride, and Related Compounds \[\cdots\] 263
35.1.5.2.15 Method 15: Hydrochlorination of Epoxides Using Chlorocarbonylated Compounds \[\cdots\] 265
35.1.5.2.16 Method 16: Hydrochlorination of Tetrahydrofurans and Other Cyclic Ethers \[\cdots\] 266

35.1.5.3 Synthesis by Addition across C–S Bonds
K. Rück-Braun and T. Freysoldt

35.1.5.3 Synthesis by Addition across C–S Bonds \[\cdots\] 271
35.1.5.3.1 Method 1: Hydrochlorination of Thiiranes Using Hydrogen Chloride \[\cdots\] 271
35.1.5.3.2 Method 2: Hydrochlorination of Thiiranes by Reaction of Thiirane 1-Oxides with Chloro(organo)stannanes \[\cdots\] 271
35.1.5.3.3 Method 3: Hydrochlorination of Thiiranes Using Chlorocarbonylated Compounds \[\cdots\] 272
35.1.5.3.4 Method 4: Synthesis by Chlorination of Thiiranes \[\cdots\] 273

35.1.5.4 Synthesis by Addition across C–N Bonds
K. Rück-Braun and T. Freysoldt

35.1.5.4 Synthesis by Addition across C–N Bonds \[\cdots\] 275
35.1.5.4.1 Method 1: Hydrochlorination of Aziridines Using Hydrogen Chloride \[\cdots\] 275
35.1.5.4.2 Method 2: Hydrochlorination of Aziridines Using Alkali Metal Chlorides 276
35.1.5.4.3 Method 3: Hydrochlorination of Aziridines Using Other Metal Chlorides 277
35.1.5.4.4 Method 4: Hydrochlorination of Aziridines Using Chlorotrimethylsilane 278
35.1.5.4.5 Method 5: Hydrochlorination of Aziridines Using Activated Dimethylformamide Complexes \[\cdots\] 278

35.1.5.5 Synthesis by Addition across C–C Bonds
K. Rück-Braun and T. Freysoldt

35.1.5.5 Synthesis by Addition across C–C Bonds \[\cdots\] 281
35.1.5.5.1 Method 1: Chlorination of 1,1-Diacetylcyclopropane \[\cdots\] 281
35.2 Product Class 2: One Saturated Carbon—Bromine Bond

35.2.1 Product Subclass 1: Bromoalkanes
E. Schaumann

35.2.1 Product Subclass 1: Bromoalkanes

35.2.1.1 Synthesis by Substitution of Hydrogen
J. Hartung

35.2.1.1 Synthesis by Substitution of Hydrogen

35.2.1.1.1 Alkanes and Cycloalkanes

35.2.1.1.1 Method 1: Bromination with Bromine

35.2.1.1.1.2 Method 2: Reaction with tert-Butyl Hypobromite

35.2.1.1.1.2 Method 2: Reaction with tert-Butyl Hypobromite

35.2.1.1.1.3 Method 3: Brominating Reagents Containing a C—Br Bond

35.2.1.1.1.3 Method 3: Brominating Reagents Containing a C—Br Bond

35.2.1.1.1.3.1 Variation 1: Carbon Tetrabromide as Bromine-Atom Donor

35.2.1.1.1.3.1 Variation 1: Carbon Tetrabromide as Bromine-Atom Donor

35.2.1.1.1.3.2 Variation 2: Bromotrichloromethane as Bromine-Atom Donor

35.2.1.1.1.3.2 Variation 2: Bromotrichloromethane as Bromine-Atom Donor

35.2.1.1.2 Haloalkanes and Halocycloalkanes

35.2.1.1.2 Haloalkanes and Halocycloalkanes

35.2.1.1.2.1 Method 1: Bromination with Bromine

35.2.1.1.2.1 Method 1: Bromination with Bromine

35.2.1.1.3 Aldehydes and Ketones

35.2.1.1.3 Aldehydes and Ketones

35.2.1.1.3.1 Method 1: Bromination with Bromine

35.2.1.1.3.1 Method 1: Bromination with Bromine

35.2.1.1.3.2 Method 2: Reaction with Bromomalonates

35.2.1.1.3.2 Method 2: Reaction with Bromomalonates

35.2.1.1.4 Carboxylic Acids and Carboxylic Acid Derivatives

35.2.1.1.4 Carboxylic Acids and Carboxylic Acid Derivatives

35.2.1.1.4.1 Method 1: Bromination with Bromine

35.2.1.1.4.1 Method 1: Bromination with Bromine

35.2.1.1.4.2 Method 2: Bromination with N-Bromosuccinimide

35.2.1.1.4.2 Method 2: Bromination with N-Bromosuccinimide

35.2.1.1.5 Isocyanates and Isothiocyanates

35.2.1.1.5 Isocyanates and Isothiocyanates

35.2.1.1.5.1 Method 1: Bromination with N-Bromosuccinimide

35.2.1.1.5.1 Method 1: Bromination with N-Bromosuccinimide

35.2.1.1.6 Alkylboranes and Alkylsilanes

35.2.1.1.6 Alkylboranes and Alkylsilanes

35.2.1.1.6.1 Method 1: Bromination with Bromine

35.2.1.1.6.1 Method 1: Bromination with Bromine

35.2.1.1.6.2 Method 2: Bromination with N-Bromosuccinimide

35.2.1.1.6.2 Method 2: Bromination with N-Bromosuccinimide

35.2.1.1.7 Carbohydrates

35.2.1.1.7 Carbohydrates

35.2.1.1.7.1 Method 1: Bromination with Bromine

35.2.1.1.7.1 Method 1: Bromination with Bromine

35.2.1.1.7.2 Method 2: Bromination with N-Bromosuccinimide

35.2.1.1.7.2 Method 2: Bromination with N-Bromosuccinimide

35.2.1.2 Synthesis by Substitution of Metals
P. Margaretha

35.2.1.2 Synthesis by Substitution of Metals

35.2.1.2.1 Method 1: Bromoalkanes from Organo-Group 15 Derivatives

35.2.1.2.1 Method 1: Bromoalkanes from Organo-Group 15 Derivatives

35.2.1.2.2 Method 2: Bromoalkanes from Trialkylboranes

35.2.1.2.2 Method 2: Bromoalkanes from Trialkylboranes
35.2.1.3 Substitution of Carbon Functionalities
P. Margaretha

35.2.1.3 Substitution of Carbon Functionalities .. 303
35.2.1.3.1 Method 1: Decarbonylation of Acyl Bromides 303
35.2.1.3.2 Method 2: Bromodecarboxylation of Heavy-Metal Salts of Carboxylic Acids .. 303
35.2.1.3.2.1 Variation 1: Bromodecarboxylation of Silver(I) Carboxylates 303
35.2.1.3.2.2 Variation 2: Bromodecarboxylation of Thallium(I) Carboxylates 304
35.2.1.3.3 Method 3: Bromodecarboxylation of Carboxylic Acids 305
35.2.1.3.3.1 Variation 1: Bromodecarboxylation of Carboxylic Acids in the Presence of Mercury(II) Oxide 306
35.2.1.3.3.2 Variation 2: Bromodecarboxylation of Carboxylic Acids with (Diacetoxyiodo)benzene and Bromine 306
35.2.1.3.4 Method 4: Bromodecarboxylation of N-(Acyloxy)pyridine-2(1H)-thiones 307

35.2.1.4 Synthesis by Substitution of Other Halogens
M. Braun

35.2.1.4 Synthesis by Substitution of Other Halogens 313
35.2.1.4.1 Method 1: Substitution of Fluorine ... 313
35.2.1.4.1.1 Variation 1: Reaction with Aqueous Hydrogen Bromide 313
35.2.1.4.1.2 Variation 2: Reactions with Lewis Acids 314
35.2.1.4.2 Method 2: Substitution of Chlorine ... 314
35.2.1.4.2.1 Variation 1: Reaction of Chloroalkanes with Aqueous Hydrogen Bromide .. 315
35.2.1.4.2.2 Variation 2: Reactions of Chloroalkanes with Gaseous Hydrogen Bromide in the Presence of Iron(III) Bromide 315
35.2.1.4.2.3 Variation 3: Reactions of Chloroalkanes with Metal Bromides and a Phase-Transfer Catalyst .. 317
35.2.1.4.2.4 Variation 4: Reactions of Chloroalkanes with Bromoalkanes in the Presence of Alkali Metal Bromides 318
35.2.1.4.3 Method 3: Substitution of Iodine ... 320
35.2.1.4.3.1 Variation 1: Reactions of Iodoalkanes with Bromine 320
35.2.1.4.3.2 Variation 2: Reactions of Iodoalkanes with Hypervalent Iodo Compounds .. 320
35.2.1.4.3.3 Variation 3: Reactions of Iodoalkanes with Bismuth(III) Bromide 321

35.2.1.5 Synthesis by Substitution of Oxygen Functionalities
M. Braun

35.2.1.5 Synthesis by Substitution of Oxygen Functionalities 323
35.2.1.5.1 Method 1: Substitution of Acyloxy Groups in Carboxylic Esters 323
35.2.1.5.1.1 Variation 1: Reaction of Carboxylic Esters with Hydrogen Bromide 323
35.2.1.5.1.2 Variation 2: Reaction of Carboxylic Esters with Bromotrimethylsilane 324
35.2.1.5.1.3 Variation 3: Reaction of Carboxylic Esters with Bromine and Phosphorus 325
35.2.1.5.1.4 Variation 4: Reaction of Carboxylic Esters with Triphenylphosphine–Bromine .. 326
35.2.1.5.2 Method 2: Substitution of Alcoholic Hydroxy Groups 326
35.2.1.5.2.1 Variation 1: Reaction of Alcohols with Aqueous Hydrobromic Acid 326
35.2.1.5.2.2 Variation 2: Reaction of Alcohols with Hydrobromic Acid/Sulfuric Acid ... 328
35.2.1.5.2.3 Variation 3: Reaction of Alcohols with Gaseous Hydrogen Bromide 328
35.2.1.5.2.4 Variation 4: Reaction of Alcohols with Phosphorus Tribromide 329
35.2.1.5.2.5 Variation 5: Reaction of Alcohols with Polymer-Bound Phosphorus Tribromide ... 330
35.2.1.5.2.6 Variation 6: Reaction of Alcohols with Phosphorus Tribromide and Pyridine 331
35.2.1.5.2.7 Variation 7: Reaction of Alcohols with Triphenylphosphine–Bromine 331
35.2.1.5.2.8 Variation 8: Reaction of Alcohols with Triphenylphosphine–Carbon Tetrabromide and Related Reagents 333
35.2.1.5.2.9 Variation 9: Reaction of Alcohols with Triphenylphosphine–N-Bromosuccinimide .. 334
35.2.1.5.2.10 Variation 10: Reaction of Alcohols with Triphenyl Phosphate–Bromine 335
35.2.1.5.2.11 Variation 11: Reaction of Alcohols with Bromotrimethylsilane 335
35.2.1.5.2.12 Variation 12: Preparation of Bromoalkanes from Alcohols by a Modified Mitsunobu Procedure ... 336
35.2.1.5.2.13 Variations 13: Miscellaneous Reactions .. 337
35.2.1.5.3 Method 3: Substitution of Alcohols with Isomerization 337
35.2.1.5.3.1 Variation 1: Reaction of 1-Cyclopropylalkan-1-ols with Hydrogen Bromide 338
35.2.1.5.3.2 Variation 2: Reaction of 1-Cyclopropylalkan-1-ols with Magnesium Bromide ... 339
35.2.1.5.3.3 Variation 3: Reaction of 1-Cyclopropylalkan-1-ols with Bromotrimethylsilane–Zinc(II) Bromide ... 340
35.2.1.5.3.4 Variations 4: Miscellaneous Reactions .. 341
35.2.1.5.4 Method 4: Cleavage of Alkyl Ethers .. 341
35.2.1.5.4.1 Variation 1: Reaction of Ethers with Hydrobromic Acid 341
35.2.1.5.4.2 Variation 2: Reaction of Ethers with 9-Bromo-9-borabicyclo[3.3.1]nonane 342
35.2.1.5.5 Method 5: Cleavage of Silyl Ethers ... 343
35.2.1.5.5.1 Variation 1: Reaction of Silyl Ethers with Triphenylphosphine–Bromine 343
35.2.1.5.5.2 Variation 2: Reaction of Silyl Ethers with Triphenylphosphine/2,4,4,6-Tetabromocyclohexa-2,5-dienone .. 344
35.2.1.5.5.3 Variation 3: Reaction of Silyl Ethers with Triphenylphosphine–Carbon Tetrabromide .. 345
35.2.1.5.5.4 Variation 4: Reaction of Silyl Ethers with Boron Tribromide 346
35.2.1.5.6 Method 6: Substitution of Sulfonyloxy Groups 347
35.2.1.5.6.1 Variation 1: Reaction of Arenesulfonates with Metal Bromides 347
35.2.1.5.6.2 Variation 2: Reaction of Methanesulfonates with Metal Bromides 349
35.2.1.5.6.3 Variations 3: Miscellaneous Reactions .. 350
Synthesis by Substitution of Sulfur, Selenium, or Tellurium Functionalities
M. Braun

Method 1: Preparation from Sulfides and Cyanogen Bromide or from Selenides and Bromine

Synthesis by Substitution of Nitrogen Functionalities
M. Braun

Method 1: Synthesis from Amines by the von Braun Reaction
Method 2: Synthesis from Amines via Diazonium Salts

Synthesis by Addition to \(\pi\)-Type \(\text{C} - \text{C}\) Bonds
K.-M. Roy

Method 1: Hydrobromination of Alkynes or Allenes
Method 2: Hydrobromination of 1,3-Dienes

Variation 1: Using Hydrogen Bromide
Variation 2: Using Phosphorus Tribromide on Silica Gel
Variation 3: Via Hydrozirconation

Method 3: Hydrobromination of Symmetrical Alkenes and Cycloalkenes
Method 4: Hydrobromination of Unsymmetrical Alkenes
(anti-Markovnikov Addition)

Variation 1: Using Hydrogen Bromide
Variation 2: Using Phase-Transfer Conditions
Variation 3: Using an Inorganic Support
Variation 4: Via Hydroalumination
Variation 5: Via Hydrozirconation

Method 5: Hydrobromination of Unsymmetrical Alkenes
(anti-Markovnikov Addition)

Variation 1: Using Hydrogen Bromide and a Radical Source
Variation 2: Using Benzeneselenenyl Bromide and Hydrogen Peroxide
Variation 3: Via Hydroboration
Variation 4: Via Hydroalumination
Variation 5: Via Hydrozirconation

Method 6: Asymmetric Hydrobromination of Functionalized Alkenes

Method 7: Hydrobromination of Methylene cyclopropanes

Variation 1: Using Hydrogen Bromide
Variation 2: Using Titanium(IV) Bromide

Method 8: Hydrobromination of Cyclopropanes

Method 9: Carbobromination

Variation 1: Bromocyclization
35.2.1.9 Synthesis from Other Bromo Compounds
H. Ulrich

35.2.1.9 Synthesis from Other Bromo Compounds .. 379
35.2.1.9.1 Method 1: Synthesis from Bromoalkynes by Hydrogenation 379
35.2.1.9.2 Method 2: Synthesis from Bromoalkenes 379
35.2.1.9.2.1 Variation 1: By Hydrogenation .. 379
35.2.1.9.2.2 Variation 2: By Polymerization .. 380
35.2.1.9.2.3 Variation 3: By Cycloaddition Reactions 380
35.2.1.9.3 Method 3: Synthesis from Bromocarbenes 383
35.2.1.9.4 Method 4: Synthesis from Bromoalkanes 384
35.2.1.9.4.1 Variation 1: By Insertion of Methylene into Carbon—Halogen Bonds 384
35.2.1.9.4.2 Variation 2: By Bromoalkylation .. 384
35.2.1.9.4.3 Variation 3: By Isomerization Reactions 384

35.2.2 Product Subclass 2: Propargylic Bromides
M. Braun

35.2.2 Product Subclass 2: Propargylic Bromides .. 387
35.2.2.1 Synthesis by Heteroatom Substitution ... 387
35.2.2.1.1 Method 1: Substitution of Hydroxy Groups 387
35.2.2.1.2 Method 2: Substitution of Sulfonyloxy Groups 389

35.2.3 Product Subclass 3: Benzylic Bromides

35.2.3.1 Synthesis by Substitution of Hydrogen
W. D. Pfeiffer

35.2.3.1 Synthesis by Substitution of Hydrogen ... 391
35.2.3.1.1 Method 1: Reaction with Bromine .. 391
35.2.3.1.1.1 Variation 1: Reaction with Bromine in the Absence of a Catalyst 391
35.2.3.1.1.2 Variation 2: Reaction with Bromine in the Presence of a Catalyst 393
35.2.3.1.2 Method 2: Reaction with Copper(II) Bromide 395
35.2.3.1.3 Method 3: Reaction with Sodium Bromide and Hydrogen Peroxide 396
35.2.3.1.4 Method 4: Reaction with Ammonium Cerium(IV) Nitrate/Bromide or Cobalt(III) Acetate/Bromide ... 397
35.2.3.1.5 Method 5: Reaction with N-Bromosuccinimide 398
35.2.3.1.6 Method 6: Reaction with Ammonium-Type Bromides 402
35.2.3.1.6.1 Variation 1: Reaction with a Bromine Complex of Poly(styrene-co-4-vinylpyridine) .. 402
35.2.3.1.6.2 Variation 2: Reaction with Pyridinium Tribromide 403
35.2.3.1.6.3 Variation 3: Reaction with 3-Methylimidazolium Tribromide 404
35.2.3.1.7 Method 7: Reaction with Trichloromethanesulfonyl Bromide 405
35.2.3.1.8 Method 8: Reaction with Bromotrichloromethane 406
35.2.3.2 Synthesis by Substitution of Carbonyl Oxygen
W. D. Pfeiffer

35.2.3.3 Synthesis by Substitution of α-Bonded Heteroatoms
M. Braun

35.2.4 Product Subclass 4: Allylic Bromides

35.2.4.1 Synthesis by Substitution of Hydrogen α to a C=C Bond
W. D. Pfeiffer
Synthesis by Substitution of \(\alpha \)-Bonded Heteroatoms

M. Braun

Method 1: Substitution of Other Halogens

Method 2: Substitution of Oxygen Functionalities

Product Subclass 5: 1-Bromo-\(n \)-Heteroatom-Functionalized Alkanes (\(n \geq 2 \)) with Both Functions Formed Simultaneously

Synthesis by Addition across C=C Bonds

T. Troll

Method 1: Bromination of Aromatic Compounds

Method 2: Bromination of 1,3-Dienes

Method 3: Bromination of Alkenes

Variation 1: Bromination with Bromine–Amine Complexes

Variation 2: Generation of Electrophilic Bromine by In Situ Oxidation of Bromide

Method 4: Hydroxy- and Alkoxybromination of Alkenes

Method 5: Sulfobromination of Alkenes

Method 6: Aminobromination of Alkenes

Method 7: Azidobromination of Alkenes

Method 8: Phosphobromination of Alkenes

Synthesis by Addition across C=O Bonds

K. Rück-Braun and T. Freysoldt

Method 1: Hydrobromination of Epoxides Using Hydrogen Bromide

Method 2: Hydrobromination of Epoxides Using Elemental Bromine

Method 3: Hydrobromination of Epoxides Using Alkali Metal Bromides

Variation 1: Catalyzed by Lewis Acids

Method 4: Hydrobromination of Epoxides Using Magnesium Bromide

Method 5: Hydrobromination of Epoxides Using Tin(II) Bromide

Method 6: Hydrobromination of Epoxides Using Bromo(imido)metal Complexes

Variation 1: Enantioselective Transformations

Method 7: Enantioselective Hydrobromination of Epoxides Using Azidotrialkyilsilanes and Allyl Bromide

Method 8: Hydrobromination of Epoxides Using Boron Bromides

Variation 1: Enantioselective Transformations

Method 9: Hydrobromination of Epoxides Using Lithium Tetrabromocuprate(II)
Method 10: Hydrobromination of Epoxides Using Lithium Tetrabromonickelate(II) .. 514
Method 11: Hydrobromination of Epoxides Using Ammonium Bromides .. 514
Method 12: Hydrobromination of Epoxides Using Phosphorus Tribromide or Phosphonium Bromides 515
Method 13: Hydrobromination of Tetrahydrofurans and Oxetanes .. 518

35.2.5.3 **Synthesis by Addition across C–S Bonds**
K. Rück-Braun and T. Freysoldt

35.2.5.3 Synthesis by Addition across C–S Bonds .. 523
35.2.5.3.1 Method 1: Hydrobromination of Thiiranes Using Methanesulfenyl Bromide .. 523
35.2.5.3.2 Method 2: Hydrobromination of Thiiranes Using Bromo(organo)stannanes 523
35.2.5.3.3 Method 3: Synthesis by Bromination of Thiiranes .. 524

35.2.5.4 **Synthesis by Addition across C–N Bonds**
K. Rück-Braun and T. Freysoldt

35.2.5.4 Synthesis by Addition across C–N Bonds .. 527
35.2.5.4.1 Method 1: Hydrobromination of Aziridines Using Hydrogen Bromide .. 527
35.2.5.4.2 Method 2: Hydrobromination of Aziridines Using Alkali Metal Bromides .. 528
35.2.5.4.3 Method 3: Hydrobromination of Aziridines Using Other Metal Bromides .. 529
35.2.5.4.4 Method 4: Hydrobromination of Aziridines Using Tetraalkylammonium Bromides 531
35.2.5.4.5 Method 5: Hydrobromination of Aziridines with Bromotrimethylsilane ... 532
35.2.5.4.6 Method 6: Hydrobromination of Aziridines Using Activated Dimethylformamide Complexes 532
35.2.5.4.7 Method 7: Hydrobromination of Aziridines Using Benzyl Bromides .. 533

35.2.5.5 **Synthesis by Addition across C–C Bonds**
K. Rück-Braun and T. Freysoldt

35.2.5.5 Synthesis by Addition across C–C Bonds .. 535
35.2.5.5.1 Method 1: Bromination of Pentafluoro(vinyl)cyclopropanes ... 535

35.3 **Product Class 3: One Saturated Carbon—Iodine Bond**

35.3.1 **Product Subclass 1: Iodoalkanes**
E. Schaumann

35.3.1 Product Subclass 1: Iodoalkanes .. 537
35.3.1.1 Synthesis by Substitution of Hydrogen
J. Hartung

35.3.1.1 Synthesis by Substitution of Hydrogen 541
35.3.1.1.1 Method 1: Alkane Functionalization in the Presence of
Polyiodomethanes and Sodium Hydroxide 542
35.3.1.1.2 Method 2: Alkane Functionalization in the Presence of
Nonafluoro-1-iodobutane .. 543
35.3.1.1.3 Method 3: Alkane Functionalization in the Presence of
tert-Butyl Hypoiodite ... 544
35.3.1.1.4 Method 4: Alkane Functionalization in the Presence of
Iodine and (Diacetoxyiodo)benzene in Alcohols 545
35.3.1.1.5 Method 5: Alkane Functionalization with Iodine in the Presence of
Aluminum Triiodide and Tetrahalomethanes 546

35.3.1.2 Synthesis by Substitution of Metals
S. Härtinger and M. Härtinger

35.3.1.2 Synthesis by Substitution of Metals 549
35.3.1.2.1 Method 1: Synthesis from Compounds of the Alkali or
Alkaline Earth Metals ... 549
35.3.1.2.2 Method 2: Synthesis from Organomercury Compounds 553
35.3.1.2.3 Method 3: Synthesis from Organozinc Reagents 555
35.3.1.2.4 Method 4: Synthesis from Organostannane Compounds 557
35.3.1.2.5 Method 5: Synthesis from Organosilicon Compounds 558
35.3.1.2.6 Method 6: Synthesis from Organoboranes or
Organoaluminum Compounds 560

35.3.1.3 Synthesis by Substitution of Carbon Functionalities
S. Härtinger and M. Härtinger

35.3.1.3 Synthesis by Substitution of Carbon Functionalities 565
35.3.1.3.1 Method 1: Synthesis from Aliphatic Acids by Decarboxylation with
Hypervalent Iodine Compounds 565
35.3.1.3.2 Method 2: Synthesis from Aliphatic Acids by Decarboxylation with
tert-Butyl Hypoiodite .. 567
35.3.1.3.3 Method 3: Synthesis from Aliphatic Acids by Decarboxylation with
Organic Peroxides .. 568
35.3.1.3.4 Method 4: Synthesis from N-(Acyloxy)pyridine-2(1H)-thiones by
Degradation (Hunsdiecker Reaction) 569
35.3.1.3.5 Method 5: Synthesis from Salts of Aliphatic Acids by Degradation
(Variation 1: Mercury(II) Carboxylates of Aliphatic Acids 571
35.3.1.3.5.1 Variation 1: Synthesis from Mercury(II) Carboxylates of Aliphatic Acids 572
35.3.1.3.5.2 Variation 2: Synthesis from Lead(IV) Salts of Aliphatic Acids 573
35.3.1.3.6 Method 6: Synthesis from Aliphatic Esters or Acid Chlorides by
O-Silylation .. 574
35.3.1.3.7 Method 7: Synthesis from Aliphatic Peroxyacids and Hydroperoxides by Degradation 575

35.3.1.4 Synthesis by Substitution of Other Halogens
S. Härtinger and M. Härtinger

35.3.1.4 Synthesis by Substitution of Other Halogens .. 579
35.3.1.4.1 Method 1: Synthesis from Chloro- or Bromoalkanes with Alkali Metal Iodides ... 579
35.3.1.4.2 Method 2: Synthesis from Chloro- and Bromoalkanes under Phase-Transfer Catalysis 581
35.3.1.4.3 Method 3: Synthesis from Haloalkanes by Iodide-Catalyzed Exchange Reactions ... 582
35.3.1.4.4 Method 4: Synthesis from Haloalkanes with Hydriodic Acid 583
35.3.1.4.5 Method 5: Synthesis from Haloalkanes with Iodosilanes 584

35.3.1.5 Synthesis by Substitution of Oxygen Functionalities
S. Härtinger

35.3.1.5 Synthesis by Substitution of Oxygen Functionalities .. 589
35.3.1.5.1 Method 1: Synthesis from Aliphatic Carbonyl Compounds or Acetals 589
35.3.1.5.1.1 Variation 1: Reductive Iodination with an Amine–Borane Complex 590
35.3.1.5.1.2 Variation 2: Reductive Iodination with Diiodosilane 591
35.3.1.5.1.3 Variation 3: Direct Iodination of the Tetrahydrofuran-2-yl Group 592
35.3.1.5.2 Method 2: Synthesis from Aliphatic Carboxylic Acid Esters 593
35.3.1.5.2.1 Variation 1: Cleavage with Hydriodic Acid 594
35.3.1.5.2.2 Variation 2: Metal-Catalyzed Iodinolysis ... 595
35.3.1.5.2.3 Variation 3: Cleavage of an Acyloxy or α-Chloroalkyl Carbonate Group with Metal Iodides .. 596
35.3.1.5.2.4 Variation 4: Cleavage of an Acyloxy, Formyloxy, or Carbamate Group with Iodotrimethylsilane ... 598
35.3.1.5.2.5 Variation 5: Reaction with Iodomethane ... 599
35.3.1.5.2.6 Variation 6: Decarboxylation of a Chloroformate Group 600
35.3.1.5.3 Method 3: Synthesis from Cyclic Alcohols or Ketones, Lactols, or Hydroxymethyl-Substituted Cycloalkanes by Isomerization and Fragmentation .. 601
35.3.1.5.3.1 Variation 1: Alkoxy-Radical-Mediated Reactions 601
35.3.1.5.3.2 Variation 2: Ring-Expanded Iodides by Wagner–Meerwein Rearrangement 609
35.3.1.5.3.3 Variation 3: Ring Opening and Fragmentation Reactions of Cyclopropyl Alcohols .. 610
35.3.1.5.3.4 Variation 4: Ring-Opening Reactions of Cyclobutanones 612
35.3.1.5.4 Method 4: Synthesis from Ethers ... 613
35.3.1.5.4.1 Variation 1: Cleavage with Hydriodic Acid 613
35.3.1.5.4.2 Variation 2: Cleavage with Alkali Metal Iodides and Acids 615
35.3.1.5.4.3 Variation 3: Iodinolysis with Borohydride Reagents 616
35.3.1.5.4.4 Variation 4: Cleavage with Iodosilane Reagents 617
Table of Contents

35.3.1.5.4.5 Variation 5: Cleavage of a Trimethylsiloxy Group 619
35.3.1.5.4.6 Variation 6: Cleavage with Carboxylic Acid Iodides 620
35.3.1.5.4.7 Variation 7: Activation with Metal-Containing Lewis Acids 622
35.3.1.5.5 Method 5: Synthesis from Esters of Sulfur, Nitrogen, or Phosphorus Oxyacids 623
35.3.1.5.5.1 Variation 1: Cleavage of a Sulfonyloxy Group with Metal Iodides 623
35.3.1.5.5.2 Variation 2: Phase-Transfer-Catalyzed Cleavage of a Sulfonyloxy Group 628
35.3.1.5.5.3 Variation 3: Nucleophilic Substitution in Ionic Liquids 631
35.3.1.5.5.4 Variation 4: Cleavage of Ammonioalkanesulfonate Esters 632
35.3.1.5.5.5 Variation 5: Cleavage of Dialkyl Sulfates 633
35.3.1.5.5.6 Variation 6: Cleavage of Esters or Amides of Mononuclear Oxyacids of Phosphorus 633
35.3.1.5.6 Method 6: Synthesis from Alcohols 635
35.3.1.5.6.1 Variation 1: Direct Iodinolysis 635
35.3.1.5.6.2 Variation 2: Iodination with Hydriodic Acid 636
35.3.1.5.6.3 Variation 3: Iodination with Metal Iodides and Acid as a Source of Hydriodic Acid 638
35.3.1.5.6.4 Variation 4: Iodination with Metal Iodides and 70% Hydrogen Fluoride/Pyridine 639
35.3.1.5.6.5 Variation 5: Iodination with Metal Iodides 640
35.3.1.5.6.6 Variation 6: Iodine Transfer from Organic or Organometallic Iodides 642
35.3.1.5.6.7 Variation 7: Activation with Diazolides 643
35.3.1.5.6.8 Variation 8: Activation with O-Alkylisoureas 644
35.3.1.5.6.9 Variation 9: Activation with Alkoxyformamidinium Salts 646
35.3.1.5.6.10 Variation 10: Activation with Onium Salts of 2-Fluoroazaarenes 647
35.3.1.5.6.11 Variation 11: Iodination with Phosphorus and Iodine or with Phosphorus Triiodide 648
35.3.1.5.6.12 Variation 12: Activation with Phosphite Esters or Phosphorus Amides 649
35.3.1.5.6.13 Variation 13: Activation with Phosphine Reagents 652
35.3.1.5.6.14 Variation 14: Iodination with Iodosilane Reagents 656
35.3.1.5.6.15 Variation 15: Iodinolysis with Borane or Boronate Reagents 657
35.3.1.5.6.16 Variation 16: Iodination in Ionic Liquids 659

35.3.1.6 Synthesis by Substitution of Sulfur, Selenium, or Tellurium Functionalities
S. Härtinger and M. Härtinger

35.3.1.6 Synthesis by Substitution of Sulfur, Selenium, or Tellurium Functionalities 673
35.3.1.6.1 Method 1: Reaction of Aliphatic Sulfur or Selenium Compounds with Phosphine Reagents and Iodine 673
35.3.1.6.2 Method 2: Synthesis from Alkyl Sulfides via Formation of Sulfonium Salts 675
35.3.1.7 Synthesis by Substitution of Nitrogen Functionalities
S. Härtinger and M. Härtinger

35.3.1.7 Synthesis by Substitution of Nitrogen Functionalities .. 679
35.3.1.7.1 Method 1: Synthesis from Alkylamines via Formation of Trialkyl ammonium Salts .. 679
35.3.1.7.2 Method 2: Synthesis from Alkylamines via Pyrolysis of 1-Alkylpyridinium Salts 680
35.3.1.7.3 Method 3: Synthesis from Alkylamines via Formation of N-Alkyl- N, N-disulfonylamines 681
35.3.1.7.4 Method 4: Synthesis from Hydrazines by Iodinolysis .. 682
35.3.1.7.5 Method 5: Synthesis from Nitroalkanes by Substitution .. 683

35.3.1.8 Synthesis by Addition to π-Type C–C Bonds
K.-M. Roy

35.3.1.8 Synthesis by Addition to π-Type C–C Bonds .. 685
35.3.1.8.1 Method 1: Hydroiodination of 1,3-Dienes .. 685
35.3.1.8.1.1 Variation 1: Synthesis of 1-Iodo-3-methylbut-2-ene with Phosphorus Triiodide/Silica Gel .. 685
35.3.1.8.2 Method 2: Hydroiodination of Alkenes and Cycloalkenes (Markovnikov Addition) ... 686
35.3.1.8.2.1 Variation 1: Synthesis Using Hydrogen Iodide ... 686
35.3.1.8.2.2 Variation 2: Surface-Mediated Synthesis ... 687
35.3.1.8.3 Method 3: Hydroiodination of Alkenes and Cycloalkenes (anti-Markovnikov Addition) .. 688
35.3.1.8.3.1 Variation 1: Synthesis via Hydroboration ... 688
35.3.1.8.3.2 Variation 2: Synthesis via Hydroalumination ... 689
35.3.1.8.3.3 Variation 3: Synthesis via Hydrozirconation .. 690
35.3.1.8.4 Method 4: Hydroiodination of Methylene cyclopropanes .. 691
35.3.1.8.5 Method 5: Hydroiodination of Cyclopropanes ... 691
35.3.1.8.6 Method 6: Carboiodination .. 692
35.3.1.8.6.1 Variation 1: Iodocyclization .. 693

35.3.1.9 Synthesis from Other Iodo Compounds
H. Ulrich

35.3.1.9 Synthesis from Other Iodo Compounds .. 697
35.3.1.9.1 Method 1: Synthesis from Iodoalkynes .. 697
35.3.1.9.1.1 Variation 1: By Cycloaddition Reactions .. 697
35.3.1.9.2 Method 2: Synthesis from Iodoalkenes .. 697
35.3.1.9.2.1 Variation 1: By Hydrogenation .. 697
35.3.1.9.2.2 Variation 2: By Polymerization ... 697
35.3.1.9.2.3 Variation 3: By Cycloaddition Reactions .. 698
35.3.1.9.3 Method 3: Synthesis from Iodocarbenes .. 698
35.3.1.9.4 Method 4: Synthesis from Iodoalkanes ... 699
35.3.2 Product Subclass 2: Propargylic Iodides
S. Härtinger

35.3.2 Product Subclass 2: Propargylic Iodides ... 701
35.3.2.1 Synthesis of Product Subclass 2 .. 701
35.3.2.1.1 Method 1: Chemoselective Substitution of Heteroatoms 701
35.3.2.1.2 Method 2: Modification of the Carbon Skeleton 702

35.3.3 Product Subclass 3: Benzylic Iodides

35.3.3.1 Synthesis by Substitution of Carbonyl Oxygen
W. D. Pfeiffer

35.3.3.1 Synthesis by Substitution of Carbonyl Oxygen 705
35.3.3.1.1 Method 1: Photochemical Iodination at the Benzylic Position 705
35.3.3.1.2 Method 2: Iodomethylation of an Arene Using Chloromethyl Methyl Ether and Hydrogen Iodide ... 705

35.3.3.2 Substitution of σ-Bonded Heteroatoms
S. Härtinger and M. Härtinger

35.3.3.2 Substitution of σ-Bonded Heteroatoms ... 707
35.3.3.2.1 Method 1: Synthesis by Substitution of σ-Bonded Heteroatoms . 707

35.3.4 Product Subclass 4: Allylic Iodides
S. Härtinger

35.3.4 Product Subclass 4: Allylic Iodides ... 711
35.3.4.1 Synthesis of Product Subclass 4 ... 711
35.3.4.1.1 Method 1: Synthesis by Regioselective Substitution of Heteroatoms . 711
35.3.4.1.2 Method 2: Synthesis by Regioselective Addition to the Carbon Skeleton 712
35.3.5 Product Subclass 5: 1-Iodo-n-Heteroatom-Functionalized Alkanes (n ≥2) with Both Functions Formed Simultaneously

35.3.5.1 Synthesis by Addition across C=C Bonds

- **T. Troll**

35.3.5.1 Synthesis by Addition across C=C Bonds

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Iodination of Alkenes</td>
<td>717</td>
</tr>
<tr>
<td>2</td>
<td>Hydroxy- or Alkoxyiodination of Alkenes</td>
<td>718</td>
</tr>
<tr>
<td>1.1</td>
<td>Oxidation of Iodide by Hydrogen Peroxide</td>
<td>718</td>
</tr>
<tr>
<td>1.2</td>
<td>Iodocyclization of Enols</td>
<td>719</td>
</tr>
<tr>
<td>2.1</td>
<td>Iodination To Form Iodo Acetates</td>
<td>720</td>
</tr>
<tr>
<td>2.2</td>
<td>Iodohydrins Using Hypoiodous Acid</td>
<td>720</td>
</tr>
<tr>
<td>2.3</td>
<td>Iodohydrins Using Hypervalent Iodine Compounds</td>
<td>722</td>
</tr>
<tr>
<td>2.4</td>
<td>Iodohydrins Using N-Iodosuccinimide</td>
<td>725</td>
</tr>
<tr>
<td>2.5</td>
<td>Iodosulfonation of Alkenes</td>
<td>729</td>
</tr>
<tr>
<td>2.6</td>
<td>Azido- and Aminoiodination of Alkenes</td>
<td>731</td>
</tr>
</tbody>
</table>

35.3.5.2 Synthesis by Addition across C–O Bonds

- **K. Rück-Braun and T. Freysoldt**

35.3.5.2 Synthesis by Addition across C–O Bonds

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hydroiodination of Epoxides Using Hydrogen Iodide</td>
<td>741</td>
</tr>
<tr>
<td>2</td>
<td>Hydroiodination of Epoxides Using Elemental Iodine</td>
<td>742</td>
</tr>
<tr>
<td>3</td>
<td>Hydroiodination of Epoxides Using Alkali Metal Iodides</td>
<td>743</td>
</tr>
<tr>
<td>3.1</td>
<td>Catalyzed by Lewis Acids</td>
<td>745</td>
</tr>
<tr>
<td>4</td>
<td>Hydroiodination of Epoxides Using Magnesium Iodide</td>
<td>746</td>
</tr>
<tr>
<td>5</td>
<td>Enantioselective Hydroiodination of Epoxides Using Trialkylazidosilanes and Allyl Iodide</td>
<td>747</td>
</tr>
<tr>
<td>6</td>
<td>Hydroiodination of Epoxides Using Samarium(II) Iodide</td>
<td>748</td>
</tr>
<tr>
<td>7</td>
<td>Hydroiodination of Epoxides Using Phosphorus Iodides and Phosphonium Iodides</td>
<td>749</td>
</tr>
<tr>
<td>8</td>
<td>Iodination of Epoxides and Other Cyclic Ethers</td>
<td>750</td>
</tr>
</tbody>
</table>

35.3.5.3 Synthesis by Addition across C–S Bonds

- **K. Rück-Braun and T. Freysoldt**

35.3.5.3 Synthesis by Addition across C–S Bonds

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Synthesis by Iodination of Thiiranes</td>
<td>753</td>
</tr>
</tbody>
</table>

Science of Synthesis Original Edition Volume 35 © Georg Thieme Verlag KG
35.3.5.4 Synthesis by Addition across C—N Bonds
K. Rück-Braun and T. Freysoldt

35.3.5.4 Synthesis by Addition across C—N Bonds ... 757
35.3.5.4.1 Method 1: Hydroiodination of Aziridines Using Hydrogen Iodide 757
35.3.5.4.2 Method 2: Hydroiodination of Aziridines Using Alkali Metal Iodides 757
35.3.5.4.3 Method 3: Hydroiodination of Aziridines Using Other Metal Iodides ... 759
35.3.5.4.4 Method 4: Hydroiodination of Aziridines Using Indium(III) or Zinc(II) Iodide .. 759
35.3.5.4.5 Method 5: Hydroiodination of Aziridines Using Samarium(II) Iodide ... 760
35.3.5.4.6 Method 6: Hydroiodination of Aziridines Using Iodotrimethylsilane ... 761

35.3.5.5 Synthesis by Addition across C—C Bonds
K. Rück-Braun and T. Freysoldt

35.3.5.5 Synthesis by Addition across C—C Bonds ... 763
35.3.5.5.1 Method 1: Ring Opening of Cyclopropanes Using Mercury(II) Salts and Iodine .. 763
35.3.5.5.2 Method 2: Ring Opening of Vinylcyclopropanes 764
35.3.5.5.3 Method 3: Iodination of 1,1-Diacetylcyclopropane 765

Keyword Index ... 767
Author Index ... 805
Abbreviations ... 845
Volume 36: Alcohols

Preface .. V

Volume Editor’s Preface ... VII

Table of Contents ... XI

Introduction
J. Clayden ... 1

36.1 Product Class 1: Alkanols

36.1.1 Synthesis by Oxidation
M. J. Porter .. 17

36.1.2 Synthesis by Reduction
L. R. Cox ... 55

36.1.3 Synthesis by Substitution
A. F. Parsons ... 177

36.1.4 Synthesis by Addition to Alkynes and Alkenes
A. T. Russell ... 191

36.1.5 Synthesis by Carbonylation Reactions
G. Ilyashenko, T. Schütz, and A. Whiting .. 245

36.1.6 Synthesis by Addition of Organometallics to Carbon Dioxide,
Carboxylic Acids, and Derivatives
C. Grosjean and A. Whiting .. 255

36.1.7 Synthesis by Addition of Organometallics to Aldehydes and Ketones
C. G. Frost and J. Le Nôtre .. 271

36.1.8 Synthesis by Resolution and Inversion Methods
J. Eames ... 341

36.1.9 Synthesis from Other Alcohols by Modification
J. Eames ... 423

36.2 Product Class 2: Cycloalkanols
P. J. H. Scott and P. G. Steel .. 459

36.3 Product Class 3: Propargylic Alcohols
P. Forgione and L. D. Fader ... 531

36.4 Product Class 4: Benzylic Alcohols
M. J. Porter .. 573

36.5 Product Class 5: Allylic Alcohols
D. M. Hodgson and P. G. Humphreys ... 583
36.6 Product Class 6: Homoallylic Alcohols
M. V. Perkins .. 667

36.7 Product Class 7: 1,n-Diols (n >1)
C. Nativi and S. Roelens .. 757

36.8 Product Class 8: Polyols, Including Carbohydrates
R. C. D. Brown ... 799

36.9 Product Class 9: β-Hydroxy Carbonyl Compounds
R. Mahrwald and B. Schetter ... 847

36.10 Product Class 10: n-Heteroatom-Functionalized Alcohols
(n ≥2; Heteroatom ≠ Halogen)
M. J. Bingham and M. F. Greaney .. 971

36.11 Product Class 11: Alcohols and Diols by Deprotection
M. G. Moloney and M. Yaqoob .. 1031

36.12 Product Class 12: Metal Alcoholates
J. V. Morey and A. E. H. Wheatley 1107

Keyword Index .. 1167
Author Index ... 1225
Abbreviations ... 1295
Table of Contents

Introduction
J. Clayden

Introduction ... 1

Product Class 1: Alkanols

36.1 Synthesis by Oxidation
M. J. Porter

36.1 Synthesis by Oxidation ... 17

36.1.1 Method 1: Oxidation of Alkanes 17
36.1.1.1 Variation 1: Oxidation with Molecular Oxygen 17
36.1.1.2 Variation 2: Oxidation with Ozone 19
36.1.1.3 Variation 3: Oxidation with Dioxiranes 21
36.1.1.4 Variation 4: Oxidation with Oxaziridines 24
36.1.1.5 Variation 5: Oxidation with Peroxy Acids 25
36.1.1.6 Variation 6: Oxidation with Fluorine 26
36.1.1.7 Variation 7: Oxidation with Metal Porphyrins 27
36.1.1.8 Variation 8: Oxidation with Ruthenium Compounds 29
36.1.1.9 Variation 9: Oxidation with Chromium Compounds 30
36.1.1.10 Variation 10: Oxidation with Methyltrioxorhenium(VII) ... 32
36.1.1.11 Variation 11: Biocatalytic Oxidation 33
36.1.2 Method 2: Oxidation of Organosilicon Compounds 35
36.1.2.1 Variation 1: Oxidation of Trichlorosilanes 35
36.1.2.2 Variation 2: Oxidation of Alkoxysilanes with Hydrogen Peroxide 36
36.1.2.3 Variation 3: Oxidation of Alkoxysilanes with Peroxy Acids . 37
36.1.2.4 Variation 4: Oxidation of Alkoxysilanes with Molecular Oxygen 38
36.1.2.5 Variation 5: Oxidation of Dimethyl(phenyl)silanes 38
36.1.3 Method 3: Oxidation of Organoboron Compounds 40
36.1.3.1 Variation 1: Oxidation with Basic Hydrogen Peroxide 40
36.1.3.2 Variation 2: Oxidation with Sodium Perborate and Sodium Percarbonate 41
36.1.3.3 Variation 3: Oxidation with Trimethylamine N-Oxide 42
36.1.4 Method 4: Oxidation of Organomercury Compounds 43
36.1.5 Method 5: Oxidation of Organolithium, Organomagnesium, Organozinc, and Organocopper Compounds 45
36.1.5.1 Variation 1: Oxidation with Molecular Oxygen 45
36.1.5.2 Variation 2: Oxidation with Alkyl Hydroperoxides 46
36.1.5.3 Variation 3: Oxidation with Bis(trimethylsilyl) Peroxide 47
36.1.5.4 Variation 4: Oxidation with Oxaziridines 48
Synthesis by Reduction

L. R. Cox

Synthesis of Primary Aliphatic Alkanols

- **Method 1: Reduction of Carboxylic Acids**
- **Variation 1: Using Metal Aluminum Hydrides and Alkoxyaluminum Hydrides**
- **Variation 2: Using Metal Borohydrides and Related Compounds**
- **Variation 3: Using Boranes and Related Compounds**
- **Variation 4: Using Alane and Related Compounds**
- **Variation 5: Using Samarium(II) Iodide**
- **Variation 6: Transition-Metal-Catalyzed Reduction**
- **Variation 7: Electrochemical Reduction**
- **Variation 8: Enzymatic Reduction**
- **Variation 9: By In Situ Derivatization**

- **Method 2: Reduction of Esters**
- **Variation 1: Using Metal Aluminum Hydrides and Related Systems**
- **Variation 2: Using Metal Borohydrides and Related Systems**
- **Variation 3: Using Boranes**
- **Variation 4: Using Alane and Other Neutral Organoaluminum Reagents**
- **Variation 5: Using Silanes and Siloxanes**
- **Variation 6: Using Dissolving Metal Conditions**
- **Variation 7: Using Samarium(II) Iodide**
- **Variation 8: Transition-Metal-Catalyzed Hydrogenation**
- **Variation 9: Electrochemical Reduction**

- **Method 3: Reduction of Amides**
- **Variation 1: Using Aluminum Hydrides and Borohydride Reducing Agents**
- **Variation 2: Using Boranes**
- **Variation 3: Using Dissolving Metals**
- **Variation 4: Using Samarium(II) Iodide**
- **Variation 5: Electrochemical Reduction**
- **Variation 6: Transition-Metal-Catalyzed Hydrogenation**

- **Method 4: Reduction of Acid Halides and Acid Anhydrides**
- **Variation 1: Using Aluminum Hydride and Alkoxyaluminum Hydride Reducing Agents**
- **Variation 2: Using Borohydride Reducing Agents**
- **Variation 3: Using Boranes or Alane and Related Reagents**
- **Variation 4: Miscellaneous Reductions**

- **Method 5: Reduction of Thioesters**
- **Variation 1: Using Aluminum Hydrides**
- **Variation 2: Using Borohydrides**
- **Variation 3: Using Neutral Organoaluminum Reagents**
- **Variation 4: Using Heterogeneous Nickel Catalysts**

- **Method 6: Reduction of Nitriles**
- **Variation 1: Reactions Proceeding via the Intermediate Aldehyde**
- **Variation 2: Reactions Proceeding via the Intermediate Carboxylic Acid or Ester**

Table of Contents

XII Table of Contents

36.1.2 Synthesis by Reduction ... 55

36.1.2.1 Synthesis of Primary Aliphatic Alkanols 55

36.1.2.1.1 Method 1: Reduction of Carboxylic Acids .. 55

36.1.2.1.1.1 Variation 1: Using Metal Aluminum Hydrides and Alkoxyaluminum Hydrides 55

36.1.2.1.1.2 Variation 2: Using Metal Borohydrides and Related Compounds 57

36.1.2.1.1.3 Variation 3: Using Boranes and Related Compounds 59

36.1.2.1.1.4 Variation 4: Using Alane and Related Compounds 62

36.1.2.1.1.5 Variation 5: Using Samarium(II) Iodide 63

36.1.2.1.1.6 Variation 6: Transition-Metal-Catalyzed Reduction 63

36.1.2.1.1.7 Variation 7: Electrochemical Reduction 64

36.1.2.1.1.8 Variation 8: Enzymatic Reduction .. 64

36.1.2.1.1.9 Variation 9: By In Situ Derivatization 64

36.1.2.1.2 Method 2: Reduction of Esters .. 66

36.1.2.1.2.1 Variation 1: Using Metal Aluminum Hydrides and Related Systems 66

36.1.2.1.2.2 Variation 2: Using Metal Borohydrides and Related Systems 67

36.1.2.1.2.3 Variation 3: Using Boranes .. 70

36.1.2.1.2.4 Variation 4: Using Alane and Other Neutral Organoaluminum Reagents 71

36.1.2.1.2.5 Variation 5: Using Silanes and Siloxanes 72

36.1.2.1.2.6 Variation 6: Using Dissolving Metal Conditions 75

36.1.2.1.2.7 Variation 7: Using Samarium(II) Iodide 75

36.1.2.1.2.8 Variation 8: Transition-Metal-Catalyzed Hydrogenation 75

36.1.2.1.2.9 Variation 9: Electrochemical Reduction 75

36.1.2.1.3 Method 3: Reduction of Amides .. 76

36.1.2.1.3.1 Variation 1: Using Aluminum Hydrides and Borohydride Reducing Agents 76

36.1.2.1.3.2 Variation 2: Using Boranes .. 78

36.1.2.1.3.3 Variation 3: Using Dissolving Metals 78

36.1.2.1.3.4 Variation 4: Using Samarium(II) Iodide 78

36.1.2.1.3.5 Variation 5: Electrochemical Reduction 79

36.1.2.1.3.6 Variation 6: Transition-Metal-Catalyzed Hydrogenation 79

36.1.2.1.4 Method 4: Reduction of Acid Halides and Acid Anhydrides 79

36.1.2.1.4.1 Variation 1: Using Aluminum Hydride and Alkoxyaluminum Hydride Reducing Agents 79

36.1.2.1.4.2 Variation 2: Using Borohydride Reducing Agents 80

36.1.2.1.4.3 Variation 3: Using Boranes or Alane and Related Reagents 84

36.1.2.1.4.4 Variations 4: Miscellaneous Reductions 84

36.1.2.1.5 Method 5: Reduction of Thioesters ... 85

36.1.2.1.5.1 Variation 1: Using Aluminum Hydrides 85

36.1.2.1.5.2 Variation 2: Using Borohydrides .. 85

36.1.2.1.5.3 Variation 3: Using Neutral Organoaluminum Reagents.................... 86

36.1.2.1.5.4 Variation 4: Using Heterogeneous Nickel Catalysts 86

36.1.2.1.6 Method 6: Reduction of Nitriles ... 87

36.1.2.1.6.1 Variation 1: Reactions Proceeding via the Intermediate Aldehyde 87

36.1.2.1.6.2 Variation 2: Reactions Proceeding via the Intermediate Carboxylic Acid or Ester 88
<table>
<thead>
<tr>
<th>Variation</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Using Metal Borohydrides</td>
<td>88</td>
</tr>
<tr>
<td>2</td>
<td>Using Aluminum Hydrides and Related Reagents</td>
<td>92</td>
</tr>
<tr>
<td>3</td>
<td>Using Borane, Alane, and Related Systems</td>
<td>93</td>
</tr>
<tr>
<td>4</td>
<td>Using Organosilanes and Related Systems</td>
<td>95</td>
</tr>
<tr>
<td>5</td>
<td>Using Organostannanes and Organostibines</td>
<td>99</td>
</tr>
<tr>
<td>6</td>
<td>Using Alkali Metal and Alkaline Earth Metal Hydrides and Related Systems</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Using Meerwein–Ponndorf–Verley-Type Reactions</td>
<td>101</td>
</tr>
<tr>
<td>8</td>
<td>Transition-Metal-Catalyzed Reduction: Hydrogenation and Transfer Hydrogenation</td>
<td>102</td>
</tr>
<tr>
<td>9</td>
<td>Using Single-Electron-Transfer Reduction Strategies</td>
<td>106</td>
</tr>
<tr>
<td>10</td>
<td>Miscellaneous Strategies</td>
<td>108</td>
</tr>
<tr>
<td>11</td>
<td>Reductive Ring Opening of Cyclic Ethers</td>
<td>110</td>
</tr>
<tr>
<td>12</td>
<td>Using Borohydrides and Aluminum Hydrides</td>
<td>111</td>
</tr>
<tr>
<td>13</td>
<td>Using Boranes and Neutral Aluminum Hydride Reagents</td>
<td>112</td>
</tr>
<tr>
<td>14</td>
<td>Using Silanes</td>
<td>114</td>
</tr>
<tr>
<td>15</td>
<td>Transition-Metal-Catalyzed Hydrogenolysis of Cyclic Ethers</td>
<td>114</td>
</tr>
<tr>
<td>16</td>
<td>Using Single-Electron-Transfer Agents</td>
<td>115</td>
</tr>
<tr>
<td>17</td>
<td>Reduction of Peroxides and Related Systems</td>
<td>118</td>
</tr>
<tr>
<td>18</td>
<td>Reduction of Hydroperoxides and Peroxides</td>
<td>118</td>
</tr>
<tr>
<td>19</td>
<td>Reduction of Ozonides</td>
<td>118</td>
</tr>
<tr>
<td>20</td>
<td>Reduction of Hydroxylamines</td>
<td>119</td>
</tr>
<tr>
<td>21</td>
<td>Synthesis of Secondary Aliphatic Alkanols</td>
<td>119</td>
</tr>
<tr>
<td>22</td>
<td>Reduction of Ketones</td>
<td>119</td>
</tr>
<tr>
<td>23</td>
<td>Using Metal Aluminum Hydrides and Related Systems</td>
<td>119</td>
</tr>
<tr>
<td>24</td>
<td>Using Borohydride Reducing Agents and Related Systems</td>
<td>120</td>
</tr>
<tr>
<td>25</td>
<td>Using Boranes and Related Systems</td>
<td>121</td>
</tr>
<tr>
<td>26</td>
<td>Using Silanes and Related Systems</td>
<td>122</td>
</tr>
<tr>
<td>27</td>
<td>Using Stannanes and Related Systems</td>
<td>123</td>
</tr>
<tr>
<td>28</td>
<td>Using Alkali Metal and Alkaline Earth Metal Hydrides and Related Systems</td>
<td>124</td>
</tr>
<tr>
<td>29</td>
<td>Using Meerwein–Ponndorf–Verley-Type Reactions</td>
<td>125</td>
</tr>
<tr>
<td>30</td>
<td>Transition-Metal-Catalyzed Hydrogenation and Transfer Hydrogenation</td>
<td>127</td>
</tr>
<tr>
<td>31</td>
<td>Using Single-Electron-Transfer Methods</td>
<td>128</td>
</tr>
<tr>
<td>32</td>
<td>Electrochemical Reduction</td>
<td>131</td>
</tr>
<tr>
<td>33</td>
<td>Miscellaneous Procedures</td>
<td>132</td>
</tr>
<tr>
<td>34</td>
<td>Enantioselective Reduction of Ketones</td>
<td>132</td>
</tr>
<tr>
<td>35</td>
<td>Asymmetric Transition-Metal-Catalyzed Hydrogenation and Transfer Hydrogenation</td>
<td>132</td>
</tr>
<tr>
<td>36</td>
<td>Biocatalytic Reduction Methods</td>
<td>134</td>
</tr>
<tr>
<td>37</td>
<td>Reductive Ring Opening of Cyclic Ethers</td>
<td>137</td>
</tr>
<tr>
<td>38</td>
<td>Using Metal Aluminum Hydrides</td>
<td>137</td>
</tr>
<tr>
<td>39</td>
<td>Using Metal Borohydrides and Related Reagents</td>
<td>138</td>
</tr>
<tr>
<td>40</td>
<td>Using Boranes, Alanes, and Related Reagents</td>
<td>140</td>
</tr>
<tr>
<td>41</td>
<td>Transition-Metal-Catalyzed Hydrogenolysis of Cyclic Ethers</td>
<td>142</td>
</tr>
</tbody>
</table>
36.1.2.3.5 Variation 5: Using Single-Electron-Transfer Methods 143
36.1.2.3.6 Variation 6: Lewis Acid Mediated Silane Reduction of Cyclic Ethers 144
36.1.2.3.7 Variation 7: Nucleophile-Assisted Ring Opening Followed by Radical
Reduction ... 144
36.1.2.4 Method 4: Reduction of Hydroperoxides, Peroxides, and Related Systems 145
36.1.2.3 Synthesis of Acyclic Secondary Alkanols Possessing a Stereogenic Center
Containing No Heteroatoms ... 148
36.1.2.3.1 Method 1: Diastereoselective Reduction of Ketones Possessing an
α-Stereogenic Center .. 149
36.1.2.3.2 Method 2: Diastereoselective Reduction of Ketones Possessing a
β-Stereogenic Center ... 151
36.1.2.3.3 Method 3: Diastereoselective Reduction of Ketones Possessing α- and
β-Stereogenic Centers ... 152
36.1.2.4 Synthesis of Tertiary Aliphatic Alkanols .. 153
36.1.2.4.1 Method 1: Reductive Ring Opening of Cyclic Ethers 153
36.1.2.4.2 Method 2: Reduction of Hydroperoxides and Peroxides 155
36.1.3 Synthesis by Substitution
A. F. Parsons

36.1.3 Synthesis by Substitution .. 177
36.1.3.1 Method 1: Substitution of Halides ... 177
36.1.3.1.1 Variation 1: In Primary Haloalkanes .. 177
36.1.3.1.2 Variation 2: In Secondary Haloalkanes .. 178
36.1.3.1.3 Variation 3: In Tertiary Haloalkanes .. 179
36.1.3.2 Method 2: Substitution of Sulfonate Anions ... 180
36.1.3.2.1 Variation 1: In Methanesulfonates ... 180
36.1.3.2.2 Variation 2: In Trifluoromethanesulfonates .. 182
36.1.3.2.3 Variation 3: In 4-Toluenesulfonates ... 182
36.1.3.3 Method 3: Substitution of Oxygen Functionalities 183
36.1.3.3.1 Variation 1: In Ethers ... 183
36.1.3.3.2 Variation 2: In Acetals .. 183
36.1.3.3.3 Variation 3: In Esters ... 184
36.1.3.4 Method 4: Ring Opening of Epoxides with Carbon Nucleophiles 184
36.1.3.4.1 Variation 1: Using Cyanide Anion .. 184
36.1.3.4.2 Variation 2: Using Organolithium Reagents 185
36.1.3.4.3 Variation 3: Using Grignard Reagents .. 186
36.1.3.4.4 Variation 4: Using Organocopper Reagents 186
36.1.3.4.5 Variation 5: Using Enolate Ions ... 187

36.1.4 Synthesis by Addition to Alkynes and Alkenes
A. T. Russell

36.1.4 Synthesis by Addition to Alkynes and Alkenes ... 191
36.1.4.1 Method 1: Oxymercuration Followed by Reduction 191
36.1.4.1.1 Variation 1: Using Mercury(II) Acetate–Sodium Borohydride 195
36.1.4.1.2 Variation 2: Using Mercury(II) Acetate–Sodium Trithiocarbonate 201
36.1.4.1.3 Variation 3: Using Mercury(II) Acetate–Sodium Amalgam 202
36.1.4.1.4 Variation 4: Using Mercury(II) Trifluoroacetate–Sodium Borohydride 204
36.1.4.1.5 Variation 5: Using Mercury(II) Salts–Sodium Borohydride 205
36.1.4.2 Method 2: Acid-Catalyzed Addition of Water .. 206
36.1.4.2.1 Variation 1: Photoproduction-Initiated Hydration of Alkenes 213
36.1.4.3 Method 3: Cobalt- or Manganese-Catalyzed Hydration of Alkenes 215
36.1.4.3.1 Variation 1: Using Bis(dipivaloylmethanato)manganese(II), Phenylsilane, and Oxygen ... 219
36.1.4.4 Method 4: Synthesis by Ozonolysis–Reduction ... 221
36.1.4.4.1 Variation 1: Using Ozone and Then a Borohydride or Borane Reductant .. 223
36.1.4.4.2 Variation 2: Using Ozone and Then an Aluminum Hydride Reductant 231
36.1.4.5 Method 5: Synthesis by Alkylative Hydroxylation 232
36.1.4.5.1 Variation 1: Carboalumination Catalyzed by Bis(cyclopentadienyl)zirconium(IV) Complexes with In Situ Oxygenation 232
36.1.4.5.2 Variation 2: Ethylmagnesiation Catalyzed by Dichlorobis(cyclopentadienyl)zirconium(IV) followed by In Situ Oxygenation 235
36.1.4.5.3 Variation 3: Radical Cyclization with In Situ Oxygenation 236
36.1.4.6 Method 6: Synthesis by Reductive Hydration of Alkynes 237

36.1.5 Synthesis by Carbonylation Reactions
G. Ilyashenko, T. Schütz, and A. Whiting

36.1.5 Synthesis by Carbonylation Reactions .. 245
36.1.5.1 Method 1: Synthesis by Carbonylation of Boranes 245
36.1.5.1.1 Variation 1: By Treatment with Carbon Monoxide 245
36.1.5.1.2 Variation 2: By Treatment with Carbon Monoxide in the Presence of Hydrides ... 247
36.1.5.2 Method 2: Synthesis by Carbonylation of Alkyl Halides 250
36.1.5.2.1 Variation 1: By Radical Carbonylation .. 250
36.1.5.2.2 Variation 2: Using Tricarbonylcobalt Complexes and Carbon Monoxide/Hydrogen ... 252
36.1.5.3 Method 3: Synthesis by Homologation of Alcohols Using Carbon Monoxide/Hydrogen ... 252

36.1.6 Synthesis by Addition of Organometallics to Carbon Dioxide, Carboxylic Acids, and Derivatives
C. Grojean and A. Whiting

36.1.6 Synthesis by Addition of Organometallics to Carbon Dioxide, Carboxylic Acids, and Derivatives ... 255
36.1.6.1 Method 1: Addition to Carbon Dioxide .. 255
36.1.6.2 Method 2: Addition to Acyl Chlorides ... 256
36.1.6.2.1 Variation 1: Addition of Organocopper Compounds 256
36.1.6.2.2 Variation 2: Addition of Organoisopropyl Compounds 256
36.1.6.2.3 Variation 3: Addition of Organomanganese Compounds 257
36.1.6.2.4 Variation 4: Addition of Organozirconocene Compounds 257

Science of Synthesis Original Edition Volume 36
© Georg Thieme Verlag KG
36.1.6.2.5 Variation 5: Addition of Organolanthanum Compounds 258
36.1.6.2.6 Variation 6: Addition of Organomagnesium Compounds 258
36.1.6.2.7 Variation 7: Addition of Organolithium Compounds 259
36.1.6.3 Method 3: Addition to Carboxylic Acids 260
36.1.6.3.1 Variation 1: Addition of Organomagnesium Compounds 261
36.1.6.3.2 Variation 2: Addition of Organolithium Compounds 261
36.1.6.4 Method 4: Addition to Carboxylic Anhydrides 262
36.1.6.5 Method 5: Addition to Carboxylic Acid Esters 263
36.1.6.5.1 Variation 1: Addition of Organoaluminum Compounds 263
36.1.6.5.2 Variation 2: Addition of Organocerium Compounds 264
36.1.6.5.3 Variation 3: Addition of Organomagnesium Compounds 265
36.1.6.5.4 Variation 4: Addition of Organolithium Compounds 267
36.1.6.6 Method 6: Decarboxylation 268

36.1.7 Synthesis by Addition of Organometallics to Aldehydes and Ketones
C. G. Frost and J. Le Nêtre

36.1.7 Synthesis by Addition of Organometallics to Aldehydes and Ketones 271
36.1.7.1 Method 1: Addition of Organolithium and Organomagnesium Reagents 271
36.1.7.1.1 Variation 1: Direct Addition of Alkyl- and Arylmagnesium Halides 271
36.1.7.1.2 Variation 2: Direct Addition of Alkyl- and Aryllithiums 273
36.1.7.1.3 Variation 3: Direct Addition of Alkenyl- and Alkynylmagnesium Halides 275
36.1.7.1.4 Variation 4: Direct Addition of Alkenyl- and Alkynyllithiums 276
36.1.7.1.5 Variation 5: Direct Addition Using Barbier Conditions 277
36.1.7.1.6 Variation 6: Direct Addition Using Unusual Reaction Conditions 278
36.1.7.1.7 Variation 7: Direct Addition Using Additives 280
36.1.7.1.8 Variation 8: Additions via Transmetalation 286
36.1.7.1.9 Variation 9: Diastereoselective Additions to Acyclic Carbonyl Derivatives 288
36.1.7.1.10 Variation 10: Diastereoselective Additions to Cyclic Carbonyl Derivatives 298
36.1.7.1.11 Variation 11: Enantioselective Additions of Grignard Reagents 299
36.1.7.1.12 Variation 12: Enantioselective Additions of Organolithium Derivatives 301
36.1.7.1.13 Variation 13: Enantioselective Additions of Lithium/Magnesium Binary Reagents 303
36.1.7.2 Method 2: Addition of Organozinc Reagents 304
36.1.7.2.1 Variation 1: Direct Addition of Alkyl- and Arylzinc Reagents 304
36.1.7.2.2 Variation 2: Direct Addition of Allyl- and Propargylzinc Reagents 305
36.1.7.2.3 Variation 3: Addition via Transmetalation 306
36.1.7.2.4 Variation 4: Diastereoselective Additions of Organozinc Reagents 307
36.1.7.2.5 Variation 5: Catalytic, Enantioselective Additions of Organozinc Reagents 308
36.1.7.3 Method 3: Addition of Organoboron, Organotin, Organosilicon, and Organoindium Reagents 320
36.1.7.3.1 Variation 1: Additions via Transmetalation to Rhodium 320
36.1.7.3.2 Variation 2: Enantioselective Additions via Transmetalation to Rhodium 323
36.1.7.3.3 Variation 3: Additions via Transmetalation to Palladium 325
36.1.7.3.4 Variation 4: Addition of Allylic Boron Reagents 325
36.1.7.3.5 Variation 5: Lewis Acid Catalyzed Addition of Allylic Silane and Stannane Reagents 326
36.1.7.3.6 Variation 6: Addition of Allylic Indium Reagents 327
36.1.7.4 Method 4: Addition of Other Organometallics 328
36.1.7.4.1 Variation 1: Catalytic Addition of In Situ Generated Organochromium Species 328
36.1.7.4.2 Variation 2: Addition of Allylic Manganese Reagents in Water 329
36.1.7.4.3 Variation 3: Addition of Organocadmium Reagents 329
36.1.7.4.4 Variation 4: Direct Addition of Organocopper Reagents 329
36.1.7.4.5 Variation 5: Enantioselective Addition of Organotitanium Reagents 330
36.1.7.4.6 Variation 6: Enantioselective Addition of Organoaluminum Reagents 331

36.1.8 Synthesis by Resolution and Inversion Methods
J. Eames

36.1.8 Synthesis by Resolution and Inversion Methods 341
36.1.8.1 Method 1: Resolution of 1-Phenylethanol by Enantioselective Oxidation 342
36.1.8.1.1 Variation 1: Using a (Bicyclo[2.2.1]heptadiene)dichloropalladium(II)/(−)-Sparteine Complex 342
36.1.8.1.2 Variation 2: Using a (−)-Sparteine–Palladium(II) Complex 343
36.1.8.1.3 Variation 3: Using a [(4,5-Dihydrooxazolyl)ferrocenyl]phosphine–Ruthenium Complex 343
36.1.8.1.4 Variation 4: Using a Manganese(III)–salen Complex 344
36.1.8.1.5 Variation 5: Using Baker’s Yeast 344
36.1.8.2 Method 2: Resolution of 1-Phenylethanol by Enantioselective Reduction 345
36.1.8.2.1 Variation 1: Using Bacillus subtilis, Aspergillus niger, and Horseradish Peroxidase 345
36.1.8.2.2 Variation 2: Using a Chiral Diphosphine 346
36.1.8.3 Method 3: Synthesis of (R)- and (S)-1-Phenylethanol via Enzymatic Ester Formation 347
36.1.8.3.1 Variation 1: Using Lipase QL 347
36.1.8.3.2 Variation 2: Using Porcine Pancreatic Lipase 348
36.1.8.3.3 Variation 3: Using Amano P Lipase 348
36.1.8.3.4 Variation 4: Using Candida antarctica Lipase 349
36.1.8.3.5 Variation 5: Using Candida antarctica Lipase B 349
36.1.8.4 Method 4: Synthesis of (R)- and (S)-1-Phenylethanol Using Acyl-Transfer Processes 351
36.1.8.4.1 Variation 1: Using an Asymmetric Mitsunobu Reaction 351
36.1.8.4.2 Variation 2: Using an Oxazolidinone as a Benzoyl- or Phosphoryl-Transfer Reagent 352
36.1.8.4.3 Variation 3: Using a Phosphabicyclooctane Acyl-Transfer Catalyst 353
36.1.8.4.4 Variation 4: Using a Chiral Pyridinium Acyl-Transfer Reagent 354
36.1.8.4.5 Variation 5: Using a Chiral 2,3-Dihydroimidazol[1,2-a]pyridine 356
36.1.8.4.6 Variation 6: Using a Planar-Chiral 4-(Dimethylamino)pyridine Complex 356
36.1.8.4.7 Variation 7: Using a Chiral Atropisomeric 4-(Dimethylamino)pyridine Equivalent 358
36.1.8.4.8 Variation 8: Using a Ferrocene-Based Chiral 4-(Dimethylamino)pyridine 358
36.1.8.4.9 Variation 9: Using an Octapeptide Derived from a Split-and-Pool Library 359
36.1.8.5 Method 5: Synthesis of (R)- and (S)-1-Phenylethanol by Deracemization 360
36.1.8.5.1 Variation 1: Using a Combination of Pseudomonas fluorescens Lipase and a Rhodium Catalyst 360
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.1.8.5.2</td>
<td>Variation 2: Using a Combination of Novozym 435 and a Ruthenium Complex</td>
</tr>
<tr>
<td>36.1.8.6</td>
<td>Method 6: Synthesis of (R)- and (S)-1-Phenylethanol Using a Sequential Enzyme Resolution/Mitsunobu Inversion Process</td>
</tr>
<tr>
<td>36.1.8.7</td>
<td>Method 7: Resolution of 1-Phenylethanol via Inclusion Complexation</td>
</tr>
<tr>
<td>36.1.8.8</td>
<td>Method 8: Resolution of Hexan-2-ol</td>
</tr>
<tr>
<td>36.1.8.8.1</td>
<td>Variation 1: Using Lipozyme</td>
</tr>
<tr>
<td>36.1.8.8.2</td>
<td>Variation 2: Via an Inclusion Complex</td>
</tr>
<tr>
<td>36.1.8.9</td>
<td>Method 9: Resolution of 2-Methylhexan-1-ol Using Pseudomonas cepacia Lipase</td>
</tr>
<tr>
<td>36.1.8.10</td>
<td>Method 10: Resolution of 2-Ethylhexan-1-ol</td>
</tr>
<tr>
<td>36.1.8.11</td>
<td>Method 11: Synthesis of (R)- and (S)-Octan-2-ol</td>
</tr>
<tr>
<td>36.1.8.11.1</td>
<td>Variation 1: By Sulfonylation Followed by Stereospecific S<sub>N</sub>2 Inversion</td>
</tr>
<tr>
<td>36.1.8.11.2</td>
<td>Variation 2: By Isourea Ether Formation Followed by Stereospecific S<sub>N</sub>2 Inversion Using Acetic Acid</td>
</tr>
<tr>
<td>36.1.8.11.3</td>
<td>Variation 3: By Isourea Ether Formation Followed by Stereospecific S<sub>N</sub>2 Inversion Using Formic Acid</td>
</tr>
<tr>
<td>36.1.8.12</td>
<td>Method 12: Resolution of 1-(4-Methoxyphenyl)ethanol</td>
</tr>
<tr>
<td>36.1.8.13</td>
<td>Method 13: Resolution of 2,2,2-Trifluoro-1-(1-naphthyl)ethanol</td>
</tr>
<tr>
<td>36.1.8.14</td>
<td>Method 14: Resolution of 2-Phenylpropan-1-ol</td>
</tr>
<tr>
<td>36.1.8.15</td>
<td>Method 15: Resolution of 1-Phenylpropan-1-ol</td>
</tr>
<tr>
<td>36.1.8.16</td>
<td>Method 16: Resolution of 1-Phenylbutan-1-ol</td>
</tr>
<tr>
<td>36.1.8.17</td>
<td>Method 17: Resolution of 1-(2-Thiényl)butan-1-ol</td>
</tr>
<tr>
<td>36.1.8.18</td>
<td>Method 18: Resolution of 6,10,14-Trimethylpentadecan-2-ol</td>
</tr>
<tr>
<td>36.1.8.19</td>
<td>Method 19: Resolution of 2,2-Dimethylcyclopentan-1-ol</td>
</tr>
<tr>
<td>36.1.8.20</td>
<td>Method 20: Resolution of trans-2-Phenylcyclohexanol</td>
</tr>
<tr>
<td>36.1.8.20.1</td>
<td>Variation 1: Using a Polymer-Supported Diamine</td>
</tr>
<tr>
<td>36.1.8.20.2</td>
<td>Variation 2: Using 2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl</td>
</tr>
<tr>
<td>36.1.8.21</td>
<td>Method 21: Resolution of 2-(4-Methoxyphenyl)cyclohexanol</td>
</tr>
<tr>
<td>36.1.8.22</td>
<td>Method 22: Resolution of trans-2-(1-Methyl-1-phenylethyl)cyclohexanol</td>
</tr>
<tr>
<td>36.1.8.23</td>
<td>Method 23: Synthesis of (1R,2S,5S)-Menthol</td>
</tr>
<tr>
<td>36.1.8.24</td>
<td>Method 24: Synthesis of (3β,5α)-Cholestane-3-ol</td>
</tr>
<tr>
<td>36.1.8.25</td>
<td>Method 25: Resolution of 2-Chloro-1-phenylethanol</td>
</tr>
<tr>
<td>36.1.8.26</td>
<td>Method 26: Resolution of 1-Phenoxypropan-2-ol</td>
</tr>
<tr>
<td>36.1.8.27</td>
<td>Method 27: Resolution of (2,2-Dimethyl-1,3-dioxolan-4-yl)ethanol</td>
</tr>
<tr>
<td>36.1.8.28</td>
<td>Method 28: Resolution of 5-((Hydroxymethyl)oxazolidin-2-one</td>
</tr>
<tr>
<td>36.1.8.29</td>
<td>Method 29: Resolution of Ethyl Hydroxy(phenyl)acetate</td>
</tr>
<tr>
<td>36.1.8.30</td>
<td>Method 30: Synthesis of (5)-Pantolactone</td>
</tr>
<tr>
<td>36.1.8.31</td>
<td>Method 31: Resolution of cis-2-(Benzoyloxy)cyclohexanol</td>
</tr>
<tr>
<td>36.1.8.32</td>
<td>Method 32: Resolution of cis-2-[4-(Dimethylamino)benzoyloxy]cyclohexanol</td>
</tr>
<tr>
<td>36.1.8.33</td>
<td>Method 33: Resolution of cis-2-(Dimethylcarbamoyloxy)cyclohexanol</td>
</tr>
<tr>
<td>36.1.8.34</td>
<td>Method 34: Resolution of Methyl 2-Hydroxy-3-(4-methoxyphenyl)-3-[(2-nitrophenyl)sulfonyl]propanoate</td>
</tr>
<tr>
<td>36.1.8.35</td>
<td>Method 35: Resolution of trans-Indane-1,2-diol</td>
</tr>
<tr>
<td>36.1.8.36</td>
<td>Method 36: Resolution of 1-Phenylethane-1,2-diol</td>
</tr>
<tr>
<td>36.1.8.37</td>
<td>Method 37: Resolution of 2,2-Dimethyl-1,3-diphenylpropane-1,3-diol</td>
</tr>
<tr>
<td>36.1.8.38</td>
<td>Method 38: Resolution of Pentane-2,4-diol Using Candida antarctica Lipase</td>
</tr>
</tbody>
</table>

© Georg Thieme Verlag KG
Table of Contents

36.1.8.39 Method 39: Resolution of Hexane-2,5-diol .. 389
36.1.8.40 Method 40: Resolution of 1,1’-Binaphthalene-2,2’-diol 389
36.1.8.41 Method 41: Resolution of trans-Cyclohexane-1,2-diol 391
36.1.8.41.1 Variation 1: Using a Double-Inversion Method ... 391
36.1.8.41.2 Variation 2: By Kinetic Resolution ... 391
36.1.8.42 Method 42: Resolution of Pentane-1,2-diol .. 392
36.1.8.43 Method 43: Resolution of Hexane-1,2-diol .. 393
36.1.8.44 Method 44: Resolution of trans-2-Azidocyclohexanol 393
36.1.8.45 Method 45: Resolution of 2-Aminopropan-1-ol .. 394
36.1.8.46 Method 46: Resolution of trans-2-([Methyl(phenyl)amino]cyclohexanol 395
36.1.8.47 Method 47: Resolution of trans-2-Pyrrolidin-1-ylcyclohexanol 396
36.1.8.48 Method 48: Resolution of trans-2-(1H-Pyrazol-1-yl)cyclohexanol 397
36.1.8.49 Method 49: Resolution of 2-((tert-Butylamino)-1-(2,2-dimethyl-4H-1,3- benzodioxin-6-yl)ethanol ... 398
36.1.8.50 Method 50: Resolution of cis-4-(Dimethylamino)-N-(2-hydroxycyclohex yl)benzamide ... 399
36.1.8.51 Method 51: Resolution of trans-N-(2-Hydroxycyclohexyl)acetamide 401
36.1.8.51.1 Variation 1: Using an Octapeptide .. 401
36.1.8.51.2 Variation 2: Using a Tripeptide ... 401
36.1.8.52 Method 52: Resolution of 2-[(tert-Butoxycarbonyl)amino]-3-(hydroxy-methyl)bicyclo[2.2.1]heptane ... 402
36.1.8.53 Method 53: Resolution of Cyclohex-2-en-1-ol ... 402
36.1.8.53.1 Variation 1: Using a Palladium-Catalyzed Deracemization Reaction 402
36.1.8.53.2 Variation 2: Using a Chiral Dianiline/Ruthenium Mediated Enantioselective Hydrogenation .. 404
36.1.8.53.3 Variation 3: Using an Ephedrine/Ruthenium Mediated Enantioselective Hydrogenation .. 405
36.1.8.54 Method 54: Resolution of (Z)-Pent-3-en-2-ol ... 405
36.1.8.55 Method 55: Resolution of 4-Phenylbut-3-en-2-ol .. 406
36.1.8.55.1 Variation 1: Using Candida antarctica Lipase ... 406
36.1.8.55.2 Variation 2: Using a Planar-Chiral 4-(Dimethylamino)pyridine Equivalent Complex ... 407
36.1.8.55.3 Variation 3: By Enantioselective Oxidation ... 408
36.1.8.56 Method 56: Resolution of 4-Phenylbut-3-yn-2-ol and 3-Phenylbut-3-en-2-ol ... 409
36.1.8.56.1 Variation 1: Using Pseudomonas AK ... 409
36.1.8.56.2 Variation 2: Using an Asymmetric Katsuki–Jacobsen Epoxidation Reaction 409
36.1.8.57 Method 57: Resolution of 3-(Ethoxy carbonyl)but-3-en-2-ol 410
36.1.8.58 Method 58: Resolution of (E)-1-(Trimethylsilyl)oct-1-en-3-ol 410
36.1.8.59 Method 59: Resolution of (Z)-3-(Trimethylsilyl)oct-3-en-2-ol 411
36.1.8.60 Method 60: Resolution of (E)-1-Cyclohexylbut-2-en-1-ol 411
36.1.8.61 Method 61: Resolution of 2-Methylpent-1-en-3-ol 412
36.1.8.62 Method 62: Resolution of 1-(2-Thi enyl)pentan-1-ol 412
36.1.8.63 Method 63: Resolution of Pent-4-ene-2,3-diol ... 413
36.1.8.64 Method 64: Resolution of 2-Phenylcyclohex-2-en-1-ol 413
36.1.8.65 Method 65: Resolution of Oct-1-yn-3-ol .. 414
36.1.8.66 Method 66: Resolution of (Z)-Undeca-1,5-dien-3-ol 414
36.1.8.67 Method 67: Synthesis of 1-Deuterooct-2-yn-1-ol 415
36.1.9 Synthesis from Other Alcohols by Modification

J. Eames

36.1.9.1 Method 1: C-Alkylation of Alcohols by Oxidation Followed by Addition

36.1.9.2 Method 2: Isomerization of Allylic Alcohols

36.1.9.3 Method 3: Asymmetric C-Alkylation of Alcohols by Deprotonation/Addition

36.1.9.4 Method 4: [1,2]-Acyl and -Allyl Transfer

36.1.9.5 Method 5: Propargylation and Rearrangement of Allylic Alcohols

36.1.9.6 Method 6: Dehydrodimerization of Alcohols

36.1.9.7 Method 7: Hydroxylation of Allylic Alcohols

36.1.9.8 Method 8: Reaction of Allylic Alcohols with Singlet Oxygen

36.1.9.9 Method 9: Dihydroxylation of Allylic Alcohols

36.1.9.10 Method 10: Epoxidation of Allylic Alcohols

36.1.9.10.1 Variation 1: Stereoselective Epoxidation of Allylic Alcohols

36.1.9.11 Method 11: [2 + 2] Cycloadditions of Allylic Alcohols

36.1.9.12 Method 12: Alkylation of the C=C Bond of Allylic Alcohols

36.1.9.13 Method 13: Cyclopropanation of Allylic Alcohols

36.1.9.14 Method 14: Reduction of Allylic Alcohols

36.1.9.14.1 Variation 1: Stereoselective Reduction of Allylic Alcohols

36.1.9.15 Method 15: Palladium-Catalyzed Vinylic Arylation of Allylic Alcohols

36.1.9.16 Method 16: Palladium-Catalyzed C-Alkylation of Allylic Alcohols

36.1.9.17 Method 17: Functionalization of α-Hydroxy Carbonyl Compounds

36.1.9.18 Method 18: C-Alkylation of Allylic Alcohols by Boration

36.2 Product Class 2: Cycloalkanols

P. J. H. Scott and P. G. Steel

36.2.1 Product Class 2: Cycloalkanols

36.2.1.1 Product Subclass 1: Cyclopropanols

36.2.1.1.1 Synthesis of Product Subclass 1

36.2.1.1.1 Method 1: Cyclopropanation of Enol Derivatives

36.2.1.1.1 Variation 1: Of Zinc Enolates

36.2.1.1.2 Variation 2: Of Samarium Enolates

36.2.1.1.2 Method 2: Cyclopropanation of Enol Ether Derivatives

36.2.1.1.3 Method 3: Cyclopropanation of Alkenes with Alkoxycarbenes or Acyloxy carbene

36.2.1.1.3.1 Variation 1: With Carbenes Derived from Chloromethyl Ethers

36.2.1.1.3.2 Variation 2: With Alkoxylated Fischer Carbene Complexes

36.2.1.1.3.3 Variation 3: With Zinc Carbenoids from Other Esters

36.2.1.1.4 Method 4: Cyclopropanation of Esters and Acyl Sulfonamides

(Kulinkovich Reaction)

36.2.1.1.4.1 Variation 1: Titanium(IV)-Mediated Cyclopropanation of Esters

36.2.1.1.4.2 Variation 2: Kulinkovich Reactions with Substituted Alkenes
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.2.13.4.3</td>
<td>Variation 3: Intramolecular Kulinkovich Reactions</td>
<td>471</td>
</tr>
<tr>
<td>36.2.1.5</td>
<td>Method 5: Cyclopropanation of Acid Chlorides</td>
<td>472</td>
</tr>
<tr>
<td>36.2.11.5.1</td>
<td>Variation 1: With Chloromethyl lithium</td>
<td>473</td>
</tr>
<tr>
<td>36.2.11.5.2</td>
<td>Variation 2: With Samarium(II) Iodide/Diiodomethane</td>
<td>473</td>
</tr>
<tr>
<td>36.2.11.6</td>
<td>Method 6: Intramolecular Reactions of β-Functionalized Carbonyl Compounds</td>
<td>474</td>
</tr>
<tr>
<td>36.2.11.6.1</td>
<td>Variation 1: Cyclopropanation of Lithium Enolates with Acylsilanes</td>
<td>474</td>
</tr>
<tr>
<td>36.2.11.6.2</td>
<td>Variation 2: Reactions with β-Bromo Esters via β-Bromo Ketones</td>
<td>475</td>
</tr>
<tr>
<td>36.2.11.6.3</td>
<td>Variation 3: Reactions with β-Stannylated Compounds</td>
<td>476</td>
</tr>
<tr>
<td>36.2.11.7</td>
<td>Method 7: Chromium(II) Chloride Catalyzed Reductive Cyclization of α,β-Unsaturated Carbonyl Compounds with Aldehydes</td>
<td>476</td>
</tr>
<tr>
<td>36.2.11.8</td>
<td>Method 8: Addition of 1,1-Bimetallic Reagents to α-Substituted Ketones</td>
<td>478</td>
</tr>
<tr>
<td>36.2.11.9</td>
<td>Method 9: Reactions of α-Substituted Epoxides and Ketones</td>
<td>479</td>
</tr>
<tr>
<td>36.2.11.9.1</td>
<td>Variation 1: Reactions of α-Halo Epoxides with Grignard Reagents</td>
<td>479</td>
</tr>
<tr>
<td>36.2.11.9.2</td>
<td>Variation 2: Treatment of α-Halo Epoxides with Samarium(II) Iodide</td>
<td>479</td>
</tr>
<tr>
<td>36.2.11.10</td>
<td>Method 10: Synthesis from 1,3-Dihalo Ketones</td>
<td>480</td>
</tr>
<tr>
<td>36.2.11.11</td>
<td>Method 11: Ring Contractions</td>
<td>480</td>
</tr>
<tr>
<td>36.2.11.11.1</td>
<td>Variation 1: Of Cyclobutane-1,2-diones</td>
<td>480</td>
</tr>
<tr>
<td>36.2.11.11.2</td>
<td>Variation 2: Of 1,2-Bis(trimethylsiloxy)cyclobutenes</td>
<td>481</td>
</tr>
<tr>
<td>36.2.2</td>
<td>Product Subclass 2: Cyclobutanol</td>
<td>481</td>
</tr>
<tr>
<td>36.2.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>481</td>
</tr>
<tr>
<td>36.2.2.1.1</td>
<td>Method 1: [2 + 2]-Cycloaddition Reactions</td>
<td>482</td>
</tr>
<tr>
<td>36.2.2.1.1.1</td>
<td>Variation 1: [2 + 2] Photoadditions between Enol Ethers and Alkenes</td>
<td>482</td>
</tr>
<tr>
<td>36.2.2.1.1.2</td>
<td>Variation 2: [2 + 2] Cycloadditions of Allenes with Enol Ethers</td>
<td>483</td>
</tr>
<tr>
<td>36.2.2.1.1.3</td>
<td>Variation 3: [2 + 2]-Cycloaddition Reactions of α,β-Unsaturated Carbonyl Compounds with Enol Ethers</td>
<td>483</td>
</tr>
<tr>
<td>36.2.2.1.2</td>
<td>Method 2: Norrish–Yang Photocyclization of Aryl Ketones</td>
<td>484</td>
</tr>
<tr>
<td>36.2.2.1.3</td>
<td>Method 3: Intramolecular Nucleophilic Addition Reactions</td>
<td>486</td>
</tr>
<tr>
<td>36.2.2.1.3.1</td>
<td>Variation 1: Intramolecular Nucleophilic Additions to Ketones</td>
<td>486</td>
</tr>
<tr>
<td>36.2.2.2.2</td>
<td>Method 4: Intramolecular Cyclization of Hydroxy Vinylcyclopropanes</td>
<td>487</td>
</tr>
<tr>
<td>36.2.2.1.4</td>
<td>Method 4: Intramolecular Ring Opening of Epoxides</td>
<td>487</td>
</tr>
<tr>
<td>36.2.2.1.4.1</td>
<td>Variation 1: Nucleophilic Additions to Epoxides</td>
<td>487</td>
</tr>
<tr>
<td>36.2.2.1.5</td>
<td>Method 5: Ketyl Radical Cyclization Reactions</td>
<td>489</td>
</tr>
<tr>
<td>36.2.2.1.5.1</td>
<td>Variation 1: Samarium(II)-Mediated Ketyl Alkene Cyclizations</td>
<td>489</td>
</tr>
<tr>
<td>36.2.2.1.5.2</td>
<td>Variation 2: Pinacol Reactions of 1,4-Diketones</td>
<td>489</td>
</tr>
<tr>
<td>36.2.2.1.6</td>
<td>Method 6: Ring Expansion</td>
<td>491</td>
</tr>
<tr>
<td>36.2.2.1.6.1</td>
<td>Variation 1: Rearrangement of Oxaspiropentanes</td>
<td>491</td>
</tr>
<tr>
<td>36.2.2.1.7</td>
<td>Method 7: Ring Contraction</td>
<td>491</td>
</tr>
<tr>
<td>36.2.2.1.7.1</td>
<td>Variation 1: Zirconium-Mediated Ring Contractions of 4-Vinylfuranosides</td>
<td>491</td>
</tr>
<tr>
<td>36.2.3</td>
<td>Product Subclass 3: Larger-Ring Cycloalkanols</td>
<td>492</td>
</tr>
<tr>
<td>36.2.3.1</td>
<td>Synthesis of Product Subclass 3</td>
<td>492</td>
</tr>
<tr>
<td>36.2.3.1.1</td>
<td>Method 1: Cycloadditions of 1-Alkoxylated Dienes</td>
<td>493</td>
</tr>
<tr>
<td>36.2.3.1.2</td>
<td>Method 2: Cycloaddition Reactions of Enol Ethers</td>
<td>494</td>
</tr>
<tr>
<td>36.2.3.1.3</td>
<td>Method 3: [3 + 2]-Cycloaddition Reactions of Allylsilanes</td>
<td>495</td>
</tr>
<tr>
<td>36.2.3.1.4</td>
<td>Method 4: Intramolecular Nucleophilic Additions to Aldehydes, Ketones, and Acetals</td>
<td>496</td>
</tr>
</tbody>
</table>
36.2.3.1.4.1 Variation 1: Intramolecular Additions of Organometallic Reagents 496
36.2.3.1.4.2 Variation 2: Intramolecular Aldol Reactions .. 497
36.2.3.1.4.3 Variation 3: Intramolecular Morita–Bayliss–Hillman Reactions 500
36.2.3.1.4.4 Variation 4: Intramolecular Carbonyl-Ene Reactions of Unsaturated Aldehydes and Ketones .. 501
36.2.3.1.4.5 Variation 5: Intramolecular Metallo-Ene Reactions of Aldehydes and Ketones Containing Allylmetal Groups .. 504
36.2.3.1.5 Method 5: Intramolecular Radical Addition Reactions 506
36.2.3.1.5.1 Variation 1: Intramolecular Radical Additions to Aldehydes and Ketones ... 506
36.2.3.1.5.2 Variation 2: Intramolecular Alkyne–Aldehyde (Ynal) Cyclizations 508
36.2.3.1.6 Method 6: Ketyl Radical Cyclization Reactions .. 509
36.2.3.1.6.1 Variation 1: Intramolecular Ketyl Radical Cyclizations 509
36.2.3.1.6.2 Variation 2: Intramolecular Pinacol Reactions 510
36.2.3.1.6.3 Variation 3: Cyclization of Epoxide-Derived Radicals 512
36.2.3.1.7 Method 7: Intramolecular Epoxide-Opening Reactions 513
36.2.3.1.7.1 Variation 1: With Enolates and Equivalent Compounds 513
36.2.3.1.7.2 Variation 2: Cyclization of Epoxylkenes ... 515
36.2.3.1.7.3 Variation 3: Cyclization of Allylmetal Epoxides 516
36.2.3.1.7.4 Variation 4: Ring Opening of Epoxides with Organometallic Reagents 517
36.2.3.1.8 Method 8: Hydroboration and Carbonylation of Trienes 519

36.3 Product Class 3: Propargylic Alcohols

P. Forgione and L. D. Fader

36.3.1 Synthesis of Product Class 3 ... 531
36.3.1.1 Method 1: Reduction of Alkynals .. 532
36.3.1.1.1 Variation 1: Meerwein–Ponndorf–Verley Reduction 532
36.3.1.1.2 Variation 2: Hydride-Type Reduction of Alkynals 534
36.3.1.2 Method 2: Reduction of Alkynones .. 534
36.3.1.2.1 Variation 1: Asymmetric Transfer Hydrogenation 535
36.3.1.2.2 Variation 2: Catalytic Asymmetric Reduction with Chiral Oxazaborolidines 537
36.3.1.2.3 Variation 3: Stoichiometric Asymmetric Reduction with Chiral Boranes 540
36.3.1.2.4 Variation 4: Stoichiometric Asymmetric Reduction with Chiral Aluminum Hydrides ... 543
36.3.1.2.5 Variation 5: Achiral Reductants and Substrate-Controlled Diastereoselective Reduction ... 544
36.3.1.3 Method 3: Addition of Carbon Groups to Alkynals 545
36.3.1.3.1 Variation 1: Grignard Additions .. 545
36.3.1.3.2 Variation 2: Lithium Additions ... 546
36.3.1.3.3 Variation 3: Aldol Additions .. 546
36.3.1.3.4 Variation 4: Zinc Additions .. 547
36.3.1.3.5 Variation 5: Miscellaneous Additions .. 548
36.3.1.4 Method 4: Addition of Carbon Groups to Alkynones 549
36.3.1.4.1 Variation 1: Using Organozinc Reagents .. 549
36.3.1.5 Method 5: Alkyne Additions to Aldehydes .. 550
36.3.1.5.1 Variation 1: Using Lithium Reagents .. 550
36.3.1.5.2 Variation 2: Using Zinc Reagents ... 553
36.3.1.5.3 Variation 3: Using Zinc–Titanium Reagents 556
36.3.1.5.4 Variation 4: Using Silver–Zirconium Reagents 557
36.3.1.5.5 Variation 5: Using Silicon Reagents 557
36.3.1.5.6 Variation 6: Using Indium Reagents 558
36.3.1.5.7 Variation 7: Non-Transition-Metal Methods 559
36.3.1.6 Method 6: Alkyne Additions to Ketones 559
36.3.1.6.1 Variation 1: Using Magnesium Reagents 559
36.3.1.6.2 Variation 2: Using Copper–Zinc Reagents 560
36.3.1.6.3 Variation 3: Using Zinc Reagents ... 560
36.3.1.6.4 Variation 4: Using Rhodium Reagents 561
36.3.1.6.5 Variation 5: Nonmetallic Methods 562
36.3.1.7 Method 7: Synthesis by Rearrangements 563
36.3.1.8 Method 8: Synthesis from Other Propargylic Alcohols 564
36.3.1.8.1 Variation 1: By Displacement of Halides 564
36.3.1.8.2 Variation 2: By Coupling of a Terminal Alkyne 565
36.3.1.9 Methods 9: Miscellaneous Methods 565

36.4 Product Class 4: Benzylic Alcohols
M. J. Porter

36.4.1 Synthesis of Product Class 4 ... 573
36.4.1.1 Method 1: Oxidation of Benzylic C—H Groups 573
36.4.1.1.1 Variation 1: Oxidation with 2,3-Dichloro-5,6-Dicyanobenzo-1,4-quinone 573
36.4.1.1.2 Variation 2: Oxidation with Trimethylamine N-Oxide 574
36.4.1.1.3 Variation 3: Enantioselective Hydroxylation with Vaulted Metalloporphyrin Catalysts 575
36.4.1.1.4 Variation 4: Enantioselective Hydroxylation with a Ruthenium–Porphyrin Catalyst 576
36.4.1.1.5 Variation 5: Enantioselective Hydroxylation with Manganese–salen Catalysts 576
36.4.1.2 Method 2: Wittig Rearrangement ... 578
36.4.1.2.1 Variation 1: [1,2]-Wittig Rearrangement of Benzyl Ethers 578
36.4.1.2.2 Variation 2: Enantioselective [1,2]-Wittig Rearrangement 580
36.4.1.2.3 Variation 3: Anion Translocation/[1,2]-Wittig Rearrangement 580
36.4.1.2.4 Variation 4: ortho-[2,3]-Wittig Rearrangement 581

36.5 Product Class 5: Allylic Alcohols
D. M. Hodgson and P. G. Humphreys

36.5.1 Synthesis of Product Class 5 ... 583
36.5.1.1 Method 1: Oxidation with Selenium Reagents 585
36.5.1.1.1 Variation 1: With Less Than a Stoichiometric Amount of Selenium Dioxide 586
36.5.1.1.2 Variation 2: With a Catalytic Amount of Selenium Dioxide 587
36.5.1.1.3	Variation 3: Oxidation of Chiral Allylic Selenides	587
36.5.1.2	Method 2: Dihydroxylation	588
36.5.1.2.1	Variation 1: Asymmetric Dihydroxylation	588
36.5.1.2.2	Variation 2: Directed Dihydroxylation	589
36.5.1.2.3	Variation 3: Enzymatic Dihydroxylation	590
36.5.1.3	Method 3: Allylic Substitution	590
36.5.1.3.1	Variation 1: Substitution of Allylic Halides	591
36.5.1.3.2	Variation 2: Asymmetric Iridium-Catalyzed Substitutions of Allylic Carbonates	591
36.5.1.4	Method 4: Elimination of β-Hydroxy Selenides	592
36.5.1.5	Method 5: Additions of Metalated Selenoxides	593
36.5.1.6	Method 6: Additions to α-Epoxy Hydrazones	594
36.5.1.7	Method 7: Elimination Reactions of Iodo Ketals	595
36.5.1.8	Method 8: Elimination of Allylic Cyclic Carbonates	596
36.5.1.8.1	Variation 1: With Organocuprates	596
36.5.1.8.2	Variation 2: Palladium-Catalyzed Eliminations	597
36.5.1.9	Method 9: Reduction of α-Halo Epoxides	598
36.5.1.9.1	Variation 1: With Transition Metals	598
36.5.1.9.2	Variation 2: With Organometallics	599
36.5.1.10	Method 10: Reduction of 2,3-Epoxy Alcohols	599
36.5.1.10.1	Variation 1: Reduction of Unactivated Epoxy Alcohols	600
36.5.1.10.2	Variation 2: Reduction of Sulfonylated Epoxy Alcohols	600
36.5.1.11	Method 11: Elimination of α-Epoxystannanes	602
36.5.1.12	Method 12: Reduction of Propargylic Alcohols to E-Alk-2-enols	602
36.5.1.13	Method 13: Reduction of Propargylic Alcohols to Z-Alk-2-enols	604
36.5.1.14	Method 14: 1,2-Reduction of α,β-Unsaturated Carbonyl Compounds Using Boron Reagents	605
36.5.1.14.1	Variation 1: Using Nonenantioselective Boron Reagents	606
36.5.1.14.2	Variation 2: Using Chiral Boron Reagents	607
36.5.1.15	Method 15: 1,2-Reduction of α,β-Unsaturated Carbonyl Compounds Using Aluminum Hydride Reagents	608
36.5.1.15.1	Variation 1: Using Nonenantioselective Aluminum Hydride Reagents	608
36.5.1.15.2	Variation 2: Using Chiral Aluminum Reagents	609
36.5.1.16	Method 16: 1,2-Reduction of α,β-Unsaturated Carbonyl Compounds Using Ruthenium Catalysts	610
36.5.1.16.1	Variation 1: Using Nonenantioselective Ruthenium Catalysts	611
36.5.1.16.2	Variation 2: Using Chiral Ruthenium Catalysts	612
36.5.1.17	Method 17: 1,2-Reduction of α,β-Unsaturated Carbonyl Compounds Using Other Reagents	614
36.5.1.18	Method 18: Additions of Organometallic Reagents to α,β-Unsaturated Carbonyl Compounds	615
36.5.1.18.1	Variation 1: Addition of Organozinc Reagents	615
36.5.1.18.2	Variation 2: Addition of Organolithium Reagents	619
36.5.1.18.3	Variation 3: Addition of Grignard Reagents	620
36.5.1.18.4	Variation 4: Addition of Other Organometallic Reagents	620
36.5.1.19	Method 19: Alkenylation of Carbonyl Compounds	622
36.5.1.19.1	Variation 1: Using Organozinc Reagents	622
36.5.1.19.2	Variation 2: Using Organolithium Reagents	626
36.6.1.3.1 Variation 1: With Chiral Allyl Groups or Chiral Lewis Acids 703
36.6.1.3.2 Variation 2: In Reactions with Chiral Aldehydes .. 705
36.6.1.4 Method 4: Synthesis Using Organochromium Reagents ... 710
36.6.1.4.1 Variation 1: With Chiral Allyl Groups ... 714
36.6.1.4.2 Variation 2: In Reactions with Chiral Aldehydes ... 718
36.6.1.5 Method 5: Synthesis Using Other Organometallic Reagents .. 722
36.6.1.5.1 Variation 1: Using Titanium Reagents .. 722
36.6.1.5.2 Variation 2: Using Indium Reagents .. 724
36.6.1.5.3 Variation 3: Using Zinc Reagents .. 726
36.6.1.5.4 Variation 4: Using Zirconium Reagents ... 727
36.6.1.6 Synthesis by [2,3]-Wittig Rearrangement ... 728
36.6.1.6.1 Method 1: Rearrangement of α-Allyloxy Enolates ... 730
36.6.1.6.1.1 Variation 1: Using α-Allyloxylated Ketones ... 730
36.6.1.6.1.2 Variation 2: Using α-Allyloxylated Carboxylic Acids and Esters 735
36.6.1.6.1.3 Variation 3: Using α-Allyloxylated Carboxamides .. 740
36.6.1.6.1.4 Variation 4: Using [(Allyloxy)methyl]-4,5-Dihydrooxazoles and [(Allyloxy)methyl]-5,6-Dihydro-1,3-oxazines .. 741
36.6.1.6.2 Method 2: Rearrangement of Allyl Lithiomethyl Ethers .. 744
36.6.1.6.2.1 Variation 1: Using (Tributylstannyl)methyl Ethers ... 744
36.6.1.6.2.2 Variation 2: Using (Trimethylstannyl)methyl Ethers .. 750

36.7 Product Class 7: 1,n-Diols (n > 1)
C. Nativi and S. Roelens

36.7.1 Product Subclass 1: 1,2-Diols ... 757
36.7.1.1 Synthesis of Product Subclass 1 .. 757
36.7.1.1.1 Method 1: Dihydroxylation of Alkenes ... 757
36.7.1.1.1.1 Variation 1: Upjohn Dihydroxylation ... 758
36.7.1.1.1.2 Variation 2: Using Reusable Osmium(VIII) Oxide on Ion Exchanger 759
36.7.1.1.1.3 Variation 3: Using Osmium(VIII) Oxide Encapsulated in a Polyurea Matrix 760
36.7.1.1.2 Method 2: Sharpless Dihydroxylation ... 761
36.7.1.1.2.1 Variation 1: Using Standard Conditions ... 762
36.7.1.1.2.2 Variation 2: Using Ionic Liquids ... 762
36.7.1.1.3 Method 3: Rhodium-Catalyzed Enantioselective Diboration of Alkenes 763
36.7.1.1.4 Method 4: Pinacol Couplings .. 763
36.7.1.1.4.1 Variation 1: Using Samarium(II) Iodide ... 764
36.7.1.1.4.2 Variation 2: In Aqueous Media ... 765
36.7.1.1.5 Method 5: The Aldol Reaction ... 765
36.7.1.1.5.1 Variation 1: Direct Aldol Reactions Using Chiral Organometallic Catalysts 766
36.7.1.1.5.2 Variation 2: Direct Aldol Reactions Catalyzed by Proline 767
36.7.1.1.6 Method 6: Ozonation of Alkenylstannanes ... 768
36.7.1.1.7 Method 7: Epoxide Ring Opening .. 769
36.7.1.1.7.1 Variation 1: Hydrolytic Kinetic Resolution of Terminal Epoxides 769
36.7.1.1.7.2 Variation 2: Ring Opening of 2,3-Epoxy Alcohols ... 769
36.7.1.1.7.3 Variation 3: Catalyzed by Epoxide Hydrolase ... 770
36.7.1.7.4 Variation 4: In Aqueous Media .. 770
36.7.1.8 Method 8: Alkylation of Oxazolidinone Derivatives 772
36.7.1.9 Method 9: Prévost–Woodward Dihydroxylation 773
36.7.2 Product Subclass 2: 1,3-Diols ... 774
36.7.2.1 Synthesis of Product Subclass 2 .. 775
36.7.2.1.1 Method 1: Reduction of β-Hydroxy Ketones 775
36.7.2.1.2 Method 2: Reduction of β-Dicarbonyls 776
36.7.2.1.3 Method 3: Ring Opening of Epoxy Alcohols 778
36.7.2.1.3.1 Variation 1: By Organometallics .. 778
36.7.2.1.3.2 Variation 2: By Rearrangement of 2,3-Epoxy Alcohols 779
36.7.2.1.4 Method 4: Allylation of β-Hydroxy Aldehydes 779
36.7.2.1.4.1 Variation 1: Chelation-Controlled Addition of Organometallics 779
36.7.2.1.4.2 Variation 2: By an Aldol–Reduction Sequence 780
36.7.2.1.5 Method 5: Oxymercuration of Homoallylic Hemiacetals 781
36.7.2.1.6 Method 6: Ring Opening of β-Hydroxy δ-Lactones 782
36.7.3 Product Subclass 3: 1,4-Diols ... 782
36.7.3.1 Synthesis of Product Subclass 3 .. 782
36.7.3.1.1 Method 1: Reduction of Unsaturated 1,4-Diketones 782
36.7.3.1.1.1 Variation 1: By Hydrogenation ... 782
36.7.3.1.1.2 Variation 2: By Hydroboration–Rearrangement of 1,2-Disubstituted Cyclobutenes .. 783
36.7.3.1.1.3 Variation 3: Hydroboration–Reduction of Allyl Ketones 784
36.7.3.1.2 Method 2: Aldol Reactions of Aldehydes with Hydroxyacetone 785
36.7.3.1.3 Method 3: Deprotection of Chiral Acetals Derived from Ene Acetals ... 785
36.7.3.1.4 Method 4: Michael Addition–Reduction of α,β-Unsaturated Enones 786
36.7.4 Product Subclass 4: 1,5-Diols ... 787
36.7.4.1 Synthesis of Product Subclass 4 .. 787
36.7.4.1.1 Method 1: Coupling of Vinylloxiranes and Ketones 787
36.7.4.1.2 Method 2: Reaction of Lithium Dianions with Carboxy Compounds 787
36.7.4.1.3 Method 3: Pentenyl Dianion Synthons for Ene-1,5-Diol Synthesis 788
36.7.4.1.4 Method 4: Double Allylboration Reactions 788
36.7.4.1.5 Method 5: Reductive Decomplexation of π-Allylicarboxylic Lactone Complexes .. 789
36.7.4.1.6 Method 6: Boron-Tethered Radical Cyclization 790
36.7.5 Product Subclass 5: 1,6-Diols ... 791
36.7.5.1 Synthesis of Product Subclass 5 .. 791
36.7.5.1.1 Method 1: Hex-3-ene-1,6-diols by Reduction of Organozinc Intermediates ... 791
36.7.5.1.2 Method 2: Hydride Reduction of Substituted 2,4-Diene-1,6-dials 792
36.7.5.1.3 Method 3: Titanium(IV) Chloride Mediated Addition of Octa-2,6-diene to Aldehydes .. 792
36.7.5.1.4 Method 4: Titanium(IV) Isopropoxide Mediated Coupling of Butylmagnesium Chloride with Aldehydes and Ketones 793
36.7.6 **Product Subclass 6: 1,7-Diols** .. 794
36.7.6.1 Synthesis of Product Subclass 6 .. 794
36.7.6.1.1 Method 1: Reductive Decomplexation of π-Allyltricarbonyliron Lactone Complexes .. 794
36.7.6.1.2 Method 2: Reaction of Organolithium Compounds with Epoxides 794

36.8 **Product Class 8: Polyols, Including Carbohydrates**
R. C. D. Brown

36.8.1 Synthesis of Product Class 8 .. 799
36.8.1.1 Method 1: Synthesis from Organosilanes 800
36.8.1.1.1 Variation 1: From Aryldimethylsilanes 800
36.8.1.1.2 Variation 2: From Oxasilacycloalkanes 802
36.8.1.1.3 Variation 3: From Silacyclopentanes 804
36.8.1.2 Method 2: Synthesis from Alkylboranes 804
36.8.1.3 Method 3: Criegee Rearrangement of Bis(peroxosulfonates) 805
36.8.1.4 Method 4: Hydrolysis of Alkyl Halides 807
36.8.1.5 Method 5: Hydrolysis of Epoxides 808
36.8.1.5.1 Variation 1: Of Epoxy Alcohols 808
36.8.1.5.2 Variation 2: Of Bis(epoxides) and Tris(epoxides) 812
36.8.1.6 Method 6: Regioselective Reduction of Diepoxyl Alcohols 814
36.8.1.7 Method 7: Stereoselective Reduction of β-Hydroxy Ketones 814
36.8.1.7.1 Variation 1: anti-Selective Reduction of β-Hydroxy Ketones by Tetramethylammonium Triacetoxyborohydride 815
36.8.1.7.2 Variation 2: syn-Selective Reduction of β-Hydroxy Ketones by Diethyl(methoxy)borane and Sodium Borohydride 817
36.8.1.8 Method 8: Reduction of Endoperoxides 819
36.8.1.9 Method 9: Dihydroxylation of Hydroxyalkenes 821
36.8.1.9.1 Variation 1: Of Acyclic Allylic Alcohols by Osmium(VIII) Oxide 822
36.8.1.9.2 Variation 2: Of Other Acyclic Hydroxalkenones by Osmium(VIII) Oxide 830
36.8.1.9.3 Variation 3: Of Cyclic Hydroxalkenones by Osmium(VIII) Oxide 831
36.8.1.10 Method 10: Dihydroxylation of Dienes and Trienes by Osmium(VIII) Oxide 837

36.9 **Product Class 9: β-Hydroxy Carbonyl Compounds**
R. Mahrwald and B. Schetter

36.9.1 Synthesis of Product Class 9 .. 847
36.9.1.1 Method 1: Additions of Aldehydes to Preformed Enolates 847
36.9.1.1.1 Variation 1: Additions to Lithium Enolates 849
36.9.1.1.2 Variation 2: Additions to Magnesium Enolates 855
36.9.1.1.3 Variation 3: Additions to Boron Enolates 860
36.9.1.1.4 Variation 4: Additions to Titanium Enolates 868
36.9.1.2 Method 2: Catalytic Aldol Additions of Silicon Enolates Using Lewis Acids 878
36.9.1.2.1 Variation 1: Using Silver Lewis Acids 879
Variation 2: Using Palladium Lewis Acids .. 880
Variation 3: Using Platinum Lewis Acids .. 881
Variation 4: Using Copper Lewis Acids .. 883
Variation 5: Using Tin Lewis Acids .. 887
Variation 6: Using Titanium Lewis Acids ... 893
Variation 7: Using Zirconium Lewis Acids 898
Variation 8: Using Boron Lewis Acids .. 901
Method 3: Direct Catalytic Aldol Reactions 907
Method 4: Amine-Catalyzed Aldol Additions 918
Method 5: Antibody-Catalyzed Aldol Additions 927
Method 6: Enzyme-Catalyzed Aldol Additions 928
Method 7: Lewis Base Catalyzed Aldol Additions 936
Method 8: Reactions of Aldehydes/Ketones with α-Halo Ketones (Reformatsky Reaction) .. 944
Method 9: Reactions of Dithianes with Epoxides 947
Method 10: Gold- and Rhodium-Catalyzed Aldol Additions 948
Method 11: Rearrangement of Epoxy Silyl Ethers 952
Method 12: Reduction of 4,5-Dihydroisoxazoles 953

Product Class 10: n-Heteroatom-Functionalized Alcohols
(n ≥ 2; Heteroatom ≠ Halogen) .. 971

Product Subclass 1: β-Heteroatom-Functionalized Alcohols 971
Synthesis of Product Subclass 1 .. 971
Method 1: Epoxide Ring Opening with Oxygen Nucleophiles 971
Method 2: Epoxide Ring Opening with Sulfur, Selenium, or Tellurium Nucleophiles .. 979
Method 3: Epoxide Ring Opening with Nitrogen Nucleophiles 983
Method 4: Epoxide Ring Opening with Phosphorus Nucleophiles 989
Method 5: Thiirane Substitution Reactions 991
Method 6: Aziridine Substitution Reactions 992
Method 7: Nucleophilic Addition of Sulfur-, Selenium-, or Tellurium-Stabilized Carbanions to Carbonyl Groups 993
Method 8: Nucleophilic Addition of Boronic Acids to Imines (The Petasis Reaction) .. 995
Method 9: Addition of Phosphorus Ylides to Carbonyl Compounds 996
Method 10: Thiol–Alkene Co-oxidation .. 998
Method 11: Hydroxysulfonylation Using Electrophilic Sulfur 1000
Method 12: Hydroxyselenation Using Electrophilic Selenium 1003
Method 13: Hydroxytelluration Using Electrophilic Tellurium 1004
Method 14: Synthesis of β-Amino Alcohols by Aminohydroxylation of Alkenes .. 1005
36.10.2 **Product Subclass 2: γ-Heteroatom-Functionalized Alcohols** 1009

36.10.2.1 Synthesis of Product Subclass 2 .. 1009

36.10.2.1.1 Method 1: Epoxide Ring Opening with Heteroatom-Stabilized Carbanions 1010

36.10.2.1.2 Method 2: Nucleophilic Ring Opening of Oxetanes 1013

36.10.2.1.3 Method 3: Reduction of Cyano Esters or Ketones 1015

36.10.2.1.4 Method 4: Synthesis from α,β-Unsaturated Carbonyl Compounds 1016

36.10.2.1.5 Method 5: Hydroboration of Allylic Substrates 1018

36.10.2.1.5.1 Variation 1: Addition to Allylic Alcohols 1020

36.10.3 **Product Subclass 3: δ-Heteroatom-Functionalized Alcohols** 1021

36.10.3.1 Synthesis of Product Subclass 3 .. 1021

36.10.3.1.1 Method 1: Nucleophilic Ring Opening of Oxetanes with Phosphorus-Stabilized Carbanions 1021

36.10.3.1.2 Method 2: Synthesis from α,β-Unsaturated Carbonyl Compounds 1022

36.11 **Product Class 11: Alcohols and Diols by Deprotection**

M. G. Moloney and M. Yaqoob

36.11.1 Synthesis of Product Class 11 .. 1031

36.11.1.1 Method 1: Alcohols by Cleavage of Stannoxanes 1035

36.11.1.1.1 Variation 1: Reaction with Electrophiles 1035

36.11.1.1.2 Variation 2: Reaction by Radical Formation 1038

36.11.1.1.2 Method 2: Alcohols by Cleavage of Siloxanes 1040

36.11.1.1.2.1 Variation 1: Acidic Hydrolysis 1044

36.11.1.1.2.2 Variation 2: Basic Hydrolysis 1047

36.11.1.1.2.3 Variation 3: Fluoride Hydrolysis 1048

36.11.1.1.2.4 Variation 4: Lewis Acid Mediated Hydrolysis 1051

36.11.1.1.2.5 Variation 5: Photolytic Cleavage 1051

36.11.1.1.3 Method 3: Alcohols by Cleavage of Carbonates and Carbamates 1052

36.11.1.1.3.1 Variation 1: Acidic Hydrolysis 1053

36.11.1.1.3.2 Variation 2: Basic Hydrolysis 1053

36.11.1.1.3.3 Variation 3: Reductive Cleavage 1055

36.11.1.1.3.4 Variation 4: Cleavage by Metal Catalysis 1056

36.11.1.1.3.5 Variation 5: Hydrogenolysis 1058

36.11.1.1.4 Method 4: Alcohols by Cleavage of Esters 1058

36.11.1.1.4.1 Variation 1: Acidic Hydrolysis 1059

36.11.1.1.4.2 Variation 2: Basic Hydrolysis 1060

36.11.1.1.4.3 Variation 3: Reductive Cleavage 1063

36.11.1.1.4.4 Variation 4: Nucleophilic Cleavage 1064

36.11.1.1.4.5 Variation 5: Enzymatic Hydrolysis 1066

36.11.1.1.5 Method 5: Alcohols by Cleavage of Acetals 1067

36.11.1.1.5.1 Variation 1: Acidic Hydrolysis 1067

36.11.1.1.5.2 Variation 2: Basic Hydrolysis 1069

36.11.1.1.5.3 Variation 3: Reductive Cleavage 1069

36.11.1.1.5.4 Variation 4: Nucleophilic Cleavage 1069
Variation 5: Cleavage by Lewis Acids ... 1070
Variation 6: Oxidative Cleavage .. 1072
Variation 7: Photolytic Cleavage .. 1073
Method 6: Alcohols by Cleavage of Ethers 1073
Variation 1: Acidic Hydrolysis .. 1073
Variation 2: Basic Hydrolysis ... 1078
Variation 3: Hydrogenolytic Cleavage .. 1079
Variation 4: Reductive Cleavage .. 1080
Variation 5: By Elimination ... 1082
Variation 6: Cleavage with Transition Metals 1083
Variation 7: By Oxidation .. 1084
Method 7: Alcohols by Cleavage of Sulfonates and Sulfenates 1085
Variation 1: Cleavage by Substitution with Iodide 1085
Variation 2: Cleavage by Reaction with Fluoride 1087
Variation 3: Reductive Cleavage .. 1087
Variation 4: Photolytic Cleavage .. 1090
Variation 5: Diols by Cleavage of Cyclic Boronates 1093
Variation 6: Nucleophilic Cleavage .. 1093
Variation 7: Diols by Cleavage of Cyclic Dioxystannanes 1094
Variation 8: Diols by Cleavage of Cyclic Dioxysilanes 1095
Variation 1: Acidic Hydrolysis .. 1095
Variation 2: Fluoride-Mediated Cleavage 1095
Variation 3: Diols by Cleavage of Cyclic Carbonates 1096
Variation 4: Basic Hydrolysis ... 1096
Variation 5: Diols by Cleavage of Cyclic Acetals 1096
Variation 1: Acidic Hydrolysis .. 1097
Variation 2: Lewis Acid Hydrolysis .. 1100
Variation 3: Basic Hydrolysis ... 1101
Variation 4: Reductive Cleavage .. 1101
Variation 5: Oxidative Cleavage .. 1102

Product Class 12: Metal Alcoholates

J. V. Morey and A. E. H. Wheatley

Product Class 12: Metal Alcoholates ... 1107
Product Subclass 1: Group 16 Metal Alcoholates 1107
Synthesis of Product Subclass 1 .. 1107
Method 1: Synthesis by Deprotonation of an Alkanol 1107
Method 2: Synthesis by Transmetalation 1108
Product Subclass 2: Group 15 Metal Alcoholates 1108
Synthesis of Product Subclass 2 .. 1108
Method 1: Synthesis by Deprotonation of an Alkanol 1108
Method 2: Synthesis by Transmetalation 1110
36.12.3 Product Subclass 3: Group 14 Alcoholates .. 1110
36.12.3.1 Synthesis of Product Subclass 3 ... 1110
36.12.3.1.1 Method 1: Synthesis by Deprotonation of an Alkanol 1110
36.12.3.1.2 Method 2: Synthesis by Nucleophilic Ring Opening 1114
36.12.4 Product Subclass 4: Group 13 Metal Alcoholates 1114
36.12.4.1 Synthesis of Product Subclass 4 .. 1114
36.12.4.1.1 Method 1: Synthesis by Deprotonation of an Alkanol 1114
36.12.5 Product Subclass 5: Chromium and Molybdenum Alcoholates 1116
36.12.5.1 Synthesis of Product Subclass 5 .. 1116
36.12.5.1.1 Method 1: Synthesis by Transmetalation of an Alcoholate 1116
36.12.6 Product Subclass 6: Vanadium Alcoholates ... 1118
36.12.6.1 Synthesis of Product Subclass 6 .. 1118
36.12.6.1.1 Method 1: Synthesis by Nucleophilic Addition 1118
36.12.7 Product Subclass 7: Titanium and Zirconium Alcoholates 1119
36.12.7.1 Synthesis of Product Subclass 7 .. 1119
36.12.7.1.1 Method 1: Synthesis by Deprotonation of an Alkanol 1119
36.12.7.1.2 Method 2: Synthesis by Nucleophilic Addition 1120
36.12.8 Product Subclass 8: Group 2 Metal Alcoholates 1122
36.12.8.1 Synthesis of Product Subclass 8 .. 1122
36.12.8.1.1 Method 1: Synthesis by Deprotonation of an Alkanol 1122
36.12.8.1.2 Method 2: Synthesis by Metalation of an Alkanol Equivalent 1126
36.12.8.1.3 Method 3: Synthesis by Nucleophilic Addition 1127
36.12.9 Product Subclass 9: Lithium Alcoholates ... 1128
36.12.9.1 Synthesis of Product Subclass 9 .. 1128
36.12.9.1.1 Method 1: Synthesis by Deprotonation of an Alkanol 1128
36.12.9.1.2 Method 2: Synthesis by Transmetalation .. 1129
36.12.9.1.3 Method 3: Rearrangement of a Carbolithiate 1129
36.12.9.1.3.1 Variation 1: Retro-Brook Rearrangements 1130
36.12.9.1.3.2 Variation 2: Phosphate-Based Carbanion Rearrangements 1131
36.12.9.1.3.3 Variation 3: [1,2]-Wittig Rearrangements 1132
36.12.9.1.3.4 Variation 4: [2,3]-Wittig Rearrangements 1135
36.12.9.1.3.5 Variation 5: [1,4]-Wittig Rearrangements 1143
36.12.9.1.3.6 Variation 6: Metallated Epoxide Rearrangements 1143
36.12.9.1.4 Method 4: Synthesis by Reductive Lithiation of C—O Bonds 1147
36.12.9.1.4.1 Variation 1: Reductive Lithiation of Acyclic Ethers 1147
36.12.9.1.4.2 Variation 2: Reductive Lithiation of Cyclic Ethers 1147
36.12.9.1.5 Method 5: Addition across Carbonyl Bonds 1150
36.12.9.1.5.1 Variation 1: Using Organolithium Reagents 1150
36.12.9.1.5.2 Variation 2: By Reductive Lithiation ... 1153
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.12.10</td>
<td>Product Subclass 10: Higher Group 1 Metal Alcoholates</td>
<td>1154</td>
</tr>
<tr>
<td>36.12.10.1</td>
<td>Synthesis of Product Subclass 10</td>
<td>1154</td>
</tr>
<tr>
<td>36.12.10.1.1</td>
<td>Method 1: Synthesis by Deprotonation of an Alkanol</td>
<td>1154</td>
</tr>
<tr>
<td>36.12.10.1.2</td>
<td>Method 2: Synthesis by Combination with Organolithium Substrates</td>
<td>1159</td>
</tr>
</tbody>
</table>

Keyword Index

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1167</td>
</tr>
</tbody>
</table>

Author Index

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1225</td>
</tr>
</tbody>
</table>

Abbreviations

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1295</td>
</tr>
</tbody>
</table>
Volume 37: Ethers

Preface .. V
Table of Contents ... IX

Introduction
C. J. Forsyth .. 1

37.1 Product Class 1: Dialkyl Ethers 9

37.1.1 Synthesis from Esters, Aldehydes, Ketones, and Acetals by Reduction or Alkylation
L. J. Van Orden, R. Jasti, and S. D. Rychnovsky 9

37.1.2 Synthesis by Substitution
M. Tsukamoto and M. Kitamura 47

37.1.3 Synthesis by Addition to Alkenes
D. R. Soenen and C. D. Vanderwal 99

37.1.4 Synthesis from Other Ethers
F. E. McDonald .. 133

37.2 Product Class 2: Epoxides (Oxiranes) 227

37.2.1 Synthesis from Alkenes by Metal-Mediated Oxidation
H. Adolfsson .. 227

37.2.2 Synthesis from Alkenes with Organic Oxidants
D. Goeddel and Y. Shi .. 277

37.2.3 Synthesis by Carbonyl Epoxidation
V. K. Aggarwal, M. Crimmin, and S. Riches 321

37.2.4 Synthesis by Ring Closure
A. K. Yudin and A. Caiazzo 407

37.3 Product Class 3: Oxetanes and Oxetan-3-ones 433

37.4 Product Class 4: Five-Membered and Larger-Ring Oxacyclocalk-3-enes .. 473

37.4.1 Synthesis by Ring-Closure Reactions, Except Ring-Closing Metathesis
K. Ding and Z. Wang ... 473

37.4.2 Synthesis by Ring-Closing Metathesis
S. W. Roberts and J. D. Rainier 531
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.4.3</td>
<td>Synthesis from Other Cyclic Ethers</td>
<td>K. Iyer and J. D. Rainier</td>
<td>555</td>
</tr>
<tr>
<td>37.5</td>
<td>Product Class 5: Five-Membered and Larger-Ring Oxacycloalkanes</td>
<td>M. Inoue and S. Yamashita</td>
<td>583</td>
</tr>
<tr>
<td>37.6</td>
<td>Product Class 6: Oxonium Salts</td>
<td>C. J. Forsyth and T. J. Murray</td>
<td>631</td>
</tr>
<tr>
<td>37.7</td>
<td>Product Class 7: Oligo- and Monosaccharide Ethers</td>
<td>I. Robina and P. Vogel</td>
<td>645</td>
</tr>
<tr>
<td>37.8</td>
<td>Product Class 8: Ethers as Protecting Groups</td>
<td>S. Petursson</td>
<td>847</td>
</tr>
<tr>
<td></td>
<td>Keyword Index</td>
<td></td>
<td>893</td>
</tr>
<tr>
<td></td>
<td>Author Index</td>
<td></td>
<td>943</td>
</tr>
<tr>
<td></td>
<td>Abbreviations</td>
<td></td>
<td>987</td>
</tr>
</tbody>
</table>
Table of Contents

Introduction
C. J. Forsyth

Introduction ... 1

37.1 Product Class 1: Dialkyl Ethers

37.1.1 Synthesis from Esters, Aldehydes, Ketones, and Acetals by Reduction or Alkylation
L. J. Van Orden, R. Jasti, and S. D. Rychnovsky

37.1.1 Synthesis from Esters, Aldehydes, Ketones, and Acetals by Reduction or Alkylation .. 9
37.1.1.1 Synthesis of Acyclic Ethers by Reduction of Esters 9
37.1.1.1.1 Method 1: Hydrosilylation ... 9
37.1.1.1.2 Variation 1: Under Free-Radical Conditions 9
37.1.1.1.3 Variation 2: With Stoichiometric Lewis Acid 10
37.1.1.1.4 Variation 3: With a Catalytic Manganese Complex 10
37.1.1.2 Method 2: Sodium Borohydride Reduction 11
37.1.1.3 Method 3: Two-Step Reduction Utilizing an \(\alpha\)-Acetoxy Ether 13
37.1.1.4 Method 4: Two-Step Reduction Utilizing an S-Alkyl Thioester 14
37.1.1.5 Synthesis of Acyclic Ethers by Alkylation of Esters 15
37.1.1.6 Method 1: Synthesis by a Two-Step Procedure Utilizing an \(\alpha\)-Acetoxy Ether ... 15
37.1.1.6.1 Variation 1: Organocuprate Addition 16
37.1.1.6.2 Variation 2: Allylstannane Addition 16
37.1.1.6.3 Variation 3: Allylsilane, But-2-enylsilane, and Silyl Ketene Acetal Addition .. 16
37.1.1.6.4 Variation 4: Trimethylsilyl Cyanide Addition 17
37.1.1.6.5 Variation 5: Organozinc Addition .. 18
37.1.1.6.6 Synthesis of Acyclic Ethers by Reduction of Aldehydes or Ketones 18
37.1.1.6.7 Method 1: Hydrosilylation ... 18
37.1.1.6.8 Variation 1: With Iodotrimethylsilane 18
37.1.1.6.9 Variation 2: With Alkoxyhydrosilanes 19
37.1.1.6.10 Variation 3: With Brønsted Acid Catalysis 19
37.1.1.6.11 Method 2: Hydrogenation ... 20
37.1.1.6.12 Method 3: In Situ Formation of Acetals, Followed by Reductive Cleavage .. 20
37.1.1.6.13 Synthesis of Acyclic Ethers by Alkylation of Aldehydes or Ketones 21
37.1.1.6.14 Method 1: Silyl-Modified Sakurai Reaction 21
37.1.1.6.15 Synthesis of Acyclic Ethers by Reduction of Acetals 22
37.1.1.5.1 Method 1: Metal Hydride Reduction ... 22
37.1.1.5.1.1 Variation 1: With Diisobutylaluminum Hydride 22
37.1.1.5.1.2 Variation 2: With Lithium Aluminum Hydride 23
37.1.1.5.1.3 Variation 3: With Borane–Dimethyl Sulfide Complex 24
37.1.1.5.1.4 Variation 4: With Triethylsilane ... 25
37.1.1.5.1.5 Variation 5: With Zinc(II) Borohydride 26
37.1.1.5.2 Method 2: Hydrogenation ... 26
37.1.1.6 Synthesis of Acyclic Ethers by Alkylation of Acetals 27
37.1.1.6.1 Method 1: Addition of Allylsilane Reagents 27
37.1.1.6.2 Method 2: Addition of Allylstannane Reagents 30
37.1.1.6.3 Method 3: Other Alkylation Methods .. 31
37.1.1.6.4 Method 4: Addition of Alka-2,3-dienyl- and Propargylsilanes 32
37.1.1.6.5 Method 5: Addition of Silyl Enol Ethers and Metal Enolates 33
37.1.1.6.6 Method 6: Addition of Trimethylsilyl Cyanide 37
37.1.1.6.7 Method 7: Addition of Grignard Reagents 38
37.1.1.6.8 Method 8: Addition of Organocuprate Reagents 38
37.1.1.6.9 Method 9: Addition of Organoauminum Reagents 39
37.1.1.6.10 Method 10: Cleavage with Lithium Metal 40
37.1.1.7 Synthesis of Acyclic Ethers by Alkylation of α-Halo Ethers 40
37.1.1.7.1 Method 1: Lithiation ... 40
37.1.1.7.2 Method 2: Palladium-Mediated Coupling 42
37.1.1.7.3 Method 3: Addition of Organometallic Reagents 43
37.1.1.7.4 Method 4: Synthesis by a Two-Step Procedure from an Acetal 43

37.1.2 Synthesis by Substitution
M. Tsukamoto and M. Kitamura

37.1.2.1 Method 1: Oxidation of C—H Bonds .. 47
37.1.2.2 Method 2: Intramolecular Oxidative Cyclization of Alcohols 48
37.1.2.3 Method 3: Ring Opening of Cyclopropanes 49
37.1.2.4 Method 4: Williamson-Type Reaction of Alkyl Halides 50
37.1.2.4.1 Variation 1: Using Metal Alkoxides ... 50
37.1.2.4.2 Variation 2: With Alcohols in the Presence of Base 53
37.1.2.4.3 Variation 3: From Halo Alcohols ... 57
37.1.2.5 Method 5: Synthesis from Sulfonic and Sulfuric Acid Esters 59
37.1.2.5.1 Variation 1: Using Dialkyl Sulfates ... 59
37.1.2.5.2 Variation 2: Using Trifluoromethanesulfonates 59
37.1.2.5.3 Variation 3: Using 4-Toluenesulfonates 60
37.1.2.5.4 Variation 4: Using Methanesulfonates 61
37.1.2.6 Method 6: Synthesis from Esters of Phosphorus Acids 61
37.1.2.7 Method 7: Synthesis from Carbonates ... 63
37.1.2.8 Method 8: Synthesis from Trichloroacetimidates 65
37.1.2.9 Method 9: Synthesis from Oxalate Esters 65
37.1.2.10 Method 10: Synthesis Using Meerwein’s Reagent 66
37.1.2.11 Method 11: Synthesis from Sulfonium and Selenonium Salts 66
37.1.2.12 Method 12: Synthesis from Ammonium Salts 67
37.1.2.13 Method 13: Synthesis from Phosphonium Salts 68
37.1.2.14 Method 14: Synthesis from Diazo Compounds 68
37.1.2.14.1 Variation 1: From Diazoalkanes .. 68
37.1.2.14.2 Variation 2: From Diazo(trimethylsilyl)methane 70
37.1.2.14.3 Variation 3: From Diazocarbonyl Compounds 71
37.1.2.15 Method 15: Synthesis from Alcohols Using Brønsted Acids 72
37.1.2.16 Method 16: Synthesis from Alcohols Using Pentavalent Phosphorus Reagents .. 75
37.1.2.17 Method 17: Synthesis from Alcohols under Mitsunobu Conditions 76
37.1.2.18 Method 18: Synthesis from Alcohols Using Carboximides 80
37.1.2.19 Method 19: Synthesis of Ethers from Alcohols by Lewis Acids and Transition-Metal Complexes 81
37.1.2.20 Method 20: Synthesis from Alcohols Using a Catalytic Amount of Base .. 89
37.1.2.21 Method 21: Reaction of Di-tert-butyl Peroxide with Grignard or Organolithium Reagents 90
37.1.2.22 Method 22: Reaction of tert-Butyl Peroxybenzoates with Grignard Reagents ... 90

37.1.3 Synthesis by Addition to Alkenes
D. R. Soenen and C. D. Vanderwal

37.1.3.1 Method 1: Electrophilic Haloetherification 99
37.1.3.1.1 Variation 1: Of Isolated Alkenes ... 99
37.1.3.1.2 Variation 2: Of Allenes ... 100
37.1.3.1.3 Variation 3: Of Conjugated Alkenes 101
37.1.3.1.4 Variation 4: Of α,β-Unsaturated Carbonyl Compounds 102
37.1.3.2 Method 2: Electrophilic Alkoxymercuration 104
37.1.3.3 Method 3: Electrophilic Alkoxyxelanylation 104
37.1.3.3.1 Variation 1: General Reaction ... 104
37.1.3.3.2 Variation 2: Selenium-Reagent-Catalyzed Tandem Alkoxyxelanylation—Oxidative Deselanylation 106
37.1.3.3.3 Variation 3: Diastereoselective, Alkene-Controlled Alkoxyxelanylation ... 106
37.1.3.3.4 Variation 4: Diastereoselective Additions by Selenium Reagent Control ... 108
37.1.3.4 Method 4: Base-Catalyzed Conjugate Addition of Alcohols to Electron-Deficient Alkenes .. 109
37.1.3.4.1 Variation 1: General Reaction ... 109
37.1.3.4.2 Variation 2: Diastereoselective Reaction Controlled by Resident Stereogenicity of the Alkene ... 112
37.1.3.4.3 Variation 3: Diastereoselective Reaction Controlled by Resident Stereogenicity of the Alcohol 113
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.1.3.4</td>
<td>Variation 4: Diastereoselective Reaction Achieved by Selective Protonation</td>
<td>115</td>
</tr>
<tr>
<td>37.1.3.5</td>
<td>Method 5: Acid-Catalyzed Addition of Alcohols to Isolated Alkenes</td>
<td>116</td>
</tr>
<tr>
<td>37.1.3.6</td>
<td>Method 6: Uncatalyzed Addition of Alcohols</td>
<td>116</td>
</tr>
<tr>
<td>37.1.3.6.1</td>
<td>Variation 1: To Conjugated Alkenes</td>
<td>116</td>
</tr>
<tr>
<td>37.1.3.6.2</td>
<td>Variation 2: Diastereoselective Methods: Alkene Controlled</td>
<td>117</td>
</tr>
<tr>
<td>37.1.3.7</td>
<td>Method 7: Palladium-Catalyzed Addition to Alkenes</td>
<td>118</td>
</tr>
<tr>
<td>37.1.3.8</td>
<td>Method 8: Transition-Metal-Catalyzed Allylic Etherification</td>
<td>119</td>
</tr>
<tr>
<td>37.1.3.9</td>
<td>Method 9: Photochemical Alkoxylation</td>
<td>120</td>
</tr>
<tr>
<td>37.1.3.9.1</td>
<td>Variation 1: Of Isolated Alkenes</td>
<td>121</td>
</tr>
<tr>
<td>37.1.3.9.2</td>
<td>Variation 2: Of Conjugated Alkenes</td>
<td>122</td>
</tr>
<tr>
<td>37.1.3.9.3</td>
<td>Variation 3: Of (\alpha,\beta)-Unsaturated Carbonyl Compounds</td>
<td>124</td>
</tr>
<tr>
<td>37.1.3.9.4</td>
<td>Variation 4: Stereoselective Photoalkoxylation of Alkenes</td>
<td>125</td>
</tr>
<tr>
<td>37.1.3.10</td>
<td>Method 10: Radical Alkoxylation of Alkenes</td>
<td>127</td>
</tr>
<tr>
<td>37.1.3.11</td>
<td>Method 11: Electrochemical Alkoxylation of Alkenes</td>
<td>128</td>
</tr>
</tbody>
</table>

Section 37.1

Method 4: Formation of Cyclic Ethers from Other Ethers

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.1.3.4.1</td>
<td>Variation 1: Intermolecular Addition of Alcohols</td>
<td>158</td>
</tr>
<tr>
<td>37.1.3.4.2</td>
<td>Variation 2: Intramolecular Addition of Alcohols</td>
<td>167</td>
</tr>
<tr>
<td>37.1.3.4.3</td>
<td>Variation 3: Multiple Cyclizations of Polyepoxides</td>
<td>178</td>
</tr>
<tr>
<td>37.1.3.4.4</td>
<td>Variation 4: Polymerizations of Epoxides</td>
<td>183</td>
</tr>
<tr>
<td>37.1.3.4.5</td>
<td>Variation 5: Polymerizations of OXetanes, Tetrahydrofuran, and Oxepane</td>
<td>189</td>
</tr>
<tr>
<td>37.1.4.1</td>
<td>Method 4: Formation of Cyclic Ethers from Other Ethers</td>
<td>191</td>
</tr>
<tr>
<td>37.1.4.1.1</td>
<td>Variation 1: C–O Bond Insertion of Diazo Compounds into Acyclic Ethers</td>
<td>191</td>
</tr>
<tr>
<td>37.1.4.2</td>
<td>Variation 2: Ring Expansions and Contractions of Cyclic Ethers</td>
<td>195</td>
</tr>
<tr>
<td>37.1.4.5</td>
<td>Method 5: Synthesis of Alkyl Ethers from Vinylic Ethers</td>
<td>197</td>
</tr>
<tr>
<td>37.1.4.5.1</td>
<td>Variation 1: Reductive Formation of a C–H Bond at the (\alpha)-Carbon</td>
<td>198</td>
</tr>
</tbody>
</table>

F. E. McDonald

Section 37.1

Method 4: Formation of Cyclic Ethers from Other Ethers

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.1.4.1</td>
<td>Method 1: Transetherification</td>
<td>133</td>
</tr>
<tr>
<td>37.1.4.1.1</td>
<td>Variation 1: Substitution of Benzyl Ethers</td>
<td>133</td>
</tr>
<tr>
<td>37.1.4.1.2</td>
<td>Variation 2: Substitution of Alkyl Ethers</td>
<td>136</td>
</tr>
<tr>
<td>37.1.4.1.3</td>
<td>Variation 3: Substitution of Pent-4-enyl Ethers</td>
<td>136</td>
</tr>
<tr>
<td>37.1.4.2</td>
<td>Method 2: Substitution of an (\alpha)-Hydrogen with Carbon</td>
<td>139</td>
</tr>
<tr>
<td>37.1.4.2.1</td>
<td>Variation 1: From Benzyl Ethers</td>
<td>139</td>
</tr>
<tr>
<td>37.1.4.2.2</td>
<td>Variation 2: From Allylic Ethers</td>
<td>145</td>
</tr>
<tr>
<td>37.1.4.2.3</td>
<td>Variation 3: From Propargylic Ethers</td>
<td>148</td>
</tr>
<tr>
<td>37.1.4.2.4</td>
<td>Variation 4: From Alkyl Ethers</td>
<td>149</td>
</tr>
<tr>
<td>37.1.4.2.5</td>
<td>Variation 5: From Enolates of (\beta)-Carbonyl Ethers</td>
<td>154</td>
</tr>
<tr>
<td>37.1.4.3</td>
<td>Method 3: Ring Opening of Epoxides and Other Cyclic Ethers</td>
<td>157</td>
</tr>
</tbody>
</table>

F. E. McDonald

Section 37.1

Method 5: Synthesis of Alkyl Ethers from Vinylic Ethers

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.1.4.5.1</td>
<td>Variation 1: Reductive Formation of a C–H Bond at the (\alpha)-Carbon</td>
<td>198</td>
</tr>
</tbody>
</table>

F. E. McDonald

Section 37.1

Method 5: Synthesis of Alkyl Ethers from Vinylic Ethers

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.1.4.5.1</td>
<td>Variation 1: Reductive Formation of a C–H Bond at the (\alpha)-Carbon</td>
<td>198</td>
</tr>
</tbody>
</table>

F. E. McDonald

Section 37.1

Method 5: Synthesis of Alkyl Ethers from Vinylic Ethers

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.1.4.5.1</td>
<td>Variation 1: Reductive Formation of a C–H Bond at the (\alpha)-Carbon</td>
<td>198</td>
</tr>
</tbody>
</table>

F. E. McDonald
37.2 Product Class 2: Epoxides (Oxiranes)

37.2.1 Synthesis from Alkenes by Metal-Mediated Oxidation

H. Adolfsson

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.2.1.1</td>
<td>Synthesis Mediated by Group 4 Metals</td>
<td>228</td>
</tr>
<tr>
<td>37.2.1.1.1</td>
<td>Method 1: Titanium-Mediated Epoxidation with Alkyl Hydroperoxides</td>
<td>228</td>
</tr>
<tr>
<td>37.2.1.1.1</td>
<td>Variation 1: With Hydrogen Peroxide</td>
<td>229</td>
</tr>
<tr>
<td>37.2.1.1.2</td>
<td>Method 2: Titanium-Mediated Asymmetric Epoxidation with Alkyl Hydroperoxides</td>
<td>229</td>
</tr>
<tr>
<td>37.2.1.1.2</td>
<td>Variation 1: With Hydrogen Peroxide</td>
<td>234</td>
</tr>
<tr>
<td>37.2.1.2</td>
<td>Synthesis Mediated by Group 5 Metals</td>
<td>236</td>
</tr>
<tr>
<td>37.2.1.2.1</td>
<td>Method 1: Vanadium-Mediated Epoxidation with Alkyl Hydroperoxides</td>
<td>236</td>
</tr>
<tr>
<td>37.2.1.2.1</td>
<td>Variation 1: With Hydrogen Peroxide</td>
<td>238</td>
</tr>
<tr>
<td>37.2.1.2.2</td>
<td>Method 2: Vanadium-Mediated Asymmetric Epoxidation</td>
<td>238</td>
</tr>
<tr>
<td>37.2.1.3</td>
<td>Synthesis Mediated by Group 6 Metals</td>
<td>241</td>
</tr>
<tr>
<td>37.2.1.3.1</td>
<td>Method 1: Chromium-Mediated Epoxidation</td>
<td>241</td>
</tr>
<tr>
<td>37.2.1.3.1</td>
<td>Variation 1: Chromium-Mediated Asymmetric Epoxidation</td>
<td>241</td>
</tr>
<tr>
<td>37.2.1.3.2</td>
<td>Method 2: Molybdenum-Mediated Epoxidation with Alkyl Hydroperoxides</td>
<td>242</td>
</tr>
<tr>
<td>37.2.1.3.2</td>
<td>Variation 1: With Hydrogen Peroxide</td>
<td>242</td>
</tr>
<tr>
<td>37.2.1.3.3</td>
<td>Method 3: Molybdenum-Mediated Asymmetric Epoxidation</td>
<td>243</td>
</tr>
<tr>
<td>37.2.1.3.4</td>
<td>Method 4: Tungsten-Mediated Epoxidation with Hydrogen Peroxide</td>
<td>244</td>
</tr>
<tr>
<td>37.2.1.4</td>
<td>Synthesis Mediated by Group 7 Metals</td>
<td>248</td>
</tr>
<tr>
<td>37.2.1.4.1</td>
<td>Method 1: Manganese-Mediated Epoxidation with Hydrogen Peroxide</td>
<td>248</td>
</tr>
<tr>
<td>37.2.1.4.2</td>
<td>Method 2: Manganese-Mediated Asymmetric Epoxidation</td>
<td>251</td>
</tr>
<tr>
<td>37.2.1.4.3</td>
<td>Method 3: Rhenium-Mediated Epoxidation with Hydrogen Peroxide</td>
<td>256</td>
</tr>
<tr>
<td>37.2.1.4.3.1</td>
<td>Variation 1: With Other Oxidants</td>
<td>263</td>
</tr>
<tr>
<td>37.2.1.5</td>
<td>Synthesis Mediated by Group 8 Metals</td>
<td>264</td>
</tr>
<tr>
<td>37.2.1.5.1</td>
<td>Method 1: Iron-Mediated Epoxidation of Alkenes</td>
<td>264</td>
</tr>
<tr>
<td>37.2.1.5.2</td>
<td>Method 2: Ruthenium-Mediated Epoxidation</td>
<td>267</td>
</tr>
<tr>
<td>37.2.1.6</td>
<td>Synthesis Mediated by Late Transition Metals (Groups 9–11)</td>
<td>270</td>
</tr>
<tr>
<td>37.2.1.6.1</td>
<td>Method 1: Platinum-Mediated Asymmetric Epoxidation</td>
<td>271</td>
</tr>
</tbody>
</table>
37.2 Synthesis from Alkenes with Organic Oxidants
D. Goeddel and Y. Shi

37.2.1 Method 1: Synthesis Using Organic Peroxy-Containing Compounds
37.2.1.1 Variation 1: Using 3-Chloroperoxybenzoic Acid
37.2.1.2 Variation 2: Using Other Peracids
37.2.1.3 Variation 3: Using Peroxymidic Acids
37.2.1.4 Variation 4: Using Peroxisoureas
37.2.1.5 Variation 5: Using Peroxycarbonic Acids
37.2.1.6 Variation 6: Using Peroxycarbamic Acids
37.2.1.7 Variation 7: Using Perhydrates/α-Hydroperoxy Compounds
37.2.1.8 Variation 8: Using Selenium-, Phosphorus-, or Sulfur-Containing Oxidants
37.2.1.9 Variation 9: Intermolecular Hydrogen Peroxide Activation
37.2.2 Method 2: Synthesis Using Oxaziridines and Oxaziridinium Salts
37.2.2.1 Variation 1: Using Oxaziridines
37.2.2.2 Variation 2: Using Oxaziridinium Salts
37.2.2.3 Method 3: Synthesis Using Dioxiranes
37.2.2.3.1 Variation 1: Using Dimethyldioxirane
37.2.2.3.2 Variation 2: Using 3-Methyl-3-(trifluoromethyl)dioxirane
37.2.2.3.3 Variation 3: Using Other Achiral Dioxiranes
37.2.2.3.4 Variation 4: Using Oxone and Non-Carbohydrate-Derived Chiral Ketones
37.2.2.3.5 Variation 5: Using Oxone or Hydrogen Peroxide and Fructose-Derived Chiral Ketones
37.2.2.3.6 Variation 6: Using Oxone and Oxazolidinone-Containing Chiral Ketones

37.2.3 Synthesis by Carbonyl Epoxidation
V. K. Aggarwal, M. Crimmin, and S. Riches

37.2.3.1 Method 1: Addition of an Arsonium Ylide
37.2.3.1.1 Variation 1: By Deprotonation of an Arsonium Salt
37.2.3.1.2 Variation 2: Ylide Generation by Addition of an Arsine to a Metal Carbenoid
37.2.3.1.3 Variation 3: Ylide Generation by Transylation of a Phosphonium Ylide
37.2.3.2 Method 2: Addition of a Bismuthonium Ylide
37.2.3.3 Method 3: Addition of a Sulfonium or Sulfoxonium Ylide
37.2.3.3.1 Variation 1: By Reaction of an Ylide Generated by Deprotonation of a Sulfonium Salt
37.2.3.3.2 Variation 2: Ylide Generation by Desilylation of a Sulfonium Salt
Variation 3: Ylide Generation by Decarboxylation of a Sulfonium Salt .. 347
Variation 4: By Reaction of an Ylide Generated from a Metal Carbenoid and a Sulfide .. 348
Variation 5: By Reaction of an Ylide Generated by Addition of a Nucleophile to a Vinlylsulfonium Salt 353
Variation 6: Ylide Generation by Electrochemical Reduction of a Sulfonium Salt ... 355
Method 4: Addition of a Selenonium Ylide .. 356
Variation 1: Using Selenonium Ylides Generated by Deprotonation .. 356
Variation 2: Using Selenonium Ylides Generated by Addition to (Arylethynyl)diphenylselenonium Trifluoromethanesulfonate .. 357
Variation 3: Using Selenonium Ylides Generated by Conjugate Addition to Vinylsulfonium Salts 357
Method 5: Addition of a Telluronium Ylide .. 359
Method 6: Addition of an Ammonium Ylide .. 363
Method 7: Addition of Heteroatom-Substituted Anions .. 365
Variation 1: Addition of an α-Alkoxyallyl Anion .. 365
Variation 2: Addition of an α-Sulfanylmethyl Anion .. 367
Variation 3: Addition of an α-Sulfimidoylmethyl Anion .. 368
Variation 4: Addition of an α-Sulfoximidoylmethyl Anion .. 370
Variation 5: Addition of an α-Selanylmethyl Anion .. 372
Variation 6: Addition of an α-Selenonylalkyl Anion .. 372
Variation 7: Addition of an α-Halo Anion .. 373
Method 8: Addition of a Diao Compound .. 396
Variation 1: Transition-Metal-Catalyzed Addition of Diao Compounds .. 398
Synthesis by Ring Closure
A. K. Yudin and A. Caiazzo

Synthesis from Vicinal Halohydrins .. 409
Method 1: Synthesis Using Carbonates as Base .. 410
Method 2: Synthesis Using Hydroxides as Base .. 410
Method 3: Synthesis Using Alkoxides as Base .. 411
Method 4: Synthesis Using Silver(I) Oxide as Base .. 411
Synthesis from Vicinal Diols .. 412
Method 1: The Sharpless Procedure .. 412
Method 2: The Mitsunobu Procedure .. 414
Variation 1: The Abushanab Modification .. 415
Method 3: In Situ Sulfonylation of a Hydroxy Group .. 416
Variation 1: Using N-Tosylimidazole .. 416
Variation 2: Using Silver(I) Oxide .. 417
Variation 3: Using 4-(Dimethylamino)pyridine .. 418

Science of Synthesis Original Edition Volume 37
© Georg Thieme Verlag KG
Table of Contents

37.3.1.1.8.2 Variation 2: Reaction of Ketones and α-Oxo Esters 450
37.3.1.1.8.3 Variation 3: Reaction of Carboxylic Acid Derivatives and Quinones 455
37.3.1.1.8.4 Variation 4: Intramolecular Reaction .. 456
37.3.1.1.9 Method 9: Synthesis by Ring Contraction 458
37.3.1.1.9.1 Variation 1: Reaction of Cyclic Acetals 459
37.3.1.1.9.2 Variation 2: Reaction of Lactones .. 459
37.3.1.1.10 Method 10: Synthesis by Ring Expansion 460
37.3.1.1.10.1 Variation 1: Rearrangement of Oxiranylalkyl Ethers 460
37.3.1.1.10.2 Variation 2: Rearrangement of (Hydroxyethyl)oxiranes 461
37.3.1.1.10.3 Variation 3: Insertion of Methylene into Oxiranes 462
37.3.1.1.11 Method 11: Synthesis by Modification of Oxetanes at the Periphery 465
37.3.1.1.12 Method 12: Synthesis by Modification of Oxetanes at the Periphery 465
37.3.1.2 Applications of Product Subclass 1 in Organic Synthesis 466
37.3.1.2.1 Method 1: Ring Opening of Oxetanes .. 466
37.3.2 Product Subclass 2: Oxetan-3-ones .. 466
37.3.2.1 Synthesis of Product Subclass 2 .. 466
37.3.2.1.1 Method 1: Synthesis from α-Diazo Ketones 466
37.4 Product Class 4: Five-Membered and Larger-Ring Oxacycloalk-3-enes

37.4.1 Synthesis by Ring-Closure Reactions, Except Ring-Closing Metathesis
K. Ding and Z. Wang

37.4.1 Synthesis by Ring-Closure Reactions, Except Ring-Closing Metathesis
... 473
37.4.1.1 2,5-Dihydrofurans ... 473
37.4.1.1.1 Method 1: Cyclization of 2,3-Allenols with Various Electrophiles as Catalysts 473
37.4.1.1.1.1 Variation 1: Silver(I)-Catalyzed Ring Closure of 2,3-Allenols 473
37.4.1.1.1.2 Variation 2: Silver(I)-Catalyzed Rearrangement–Cyclization of 4-Hydroxypropargyl Esters 476
37.4.1.1.1.3 Variation 3: Intramolecular Cyclization of 2,3-Allenols Using Gold(III) Chloride as Catalyst 477
37.4.1.1.1.4 Variation 4: Rearrangement of Butynediol Monobenzoates Catalyzed by Gold(I) 477
37.4.1.1.1.5 Variation 5: Cyclization of Allenic Hydroxy Esters by Treatment with Hydrogen Chloride in Chloroform .. 479
37.4.1.1.1.6 Variation 6: Synthesis of 3-Allyl-2,5-dihydrofurans by Palladium(II) Chloride Catalyzed Coupling–Cyclization Reaction of 2,3-Allenols with Allylic Halides .. 479
37.4.1.1.1.7 Variation 7: Cyclization of α-Allenic Alcohols Using Benzeneselenenyl Chloride as Electrophile .. 481
37.4.1.1.1.8 Variation 8: Cyclization of 2-(Phenylsulfanyl)buta-2,3-dien-1-ol Derivatives Using Various Electrophiles .. 482

Science of Synthesis Original Edition Volume 37
© Georg Thieme Verlag KG
37.4.1.2 Method 2: Dehydrative Cyclization of (Z)-Alk-2-ene-1,4-diols —— 483
37.4.1.3 Method 3: [3 + 2]-Cycloaddition Reactions of Carbonyl Ylides to Alkynes ——— 486
37.4.1.4 Method 4: Synthesis of 3-(Alkoxyethyl)-2,5-Dihydrofurans via Alkylidenecarbene Insertion Reactions ——— 487
37.4.1.5 Method 5: Triphenylphosphine-Induced Ring Contraction of 3,6-Dihydro-1,2-dioxins ——— 488
37.4.1.6 Method 6: Synthesis from α-Hydroxy Ketones and Triphenyl(vinyl)phosphonium Salts ——— 489
37.4.1.7 Method 7: Palladium-Catalyzed Reaction of Cyclic Alkynyl Carbonates with Electron-Deficient Alkenes ——— 491
37.4.1.2 3,6-Dihydro-2H-pyrans ——— 491
37.4.1.2.1 Method 1: Lewis Acid Mediated Prins-Type Reactions ——— 491
37.4.1.2.1.1 Variation 1: Indium(III) Chloride Mediated Tandem Carbonyl Allylation–Prins Cyclization of Tributyl[3-(trimethylsilyl)allyl]stannane with Aldehydes ——— 493
37.4.1.2.1.2 Variation 2: The Silyl-Prins Reaction ——— 493
37.4.1.2.1.3 Variation 3: Synthesis of 2-Alkyl-4-halo-3,6-dihydro-2H-pyrans by Iron(III) Halide Catalyzed Prins-Type Cyclization of Homopropargylic Alcohols and Aldehydes ——— 495
37.4.1.2.1.4 Variation 4: Synthesis of Tetra- and Pentasubstituted 4-Halo-3,6-dihydro-2H-pyrans by Iron(III) Halide Catalyzed Prins Cyclization of Silylated Homopropargylic Alcohols and Aldehydes ——— 496
37.4.1.2.2 Method 2: Acetal-Initiated Cyclizations of Vinylsilanes ——— 497
37.4.1.2.2.1 Variation 1: Vinylsilane-Terminated Cyclizations of Ester-Substituted Oxycarbenium Ion Intermediates ——— 498
37.4.1.2.3 Method 3: Synthesis of Polysubstituted Dihydropyrans via Trimethylsilyl Trifluoromethanesulfonate Mediated Condensation of (Z)-Trimethyl[4-(trimethylsilyl)but-3-enyloxy]silanes with Aldehydes or Acetals ——— 499
37.4.1.2.4 Method 4: Synthesis of 4-Halo-3,6-dihydro-2H-pyrans via Lewis Acid Promoted Cyclization of Acetals of Homopropargylic Alcohols ——— 500
37.4.1.2.5 Method 5: Stereoselective Synthesis of 3,6-Dihydro-2H-pyrans by [4 + 2] Annulation between Allylsilanes and Aldehydes ——— 501
37.4.1.2.5.1 Variation 1: Lewis Acid Promoted [4 + 2] Annulation between Allylsilanes and Aldehydes ——— 503
37.4.1.2.6 Method 6: Lewis Acid Catalyzed Cyclization of 3,4-Allenols ——— 504
37.4.1.2.6.1 Variation 1: Synthesis of 5-Allyl-3,6-dihydro-2H-pyrans via the Palladium-Catalyzed Cyclizative Coupling Reaction of 3,4-Allenols with Allyl Bromide ——— 504
37.4.1.2.7 Method 7: Enantioselective Synthesis of Sulfinyl Dihydropyrans by Base-Promoted Intramolecular Cyclization of 2-Sulfinyl Dienols ——— 505
37.4.1.2.8 Method 8: Synthesis of Aryldihydropyrans by Phenylselanyl etherification–Oxidation 506

37.4.1.3 Larger-Ring Oxacycloalk-3-enes 507

37.4.1.3.1 Method 1: Synthesis of Seven-Membered Oxacycloalk-3-enes 507

37.4.1.3.2 Method 2: Palladium Catalyzed Intramolecular Allylic Alkylation Cyclizations to Eight-, Nine-, and Ten-Membered Oxacycloalk-3-enes 508

37.4.1.4 1,3-Dihydroisobenzofurans 510

37.4.1.4.1 Method 1: Intramolecular Cyclization of 1,2-Bis(halomethyl)benzenes or 1,2-Phenylenedimethanol 510

37.4.1.4.2 Method 2: Transition Metal Complex Catalyzed \([2 + 2 + 2]\) Cyclotrimerization of Alkynes 511

37.4.1.4.2.1 Variation 1: Construction of Tricyclic Fused Benzo-3-oxacycles via Intramolecular \([2 + 2 + 2]\) Cyclotrimerization of Triynes 512

37.4.1.4.3 Method 3: Intramolecular Cyclization of Grignard Reagents Derived from 2-(Chloromethyl)-1-iodobenzenes 513

37.4.1.5 3,4-Dihydro-1H-2-benzopyrans 514

37.4.1.5.1 Method 1: Synthesis by Acid-Promoted Ring Closure of 1-Substituted 2-(Hydroxymethyl)phenylethanols 514

37.4.1.5.2 Method 2: Thermal Cyclization of Methiodides of 2-[2-(Aminomethyl)phenylethanol to 3,4-Dihydro-1H-2-benzopyrans 515

37.4.1.5.3 Method 3: Chloromethylation of 2-Phenylethanols Followed by Cyclization 516

37.4.1.5.4 Method 4: Synthesis of 3,4-Dihydro-1H-2-benzopyrans via Lewis Acid Promoted Cyclization of Acetals of 2-Phenylethanols 517

37.4.1.6 7-Oxabicyclo[2.2.1]hept-2-enes 518

37.4.1.6.1 Method 1: Diels–Alder Cycloaddition of Furan with Highly Reactive Alkene Dienophiles 518

37.4.1.6.1.1 Variation 1: Furan–Maleic Anhydride and Furan–Maleimide Cycloadditions 518

37.4.1.6.1.2 Variation 2: Furan–Phenyl Ethanesulfonate Cycloadditions 520

37.4.1.6.2 Method 2: High-Pressure Diels–Alder Cyclizations of Furans and Activated Alkenes 521

37.4.1.6.3 Method 3: Lewis Acid Mediated Diels–Alder Cyclizations of Furans and Monoactivated Alkenes 523

37.4.2 Synthesis by Ring-Closing Metathesis

S. W. Roberts and J. D. Rainier

37.4.2 Synthesis by Ring-Closing Metathesis 531

37.4.2.1 Enantioselective Desymmetrization 531

37.4.2.1.1 Method 1: Formation of Five-Membered Rings Using Molybdenum Catalysts 534
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.4.1.1.1</td>
<td>Variation 1: Under Solvent-Free Conditions</td>
<td>535</td>
</tr>
<tr>
<td>37.4.1.2</td>
<td>Method 2: Formation of Six-Membered Rings Using Molybdenum Catalysts</td>
<td>535</td>
</tr>
<tr>
<td>37.4.1.3</td>
<td>Method 3: Formation of Five- and Six-Membered Oxacycloalk-3-enes Using Ruthenium Catalysts</td>
<td>536</td>
</tr>
<tr>
<td>37.4.2</td>
<td>Tandem Catalytic Ring-Closing Metathesis</td>
<td>539</td>
</tr>
<tr>
<td>37.4.2.1.1</td>
<td>Method 1: Asymmetric Ring-Opening Metathesis/Ring-Closing Metathesis</td>
<td>539</td>
</tr>
<tr>
<td>37.4.2.1.2</td>
<td>Method 2: Use of Nonchiral Ruthenium and Molybdenum Catalysts</td>
<td>544</td>
</tr>
<tr>
<td>37.4.2.2</td>
<td>Method 3: Formation of Five- and Six-Membered Oxacycloalk-3-enes Using Ruthenium Catalysts</td>
<td>540</td>
</tr>
<tr>
<td>37.4.2.3</td>
<td>Method 2: Use of Nonchiral Ruthenium and Molybdenum Catalysts</td>
<td>544</td>
</tr>
<tr>
<td>37.4.2.4</td>
<td>Alkylation/Acetal/Aldol Ring-Closing Metathesis Strategy</td>
<td>548</td>
</tr>
<tr>
<td>37.4.2.5</td>
<td>Method 1: Ring-Closing Metathesis of Allylic Ethers</td>
<td>548</td>
</tr>
<tr>
<td>37.4.2.6</td>
<td>Method 2: Ring-Closing Metathesis of Allylic Acetals</td>
<td>549</td>
</tr>
<tr>
<td>37.4.2.7</td>
<td>Method 3: Asymmetric Enolate Alkylation/Ring-Closing Metathesis</td>
<td>550</td>
</tr>
<tr>
<td>37.4.2.8</td>
<td>Method 4: Synthesis of Cyclic Tertiary Ethers and Spirocycles</td>
<td>540</td>
</tr>
<tr>
<td>37.4.2.9</td>
<td>Method 5: Synthesis of Cyclic Tertiary Ethers and Spirocycles</td>
<td>540</td>
</tr>
<tr>
<td>37.4.2.10</td>
<td>Method 6: Synthesis of Cyclic Tertiary Ethers and Spirocycles</td>
<td>540</td>
</tr>
<tr>
<td>37.4.3.1</td>
<td>Synthesis from Other Cyclic Ethers</td>
<td>555</td>
</tr>
<tr>
<td>37.4.3.1.1</td>
<td>Synthesis by Ferrier Reaction of Oxacycloalk-2-enes</td>
<td>555</td>
</tr>
<tr>
<td>37.4.3.1.2</td>
<td>Method 1: Synthesis Using Arylzinc Reagents</td>
<td>555</td>
</tr>
<tr>
<td>37.4.3.1.3</td>
<td>Method 2: Synthesis Using Alkylzinc Reagents</td>
<td>556</td>
</tr>
<tr>
<td>37.4.3.1.4</td>
<td>Method 3: Synthesis Using Alkylthium Reagents</td>
<td>557</td>
</tr>
<tr>
<td>37.4.3.1.5</td>
<td>Method 4: Synthesis Using Arylboron Reagents</td>
<td>558</td>
</tr>
<tr>
<td>37.4.3.1.6</td>
<td>Method 5: Lewis Acid Catalyzed Coupling of Allylsilanes and Allylstannanes</td>
<td>559</td>
</tr>
<tr>
<td>37.4.3.1.7</td>
<td>Method 6: Lewis Acid Catalyzed Coupling of Propargylsilanes</td>
<td>561</td>
</tr>
<tr>
<td>37.4.3.1.8</td>
<td>Method 7: Lewis Acid Catalyzed Coupling of But-2-yne-1,4-diylsilanes</td>
<td>562</td>
</tr>
<tr>
<td>37.4.3.1.9</td>
<td>Method 8: Lewis Acid Catalyzed Coupling of Trimethylsilyl Cyanide and Allylic Acetates</td>
<td>563</td>
</tr>
<tr>
<td>37.4.3.2</td>
<td>Synthesis of Oxacycloalk-3-enes by Sigmatropic Rearrangement</td>
<td>564</td>
</tr>
<tr>
<td>37.4.3.2.1</td>
<td>Method 1: Tandem Tebbe–Claisen Rearrangement</td>
<td>564</td>
</tr>
<tr>
<td>37.4.3.2.2</td>
<td>Method 2: Claisen Rearrangement of Oxazoles</td>
<td>566</td>
</tr>
<tr>
<td>37.4.3.2.3</td>
<td>Method 3: Claisen Rearrangement of 2,2-Dichlorovinyl Ethers</td>
<td>567</td>
</tr>
<tr>
<td>37.4.3.2.4</td>
<td>Method 4: Claisen Rearrangement of Vinyl Ethers</td>
<td>568</td>
</tr>
<tr>
<td>37.4.3.2.5</td>
<td>Method 5: Ireland–Claisen Rearrangement</td>
<td>569</td>
</tr>
<tr>
<td>37.4.3.3</td>
<td>Synthesis of Oxacycloalk-3-enes by Diels–Alder Reactions</td>
<td>570</td>
</tr>
</tbody>
</table>
37.4.3.1 Method 1: Electrocyclization/Diels–Alder Cycloaddition 570
37.4.3.4 Synthesis of Oxacycloalk-3-enes by Palladium-Mediated Reactions 574
37.4.3.4.1 Method 1: Heck-Type Coupling Reactions .. 574
37.4.3.4.1.1 Variation 1: Arenediazonium Coupling Reactions 574
37.4.3.4.1.2 Variation 2: Aryl Iodide Coupling Reactions 575
37.4.3.5 Synthesis of Oxacycloalk-3-enes by Elimination/Deoxygenation Reactions .. 576
37.4.3.5.1 Method 1: Hydrogen Chloride Elimination ... 576
37.4.3.5.2 Method 2: Selenoxide Elimination ... 577
37.4.3.5.3 Method 3: Diol Deoxygenation Using Sodium Naphthalenide 577
37.4.3.5.4 Method 4: Deoxygenation Using Zinc and Sodium Iodide 578
37.4.3.5.5 Method 5: Xanthate Deoxygenation .. 578
37.4.3.5.6 Method 6: Ortho Ester Pyrolysis ... 579
37.4.3.5.7 Method 7: Ketone Deoxygenations .. 579

37.5 Product Class 5: Five-Membered and Larger-Ring Oxacycloalkanes
M. Inoue and S. Yamashita

37.5 Product Class 5: Five-Membered and Larger-Ring Oxacycloalkanes
... 583
37.5.1 Synthesis of Product Class 5 ... 584
37.5.1.1 Synthesis by Ring-Closure Reactions .. 584
37.5.1.1.1 Method 1: Formation of the C–O Bond ... 584
37.5.1.1.1.1 Variation 1: Substitution Reactions .. 584
37.5.1.1.1.2 Variation 2: Addition to Alkenes ... 589
37.5.1.1.2 Method 2: Formation of the C–C Bond at C2 596
37.5.1.1.2.1 Variation 1: Nucleophilic Addition of C2 .. 596
37.5.1.1.2.2 Variation 2: Electrophilic Addition of C2 .. 598
37.5.1.1.2.3 Variation 3: Radical Addition of C2 ... 600
37.5.1.1.2.4 Variation 4: Radical Addition to C2 ... 601
37.5.1.1.3 Method 3: Formation of the C–C Bond at Other Carbons 602
37.5.1.2 Synthesis from Cyclic Acetals and Derivatives 605
37.5.1.2.1 Method 1: Synthesis from Cyclic Acetals ... 605
37.5.1.2.1.1 Variation 1: Hydroxy Ketone or Hemiacetal Cyclization 605
37.5.1.2.1.2 Variation 2: Reduction of Acetals ... 608
37.5.1.2.1.3 Variation 3: Alkylation of Acetals ... 613
37.5.1.2.2 Method 2: Synthesis from Enol Ethers ... 617
37.5.1.2.2.1 Variation 1: Suzuki Coupling .. 617
37.5.1.2.2.2 Variations 2: Other Transformations from Enol Ethers 620
37.5.1.3 Synthesis from Other Cyclic Ethers ... 621
37.5.1.3.1 Method 1: Ring-Opening/Closing Metathesis 621
37.5.1.3.2 Method 2: Ring Expansion ... 622
37.5.1.3.3 Method 3: Functional-Group Transformation .. 624
Product Class 6: Oxonium Salts

C. J. Forsyth and T. J. Murray

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.6.1</td>
<td>Method 1: Synthesis by Nucleophilic Attack on a Mixed Trialkyloxonium Ion</td>
<td>631</td>
</tr>
<tr>
<td>37.6.1.1</td>
<td>Variation 1: Via 2-(Chloromethyl)oxirane</td>
<td>631</td>
</tr>
<tr>
<td>37.6.1.2</td>
<td>Variation 2: Via Triethylxonium Tetrafluoroborate</td>
<td>632</td>
</tr>
<tr>
<td>37.6.1.3</td>
<td>Method 2: Synthesis by Nucleophilic Attack on Dimethoxyxycarbenium Tetrafluoroborate</td>
<td>633</td>
</tr>
<tr>
<td>37.6.2</td>
<td>Method 3: Synthesis by Nucleophilic Attack on Acyldialkyl Cations</td>
<td>633</td>
</tr>
<tr>
<td>37.6.3</td>
<td>Method 4: Synthesis by Nucleophilic Attack on Iodomethane</td>
<td>633</td>
</tr>
<tr>
<td>37.6.4</td>
<td>Method 5: Synthesis by Nucleophilic Attack on Diazomethane</td>
<td>633</td>
</tr>
<tr>
<td>37.6.5</td>
<td>Method 6: Synthesis by Salt Exchange</td>
<td>634</td>
</tr>
</tbody>
</table>

Applications of Product Class 6 in Organic Synthesis

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.6.2.1</td>
<td>Method 1: Carbon Alkylation</td>
<td>634</td>
</tr>
<tr>
<td>37.6.2.2</td>
<td>Method 2: Nitrogen Alkylation</td>
<td>634</td>
</tr>
<tr>
<td>37.6.2.2.1</td>
<td>Variation 1: Amine Alkylation</td>
<td>634</td>
</tr>
<tr>
<td>37.6.2.2.2</td>
<td>Variation 2: Amide Alkylation</td>
<td>635</td>
</tr>
<tr>
<td>37.6.2.2.3</td>
<td>Variation 3: Imine Alkylation</td>
<td>635</td>
</tr>
<tr>
<td>37.6.2.2.4</td>
<td>Variation 4: Nitrilium Ion Formation</td>
<td>636</td>
</tr>
<tr>
<td>37.6.2.2.5</td>
<td>Variation 5: Heterocyclic Aromatic N-Alkylation</td>
<td>636</td>
</tr>
<tr>
<td>37.6.2.3</td>
<td>Method 3: Oxygen Alkylation</td>
<td>636</td>
</tr>
<tr>
<td>37.6.2.3.1</td>
<td>Variation 1: Alcohol Alkylation</td>
<td>636</td>
</tr>
<tr>
<td>37.6.2.3.2</td>
<td>Variation 2: Ketone O-Alkylation</td>
<td>636</td>
</tr>
<tr>
<td>37.6.2.3.3</td>
<td>Variation 3: Carboxylic Acid Esterification</td>
<td>636</td>
</tr>
<tr>
<td>37.6.2.3.4</td>
<td>Variation 4: Lactone Functionalization</td>
<td>637</td>
</tr>
<tr>
<td>37.6.2.3.5</td>
<td>Variation 5: Amide Derivatization</td>
<td>637</td>
</tr>
<tr>
<td>37.6.2.3.6</td>
<td>Variation 6: O-Alkylation of Metal Complexes</td>
<td>638</td>
</tr>
<tr>
<td>37.6.2.4</td>
<td>Method 4: Sulfur Alkylation</td>
<td>638</td>
</tr>
<tr>
<td>37.6.2.4.1</td>
<td>Variation 1: Sulfide Reactions</td>
<td>639</td>
</tr>
<tr>
<td>37.6.2.4.2</td>
<td>Variation 2: Thioacetate Cleavage</td>
<td>639</td>
</tr>
<tr>
<td>37.6.2.4.3</td>
<td>Variation 3: Thiocarbonyl S-Alkylation</td>
<td>639</td>
</tr>
<tr>
<td>37.6.2.5</td>
<td>Method 5: Selenium Alkylation</td>
<td>639</td>
</tr>
</tbody>
</table>

Product Class 7: Oligo- and Monosaccharide Ethers

I. Robina and P. Vogel

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.7.1</td>
<td>Product Subclass 1: Anhydroalditols</td>
<td>646</td>
</tr>
<tr>
<td>37.7.1.1</td>
<td>1,2-Anhydroalditols</td>
<td>646</td>
</tr>
<tr>
<td>37.7.1.1.1</td>
<td>1,2-Anhydrotetritols</td>
<td>646</td>
</tr>
<tr>
<td>37.7.1.1.1.1</td>
<td>Method 1: Epoxidation of Aldoses ... 646</td>
<td></td>
</tr>
<tr>
<td>37.7.1.1.1.2</td>
<td>Method 2: 1,3-Elimination of Sulfonic Esters .. 646</td>
<td></td>
</tr>
<tr>
<td>37.7.1.1.1.3</td>
<td>Method 3: Epoxidation of Alkenediols .. 649</td>
<td></td>
</tr>
<tr>
<td>37.7.1.1.1.2</td>
<td>Method 1: Epoxidation of Allylic Alcohols .. 650</td>
<td></td>
</tr>
<tr>
<td>37.7.1.1.2.1</td>
<td>Method 2: Corey’s Epoxidation of Aldoses ... 651</td>
<td></td>
</tr>
<tr>
<td>37.7.1.1.2.1</td>
<td>Method 1: 1,3-Elimination of Sulfonic Esters .. 650</td>
<td></td>
</tr>
<tr>
<td>37.7.1.1.3.1</td>
<td>Method 1: 1,3-Elimination of Sulfonic Esters .. 650</td>
<td></td>
</tr>
<tr>
<td>37.7.1.1.3.2</td>
<td>Method 2: 1,5-Elimination of Sulfonic Esters .. 654</td>
<td></td>
</tr>
<tr>
<td>37.7.1.1.3.3</td>
<td>Method 3: Deamination of 1-Amino-1-deoxyhexitols .. 664</td>
<td></td>
</tr>
<tr>
<td>37.7.1.1.3.4</td>
<td>Method 4: Anomeric Reduction of Hexofuranose Derivatives 666</td>
<td></td>
</tr>
<tr>
<td>37.7.1.1.4.1</td>
<td>Method 1: Anomeric Cationic Reduction of Pentopyranosides 665</td>
<td></td>
</tr>
<tr>
<td>37.7.1.1.4.2</td>
<td>Method 2: Reduction of Pentopyranosyl Halides, Isothiocyanates, and Thiopyranosides 666</td>
<td></td>
</tr>
<tr>
<td>37.7.1.1.4.2.1</td>
<td>Method 1: 1,6-Elimination of Sulfonyl Esters .. 667</td>
<td></td>
</tr>
<tr>
<td>37.7.1.1.4.2.2</td>
<td>Method 2: Anomeric Cationic Reduction ... 667</td>
<td></td>
</tr>
<tr>
<td>37.7.1.1.4.2.3</td>
<td>Method 3: Hydride Reduction of Hexopyranosyl Halides 668</td>
<td></td>
</tr>
<tr>
<td>37.7.1.1.4.2.4</td>
<td>Method 4: Radical Reduction of Hexopyranosyl Halides 669</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Method</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>37.7.1.4.2.5</td>
<td>Method 5:</td>
<td>Reduction of Hexopyranosyl Cyanides and Subsequent Deamination</td>
</tr>
<tr>
<td>37.7.1.4.2.6</td>
<td>Method 6:</td>
<td>Reduction of Anhydrohexoses</td>
</tr>
<tr>
<td>37.7.1.4.2.7</td>
<td>Method 7:</td>
<td>Dehydration of Hexonolactones and Subsequent Reduction</td>
</tr>
<tr>
<td>37.7.1.4.2.8</td>
<td>Method 8:</td>
<td>Hydride Addition to 1,2-Anhydropyranoses (Brigl’s Anhydrides)</td>
</tr>
<tr>
<td>37.7.1.4.2.9</td>
<td>Method 9:</td>
<td>Additions to Glycals</td>
</tr>
<tr>
<td>37.7.1.4.2.10</td>
<td>Methods 10:</td>
<td>Miscellaneous Methods</td>
</tr>
<tr>
<td>37.7.1.5.1</td>
<td>Method 1:</td>
<td>Alkaline Hydrolysis of Dianhydrohexitols</td>
</tr>
<tr>
<td>37.7.1.5.2</td>
<td>Method 2:</td>
<td>Cyclopropanation of Glycals and Subsequent Ring Opening</td>
</tr>
<tr>
<td>37.7.1.5.3</td>
<td>Method 3:</td>
<td>Ring-Closing Metathesis of Dienes</td>
</tr>
<tr>
<td>37.7.1.6.1</td>
<td>Method 1:</td>
<td>2,3-Anhydroalditols</td>
</tr>
<tr>
<td>37.7.1.6.2</td>
<td>Method 2:</td>
<td>2,3-Anhydropentitols</td>
</tr>
<tr>
<td>37.7.1.6.3</td>
<td>Method 3:</td>
<td>Katsuki-Sharpless Asymmetric Epoxidation</td>
</tr>
<tr>
<td>37.7.1.6.4</td>
<td>Method 4:</td>
<td>Acid-Catalyzed Dehydration</td>
</tr>
<tr>
<td>37.7.1.6.5</td>
<td>Method 5:</td>
<td>Conversion of Pentoses into 2,5-Anhydropentoses</td>
</tr>
<tr>
<td>37.7.1.6.6</td>
<td>Method 6:</td>
<td>Rearrangement of Glycals</td>
</tr>
<tr>
<td>37.7.1.6.7</td>
<td>Method 7:</td>
<td>2,5-Anhydrohexitols</td>
</tr>
<tr>
<td>37.7.1.7.1</td>
<td>Method 1:</td>
<td>2,5-Anhydroalditols</td>
</tr>
<tr>
<td>37.7.1.7.2</td>
<td>Method 2:</td>
<td>2,5-Anhydropentitols</td>
</tr>
<tr>
<td>37.7.1.7.3</td>
<td>Method 3:</td>
<td>Acid-Catalyzed Dehydration</td>
</tr>
<tr>
<td>37.7.1.7.4</td>
<td>Method 4:</td>
<td>1,3-Elimination of Sulfonic Esters</td>
</tr>
<tr>
<td>37.7.1.7.5</td>
<td>Method 5:</td>
<td>2,5-Anhydrohexitols</td>
</tr>
<tr>
<td>37.7.1.7.6</td>
<td>Method 6:</td>
<td>Rearrangement of Glycals</td>
</tr>
<tr>
<td>37.7.1.7.7</td>
<td>Method 7:</td>
<td>Miscellaneous Methods</td>
</tr>
<tr>
<td>37.7.1.8.1</td>
<td>Method 1:</td>
<td>3,4-Anhydrohexitols</td>
</tr>
<tr>
<td>37.7.1.8.2</td>
<td>Method 2:</td>
<td>Synthesis from Dianhydrohexitols</td>
</tr>
<tr>
<td>37.7.2</td>
<td>Product Subclass 2: Dianhydroalditols</td>
<td></td>
</tr>
<tr>
<td>37.7.2.1</td>
<td>Method 1:</td>
<td>Synthesis of Product Subclass 2</td>
</tr>
<tr>
<td>37.7.2.1.1</td>
<td>Method 2:</td>
<td>1,2:3,4-Dianhydrotetritolts</td>
</tr>
<tr>
<td>37.7.2.1.3</td>
<td>Method 1:</td>
<td>Double 1,3-Elimination of Disulfonic Esters</td>
</tr>
</tbody>
</table>
37.7.2.1.2 Method 2: Sharpless Asymmetric Dihydroxylation 691
37.7.2.1.2 1,2,4,5-Dianhydropentitols ... 691
37.7.2.1.2.1 Method 1: Double 1,3-Elimination from
1,5-Dibromo-1,5-dideoxypentitols .. 691
37.7.2.1.2.2 Method 2: Epoxidation of Enepentitol Derivatives 692
37.7.2.1.3 1,2,5,6-Dianhydrohexitols ... 692
37.7.2.1.3.1 Method 1: Double 1,3-Elimination 692
37.7.2.1.3.2 Method 2: Double Katsuki–Sharpless Epoxidation 693
37.7.2.1.4 1,4,2,3-Dianhydroalditols ... 693
37.7.2.1.4.1 Method 1: Synthesis of 1,4:2,3-Dianhydrotetritols 693
37.7.2.1.4.2 Method 2: 1,4,2,3-Dianhydropentitols ... 693
37.7.2.1.4.3 Method 3: 1,4,2,3-Dianhydrohexitols 695
37.7.2.1.5 1,5,2,3-Dianhydrohexitols ... 695
37.7.3 Product Subclass 3: C-Glycosides .. 695
37.7.3.1 Synthesis of Product Subclass 3 .. 701
37.7.3.1.1 Oxetan-3-ols ... 701
37.7.3.1.1.1 Method 1: [2 + 2] Cycloaddition 701
37.7.3.1.1.2 Method 2: Ring Contraction by 1,3-Elimination of Sulfonic Esters 702
37.7.3.1.2 C-Furanosides .. 703
37.7.3.1.2.1 C-Tetrofuranosides ... 703
37.7.3.1.2.1.1 Method 1: Synthesis of Aldonic Acid Derivatives 703
37.7.3.1.2.1.2 Method 2: Nucleophilic Additions to Aldoses 704
37.7.3.1.2.1.3 Method 3: Derivation of 2,5-Anhydropentoses 706
37.7.3.1.2.1.4 Method 4: Nucleophilic Displacement of 1-Iodo-1-deoxyalditol Derivatives ... 708
37.7.3.1.2.1.5 Method 5: Total Asymmetric Synthesis 709
37.7.3.1.2.2 C-Pentofuranosides and C-Nucleosides 712
37.7.3.1.2.2.1 Method 1: Synthesis via Ribofuranosylacetylenes 712
37.7.3.1.2.2.2 Method 2: Synthesis from Pentose Derivatives 715
37.7.3.1.2.2.3 Method 3: Addition to 1,3,2,5-Dianhydroxietol Derivatives 716
37.7.3.1.2.2.4 Method 4: Pentofuranosyl Cyanides 717
37.7.3.1.2.2.5 Method 5: Addition of Thiazole to γ-Pentonoractones 719
37.7.3.1.2.2.6 Method 6: Alkenation of Aldose Derivatives 720
37.7.3.1.2.2.7 Method 7: Radical C-Glycosiation: Synthesis of Showdomycin 723
37.7.3.1.2.2.8 Method 8: 1,2-Wittig Rearrangement 725
37.7.3.1.2.2.9 Method 9: Cationic C-Glycosiation with Pentofuranosyl Derivatives 726
37.7.3.1.2.2.10 Method 10: Total Asymmetric Syntheses Starting from Furan 729
37.7.3.1.2.2.11 Method 11: The “Naked Sugars” as Chirons 730
37.7.3.1.2.2.12 Method 12: Total Syntheses via [4 + 3] Cycloadditions of Furan 737
37.7.3.1.2.2.13 Aryl C-Pentafuranosides ... 741
37.7.3.1.2.2.3.1 Method 1: Aryllithium Addition to γ-Pentonoractone Derivatives 741
37.7.3.1.2.2.3.2 Method 2: Glycallithium Addition to Benzoquinones 744
Method 3: Electrophilic Glycosidation of Arene and Hetarene Derivatives .. 745
Method 4: Palladium-Catalyzed C–C Couplings .. 746
Method 5: [2 + 2 + 2] Cycloaddition of Acetylene C-Glycosides 748
Homo-C-nucleosides and Analogues .. 749
Method 1: Synthesis from 3,6-Anhydroheptonic Derivatives 749
Method 2: Pentofuranose Alkenation .. 750
Method 3: Alkylation of Silyl Enol Ethers with Epoxides 751
C-Pyranosides .. 752
Method 1: Synthesis from Unprotected or Semiprotected Pyranoses .. 754
Method 2: C-Glycosylation Using Activated Pyranosyl Cation Precursors .. 755
Method 3: C-Glycosylation Using Pyranosyl Halides 758
Method 4: C-Glycosylation Using Methyl Pyranosides 760
Method 5: Fries-Like Rearrangements .. 761
Method 6: Glycal Derivatives as Electrophiles: Ferrier Rearrangement .. 764
Method 7: C-Glycosylation Using 2-Nitroglycal Derivatives 769
Method 8: Nucleophilic Addition to Oxoglucal Derivatives 770
Method 9: C-Glycosylation Using Glycal Epoxides (Brigl’s Anhydrides) .. 771
Method 10: C-Glycosylation Using Glycal-Derived Sulfonium Ions .. 773
Method 11: Organometallic Additions to Aldonolactones 775
Nucleophilic C-Glycosylation .. 780
Method 1: C-Glycosylation Using Pyranosyllithium Reagents 780
Method 2: C-Glycosylation Using Pyranosylsamarium Diodides 785
Method 3: C-Glycosylation Using Anomeric Glycalmetals 790
Method 4: Palladium(0)-Catalyzed C–C Coupling Reactions with Glycal Derivatives .. 792
Method 5: C-Disaccharides through Carboynlatively Stille Cross Coupling .. 793
Method 6: C-Glycosylation Using Sugar-Derived Phosphoranes 796
C-Glycosides via the Ramberg–Bäcklund Reaction .. 797
Radical C-Glycosidation .. 800
Method 1: Intermolecular Radical C-Glycosidation 800
Method 2: Intramolecular Radical C-Glycosidation 807
C-Glycosylation Using Glycosylidene Carbene Intermediates and Analogues .. 809
Sigmatropic Rearrangements of Sugar Derivatives 811
Method 1: Eschenmoser–Claisen Rearrangement 811
Method 2: Ireland–Claisen Rearrangement 813
Method 3: The Tandem Tebbe/Claisen Approach 815
37.7.3.1 Method 4: Butyllithium-Induced Rearrangement of Allyl 2,2-Dichlorovinyl Ethers .. 817

37.7.3.1.3 Method 4.1: Alkene Metathesis Routes .. 818

37.7.3.1.3.8 Method 4.1.2: De Novo Synthesis of C-Pyranosides 820

37.7.3.1.3.8.1 Method 4.1.2.1: Hetero-Diels–Alder Cycloadditions 820

37.7.3.1.3.8.2 Method 4.1.2.2: [4 + 3] Cycloadditions of Furans 822

37.7.3.1.3.8.3 Method 4.1.2.3: Ring-Closing Alkene Metathesis 826

37.7.3.1.4 Method 4.1.2.4: C-Disaccharides ... 827

37.7.3.2 Method 4: Synthesis of Methyl Ethers ... 849

37.7.3.2.1 Method 4.1: Synthesis Using Sodium Hydroxide, Dimethyl Sulfate, and Tetrabutylammonium Iodide 850

37.7.3.2.2 Method 4.2: Synthesis Using Silver(I) Oxide and Iodomethane 851

37.7.3.2.3 Method 4.3: Synthesis Using a Metal Hydride and a Methylating Agent .. 852

37.7.3.2.4 Method 4.4: Synthesis Using a Thallium Alkoxide and Iodomethane .. 853

37.7.3.2.5 Method 4.5: Synthesis Using Diazomethane 854

37.7.3.2.6 Deprotection of Methyl Ethers ... 855

37.7.3.2.6.1 Method 4.1: Reaction with Saturated Sodium Iodide, Boron Tribromide, and 15-Crown-5 855

37.7.3.2.6.2 Method 4.2: Reaction with Aluminum Trichloride and Tetrabutylammonium Iodide 857

37.7.3.3 Method 4: Synthesis of Benzyl Ethers ... 858

37.7.3.3.1 Method 4.1: Synthesis Using Powdered Potassium Hydroxide in Neat Benzyl Chloride at High Temperature 858

37.7.3.3.1.1 Method 4.1.1: Room-Temperature Benzylolation .. 859

37.7.3.3.1.2 Variation 1: Using Benzyl Halides and Aqueous Potassium Hydroxide Under Phase-Transfer Conditions 859

37.7.3.3.1.2.1 Variation 2: Using Sodium Hydride and Benzyl Halides with Catalytic Amounts of a Tetraalkylammonium Iodide 860

37.7.3.3.1.2.2 Variation 3: Using Benzyl Halides and Silver(I) Oxide 860

37.7.3.3.1.2.3 Method 4.1.2: Synthesis Using Tin Compounds 861

37.7.3.3.1.2.4 Variation 1: Using Bis(tributyltin) Oxide 862

37.7.3.3.1.2.5 Variation 2: Using Dibutyltin Oxide 863

37.7.3.3.1.2.6 Method 4.1.3: Selective Reaction of Primary Alcohols Using a Bis(acetylacetonato)copper(II) Catalyst 864

37.7.3.3.1.2.7 Deprotection of Benzyl Ethers .. 865
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.8.2.1</td>
<td>Hydrogenolysis with Palladium</td>
<td>865</td>
</tr>
<tr>
<td>37.8.2.2</td>
<td>Selective Hydrogenolysis with Raney Nickel</td>
<td>867</td>
</tr>
<tr>
<td>37.8.2.3</td>
<td>Dissolved-Metal Reduction</td>
<td>868</td>
</tr>
<tr>
<td>37.8.2.4</td>
<td>Other Methods</td>
<td>869</td>
</tr>
</tbody>
</table>

Product Subclass 3: 4-Methoxybenzyl Ethers

<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.8.3.1</td>
<td>Synthesis Using 4-Methoxybenzyl Chloride and Sodium Hydride</td>
<td>869</td>
</tr>
<tr>
<td>37.8.3.1.2</td>
<td>Synthesis Using 4-Methoxybenzyl Trichloroacetimidate</td>
<td>870</td>
</tr>
<tr>
<td>37.8.3.1.3</td>
<td>Synthesis Using Dibutyltin Oxide</td>
<td>870</td>
</tr>
</tbody>
</table>

Product Subclass 4: Allyl Ethers

<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.8.4.1</td>
<td>Synthesis Using Allyl Bromide and Sodium Hydride</td>
<td>872</td>
</tr>
<tr>
<td>37.8.4.1.2</td>
<td>Synthesis Using Allyl Bromide and Potassium Carbonate</td>
<td>873</td>
</tr>
<tr>
<td>37.8.4.1.3</td>
<td>Synthesis Using Allyl Bromide, Dibutyltin Oxide, and Tetrabutylammonium Iodide</td>
<td>874</td>
</tr>
</tbody>
</table>

Product Subclass 5: Diarylmethyl Ethers

<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.8.5.1</td>
<td>Acid-Catalyzed Reaction with Phosphates</td>
<td>877</td>
</tr>
<tr>
<td>37.8.5.1.2</td>
<td>Acid-Catalyzed Dehydration</td>
<td>878</td>
</tr>
<tr>
<td>37.8.5.1.3</td>
<td>Reaction with Diazo(diphenyl)methane under Reflux</td>
<td>879</td>
</tr>
<tr>
<td>37.8.5.1.4</td>
<td>Reaction with Diazo(diphenyl)methane and Tin(II) Chloride (the Petursson Monodiarylmethylation of Vicinal Diols)</td>
<td>880</td>
</tr>
</tbody>
</table>

Product Subclass 6: Triarylmethyl Ethers

<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.8.6.1</td>
<td>Reaction with Trityl Chloride and 4-(Dimethylamino)pyridine</td>
<td>884</td>
</tr>
<tr>
<td>37.8.6.1.2</td>
<td>Reaction with Trityl Chloride and 1,8-Diazabicyclo[5.4.0]undec-7-ene</td>
<td>885</td>
</tr>
</tbody>
</table>
37.8.6.3 Method 3: Reaction of Trityl Chloride with 2,4,6-Collidine and Tetrabutylammonium Perchlorate .. 885

37.8.6.2 Deprotection of Triaryl methyl Ethers .. 886

37.8.6.2.1 Method 1: Reaction with Formic Acid in Diethyl Ether 887

37.8.6.2.2 Method 2: Methanolation Promoted by Resin-Supported 4-Toluenesulfonic Acid ... 888

37.8.6.2.3 Method 3: Reaction with Carbon Tetrabromide under Reflux 889

Keyword Index .. 893

Author Index .. 943

Abbreviations ... 987
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume 38: Peroxides</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Table of Contents</td>
<td></td>
<td></td>
<td>IX</td>
</tr>
<tr>
<td>Introduction</td>
<td>A. Berkessel</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>38.1</td>
<td>Product Class 1: Alkyl and Cycloalkyl Hydroperoxides</td>
<td>A. Scarso and G. Strukul</td>
<td>9</td>
</tr>
<tr>
<td>38.2</td>
<td>Product Class 2: Allylic Hydroperoxides</td>
<td>U. Bergsträßer and J. Hartung</td>
<td>73</td>
</tr>
<tr>
<td>38.3</td>
<td>Product Class 3: Benzyllic Hydroperoxides</td>
<td>J. Hartung and H. Heydt</td>
<td>109</td>
</tr>
<tr>
<td>38.4</td>
<td>Product Class 4: Salts of Alkyl Hydroperoxides</td>
<td>A. Scarso and G. Strukul</td>
<td>143</td>
</tr>
<tr>
<td>38.5</td>
<td>Product Class 5: Alkyl and Cycloalkyl Peroxides</td>
<td>G. Vassilikogiannakis and T. Montagnon</td>
<td>179</td>
</tr>
<tr>
<td>38.6</td>
<td>Product Class 6: Allylic Peroxides</td>
<td>I. N. Lykakis and M. Stratakis</td>
<td>205</td>
</tr>
<tr>
<td>38.7</td>
<td>Product Class 7: Benzyllic Peroxides</td>
<td>M. R. Iesce and M. DellaGreca</td>
<td>231</td>
</tr>
<tr>
<td>38.8</td>
<td>Product Class 8: Monocyclic Peroxides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.8.1</td>
<td>Product Subclass 1: Three-Membered Cyclic Peroxides (Dioxiranes)</td>
<td>B. Wang and Y. Shi</td>
<td>275</td>
</tr>
<tr>
<td>38.8.2</td>
<td>Product Subclass 2: Four-Membered Cyclic Peroxides (1,2-Dioxetanes and 1,2-Dioxetanones)</td>
<td>W. J. Baader and E. L. Bastos</td>
<td>323</td>
</tr>
<tr>
<td>38.8.3</td>
<td>Product Subclass 3: Five-Membered Cyclic Peroxides with No Further Heteroatoms in the Ring (1,2-Dioxolanes and 1,2-Dioxolan-3-ones)</td>
<td>W. J. Baader and E. L. Bastos</td>
<td>345</td>
</tr>
<tr>
<td>38.8.4</td>
<td>Product Subclass 4: Five-Membered Cyclic Peroxides with One Further Oxygen Atom in the Ring (1,2,4-Trioxolanes)</td>
<td>W. J. Baader and E. L. Bastos</td>
<td>379</td>
</tr>
</tbody>
</table>
Overview

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.8.5</td>
<td>Product Subclass 5: Six-Membered Cyclic Peroxides with No Further Heteroatoms in the Ring (1,2-Dioxanes and 3,6-Dihydro-1,2-dioxins)</td>
<td>W. J. Baader and E. L. Bastos</td>
<td>397</td>
</tr>
<tr>
<td>38.8.6</td>
<td>Product Subclass 6: Six-Membered Cyclic Peroxides with One Further Oxygen Atom in the Ring (1,2,4-Trioxanes)</td>
<td>W. J. Baader and E. L. Bastos</td>
<td>421</td>
</tr>
<tr>
<td>38.8.7</td>
<td>Product Subclass 7: Six-Membered Cyclic Peroxides with Two Further Oxygen Atoms in the Ring (1,2,4,5-Tetroxanes)</td>
<td>W. J. Baader and E. L. Bastos</td>
<td>449</td>
</tr>
<tr>
<td>38.9</td>
<td>Product Class 9: Larger-Ring Cyclic Peroxides and Endoperoxides</td>
<td>M. N. Alberti, M. D. Tzirakis, and M. Orfanopoulos</td>
<td>469</td>
</tr>
</tbody>
</table>

Indexes

<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyword Index</td>
<td>525</td>
</tr>
<tr>
<td>Author Index</td>
<td>555</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>577</td>
</tr>
</tbody>
</table>
Table of Contents

Introduction
A. Berkessel

Introduction ... 1

38.1 Product Class 1: Alkyl and Cycloalkyl Hydroperoxides
A. Scarso and G. Strukul

38.1 Product Class 1: Alkyl and Cycloalkyl Hydroperoxides 9
38.1.1 Product Subclass 1: α-Unsubstituted Alkyl Hydroperoxides 9
38.1.1.1 Synthesis of Product Subclass 1 10
38.1.1.2 Method 1: Reactions of Alkanes with Molecular Oxygen 10
38.1.1.3 Method 2: Hydrolysis of Alkyl Metal and
Alkyl Metalloid Peroxides .. 11
38.1.1.4 Method 3: Reaction of Oxetanes with Hydrogen Peroxide 12
38.1.1.5 Method 4: Reaction of Epoxides with Hydrogen Peroxide 14
38.1.1.6 Method 5: Reaction of Alkyl Halides 16
38.1.1.7 Method 6: Reaction of Alcohols with Hydrogen Peroxide 19
38.1.1.8 Method 7: Reaction of Dialkyl Sulfates with
Hydrogen Peroxide .. 20
38.1.1.9 Method 8: Reaction of Alkyl Methanesulfonates with
Hydrogen Peroxide .. 21
38.1.1.10 Method 9: Reaction of Cyclic Homoallylic 4-Bromobenzenesulfonates
with Hydrogen Peroxide .. 23
38.1.1.11 Method 10: Reaction of 1-Substituted 1-Sulfonylhydrazines with
Molecular Oxygen under Basic Conditions 23
38.1.1.12 Method 11: Reaction of 1-Alkyl-2-tosylhydrazines with
Hydrogen Peroxide and Sodium Peroxide 24
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>38.1.1.11</td>
<td>11</td>
<td>Method 1</td>
<td>Synthesis from Alkenes</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
</tr>
<tr>
<td>38.1.1.11.1</td>
<td>1</td>
<td>Variation 1</td>
<td>With Triethylsilane and Oxygen with a Cobalt(II) Catalyst</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
</tr>
<tr>
<td>38.1.1.11.2</td>
<td>2</td>
<td>Variation 2</td>
<td>Photooxygenation with Methylene Blue Sensitizer</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
</tr>
<tr>
<td>38.1.1.11.3</td>
<td>3</td>
<td>Variation 3</td>
<td>Photooxygenation with 4-Chlorobenzenethiol</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
</tr>
<tr>
<td>38.1.1.11.4</td>
<td>4</td>
<td>Variation 4</td>
<td>With N-Bromosuccinimide and Hydrogen Peroxide</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
</tr>
<tr>
<td>38.1.1.11.5</td>
<td>5</td>
<td>Variation 5</td>
<td>With 1,3-Dibromo-5,5-dimethylhydantoin and Hydrogen Peroxide</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
</tr>
<tr>
<td>38.1.1.12</td>
<td>12</td>
<td>Method 12</td>
<td>Synthesis from Conjugated Dienes</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
</tr>
<tr>
<td>38.1.1.13</td>
<td>13</td>
<td>Method 13</td>
<td>Synthesis from Peroxy Esters</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
</tr>
<tr>
<td>38.1.1.2</td>
<td>1</td>
<td>Applications of Product Subclass 1 in Organic Synthesis</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
</tr>
<tr>
<td>38.1.2</td>
<td>1</td>
<td>Product Subclass 2: α-Halogen-Substituted Alkyl Hydroperoxides</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
</tr>
<tr>
<td>38.1.2.1</td>
<td>1</td>
<td>Synthesis of Product Subclass 2</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
</tr>
<tr>
<td>38.1.2.1.1</td>
<td>1</td>
<td>α-Fluoroalkyl Hydroperoxides</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
</tr>
<tr>
<td>38.1.2.1.1.1</td>
<td>1</td>
<td>Method 1</td>
<td>Decomposition of Hexafluoroacetone Perhydrate</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
</tr>
<tr>
<td>38.1.2.1.1.2</td>
<td>1</td>
<td>Method 2</td>
<td>Reaction of Perfluoroxy Ether Derivatives with Water</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
</tr>
<tr>
<td>38.1.2.1.2</td>
<td>1</td>
<td>α-Chloroalkyl Hydroperoxides</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
</tr>
<tr>
<td>38.1.2.1.2.1</td>
<td>1</td>
<td>Method 1</td>
<td>Reaction of Chloroalkenes with Ozone</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
<td>α-Halogen-Substituted</td>
</tr>
<tr>
<td>38.1.3</td>
<td>1</td>
<td>Product Subclass 3: α-Oxygen-Substituted Alkyl Hydroperoxides</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
</tr>
<tr>
<td>38.1.3.1</td>
<td>1</td>
<td>Synthesis of Product Subclass 3</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
</tr>
<tr>
<td>38.1.3.1.1</td>
<td>1</td>
<td>α-Hydroxyalkyl Hydroperoxides</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
</tr>
<tr>
<td>38.1.3.1.1.1</td>
<td>1</td>
<td>Method 1</td>
<td>Reaction of Aldehydes with Hydrogen Peroxide and Iodine</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
</tr>
<tr>
<td>38.1.3.1.1.2</td>
<td>1</td>
<td>Method 2</td>
<td>Reaction of α-Halo Ketones with Hydrogen Peroxide</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
</tr>
<tr>
<td>38.1.3.1.2</td>
<td>2</td>
<td>α-Alkoxyalkyl Hydroperoxides</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
</tr>
<tr>
<td>38.1.3.1.2.1</td>
<td>1</td>
<td>Method 1</td>
<td>Ozonolysis of Alkenes</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
</tr>
<tr>
<td>38.1.3.1.2.2</td>
<td>1</td>
<td>Method 2</td>
<td>Reaction of Vinyl Ether with Ozone and Alcohols</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
</tr>
<tr>
<td>38.1.3.1.2.2.1</td>
<td>1</td>
<td>Variation 1</td>
<td>With Hydrogen Peroxide</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
</tr>
<tr>
<td>38.1.3.1.2.2.2</td>
<td>1</td>
<td>Variation 2</td>
<td>With Hydrogen Peroxide and Silica Gel</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
</tr>
<tr>
<td>38.1.3.1.2.2.3</td>
<td>1</td>
<td>Variation 3</td>
<td>With Hydrogen Peroxide and Molybdenum(VI) Oxide</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
</tr>
<tr>
<td>38.1.3.1.2.3</td>
<td>1</td>
<td>Method 3</td>
<td>Reaction of Dialkyl Ethers with Molecular Oxygen</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
</tr>
<tr>
<td>38.1.3.1.2.4</td>
<td>1</td>
<td>Method 4</td>
<td>α-Reaction of Cyclopropyl Alcohols with Hydrogen Peroxide</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
</tr>
<tr>
<td>38.1.3.1.2.5</td>
<td>1</td>
<td>Method 5</td>
<td>Reaction of Ketones and Alcohols with Hydrogen Peroxide</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
</tr>
<tr>
<td>38.1.3.1.2.6</td>
<td>1</td>
<td>Method 6</td>
<td>Reaction of Hydroxy Ketones and Diketones with Hydrogen Peroxide</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
<td>α-Oxygen-Substituted</td>
</tr>
<tr>
<td>Method</td>
<td>Reaction</td>
<td>Page</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.3.1.2.7</td>
<td>Method 7: Reaction of Ketones with Hydrogen Peroxide Catalyzed by Iodine</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.3.1.2.8</td>
<td>Method 8: Reaction of Homoolylic 4-Bromobenzenesulfonates and Hydrogen Peroxide</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.3.1.2.9</td>
<td>Method 9: Ring Opening of Oxetanes with Hydrogen Peroxide</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.3.1.3</td>
<td>α-Peroxyalkyl Hydroperoxides</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.3.1.3.1</td>
<td>Method 1: Reaction of Alkenes and Vinyl Ethers with Ozone</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.3.1.3.1.1 Variation 1: Intramolecular Reaction of Alkyl Hydroperoxides with Carbonyl Oxides Generated by Ozonolysis of Alkenes</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.3.1.3.2</td>
<td>Method 2: Reaction of Ketones with Hydrogen Peroxide</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.3.1.3.3</td>
<td>Method 3: Reaction of Acetals with Hydrogen Peroxide Mediated by Boron Trifluoride–Diethyl Ether Complex</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.3.1.3.4</td>
<td>Method 4: Reaction of Dialkyl Ethers with Molecular Oxygen</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.3.1.4</td>
<td>α-(Triorganosiloxy)alkyl Hydroperoxides</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.3.1.4.1</td>
<td>Method 1: Reaction of Trialkylsilyl Vinyl Ethers and Hydrogen Peroxide</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.3.1.5</td>
<td>α-(Acyloxy)alkyl Hydroperoxides</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.3.1.5.1 Method 1: Photooxidation of an Enol Lactone</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.3.1.6</td>
<td>1,1-Bis(hydroperoxy)alkanes</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.3.1.6.1 Method 1: Reaction of Ketones with Hydrogen Peroxide with Acid Catalysts</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.3.1.6.1.1 Variation 1: With 1,2-Bis(diphenylphosphoryl)ethylane</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.3.1.6.1.2 Variation 2: Catalyzed by Ammonium Cerium(IV) Nitrate</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.3.1.6.1.3 Variation 3: Catalyzed by Methyltrioxorhenium(VII) in Trifluoroethanol</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.3.1.6.1.4 Variation 4: Catalyzed by Molecular Iodine</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.3.1.6.1.5 Variation 5: Catalyzed by Tungstic Acid</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.3.1.6.2 Method 2: Reaction of Tosylhydrazones with Hydrogen Peroxide</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.3.1.6.3 Method 3: Reaction of Vinyl Ethers with Ozone and Hydrogen Peroxide</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.3.1.6.4 Method 4: Reaction of Ketals with Hydrogen Peroxide</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.3.1.6.5 Method 5: Ring Opening of Bicyclic Benzyl Alcohols with Hydrogen Peroxide</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.3.2 Applications of Product Subclass 3 in Organic Synthesis</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.4 Product Subclass 4: α-Sulfur-Substituted Alkyl Hydroperoxides</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.4.1 Synthesis of Product Subclass 4</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.4.1.1 Method 1: Photooxidation of Thiazolidines with Molecular Oxygen in the Presence of Tetraphenylphosphorin</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.5 Product Subclass 5: α-Nitrogen-Substituted Alkyl Hydroperoxides</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.5.1 Synthesis of Product Subclass 5</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.5.1</td>
<td>α-Aminoalkyl Hydroperoxides</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.5.1.1</td>
<td>Method 1: Reaction of Carbonyl Compounds with Ammonia or Amines and Hydrogen Peroxide</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.5.1.2</td>
<td>α-(Acylamino)alkyl Hydroperoxides</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.5.1.2.1</td>
<td>Method 1: Reaction of Cyclic Amides and N-Alkylamides with Oxygen</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.5.1.2.2</td>
<td>Method 2: Reaction of N-Heterocycles with Hydrogen Peroxide</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.5.1.3</td>
<td>α-Hydrazinoalkyl Hydroperoxides</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.5.1.4</td>
<td>α-(N-Alkyl-N-nitrosoamino)alkyl Hydroperoxides</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.5.1.4.1</td>
<td>Method 1: Reaction of Dialkylnitrosamines with Lithium Disopropylamide and Oxygen</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.5.1.4.2</td>
<td>Method 2: Reaction of 1-Acetoxyalkyl(alkyl)nitrosamines with Hydrogen Peroxide</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.5.1.5</td>
<td>4-Hydroperoxy-1,3,2-oxazaphosphorinane 2-Oxides</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.5.1.5.1</td>
<td>Method 1: Reaction of 4-Hydroxy-1,3,2-oxazaphosphorinane 2-Oxides with Hydrogen Peroxide</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.5.1.5.2</td>
<td>Method 2: Reaction of a Phosphoric Amide Diester Bearing O- or N-Alkenyl Residues and Ozone</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.1.5.2</td>
<td>Applications of Product Subclass 5 in Organic Synthesis</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.2</td>
<td>Product Class 2: Allylic Hydroperoxides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U. Bergsträßer and J. Hartung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.2.1</td>
<td>Product Class 2: Allylic Hydroperoxides</td>
<td>73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.2.1.1</td>
<td>Synthesis of Product Class 2</td>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.2.1.1.1</td>
<td>Method 1: Synthesis from Alkenes</td>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.2.1.1.1.1</td>
<td>Variation 1: With Triplet Dioxegen</td>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.2.1.1.1.2</td>
<td>Variation 2: With Singlet Dioxegen</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.2.1.2</td>
<td>Method 2: Synthesis from Arenes</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.2.1.2.1</td>
<td>Variation 1: Reaction with Dioxyn under Basic Conditions</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.2.1.2.2</td>
<td>Variation 2: Reaction with Triplet Dioxyn in the Presence of Transition Metal Compounds</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.2.1.2.3</td>
<td>Variation 3: Reaction with Singlet Dioxyn</td>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.2.1.3</td>
<td>Method 3: Synthesis from Allylic Halides</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.2.1.3.1</td>
<td>Variation 1: Reaction with Hydrogen Peroxide</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.2.1.4</td>
<td>Method 4: Synthesis from Allyl Sulfonates</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.2.1.4.1</td>
<td>Variation 1: Reaction with Hydrogen Peroxide</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.2.1.5</td>
<td>Method 5: Synthesis from Endoperoxides</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.2.1.5.1</td>
<td>Variation 1: Reaction with Nucleophiles</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.2.1.6</td>
<td>Method 6: Synthesis from Allyl Hydroperoxides</td>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.2.1.6.1</td>
<td>Variation 1: Via Rearrangement</td>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.2.1.6.2</td>
<td>Variation 2: Separation of Racemates via HPLC</td>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.2.1.6.3</td>
<td>Variation 3: Enzymatic Kinetic Resolution of Racemtes</td>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
38.3 Product Class 3: Benzyllic Hydroperoxides
J. Hartung and H. Heydt

38.3 Product Class 3: Benzyllic Hydroperoxides .. 109
38.3.1 Synthesis of Product Class 3 ... 110
38.3.1.1 Method 1: Synthesis from Aryl- or Hetarylalkanes with Retention of the Carbon Skeleton .. 112
38.3.1.1.1 Variation 1: Autoxidation .. 112
38.3.1.1.2 Variation 2: Reaction with Dioxygen in the Presence of Metal Ions .. 117
38.3.1.1.3 Variation 3: Reaction with Dioxygen in the Presence of Bases .. 118
38.3.1.1.4 Variation 4: Reaction with Dioxygen in the Presence of N-Hydroxypthalimide .. 119
38.3.1.1.5 Variation 5: Reaction with tert-Butyl Hydroperoxide and a Transition-Metal Catalyst .. 119
38.3.1.1.6 Variation 6: Reaction with Dioxygen in the Presence of Photochemically Excited Electron-Transfer Reagents .. 120
38.3.1.2 Method 2: Synthesis from Arylalkanes in Combination with C—C Bond Cleavage .. 121
38.3.1.2.1 Variation 1: Photochemically Induced Reaction .. 121
38.3.1.3 Method 3: Synthesis from Alkenes .. 122
38.3.1.3.1 Variation 1: With Triplet Dioxygen in the Presence of Thiols .. 122
38.3.1.3.2 Variation 2: Reaction with Triplet Dioxygen in the Presence of Cobalt(II) Compounds and Silanes .. 122
38.3.1.3.3 Variation 3: Reaction with Triplet Dioxygen and Boranes .. 123
38.3.1.3.4 Variation 4: Via Electron-Transfer Processes .. 124
38.3.1.3.5 Variation 5: Reaction with Singlet Dioxygen .. 125
38.3.1.3.6 Variation 6: Reaction with Hydrogen Peroxide and Mercury(II) Salts .. 125
38.3.1.4 Method 4: Synthesis from Arenes .. 126
38.3.1.4.1 Variation 1: From Phenols with Dioxygen in the Absence of Catalysts .. 126
38.3.1.4.2 Variation 2: Reaction with Singlet Dioxygen .. 128
38.3.1.5 Method 5: Synthesis from Haloalkanes .. 129
38.3.1.5.1 Variation 1: With Hydrogen Peroxide under Acidic Conditions .. 129
38.3.1.5.2 Variation 2: With Hydrogen Peroxide under Basic Conditions .. 130
38.3.1.6 Method 6: Synthesis from Alcohols .. 130
38.3.1.6.1 Variation 1: By Reaction with Hydrogen Peroxide under Acidic Conditions .. 130
38.3.1.7 Method 7: Synthesis from Carboxylic Acid Esters .. 131
38.3.1.7.1 Variation 1: Reaction with Hydrogen Peroxide .. 131
38.3.1.8 Method 8: Synthesis from Ethers .. 132
38.3.1.8.1 Variation 1: Reaction of Acyclic Ethers with Hydrogen Peroxide .. 132
38.3.1.9 Method 9: Synthesis from Peroxy Esters .. 133
38.3.1.9.1 Variation 1: Hydrolysis in the Presence of Bis(tributyltin) Oxide .. 133
38.3.1.10 Method 10: Synthesis from Other Benzyl Hydroperoxides .. 133
38.3.1.10.1 Variation 1: Separation of Racemates via HPLC .. 133
38.3.1.10.2 Variation 2: Kinetic Resolution of Racemates Using Enantiopure Phosphines .. 134
38.3.1.10.3 Variation 3: Lipase-Catalyzed Kinetic Resolution of Racemates .. 134
38.3.1.10.4 Variation 4: Kinetic Resolution of Racemates Using Native Peroxidases .. 135

<table>
<thead>
<tr>
<th>Variation</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Enzymatic Kinetic Resolution of Racemates Using a
 Semisynthetic Peroxidase</td>
<td>137</td>
</tr>
<tr>
<td>6.1</td>
<td>Kinetic Resolution of Racemates Using Microorganisms</td>
<td>138</td>
</tr>
</tbody>
</table>

38.4

Product Class 4: Salts of Alkyl Hydroperoxides

A. Scarso and G. Strukul

<table>
<thead>
<tr>
<th>Subclass</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Product Class 4: Salts of Alkyl Hydroperoxides</td>
<td>143</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Product Subclass 1: Group 15 Salts of Alkyl Hydroperoxides</td>
<td>144</td>
</tr>
<tr>
<td>1.1.1.1</td>
<td>Method 1: Synthesis of (Alkylperoxy)silanes</td>
<td>145</td>
</tr>
<tr>
<td>1.1.1.2</td>
<td>Variation 1: Reaction of Silyl Enol Ethers with Singlet Oxygen</td>
<td>145</td>
</tr>
<tr>
<td>1.1.1.2</td>
<td>Variation 2: Reaction of Chlorotriorganosilanes or
Triorganosilyl Trifluoromethanesulfonates with Alkyl Hydroperoxides</td>
<td>146</td>
</tr>
<tr>
<td>1.1.1.3</td>
<td>Variation 3: Reaction of N,O-Bis(triorganosilyl)acetamides with
 Alkyl Hydroperoxides</td>
<td>150</td>
</tr>
<tr>
<td>1.1.1.4</td>
<td>Variation 4: Reaction of γ-Silyl Allylic Alcohols with Ozone</td>
<td>150</td>
</tr>
<tr>
<td>1.1.1.5</td>
<td>Variation 5: Reaction of Alkenes with Oxygen and Triethyilsilane
Promoted by Cobalt(II) Catalysts</td>
<td>151</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Method 2: Synthesis of Germanium Alkyl Peroxides</td>
<td>153</td>
</tr>
<tr>
<td>1.1.2.1</td>
<td>Variation 1: Reaction of Halogermanes with Alkyl Hydroperoxides
and Ammonia or Tertiary Amines</td>
<td>153</td>
</tr>
<tr>
<td>1.1.2.1</td>
<td>Variation 2: Reaction of Hydroxytriorganostannanes or
 Oxytriorganostannanes with Alkyl Hydroperoxides</td>
<td>154</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Method 3: Synthesis of Tin Alkyl Peroxides</td>
<td>154</td>
</tr>
<tr>
<td>1.1.3.1</td>
<td>Variation 1: Reaction of Triorganostannanes with
 Alkyl Hydroperoxides</td>
<td>154</td>
</tr>
<tr>
<td>1.1.3.2</td>
<td>Variation 2: Reaction of Hydroxytriorganostannanes or
 Oxytriorganostannanes with Alkyl Hydroperoxides</td>
<td>154</td>
</tr>
<tr>
<td>1.1.3.3</td>
<td>Variation 3: Synthesis of 1,3-Bis(alkylperoxy)-1,1,3,3-tetraorganodistannoxanes and (Alkylperoxy)(chloro)-
1,1,3,3-tetraorganodistannoxanes</td>
<td>155</td>
</tr>
</tbody>
</table>

Product Subclass 2: Group 14 Salts of Alkyl Hydroperoxides

<table>
<thead>
<tr>
<th>Subclass</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>Product Subclass 2: Group 14 Salts of Alkyl Hydroperoxides</td>
<td>144</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>145</td>
</tr>
<tr>
<td>1.2.1.1</td>
<td>Method 1: Synthesis of (Alkylperoxy)silanes</td>
<td>145</td>
</tr>
<tr>
<td>1.2.1.1</td>
<td>Variation 1: Reaction of Silyl Enol Ethers with Singlet Oxygen</td>
<td>145</td>
</tr>
<tr>
<td>1.2.1.2</td>
<td>Variation 2: Reaction of Chlorotriorganosilanes or
Triorganosilyl Trifluoromethanesulfonates with Alkyl Hydroperoxides</td>
<td>146</td>
</tr>
<tr>
<td>1.2.1.3</td>
<td>Variation 3: Reaction of N,O-Bis(triorganosilyl)acetamides with
 Alkyl Hydroperoxides</td>
<td>150</td>
</tr>
<tr>
<td>1.2.1.4</td>
<td>Variation 4: Reaction of γ-Silyl Allylic Alcohols with Ozone</td>
<td>150</td>
</tr>
<tr>
<td>1.2.1.5</td>
<td>Variation 5: Reaction of Alkenes with Oxygen and Triethyilsilane
Promoted by Cobalt(II) Catalysts</td>
<td>151</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Method 2: Synthesis of Germanium Alkyl Peroxides</td>
<td>153</td>
</tr>
<tr>
<td>1.2.2.1</td>
<td>Variation 1: Reaction of Halogermanes with Alkyl Hydroperoxides
and Ammonia or Tertiary Amines</td>
<td>153</td>
</tr>
<tr>
<td>1.2.2.1</td>
<td>Variation 2: Reaction of Hydroxytriorganostannanes or
 Oxytriorganostannanes with Alkyl Hydroperoxides</td>
<td>154</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Method 3: Synthesis of Tin Alkyl Peroxides</td>
<td>154</td>
</tr>
<tr>
<td>1.2.3.1</td>
<td>Variation 1: Reaction of Triorganostannanes with
 Alkyl Hydroperoxides</td>
<td>154</td>
</tr>
<tr>
<td>1.2.3.2</td>
<td>Variation 2: Reaction of Hydroxytriorganostannanes or
 Oxytriorganostannanes with Alkyl Hydroperoxides</td>
<td>154</td>
</tr>
<tr>
<td>1.2.3.3</td>
<td>Variation 3: Synthesis of 1,3-Bis(alkylperoxy)-1,1,3,3-tetraorganodistannoxanes and (Alkylperoxy)(chloro)-
1,1,3,3-tetraorganodistannoxanes</td>
<td>155</td>
</tr>
</tbody>
</table>

Product Subclass 3: Group 13 Salts of Alkyl Hydroperoxides

<table>
<thead>
<tr>
<th>Subclass</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3</td>
<td>Product Subclass 3: Group 13 Salts of Alkyl Hydroperoxides</td>
<td>156</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Synthesis of Product Subclass 3</td>
<td>156</td>
</tr>
<tr>
<td>1.3.1.1</td>
<td>Method 1: Synthesis of (Alkylperoxy)boron Compounds</td>
<td>156</td>
</tr>
<tr>
<td>1.3.1.1</td>
<td>Variation 1: Reaction of Trialkylboranes with Oxygen</td>
<td>156</td>
</tr>
<tr>
<td>1.3.1.2</td>
<td>Variation 2: Reaction of Boron Halides with
 Alkyl Hydroperoxides</td>
<td>158</td>
</tr>
<tr>
<td>1.3.1.3</td>
<td>Variation 3: Reaction of Tetraacetyl Diborate with
 Alkyl Hydroperoxides</td>
<td>158</td>
</tr>
<tr>
<td>1.3.1.4</td>
<td>Variation 4: Reaction of Alkyldichloroboranes or Chlorodicyclopentylborane with Molecular Oxygen</td>
<td>159</td>
</tr>
<tr>
<td>1.3.1.5</td>
<td>Variation 5: Oxidation of Trialkylboroxins</td>
<td>159</td>
</tr>
<tr>
<td>1.3.1.2</td>
<td>Method 2: Synthesis of Aluminum Alkyl Peroxides</td>
<td>160</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>XV</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>38.4.3.1.3 Method 3: Synthesis of Indium Alkyl Peroxides</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>38.4.4 Product Subclass 4: Group 2 Salts of Alkyl Hydroperoxides</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>38.4.4.1 Synthesis of Product Subclass 4</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>38.4.4.1.1 Method 1: Synthesis of Magnesium Alkyl Peroxides</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>38.4.4.1.1.1 Variation 1: Reaction of Organomagnesium Halides with Oxygen</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>38.4.4.1.2 Method 2: Synthesis of Strontium Alkyl Peroxides</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>38.4.4.1.3 Method 3: Synthesis of Barium Alkyl Peroxides</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>38.4.5 Product Subclass 5: Group 1 Salts of Alkyl Hydroperoxides</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>38.4.5.1 Synthesis of Product Subclass 5</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>38.4.5.1.1 Method 1: Synthesis of Lithium Alkyl Peroxides</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>38.4.5.1.2 Method 2: Synthesis of Sodium Alkyl Peroxides</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>38.4.5.1.2.1 Variation 1: Reaction of Sodium tert-Butoxide with Alkyl Hydroperoxides</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>38.4.5.1.3 Method 3: Synthesis of Potassium Alkyl Peroxides</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>38.4.6 Product Subclass 6: Transition Metal Salts of Alkyl Hydroperoxides</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>38.4.6.1 Synthesis of Product Subclass 6</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>38.4.6.1.1 Method 1: Synthesis of Zinc Alkyl Peroxides</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>38.4.6.1.2 Method 2: Synthesis of Cadmium Alkyl Peroxides</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>38.4.6.1.2.1 Variation 1: Reaction of Alkylcadmium(II) Compounds with Alkyl Hydroperoxides</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>38.4.6.1.3 Method 3: Synthesis of Mercury Alkyl Peroxides</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>38.4.6.1.4 Method 4: Synthesis of Palladium Alkyl Peroxides</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>38.4.6.1.4.1 Variation 1: Reaction of Palladium(II) Carboxylates with Alkyl Hydroperoxides</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>38.4.6.1.4.2 Variation 2: Reaction of an Alkyl(bisphosphine)(hydroxy)palladium(II) Complex with an Alkyl Hydroperoxide</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>38.4.6.1.4.3 Variation 3: Reaction of (Dioxygen)bis(triarylphosphine)palladium(II) with Electron-Deficient Alkenes</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>38.4.6.1.5 Method 5: Synthesis of Platinum Alkyl Peroxides</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>38.4.6.1.5.1 Variation 1: Reaction of Hydroxy(organo)bis(triorganophosphine)-platinum(II) Complexes with Alkyl Hydroperoxides</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>38.4.6.1.5.2 Variation 2: Reaction of (Dioxygen)bis(triarylphosphine)platinum(II) Complexes with Electron-Deficient Alkenes</td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>38.4.6.1.5.3 Variation 3: Reaction of (Dioxygen)bis(triarylphosphine)platinum(II) Complexes with Carbonyl Compounds</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>38.4.6.1.6 Method 6: Synthesis of Cobalt Alkyl Peroxides</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>38.4.6.1.6.1 Variation 1: Reaction of Organocobaloximes with Oxygen</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>38.4.6.1.6.2 Variation 2: Reaction of Cobalt(II) Complexes with Alkyl Hydroperoxides</td>
<td>171</td>
<td></td>
</tr>
<tr>
<td>38.4.6.1.6.3 Variation 3: Reaction of Cobalt(II) Complexes with Oxygen and Phenols</td>
<td>171</td>
<td></td>
</tr>
<tr>
<td>38.4.6.1.6.4 Variation 4: Reaction of Cobalt(II) Superoxo Complexes with Phenoxy Radicals</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>38.4.6.1.7 Method 7: Synthesis of Iridium Alkyl Peroxide</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>38.4.6.1.8 Method 8: Synthesis of Titanium and Zirconium Alkyl Peroxides</td>
<td>174</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

38.5 Product Class 5: Alkyl and Cycloalkyl Peroxides

G. Vassilikogiannakis and T. Montagnon

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.5.1</td>
<td>Synthesis of Product Class 5</td>
<td>179</td>
</tr>
<tr>
<td>38.5.1.1</td>
<td>Method 1: Nucleophilic Substitution</td>
<td>180</td>
</tr>
<tr>
<td>38.5.1.1.1</td>
<td>Variation 1: Reaction of Alkyl Hydroperoxides with Alkyl Bromides or Methanesulfonates under Basic Conditions</td>
<td>180</td>
</tr>
<tr>
<td>38.5.1.1.2</td>
<td>Variation 2: Reaction of Alkyl Bromides or Sulfonates with Potassium Superoxide</td>
<td>182</td>
</tr>
<tr>
<td>38.5.1.1.3</td>
<td>Variation 3: Phase-Transfer-Catalyzed Synthesis of Primary–Tertiary Bisperoxides</td>
<td>183</td>
</tr>
<tr>
<td>38.5.1.1.4</td>
<td>Variation 4: Reaction between Germanium or Tin Peroxides and Alkyl Trifluoromethanesulfonates</td>
<td>184</td>
</tr>
<tr>
<td>38.5.1.1.5</td>
<td>Variation 5: Acid-Catalyzed Reaction of Alkyl Hydroperoxides with Tertiary Alkyl Trichloroacetimides</td>
<td>185</td>
</tr>
<tr>
<td>38.5.1.1.6</td>
<td>Variation 6: Reaction of Alkyl Hydroperoxides with Alkyl Bromides in Ionic Liquids</td>
<td>187</td>
</tr>
<tr>
<td>38.5.1.1.7</td>
<td>Variation 7: 1,1-Bis(alkylperoxy)alkanes via Alkylation of 1,1-Bis(hydroperoxy)alkanes</td>
<td>187</td>
</tr>
<tr>
<td>38.5.1.2</td>
<td>Method 2: Addition to a Double Bond</td>
<td>190</td>
</tr>
<tr>
<td>38.5.1.2.1</td>
<td>Variation 1: Acid-Catalyzed Addition of Alkyl Hydroperoxides to Enol Ethers</td>
<td>190</td>
</tr>
<tr>
<td>38.5.1.2.2</td>
<td>Variation 2: Base-Catalyzed Addition of Alkyl Hydroperoxides to Electron-Deficient Alkenes</td>
<td>191</td>
</tr>
<tr>
<td>38.5.1.2.3</td>
<td>Variation 3: Peroxymercuration of Alkenes Followed by Bromodemercuration</td>
<td>192</td>
</tr>
<tr>
<td>38.5.1.2.4</td>
<td>Variation 4: Cobalt-Catalyzed Triethylsilylperoxidation of Alkenes with Molecular Oxygen</td>
<td>193</td>
</tr>
<tr>
<td>38.5.1.3</td>
<td>Method 3: Peroxycarbenium-Mediated C–C Bond Formation from Monoperoxyketals and Monoperoxyacetals</td>
<td>194</td>
</tr>
<tr>
<td>38.5.1.3.1</td>
<td>Variation 1: Allylation of Monoperoxyketals and Monoperoxyacetals</td>
<td>196</td>
</tr>
<tr>
<td>38.5.1.3.2</td>
<td>Variation 2: Crotylation of Monoperoxyacetals</td>
<td>197</td>
</tr>
<tr>
<td>38.5.1.3.3</td>
<td>Variation 3: Synthesis of 3-Peroxy Ketones</td>
<td>198</td>
</tr>
<tr>
<td>38.5.1.3.4</td>
<td>Variation 4: Synthesis of 3-Peroxy Esters</td>
<td>199</td>
</tr>
<tr>
<td>38.5.1.4</td>
<td>Method 4: Opening of Oxetanes with Alkyl Hydroperoxides</td>
<td>199</td>
</tr>
<tr>
<td>38.5.1.5</td>
<td>Method 5: Opening of Epoxides with Alkyl Hydroperoxides</td>
<td>200</td>
</tr>
<tr>
<td>38.5.1.6</td>
<td>Method 6: Ruthenium-Catalyzed Oxidation of Tertiary Amines with Alkyl Hydroperoxides</td>
<td>201</td>
</tr>
<tr>
<td>38.5.1.7</td>
<td>Method 7: Epoxy Alkyl Peroxides from Allylic Alcohols Bearing an Appropriately Positioned Lactam Ring</td>
<td>202</td>
</tr>
</tbody>
</table>
38.6 **Product Class 6: Allylic Peroxides**
I. N. Lykakis and M. Stratakis

38.6.1 **Synthesis of Product Class 6**
- **Method 1:** Nucleophilic Substitution
- **Method 2:** Synthesis of Allylic Peroxides via Tritylation and Methoxymethylation of Allylic Stannyl Peroxides
- **Method 3:** Allylic Peroxyketals via the Acid-Catalyzed Addition of Allylic Hydroperoxides to Enol Ethers
- **Method 4:** Allylic Peroxidation of Alkenes with tert-Butyl Hydroperoxide
- **Method 5:** Reaction of Conjugated Dienes and Trienes with Pyridinium Dichromate and tert-Butyl Hydroperoxide
- **Method 6:** Hexacarbonylmolybdenum(0)-Catalyzed Oxidation of Eneones with tert-Butyl Hydroperoxide To Form Peroxypyranoles
- **Method 7:** Synthesis of Functionalized Allylic Peroxides from Allylic Peroxy Vinylstannanes
- **Variation 1:** N-Iodosuccinimide-Mediated Formation of Allylic Peroxy Vinyl iodides

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221
XVIII Table of Contents

38.6.1.7.2 Variation 2: Palladium-Mediated C—C Bond-Forming Reactions for the Synthesis of Functionalized Allylic Peroxides .. 221
38.6.1.8 Method 8: Synthesis of Allylic Peroxides via the Wittig Alkenation of α-Peroxy-Substituted Aldehydes .. 223
38.6.1.9 Method 9: Formation of 4-(tert-Butylperoxy)cyclohexadienones by Oxidation of Phenols ... 224
38.6.1.9.1 Variation 1: Metal-Catalyzed Oxidation of Phenols with tert-Butyl Hydroperoxide ... 224
38.6.1.9.2 Variation 2: Free-Radical Oxidation of Phenols by a Hypervalent (tert-Butylperoxy)iodane and tert-Butyl Hydroperoxide 226
38.6.1.10 Method 10: Formation of Allylic 1,4-Diperoxides from the Chloroperoxidase-Catalyzed Oxidation of Conjugated Dienoic Esters 226

38.7 Product Class 7: Benzyllic Peroxides
M. R. Iesce and M. DellaGreca

38.7 Product Class 7: Benzyllic Peroxides ... 231
38.7.1 Synthesis of Product Class 7 ... 231
38.7.1.1 Oxidation with Oxygen .. 231
38.7.1.1.1 Method 1: Oxidation of Arylalkanes .. 231
38.7.1.1.2 Method 2: Oxidation of Triarylmethyl Chlorides 232
38.7.1.1.3 Method 3: Oxidation of Arylalkenes via Trapping Reactions 232
38.7.1.1.3.1 Variation 1: Intramolecular Cyclization in the Presence of a Cobalt(II) Complex ... 232
38.7.1.1.3.2 Variation 2: Intermolecular Cycloaddition with Carbonyl Compounds ... 233
38.7.1.1.3.3 Variation 3: Intermolecular Cyclization with β-Oxo Carbonyl Compounds in the Presence of Manganese Catalysts 234
38.7.1.1.3.4 Variation 4: Intermolecular Cyclization with Heterocyclic 1,3-Dicarbonyl Compounds in the Presence of Manganese Catalysts 236
38.7.1.2 Oxidation with Hydroperoxides ... 238
38.7.1.2.1 Method 1: Oxidation of Arylalkanes under Metal Catalysis 238
38.7.1.2.1.1 Variation 1: Using Chromium ... 238
38.7.1.2.1.2 Variation 2: Using Cobalt ... 239
38.7.1.2.1.3 Variation 3: Using Copper ... 240
38.7.1.2.1.4 Variation 4: Using Lead .. 243
38.7.1.2.2 Method 2: Nucleophilic Substitution Using Hydroperoxides 244
38.7.1.2.2.1 Variation 1: Of Halides .. 244
38.7.1.2.2.2 Variation 2: Of Alcohols ... 247
38.7.1.2.2.3 Variation 3: Of Imidates .. 249
38.7.1.2.2.4 Variation 4: Of Oxiranes .. 249
38.7.1.2.3 Method 3: Addition Reactions of Hydroperoxides 250
38.7.1.2.3.1 Variation 1: Acid-Mediated Addition to Alkenes 250
38.7.1.2.3.2 Variation 2: Base-Mediated Addition to Alkenes 251
38.7.1.2.3.3 Variation 3: Palladium-Mediated Addition to Alkenes 252
38.7.1.2.3.4 Variation 4: Mercury-Mediated Addition to Alkenes 253
38.7.1.2.3.5 Variation 5: Addition to Cyclopropanes 254
38.7.1.2.3.6 Variation 6: Addition to Carbonyl Compounds 256
38.7.1.3 Photooxygenation 257
38.7.1.3.1 Method 1: Photooxygenation of Arylalkenes 257
38.7.1.3.2 Method 2: Photooxygenation of Three-Membered Heterocycles via Photoinduced Electron Transfer 258
38.7.1.3.3 Method 3: Photooxygenation of Cyclopropanes via Photoinduced Radical Production 260
38.7.1.4 Other Methods 260
38.7.1.4.1 Method 1: Oxidative Fluorodesulfuration 260
38.7.1.4.2 Method 2: Ozonization of Unsaturated Benzylic Hydroperoxides 261
38.7.1.4.3 Method 3: Oxygenation of Aryl Azo Hydroperoxides 262
38.7.1.4.4 Method 4: Acid-Catalyzed Reaction of Peroxyketals with Ketene Silyl Acetals 262
38.7.2 Applications of Product Class 7 in Organic Synthesis 264
38.7.2.1 Method 1: Oxidation to Carbonyl Derivatives 264
38.7.2.2 Method 2: Reduction to Alcohols 265
38.7.2.3 Method 3: Heterolysis of an O—O or C—O Bond 265
38.7.2.3.1 Variation 1: Trapping with Alkenes 267
38.7.2.3.2 Variation 2: Trapping with Carbonyl Compounds 268
38.7.2.3.3 Variation 3: Trapping with Hydrazine Derivatives or Hydroxylamine 269
38.7.2.4 Method 4: Homolysis of the O—O Bond: Radical Production 270

38.8 Product Class 8: Monocyclic Peroxides

38.8.1 Product Subclass 1: Three-Membered Cyclic Peroxides (Dioxiranes)
B. Wang and Y. Shi

38.8.1.1 Synthesis of Product Subclass 1 275
38.8.1.1.1 Method 1: Preparation of Dioxiranes Using Oxone 276
38.8.1.2 Applications of Product Subclass 1 in Organic Synthesis 278
38.8.1.2.1 Method 1: Oxidation of Heteroatoms by Dioxiranes 278
38.8.1.2.1.1 Variation 1: Synthesis of Sulfinic Acids 279
38.8.1.2.1.2 Variation 2: Synthesis of Sulfoxides and Sulfones 279
38.8.1.2.1.3 Variation 3: Synthesis of Sulfoximides 283
38.8.1.2.1.4 Variation 4: Synthesis of N-Oxides and Nitro Compounds 283
38.8.1.2.1.5 Variation 5: Synthesis of Hydroxylamines 287
38.8.1.2.1.6 Variation 6: Synthesis of Nitrones and Nitrooxide Radicals 289
38.8.1.2.1.7 Variation 7: Synthesis of Hydroxamic Acids 292
38.8.1.2.1.8 Variation 8: Cleavage of C=N Bonds 293
38.8.1.2.1.9 Variation 9: Cleavage of C=P Bonds 297
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.8.1.2.1.10</td>
<td>Variation 10: Cleavage of C=S Bonds</td>
<td>298</td>
</tr>
<tr>
<td>38.8.1.2.2</td>
<td>Method 2: Oxidation of C≡C π-Bonds by Dioxiranes</td>
<td>300</td>
</tr>
<tr>
<td>38.8.1.2.2.1</td>
<td>Variation 1: Oxidation of Alkenes</td>
<td>300</td>
</tr>
<tr>
<td>38.8.1.2.2.2</td>
<td>Variation 2: Oxidation of Allenes</td>
<td>300</td>
</tr>
<tr>
<td>38.8.1.2.2.3</td>
<td>Variation 3: Oxidation of Enolates</td>
<td>303</td>
</tr>
<tr>
<td>38.8.1.2.2.4</td>
<td>Variation 4: Oxidation of Arenes</td>
<td>306</td>
</tr>
<tr>
<td>38.8.1.2.2.5</td>
<td>Variation 5: Oxidation of Alkynes</td>
<td>310</td>
</tr>
<tr>
<td>38.8.1.2.3</td>
<td>Method 3: Oxidation of X—H σ-Bonds by Dioxiranes</td>
<td>310</td>
</tr>
<tr>
<td>38.8.1.2.3.1</td>
<td>Variation 1: Oxidation of Si—H σ-Bonds</td>
<td>310</td>
</tr>
<tr>
<td>38.8.1.2.3.2</td>
<td>Variation 2: Oxidation C—H σ-Bonds of Saturated Alkanes</td>
<td>311</td>
</tr>
<tr>
<td>38.8.1.2.3.3</td>
<td>Variation 3: Oxidation of Activated C—H σ-Bonds</td>
<td>314</td>
</tr>
<tr>
<td>38.8.1.2.4</td>
<td>Method 4: Oxidation of Organometallic Compounds by Dioxiranes</td>
<td>316</td>
</tr>
</tbody>
</table>

38.8.2 Product Subclass 2: Four-Membered Cyclic Peroxides (1,2-Dioxetanes and 1,2-Dioxetanones)

W. J. Baader and E. L. Bastos

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.8.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>323</td>
</tr>
<tr>
<td>38.8.2.2.1</td>
<td>Method 1: Cyclization of Halo Hydroperoxides</td>
<td>324</td>
</tr>
<tr>
<td>38.8.2.2.1.1</td>
<td>Variation 1: Cyclization of Epoxy Hydroperoxides</td>
<td>326</td>
</tr>
<tr>
<td>38.8.2.2.1.2</td>
<td>Variation 2: Cyclization of Unsaturated Hydroperoxides</td>
<td>326</td>
</tr>
<tr>
<td>38.8.2.2.1.3</td>
<td>Variation 3: By Cyclomercuration of Allylic Hydroperoxides</td>
<td>328</td>
</tr>
<tr>
<td>38.8.2.2.1.4</td>
<td>Variation 4: 1,2-Dioxetanes from α-Hydroperoxy Acids</td>
<td>328</td>
</tr>
<tr>
<td>38.8.2.2.2</td>
<td>Method 2: Singlet Oxygenation of Alkenes</td>
<td>329</td>
</tr>
<tr>
<td>38.8.2.2.2.1</td>
<td>Variation 1: By Sensitized Photooxygenation</td>
<td>330</td>
</tr>
<tr>
<td>38.8.2.2.2.2</td>
<td>Variation 2: Using Calcium Peroxide—Hydrogen Peroxide Complex</td>
<td>333</td>
</tr>
<tr>
<td>38.8.2.2.2.3</td>
<td>Variation 3: Using Sodium Molybdate/Hydrogen Peroxide</td>
<td>334</td>
</tr>
<tr>
<td>38.8.2.2.2.4</td>
<td>Variation 4: Using Triethylsilyl Hydrotrioxide</td>
<td>335</td>
</tr>
<tr>
<td>38.8.2.2.3</td>
<td>Method 3: Triplet Oxygenation of Cyclobutadienes</td>
<td>335</td>
</tr>
<tr>
<td>38.8.2.2.4</td>
<td>Method 4: Photocatalytic Oxygenation</td>
<td>336</td>
</tr>
<tr>
<td>38.8.2.2.5</td>
<td>Method 5: Ozonolysis of Vinylsilanes</td>
<td>337</td>
</tr>
<tr>
<td>38.8.2.2.6</td>
<td>Method 6: Oxygenation Using Phosphite Ozonides</td>
<td>338</td>
</tr>
<tr>
<td>38.8.2.2.6.1</td>
<td>Variation 1: 1,2-Dioxetanones from Photooxygenation of Ketenes</td>
<td>340</td>
</tr>
<tr>
<td>38.8.2.2.7</td>
<td>Method 7: Electron-Transfer Oxygenation</td>
<td>340</td>
</tr>
</tbody>
</table>

38.8.3 Product Subclass 3: Five-Membered Cyclic Peroxides with No Further Heteroatoms in the Ring (1,2-Dioxolan-3-ones)

W. J. Baader and E. L. Bastos

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.8.3.1</td>
<td>Synthesis of Product Subclass 3</td>
<td>345</td>
</tr>
<tr>
<td>38.8.3.2.1</td>
<td>Method 1: Cyclization of Hydroperoxides</td>
<td>346</td>
</tr>
</tbody>
</table>
38.8.3.1.1 Variation 1: Of Bromo Hydroperoxides ... 346
38.8.3.1.1.2 Variation 2: Of Epoxy Hydroperoxides ... 347
38.8.3.1.1.3 Variation 3: Of Vinyl Hydroperoxides ... 347
38.8.3.1.1.4 Variation 4: Of Stannylalkenyl Hydroperoxides 349
38.8.3.1.1.5 Variation 5: Of α-Alkoxy Hydroperoxides 350
38.8.3.1.1.6 Variation 6: Lead(IV) Acetate Mediated Cyclization of 3-Phenylpropyl Hydroperoxides ... 350
38.8.3.1.2 Method 2: Cyclization of Haloalkyl Peroxides 351
38.8.3.1.3 Method 3: Cyclization of Oxetane Hydroperoxycetals 351
38.8.3.1.4 Method 4: Oxidation of α,β-Unsaturated Ketones by Hydrogen Peroxide ... 353
38.8.3.1.5 Method 5: Peroxymercuration/Demercuration .. 355
38.8.3.1.6 Method 6: CycloadDITION of Carbonyl Oxides to C−C Multiple Bonds 356
38.8.3.1.6.1 Variation 1: From 1,2,4-Trioxolanes .. 356
38.8.3.1.6.2 Variation 2: Via Peroxycarbenium Ions .. 358
38.8.3.1.7 Method 7: Singlet Oxygenation .. 359
38.8.3.1.7.1 Variation 1: Of 2-Methylacrylic Acids, Leading to 3-Hydroperoxy Acids 359
38.8.3.1.7.2 Variation 2: Of Enones ... 360
38.8.3.1.7.3 Variation 3: Of Cyclopropanes .. 361
38.8.3.1.7.4 Variation 4: Of α,β-Unsaturated Aldimines 362
38.8.3.1.8 Method 8: Radical-Mediated Oxygenation ... 362
38.8.3.1.8.1 Variation 1: Addition of Molecular Oxygen to Cyclopropanes 362
38.8.3.1.8.2 Variation 2: From Stable Schlenk Hydrocarbon Diradicals 366
38.8.3.1.8.3 Variation 3: Peroxidation of 1,4-Dienes and Vinlycyclopropanes with Cobalt(II)/Oxygen/Triethylsilane .. 367
38.8.3.1.8.4 Variation 4: Photolysis or Thermolysis of Alkylidene Azoalkanes 368
38.8.3.1.8.5 Variation 5: Thiol–Alkene Co-oxygenation 369
38.8.3.1.8.6 Variation 6: Halogen-Mediated Peroxidations 370
38.8.3.1.9 Method 9: β-Fragmentation of Alkoxyl Radicals 370
38.8.3.1.10 Method 10: Synthesis from Benzo-Fused Bicyclic Sulfonium Salts 372
38.8.3.1.11 Method 11: Ozonolysis ... 373
38.8.3.1.12 Method 12: Peroxide Addition .. 375

38.8.4 Product Subclass 4: Five-Membered Cyclic Peroxides with One Further Oxygen Atom in the Ring (1,2,4-Trioxolanes)
W. J. Baader and E. L. Bastos

38.8.4 Product Subclass 4: Five-Membered Cyclic Peroxides with One Further Oxygen Atom in the Ring (1,2,4-Trioxolanes) ... 379
38.8.4.1 Synthesis of Product Subclass 4 .. 380
38.8.4.1.1 Method 1: Ozonolysis of Alkenes ... 380
38.8.4.1.2 Method 2: CycloadDITION of Carbonyl Oxides to C=O Bonds 385
38.8.4.1.2.1 Variation 1: From the Ozonolysis of Cycloalkadienes in the Presence of Carbonyl Compounds .. 387
38.8.4.1.2.2 Variation 2: Griesbaum Co-ozonolysis ... 387
38.8.4.1.3 Method 3: Ozonolysis of Acetylenic Substrates 389
Table of Contents

38.8.4.1.4 Method 4: Photooxygenation ... 390
38.8.4.1.4.1 Variation 1: Of Epoxides ... 390
38.8.4.1.4.2 Variation 2: Of Furans .. 391
38.8.4.1.4.3 Variation 3: Of Diazo Compounds and Azines 392

38.8.5 Product Subclass 5: Six-Membered Cyclic Peroxides with No Further Heteroatoms in the Ring (1,2-Dioxanes and 3,6-Dihydro-1,2-dioxins)
W. J. Baader and E. L. Bastos

38.8.5.1 Synthesis of Product Subclass 5 ... 397
38.8.5.1.1 Method 1: Cyclization of Hydroperoxides 398
38.8.5.1.1.1 Variation 1: Cyclization of Halo Hydroperoxides 398
38.8.5.1.1.2 Variation 2: Cyclization of Epoxy Hydroperoxides 399
38.8.5.1.1.3 Variation 3: Cyclization of Vinyl Hydroperoxides 400
38.8.5.1.1.4 Variation 4: Cyclization of Oxetane Hydroperoxides ... 401
38.8.5.1.2 Method 2: Cyclization of Unsaturated Hydroperoxycetals .. 402
38.8.5.1.3 Method 3: Cycloaddition of Carbonyl Oxides to C–C Multiple Bonds 404
38.8.5.1.4 Method 4: Ozonolysis of Alkylidenecyclopropanes 406
38.8.5.1.5 Method 5: Singlet Oxygenation of 1,3-Dienes and Related Compounds 407
38.8.5.1.6 Method 6: Radical-Mediated Oxygenation 409
38.8.5.1.6.1 Variation 1: Thiol–Alkene Co-oxygenation 409
38.8.5.1.6.2 Variation 2: Free-Radical Cyclization of Alkenes with Carbonyl Compounds 409
38.8.5.1.6.3 Variation 3: Peroxyl-Radical Cyclization 411
38.8.5.1.6.4 Variation 4: Peroxidation with Cobalt(II)/Oxygen/Triethylsilane 412
38.8.5.1.6.5 Variation 5: Oxygen Addition to Carbon-Centered Radicals 413
38.8.5.1.6.6 Variation 6: Lead(IV) Acetate Mediated Cyclization of ω-Phenyl Hydroperoxides 414
38.8.5.1.6.7 Variation 7: Addition of Molecular Oxygen to Alkenes 414
38.8.5.1.7 Method 7: Photoenolization and Oxygenation of α,β-Unsaturated Ketones 415
38.8.5.1.8 Method 8: Nucleophilic Addition of Peroxides 417

38.8.6 Product Subclass 6: Six-Membered Cyclic Peroxides with One Further Oxygen Atom in the Ring (1,2,4-Trioxanes)
W. J. Baader and E. L. Bastos

38.8.6.1 Synthesis of Product Subclass 6 .. 421
38.8.6.1.1 Method 1: Synthesis from Hydroperoxides 422
38.8.6.1.1.1 Variation 1: Condensation of β-Hydroperoxy Alcohols with Aldehydes or Ketones 422
<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.8.6.1.2</td>
<td>Variation 2:</td>
<td>Cyclization of Unsaturated Hydroperoxyacetals</td>
<td>427</td>
</tr>
<tr>
<td>38.8.6.1.3</td>
<td>Variation 3:</td>
<td>Autoxidation of Unsaturated Hydroperoxyacetals</td>
<td>430</td>
</tr>
<tr>
<td>38.8.6.1.4</td>
<td>Variation 4:</td>
<td>From Epoxy Hydroperoxides</td>
<td>431</td>
</tr>
<tr>
<td>38.8.6.1.2</td>
<td>Method 2:</td>
<td>Cyclization of Allylic Peroxyhemiketals</td>
<td>431</td>
</tr>
<tr>
<td>38.8.6.1.2.1</td>
<td>Variation 1:</td>
<td>Mercury(II)-Mediated Cyclization of Unsaturated Peroxyhemiketals</td>
<td>432</td>
</tr>
<tr>
<td>38.8.6.1.3</td>
<td>Method 3:</td>
<td>Cyclization of Silyl Peroxyhemiketals in the Presence of Aldehydes and Ketones</td>
<td>433</td>
</tr>
<tr>
<td>38.8.6.1.3.1</td>
<td>Variation 1:</td>
<td>1,2,4-Trioxan-5-ones from α-(Trimethylsilylperoxy) Esters</td>
<td>433</td>
</tr>
<tr>
<td>38.8.6.1.4</td>
<td>Method 4:</td>
<td>Photooxygenation</td>
<td>434</td>
</tr>
<tr>
<td>38.8.6.1.5</td>
<td>Method 5:</td>
<td>Synthesis from 1,2-Dioxetanes: The Posner Reaction</td>
<td>435</td>
</tr>
<tr>
<td>38.8.6.1.6</td>
<td>Method 6:</td>
<td>Miscellaneous Methods Employing Bridged Cyclic Peroxides</td>
<td>439</td>
</tr>
<tr>
<td>38.8.6.1.7</td>
<td>Method 7:</td>
<td>Addition of Oxygen to Allylic Hydroperoxides</td>
<td>441</td>
</tr>
<tr>
<td>38.8.6.1.8</td>
<td>Method 8:</td>
<td>Trapping of Paterno–Büchi 1,4-Diradicals by Molecular Oxygen</td>
<td>444</td>
</tr>
<tr>
<td>38.8.6.1.9</td>
<td>Method 9:</td>
<td>Autoxidation of Imines in the Presence of Aldehydes</td>
<td>445</td>
</tr>
</tbody>
</table>

38.8.7 Product Subclass 7: Six-Membered Cyclic Peroxides with Two Further Oxygen Atoms in the Ring (1,2,4,5-Tetroxanes)

W. J. Baader and E. L. Bastos

38.8.7 Product Subclass 7: Six-Membered Cyclic Peroxides with Two Further Oxygen Atoms in the Ring (1,2,4,5-Tetroxanes) ... 449

38.8.7.1 Synthesis of Product Subclass 7 .. 450

38.8.7.1.1 Method 1: Synthesis from Aldehydes or Ketones 450

38.8.7.1.1.1 Variation 1: Reaction of Aldehydes or Ketones with Bis(trimethylsilyl) Peroxide 456

38.8.7.1.2 Method 2: Synthesis by Ozonolysis ... 458

38.8.7.1.2.1 Variation 1: Of O-Methyloximes .. 461

38.8.7.1.3 Method 3: Synthesis from 1,2,4-Trioxolanes 462

38.8.7.1.4 Methods 4: Miscellaneous Methods ... 463

38.9 Product Class 9: Larger-Ring Cyclic Peroxides and Endoperoxides

M. N. Alberti, M. D. Tzirakis, and M. Orfanopoulos

38.9 Product Class 9: Larger-Ring Cyclic Peroxides and Endoperoxides 469

38.9.1 Synthesis of Product Class 9 .. 469

38.9.1.1 Method 1: Peroxidation with Triplet Molecular Oxygen 469

38.9.1.1.1 Variation 1: Cycloadition of Triplet Dioxygen to Biradicals 469

38.9.1.1.2 Variation 2: Cycloadition of Triplet Oxygen to an o-Quinodimethane System ... 470

38.9.1.1.3 Variation 3: Electron-Transfer-Induced Photooxidation of 1,6-Dienes with Triplet Oxygen 471

38.9.1.1.4 Variation 4: Lewis Acid Induced Peroxidation of 1,3-Dienes 473

38.9.1.1.5 Variation 5: Autoxidation of Nonconjugated 1,4-Dienes 474
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Method</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.9.1.6</td>
<td>Variation 6</td>
<td></td>
<td>Thiol–Alkene Co-oxygenation</td>
<td>475</td>
</tr>
<tr>
<td>38.9.1.7</td>
<td>Variation 7</td>
<td></td>
<td>Cobalt(II)-Catalyzed Peroxidation of 1,5-Dienes with Molecular Oxygen and Triethylsilane</td>
<td>478</td>
</tr>
<tr>
<td>38.9.1.2</td>
<td>Method 2</td>
<td></td>
<td>Oxidation of Cyclic Unsaturated Compounds with Photochemically Generated Singlet Oxygen</td>
<td>479</td>
</tr>
<tr>
<td>38.9.1.2.1</td>
<td>Variation 1</td>
<td></td>
<td>Photooxidation of Naphthalene Derivatives</td>
<td>480</td>
</tr>
<tr>
<td>38.9.1.2.2</td>
<td>Variation 2</td>
<td></td>
<td>Photooxidation of Anthracene and Pentacene Derivatives</td>
<td>483</td>
</tr>
<tr>
<td>38.9.1.2.3</td>
<td>Variation 3</td>
<td></td>
<td>Photooxidation of Strained Metacyclophanes</td>
<td>485</td>
</tr>
<tr>
<td>38.9.1.2.4</td>
<td>Variation 4</td>
<td></td>
<td>Photooxidation of Cyclopentadiene and Cyclohexa-1,3- or Cyclohexa-1,4-diene Systems</td>
<td>485</td>
</tr>
<tr>
<td>38.9.1.2.5</td>
<td>Variation 5</td>
<td></td>
<td>Photooxidation of Cycloheptadiene/triene Systems</td>
<td>488</td>
</tr>
<tr>
<td>38.9.1.2.6</td>
<td>Variation 6</td>
<td></td>
<td>Photooxidation of Cyclooctadiene/triene/tetraene Systems</td>
<td>492</td>
</tr>
<tr>
<td>38.9.1.3</td>
<td>Method 3</td>
<td></td>
<td>Oxidation of Cyclic Unsaturated Compounds by Chemically Generated Singlet Oxygen</td>
<td>493</td>
</tr>
<tr>
<td>38.9.1.4</td>
<td>Method 4</td>
<td></td>
<td>Cyclization of Hydroperoxides and Their Derivatives through Nucleophilic Substitution</td>
<td>494</td>
</tr>
<tr>
<td>38.9.1.4.1</td>
<td>Variation 1</td>
<td></td>
<td>Cyclization of Bromo Hydroperoxides</td>
<td>494</td>
</tr>
<tr>
<td>38.9.1.4.2</td>
<td>Variation 2</td>
<td></td>
<td>Acid-Catalyzed Cyclization of Epoxy Hydroperoxides</td>
<td>496</td>
</tr>
<tr>
<td>38.9.1.4.3</td>
<td>Variation 3</td>
<td></td>
<td>Trimethylsilyl Trifluoromethanesulfonate Catalyzed Intramolecular Cyclization of Silyl Peroxides</td>
<td>496</td>
</tr>
<tr>
<td>38.9.1.4.4</td>
<td>Variation 4</td>
<td></td>
<td>Peroxide Transfer from Bis(tributyltin) Peroxide</td>
<td>497</td>
</tr>
<tr>
<td>38.9.1.4.5</td>
<td>Variation 5</td>
<td></td>
<td>Cesium Hydroxide or Silver(I) Oxide Mediated Cycloalkylation of Alkane-1,1-diy1 Dihydroperoxides and Dihaloalkanes</td>
<td>498</td>
</tr>
<tr>
<td>38.9.1.4.6</td>
<td>Variation 6</td>
<td></td>
<td>Base-Catalyzed Cyclization of Dihydroperoxides and Dialkylidichlorosilanes</td>
<td>499</td>
</tr>
<tr>
<td>38.9.1.5</td>
<td>Method 5</td>
<td></td>
<td>Cyclization of Unsaturated Hydroperoxides through Intramolecular Nucleophilic Addition</td>
<td>500</td>
</tr>
<tr>
<td>38.9.1.5.1</td>
<td>Variation 1</td>
<td></td>
<td>Halonium Ion Mediated Cyclization of Unsaturated Hydroperoxides</td>
<td>500</td>
</tr>
<tr>
<td>38.9.1.5.2</td>
<td>Variation 2</td>
<td></td>
<td>Base-Catalyzed Intramolecular Cyclization of Unsaturated Hydroperoxides</td>
<td>504</td>
</tr>
<tr>
<td>38.9.1.5.3</td>
<td>Variation 3</td>
<td></td>
<td>Ozonolysis of Unsaturated Hydroperoxides</td>
<td>505</td>
</tr>
<tr>
<td>38.9.1.5.4</td>
<td>Variation 4</td>
<td></td>
<td>Ozonolysis of Vinylsilanes</td>
<td>508</td>
</tr>
<tr>
<td>38.9.1.5.5</td>
<td>Variation 5</td>
<td></td>
<td>Peroxymercuration/Demercuration of Cyclic Dienes</td>
<td>509</td>
</tr>
<tr>
<td>38.9.1.5.6</td>
<td>Variation 6</td>
<td></td>
<td>Intramolecular Capture of β-Hydroperoxy Cations</td>
<td>510</td>
</tr>
<tr>
<td>38.9.1.6</td>
<td>Method 6</td>
<td></td>
<td>Cycloaddition of Peroxides with Carbonyl Compounds</td>
<td>511</td>
</tr>
<tr>
<td>38.9.1.6.1</td>
<td>Variation 1</td>
<td></td>
<td>Trimethylsilylation of Dihydroperoxides Followed by Trimethylsilyl Trifluoromethanesulfonate Catalyzed Cyclocondensation with Carbonyl Compounds</td>
<td>511</td>
</tr>
<tr>
<td>38.9.1.6.2</td>
<td>Variation 2</td>
<td></td>
<td>Acid-Catalyzed Condensation of γ- or δ-Hydroxy Hydroperoxides and Ketones</td>
<td>512</td>
</tr>
<tr>
<td>38.9.1.6.3</td>
<td>Variation 3</td>
<td></td>
<td>Acid-Catalyzed Condensation of 3-Methyl-3-(triethylsilylperoxy)butan-1-ol and Carbonyl Compounds</td>
<td>514</td>
</tr>
<tr>
<td>38.9.1.7</td>
<td>Method 7</td>
<td></td>
<td>Synthesis with Retention of the Functional Group</td>
<td>515</td>
</tr>
<tr>
<td>38.9.1.7.1</td>
<td>Variation 1</td>
<td></td>
<td>Reduction of C=C Bonds in Unsaturated Bicyclic Peroxides</td>
<td>515</td>
</tr>
<tr>
<td>38.9.1.7.2</td>
<td>Variation 2</td>
<td></td>
<td>Chlorination of Unsaturated Bicyclic Peroxides</td>
<td>517</td>
</tr>
<tr>
<td>38.9.1.7.3</td>
<td>Variation 3</td>
<td></td>
<td>Selective Reduction of the Hydroperoxide Group in Hydroperoxy Endoperoxides</td>
<td>517</td>
</tr>
<tr>
<td>38.9.1.7.4</td>
<td>Variation 4</td>
<td></td>
<td>Dehydration of Hydroperoxy-Substituted Endoperoxides</td>
<td>517</td>
</tr>
<tr>
<td>38.9.1.7.5</td>
<td>Variation 5:</td>
<td>Reduction of a Ketone Group in Endoperoxides</td>
<td>519</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>--</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>38.9.1.7.6</td>
<td>Variation 6:</td>
<td>Oxidation of Hydroxy Endoperoxides</td>
<td>519</td>
<td></td>
</tr>
<tr>
<td>38.9.1.7.7</td>
<td>Variation 7:</td>
<td>Diels–Alder Reaction with Dimethyl 1,2,4,5-Tetrazine-3,6-dicarboxylate</td>
<td>520</td>
<td></td>
</tr>
<tr>
<td>38.9.1.7.8</td>
<td>Variation 8:</td>
<td>Reductive Debromination with Tributyltin Hydride</td>
<td>520</td>
<td></td>
</tr>
<tr>
<td>38.9.1.7.9</td>
<td>Variation 9:</td>
<td>Silver(I) Oxide Mediated Methylation of Hydroperoxy-Substituted Endoperoxides</td>
<td>521</td>
<td></td>
</tr>
</tbody>
</table>

Keyword Index ... 525

Author Index ... 555

Abbreviations ... 577
Volume 39:
Sulfur, Selenium, and Tellurium

Preface ... V

Table of Contents .. XIII

Introduction
N. Kambe .. 1

39.1 Product Class 1: Alkanesulfonic Acids and Acyclic Derivatives
J. Drabowicz, P. Kielbasiński, P. Łyżwa, A. Zając, and M. Mikołajczyk 17

39.2 Product Class 2: Acyclic Dialkyl Sulfoxides and Derivatives
J. Drabowicz, J. Lewkowski, W. Kudelska, and T. Girek 123

39.3 Product Class 3: Alkanesulfinic Acids and Acyclic Derivatives
S. Braverman, M. Cherkinsky, and S. Levinger .. 187

39.4 Product Class 4: Acyclic Dialkyl Sulfoxides and Derivatives
J. L. García Ruano, M. B. Cid, A. M. Martín-Castro, and J. Alemán 245

39.5 Product Class 5: Alkanethiols
J. V. Comasseto and A. S. Guarezemini .. 391

39.6 Product Class 6: Acyclic Alkanethiolates

39.6.1 Product Subclass 1: Alkanethiolates of Group 1, 2, and 13–15 Metals
J. V. Comasseto and A. S. Guarezemini .. 413

39.6.2 Product Subclass 2: Alkanethiolates of Group 3–12 Metals
A. Polo and J. Real ... 437

39.7 Product Class 7: Acyclic Dialkyl Sulfoxides
S. Fujiwara and M. Toyofuku .. 469

39.8 Product Class 8: Acyclic Trialkyloxosulfonium and Trialkylsulfonium Salts and Derivatives
Y. Tang and X.-L. Sun ... 501

39.9 Product Class 9: Alkanesulfenic Acids and Acyclic Derivatives
J. Drabowicz, P. Kielbasiński, P. Łyżwa, and M. Mikołajczyk 543

39.10 Product Class 10: Acyclic Di- and Polysulfides
R. Sato and T. Kimura ... 573

39.11 Product Class 11: Thiiranes and Derivatives
M. Saito and J. Nakayama .. 589

39.12 Product Class 12: Thietanes, 1,2-Oxathietanes, and Derivatives
E. Block ... 659
<table>
<thead>
<tr>
<th>Section</th>
<th>Product Class</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>39.12.1</td>
<td>Product Subclass 1</td>
<td>Thietanes and Derivatives</td>
<td>E. Block</td>
<td>661</td>
</tr>
<tr>
<td>39.12.2</td>
<td>Product Subclass 2</td>
<td>1,2-Oxathietanes and Derivatives</td>
<td>J. Drabowicz and J. Lewkowski</td>
<td>711</td>
</tr>
<tr>
<td>39.12.3</td>
<td>Product Subclass 3</td>
<td>1,2-Dithietanes, 1,2-Thiazetidines, 1,2-Thiaphosphetanes, and Derivatives of Various Oxidation States</td>
<td>N. Kambe</td>
<td>727</td>
</tr>
<tr>
<td>39.13.1</td>
<td>Product Subclass 1</td>
<td>Cyclic Alkanesulfonic Acid Derivatives</td>
<td>R. Sato and T. Kimura</td>
<td>735</td>
</tr>
<tr>
<td>39.13.2</td>
<td>Product Subclass 2</td>
<td>Cyclic Dialkyl Sulfones and Derivatives</td>
<td>R. Sato and T. Kimura</td>
<td>745</td>
</tr>
<tr>
<td>39.13.3</td>
<td>Product Subclass 3</td>
<td>Cyclic Alkanesulfinic Acid Derivatives</td>
<td>R. Sato and T. Kimura</td>
<td>751</td>
</tr>
<tr>
<td>39.13.4</td>
<td>Product Subclass 4</td>
<td>Cyclic Dialkyl Sulfides</td>
<td>M. Segi</td>
<td>833</td>
</tr>
<tr>
<td>39.13.5</td>
<td>Product Subclass 5</td>
<td>Cyclic Alkanethiolates of Group 1, 2, and 13–15 Metals</td>
<td>N. Kambe</td>
<td>811</td>
</tr>
<tr>
<td>39.13.6</td>
<td>Product Subclass 6</td>
<td>Cyclic Alkanethiolates of Group 3–12 Metals</td>
<td>A. Polo and J. Real</td>
<td>813</td>
</tr>
<tr>
<td>39.13.7</td>
<td>Product Subclass 7</td>
<td>Cyclic Dialkyl Sulfides</td>
<td>M. Segi</td>
<td>833</td>
</tr>
<tr>
<td>39.13.8</td>
<td>Product Subclass 8</td>
<td>Cyclic Trialkyloxosulfonium and Trialkylsulfonium Salts and Derivatives</td>
<td>Y. Tang and X.-L. Sun</td>
<td>851</td>
</tr>
<tr>
<td>39.13.9</td>
<td>Product Subclass 9</td>
<td>Cyclic Alkanesulfenic Acid Derivatives</td>
<td>T. Wirth</td>
<td>879</td>
</tr>
<tr>
<td>39.13.10</td>
<td>Product Subclass 10</td>
<td>Cyclic Dialkyl Di- and Polysulfides</td>
<td>R. Sato and T. Kimura</td>
<td>885</td>
</tr>
<tr>
<td>39.14</td>
<td>Product Class 14</td>
<td>Alkaneselenonic Acids and Acyclic Derivatives</td>
<td>J. Drabowicz, P. Kielbasiński, P. łyżwa, and M. Mikołajczyk</td>
<td>903</td>
</tr>
<tr>
<td>39.15</td>
<td>Product Class 15</td>
<td>Acyclic Dialkyl Selenones and Derivatives</td>
<td>J. Drabowicz, J. Lewkowski, W. Kudelska, and T. Girek</td>
<td>909</td>
</tr>
<tr>
<td>39.16</td>
<td>Product Class 16</td>
<td>Alkaneseleninic Acids and Acyclic Derivatives</td>
<td>S. Braverman, M. Cherkin, and S. Levinger</td>
<td>915</td>
</tr>
</tbody>
</table>
Product Subclass 7: Cyclic Dialkyl Selenides
M. Segi ... 1069

Product Subclass 8: Cyclic Trialkylselenonium Salts and Derivatives
Y. Tang and X.-L. Sun .. 1083

Product Subclass 9: Cyclic Alkaneselenenic Acid Derivatives
T. Wirth ... 1093

Product Subclass 10: Cyclic Dialkyl Di- and Polyselenides
R. Sato and T. Kimura .. 1097

Product Class 27: Alkanetelluronic Acids and Acyclic Derivatives
J. Drabowicz, P. Kielbasiński, P. Łyzwa, and M. Mikołajczyk 1109

Product Class 28: Acyclic Dialkyl Tellurones and Derivatives
J. Drabowicz, J. Lewkowski, W. Kudelska, and T. Girek 1111

Product Class 29: Alkanetellurinic Acids and Acyclic Derivatives
S. Braverman, M. Cherkinsky, and S. Levinger 1117

Product Class 30: Acyclic Dialkyl Telluroxides and Derivatives
T. Shimizu and N. Kamigata 1127

Product Class 31: Alkanetellurols
J. V. Comasseto and A. S. Guarezemini 1137

Product Class 32: Acyclic Alkanetellurolates

Product Subclass 1: Alkanetellurolates of Group 1, 2, and 13–15 Metals
J. V. Comasseto and A. S. Guarezemini 1139

Product Subclass 2: Alkanetellurolates of Group 3–12 Metals
A. Polo and J. Real .. 1145

Product Class 33: Acyclic Dialkyl Tellurides
M. Segi ... 1163

Product Class 34: Acyclic Trialkyltelluronium Salts and Derivatives
Y. Tang and X.-L. Sun .. 1179

Product Class 35: Alkanetellurenic Acids and Acyclic Derivatives
T. Wirth ... 1193

Product Class 36: Acyclic Di- and Polytellurides
R. Sato and T. Kimura .. 1197

Product Class 37: Telluriranes and Derivatives
M. Saito and J. Nakayama .. 1203

Product Class 38: Telluretanes and Derivatives
E. Block ... 1205
39.39 Product Class 39: Tellurolanes, Larger Rings, and Derivatives of Various Oxidation States
R. Sato and T. Kimura ... 1207

39.39.1 Product Subclass 1: Cyclic Alkanetelluronic Acid Derivatives
R. Sato and T. Kimura ... 1209

39.39.2 Product Subclass 2: Cyclic Dialkyl Tellurones and Derivatives
R. Sato and T. Kimura ... 1211

39.39.3 Product Subclass 3: Cyclic Alkanetellurinic Acid Derivatives
R. Sato and T. Kimura ... 1213

39.39.4 Product Subclass 4: Cyclic Dialkyl Telluroxides and Derivatives
T. Shimizu and N. Kamigata ... 1215

39.39.5 Product Subclass 5: Cyclic Alkanetellurolates of Group 1, 2, and 13–15 Metals
N. Kambe ... 1217

39.39.6 Product Subclass 6: Cyclic Alkanetellurolates of Group 3–12 Metals
A. Polo and J. Real ... 1219

39.39.7 Product Subclass 7: Cyclic Dialkyl Tellurides
M. Segi ... 1225

39.39.8 Product Subclass 8: Cyclic Trialkyltelluronium Salts and Derivatives
Y. Tang and X.-L. Sun ... 1233

39.39.9 Product Subclass 9: Cyclic Alkanetellurolenic Acid Derivatives
T. Wirth ... 1243

39.39.10 Product Subclass 10: Cyclic Dialkyl Di- and Polytellurides
R. Sato and T. Kimura ... 1245

Keyword Index ... 1251
Author Index ... 1317
Abbreviations .. 1379
Table of Contents

Introduction
N. Kambe

39.1 Product Class 1: Alkanesulfonic Acids and Acyclic Derivatives
J. Drabowicz, P. Kiełbasiński, P. Łyżwa, A. Zając, and M. Mikołajczyk

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>39.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td>18</td>
</tr>
<tr>
<td>39.1.1.1</td>
<td>Method 1: Additions to Methylene sulfur tetrafluoride</td>
<td>18</td>
</tr>
<tr>
<td>39.1.1.2</td>
<td>Method 2: Addition of Sulfur Pentfluoride Halides to Alkenes</td>
<td>19</td>
</tr>
<tr>
<td>39.1.2</td>
<td>Product Subclass 2: Alkanesulfonyl Halides</td>
<td>19</td>
</tr>
<tr>
<td>39.1.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>20</td>
</tr>
<tr>
<td>39.1.2.2</td>
<td>Method 1: Sulfochlorination Reactions: Formation of the C—S Bond</td>
<td>20</td>
</tr>
<tr>
<td>39.1.2.3</td>
<td>Method 2: Synthesis from Sulfinic Acid Derivatives</td>
<td>22</td>
</tr>
<tr>
<td>39.1.2.4</td>
<td>Method 3: Synthesis from Divalent Organosulfur Derivatives</td>
<td>25</td>
</tr>
<tr>
<td>39.1.2.5</td>
<td>Method 4: Synthesis from Sulfonic Acids and Their Salts</td>
<td>30</td>
</tr>
<tr>
<td>39.1.2.6</td>
<td>Method 5: Synthesis from Sulfonic Anhydrides</td>
<td>35</td>
</tr>
</tbody>
</table>
39.1.2.1.6 Method 6: Ring Opening of Fluoro-1,2-oxathietane 2,2-Dioxides 35
39.1.2.1.7 Method 7: Synthesis from Sulfonyl Halides by Halide Ion Exchange 36
39.1.2.1.8 Methods 8: Miscellaneous Approaches ... 37

39.1.3 Product Subclass 3: Alkanesulfonic Acids ... 38
39.1.3.1 Synthesis of Product Subclass 3 ... 38
39.1.3.1.1 Method 1: Direct Sulfonation of Hydrocarbons 39
39.1.3.1.1.1 Variation 1: Reaction of Alkanes with Sulfuric Acid, Sulfur Trioxide, and Derivatives ... 39
39.1.3.1.1.2 Variation 2: Reaction of Alkanes with Sulfur Dioxide and Oxygen 39
39.1.3.1.1.3 Variation 3: Reactions between Unsaturated Hydrocarbons and Sulfuric Acid or Its Derivatives ... 40
39.1.3.1.1.4 Variation 4: Reaction of Alkenes with the Hydrogen Sulfite Ion 41
39.1.3.1.1.5 Variation 5: Photosensitized Reactions between Alkenes and Sulfur Dioxide 41
39.1.3.1.1.6 Variation 6: Palladium-Catalyzed Additions of Sulfur Dioxide to Alkenes 42
39.1.3.1.2 Method 2: Oxidation of Low-Valency Sulfur Derivatives 42
39.1.3.1.2.1 Variation 1: Oxidation of Thiols and Their Derivatives 42
39.1.3.1.2.2 Variation 2: Oxidation of Sulfinic Acids .. 43
39.1.3.1.3 Method 3: Reaction of Organometallic Reagents with Sulfur Trioxide Complexes ... 44
39.1.3.1.4 Method 4: Interconversions of Other Sulfonyl Derivatives 44
39.1.3.1.4.1 Variation 1: Hydrolysis of Sulfonyl Halides 44
39.1.3.1.4.2 Variation 2: Hydrolysis of Sulfonic Acid Esters 45
39.1.3.1.4.3 Variation 3: Ring Opening of Cyclic Sulfonates (Sultones) 45
39.1.3.1.4.4 Variation 4: Cleavage of Alkyl Perfluoroalkyl Sulfones 46
39.1.3.1.5 Method 5: Nucleophilic Substitution with Sulfite Anions 46
39.1.3.1.5.1 Variation 1: Reaction of Haloalkanes with Inorganic Sulfites 46
39.1.3.1.5.2 Variation 2: Reaction of Alkyl Sulfates and Sulfonates with Inorganic Sulfites 47
39.1.3.1.5.3 Variation 3: Ring Opening of Oxiranes and Aziridines with Sulfite Anions 48
39.1.3.2 Applications of Product Subclass 3 in Organic Synthesis 48
39.1.3.2.1 Method 1: Alkanesulfonic Acids as Catalysts for Condensation Reactions ... 48

39.1.4 Product Subclass 4: Alkanesulfonic Acid Esters 49
39.1.4.1 Synthesis of Product Subclass 4 .. 49
39.1.4.1.1 Method 1: Synthesis from Sulfonic Acids and Their Salts 49
39.1.4.1.1.1 Variation 1: Direct Esterification .. 49
39.1.4.1.1.2 Variation 2: Alkylation of a Sulfonate Anion 50
39.1.4.1.2 Method 2: Synthesis from Sulfonyl Halides 50
39.1.4.1.3 Method 3: Synthesis from Sulfonic Anhydrides 51
39.1.4.1.4 Method 4: Synthesis from Sulfonamides ... 52
39.1.4.1.5 Method 5: Synthesis from Diazocompounds and Sulfur Dioxide 53
39.1.4.1.6 Method 6: Synthesis from Sulenes ... 53
39.1.4.1.7 Method 7: Synthesis from Sulfinates and Sulfinic Esters 53
39.1.4.1.8 Method 8: Rearrangement of Sulfinates .. 54
39.1.4.1.8.1 Variation 1: [2,3]-Sigmatropic Rearrangements of Allyl Sulfinates 54
39.1.4.1.8.2 Variation 2: Rearrangements of Dialkyl Sulfinates 54
Table of Contents

39.1.4.1.9 Method 9: Synthesis from Alkenes and Sulfur Trioxide or Other Sulfuric Acid Derivatives .. 54
39.1.4.1.10 Method 10: Synthesis from Other Sulfonyl Derivatives 55
39.1.4.1.10.1 Variation 1: From Unsaturated Sulfonylates 55
39.1.4.1.10.2 Variation 2: By the Decarboxylation of (Alkoxysulfonyl)acetates 56
39.1.4.1.10.3 Variation 3: By the Functionalization of the S-Alkyl Group of Alkanesulfonic Acid Esters 56
39.1.4.2 Applications of Product Subclass 4 in Organic Synthesis 56
39.1.4.2.1 Method 1: Use as Alkylating Reagents 56
39.1.4.2.1.1 Variation 1: Reactions with Nitrogen Nucleophiles 56
39.1.4.2.1.2 Variation 2: Reactions with Oxygen Nucleophiles 57
39.1.4.2.1.3 Variation 3: Methylation at Sulfur or Selenium 57
39.1.4.2.1.4 Variation 4: Methylation of Organophosphorus Compounds 57
39.1.5 Product Subclass 5: Alkanesulfonic Anhydrides 58
39.1.5.1 Synthesis of Product Subclass 5 ... 58
39.1.5.1.1 Method 1: Synthesis of Symmetrical and Unsymmetrical Anhydrides of Alkanesulfonic Acids .. 58
39.1.5.1.2 Method 2: Synthesis of Mixed Anhydrides of Carboxylic and Alkanesulfonic Acids .. 58
39.1.5.1.2.1 Variation 1: Reaction of Carboxylic (Carbonic) Acids or Their Anions with Alkanesulfonyl Chlorides or Related Compounds 58
39.1.5.1.2.2 Variation 2: Reaction of Carboxylic Acid Chlorides with Alkanesulfonic Acids .. 58
39.1.5.1.2.3 Variation 3: Reaction of Trimethylsilyl Alkanesulfonates with Trifluoroacetic Anhydride .. 60
39.1.5.1.3 Method 3: Synthesis of Mixed Anhydrides of Alkanesulfonic and Organic Acids of Phosphorus .. 61
39.1.5.1.3.1 Variation 1: Reaction of Sulfonyl Derivatives with Trivalent Organophosphorus Compounds .. 61
39.1.5.1.3.2 Variation 2: Reaction of Sulfonyl Derivatives with Pentavalent Organophosphorus Compounds .. 62
39.1.6 Product Subclass 6: Alkanethiosulfonic Acids 63
39.1.6.1 Synthesis of Product Subclass 6 ... 63
39.1.6.1.1 Method 1: Synthesis from Sulfonyl Halides 63
39.1.6.1.2 Method 2: Reaction of Sulfur with Alkanesulfinates 64
39.1.7 Product Subclass 7: S-Alkyl and S-Aryl Alkanethiosulfonates 65
39.1.7.1 Synthesis of Product Subclass 7 ... 65
39.1.7.1.1 Method 1: Synthesis from Sulfonyl Halides 65
39.1.7.1.1.1 Variation 1: By Reactions with Thiols or Thiolates 65
39.1.7.1.1.2 Variation 2: Reductive Zinc Coupling 67
39.1.7.1.2 Method 2: Synthesis from Sulfinyl Chlorides 68
39.1.7.1.2.1 Variation 1: Coupling Reactions Mediated by Carboxamides 68
39.1.7.1.2.2 Variation 2: Coupling of Alkanesulfinyl Chlorides with Powdered Zinc 69
39.1.7.1.3 Method 3: Synthesis from Disulfides .. 69
39.1.7.1.3.1 Variation 1: Oxidation with Hydrogen Peroxide 69

Science of Synthesis Original Edition Volume 39
© Georg Thieme Verlag KG
39.1.7.1.3.2 Variation 2: Oxidation with Peroxy Acids 70
39.1.7.1.3.3 Variation 3: Oxidation with Other Oxidizing Reagents 71
39.1.7.1.3.4 Variation 4: Reactions with Sulfenyl Chlorides Generated In Situ 72
39.1.7.1.3.5 Variation 5: Reactions with Sodium Methanesulfinate 72
39.1.7.1.4 Method 4: Reaction between Dimethyl Sulfoxide and Chlorotrimethylsilane .. 73
39.1.7.1.5 Method 5: Alkylation of the Salts of Alkanethiosulfonic Acids 74

39.1.8 **Product Subclass 8: Alkanesulfonamides** ... 76
39.1.8.1 Synthesis of Product Subclass 8 ... 76
39.1.8.1.1 Method 1: Interconversion of Sulfonyl Derivatives 76
39.1.8.1.1.1 Variation 1: Reaction of Isolated Sulfonyl Chlorides with Ammonia or Amines 77
39.1.8.1.1.2 Variation 2: Reaction of In Situ Generated Sulfonyl Halides with Amines 81
39.1.8.1.1.3 Variation 3: Reactions between the N-Chloroamine Salts of Alkanesulfonamides and Alkenes 82
39.1.8.1.1.4 Variation 4: Catalytic N-Sulfonylaziridination of Alkanes with Sulfonyl Chlorides in the Presence of a Nitridomanganese Complex 84
39.1.8.1.1.5 Variation 5: Catalytic N-Sulfonylaziridination of Alkenes with an N-Sulfonylimino(phenyl)-3-iodane 85
39.1.8.1.1.6 Variation 6: Reaction of Allenes with N-[2-(Trimethylsilyl)ethanesulfon-yny]alkanimines 87
39.1.8.1.1.7 Variation 7: Reactions between Benzotriazole Sulfonamides and Amines 87
39.1.8.1.1.8 Variation 8: Reaction of 1H-Benzotriazol-1-yl Methanesulfonate with Primary Amines 88
39.1.8.1.1.9 Variation 9: Reduction of Sulfonyl Azides 88
39.1.8.1.1.10 Variation 10: Reactions between Methylsulfamoyl Chloride and Silyl Enol Ethers 89
39.1.8.1.1.11 Variation 11: Cyclization of Alkanesulfonamides 90
39.1.8.1.1.12 Variation 12: Reaction of Sulfonyl Anions with Epoxides 92
39.1.8.1.1.13 Variation 13: Condensation of Alkanesulfonamides with Carboxylic Acids 93
39.1.8.1.1.14 Variation 14: Reaction of Alkyl α-Disulfones with Amines 94
39.1.8.1.2 Method 2: Reaction of Sulfinyl Chloride with Hydroxylamines 94
39.1.8.1.3 Method 3: Reaction of Sulfur Dioxide with Diazo Compounds in the Presence of Amines 95
39.1.8.1.4 Method 4: Oxidation of Low-Valency Sulfur Derivatives 95
39.1.8.1.4.1 Variation 1: Oxidation of Sulfenamides 95
39.1.8.1.4.2 Variation 2: Oxidation of Sulfinamides 96

39.1.9 **Product Subclass 9: Alkanesulfonohydrazides** 97
39.1.9.1 Synthesis of Product Subclass 9 ... 97
39.1.9.1.1 Method 1: Reaction of Alkanesulfonates with Azodicarboxylates 97
39.1.9.1.2 Method 2: Reaction of Sulfonyl Chlorides with Hydrazine Derivatives 98
39.1.9.1.3 Method 3: Oxidative Coupling of N-Substituted Methanesulfonamides 99

39.1.10 **Product Subclass 10: N-Haloalkanesulfonamides and Their Salts** 100
39.1.10.1 Synthesis of Product Subclass 10 .. 100
39.1.10.1.1 Method 1: Halogenation of Alkanesulfonamides 100
Variation 1: Chlorination with tert-Butyl Hypochlorite 100
Variation 2: Chlorination with Sodium Hypochlorite 101
Variation 3: Synthesis of N-Chloro- and N-Bromoperfluoroalkanesulfonamides .. 101
Variation 4: Fluorination of N-Substituted Trifluoromethanesulfonamides 102

Product Subclass 11: Alkanesulfonyl N=C=X Derivatives 102

Method 1: Synthesis of Alkanesulfonyl Isocyanates 102
Variation 1: From Alkanesulfonamides and Carbonyl Group Precursors 102
Variation 2: From Chlorosulfonyl Isocyanate and Alkenes 103
Variation 3: By Thermolysis of Trimethylsilylated Alkanesulfonyl Carbamates ... 103
Variation 4: By Reactions between Chlorosulfonyl Isocyanate and Tetraalkylstannanes ... 104

Method 2: Synthesis of Alkanesulfonyl Isothiocyanates 104

Product Subclass 12: Alkanesulfonyl Azides ... 104

Method 1: Reaction of Alkanesulfonyl Halides with Alkali Metal Azides or Tetramethylguanidinium Azide 104

Product Subclass 13: Alkanesulfonimidic Acid Derivatives 106

Method 1: Synthesis of Alkanesulfonimidoyl Halides 106
Method 2: Synthesis of Alkanesulfonimidic Acid Esters 109
Method 3: Synthesis of Alkanesulfonimidic Acid Amides 109

Product Subclass 14: Alkanesulfonodiimidic Acid Derivatives 111

Method 1: Synthesis of N,N',N''-Trialkylalkanesulfonodiimidamides 111

Product Class 2: Acyclic Dialkyl Sulfones and Derivatives
J. Drabowicz, J. Lewkowski, W. Kudelska, and T. Girek

Product Class 2: Acyclic Dialkyl Sulfones and Derivatives 123

Product Subclass 1: Dialkylsulfur Tetrahalides 123

Synthesis of Product Subclass 1 .. 124
Method 1: Reaction of Dialkyl Sulfides with Trifluoromethyl Hypofluorite or Elemental Halogens 124

Product Subclass 2: Dialkyl Sulfones .. 124

Synthesis of Product Subclass 2 ... 125
Method 1: Alkylation of Sulfinic Acid Anions with Cleavage of a C–X or C–H Bond .. 125
Variation 1: Alkylation of Alkali Metal Salts under Homogeneous Conditions 125
<table>
<thead>
<tr>
<th>Variation</th>
<th>Reaction Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1.2</td>
<td>Alkylation under Phase-Transfer Catalysis Conditions</td>
<td>126</td>
</tr>
<tr>
<td>2.1.1.3</td>
<td>Alkylation in Ionic Liquids</td>
<td>127</td>
</tr>
<tr>
<td>2.1.1.4</td>
<td>Dialkylation of the Sulfite Dianion</td>
<td>127</td>
</tr>
<tr>
<td>2.1.1.5</td>
<td>Alkylation of Sulfonic Acid Anions Generated by Electrochemical Oxidation of Disulfides</td>
<td>128</td>
</tr>
<tr>
<td>2.1.1.6</td>
<td>Method 2: Addition of Sulfonic Acids to Michael Acceptors</td>
<td>128</td>
</tr>
<tr>
<td>2.1.1.7</td>
<td>Method 3: Reactions of Sulfonic Acid Derivatives</td>
<td>129</td>
</tr>
<tr>
<td>2.1.1.8</td>
<td>Reaction of Sulfonyl Halides with Alkenes or Alkynes</td>
<td>129</td>
</tr>
<tr>
<td>2.1.1.9</td>
<td>Variation 2: Free-Radical Reaction of Sulfonyl Halides with Unsaturated Compounds</td>
<td>130</td>
</tr>
<tr>
<td>2.1.1.10</td>
<td>Variation 3: Reaction of Sulfonyl Halides with Organometallic Reagents</td>
<td>131</td>
</tr>
<tr>
<td>2.1.1.11</td>
<td>Variation 4: Reaction of β-Sultones with Grignard Reagents</td>
<td>132</td>
</tr>
<tr>
<td>2.1.1.12</td>
<td>Method 4: Reactions of Sulfur Dioxide</td>
<td>132</td>
</tr>
<tr>
<td>2.1.1.13</td>
<td>Variation 1: Photochemical Reaction with Alkanes</td>
<td>132</td>
</tr>
<tr>
<td>2.1.1.14</td>
<td>Variation 2: Four-Component Coupling with Silyl Enol Ethers, Dienes, and Haloalkanes</td>
<td>133</td>
</tr>
<tr>
<td>2.1.1.15</td>
<td>Variation 3: Reaction with Silyl Enol Ethers or Allylmethane</td>
<td>135</td>
</tr>
<tr>
<td>2.1.1.16</td>
<td>Method 5: Oxidation of Sulfides or Sulfoxides</td>
<td>135</td>
</tr>
<tr>
<td>2.1.1.17</td>
<td>Variation 1: Oxidation by Hydrogen Peroxide</td>
<td>135</td>
</tr>
<tr>
<td>2.1.1.18</td>
<td>Variation 2: Oxidation with Peroxy Acids and Other Peroxo Derivatives</td>
<td>136</td>
</tr>
<tr>
<td>2.1.1.19</td>
<td>Variation 3: Oxidation by Miscellaneous Oxidants</td>
<td>138</td>
</tr>
<tr>
<td>2.1.1.20</td>
<td>Method 6: Rearrangement of Sulfonic Acid Derivatives</td>
<td>139</td>
</tr>
<tr>
<td>2.1.1.21</td>
<td>Method 7: Reactions of Oxo–Oxy Sulfoxonium Ylides</td>
<td>140</td>
</tr>
<tr>
<td>2.1.1.22</td>
<td>Method 8: Modification of the Alkyl Side Chains</td>
<td>141</td>
</tr>
<tr>
<td>2.1.1.23</td>
<td>Variation 1: Alkylation of the α-Carbanion of Sulfones</td>
<td>141</td>
</tr>
<tr>
<td>2.1.1.24</td>
<td>Variation 2: Radical Addition of Iodomethyl Sulfofones to Alkenes or Alkynes</td>
<td>142</td>
</tr>
<tr>
<td>2.1.1.25</td>
<td>Variation 3: Addition to Vinyl Sulfofones</td>
<td>143</td>
</tr>
<tr>
<td>2.1.1.26</td>
<td>Variation 4: Alkylation of Benzothiazolyl Sulfofones</td>
<td>144</td>
</tr>
<tr>
<td>2.1.1.27</td>
<td>Variation 5: Alkylation at a Remote Group of the Side Chain of Sulfofones</td>
<td>145</td>
</tr>
<tr>
<td>2.1.1.28</td>
<td>Variation 6: Cross Coupling between a Haloalkyl Sulfofone and an Organoborane</td>
<td>145</td>
</tr>
<tr>
<td>2.1.1.29</td>
<td>Variation 7: Condensation with Amines</td>
<td>145</td>
</tr>
<tr>
<td>2.1.1.30</td>
<td>Variation 8: Carboxylic Formation by Double Alkylation at the α-Carbon of Sulfofones</td>
<td>146</td>
</tr>
<tr>
<td>2.1.1.31</td>
<td>Variation 9: Bromination of a Vinyl Sulfofone</td>
<td>146</td>
</tr>
<tr>
<td>2.1.1.32</td>
<td>Variation 10: Friedel–Crafts Arylation</td>
<td>147</td>
</tr>
<tr>
<td>2.1.1.33</td>
<td>Variation 11: Addition Reactions of Allylic Sulfofones</td>
<td>147</td>
</tr>
<tr>
<td>2.1.1.34</td>
<td>Variation 12: Epoxidation of a Vinyl Sulfofone</td>
<td>147</td>
</tr>
<tr>
<td>2.1.1.35</td>
<td>Variation 13: Degradation of a Macroyclic Sulfofone</td>
<td>148</td>
</tr>
<tr>
<td>2.1.1.36</td>
<td>Variation 14: cis–trans Isomerization of 2-Isopropyl-5-mesityl-1,3-dioxane</td>
<td>148</td>
</tr>
<tr>
<td>2.1.1.37</td>
<td>Variation 15: Diels–Alder Reaction</td>
<td>148</td>
</tr>
<tr>
<td>2.1.1.38</td>
<td>Variation 16: Base-Catalyzed Rearrangement of a Polycycle-Substituted Alkyl Sulfofone</td>
<td>149</td>
</tr>
<tr>
<td>2.1.1.39</td>
<td>Variation 17: Hydrolysis of Tetrachloro-1,3-dithietane 1,1,3,3-Tetraoxide</td>
<td>149</td>
</tr>
<tr>
<td>2.1.1.40</td>
<td>Variation 18: Acylation of α-Sulfonoyl Carbanions</td>
<td>150</td>
</tr>
<tr>
<td>2.1.1.41</td>
<td>Variation 19: Reaction of α-Sulfonoyl Carbanions with Carbonyl Compounds</td>
<td>150</td>
</tr>
<tr>
<td>2.1.1.42</td>
<td>Variation 20: Base-Catalyzed Elimination Reaction of β-Hydroxy Sulfofones</td>
<td>151</td>
</tr>
</tbody>
</table>
Table of Contents

39.2.1.8.21 Variation 21: Cleavage of a Double Bond by Hydrolysis of Tetrakis(alkylsulfonyl)ethenes .. 151
39.2.1.8.22 Variation 22: Pinacol Coupling by Reduction with a Vanadium(III) Reagent ... 152
39.2.1.8.23 Variation 23: Base-Catalyzed Cyclopropanation of γ-Chloropropyl Sulfones ... 152
39.2.2 Applications of Product Subclass 2 in Organic Synthesis ... 152
39.2.2.21 Method 1: Cyclization of Bis(chloromethyl) Sulfone with Cinnamaldehyde ... 152
39.2.2.22 Method 2: Alkene Synthesis by Coupling of Sulfone α,α'-Dicarbanions ... 153
39.2.3 Product Subclass 3: S,S-Dialkylsulfoximides .. 154
39.2.3.1 Synthesis of Product Subclass 3 ... 155
39.2.3.1.1 Method 1: Oxidation of Sulfinimides .. 155
39.2.3.1.1.1 Variation 1: Oxidation with Potassium Permanganate .. 155
39.2.3.1.1.2 Variation 2: Oxidation with Peroxy Compounds ... 155
39.2.3.1.1.3 Variation 3: Oxidation with Halogen-Containing Compounds ... 156
39.2.3.1.1.4 Variation 4: Oxidation with Dioxiranes ... 156
39.2.3.1.2 Method 2: Imination of Sulfoxides .. 157
39.2.3.1.2.1 Variation 1: Reaction with Hydrazoic Acid .. 157
39.2.3.1.2.2 Variation 2: Reaction with Azides .. 158
39.2.3.1.2.3 Variation 3: Reaction with Chloramine-T or Its Analogues ... 159
39.2.3.1.2.4 Variation 4: Reaction with 2-[(Aminooxy)sulfonyl]-1,3,5-trimethylbenzene ... 159
39.2.3.1.2.5 Variation 5: Imination with Primary Amines in the Presence of tert-Butyl Hypochlorite ... 159
39.2.3.1.2.6 Variation 6: Imination with Primary Amines in the Presence of Lead(IV) Acetate .. 160
39.2.3.1.2.7 Variation 7: Rhodium-Catalyzed Imination of Sulfoxides Using (Diacetoxyiodo)benzene .. 160
39.2.3.1.2.8 Variation 8: Electrochemical Imination of Sulfoxides ... 161
39.2.3.1.2.9 Variation 9: Reaction of Dialkyl Sulfoxides with Quinone Monoimides ... 162
39.2.3.1.3 Method 3: Cleavage of N-Substituent Groups ... 162
39.2.3.1.3.1 Variation 1: N-Tosyl Group Cleavage ... 162
39.2.3.1.3.2 Variation 2: N-(tert-Butyloxycarbonyl) Group Cleavage ... 163
39.2.3.1.3.3 Variation 3: Optical Resolution of S,S-Dialkylsulfoximides ... 163
39.2.3.1.4 Method 4: Functionalization at the Nitrogen Atom .. 164
39.2.3.1.4.1 Variation 1: N-Arylation of Sulfoximides ... 164
39.2.3.1.4.2 Variation 2: N-Acylation and Related Reactions .. 165
39.2.3.1.4.3 Variation 3: Functionalization with Heteroatom-Containing Reagents ... 166
39.2.3.2 Applications of Product Subclass 3 in Organic Synthesis .. 167
39.2.3.2.1 Method 1: Reactions of α-Anions of S,S-Dialkyl-N-tosylsulfoximides .. 167
39.2.3.2.1.1 Variation 1: Addition to Carbonyl Groups .. 167
39.2.3.2.1.2 Variation 2: Addition to Enones .. 167
39.2.3.2.1.3 Variation 3: Addition to Imines To Form β-Aminosulfoximides ... 169
39.2.3.2.1.4 Variation 4: Intramolecular Cyclization in the Preparation of 1-Methyl-1,2-thiazine 1-Oxide Derivatives 170
39.2.3.2.1.5 Variation 5: Synthesis of Diazenes ... 172
39.2.4 Product Subclass 4: S,S-Dialkyl sulfonodiimines ... 173
39.2.4.1 Synthesis of Product Subclass 4 ... 173
39.2.4.1.1 Method 1: Bisimination of Sulfides .. 173
39.2.4.1.2 Method 2: Imination of Sulfimides .. 173
39.2.4.1.3 Method 3: Functionalization of the Nitrogen Atoms 174
39.2.4.1.3.1 Variation 1: N-Acylation of Sulfonediimines 174
39.2.4.1.3.2 Variation 2: N-Arylation and Related Reactions of Sulfonediimines ... 174
39.2.4.2 Applications of Product Subclass 4 in Organic Synthesis 175
39.2.4.2.1 Method 1: Synthesis of Aromatic Nitriles 175
39.2.4.2.2 Method 2: Synthesis of 1,6,2,6-thiadiazines 176
39.2.4.2.2.1 Variation 1: Reaction of S-Alkyl-S-benzyl Sulfonediimines with Activated Carbonyl Substrates 176
39.2.4.2.2.2 Variation 2: Reaction of S,S-Dialkyl Sulfonediimines with Ketene Dithioacetals ... 177
39.2.4.2.3 Method 3: Synthesis of 1,6,2,4-thiadiazines 178
39.2.4.2.4 Method 4: Synthesis of 1,6,2,4-thiatriazines 178
39.2.4.2.4.1 Variation 1: Reaction of S-Alkyl-S-benzyl Sulfonediimines with N-Cyanoimidates ... 179
39.2.4.2.4.2 Variation 2: Reaction of S,S-Dimethyl Sulfonediimines with Cyanimidocarbonates ... 179
39.2.4.2.5 Method 5: Synthesis of 1,6,2,5-thiadiazoles 180

39.2.4.3 Method 3: Synthesis of I1,6,2,6-thiadiazines 176

39.3 Product Class 3: Alkanesulfinic Acids and Acyclic Derivatives
S. Braverman, M. Cherkinsky, and S. Levinger

39.3.1 Product Subclass 1: Alkylsulfur Trihalides 187
39.3.1.1 Synthesis of Product Subclass 1 ... 187
39.3.1.1.1 Method 1: Synthesis of Methylsulfur Trifluoride 187
39.3.1.1.2 Method 2: Synthesis of Alkylsulfur Trichlorides 188
39.3.1.1.2.1 Variation 1: Reaction of Symmetrical Disulfides with Chlorine ... 188
39.3.1.1.2.2 Variation 2: Reaction of Thiols with Chlorine 188
39.3.2 Product Subclass 2: Alkanesulfinyl Halides 188
39.3.2.1 Synthesis of Product Subclass 2 ... 189
39.3.2.1.1 Method 1: Direct Functionalization of Adamantane 189
39.3.2.1.2 Method 2: Synthesis from Thiols .. 189
39.3.2.1.2.1 Variation 1: Using Sulfonyl Chloride and Acetic Acid 190
39.3.2.1.2.2 Variation 2: Using Sulfonyl Chloride and Trimethylsilyl Acetate ... 190
39.3.2.1.3 Method 3: Synthesis from Sulfinic Acids or Sulfinate Salts 191
39.3.2.1.3.1 Variation 1: Via a Sulfinate Generated In Situ from a Grignard Compound 191
39.3.2.1.4 Method 4: Synthesis from Symmetrical Disulfides 192
39.3.2.1.5 Method 5: Synthesis from Sulfenyl Compounds 194
39.3.2.1.5.1 Variation 1: Halogenolysis of Thiosulfinate Esters 194
39.3.2.1.5.2 Variation 2: Oxidative Halogenolysis of S-Alkyl Thioacetates ... 194
39.3.2.1.5.3 Variation 3: Oxidation of Alkanesulfenyl Chlorides 195
39.3.2.1.6 Method 6: Synthesis from 2-(Trimethylsilyl)ethyl Sulfoxides 196
39.3.3 **Product Subclass 3: Alkanesulfonic Acids and Salts** .. 196

39.3.3.1 Synthesis of Product Subclass 3 ... 197

39.3.3.1.1 Method 1: Oxidation of Alkanethiols .. 197

39.3.3.1.2 Method 2: Hydrolysis of Alkanesulfenyl Chlorides and Alkanesulfonic Acid Esters ... 198

39.3.3.1.3 Method 3: Oxidative Cleavage of Dialkyl Disulfides 199

39.3.3.1.4 Method 4: Hydrolysis of Sulfanimides .. 200

39.3.3.1.5 Method 5: Reduction of Alkanesulfonyl Halides ... 200

39.3.3.1.5.1 Variation 1: From Alkanesulfonyl Chlorides by Reduction with Alkali Metal Sulfites ... 201

39.3.3.1.5.2 Variation 2: From Alkanesulfonyl Chlorides by Reduction with 4-Toluenethiol ... 201

39.3.3.1.5.3 Variation 3: Additional Procedures .. 202

39.3.3.1.6 Method 6: Reductive Cleavage of Alkanethiosulfonates 203

39.3.3.1.6.1 Variation 1: Cleavage of Acyclic Alkanethiosulfonates 203

39.3.3.1.6.2 Variation 2: Cleavage of Cyclic Alkanethiosulfonates 204

39.3.3.1.7 Method 7: Reductive Cleavage of Sulfones .. 204

39.3.3.1.8 Method 8: Base-Induced Cleavage of Activated Sulfones 205

39.3.3.1.9 Method 9: Ring Opening of Thiirane 1,1-Dioxides and Other Cyclic Sulfones ... 208

39.3.3.1.10 Method 10: Insertion of Sulfur Dioxide into the Carbon—Metal Bond of Organometallic Reagents ... 209

39.3.3.1.10.1 Variation 1: Reaction with Organolithium and Grignard Reagents 209

39.3.3.1.10.2 Variation 2: Reaction with Organoaluminum Reagents 210

39.3.3.1.11 Method 11: Addition of Sulfur Dioxide to Alkenes 210

39.3.3.1.12 Method 12: Synthesis with Retention of the Sulfinate Group (Salt-to-Acid Transformation) .. 211

39.3.4 **Product Subclass 4: Alkanesulfonic Acid Esters** ... 211

39.3.4.1 Synthesis of Product Subclass 4 ... 212

39.3.4.1.1 Method 1: Esterification of Sulfinic Acids and Sulfinate Anions 212

39.3.4.1.1.1 Variation 1: Using Alcohols ... 212

39.3.4.1.1.2 Variation 2: Using Hard Alkylating Agents ... 212

39.3.4.1.2 Method 2: Nucleophilic Substitution of Sulfinyl Chlorides 213

39.3.4.1.2.1 Variation 1: Reaction of Alkanesulfinyl Chlorides with Alcohols 213

39.3.4.1.2.2 Variation 2: Reaction of Alkanesulfinyl Chlorides with Alkoxytrimethylsilanes ... 215

39.3.4.1.3 Method 3: Oxidation of Alkanesulfenyl Chlorides and Alkanethiols 216

39.3.4.1.4 Method 4: Oxidative Alkylation of Dialkyl Disulfides 217

39.3.4.1.4.1 Variation 1: Oxidation of Disulfides with N-Bromosuccinimide 217

39.3.4.1.4.2 Variation 2: Via In Situ Formation of Alkanesulfinyl Chlorides from Dialkyl Disulfides ... 218

39.3.4.1.5 Method 5: Oxidation of Alkanesulfenic Acid Esters 219

39.3.4.1.6 Method 6: Cleavage of Dialkyl Sulfoxylates ... 220

39.3.4.1.7 Method 7: Cleavage of the S—N Bond of Alkenesulfinamides 222

39.3.4.1.8 Method 8: Reductive Esterification of Alkanesulfonyl Chlorides and Other Alkanesulfonic Acid Derivatives .. 223
Method 9: Cleavage of the S–S Bond of Alkanethiosulfonates and Alkyl Alkysulfinyl Sulfones

Method 10: Substitution of Dialkyl Sulfoxites and Chlorosulfite Esters

Method 11: Synthesis with Retention of the Sulfinic Sulfinate Group (Transesterification)

Product Subclass 5: Alkanesulfonic Anhydrides

Product Subclass 6: Alkylthiosulfino Transition-Metal Complexes

Product Subclass 7: Alkanethiosulfonic Acid Esters

Product Subclass 8: Alkanesulfamicides

Product Class 4: Acyclic Dialkyl Sulfoxides and Derivatives

J. L. García Ruano, M. B. Cid, A. M. Martín-Castro, and J. Alemán
39.4.2.1.1 Method 1: Synthesis from Alkanesulfenic Acid Derivatives

39.4.2.1.1.1 Variation 1: Addition of Sulfenic Acids to Alkenes

39.4.2.1.1.2 Variation 2: Rearrangement of Sulfenic Acid Esters

39.4.2.1.1.3 Variation 3: Electrophilic Addition to Sulfenic Acid Salts

39.4.2.1.2 Method 2: Synthesis from Sulfinyl Derivatives

39.4.2.1.2.1 Variation 1: From Thionyl Chloride or Related Compounds

39.4.2.1.2.2 Variation 2: From Alkanesulfonic Acid Derivatives

39.4.2.1.3 Method 3: Oxidation of Dialkyl Sulfides

39.4.2.1.3.1 Variation 1: Using Oxygen

39.4.2.1.3.2 Variation 2: Using Hydrogen Peroxide

39.4.2.1.3.3 Variation 3: Using Peroxides

39.4.2.1.3.4 Variation 4: Using Peroxy Acids

39.4.2.1.3.5 Variation 5: Using Halogen Derivatives

39.4.2.1.3.6 Variation 6: Using Nitrogen Reagents

39.4.2.1.3.7 Variation 7: Using Other Oxidizing Reagents

39.4.2.1.4 Method 4: Synthesis from Other Sulfur Derivatives

39.4.2.1.4.1 Variation 1: From Sulfonium Salts

39.4.2.1.4.2 Variation 2: From Sulfimides

39.4.2.1.4.3 Variation 3: From Organosulfur(VI) Compounds

39.4.2.1.4.4 Variation 4: From Sulfoxonium Ylides

39.4.2.1.4.5 Variation 5: From Thioketone S-Oxides

39.4.2.2 Optically Active Dialkyl Sulfoxides

39.4.2.2.1 Method 1: Synthesis from Sulfinyl Derivatives

39.4.2.2.2 Method 2: Oxidation of Dialkyl Sulfides

39.4.2.2.3 Method 3: Resolution of Racemic Mixtures

39.4.2.3 Applications of Product Subclass 2 in Organic Synthesis

39.4.2.3.1 Method 1: Oxidation of Alcohols by Dimethyl Sulfoxide and Dicyclohexylcarbodiimide

39.4.2.3.2 Method 2: Oxidation of Alcohols by Dimethyl Sulfoxide and Oxalyl Chloride (Swern Oxidation)

39.4.2.3.3 Method 3: Oxidation by Dimethyl Sulfoxide in the Presence of Other Activating Agents
39.4.2.4 Method 4: Oxidation of Organic Halides and Sulfonates with Dimethyl Sulfoxide .. 348
39.4.2.5 Method 5: The Halogen–Dimethyl Sulfoxide System as an Oxidizing Reagent .. 349
39.4.2.6 Method 6: Oxidation of Other Functional Groups by Dimethyl Sulfoxide ... 351
39.4.2.7 Method 7: Epoxide Ring-Opening Reactions by Dimethyl Sulfoxide ... 352
39.4.3 Product Subclass 3: Acyclic S,S-Dialkylsulfimides ... 352
39.4.3.1 Synthesis of Product Subclass 3 .. 353
39.4.3.1.1 Optically Inactive S,S-Dialkylsulfimides .. 353
39.4.3.1.1.1 Method 1: Oxidative Amination of Sulfides ... 353
39.4.3.1.1.2 Variation 1: Reaction with N-Halo Compounds 353
39.4.3.1.1.3 Variation 2: Reaction with Azides .. 359
39.4.3.1.1.4 Variation 3: Reaction with Other Sources of Electrophilic Nitrogen 361
39.4.3.1.1.5 Method 2: Amination of Sulfoxides .. 362
39.4.3.1.1.6 Variation 1: Reaction with Compounds Containing an Amino Group 362
39.4.3.1.1.7 Variation 2: Reaction with Heterocumulenes 365
39.4.3.1.1.8 Method 3: Synthesis of N-Substituted S,S-Dialkylsulfimides 365
39.4.3.1.2 Optically Active S,S-Dialkylsulfimides .. 366
39.4.3.2 Applications of Product Subclass 3 in Organic Synthesis .. 367
39.4.3.2.1 Method 1: Synthesis of Sulfur Derivatives ... 367
39.4.3.2.1.1 Variation 1: Reduction To Form Sulfides and Amines 367
39.4.3.2.1.2 Variation 2: Synthesis of Sulfoximides ... 369
39.4.3.2.1.3 Variation 3: Synthesis of Other Organosulfur Compounds 369
39.4.3.2.2 Method 2: Synthesis of Heterocycles ... 370
39.4.3.2.2.1 Variation 1: Transformation via Nitrene Intermediates by Photolysis and Thermolysis .. 370
39.4.3.2.2.2 Variation 2: Reactions of Sulfimides with Electrophiles 371
39.4.3.2.2.3 Variation 3: Methylation of Heterocycles via S,S-Dialkylsulfimides 374
39.4.3.2.2.4 Variation 4: Conversion of Amines into Nitroso and Nitro Compounds ... 374
39.5 Product Class 5: Alkanethiols
J. V. Comasseto and A. S. Guarezemini
39.5 Product Class 5: Alkanethiols 391
39.5.1 Synthesis of Product Class 5 .. 391
39.5.1.1 Method 1: Insertion of Elemental Sulfur into an Alkyl Grignard Reagent Followed by Reaction with an Acid 391
39.5.1.2 Method 2: Reaction of an Alkylating Agent with a Nucleophilic Sulfur Species Followed by Hydrolysis or Reduction 391
39.5.1.2.1 Variation 1: Reaction of Alkylating Agents with Hydrosulfides or Sodium Thiosulfate Followed by Acidic Hydrolysis 392
39.5.1.2.2 Variation 2: Transformation of Alcohols into Alkanethiols 394
39.5.1.2.3 Variation 3: Thiols from Dithiocarbonates, Thioacetates, or Related Compounds .. 395
39.5.1.2.4 Variation 4: Alkanethiols from Thiononium Salts or Related Compounds ... 398
39.5.1.3 Method 3: Reduction of Alkanesulfonyl Chlorides .. 399
39.5.1.4 Method 4: Alkanethiols from Alkenes .. 399
39.5.1.4.1 Variation 1: Reaction of Alkenes with Hydrogen Sulfide 399
39.5.1.4.2 Variation 2: Reaction of Alkenes with Thioacetic Acid or Thiols Followed by Transformation of the Products into Alkanethiols .. 400
39.5.1.4.3 Variation 3: Reaction of Thiocarbonyl Compounds with Alkenes Followed by Cleavage of the Adduct ... 400
39.5.1.5 Method 5: Reduction of Thiocyanates .. 401
39.5.1.6 Method 6: Reduction of Disulfides ... 401
39.5.1.6.1 Variation 1: By Metals .. 402
39.5.1.6.2 Variation 2: By Complex Metal Hydrides .. 402
39.5.1.6.3 Variation 3: By Trisubstituted Phosphines .. 403
39.5.1.7 Method 7: C—S Bond Cleavage .. 403
39.5.1.7.1 Variation 1: Aminolysis of Thiiranes .. 403
39.5.1.7.2 Variation 2: Reductive Cleavage of C—S Bonds .. 404
39.5.1.8 Method 8: Alkanethiols from Heterocyclic Compounds 405

39.6 Product Class 6: Acyclic Alkanethiolates

39.6.1 Product Subclass 1: Alkanethiolates of Group 1, 2, and 13–15 Metals
J. V. Comasseto and A. S. Guarezemini

39.6.1 Synthesis of Product Subclass 1 ... 413
39.6.1.1 Arsenic Alkanethiolates ... 413
39.6.1.1.1 Method 1: Reaction of Arsenic Halides with Alkanethiols or Alkanethiolates ... 413
39.6.1.1.2 Method 2: Reaction of Arsenoxides with Alkanethiols 414
39.6.1.1.3 Method 3: Reaction of Aminoarsines with Alkanethiols 414
39.6.1.1.4 Method 4: Reaction of Tetraalkyldiarsines with Dialkyl Disulfides 415
39.6.1.1.5 Method 5: Reaction of Arsenic(III) Fluoride with (tert-Butylsulfanyl)trimethylsilane ... 415
39.6.1.2 Antimony Alkanethiolates ... 415
39.6.1.2.1 Method 1: Reaction of Antimony(III) Chloride with Alkanethiols or Alkanethiolates ... 416
39.6.1.2.2 Method 2: Reaction of Antimony(III) Fluoride with (tert-Butylsulfanyl)trimethylsilane ... 416
39.6.1.2.3 Method 3: Transmetalation Reactions of Zirconocene Metalloccycles and Antimony Halides ... 416
39.6.1.3 Bismuth Alkanethiolates ... 417
39.6.1.3.1 Method 1: Reaction of Bismuth Halides, Alkoxides, and Nitrates with Alkanethiols ... 417
39.6.1.3.2 Method 2: Reaction of Bismuth(III) Fluoride with (tert-Butylsulfanyl)trimethylsilane ... 417
39.6.1.4 Silicon Alkanethiolates ... 418
Method 1: Reaction of Chlorosilanes with Alkanethiols or Alkanethiolates 418
Method 2: Alkylation of Lithium Silicon Thiolates 419
Method 3: Cleavage of S—C Bonds of Alkyl Sulfides 419
Method 4: Reaction of a Thiacarbonyl Compound with a Silylene 420
Germanium Alkanethiolates 420
Method 1: Reaction of Germyl Halides and Oxides with Alkanethiolates 420
Method 2: Reaction of Halogermanes with Tetrakis(methanethiolato)aluminate 421
Tin Alkanethiolates 421
Method 1: Reaction of Organotin Halides with Alkanethiols in the Presence of a Base 421
Method 2: Thiolysis of Alkytln Alkoxides 422
Lead Alkanethiolates 422
Method 1: Reaction of Triorganolead Chlorides or Hydroxides with Alkanethiols or Lead(II) Thiolates 422
Method 2: Disproportionation of Diplumbanes with Dialkyl Disulfides 423
Boron Alkanethiolates 423
Method 1: Reaction of Boranes with Alkanethiols 423
Method 2: Reaction of Haloboranes with Alkanethiolates or Alkali Metal Thiolates 424
Aluminum Alkanethiolates 424
Method 1: Reaction of Trialkylaluminums with Alkanethiols 424
Method 2: Reaction of Aluminum Halides and Amides with Alkanethiols or Sodium Alkanethiolates 425
Method 3: Reaction of Piperidinylaluminum Halides with Lithium Alkanethiolates 425
Method 4: Reaction of Aluminum Hydrides with Alkanethiols 426
Gallium Alkanethiolates 427
Method 1: Reaction of Gallium Halides with Metal Thiolates 427
Method 2: Reaction of Triorganogallium Species with Alkanethiols 427
Indium Alkanethiolates 428
Method 1: Reaction of Organoindium Compounds with Alkanethiols 428
Method 2: Reaction of Indium(III) tert-Butyl(trimethylsilyl)amide with Alkanethiols 428
Thallium Alkanethiolates 428
Method 1: Reaction of Thallium Salts with Alkanethiols or Sodium Alkanethiolates 429
Beryllium Alkanethiolates 429
Magnesium Alkanethiolates 429
Calcium Alkanethiolates 430
39.6.1.16 Strontium Alkanethiolates .. 430
39.6.1.17 Barium Alkanethiolates ... 430
39.6.1.18 Lithium Alkanethiolates ... 431
39.6.1.18.1 Method 1: Reaction of Alkanethiols with Butyllithium 431
39.6.1.18.2 Method 2: Reaction of Elemental Sulfur with Alkylithium Compounds .. 431
39.6.1.19 Sodium Alkanethiolates ... 431
39.6.1.19.1 Method 1: Reaction of Alkanethiols with a Base 431
39.6.1.19.2 Method 2: Reaction of Alkanethiols with Sodium 432
39.6.1.19.3 Method 3: Reaction of Dialkyl Disulfides with Sodium 432

39.6.2 Product Subclass 2: Alkanethiolates of Group 3–12 Metals
A. Polo and J. Real

39.6.2.1 Synthesis of Product Subclass 2 .. 437
39.6.2.1.1 Terminal Alkanethiolates .. 437
39.6.2.1.1.1 Method 1: Reaction of Metal Halides with Alkanethiols or Main Group Alkanethiolates .. 437
39.6.2.1.1.1.1 Variation 1: Reaction of a Metal Chloro Complex with an Alkanethiol 437
39.6.2.1.1.1.2 Variation 2: Reactions of a Metal Complex with an Alkanethiol in the Presence of a Base .. 438
39.6.2.1.1.1.3 Variation 3: Reaction of a Metal Complex with a Main Group Alkanethiolate .. 440
39.6.2.1.1.1.4 Variation 4: Reaction of a Metal Complex with an Alkanethiol and a Reducing Agent ... 444
39.6.2.1.1.2 Method 2: Reaction of an Alkanethiol with a Basic Ligand Complex with Displacement of the Protonated Ligand 444
39.6.2.1.1.3 Method 3: Reaction of Coordinated Sulfides with Electrophiles 446
39.6.2.1.1.4 Method 4: Oxidative Addition of a Dialkyl Disulfide to a Metal Center 447
39.6.2.1.1.5 Methods 5: Miscellaneous Methods .. 449
39.6.2.1.2 Homometallic μ-Alkanethiolates ... 450
39.6.2.1.2.1 Method 1: Reaction of a Metal Complex with an Alkanethiol or with a Main Group Alkanethiolate ... 450
39.6.2.1.2.1.1 Variation 1: Reaction of a Metal Complex with an Alkanethiol 450
39.6.2.1.2.1.2 Variation 2: Reaction of a Metal Complex with an Alkanethiol and a Base · 451
39.6.2.1.2.1.3 Variation 3: Reaction of a Metal Complex with a Main Group Alkanethiolate .. 452
39.6.2.1.2.2 Method 2: Reaction of an Alkanethiol with a Basic Ligand Complex with Displacement of the Protonated Ligand 453
39.6.2.1.2.3 Method 3: Reaction of Bridging Coordinated Sulfides with Electrophiles · 453
39.6.2.1.2.4 Method 4: Oxidative Addition of an Alkanethiol or a Dialkyl Disulfide to a Metal Complex ... 454
39.6.2.1.2.4.1 Variation 1: By Oxidative Addition of an Alkanethiol to a Metal Complex · 454
39.6.2.1.2.4.2 Variation 2: Oxidative Addition of a Dialkyl Disulfide to a Metal Complex · 455
Variation 3: Photochemically Assisted Oxidative Addition of an Alkyl Disulfide to a Metal Complex

Method 5: Synthesis of Bridging Alkanethiolates by Ligand Dissociation

Method 6: Reaction of an Alkanethiolate–Metal Complex with a Second Metal Complex

Methods 7: Miscellaneous Methods

Method 1: Reaction of Bridging Coordinated Sulfides with Electrophiles

Method 2: Reaction of an Alkanethiolate–Metal Complex with a Second Metal Complex

Method 1: Reaction of a Metal Complex with an Alkanethiol, a Dialkyl Disulfide, or a Main Group Alkanethiolate

Method 2: Reaction of Bridging Coordinated Sulfides with Electrophiles

Applications of Product Subclass 2 in Organic Synthesis

Method 1: Metal-Catalyzed C—S Bond Formation Reactions

Method 2: Catalytic Propargylic Substitution Reactions

Method 3: Catalytic Carbonylation Reactions with Alkanethiolate Catalyst Precursors

Method 4: Stereoselective [3 + 2] Dipolar Cycloaddition of Nitrones to Electron-Deficient Alkenes

Product Class 7: Acyclic Dialkyl Sulfides

Synthesis of Product Class 7

Method 1: Synthesis from Alkanethiols

Variation 1: By Substitution of Alkyl Halides

Variation 2: By Substitution of Sulfonates

Variation 3: By Substitution of Alcohols and Carbonates

Variation 4: By Ring Opening of Cyclic Ethers

Variation 5: By Addition to Simple Alkenes

Variation 6: By Addition to Electron-Deficient Alkenes

Method 2: Synthesis from Alkanethiolates

Variation 1: By Substitution of Alkyl Halides

Variation 2: By Substitution of Alkyl Sulfonates

Variation 3: By Substitution with Alkyl Carbonates

Variation 4: By Substitution of Alcohols

Variation 5: By Substitution of Cyclic Ethers

Method 3: Synthesis from Disulfides

Variation 1: By Metal–Sulfur Exchange with Alkyl Metals

Variation 2: By Reaction with Alkyl Halides or 4-Toluensulfonates via Thiolates

Variation 3: By Addition to Alkenes
39.7.3.4 Variation 4: By Desulfurization .. 484
39.7.4 Method 4: Synthesis from Thioacetal Derivatives 484
39.7.4.1 Variation 1: By C—S Bond Cleavage of Dithioacetals 484
39.7.4.2 Variation 2: By C—O Bond Cleavage of Siloxy Monothioacetals 486
39.7.5 Method 5: Synthesis from Thioesters 486
39.7.6 Method 6: Synthesis from Sulfonium Ylides 486
39.7.7 Method 7: Synthesis from Acyclic Sulfoxides 487
39.7.7.1 Variation 1: By Reduction .. 487
39.7.7.2 Variation 2: By Sulfanylation of Alkenes 488
39.7.8 Method 8: Synthesis from Acyclic Sulfones 488
39.7.9 Methods 9: Miscellaneous Reactions 488
39.7.2 Applications of Product Class 7 in Organic Synthesis 489
39.7.2.1 Method 1: Use as Reducing Agents 489
39.7.2.1.1 Variation 1: Reduction of Sulfoxides 489
39.7.2.1.2 Variation 2: Reduction of Ozonides 490
39.7.2.2 Method 2: Use as Oxidizing Agents for Alcohols 491
39.7.2.3 Method 3: Use as Dealkylating Agents 493
39.7.2.4 Method 4: Use as Protecting Groups 494
39.7.2.5 Method 5: Use as Catalysts .. 495
39.7.2.6 Method 6: Use as Ligands for Transition-Metal Catalysts 496
39.8 Product Class 8: Acyclic Trialkyloxosulfonium and Trialkysulfonium Salts and Derivatives
Y. Tang and X.-L. Sun

39.8 Product Class 8: Acyclic Trialkyloxosulfonium and Trialkysulfonium Salts and Derivatives .. 501
39.8.1 Product Subclass 1: Acyclic Trialkyloxosulfonium Salts 501
39.8.1.1 Synthesis of Product Subclass 1 501
39.8.1.1.1 Method 1: Reaction of Sulfoxides with Alkylating Agents 501
39.8.1.1.2 Method 2: Reaction of Oxosulfonium Ylides 502
39.8.1.1.2.1 Variation 1: With Bronsted Acids 502
39.8.1.1.2.2 Variations 2: Miscellaneous Reactions 503
39.8.1.1.3 Method 3: Oxidation of Sulfoxonium Salts 503
39.8.1.1.4 Method 4: Anion Exchange of Oxosulfonium Salts 504
39.8.2 Product Subclass 2: Acyclic Trialkysulfonium Salts 505
39.8.2.1 Synthesis of Product Subclass 2 505
39.8.2.1.1 Method 1: Reaction of Dialkyl Sulfoxides 505
39.8.2.1.1.1 Variation 1: With Alkylating Agents 505
39.8.2.1.1.2 Variation 2: With Cyclopropane Derivatives 515
39.8.2.1.1.3 Variation 3: With Heterocyclic Compounds 516
39.8.2.1.1.4 Variation 4: With Alkenes 519
39.8.2.1.1.5 Variation 5: With Alcohols 522
39.8.2.1.1.6 Variation 6: With Ethers 523
39.8.2.1.1.7 Variations 7: Miscellaneous Reactions 524
39.8.2.1.2 Method 2: Reaction of Dialkylsulfonium Halides 525
39.8.2.1.2.1 Variation 1: With Diazo Compounds .. 525
39.8.2.1.2.2 Variation 2: With Alkenes .. 525
39.8.2.1.2.3 Variation 3: With Dialkyl Sulfides .. 526
39.8.2.1.3 Method 3: Reaction of Sulfoxides .. 527
39.8.2.1.3.1 Variation 1: With Grignard Reagents 527
39.8.2.1.3.2 Variation 2: With Alkenes .. 527
39.8.2.1.4 Method 4: Reaction of Sulfonium Ylides 529
39.8.2.1.4.1 Variation 1: With Brønsted Acids .. 529
39.8.2.1.4.2 Variations 2: Miscellaneous Reactions 530
39.8.2.1.5 Method 5: Reaction of Thiols and Thiol Derivatives with Alkylating Agents 531
39.8.2.1.6 Method 6: Reaction of Dialkyl Disulfides 531
39.8.2.1.7 Method 7: Reaction of Alkanesulfenyl Halides 532
39.8.2.1.8 Method 8: Transformation of Sulfonium Salts 533
39.8.2.1.8.1 Variation 1: Anion Exchange .. 533
39.8.2.1.8.2 Variations 2: Miscellaneous Reactions 535
39.8.2.1.9 Method 9: Reduction of Oxosulfonium Salts 536
39.8.2.1.10 Method 10: Reaction of Sulfur and Metal Sulfides 536

39.9 Product Class 9: Alkanesulfenic Acids and Acyclic Derivatives
J. Drabowicz, P. Kielbasiński, P. łyżwa, and M. Mikołajczyk

39.9
39.9.1 Product Subclass 1: Alkanesulfenyl Halides ... 544
39.9.1.1 Synthesis of Product Subclass 1 ... 544
39.9.1.1.1 Method 1: Halogenation of Divalent Sulfur Precursors 544
39.9.1.1.1.1 Variation 1: Halogenation of Thiols, Thiol Salts, or Disulfides with Halogens 545
39.9.1.1.1.2 Variation 2: Halogenation of Thiols or Disulfides with Other Halogenating Agents 547
39.9.1.1.1.3 Variation 3: Halogenation of Sulfides or Thiocarboxylate S-Esters 547
39.9.1.1.2 Method 2: Reaction of Sulfur Dichloride with Alkenes or Carbon Nucleophiles .. 549
39.9.1.1.2.1 Variation 1: Addition of Sulfur Dichloride to Alkenes 549
39.9.1.1.2.2 Variation 2: Reaction of Sulfur Dichloride with Carbonyl or Dicarbonyl Compounds .. 549
39.9.1.1.3 Method 3: Halogen Exchange Reactions of Sulfenyl Chlorides 550
39.9.1.1.4 Method 4: Chlorination of Thiocarbonyl Compounds 550
39.9.2 Product Subclass 2: Alkanesulfenic Acids ... 550
39.9.2.1 Synthesis of Product Subclass 2 ... 550
39.9.2.1.1 Method 1: Oxidation of Thiols .. 550
39.9.2.1.2 Method 2: Elimination Reactions of Sulfinyl Derivatives 551
39.9.2.1.3 Methods 3: Miscellaneous Procedures 556
39.9.3 Product Subclass 3: Alkanesulfenic Acid Esters 557
39.9.3.1 Synthesis of Product Subclass 3 ... 557
39.9.3.1.1 Method 1: Reaction of Sulfenyl Halides with Phenols or Alcohols 557
39.3.1.2 Method 2: Reaction of N-(Alkylsulfanyl)phthalimides with Alcohols or Metal Alkoxides .. 559
39.3.1.3 Method 3: Reaction of Thiirane 1-Oxide with Chloromethyl Ethers 560
39.3.1.4 Method 4: Reaction of Sulfenyl Chlorides with Epoxides 560
39.3.1.5 Method 5: Transesterification of Sulfenates 560
39.3.1.6 Methods 6: Miscellaneous Procedures 561

39.4 Product Subclass 4: Alkanesulfenamides 561

39.4.1 Synthesis of Product Subclass 4 ... 561
39.4.1.1 Method 1: Synthesis from Sulfenyl Derivatives 561
39.4.1.1.1 Variation 1: Reaction of Sulfenyl Halides with Ammonia and Amines 561
39.4.1.1.2 Variation 2: Reaction of Sulfenyl Thiocyanates with Amines 565
39.4.1.1.3 Variation 3: Reaction of S-Alkyl Thiosulfonates with Amines 565
39.4.1.1.4 Variation 4: Reaction of N-(Alkylsulfanyl)phthalimides with Amines 566
39.4.1.1.5 Variation 5: Reaction of 1-Alkyl-2-(alkyldisulfanyl)pyridinium Salts with Amines .. 566
39.4.1.2 Method 2: Synthesis from Alkanethiols or Dialkyl Disulfides 567
39.4.1.2.1 Variation 1: Reaction of Thiols with N-Chloroamines 567
39.4.1.2.2 Variation 2: Reaction of Thiols with Azides 568
39.4.1.2.3 Variation 3: Reaction of Dialkyl Disulfides with Amines 568
39.4.1.2.4 Variation 4: Reaction of Dialkyl Disulfides with Lithium Amides 568
39.4.1.3 Method 3: Reaction of a Chloromethyl Sulfoxide with an Amine .. 569
39.4.1.4 Method 4: Transformation of N-Alkylidene Sulfenamides 569

39.10 Product Class 10: Acyclic Di- and Polysulfides
R. Sato and T. Kimura

39.10 Product Class 10: Acyclic Di- and Polysulfides 573

39.10.1 Product Subclass 1: Monoalkyl Disulfides 573

39.10.1.1 Synthesis of Product Subclass 1 .. 574
39.10.1.1.1 Method 1: Preparation of Hydrodisulfides 574
39.10.1.1.1.1 Variation 1: Preparation of Alkyl Hydrodisulfides 574
39.10.1.1.1.2 Variation 2: Preparation of Haloalkyl or Hydroxyalkyl Hydrodisulfides 574
39.10.1.1.2 Method 2: Preparation of Halo Disulfides 574

39.10.2 Product Subclass 2: Monoalkyl Polysulfides 575
39.10.2.1 Synthesis of Product Subclass 2 .. 575
39.10.2.1.1 Method 1: Preparation of Hydropolysulfides 575
39.10.2.1.2 Method 2: Preparation of Chloro Polysulfides 575

39.10.3 Product Subclass 3: Metal Salts of Alkyl Di- and Polysulfides 576

39.10.4 Product Subclass 4: Symmetrical Dialkyl Disulfides 576
39.10.4.1 Synthesis of Product Subclass 4 .. 577
39.10.4.1.1 Method 1: Oxidation of Thiols or Thiolate Ions 577
39.10.4.1.1.1 Variation 1: Oxidation with Halogens 577
39.10.4.1.1.2 Variation 2: Oxidation with Peroxides 577
39.10.4.1.3 Variation 3: Oxidation with Diethyl Azodicarboxylate 578
39.10.4.1.4 Variation 4: Metal-Ion-Catalyzed Oxidation ... 578
39.10.4.1.5 Variation 5: Oxidation with Tellurite .. 579
39.10.4.1.2 Method 2: Ring Opening and Coupling of Thiiranes ... 580
39.10.5 Product Subclass 5: Unsymmetrical Dialkyl Disulfides .. 581
39.10.5.1 Synthesis of Product Subclass 5 .. 581
39.10.5.1.1 Method 1: Thiolysis ... 581
39.10.5.1.1 Variation 1: With Sulfenamides .. 581
39.10.5.1.2 Variation 2: With Thiosulfonates ... 582
39.10.5.1.3 Variation 3: With Thiosulfinates .. 582
39.10.6 Product Subclass 6: Symmetrical Dialkyl Polysulfides .. 583
39.10.6.1 Synthesis of Product Subclass 6 .. 583
39.10.6.1.1 Method 1: Reaction of Disulfides with Alkanesulfenyl Chlorides 583
39.10.6.1.1 Variation 1: Reaction of Thiols with Sulfur Dichloride ... 583
39.10.6.1.2 Variation 2: Reaction of Thiosulfonates with Potassium Sulfide 584
39.10.7 Product Subclass 7: Unsymmetrical Dialkyl Polysulfides ... 584
39.10.7.1 Synthesis of Product Subclass 7 .. 585
39.10.7.1.1 Method 1: Reaction of Thiols with N-(Methyldisulfanyl)phthalimide 585
39.10.7.1.2 Method 2: Reaction of Alkyl Chloro Trisulfides with Alkenes 586

39.11 Product Class 11: Thiiranes and Derivatives
M. Saito and J. Nakayama

39.11 Product Class 11: Thiiranes and Derivatives .. 589
39.11.1 Product Subclass 1: Thiirane 1,1-Dioxides .. 589
39.11.1.1 Synthesis of Product Subclass 1 .. 589
39.11.1.1.1 Method 1: Oxidation of Thiiranes .. 589
39.11.1.1.2 Method 2: Base-Promoted Cyclizations of Sulfones ... 590
39.11.1.1.3 Method 3: Synthesis of Symmetrical Thiirane 1,1-Dioxides by the Dimerization of Alkanesulfonfonyl Chlorides .. 592
39.11.1.1.4 Method 4: Synthesis from Thiocarbonyl Compounds and Diazooalkanes 592
39.11.1.1.5 Method 5: Reduction of Thiirene 1,1-Dioxides ... 595
39.11.2 Product Subclass 2: Thiirane 1-Oxides .. 595
39.11.2.1 Synthesis of Product Subclass 2 .. 595
39.11.2.1.1 Method 1: Oxidation of Thiiranes .. 595
39.11.2.1.2 Method 2: Metal-Catalyzed Sulfinyl Transfer to Alkenes .. 597
39.11.3 Product Subclass 3: Thiiranes .. 598
39.11.3.1 Synthesis of Product Subclass 3 .. 598
39.11.3.1.1 Method 1: Synthesis from Alkenes .. 598
39.11.3.1.1 Variation 1: Sulforation with Sulfur, Sulfur Dichloride, or Sulfenyl Halides 598
39.11.3.1.2 Variation 2: Sulforation with 1,2,3,4-Thiatriazoles .. 602
39.11.3.1.3 Variation 3: Sulforation with Sulfinates ... 603
39.11.3.1.4 Variation 4: Sulforation by Metal-Catalyzed Sulfur Transfer 605
Method 2: Synthesis from Oxiranes

Variation 1: Ammonium Cerium(IV) Nitrate Catalyzed Sulfuration Using Ammonium Thiocyanate

Variation 2: Ruthenium (or Aluminum, Tin, or Manganese) Catalyzed Sulfurations Using Ammonium Thiocyanate

Variation 3: Titanium-Catalyzed Sulfuration Using Ammonium Thiocyanate or Thiourea as the Sulfur Source

Variation 4: Sulfurations Using Ammonium Thiocyanate or Thiourea in Reactions Catalyzed by Other Metal Salts

Variation 5: Sulfuration Using Polymer- or Solid-Supported Reagents or Catalysts

Variation 6: Sulfuration in Water Using Cyclodextrins

Variation 7: Sulfuration Using Potassium Thiocyanate in Ionic Liquids

Variation 8: Sulfuration Using Thiourea Catalyzed by Silica Gel

Variation 9: Sulfuration Using Potassium Thiocyanate in a Low-Hydrated Solid–Liquid Heterogeneous Medium

Variation 10: Sulfuration Using Thiourea without a Solvent

Variation 11: Sulfuration with Phosphine Sulfides

Variation 12: Sulfuration with Dimethylthioformamide

Variation 13: Sulfuration with 3-Methylbenzothiazole-2(3H)-thione

Variation 14: Sulfuration with Elemental Sulfur or Phosphorus Pentasulfide under Microwave Irradiation

Method 3: Synthesis from Thiocarbonyl Compounds

Variation 1: From Thioketones

Variation 2: From Thioaldehydes

Variation 3: From Thioketone S-Oxides

Method 4: Synthesis from Haloalkanes

Method 5: Synthesis from β-Hydroxylated Thiols

Method 6: Synthesis from Sulfides as Thiolate Precursors

Variation 1: From Thiophosphates

Variation 2: From Cyclic Xanthates or Their Equivalents

Variation 3: From 2-(Alkylsulfanyl)-4,4-dimethyl-4,5-dihydrooxazoles or Thiazoles

Variation 4: From Pyridyl Sulfides, Dithiocarbamates, or Dithiocarbonates

Method 7: Synthesis from Heterocyclic Compounds

Applications of Product Subclass 3 in Organic Synthesis

Method 1: Polymerization

Method 2: Alkene Formation

Method 3: Thiranes as Sulfuration Reagents

Method 4: Thiranes as 1,3-Dipoles

Product Subclass 4: Thiranium Salts

Synthesis of Product Subclass 4

Method 1: Synthesis from Thiranes

Method 2: Synthesis from Alkenes
39.12 Product Class 12: Thietanes, 1,2-Oxathietanes, and Derivatives
E. Block

39.12 Product Subclass 1: Thietanes and Derivatives
E. Block

39.12.1 Product Subclass 1: Thietanes and Derivatives

39.12.1.1 Synthesis of Thietanes

39.12.1.1.1 Method 1: Reaction of 1,3-Dihalides or 1,3-Disulfonates with Sulfide Ion

39.12.1.1.1.2 Method 2: Reaction of Dienes with Sulfur Compounds

39.12.1.1.1.2.1 Method 1: Photochemical or Thermal Cycloaddition of Thiocarbonyl Compounds and Alkenes

39.12.1.1.1.2.1.1 Variation 1: Intermolecular Processes

39.12.1.1.1.2.1.2 Variation 2: Intermolecular Processes Involving Metal Complexes of Thioaldehydes

39.12.1.1.1.2.1.3 Variation 3: Intramolecular Processes

39.12.1.1.1.2.2 Method 2: Reaction of Thiones with Quadricyclane

39.12.1.1.1.3 Method 1: Synthesis from 1-Halo-3-sulfanylpropanes, 3-Sulfanylpropanols, and Related Compounds

39.12.1.1.1.3.1 Method 1: Synthesis from 1-Halo-3-sulfanylpropanes, 3-Sulfanylpropanols, and Related Compounds

39.12.1.1.1.3.1.1 Variation 1: From 2-(Chloromethyl)oxirane-Related Systems

39.12.1.1.1.3.1.2 Variation 2: Nucleophile-Induced Cyclization of O,O-Diethyl S-(1,3-Diaryl-3-oxopropyl) Phosphorodithioates

39.12.1.1.1.3.2 Method 2: Intramolecular Sulfenyl Bromide–Alkene Addition

39.12.1.1.2 Synthesis by Ring Transformation

39.12.1.1.2.1 Method 1: Ring Enlargement of Thiiranes and Derivatives

39.12.1.1.2.1.1 Variation 1: From 2-(Chloromethyl)thiirane

39.12.1.1.2.1.2 Variation 2: From Thiirane Alcohols under Mitsunobu Conditions

39.12.1.1.2.1.3 Variation 3: From Thiiranes and 3-Chloroallylt lithium

39.12.1.1.2.2 Method 2: Ring Contraction by Desulfurization of 1,2-Dithiolanes

39.12.1.1.2.3 Method 3: Ring Contraction of Diazothiolanones by Wolff Rearrangement

39.12.1.1.2.4 Method 4: Ring Contraction–Rearrangement of Penams
39.12.1.1.2.5 Method 5: Ring Contraction–Rearrangement of 4-(Iodomethyl)-
4,5-dihydrothiazolium Salts with Base 679
39.12.1.1.2.6 Method 6: Synthesis from 1,3-Dioxan-2-ones 680
39.12.1.1.2.7 Method 7: Ring Contraction on Photolysis of 2H-Thiopyran-3(6H)-ones 680
39.12.1.1.3 Synthesis by Substituent Modification 681
39.12.1.1.3.1 Substitution of Existing Substituents 681
39.12.1.1.3.1.1 Method 1: Direct Free-Radical Acetoxylation of Thietanes 681
39.12.1.1.3.1.1.1 Method 2: Replacement of Hydrogen with Nitrogen Heterocycles 681
39.12.1.1.3.1.2 Of Metals ... 683
39.12.1.1.3.1.2.1 Method 1: Desilylation with Tetrabutylammonium Fluoride ... 683
39.12.1.1.3.1.3 Of Oxygen .. 683
39.12.1.1.3.1.3.1 Method 1: Formation of 3-Alkylidenethietanes 683
39.12.1.1.3.1.3.2 Method 2: Formation of Hydrazones and Diazo Compounds 683
39.12.1.1.3.1.3.3 Method 3: Reductive Amination via the Leuckart Reaction 684
39.12.1.1.3.2 Addition Reactions ... 684
39.12.1.1.3.2.1 Method 1: Reduction with Lithium Aluminum Hydride or Sodium Borohydride ... 684
39.12.1.1.3.2.2 Method 2: Cycloaddition Reactions 685
39.12.1.1.3.3 Modification of Substituents ... 685
39.12.1.1.3.3.1 Method 1: Oxidation of Thietan-3-ol to Thietan-3-one685
39.12.1.1.3.3.2 Method 2: Reduction of Thietane 1-Oxide and 1,1-Dioxide to Thietane 685
39.12.1.1.3.4 Applications of Thietanes in Organic Synthesis 686
39.12.1.1.3.4.1 Method 1: Electrophile-Induced Ring Opening 686
39.12.1.1.3.4.2 Method 2: Regiospecific Carbonylation and Ring Expansion of Thietanes 687
39.12.1.1.3.4.3 Method 3: Synthesis of Isothiazolidines by Reaction of Nitrenes with Thietanes ... 687
39.12.1.2 Thietane 1-Oxides and Derivatives .. 688
39.12.1.2.1 Synthesis by Ring-Closure Reactions 688
39.12.1.2.1.1 By Formation of One S—C and One C—C Bond 688
39.12.1.2.1.2 By Formation of One S—C Bond 688
39.12.1.2.1.2.1 Method 1: Intramolecular Cycloaddition of Sulfenic Acid to Alkenes 688
39.12.1.2.1.2.2 Method 2: Synthesis by Addition Reactions 689
39.12.1.2.1.2.2.1 Addition of Heteroatoms 689
39.12.1.2.1.2.2.2 Method 1: S-Oxidation 689
39.12.1.2.1.2.2.2.1 Method 2: S-Amidation 690
39.12.1.2.2 Rearrangement of Substituents .. 690
39.12.1.2.2.1 Method 1: Isomerization of Thietane Sulfoxides 690
39.12.1.3 Thietane 1,1-Dioxides and Derivatives .. 691
39.12.1.3.1 Synthesis by Ring-Closure Reactions 691
By Formation of Two S—C Bonds ... 691
Method 1: Addition of Sulfur Dioxide to Dienes 691
By Formation of One S—C and One C—C Bond 691
Method 1: Addition of Sulfenes to Unsaturated Compounds 691
By Formation of One C—C Bond .. 693
Method 1: Base-Catalyzed Cyclization of Haloalkyl Sulfones 693
Synthesis by Ring Transformation .. 694
Method 1: Photochemical Insertion of Sulfur Dioxide into Cyclopropanes 694
Method 2: Photoinduced Rearrangement of 8-Thia-1-aza-bicyclo[4.2.1]nona-2,4-diene 8,8-Dioxide 695
Synthesis by Substituent Modification 695
Substitution of Existing Substituents 695
Of Hydrogen .. 695
Method 1: Hydrogen–Deuterium Exchange 695
Method 2: Lithiation of Thietane 1,1-Dioxides 695
Method 3: Direct Free-Radical Halogenation of Thietane 1,1-Dioxides 696
Of Metals .. 696
Method 1: Replacement of Metals by Carbon and Other Elements 696
Method 2: Replacement of Lithium by Halogen 697
Of Carbon ... 697
Method 1: Replacement of an Acyl Group in \(\alpha\)-Acylthietane 1,1-Dioxides with Bromine or Iodine 697
Of Oxygen ... 698
Method 1: Formation of Thietane-3-thione 1,1-Dioxides, Thietane-3-spirothiirane 1,1-Dioxides, and 3-Alkylidenethietane 1,1-Dioxides 698
Addition Reactions .. 698
Method 1: Reduction by Catalytic Hydrogenation or with Sodium Borohydride .. 698
Method 2: Addition of Organic Groups 699
Variation 1: CycloadDITION of 1,3-Dienes 699
Variation 2: 1,3-Dipolar Cycloaddition of Diazoaalkanes to Thiete 1,1-Dioxides .. 699
Variation 3: Addition of Carbanions ... 700
Method 3: Addition of Heteroatoms .. 701
Variation 1: Addition of Halogens to Thiete 1,1-Dioxides 701
Variation 2: Addition of Oxygen ... 701
Variation 3: Addition of \(\alpha,\omega\)-Dithiols to Thiete 1,1-Dioxides 703
Variation 4: Addition of Amines to 2-Methylthietane 1,1-Dioxides 703
Sulfonium and Oxosulfonium Salts and Their Ylides 703
Synthesis by Ring-Closure Reactions 703
Product Subclass 2: 1,2-Oxathietanes and Derivatives

J. Drabowicz and J. Lewkowski

<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>39.12.1.4.1.1</td>
<td>By Formation of One S—C Bond</td>
<td>703</td>
</tr>
<tr>
<td>39.12.1.4.1.1</td>
<td>Method 1: Cyclization of 1-Diazoalkyl 1-Sulfanylmethyl Ketones</td>
<td>703</td>
</tr>
<tr>
<td>39.12.1.4.2</td>
<td>Synthesis by Ring Transformation</td>
<td>704</td>
</tr>
<tr>
<td>39.12.1.4.2.1</td>
<td>Method 1: Ring Expansion of Thiranes and Derivatives</td>
<td>704</td>
</tr>
<tr>
<td>39.12.1.4.3</td>
<td>Addition Reactions</td>
<td>705</td>
</tr>
<tr>
<td>39.12.1.4.3.1</td>
<td>Addition of Organic Groups</td>
<td>705</td>
</tr>
<tr>
<td>39.12.1.4.3.1.1</td>
<td>Method 1: S-Alkylation of Thietanes</td>
<td>705</td>
</tr>
<tr>
<td>39.12.1.4.3.1.2</td>
<td>Method 2: O-Alkylation of Thietane 1-Oxides</td>
<td>705</td>
</tr>
<tr>
<td>39.12.1.4.3.2</td>
<td>Addition of Heteroatoms</td>
<td>706</td>
</tr>
<tr>
<td>39.12.1.4.3.2.1</td>
<td>Method 1: S-Amination</td>
<td>706</td>
</tr>
<tr>
<td>39.12.2</td>
<td>Product Subclass 2: 1,2-Oxathietanes and Derivatives</td>
<td>711</td>
</tr>
<tr>
<td>39.12.2.1</td>
<td>1,2-Oxathietanes</td>
<td>711</td>
</tr>
<tr>
<td>39.12.2.1.1</td>
<td>Synthesis of 1,2-Oxathietanes</td>
<td>711</td>
</tr>
<tr>
<td>39.12.2.1.1.1</td>
<td>Method 1: Diazotization of 2-[(2-Chloroethyl)sulfinyl]ethylamine</td>
<td>711</td>
</tr>
<tr>
<td>39.12.2.1.1.2</td>
<td>Method 2: Thermolysis of 1-[(2-Chloroethyl)sulfinyl]ethyl-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-nitrosourea Derivatives</td>
<td>712</td>
</tr>
<tr>
<td>39.12.2.1.2</td>
<td>Applications of 1,2-Oxathietanes in Organic Synthesis</td>
<td>713</td>
</tr>
<tr>
<td>39.12.2.1.2.1</td>
<td>Method 1: Cycloreversion of 1,2-Oxathietanes to Thioacetone</td>
<td>713</td>
</tr>
<tr>
<td>39.12.2.2</td>
<td>1,2-Oxathietane 2-Oxides</td>
<td>714</td>
</tr>
<tr>
<td>39.12.2.2.1</td>
<td>Synthesis of 1,2-Oxathietane 2-Oxides</td>
<td>714</td>
</tr>
<tr>
<td>39.12.2.2.1.1</td>
<td>Method 1: Photolysis of Sulfolane</td>
<td>714</td>
</tr>
<tr>
<td>39.12.2.2.1.2</td>
<td>Method 2: Reaction of Sulfur Dioxide with Ketene Derivatives</td>
<td>714</td>
</tr>
<tr>
<td>39.12.2.2.1.3</td>
<td>Method 3: Reaction of Sulfonyl Chloride with β-Hydroxy Sulfoxides</td>
<td>715</td>
</tr>
<tr>
<td>39.12.2.2.1.4</td>
<td>Method 4: Reaction of Sulfur Dioxide with Quadricyclane</td>
<td>716</td>
</tr>
<tr>
<td>39.12.2.2.2</td>
<td>Applications of 1,2-Oxathetiane 2-Oxides in Organic Synthesis</td>
<td>716</td>
</tr>
<tr>
<td>39.12.2.2.2.1</td>
<td>Method 1: Thermal Decomposition and Rearrangement Reactions of 1,2-Oxathietane 2-Oxides</td>
<td>716</td>
</tr>
<tr>
<td>39.12.2.3</td>
<td>1,2-Oxathetane 2,2-Dioxides</td>
<td>717</td>
</tr>
<tr>
<td>39.12.2.3.1</td>
<td>Synthesis of 1,2-Oxathetane 2,2-Dioxides</td>
<td>717</td>
</tr>
<tr>
<td>39.12.2.3.1.1</td>
<td>Method 1: Cycloaddition of Sulfur Trioxide and Alkenes</td>
<td>717</td>
</tr>
<tr>
<td>39.12.2.3.1.2</td>
<td>Method 2: Reactions of Alkanesulfonyl Chlorides with Carbonyl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compounds</td>
<td>719</td>
</tr>
<tr>
<td>39.12.2.3.1.3</td>
<td>Method 3: Modification of Remote Functionalities in 1,2-Oxathetane 2,2-Dioxides</td>
<td>720</td>
</tr>
<tr>
<td>39.12.2.3.2</td>
<td>Applications of 1,2-Oxathetane 2,2-Dioxides in Organic Synthesis</td>
<td>721</td>
</tr>
<tr>
<td>39.12.2.3.2.1</td>
<td>Method 1: Rearrangement and Isomerization Reactions</td>
<td>721</td>
</tr>
<tr>
<td>39.12.2.3.2.2</td>
<td>Method 2: Nucleophilic Attack at the Ring Sulfur Atom</td>
<td>722</td>
</tr>
</tbody>
</table>
39.12.3 Product Subclass 3: 1,2-Dithietanes, 1,2-Thiazetidines, 1,2-Thiaphosphetanes, and Derivatives of Various Oxidation States
N. Kambe

39.12.3 Product Subclass 3: 1,2-Dithietanes, 1,2-Thiazetidines, 1,2-Thiaphosphetanes, and Derivatives of Various Oxidation States 727
39.12.3.1 Synthesis of Product Subclass 3 ... 727
39.12.3.1.1 Method 1: Synthesis of 1,2-Dithietanes and Derivatives 727
39.12.3.1.1.1 Variation 1: Synthesis of 1,2-Dithietanes 727
39.12.3.1.1.2 Variation 2: Synthesis of 1,2-Dithietane 1,1-Dioxides .. 728
39.12.3.1.2 Method 2: Synthesis of 1,2-Thiazetidines and Derivatives 728
39.12.3.1.2.1 Variation 1: Synthesis of 1,2-Thiazetidines 728
39.12.3.1.2.2 Variation 2: Synthesis of 1,2-Thiazetidine 1-Oxides 729
39.12.3.1.2.3 Variation 3: Synthesis of 1,2-Thiazetidine 1,1-Dioxides .. 729
39.12.3.1.2.4 Variation 4: Synthesis of 1,2-Thiazetidine 1-Imides 730
39.12.3.1.3 Method 3: Synthesis of 1,2-Thiaphosphetanes 730

39.13 Product Class 13: Thiolanes, Larger Rings, and Derivatives of Various Oxidation States
R. Sato and T. Kimura

39.13 Product Class 13: Thiolanes, Larger Rings, and Derivatives of Various Oxidation States ... 733
39.13.1 Product Subclass 1: Cyclic Alkanesulfonic Acid Derivatives
R. Sato and T. Kimura

39.13.1 Product Subclass 1: Cyclic Alkanesulfonic Acid Derivatives 735
39.13.1.1 Synthesis of Product Subclass 1 ... 735
39.13.1.1.1 Cyclic Sulfonic Acid Esters ... 735
39.13.1.1.1.1 Method 1: Oxidation of a Cyclic Sulfinic Acid Ester 735
39.13.1.1.2 Method 2: Intramolecular Substitution 735
39.13.1.1.2 Cyclic Thiosulfonic Acid S-Esters 736
39.13.1.1.2.1 Method 1: Oxidation .. 736
39.13.1.1.2.1.1 Variation 1: Oxidation of Dithiols with Hydrogen Peroxide 736
39.13.1.1.2.1.2 Variation 2: Oxidation of Cyclic Disulfides with Potassium Periodate 737
39.13.1.1.2.2 Method 2: Thiolysis .. 737
39.13.1.1.3 Cyclic Sulfonic Acid Amides ... 738
39.13.1.1.3.1 Method 1: Oxidation .. 738
39.13.1.1.3.2 Method 2: Intramolecular Nucleophilic Substitution 738
39.13.1.1.3.3 Method 3: Intramolecular Cycloaddition 739
39.13.1.1.3.4 Method 4: Ring-Closing Metathesis 740
39.13.1.3.5 Method 5: N-Arylation by Palladium-Catalyzed Cross Coupling 741

39.13.2 Product Subclass 2: Cyclic Dialkyl Sulfones and Derivatives
R. Sato and T. Kimura

39.13.2 Product Subclass 2: Cyclic Dialkyl Sulfones and Derivatives 745
39.13.2.1 Synthesis of Product Subclass 2 745
39.13.2.1.1 Cyclic Sulfones 745
39.13.2.1.1.1 Method 1: Oxidation 745
39.13.2.1.1.1 Variation 1: With 3-Chloroperoxybenzoic Acid 745
39.13.2.1.1.2 Variation 2: With Hydrogen Peroxide 745
39.13.2.1.1.2 Method 2: Cheletropic Addition of Sulfur Dioxide to 1,3-Dienes 746
39.13.2.1.2 Cyclic Sulfoximides 746
39.13.2.1.2.1 Method 1: Imidation of Sulfoxides 747
39.13.2.1.2.2 Method 2: N-Functionalization of a Sulfoximide 747
39.13.2.1.3 Cyclic Sulfonediimines 748
39.13.2.1.3.1 Method 1: Diimidation of Sulfides 748
39.13.2.1.3.2 Method 2: N-Functionalization of Sulfonediimines 748

39.13.3 Product Subclass 3: Cyclic Alkanesulfinic Acid Derivatives
R. Sato and T. Kimura

39.13.3 Product Subclass 3: Cyclic Alkanesulfinic Acid Derivatives 751
39.13.3.1 Synthesis of Product Subclass 3 751
39.13.3.1.1 Cyclic Sulfinic Acid Esters 751
39.13.3.1.1.1 Method 1: Oxidation of 3-Sulfanylpropan-1-ols 751
39.13.3.1.1.2 Method 2: Rearrangement of Cyclic Sulfones 751
39.13.3.1.1.3 Method 3: Oxidative Cyclization of Hydroxyalkyl Disulfides 752
39.13.3.1.2 Cyclic Thiosulfinic Acid S-Esters 752
39.13.3.1.2.1 Method 1: Oxidation of Cyclic Disulfides 752
39.13.3.1.2.1.1 Variation 1: With Hydrogen Peroxide/Formic Acid 752
39.13.3.1.2.1.2 Variation 2: With Potassium Periodate 753
39.13.3.1.2.1.3 Variation 3: With 3-Chloroperoxybenzoic Acid 753
39.13.3.1.2.2 Method 2: Cycloaddition Reactions of Disulfur Monoxide 754
39.13.3.1.3 Cyclic Sulfinic Acid Amides 754
39.13.3.1.3.1 Method 1: Oxidation of Aminoalkanethiols 755
39.13.3.1.3.2 Method 2: N-Functionalization of Cyclic Sulfinamides 755

39.13.4 Product Subclass 4: Cyclic Dialkyl Sulfoxides and Derivatives
J. L. García-Ruano, M. B. Cid, A. M. Martín-Castro, and J. Alemán

39.13.4 Product Subclass 4: Cyclic Dialkyl Sulfoxides and Derivatives 757
39.13.4.1 Synthesis of Product Subclass 4 757
Table of Contents

39.13.4.1 Cyclic Diheteroatom-Substituted λ^4-Sulfanes .. 757
39.13.4.1.2 Cyclic Sulfoxides .. 758
39.13.4.1.2.1 Achiral and Racemic Cyclic Sulfoxides 758
39.13.4.1.2.1.1 Method 1: Oxidation with Oxygen .. 759
39.13.4.1.2.1.1.1 Variation 1: Photochemical Oxidation 759
39.13.4.1.2.1.1.2 Variation 2: Catalyzed by Metals or Organic Compounds 760
39.13.4.1.2.1.2 Method 2: Oxidation with Hydrogen Peroxide 761
39.13.4.1.2.1.3 Method 3: Oxidation with Organic Peroxides 765
39.13.4.1.2.1.4 Method 4: Oxidation with Peroxy Acids 766
39.13.4.1.2.1.5 Method 5: Oxidation with Halogen Derivatives 768
39.13.4.1.2.1.5.1 Variation 1: Using Molecular Halogens 768
39.13.4.1.2.1.5.2 Variation 2: Using Periodates ... 769
39.13.4.1.2.1.5.3 Variation 3: Using Periodic Acid .. 770
39.13.4.1.2.1.5.4 Variation 4: Using Hypervalent Iodine(III) Reagents 770
39.13.4.1.2.1.5.5 Variation 5: Using Hypochlorites .. 770
39.13.4.1.2.1.5.6 Variation 6: Using Chlorites, Bromites, and Bromates 771
39.13.4.1.2.1.5.7 Variation 7: Using Chloramine-T and Bromamine-T 771
39.13.4.1.2.1.6 Method 6: Oxidation with Nitrogen Reagents 771
39.13.4.1.2.1.6.1 Variation 1: Using Nitric Acid ... 771
39.13.4.1.2.1.6.2 Variation 2: Using Nitrates ... 771
39.13.4.1.2.1.6.3 Variation 3: Using Other Nitrogen Derivatives 772
39.13.4.1.2.1.7 Method 7: Oxidation with Metal Compounds 772
39.13.4.1.2.1.8 Method 8: Oxidation with Compounds Having a N–O Bond 772
39.13.4.1.2.1.9 Method 9: Oxidation with Dimenthyl Selenoxide 772
39.13.4.1.2.1.10 Method 10: Oxidation with Sulfoxides 773
39.13.4.1.2.1.11 Method 11: Electrochemical Oxidation 773
39.13.4.1.2.1.12 Method 12: Cycloaddition Reactions 774
39.13.4.1.2.1.12.1 Variation 1: From Sulfur Monoxide by [4 + 1] or [6 + 1] Cycloaddition with 1,3-Dienes or 1,3,5-Trienes ... 774
39.13.4.1.2.1.12.2 Variation 2: From Thioketone S-Oxides by [3 + 2] Cycloaddition 774
39.13.4.1.2.1.12.3 Variation 3: From Thioaldehyde and Thioketone S-Oxides by Diels–Alder Reactions ... 775
39.13.4.1.2.1.12.4 Variation 4: From Thiophene S-Oxides 777
39.13.4.1.2.1.13 Method 13: Cyclization via Anionic Intermediates 777
39.13.4.1.2.1.13.1 Variation 1: Intramolecular Nucleophilic Addition 777
39.13.4.1.2.1.13.2 Variation 2: Intermolecular Nucleophilic Reactions 778
39.13.4.1.2.1.14 Method 14: Radical Cyclization ... 779
39.13.4.1.2.1.15 Methods 15: Miscellaneous Methods 779
39.13.4.1.2.2 Optically Active Cyclic Sulfoxides ... 782
39.13.4.1.2.2.1 Method 1: Oxidation with Achiral Reagents 782
39.13.4.1.2.2.2 Method 2: Oxidation with Alkyl Peroxides and Chiral Metal Catalysts 784
39.13.4.1.2.2.2.1 Variation 1: Monooxidation of 1,3-Dithiolanes and 1,3-Dithianes Using tert-Butyl Hydroperoxide, Titanium(IV) Isopropoxide, and (R,R)-Diethyl Tartrate ... 784
39.13.4.1.2.2.2.2 Variation 2: Dioxidation of 1,3-Dithiolanes and 1,3-Dithianes with Titanium(IV) Isopropoxide and (R,R)-Diethyl Tartrate ... 788
Variations 3: Other Variations ... 789

Method 3: Oxidation Using Other Chiral Reagents 791

Method 4: Biological Oxidations .. 792

Method 5: Resolution of Racemic Mixtures 795

Cyclic Sulfimides .. 795

Variation 1: Synthesis of N-Sulfonylsulfimides 796

Variation 2: Synthesis of N-Alkyl- and N-Arylsulfimides 797

Variation 3: Synthesis of N-Acylsulfimides and Derivatives 798

Method 2: Amination of Sulfoxides with Compounds Containing an Amino Group .. 799

Variation 3: Synthesis of N-Unsubstituted Sulfimides 799

Optically Active Cyclic Sulfimides 800

Applications of Sulfimides in Organic Synthesis 800

Method 1: Synthesis of Sulfoximides by Oxidative Amination of Cyclic Sulfimides .. 801

Method 3: Synthesis of Ketene Dithioacetals from Cyclic Sulfimides 801

Method 4: Synthesis of Heterocycles via Nitrene Intermediates by Photolysis or Thermolysis of Cyclic Sulfimides 802

Product Subclass 5: Cyclic Alkanethiolates of Group 1, 2, and 13–15 Metals

Synthesis of Product Subclass 5 ... 811

Method 1: Synthesis of Dithiametallacycles 811

Method 2: Coordination of Dithiaalkanes to Metals 811

Method 3: Dimerization of Metal Thiolates 812

Method 4: Addition to C=S or Si=S Bonds 812

Method 5: Transmetalation of Cyclic Metal Alkanethiolates 812

Product Subclass 6: Cyclic Alkanethiolates of Group 3–12 Metals

Synthesis of Product Subclass 6 ... 813

Method 1: Reactions of Metal Halides with an Alkanethiol, with an Alkanethiol and Base, or with a Main Group Alkanethiolate 813

Variation 1: Reactions between a Metal Complex and an Alkanethiol 813

Variation 2: Reaction of a Metal Complex with an Alkanethiol and a Base ... 815

Variation 3: Reactions of Metal Complexes with Main Group Alkanethiolates 816
39.13.6.1.2 Method 2: Reactions between Basic Ligand Complexes and Alkanethiols with the Displacement of a Protonated Ligand 818
39.13.6.1.3 Method 3: Reactions of Alkanethiols with Metal Complexes under Reducing Conditions 819
39.13.6.1.3.1 Variation 1: Reduction of the Metal by an Added Reducing Agent 819
39.13.6.1.3.2 Variation 2: Reduction of the Metal by an Excess of an Alkanethiol or a Phosphinethiol 820
39.13.6.1.4 Method 4: Reaction of Coordinated Sulfides with Electrophiles 821
39.13.6.1.5 Method 5: Oxidative Addition of an Alkanethiol or a Dialkyl Disulfide to a Metal Complex 822
39.13.6.1.5.1 Variation 1: Oxidative Addition of an Alkanethiol to a Metal Complex 822
39.13.6.1.5.2 Variation 2: Oxidative Addition of a Dialkyl Disulfide to a Metal Complex 824
39.13.6.1.6 Method 6: Reaction of an Alkanethiolate–Metal Complex with a Second Metal Complex 824
39.13.6.1.7 Methods 7: Miscellaneous Methods 825
39.13.6.2 Applications of Product Subclass 6 in Organic Synthesis 826
39.13.6.2.1 Method 1: Catalytic Carbonylation Reactions with Cyclic Alkanethiolates as Catalyst Precursors 826
39.13.6.2.2 Method 2: Catalytic Asymmetric Organozinc Additions to Aldehydes 828

39.13.7 Product Subclass 7: Cyclic Dialkyl Sulfides
M. Segi

39.13.7 Product Subclass 7: Cyclic Dialkyl Sulfides 833
39.13.7.1 Synthesis of Product Subclass 7 833
39.13.7.1.1 Method 1: Synthesis from Metal Sulfides or Thiols 833
39.13.7.1.1.1 Variation 1: By Substitution with Dihalides 833
39.13.7.1.1.2 Variation 2: By Substitution with Disulfonates 834
39.13.7.1.1.3 Variation 3: By Substitution with Cyclic Ammonium Salts 836
39.13.7.1.1.4 Variation 4: By Addition to Enones 836
39.13.7.1.1.5 Variation 5: By Reaction with Dioxiranes 837
39.13.7.1.2 Method 2: Synthesis from Acyclic Sulfides 837
39.13.7.1.2.1 Variation 1: By Dieckmann Condensation 837
39.13.7.1.2.2 Variation 2: By Henry Reaction 838
39.13.7.1.3 Method 3: Synthesis from Dialkyl Disulfides 839
39.13.7.1.3.1 Variation 1: By Addition to Alkenes 839
39.13.7.1.3.2 Variation 2: By Radical Cyclization 839
39.13.7.1.3.3 Variation 3: By Desulfurization 840
39.13.7.1.4 Method 4: Synthesis from Sulfur Dichloride by Addition to Dienes 841
39.13.7.1.5 Method 5: Synthesis from Vinylthiranes by Ring Expansion 841
39.13.7.1.6 Method 6: Synthesis from Cyclic Sulfonium Salts 842
39.13.7.1.6.1 Variation 1: By Debenzylation 842
39.13.7.1.6.2 Variation 2: By Ring Expansion via Reductive Bond Cleavage 843
39.13.7.1.6.3 Variation 3: By [2,3]-Sigmatropic Rearrangement via Cyclic Sulfonium Ylides 843
39.13.7.1.7 Method 7: Synthesis from Thioaldehydes or Thioketones by [4 + 2] Cycloaddition 844
Method 8: Synthesis from Thiocarbonyl Ylides by 1,3-Dipolar Cycloaddition ... 845

Applications of Product Subclass 7 in Organic Synthesis 845
Method 1: Use as Organocatalysts ... 845
Variation 1: Asymmetric Synthesis of Epoxides from Aldehydes 845
Variation 2: Asymmetric Synthesis of Aziridines from Imines 846

Product Subclass 8: Cyclic Trialkyloxosulfonium and Trialkylsulfonium Salts and Derivatives
Y. Tang and X.-L. Sun

Synthesis of Product Subclass 8 ... 851
Cyclic Trialkyloxosulfonium Salts ... 851
Method 1: Oxidation ... 851
Method 2: Anion Exchange ... 852
Cyclic Trialkylsulfonium Salts ... 852
Method 1: Alkylation of Cyclic Sulfides 853
Variation 1: With Halides and Related Reagents 853
Variation 2: With Alkenes ... 863
Variation 3: With Alcohols ... 865
Variation 4: With Ketones ... 867
Variation 5: With Ethers .. 867
Variation 6: With Diazocompounds ... 868
Method 2: Ring-Closure Reactions ... 868
Variation 1: From Acyclic Sulfides ... 868
Variation 2: From Thiols ... 869
Variation 3: From Alkanesulfenyl Halides and Related Compounds 870
Variation 4: From Sulfoxides ... 871
Method 3: Reaction of Dialkylhalosulfonium Salts 871
Method 4: Transformation of Cyclic Sulfonium Ylides 872
Variation 1: With Brønsted Acids ... 872
Variation 2: With Alkylating Agents ... 872
Method 5: Reaction of Cyclic Sulfanyl sulfonium Salts with Alkenes 873
Method 6: Transformation of Cyclic Sulfonium Salts 874
Variation 1: By Anion Exchange ... 874
Variation 2: By Modification of Remote Functional Groups 875

Product Subclass 9: Cyclic Alkanesulfenic Acid Derivatives
T. Wirth

Synthesis of Product Subclass 9 ... 879
Cyclic Alkanesulfenic Acid Derivatives with a S—O Bond 879
39.13.9.1.1 Method 1: Synthesis of Oxathiolanes ... 879
39.13.9.1.2 Cyclic Alkanesulfenic Acid Derivatives with a S—N Bond 879
39.13.9.1.2.1 Method 1: Synthesis of 3,6-Dihydro-2H-1,2-thiazines and 1,2-Thiazinanones .. 880
39.13.9.1.2.2 Method 2: Synthesis of 4,5-Dihydroisothiazoles, Dihydrothiadiazoles, and Larger Heterocycles Containing a S—N Bond ... 880
39.13.9.1.3 Cyclic Alkanesulfenic Acid Derivatives with a S—P Bond 881
39.13.9.1.3.1 Method 1: Synthesis of 1,3,2-Thiazaphospholidines and 1,3,2-Oxathiaphospholanes .. 881
39.13.10 Product Subclass 10: Cyclic Dialkyl Di- and Polysulfides
R. Sato and T. Kimura

39.13.10 Product Subclass 10: Cyclic Dialkyl Di- and Polysulfides 885
39.13.10.1 Synthesis of Product Subclass 10 ... 885
39.13.10.1.1 Cyclic Disulfides .. 885
39.13.10.1.1.1 1,2-Dithiolanes .. 886
39.13.10.1.1.1.1 Method 1: Preparation from a Diol Using Sodium Tetrasulfide 886
39.13.10.1.1.1.2 Method 2: Oxidation of a Dithiol Using Oxygen 886
39.13.10.1.1.1.3 Method 3: Oxidation of a Dithiol Using Iodine 887
39.13.10.1.1.2 1,2-Dithianes .. 888
39.13.10.1.1.2.1 Method 1: Oxidation of a Dithiol Using Sulfur in Liquid Ammonia ... 888
39.13.10.1.1.2.2 Method 2: Oxidation of a Thiol Using Bis(1H-benzimidazol-1-yl) Sulfide.... 889
39.13.10.1.1.2.3 Method 3: Oxidation of a Dithiol Using Oxygen 889
39.13.10.1.1.3 3,6-Dihydro-1,2-dithiins .. 890
39.13.10.1.1.3.1 Method 1: Reaction of a 1,3-Diene with Sulfur 890
39.13.10.1.1.3.2 Method 2: Oxidation of a Dithiol Using Iron(III) Chloride 890
39.13.10.1.1.3.3 Method 3: Diels–Alder Reaction of 1,3-Dienes with a 1,2-Dithietane ... 891
39.13.10.1.1.3.4 Method 4: Oxidation of a Dithiol Using Manganese(IV) Oxide 891
39.13.10.1.1.4 Disulfides within Higher Ring Systems .. 893
39.13.10.1.1.4.1 Method 1: Preparation from a Dibromide Using Disodium Disulfide 893
39.13.10.1.1.4.2 Method 2: Oxidation of a Dithiol Using Iron(III) Chloride 894
39.13.10.1.1.4.3 Method 3: Preparation from a Bis(diazo) Compound Using Sulfur 894
39.13.10.1.2 Cyclic Polysulfides .. 895
39.13.10.1.2.1 1,2,3-Trithiolanes .. 895
39.13.10.1.2.1.1 Method 1: Sulfurization of a 1,2-Dithiol 895
39.13.10.1.2.1.2 Method 2: Sulfurization of Tetrafluoroethene 895
39.13.10.1.2.1.3 Method 3: Sulfurization of Norbornene 896
39.13.10.1.2.2 1,2,3-Trithianes ... 897
39.13.10.1.2.2.1 Method 1: Sulfurization of Sodium S,S'-Propane-1,3-diyl Bis(thiosulfate) ... 897
39.13.10.1.2.2.2 Method 2: Sulfurization of Diphenylthiiranes 897
39.13.10.1.2.3 1,2,3-Trithiepane .. 898
39.13.10.1.2.3.1 Method 1: Sulfurization of a 3,6-Dihydro-1,2-dithiin 898
39.13.10.1.2.4 1,2,3,4-Tetrathiepane .. 898
39.13.10.1.2.5 1,5-Dihydro-2,3,4-benzotriothiepanes .. 898
39.13.10.1.2.5.1 Method 1: Sulfurization of 1,2-Phenylenedimethanethiol 898
39.13.10.1.2.6 Higher Cyclic Polysulfides ... 899
39.13.10.1.2.6.1 Method 1: Sulfurization of Naphthalene-1,8-diyldimethanethiol 899
39.13.10.1.2.6.2 Method 2: Sulfurization of Ethane-1,2-disulfenyl Dichloride 900

39.14 Product Class 14: Alkaneselenonic Acids and Acyclic Derivatives
J. Drabowicz, P. Kiełbasiński, P. Łyżwa, and M. Mikołajczyk

39.14.1 Product Subclass 1: Alkaneselenonic Acids ... 904
39.14.1.1 Synthesis of Product Subclass 1 .. 904
39.14.1.1.1 Method 1: Oxidation of Alkaneseleninic Acids ... 904
39.14.1.1.2 Method 2: Oxidation of Diselenides ... 905

39.14.2 Product Subclass 2: Alkaneselenonates ... 906
39.14.2.1 Synthesis of Product Subclass 2 .. 906
39.14.2.1.1 Method 1: Alkylation of the Silver Salts of Perfluoroalkaneselenonic Acids 906

39.14.3 Product Subclass 3: Alkaneselenonamides .. 906
39.14.3.1 Synthesis of Product Subclass 3 .. 906
39.14.3.1.1 Method 1: Reaction of a Selenonate with an Amine 906

39.15 Product Class 15: Acyclic Dialkyl Selenones and Derivatives
J. Drabowicz, J. Lewkowski, W. Kudelska, and T. Girek

39.15.1 Product Subclass 1: Dialkyltetrahalo-\(\lambda^6\)-selanes ... 909
39.15.1.1 Synthesis of Product Subclass 1 .. 910
39.15.1.1.1 Method 1: Reaction of Bis(trifluoromethyl)selenium Difluoride with Elemental Fluorine ... 910

39.15.2 Product Subclass 2: Dialkyl Selenones ... 910
39.15.2.1 Synthesis of Product Subclass 2 .. 910
39.15.2.1.1 Method 1: Oxidation of Selenides or Selenoxides .. 911
39.15.2.1.1.1 Variation 1: Oxidation with Peroxy Derivatives 911
39.15.2.1.1.2 Variation 2: Oxidation with Sodium Hypochlorite 912
39.15.2.1.2 Method 2: Addition of Alkoxides to Methyl Styryl Selenone 913
Product Class 16: Alkaneseleninic Acids and Acyclic Derivatives

S. Braverman, M. Cherkinsky, and S. Levinger

Product Subclass 1: Alkylselenium Trihalides

Synthesis of Product Subclass 1

- Method 1: Synthesis from Diselenides
- Method 2: Synthesis from Seleninic Acids

Product Subclass 2: Alkaneseleninyl Chlorides

Synthesis of Product Subclass 2

- Method 1: Oxidation of Selenenyl Chlorides
 - Variation 1: Ozonization
 - Variation 2: Oxidation with Nitrogen Dioxide

Product Subclass 3: Alkaneseleninic Acids and Their Salts

Synthesis of Product Subclass 3

- Method 1: Oxidation of Alkyl Selenocyanates
- Method 2: Hydrolysis of Alkylselenium Trihalides
- Method 3: Hydrolysis of Seleninic Anhydrides
- Method 4: Hydrolysis of Selenoseleneninates
- Method 5: Oxidative Cleavage of Dialkyl Diselenides
 - Variation 1: Oxidation with Nitric Acid
 - Variation 2: Oxidation with Hydrogen Peroxide
- Method 6: Oxidation of Alkaneselenenic Acids

Applications of Product Subclass 3 in Organic Synthesis

Product Subclass 4: Alkaneseleninic Acid Esters (Seleninates)

Synthesis of Product Subclass 4

- Method 1: Alkylation of Seleninate Salts
- Method 2: Alcoholysis of Alkaneseleninyl Chlorides or Anhydrides

Product Subclass 5: Alkaneseleninic Anhydrides

Synthesis of Product Subclass 5

- Method 1: Oxidation of Diselenides
 - Variation 1: Ozonization
 - Variation 2: With tert-Butyl Hydroperoxide

Product Class 17: Acyclic Dialkyl Selenoxides and Derivatives

T. Shimizu and N. Kamigata

Product Subclass 1: Acyclic Dialkylselenium Dihalides

Synthesis of Product Subclass 1

- Method 1: Halogenation of Selenides
Variation 1: With Molecular Halogens 930
Variation 2: With Phosphorus Pentachloride or Silver(II) Fluoride 931
Method 2: Addition of Selenium Tetrahalides to Alkenes 931
Method 3: Reaction of Ketones with Selenium Oxychloride 932
Method 4: Reaction of Phenacyl Bromides with Selenium Powder... 933
Methods 5: Miscellaneous Methods 933

Product Subclass 2: Acyclic Dialkyl Selenoxides 934

Synthesis of Product Subclass 2 .. 934

Method 1: Oxidation of Dialkyl Selenides 935
Variation 1: Using Hydrogen Peroxide 935
Variation 2: Using 3-Chloroperoxybenzoic Acid 935
Variation 3: Using Sodium Periodate 936
Variation 4: Using Ozone .. 936
Method 2: Synthesis from Dialkylselenium Dihalides 937
Variation 1: Hydrolysis of Dialkylselenium Dihalides 937
Variation 2: Dehalogenation Oxidation of Dialkylselenium Dibromides with Silver(I) Oxide 938

Product Class 18: Alkaneselenols
J. V. Comasseto and A. S. Guarezemini

Synthesis of Product Class 18 .. 941

Method 1: Reaction of Alkylating Agents with Alkali Metal Selenides 941
Method 2: Reaction of Selenourea with Alkyl Halides Followed by Hydrolysis ... 942
Method 3: Reduction of Dialkyl Diselenides and Alkyl Selenocyanates 942
Variation 1: With Hypophosphorous Acid 943
Variation 2: With Sodium in Liquid Ammonia Followed by Acidification ... 944
Variation 3: With Sodium Borohydride or Lithium Aluminum Hydride Followed by Acidification .. 944
Method 4: Reaction of Elemental Selenium with Alkyl Grignard or Alkyllithium Compounds Followed by Hydrolysis 945

Product Class 19: Acyclic Alkaneselenolates

Product Subclass 1: Alkaneselenolates of Group 1, 2, and 13–15 Metals
J. V. Comasseto and A. S. Guarezemini

Synthesis of Product Subclass 1 .. 947
Arsenic Alkaneselenolates .. 947
Method 1: Reaction of Alkaneselenols or Sodium Alkaneselenolates with Amino- or Haloarsines 947
Method 2: Reaction of Trimethyl(methylselanyl)silane with Haloarsines 948
Silicon Alkaneselenolates .. 948

Method 1: Reaction of Metal Alkaneselenolates with Halosilanes 949
Method 2: Alkylation of Sodium Trimethylsilaneselenolate 949

Germanium Alkaneselenolates ... 950

Method 1: Reaction of Lithium Ethaneselenolate with Chlorotrimethylgermane 950

Tin Alkaneselenolates .. 951

Method 1: Reaction of Lithium Ethaneselenolate with Chlorotrimethylstannane 950
Method 2: Reaction of Dialkyl Diselenides with Hydrazine Hydrate Followed by Chlorotriethylstannane 951

Lead Alkaneselenolates ... 951

Method 1: Reaction of Lithium Methaneselenolate with Chlorotrimethylplumbane 951

Boron Alkaneselenolates ... 952

Aluminum Alkaneselenolates ... 952

Gallium Alkaneselenolates ... 952

Method 1: Reaction of Ethaneselenol with Bromodisopropylgallium(III) 953
Method 2: Reaction of Ethaneselenol with Diiodo(methylsulfanyl)gallium(III) 953

Indium Alkaneselenolates .. 954

Method 1: Insertion of Elemental Selenium into C—Mg Bonds 954
Method 1: Insertion of Elemental Selenium into C—Li Bonds 954
Variation 1: Reaction of Alkylithiums and Elemental Selenium 955
Variation 2: Reaction of Lithium Enolates and Elemental Selenium 955
Variation 3: Reaction of Alkyl Selenocyanates with Lithium Hydrides 956

Sodium Alkaneselenolates ... 956

Method 1: Deprotonation of Alkaneselenols 956
Method 2: Reduction of Dialkyl Diselenides 957
Variation 1: With Metallic Sodium ... 957
Variation 2: With Sodium Borohydride 957
Variation 3: With Sodium Hydride .. 957

Potassium Alkaneselenolates .. 958

Method 1: Deprotonation of Alkaneselenols 958
Method 2: Reaction of Dialkyl Diselenides and Alkyl Selenocyanates with Potassium Hydride 958
Product Subclass 2: Alkaneselenolates of Group 3–12 Metals
A. Polo and J. Real

Synthesis of Product Subclass 2

Terminal Alkaneselenolates

Method 1: Reaction of a Metal Complex with a Main Group Alkaneselenolate

Method 2: Alkylation of Coordinated Selenides with Alkyl Halides

Method 3: Alkylation of a Hydroselenide Ligand

Method 4: Reaction of a Dialkyl Diselenide with a Metal Complex

Method 5: Reaction of a Main Group Alkaneselenolate with a Metal Complex

Method 6: Miscellaneous Methods

m₂-Alkaneselenolates

Method 1: Synthesis from Alkaneselenols

Method 2: Synthesis from Alkyl Halides via Selenolates

Applications of Product Subclass 2 in Organic Synthesis

Method 1: Propargylic Substitution Reactions Catalyzed by m₂-Alkaneselenolates

Product Class 20: Acyclic Dialkyl Selenides
M. Segi

Synthesis of Product Class 20

Method 1: Synthesis from Alkaneselenols

Method 2: Synthesis from Alkyl Halides via Selenolates
39.20.1.2.1 Variation 1: Unsymmetrical Selenides by Addition to Alkenes 979
39.20.1.2.2 Variation 2: Symmetrical Selenides by Substitution with Alkyl Halides 979
39.20.1.2.3 Variation 3: Unsymmetrical Selenides by the Substitution of Alkaneselenolates .. 981
39.20.1.2.4 Variation 4: By Substitution with Sulfonates, Sulfonium Salts, or Ammonium Salts .. 982
39.20.1.2.5 Variation 5: By Reaction with Lactones 983
39.20.1.2.6 Variation 6: By Reaction with Epoxides 984
39.20.1.2.7 Variation 7: By Reaction with 4,5-Dihydrooxazoles 984
39.20.1.2 Method 3: Synthesis from Alkaneselenenyl Halides and Other Selanylating Agents ... 985
39.20.1.4 Method 4: Synthesis from Acyclic Diselenides 986
39.20.1.4.1 Variation 1: By Additions to Alkenes .. 986
39.20.1.4.2 Variation 2: By Reactions with Carbon Radicals 987
39.20.1.5 Method 5: Synthesis from Se,Se-Acetals .. 988
39.20.1.6 Method 6: Synthesis from Acyclic Selenoxides 989
39.20.1.7 Method 7: Synthesis from Selenonium Ylides 990
39.20.1.8 Methods 8: Miscellaneous Reactions .. 991
39.20.2 Applications of Product Class 20 in Organic Synthesis 991
39.20.2.1 Method 1: Asymmetric Syntheses Using Chiral Dialkyl Selenides as Catalysts ... 991

39.21 Product Class 21: Acyclic Trialkylselenonium Salts and Derivatives
Y. Tang and X.-L. Sun

39.21.1 Product Class 21: Acyclic Trialkylselenonium Salts and Derivatives 995
39.21.1.1 Synthesis of Product Class 21 ... 996
39.21.1.1.1 Method 1: Reaction of Selenides with Alkylating Agents 996
39.21.1.1.2 Method 2: Ring-Opening Reaction of Selenetane Derivatives with Alkyl Halides ... 998
39.21.1.3 Method 3: Reaction of Dialkyl Diselenides with Alkyl Halides 999
39.21.1.4 Method 4: Reaction of Selenium with Alkyl Halides 1000
39.21.1.5 Method 5: Reaction of Alkoxy(chloro)-\(\lambda^4\)-selenolanes with Grignard Reagents ... 1001
39.21.1.6 Method 6: Anion Exchange of Selenonium Salts 1001

39.22 Product Class 22: Alkaneselenenic Acids and Acyclic Derivatives
T. Wirth

39.22.1 Product Class 22: Alkaneselenenic Acids and Acyclic Derivatives 1005
39.22.1.1 Product Subclass 1: Alkaneseleneny Halides 1005
39.22.1.1.1 Synthesis of Product Subclass 1 .. 1005
39.22.1.1.1.1 Method 1: Synthesis Using Elemental Bromine 1005
39.22.1.1.2 Method 2: Synthesis Using Sulfuryl Chloride 1006
Product Subclass 2: Alkaneselenenic Acids and Esters

Synthesis of Product Subclass 2

Product Subclass 3: Alkaneselenenamides

Synthesis of Product Subclass 3

Product Subclass 4: (Alkylselanyl)phosphines

Method 1: Synthesis from Diselenides

Variation 1: Reaction of Dialkyl Diselenides with Tetraorganodiphosphines

Variation 2: Reaction of Dialkyl Diselenides with Diphosphine Dioxides and Diphosphine Disulfides

Method 2: Synthesis with Phosphorus Halides

Variation 1: Reaction of Organometallic Reagents with Phosphinoselenoic Chlorides

Variation 2: Reaction of Methyl Trimethylsilyl Selenide with Chlorophosphines

Method 3: Alkylation of S-Alkyl Phosphinoselenothioates and (Selenoxo)phosphines

Product Class 23: Acyclic Di- and Polyselenides

R. Sato and T. Kimura

Product Subclass 1: Monoalkyl Diselenides and Polyselenides and Their Metal Salts

Synthesis of Product Subclass 1

Method 1: Reaction of Alkyl Halides with Metal Diselenides

Variation 1: Reaction with Dilithium Diselenide

Variation 2: Reaction with Bis(methoxymagnesium) Diselenide

Variation 3: Reaction with Disodium Diselenide

Method 2: Reaction of Selenium with Organolithium Reagents Followed by Oxidation

Method 3: Oxidation of Selenols or Metal Selenolates

Method 4: Hydrolysis of Selenocyanates

Method 5: Synthesis from Se-Alkyl Selenosulfates

Variation 1: Hydrolysis of Selenosulfates

Variation 2: Pyrolysis of (2-Aminoethyl)selenosulfuric Acid

Method 6: Reduction of a Selenenic Acid

Product Subclass 3: Symmetrical Dialkyl Polyselenides

Synthesis of Product Subclass 3

Method 1: Synthesis from an Alkyl Halide and Selenium
Product Class 24: Seleniranes and Derivatives
M. Saito and J. Nakayama

Product Class 24: Seleniranes and Derivatives .. 1023

Product Subclass 1: Seleniranes .. 1023

Synthesis of Product Subclass 1 .. 1023

Applications of Product Subclass 1 in Organic Synthesis 1024

Method 1: Alkene Formation ... 1024

Method 2: Seleniranes as Selenation Reagents .. 1026

Product Subclass 2: Seleniranium Salts .. 1026

Synthesis of Product Subclass 2 .. 1026

Applications of Product Subclass 2 in Organic Synthesis 1028

Method 1: Asymmetric Synthesis .. 1028

Method 2: Heterocycle Synthesis ... 1030

Product Class 25: Selenetanes and Derivatives
E. Block

Product Class 25: Selenetanes and Derivatives .. 1033

Product Subclass 1: Selenetanes .. 1033

Synthesis of Product Subclass 1 .. 1033

Synthesis by Ring-Closure Reactions ... 1033

Method 1: Synthesis from 1,3-Dihalides or Related Compounds with Selenide Ions ... 1033

Method 2: Synthesis from 2-Substituted 2-(Chloromethyl)oxiranones and Selenide .. 1035

Method 3: Synthesis from Norbornadiene and Selenium Tetrabromide 1036

Method 4: Cycloadition of Selenocarbonyl Compounds and Alkenes 1036

Method 5: Synthesis from 2-[(3-Hydroxyalkyl)selanyl]benzoxazoles 1037

Synthesis by Ring Transformation .. 1037

Method 1: Ring Transformations of 3-Halomethyl-2,3-dihydro-selenazonium Salts with Base ... 1037

Method 2: Ring Transformations of 1,3,4-Oxadiselenolanes with Trivalent Phosphorus Reagents ... 1038

Synthesis by Substituent Modification ... 1038

Method 1: Esterification and Other Reactions of Selenetan-3-ols 1038

Method 2: Cleavage of a Spirocyclic Ring Bond .. 1039

Method 3: λ^4-Selenane Formation .. 1039

Product Subclass 2: 1,2-Oxaselenetanes .. 1040

Synthesis of Product Subclass 2 .. 1040

Synthesis by Ring-Closure Reactions ... 1040

Method 1: Synthesis by Treatment with Bromine 1040
39.26.5 Product Subclass 5: Cyclic Alkaneselenolates of Group 1, 2, and 13–15 Metals

N. Kambe

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>39.26.5.1</td>
<td>Synthesis of Product Subclass 5</td>
<td>1059</td>
</tr>
<tr>
<td>39.26.5.1.1</td>
<td>Method 1: Chelation of Selenides to Metal Halides</td>
<td>1059</td>
</tr>
<tr>
<td>39.26.5.1.2</td>
<td>Method 2: Dimerization of Metal Selenolates</td>
<td>1059</td>
</tr>
<tr>
<td>39.26.5.1.3</td>
<td>Method 3: Cycloaddition of Selenoxometal Compounds with Buta-1,3-dienes</td>
<td>1060</td>
</tr>
<tr>
<td>39.26.5.1.4</td>
<td>Method 4: Reaction of Elemental Selenium with Metallacycles</td>
<td>1060</td>
</tr>
</tbody>
</table>

39.26.6 Product Subclass 6: Cyclic Alkaneselenolates of Group 3–12 Metals

A. Polo and J. Real

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>39.26.6.1</td>
<td>Synthesis of Product Subclass 6</td>
<td>1063</td>
</tr>
<tr>
<td>39.26.6.1.1</td>
<td>Method 1: Synthesis of Cyclic Diselenolates</td>
<td>1063</td>
</tr>
<tr>
<td>39.26.6.1.1.1</td>
<td>Variation 1: Alkylation of Bridging Coordinated Selenides with Dihaloalkanes or Diazomethane</td>
<td>1063</td>
</tr>
<tr>
<td>39.26.6.1.1.2</td>
<td>Variation 2: Substitution of a Metal Halide with a Main Group Alkanediselenolate</td>
<td>1065</td>
</tr>
<tr>
<td>39.26.6.1.2</td>
<td>Method 2: Synthesis of Cyclic Selenolates with a Metal—Carbon Bond</td>
<td>1066</td>
</tr>
<tr>
<td>39.26.6.1.2.1</td>
<td>Variation 1: Cyclic Alkenylalkaneselenolates by Se-Dealkylation</td>
<td>1066</td>
</tr>
<tr>
<td>39.26.6.1.2.2</td>
<td>Variation 2: Synthesis of Selenoformaldehyde Complexes</td>
<td>1066</td>
</tr>
<tr>
<td>39.26.6.1.3</td>
<td>Method 3: Synthesis of Cyclic Aminoselenolates by Reaction of Sodium Aminoalkaneselenolates with a Metal Halide Complex</td>
<td>1067</td>
</tr>
</tbody>
</table>

39.26.7 Product Subclass 7: Cyclic Dialkyl Selenides

M. Segi

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>39.26.7.1</td>
<td>Synthesis of Product Subclass 7</td>
<td>1069</td>
</tr>
<tr>
<td>39.26.7.1.1</td>
<td>Method 1: Synthesis from Metal Selenides</td>
<td>1069</td>
</tr>
<tr>
<td>39.26.7.1.1.1</td>
<td>Variation 1: By Substitution with Dihalides</td>
<td>1069</td>
</tr>
<tr>
<td>39.26.7.1.1.2</td>
<td>Variation 2: By Substitution with Dimethanesulfonates</td>
<td>1071</td>
</tr>
<tr>
<td>39.26.7.1.1.3</td>
<td>Variation 3: By Substitution with Cyclic Ammonium Salts</td>
<td>1071</td>
</tr>
<tr>
<td>39.26.7.1.1.4</td>
<td>Variation 4: By Addition to Enones</td>
<td>1072</td>
</tr>
<tr>
<td>39.26.7.1.1.5</td>
<td>Variation 5: By Reaction with Diepoxides</td>
<td>1072</td>
</tr>
<tr>
<td>39.26.7.1.2</td>
<td>Method 2: Synthesis from Alkyl Selenocyanates</td>
<td>1073</td>
</tr>
<tr>
<td>39.26.7.1.3</td>
<td>Method 3: Synthesis from Benzyl Selenides via Radical Cyclizations</td>
<td>1074</td>
</tr>
<tr>
<td>39.26.7.1.4</td>
<td>Method 4: Synthesis from Mixed O,Se-Acetals</td>
<td>1076</td>
</tr>
<tr>
<td>39.26.7.1.5</td>
<td>Method 5: Synthesis from Selenacycles by the Rearrangement of Selenonium Salts</td>
<td>1076</td>
</tr>
<tr>
<td>39.26.7.1.6</td>
<td>Method 6: Synthesis from Selenocarbonyl Compounds</td>
<td>1077</td>
</tr>
</tbody>
</table>
Variation 1: By Cycloaddition of Selenoaldehydes .. 1077
Variation 2: By Cycloaddition of Selenoketones .. 1078
Methods 7: Miscellaneous Reactions .. 1079
Applications of Product Subclass 7 in Organic Synthesis 1080
Method 1: Asymmetric Conversion of Aldehydes into Epoxides Using Chiral Cyclic Selenides .. 1080

Product Subclass 8: Cyclic Trialkylselenonium Salts and Derivatives
Y. Tang and X.-L. Sun ... 1083

Synthesis of Product Subclass 8 .. 1083
Method 1: Reaction of Cyclic Selenides with Alkylating Agents 1084
Method 2: Reaction of Cyclic Dialkyl(halo)selenonium Salts 1088
Method 3: Reaction of Cyclic Selenonium Ylides 1089
Method 4: Anion Exchange of Cyclic Selenonium Salts 1089

Product Subclass 9: Cyclic Alkaneselenenic Acid Derivatives
T. Wirth .. 1093

Synthesis of Product Subclass 9 .. 1093
Method 1: Synthesis of Alkaneselenenic Acid Derivatives with a Se—N Bond ... 1093
Method 2: Synthesis of Alkaneselenenic Acid Derivatives with a Se—P Bond ... 1094

Product Subclass 10: Cyclic Dialkyl Di- and Polyselenides
R. Sato and T. Kimura .. 1097

Synthesis of Product Subclass 10 .. 1097
Cyclic Dialkyl Diselenides ... 1097
1,2-Diselenolanes ... 1097
Method 1: Synthesis from Selenocyanates 1097
Variation 1: Alkaline Hydrolysis of Bis(selenocyanates) with Sodium Ethoxide ... 1098
Variation 2: Pyrolysis of Bis(selenocyanates) 1099
Variation 3: Acid Hydrolysis of Bis(selenocyanates) 1099
Method 2: Synthesis from Dihaloalkanes and Disodium Diselenide .. 1100
Method 3: Synthesis via Birch Reduction of Dibenzyl Selenides 1101
Method 4: Synthesis by Selenation of Quinazolinones 1102
1,2-Diselenolanes ... 1102
Method 1: Synthesis from Diepoxides and Disodium Diselenide 1102
1,4-Dihydro-2,3-benzodiselenin .. 1103
Diselenides with Higher Ring Systems .. 1103
Method 1: Synthesis from Bis(diazo) Compounds. 1103
Method 2: Synthesis of Cyclophanes by Hydrolysis of Bis(selenocyana-

tes) .. 1104
Cyclic Dialkyl Polyselelenides ... 1106
Method 1: Hydrolysis of Selenocyanates 1106

Product Class 27: Alkanetelluronic Acids and Acyclic Derivatives
J. Drabowicz, P. Kielbasiński, P. Łyżwa, and M. Mikołajczyk

Product Class 28: Acyclic Dialkyl Tellurones and Derivatives
J. Drabowicz, J. Lewkowski, W. Kudelska, and T. Girek

Product Class 29: Alkanetellurinic Acids and Acyclic Derivatives
S. Braverman, M. Cherkinsky, and S. Levinger
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>39.29.1.5.3</td>
<td>Variation 3: Chlorotelluration in a 1,3-syn Mode via Acyloxy Migration</td>
<td>1121</td>
</tr>
<tr>
<td>39.29.1.5.4</td>
<td>Variation 4: Addition of a Tellurium Tetrahalide Generated In Situ from Tellurium Dioxide</td>
<td>1122</td>
</tr>
<tr>
<td>39.29.1.6</td>
<td>Method 6: Halogen Exchange of Alkyltellurium Trihalides</td>
<td>1122</td>
</tr>
<tr>
<td>39.29.2</td>
<td>Product Subclass 2: Alkyltellurium Triazides</td>
<td>1123</td>
</tr>
<tr>
<td>39.29.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>1123</td>
</tr>
<tr>
<td>39.29.2.1.1</td>
<td>Method 1: Substitution of Alkyltellurium Trifluorides with Azide</td>
<td>1123</td>
</tr>
<tr>
<td>39.29.2.3</td>
<td>Product Subclass 3: Alkanetellurinic Acids and Salts</td>
<td>1124</td>
</tr>
<tr>
<td>39.29.2.3.1</td>
<td>Synthesis of Product Subclass 3</td>
<td>1124</td>
</tr>
<tr>
<td>39.29.2.3.1.1</td>
<td>Method 1: Hydrolysis of Alkyltellurium Trihalides</td>
<td>1124</td>
</tr>
<tr>
<td>39.29.2.3.1.2</td>
<td>Method 2: Oxidation of Dialkyl Tellurides</td>
<td>1124</td>
</tr>
<tr>
<td>39.30</td>
<td>Product Class 30: Acyclic Dialkyl Telluroxides and Derivatives</td>
<td>1127</td>
</tr>
<tr>
<td>39.30.3</td>
<td>Product Subclass 1: Acyclic Dialkyltellurium Dihydroxides</td>
<td>1127</td>
</tr>
<tr>
<td>39.30.3.1</td>
<td>Synthesis of Product Subclass 1</td>
<td>1127</td>
</tr>
<tr>
<td>39.30.3.1.1</td>
<td>Method 1: Oxidation of Tellurides with N-Chlorosuccinimide</td>
<td>1127</td>
</tr>
<tr>
<td>39.30.3.2</td>
<td>Product Subclass 2: Acyclic Dialkyltellurium Dihalides</td>
<td>1128</td>
</tr>
<tr>
<td>39.30.3.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>1128</td>
</tr>
<tr>
<td>39.30.3.2.1.1</td>
<td>Method 1: Halogenation of Tellurides with Molecular Halogens</td>
<td>1128</td>
</tr>
<tr>
<td>39.30.3.2.1.2</td>
<td>Method 2: Chlorination of Tellurides with Thionyl Chloride</td>
<td>1130</td>
</tr>
<tr>
<td>39.30.3.2.1.3</td>
<td>Method 3: Chlorination of Tellurides with Sulfuryl Chloride</td>
<td>1130</td>
</tr>
<tr>
<td>39.30.3.2.1.4</td>
<td>Method 4: Fluorination of Tellurides with Xenon Difluoride and Sulfuryl Chloride Fluoride</td>
<td>1131</td>
</tr>
<tr>
<td>39.30.3.2.1.5</td>
<td>Method 5: Synthesis from Tellurium Tetrahalides</td>
<td>1132</td>
</tr>
<tr>
<td>39.30.3.2.1.6</td>
<td>Method 6: Reaction of α-Halo Ketones with Tellurium Powder</td>
<td>1133</td>
</tr>
<tr>
<td>39.30.3.2.1.7</td>
<td>Methods 7: Other Methods</td>
<td>1134</td>
</tr>
<tr>
<td>39.30.3</td>
<td>Product Subclass 3: Other Derivatives of Acyclic Dialkyl Telluroxides</td>
<td>1134</td>
</tr>
<tr>
<td>39.30.3.3</td>
<td>Synthesis of Product Subclass 3</td>
<td>1134</td>
</tr>
<tr>
<td>39.30.3.3.1</td>
<td>Methods 1: Miscellaneous Methods</td>
<td>1134</td>
</tr>
<tr>
<td>39.31</td>
<td>Product Class 31: Alkanetellurols</td>
<td>1137</td>
</tr>
<tr>
<td>39.31.1</td>
<td>Synthesis of Product Class 31</td>
<td>1137</td>
</tr>
<tr>
<td>39.31.1.1</td>
<td>Method 1: Protonation of Alkali Metal Alkanetellurolates</td>
<td>1137</td>
</tr>
<tr>
<td>39.31.1.2</td>
<td>Method 2: Methanolyis of Trimethylsilyl Alkanetellurolates</td>
<td>1138</td>
</tr>
</tbody>
</table>
Product Class 32: Acyclic Alkanetellurolates

Product Subclass 1: Alkanetellurolates of Group 1, 2, and 13–15 Metals
J. V. Comasseto and A. S. Guarezemini

Synthesis of Product Subclass 1 ... 1139

Arsenic Alkanetellurolates .. 1139

Method 1: Reaction of Tetraalkyldiarsines with Dialkyl Ditellurides ... 1139

Antimony Alkanetellurolates .. 1139

Method 1: Reaction of Lithium Alkanetellurolates with Dialkylbromostibine .. 1139

Silicon Alkanetellurolates .. 1139

Method 1: Reaction of Lithium Alkanetellurolates with Silyl Halides ... 1139

Germanium Alkanetellurolates ... 1140

Tin Alkanetellurolates .. 1140

Method 1: Reaction of Lithium Alkanetellurolates with Dialkylbromostibine .. 1140

Aluminum Alkanetellurolates .. 1140

Method 1: Reaction of Dibutyl Ditelluride with Diisobutylaluminum Hydride .. 1140

Method 2: Reaction of Trimethylaluminum with Elemental Tellurium ... 1141

Gallium Alkanetellurolates ... 1141

Method 1: Reaction of Triorganogallium and Elemental Tellurium 1141

Indium Alkanetellurolates ... 1142

Method 1: Reaction of Dipropyl Ditelluride with Trimesitylindium 1142

Magnesium Alkanetellurolates ... 1142

Method 1: Reaction of Grignard Reagents with Elemental Tellurium ... 1142

Lithium Alkanetellurolates ... 1142

Method 1: Reaction of Alkylolithiums with Elemental Tellurium 1142

Sodium Alkanetellurolates ... 1143

Method 1: Reduction of Diallyl Ditellurides with Sodium Borohydride .. 1143

Product Subclass 2: Alkanetellurolates of Group 3–12 Metals
A. Polo and J. Real

Synthesis of Product Subclass 2 ... 1145

Terminal Alkanetellurolates .. 1145

Method 1: Reaction of a Metal Complex with a Main Group
Alkanetellurolate ... 1145

Method 2: Reaction of Telluroxozirconium Complexes with Haloalkanes 1146
39.32.2.1.3 Method 3: Oxidative Addition of Dialkyl Tellurides, Dialkyl Ditellurides, or (Alkyltellanyl)silanes to a Metal ... 1147
39.32.2.1.4 Method 4: Insertion of Tellurium into Metal—Carbon Bonds .. 1148
39.32.2.1.2 \(\mu_2\)-Alkanetellurolates .. 1149
39.32.2.1.2.1 Method 1: Reaction of a Metal Complex with a Main Group
Alkanetellurolate ... 1149
39.32.2.1.2.1.1 Variation 1: From Metal Halide Complexes .. 1149
39.32.2.1.2.1.2 Variation 2: From Metal Carbonyl Complexes ... 1150
39.32.2.1.2.2 Method 2: Reaction of Bridging Coordinated Tellurides with Electrophiles ... 1152
39.32.2.1.2.3 Method 3: Solvothermal Reaction of Disodium Ditelluride with Metal Carbonyl Complexes .. 1155
39.32.2.1.2.4 Method 4: Reaction of Anionic Carbonyl Complexes with Alkanetellurenyl Halides or (Alkyltellanyl)telluronium Compounds ... 1156
39.32.2.1.2.5 Method 5: Oxidative Addition of a Dialkyl Ditelluride or (Alkyltellanyl)phosphine to a Metal Complex ... 1157
39.32.2.1.2.6 Method 6: Reaction of a Tellurolate—Metal Complex with a Second Metal Complex ... 1158
39.32.2.1.2.7 Method 7: Insertion of Tellurium into Metal—Carbon Bonds .. 1159
39.32.2.1.3 \(\mu_3\)-Alkanetellurolates .. 1159
39.32.2.1.3.1 Method 1: Reaction of Bridging, Coordinated Tellurides with an Alkylating Agent ... 1159
39.32.2.1.3.2 Method 2: Reaction of a Metal Salt with an (Alkyltellanyl)trimethylsilane ... 1160

39.33 Product Class 33: Acyclic Dialkyl Tellurides
M. Segi

39.33 Product Class 33: Acyclic Dialkyl Tellurides ... 1163
39.33.1 Synthesis of Product Class 33 ... 1163
39.33.1.1 Method 1: Synthesis from Hydrogen Telluride or Alkanetellurols 1163
39.33.1.2 Method 2: Synthesis from Alkanetellurolates ... 1165
39.33.1.2.1 Variation 1: By Reaction with Alkyl Halides for Symmetrical Telluride Synthesis ... 1165
39.33.1.2.2 Variation 2: By Reaction with Alkyl Halides for Unsymmetrical Telluride Synthesis ... 1166
39.33.1.2.3 Variation 3: By Reaction with Sulfonates .. 1168
39.33.1.2.4 Variation 4: By Reaction with Lactones ... 1170
39.33.1.2.5 Variation 5: By Reaction with Epoxides ... 1170
39.33.1.3 Method 3: Reduction of Organotellurium(IV) Trichlorides or Dichlorides 1171
39.33.1.4 Method 4: Reduction of Acyclic Telluroxides or Tellurones 1172
39.33.1.5 Method 5: Alkylation of Tellurium Tetrachloride 1172
39.33.2 Applications of Product Class 33 in Organic Synthesis 1173
39.33.2.1 Method 1: Use as Synthetic Equivalents for Organolithium Compounds 1173
39.33.2.2 Method 2: Use as a Catalyst .. 1174
39.33.2.2.1 Variation 1: Debromination of vic-Dibromides 1174
39.33.2.2.2 Variation 2: Synthesis of Vinyloxiranes from Aldehydes and Allyl Bromide 1174
39.33.2.3 Method 3: Use as a Reducing Agent 1175

39.34 Product Class 34: Acyclic Trialkyltelluronium Salts and Derivatives
Y. Tang and X.-L. Sun

39.34.1 Synthesis of Product Class 34 ... 1179
39.34.1.1 Method 1: Reaction of Dialkyl Tellurides 1180
39.34.1.2 Method 2: Reaction of Dialkyl Ditellurides 1184
39.34.1.3 Method 3: Reaction of Dialkyltellurium Dihalides 1184
39.34.1.4 Method 4: Reaction of Halooxatelluranes with Alkyllithium or Grignard Reagents ... 1185
39.34.1.5 Method 5: Reaction of Tellurium Tetrachloride with Alkylthallium Compounds ... 1185
39.34.1.6 Method 6: Reaction of Tellurium and Telluroxides 1186
39.34.1.7 Method 7: Anion Exchange of Telluronium Salts 1186

39.35 Product Class 35: Alkanetellurenic Acids and Acyclic Derivatives
T. Wirth

39.35.1 Product Class 35: Alkanetellurenic Acids and Acyclic Derivatives 1193
39.35.2 Product Subclass 1: Alkanetellurenic Acids and Esters 1193
39.35.2.1 Synthesis of Product Subclass 2 ... 1193
39.35.2.1.1 Method 1: Synthesis Using Dibutyl Ditelluride 1193
39.35.2.1.2 Method 2: Synthesis Using Bis[tris(trimethylsilyl)methyl] Ditelluride 1194
39.35.3 Product Subclass 3: (Alkyltellanyl)phosphines and Related Compounds 1194
39.35.3.1 Synthesis of Product Subclass 3 ... 1194
39.35.3.1.1 Method 1: Synthesis of (Alkyltellanyl)phosphines 1194
39.35.3.1.2 Method 2: Synthesis of Trialkyl(methyltellanyl)phosphonium Salts 1195
39.35.3.1.3 Method 3: Synthesis of Organo Tellurophosphates 1195

39.36 Product Class 36: Acyclic Di- and Polytellurides
R. Sato and T. Kimura

39.36.1 Product Class 36: Acyclic Di- and Polytellurides 1197
39.36.1.1 Product Subclass 1: Symmetrical Dialkyl Ditellurides 1197
39.36.1.1.1 Synthesis of Product Subclass 1 .. 1197
39.36.1.1.1.1 Method 1: Reaction of Disodium Ditelluride with Alkyl Halides 1197
39.36.1.1.2 Method 2: Electrolysis Followed by Alkylation 1198
39.36.1.1.3 Method 3: Reaction of Tellurium with Organolithium Reagents 1199
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Subtitle</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>39.36.2</td>
<td>Product Subclass 2: Unsymmetrical Dialkyl Ditellurides</td>
<td></td>
<td></td>
<td>1200</td>
</tr>
<tr>
<td>39.36.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td></td>
<td></td>
<td>1200</td>
</tr>
<tr>
<td>39.36.2.1.1</td>
<td>Method 1: Preparation by Electrolysis</td>
<td></td>
<td></td>
<td>1200</td>
</tr>
<tr>
<td>39.37</td>
<td>Product Class 37: Telluriranes and Derivatives</td>
<td></td>
<td>M. Saito and J. Nakayama</td>
<td>1203</td>
</tr>
<tr>
<td>39.38</td>
<td>Product Class 38: Telluretanes and Derivatives</td>
<td></td>
<td>E. Block</td>
<td>1205</td>
</tr>
<tr>
<td>39.38.1</td>
<td>Synthesis of Product Class 38</td>
<td></td>
<td></td>
<td>1205</td>
</tr>
<tr>
<td>39.38.1.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td></td>
<td></td>
<td>1205</td>
</tr>
<tr>
<td>39.38.1.1.1</td>
<td>Method 1: Reaction of 1,3-Dihalides with Telluride Ion</td>
<td></td>
<td></td>
<td>1205</td>
</tr>
<tr>
<td>39.38.1.1.2</td>
<td>Method 2: Reaction of Dienes with Tellurium Halides</td>
<td></td>
<td></td>
<td>1205</td>
</tr>
<tr>
<td>39.38.1.1.3</td>
<td>Method 3: Synthesis of a 1,2-Oxatelluretane from a 2-Lithio Alcoholate and Tellurium Tetrachloride</td>
<td></td>
<td></td>
<td>1205</td>
</tr>
<tr>
<td>39.39.1</td>
<td>Product Subclass 1: Cyclic Alkanetelluronic Acid Derivatives</td>
<td></td>
<td>R. Sato and T. Kimura</td>
<td>1209</td>
</tr>
<tr>
<td>39.39.2</td>
<td>Product Subclass 2: Cyclic Dialkyl Tellurones and Derivatives</td>
<td></td>
<td>R. Sato and T. Kimura</td>
<td>1211</td>
</tr>
<tr>
<td>39.39.3</td>
<td>Product Subclass 3: Cyclic Alkanetellurinic Acid Derivatives</td>
<td></td>
<td>R. Sato and T. Kimura</td>
<td>1213</td>
</tr>
<tr>
<td>39.39.3.1</td>
<td>Synthesis of Product Subclass 3</td>
<td></td>
<td></td>
<td>1213</td>
</tr>
<tr>
<td>39.39.3.1.1</td>
<td>Method 1: Cyclic Tellurinic Acid Esters by Oxidation of Bis(3-hydroxypropyl) Ditelluride with tert-Butyl Hydroperoxide</td>
<td></td>
<td></td>
<td>1213</td>
</tr>
<tr>
<td>Subclass</td>
<td>Title</td>
<td>Authors</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>39.39.4</td>
<td>Product Subclass 4: Cyclic Dialkyl Telluroxides and Derivatives</td>
<td>T. Shimizu and N. Kamigata</td>
<td>1215</td>
<td></td>
</tr>
<tr>
<td>39.39.4</td>
<td>Product Subclass 4: Cyclic Dialkyl Telluroxides and Derivatives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 4</td>
<td></td>
<td>1215</td>
<td></td>
</tr>
<tr>
<td>39.39.4.1</td>
<td>Method 1: Synthesis of Cyclic Dialkyltellurium Dihalides</td>
<td></td>
<td>1215</td>
<td></td>
</tr>
<tr>
<td>39.39.4.1</td>
<td>Method 2: Synthesis of Cyclic Telluroxides</td>
<td></td>
<td>1215</td>
<td></td>
</tr>
<tr>
<td>39.39.4.1</td>
<td>Method 3: Synthesis of Other Derivatives</td>
<td></td>
<td>1216</td>
<td></td>
</tr>
<tr>
<td>39.39.5</td>
<td>Product Subclass 5: Cyclic Alkanetellurolates of Group 1, 2, and 13–15</td>
<td>N. Kambe</td>
<td>1217</td>
<td></td>
</tr>
<tr>
<td>39.39.5</td>
<td>Product Subclass 5: Cyclic Alkanetellurolates of Group 1, 2, and 13–15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 5</td>
<td></td>
<td>1217</td>
<td></td>
</tr>
<tr>
<td>39.39.5.1</td>
<td>Method 1: Diels–Alder Cyclization of a Telluroxosilane with</td>
<td></td>
<td>1217</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-Methylbuta-1,3-diene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39.39.6</td>
<td>Product Subclass 6: Cyclic Alkanetellurolates of Group 3–12 Metals</td>
<td>A. Polo and J. Real</td>
<td>1219</td>
<td></td>
</tr>
<tr>
<td>39.39.6</td>
<td>Product Subclass 6: Cyclic Alkanetellurolates of Group 3–12 Metals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 6</td>
<td></td>
<td>1219</td>
<td></td>
</tr>
<tr>
<td>39.39.6.1</td>
<td>Method 1: Cyclic Ditellurolates from Bridging, Coordinated Tellurides</td>
<td></td>
<td>1219</td>
<td></td>
</tr>
<tr>
<td>39.39.6.1</td>
<td>Variation 1: By Reaction with Dihaloalkanes</td>
<td></td>
<td>1219</td>
<td></td>
</tr>
<tr>
<td>39.39.6.1</td>
<td>Variation 2: By Reaction with Diazomethane</td>
<td></td>
<td>1220</td>
<td></td>
</tr>
<tr>
<td>39.39.6.1</td>
<td>Method 2: Cyclic Aminotellurolates by Reaction of an Alkylamino</td>
<td></td>
<td>1220</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ditelluride with a Metal Complex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39.39.6.1</td>
<td>Method 3: Cyclic Tellurolates with a M—C Bond by Reaction with</td>
<td></td>
<td>1221</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tellurolates or Tellurium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39.39.7</td>
<td>Product Subclass 7: Cyclic Dialkyl Tellurides</td>
<td>M. Segi</td>
<td>1225</td>
<td></td>
</tr>
<tr>
<td>39.39.7</td>
<td>Product Subclass 7: Cyclic Dialkyl Tellurides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synthesis of Product Subclass 7</td>
<td></td>
<td>1225</td>
<td></td>
</tr>
<tr>
<td>39.39.7.1</td>
<td>Method 1: Alkylation of Metal Tellurides</td>
<td></td>
<td>1225</td>
<td></td>
</tr>
<tr>
<td>39.39.7.1</td>
<td>Variation 1: With Dihaloalkanes</td>
<td></td>
<td>1225</td>
<td></td>
</tr>
<tr>
<td>39.39.7.1</td>
<td>Variation 2: With Bis(methanesulfonates)</td>
<td></td>
<td>1226</td>
<td></td>
</tr>
<tr>
<td>39.39.7.1</td>
<td>Variation 3: With Cyclic Ammonium Salts</td>
<td></td>
<td>1227</td>
<td></td>
</tr>
<tr>
<td>39.39.7.1</td>
<td>Method 2: Alkylation of Potassium Tellurocyanate</td>
<td></td>
<td>1227</td>
<td></td>
</tr>
<tr>
<td>39.39.7.1</td>
<td>Method 3: Reduction of Cyclic Tellurium Dihalides</td>
<td></td>
<td>1228</td>
<td></td>
</tr>
<tr>
<td>39.39.7.1</td>
<td>Method 4: CycloadDITION of Tellurocarbonyl Compounds</td>
<td></td>
<td>1230</td>
<td></td>
</tr>
</tbody>
</table>
Product Subclass 8: Cyclic Trialkyltelluronium Salts and Derivatives
Y. Tang and X.-L. Sun

Synthesis of Product Subclass 8

Method 1: Reaction of Cyclic Tellurides with Alkylating Agents

Method 2: Ring-Closure Reaction of Aluminum Telluride with Dihaloalkanes

Method 3: Anion Exchange of Cyclic Telluronium Salts

Product Subclass 9: Cyclic Alkanetellurenic Acid Derivatives
T. Wirth

Product Subclass 9: Cyclic Alkanetellurenic Acid Derivatives

Product Subclass 10: Cyclic Dialkyl Di- and Polytellurides
R. Sato and T. Kimura

Synthesis of Product Subclass 10

Method 1: Electrosynthesis from Dihaloalkanes

Variation 1: Of 1,2-Ditellurolane

Variation 2: Of Seven- and Eight-Membered Cyclic Ditellurides

Method 2: Synthesis via Tellurocyanate Intermediates

Variation 1: 1,2-Ditellurolane from 1,3-Dihaloalkanes

Variation 2: 1,2-Ditellurolane from 1,3-Bis(tosyloxy)alkanes

Method 3: Synthesis of 1,2-Ditellurane from Dihaloalkanes and Disodium Ditelluride

Variation 1: In Dimethylformamide

Variation 2: In Water/Benzene Using a Phase-Transfer Catalyst

Keyword Index

Author Index

Abbreviations
Volume 40a:
Amines and Ammonium Salts

Preface .. V
Volume Editors' Preface .. VII
Table of Contents .. XI

Introduction
E. Schaumann ... 1

40.1 Product Class 1: Amino Compounds

40.1.1 Product Subclass 1: Alkyl- and Cycloalkylamines

40.1.1.1 Synthesis by Reduction

40.1.1.1.1 Reduction of Carbonic and Carboxylic Acid Derivatives
B. Wünsch and C. Geiger ... 23

40.1.1.1.2 Reductive Amination of Carbonyl Compounds
P. Margaretha ... 65

40.1.1.1.3 Reaction of Acetals with Organometallic Reagents
G. K. Friestad ... 91

40.1.1.1.4 Hydroaminomethylation of Alkenes
A. Börner, M. Beller, and B. Wünsch 111

40.1.1.1.5 Reduction of Nitrogen-Based Functional Groups
P. Margaretha ... 119

40.1.1.2 Synthesis by Substitution

40.1.1.2.1 Synthesis by Substitution of Hydrogen or Metals
H. Butenschön .. 157

40.1.1.2.2 Substitution of Carbon Functionalities via Solvolysis
F.-P. Montforts, M. Osmers, and V. A. Azov 203

40.1.1.2.3 Substitution of Sulfur or Phosphorus Functionalities
F.-P. Montforts and M. Osmers 233

40.1.1.3 Synthesis by Addition Reactions

40.1.1.3.1 Hydroamination
S. Doye .. 241

40.1.1.3.2 Addition of Carbanions to Azomethines
G. K. Friestad .. 305
40.1.3.3 Pericyclic Reactions Involving C=N Units
W. Maison .. 343

40.1.4 Synthesis by Rearrangement
R. Purchase and M. Sainsbury 365

40.1.5 Synthesis from Other Amino Compounds

40.1.5.1 Resolution of Chiral Amines
V. A. Azov .. 419

40.1.5.2 The Mannich Reaction
J. Ipaktschi and M. R. Saidi 435

40.1.5.3 Modification of Mannich Adducts
J. Ipaktschi and M. R. Saidi 479

40.1.5.4 Substitution on the Amine Nitrogen
S. A. Lawrence ... 501

40.1.6 Product Subclass 2: Propargylic Amines
J. Q. Feng and C.-J. Li 579

40.1.7 Product Subclass 3: Allylic Amines
J. Q. Feng and C.-J. Li 587

40.1.8 Product Subclass 4: n-Nitroge-n or n-Phosphorus-Functionalized Alkylamines (n ≥2)
K.-M. Roy .. 615

40.1.9 Product Subclass 5: Aziridines
J. B. Sweeney .. 643

40.1.10 Product Subclass 6: Azetidines
F. Couty ... 773

40.1.11 Product Subclass 7: Ammonium Compounds and Nitrogen Ylides
E. Kruiswijk and J. A. Deck 817

Keyword Index ... i
Author Index ... lix
Abbreviations .. cv
Table of Contents

Introduction
E. Schaumann

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.1</td>
<td>Product Class 1: Amino Compounds</td>
<td>1</td>
</tr>
<tr>
<td>40.1.1</td>
<td>Product Subclass 1: Alkyl- and Cycloalkylamines</td>
<td>7</td>
</tr>
<tr>
<td>40.1.1.1</td>
<td>Synthesis by Reduction</td>
<td></td>
</tr>
<tr>
<td>40.1.1.1.1</td>
<td>Reduction of Carbonic and Carboxylic Acid Derivatives</td>
<td>23</td>
</tr>
<tr>
<td>40.1.1.1.1.1</td>
<td>Method 1: Reduction of Carbon Monoxide Gas</td>
<td>23</td>
</tr>
<tr>
<td>40.1.1.1.1.2</td>
<td>Method 2: Reduction of Carbamates</td>
<td>23</td>
</tr>
<tr>
<td>40.1.1.1.1.2.1</td>
<td>Variation 1: Reduction with Aluminum Hydrides</td>
<td>24</td>
</tr>
<tr>
<td>40.1.1.1.1.2.2</td>
<td>Variation 2: Catalytic Hydrogenation</td>
<td>25</td>
</tr>
<tr>
<td>40.1.1.1.1.2.3</td>
<td>Variations 3: Miscellaneous Reductions</td>
<td>27</td>
</tr>
<tr>
<td>40.1.1.1.1.3</td>
<td>Method 3: Reduction of Isocyanates or Isothiocyanates</td>
<td>28</td>
</tr>
<tr>
<td>40.1.1.1.1.4</td>
<td>Method 4: Reduction of Nitriles</td>
<td>29</td>
</tr>
<tr>
<td>40.1.1.1.1.4.1</td>
<td>Variation 1: Catalytic Hydrogenation</td>
<td>29</td>
</tr>
<tr>
<td>40.1.1.1.1.4.2</td>
<td>Variation 2: Reduction with Aluminum Hydrides</td>
<td>34</td>
</tr>
<tr>
<td>40.1.1.1.1.4.3</td>
<td>Variation 3: Reduction with Boranes</td>
<td>38</td>
</tr>
<tr>
<td>40.1.1.1.1.4.4</td>
<td>Variation 4: Reduction with Borohydrides</td>
<td>41</td>
</tr>
<tr>
<td>40.1.1.1.1.4.5</td>
<td>Variation 5: The Kulinkovich–de Meijere Reaction</td>
<td>44</td>
</tr>
<tr>
<td>40.1.1.1.1.5</td>
<td>Method 5: Reduction of Amides or Thioamides</td>
<td>45</td>
</tr>
<tr>
<td>40.1.1.1.1.5.1</td>
<td>Variation 1: Reduction with Aluminum Hydrides</td>
<td>45</td>
</tr>
<tr>
<td>40.1.1.1.1.5.2</td>
<td>Variation 2: Reduction with Borane Derivatives</td>
<td>48</td>
</tr>
<tr>
<td>40.1.1.1.1.5.3</td>
<td>Variation 3: Reduction with Hydrosilanes</td>
<td>49</td>
</tr>
<tr>
<td>40.1.1.1.1.5.4</td>
<td>Variation 4: Reduction of Thioamides</td>
<td>50</td>
</tr>
<tr>
<td>40.1.1.1.1.5.5</td>
<td>Variation 5: The Kulinkovich–de Meijere Reaction</td>
<td>51</td>
</tr>
<tr>
<td>40.1.1.1.1.6</td>
<td>Method 6: Reduction of Imides</td>
<td>54</td>
</tr>
<tr>
<td>40.1.1.1.1.7</td>
<td>Method 7: Reduction of Imidates and Imidoyl Chlorides</td>
<td>55</td>
</tr>
<tr>
<td>40.1.1.1.2</td>
<td>Reductive Amination of Carbonyl Compounds</td>
<td>65</td>
</tr>
<tr>
<td>40.1.1.1.2.1</td>
<td>Alkylamines from Carbonyl Compounds by Direct Reductive Amination</td>
<td>65</td>
</tr>
</tbody>
</table>

Science of Synthesis Original Edition Volume 40a
© Georg Thieme Verlag KG
40.1.1.2.1.1 Method 1: Direct Reductive Amination by Catalytic Hydrogenation 66
40.1.1.2.1.1.1 Variation 1: Hydrogenation Using Heterogeneous Metal Catalysts 66
40.1.1.2.1.1.2 Variation 2: Hydrogenation Using Homogeneous Metal Complex Catalysts 67
40.1.1.2.1.1.3 Variation 3: Palladium-Catalyzed Transfer Hydrogenation 68
40.1.1.2.1.2 Method 2: Direct Reductive Amination Using Silanes as a Hydrogen Source 69
40.1.1.2.1.2.1 Variation 1: Using Polymethylhydrosiloxane 69
40.1.1.2.1.2.2 Variation 2: Using Aminohydrosilanes .. 69
40.1.1.2.1.2.3 Variation 3: Using Triethylsilane ... 70
40.1.1.2.1.3 Method 3: Direct Reductive Amination with Borohydride or Borane Reducing Agents ... 70
40.1.1.2.1.3.1 Variation 1: Using Sodium Cyanoborohydride 70
40.1.1.2.1.3.2 Variation 2: Using Sodium Borohydride 72
40.1.1.2.1.3.3 Variation 3: Using Zirconium(II) or Copper(I) Borohydrides 73
40.1.1.2.1.3.4 Variation 4: Using Sodium Triacyloxyborohydrides 74
40.1.1.2.1.3.5 Variation 5: Using Aminoboranes ... 74
40.1.1.2.2 Primary Alkylamines from Oximes and O-Alkylloximes 75
40.1.1.2.2.1 Primary Alkylamines from Oximes ... 76
40.1.1.2.2.1.1 Method 1: Catalytic Hydrogenation ... 76
40.1.1.2.2.1.2 Method 2: Catalytic Transfer Hydrogenation 77
40.1.1.2.2.1.3 Method 3: Reduction with Metallic Zinc 77
40.1.1.2.2.1.3.1 Variation 1: Using Zinc in the Presence of Ammonia 77
40.1.1.2.2.1.3.2 Variation 2: Using Zinc in the Presence of a Carboxylic Acid 78
40.1.1.2.2.1.4 Method 4: Reductions with Borane or Borohydrides 79
40.1.1.2.2.1.4.1 Variation 1: Reduction with Borane ... 79
40.1.1.2.2.1.4.2 Variation 2: Reduction with Borohydrides 79
40.1.1.2.2.1.5 Method 5: Reductions with Aluminum Trihydride or Hydroaluminates ... 80
40.1.1.2.2.2 Primary Alkylamines from O-Alkylloximes 81
40.1.1.2.2.3 Secondary Alkylamines from N-Alkylidenealkylamines by Reduction 82
40.1.1.2.2.3.1 Method 1: Stereorandom Reduction of N-Alkylidenealkylamines to Secondary Alkylamines ... 82
40.1.1.2.2.3.1.1 Variation 1: Via Transfer Hydrogenation 82
40.1.1.2.2.3.1.2 Variation 2: By Reduction with Hydrides 83
40.1.1.2.2.3.2 Method 2: Enantioselective Reduction of N-Alkylidenealkylamines to Secondary Alkylamines ... 84
40.1.1.2.2.4 Tertiary Alkylamines from Enamines by Reduction 85
40.1.1.2.2.4.1 Method 1: Amines from Enamines by Catalytic Hydrogenation 85
40.1.1.2.2.4.2 Method 2: Amines from Enamines by Enantioselective (Asymmetric) Catalytic Hydrogenation .. 86
40.1.1.2.2.4.3 Method 3: Amines from Enamines Using Other Reducing Agents 87

40.1.1.3 Reaction of Acetals with Organometallic Reagents
G. K. Friestad

40.1.1.3.1 Method 1: Additions to N,O-Acetals ... 91
40.1.1.3.1.1 Variation 1: Addition to N,O-Acetals Incorporating a Tertiary Amine Function .. 91
40.1.1.3.1.2 Variation 2: Addition to N,O-Acetals Incorporating a Secondary Amine Function .. 95
40.1.1.3.1.3 Variation 3: Development of Asymmetric Additions to N,O-Acetals ... 98

40.1.1.3.2 Method 2: Additions to N,N-Acetals 99

40.1.1.3.3 Method 3: Reductive Arylation of N,O-Acetals: The Tscherniac–Einhorn Reaction .. 100

40.1.1.3.3.1 Variation 1: Asymmetric Equivalents of the Tscherniac–Einhorn Reaction .. 105

40.1.1.4 Hydroaminomethylation of Alkenes
A. Börner, M. Beller, and B. Wünsch

40.1.1.4 Hydroaminomethylation of Alkenes ... 111
40.1.1.4.1 Method 1: Hydroaminomethylation ... 111

40.1.1.5 Reduction of Nitrogen-Based Functional Groups
P. Margaretha

40.1.1.5 Reduction of Nitrogen-Based Functional Groups ... 119
40.1.1.5.1 Reduction of Nitroalkanes ... 119
40.1.1.5.1.1 Method 1: Cathodic Reduction ... 120
40.1.1.5.1.2 Method 2: Catalytic Hydrogenation ... 120
40.1.1.5.1.3 Method 3: Transfer Hydrogenation ... 122
40.1.1.5.1.4 Method 4: Reduction Using Borohydrides and an Additional Catalyst ... 124
40.1.1.5.1.4.1 Variation 1: Using Sodium Borohydride ... 124
40.1.1.5.1.4.2 Variation 2: Using Borohydride Exchange Resin ... 125
40.1.1.5.1.4.3 Variation 3: Using Zinc(II) Borohydride–Pyridine ... 125
40.1.1.5.1.5 Method 5: Reduction Using Lithium Aluminum Hydride ... 125
40.1.1.5.1.6 Method 6: Reduction Using Aluminum Amalgam Promoted by Ultrasound ... 127
40.1.1.5.1.7 Method 7: Reduction Using Tin–Hydrochloric Acid ... 128
40.1.1.5.1.8 Method 8: Reduction Using Samarium(II) Iodide ... 128
40.1.1.5.2 Reduction of Mesoionic 2-Alkyl-1,2,3-triazines ... 130
40.1.1.5.3 Reduction of Nitrosoalkanes ... 131
40.1.1.5.4 Reduction of Alkyl Azides ... 131
40.1.1.5.4.1 Method 1: Catalytic Hydrogenation ... 131
40.1.1.5.4.2 Method 2: Transfer Hydrogenation ... 133
40.1.1.5.4.3 Method 3: Reduction Using Boranes or Boronates ... 135
40.1.1.5.4.3.1 Variation 1: Using Dichloroborane–Dimethyl Sulfide ... 135
40.1.1.5.4.3.2 Variation 2: Using Lithium Aminoborohydrides ... 136
40.1.1.5.4.3.3 Variation 3: Using Sodium Borohydride ... 137
40.1.1.5.4.3.4 Variation 4: Using Borohydride Exchange Resin–Nickel(II) Acetate ... 139
40.1.1.5.4.3.5 Variation 5: Using Zinc(II) Borohydride ... 139
40.1.1.5.4.4 Method 4: Reduction Using Lithium Aluminum Hydride ... 140
40.1.1.5.4.5 Method 5: Reduction Using Tributyltin Hydride ... 141
Method 6: Reduction Using Metals .. 141
Method 7: Reduction Using Triphenylphosphine 143
Method 8: Reduction Using Hydrogen Sulfide 144
Method 9: Reduction Using Propane-1,3-dithiol 144
Method 10: Reduction Using Low-Valent Metal Ion Salts 145
Methods 11: Miscellaneous Methods 145
Reduction of 1,2-Diazenes .. 145
Reduction of Hydroxylamines .. 146
Reduction of Amine Oxides .. 147
Reduction of N-Nitro and N-Nitroso Compounds 149
Reduction of Alkylhydrazines .. 149
Reduction of Sulfonamides .. 153

Synthesis by Substitution

Synthesis by Substitution of Hydrogen or Metals
H. Butenschön

Method 1: \(\alpha\)-Amination of Carbonyl Compounds and Analogues 157
Variation 1: Amination with Azodicarboxylates 157
Variation 2: Amination with R\(_2\)NL Compounds (L = Leaving Group) 167
Variation 3: Amination with Azides Followed by Reduction 170
Variation 4: Amination with Oxaziridines 173
Variation 5: Amination with 1-Chloro-1-nitroso Reagents 175
Variation 6: Amination with Lithium N-(tert-Butoxycarbonyl)-O-tosylhydroxamide ... 176
Variation 7: Amination with Nitridomanganese(V) Complexes 176
Variations 8: Other Variations ... 177
Method 2: Substitution of Hydrogen Other Than the \(\alpha\)-Hydrogen of Carbonyl Compounds ... 177
Variation 1: Amination with Azidotrimethylsilane Followed by Reduction 178
Variation 2: Amination of Unactivated C—H Groups with Haloamines 180
Variation 3: Rhodium(II)-, Ruthenium(II)-, or Manganese(III)-Catalyzed Amination .. 181
Variations 4: Miscellaneous Variations 184
Method 3: Substitution of Metal Atoms 185
Variation 1: Substitution of Boron .. 186
Variation 2: Substitution of Zinc .. 187
Variation 3: Substitution of Copper 190
Variation 4: Substitution of Magnesium 191
Variation 5: Substitution of Lithium 195
Variation 6: Substitution of Other Metal Atoms 197
Substitution of Carbon Functionalities via Solvolysis
F.-P. Montforts, M. Osmers, and V. A. Azov

Method 1: Substitution of Carbamates ... 203
 Variation 1: Cleavage by Nucleophilic Substitution 203
 Variation 2: Cleavage by Protic or Lewis Acids 206
 Variation 3: Cleavage by Base-Induced β-Elimination 210
 Variation 4: Cleavage by Remote Attack of Bases or Nucleophiles at the Carbamate Group ... 213

Method 2: Substitution of Carboxylic Acid N-Derivatives 219
 Variation 1: Acyclic Carboxylic Acid N-Derivatives 219
 Variation 2: Cyclic Carboxylic Acid N-Derivatives (Cyclic Imide Derivatives) 226
 Variation 3: Amidines ... 229

Substitution of Sulfur or Phosphorus Functionalities
F.-P. Montforts and M. Osmers

Method 1: Cleavage of Sulfonic, Sulfinic, and Sulfenic Acid N-Derivatives 233

Method 2: Cleavage of Phosphoric and Phosphinic Acid Amides 237

Hydroamination
S. Doye

Method 1: Hydroamination of Alkenes .. 241
 Variation 1: Catalysis by Acids .. 241
 Variation 2: Catalysis by Bases .. 243
 Variation 3: Catalysis by Calcium Complexes 245
 Variation 4: Catalysis by Rare Earth Metal Complexes 246
 Variation 5: Catalysis by Actinide Complexes 256
 Variation 6: Catalysis by Group 4 Metal Complexes 257
 Variation 7: Catalysis by Group 8 Metal Complexes 259
 Variation 8: Catalysis by Group 9 Metal Complexes 260
 Variation 9: Catalysis by Group 10 Metal Complexes 261
 Variation 10: Catalysis by Group 11 Metal Complexes 263
 Variation 11: Catalysis by Group 12 Metal Complexes 264

Method 2: Hydroamination of Vinylarenes .. 264
 Variation 1: Catalysis by Acids .. 264
 Variation 2: Catalysis by Bases .. 265
 Variation 3: Catalysis by Rare Earth Metal Complexes 266
 Variation 4: Catalysis by Hafnium Complexes 268
 Variation 5: Catalysis by Ruthenium Complexes 269
 Variation 6: Catalysis by Rhodium Complexes 270
<table>
<thead>
<tr>
<th>Variation No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0.1.3.1.2.7</td>
<td>Variation 7: Catalysis by Palladium or Platinum Complexes</td>
<td>272</td>
</tr>
<tr>
<td>4.0.1.3.1.2.8</td>
<td>Variation 8: Catalysis by Copper Complexes</td>
<td>273</td>
</tr>
<tr>
<td>4.0.1.3.1.2.9</td>
<td>Variation 9: Catalysis by Bismuth Complexes</td>
<td>274</td>
</tr>
<tr>
<td>4.0.1.3.1.2.10</td>
<td>Variation 10: Catalysis by N-Bromosuccinimide</td>
<td>274</td>
</tr>
<tr>
<td>4.0.1.3.1.2.11</td>
<td>Variation 11: Photoamination of Vinylecenes</td>
<td>275</td>
</tr>
<tr>
<td>4.0.1.3.1.3</td>
<td>Method 3: Hydroamination of 1,3-Dienes</td>
<td>275</td>
</tr>
<tr>
<td>4.0.1.3.1.3.1</td>
<td>Variation 1: Catalysis by Acids</td>
<td>276</td>
</tr>
<tr>
<td>4.0.1.3.1.3.2</td>
<td>Variation 2: Catalysis by Bases</td>
<td>276</td>
</tr>
<tr>
<td>4.0.1.3.1.3.3</td>
<td>Variation 3: Catalysis by Rare Earth Metal Complexes</td>
<td>277</td>
</tr>
<tr>
<td>4.0.1.3.1.3.4</td>
<td>Variation 4: Catalysis by Group 10 Metal Complexes</td>
<td>278</td>
</tr>
<tr>
<td>4.0.1.3.1.3.5</td>
<td>Variation 5: Catalysis by Gold Complexes</td>
<td>279</td>
</tr>
<tr>
<td>4.0.1.3.1.3.6</td>
<td>Variation 6: Catalysis by Bismuth Complexes</td>
<td>279</td>
</tr>
<tr>
<td>4.0.1.3.1.3.7</td>
<td>Variation 7: Photoamination of 1,3-Dienes</td>
<td>280</td>
</tr>
<tr>
<td>4.0.1.3.1.4</td>
<td>Method 4: Hydroamination of Cyclohepta-1,3,5-triene</td>
<td>280</td>
</tr>
<tr>
<td>4.0.1.3.1.5</td>
<td>Method 5: Hydroamination of Allenes</td>
<td>281</td>
</tr>
<tr>
<td>4.0.1.3.1.5.1</td>
<td>Variation 1: Catalysis by Rare Earth Metal Complexes</td>
<td>281</td>
</tr>
<tr>
<td>4.0.1.3.1.5.2</td>
<td>Variation 2: Catalysis by Titanium or Zirconium Complexes</td>
<td>282</td>
</tr>
<tr>
<td>4.0.1.3.1.5.3</td>
<td>Variation 3: Catalysis by Ruthenium Complexes</td>
<td>283</td>
</tr>
<tr>
<td>4.0.1.3.1.5.4</td>
<td>Variation 4: Catalysis by Palladium Complexes</td>
<td>284</td>
</tr>
<tr>
<td>4.0.1.3.1.5.5</td>
<td>Variation 5: Catalysis by Gold or Silver Complexes</td>
<td>286</td>
</tr>
<tr>
<td>4.0.1.3.1.6</td>
<td>Method 6: Hydroamination of Allenes and Subsequent Reduction</td>
<td>287</td>
</tr>
<tr>
<td>4.0.1.3.1.7</td>
<td>Method 7: Hydroamination of Alkynes</td>
<td>288</td>
</tr>
<tr>
<td>4.0.1.3.1.8</td>
<td>Method 8: Hydroamination of Alkynes and Subsequent Reduction</td>
<td>289</td>
</tr>
<tr>
<td>4.0.1.3.1.8.1</td>
<td>Variation 1: Catalysis by Rare Earth Metal Complexes</td>
<td>289</td>
</tr>
<tr>
<td>4.0.1.3.1.8.2</td>
<td>Variation 2: Catalysis by Group 4 Metal Complexes</td>
<td>290</td>
</tr>
<tr>
<td>4.0.1.3.1.8.3</td>
<td>Variation 3: Catalysis by Iridium Complexes</td>
<td>292</td>
</tr>
<tr>
<td>4.0.1.3.1.8.4</td>
<td>Variation 4: Catalysis by Silver Complexes</td>
<td>293</td>
</tr>
<tr>
<td>4.0.1.3.1.9</td>
<td>Method 9: Hydroamination of Alkynes and Nucleophilic Addition</td>
<td>293</td>
</tr>
<tr>
<td>4.0.1.3.1.10</td>
<td>Method 10: Hydroamination of Enynes</td>
<td>294</td>
</tr>
<tr>
<td>4.0.1.3.1.11</td>
<td>Method 11: Hydroamination of Methylene cyclopropanes</td>
<td>295</td>
</tr>
<tr>
<td>4.0.1.3.1.11.1</td>
<td>Variation 1: Catalysis by Rare Earth Metal Complexes</td>
<td>295</td>
</tr>
<tr>
<td>4.0.1.3.1.11.2</td>
<td>Variation 2: Catalysis by Palladium Complexes</td>
<td>296</td>
</tr>
<tr>
<td>4.0.1.3.1.11.3</td>
<td>Variation 3: Catalysis by Gold Complexes</td>
<td>296</td>
</tr>
<tr>
<td>4.0.1.3.1.12</td>
<td>Method 12: Hydroamination of Cyclopropenes</td>
<td>297</td>
</tr>
<tr>
<td>4.0.1.3.1.13</td>
<td>Method 13: Hydroamination of Cyclopropanes</td>
<td>297</td>
</tr>
<tr>
<td>4.0.1.3.1.13.1</td>
<td>Variation 1: Catalysis by Palladium Complexes</td>
<td>297</td>
</tr>
<tr>
<td>4.0.1.3.1.13.2</td>
<td>Variation 2: Photoamination of Cyclopropanes</td>
<td>298</td>
</tr>
<tr>
<td>4.0.1.3.1.14</td>
<td>Method 14: Hydroamination of Aromatic Compounds</td>
<td>298</td>
</tr>
</tbody>
</table>

4.0.1.3.2 Addition of Carbanions to Azomethines

G. K. Friestad

<table>
<thead>
<tr>
<th>Method No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0.1.3.2.1</td>
<td>Method 1: Use of N-(1-Phenylethyl)imines</td>
<td>305</td>
</tr>
<tr>
<td>4.0.1.3.2.1.1</td>
<td>Method 2: Use of N-Sulfamylamines</td>
<td>307</td>
</tr>
<tr>
<td>4.0.1.3.2.1.3</td>
<td>Method 3: Use of SAMP and RAMP Hydrazones</td>
<td>308</td>
</tr>
</tbody>
</table>
Pericyclic Reactions Involving C=N Units

1.3.3 Pericyclic Reactions Involving C=N Units

W. Maison

<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3.3</td>
<td>1</td>
<td>Method 1: Cycloaddition Reactions of N-Acylimines</td>
<td>343</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Method 2: Cycloaddition Reactions of N-(Alkoxycarbonylimines)</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Method 3: Cycloaddition Reactions of N-Sulfonylimines or N-Phosphorylimines</td>
<td>348</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Method 4: Cycloaddition Reactions of N-Alkylimines, N-Arylimines, or Their Salts</td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Method 5: Acid-Catalyzed Imino-Diels–Alder Reactions in Aqueous Media</td>
<td>352</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Method 6: Diastereoselective Cycloaddition Reactions of N-Alkyl- or N-Arylimines</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Method 7: Enantioselective Catalytic Cycloaddition Reactions of Alkylated and Arylated Imines</td>
<td>356</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Method 8: Cycloaddition Reactions of C-Heteroatom-Substituted Imines</td>
<td>357</td>
</tr>
</tbody>
</table>

1.4 Synthesis by Rearrangement

R. Purchase and M. Sainsbury

<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>1</td>
<td>Method 1: Stevens and Sommelet–Hauser Rearrangements</td>
<td>365</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Method 2: Rearrangements from Nitrogen to Carbon</td>
<td>365</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Method 3: Synthesis by Rearrangement</td>
<td>365</td>
</tr>
</tbody>
</table>
40.1.1.2 Method 2: [2,3]-Aza-Wittig and Related Sigmatropic Rearrangements ••••••••••• 379
40.1.1.2.1 Variation 1: [2,3]-Aza-Wittig Rearrangements ••••••••••• 379
40.1.1.2.2 Variation 2: Rearrangements Involving Compounds Containing Sulfur or Selenium ••••••••••• 380
40.1.1.3 Method 3: Rearrangements of Phenylhydrazines and Hydrazobenzenes • 382
40.1.1.4 Method 4: Overman Rearrangement (Aza-Oxa-Cope Rearrangement) ••••••••••• 382
40.1.1.5 Method 5: Rearrangements of N-Substituted Amines ••••••••••• 388
40.1.1.5.1 Variation 1: Fischer–Hepp Rearrangement ••••••••••• 388
40.1.1.5.2 Variation 2: Hofmann–Martius Rearrangement ••••••••••• 389
40.1.1.5.3 Variation 3: Reilly–Hickinbottom and Orton Rearrangements ••••••••••• 391
40.1.1.5.4 Variation 4: Bamberger Rearrangement ••••••••••• 391
40.1.1.5.5 Variation 5: Hofmann–Löffler–Freytag Rearrangement ••••••••••• 392
40.1.1.5.6 Rearrangements from Carbon to Nitrogen ••••••••••• 393
40.1.1.5.1 Method 1: Stieglitz Rearrangements ••••••••••• 393
40.1.1.5.2 Method 2: Beckmann Rearrangement ••••••••••• 393
40.1.1.5.3 Method 3: Neber Rearrangement ••••••••••• 394
40.1.1.5.4 Method 4: Hofmann, Curtius, Schmidt, and Lossen Rearrangements ••••••••••• 395
40.1.1.5.4.1 Variation 1: Hofmann Rearrangement ••••••••••• 396
40.1.1.5.4.2 Variation 2: Lossen Rearrangement ••••••••••• 401
40.1.1.5.4.3 Variation 3: Curtius Rearrangement ••••••••••• 404
40.1.1.5.4.4 Variation 4: Schmidt Rearrangement ••••••••••• 411
40.1.1.5.5 Synthesis from Other Amino Compounds

40.1.1.5.1 Resolution of Chiral Amines
V. A. Azov

40.1.1.5.1 Resolution of Chiral Amines ••••••••••• 419
40.1.1.5.1.1 Method 1: Resolution by Diastereomeric Crystallization ••••••••••• 419
40.1.1.5.1.2 Method 2: Kinetic Resolution ••••••••••• 421
40.1.1.5.1.2.1 Variation 1: Enzymatic Kinetic Resolution ••••••••••• 421
40.1.1.5.1.2.2 Variation 2: Dynamic Kinetic Resolution Using Enzymes ••••••••••• 425
40.1.1.5.1.2.3 Variation 3: Nonenzymatic Kinetic Resolution ••••••••••• 427
40.1.1.5.1.3 Method 3: Analytical and Preparative Chromatographic Separation ••••••••••• 428
40.1.1.5.1.4 Method 4: Analysis and Separation of Diastereomeric Amine Derivatives ••••••••••• 429
40.1.1.5.1.4.1 Variation 1: Using Chiral Solvating Agents ••••••••••• 430
40.1.1.5.1.4.2 Variation 2: Using Chiral Derivatizing Agents ••••••••••• 431
40.1.1.5.2 The Mannich Reaction
J. Ipaktschi and M. R. Saidi

40.1.1.5.2 The Mannich Reaction ••••••••••• 435
40.1.1.5.2.1 Direct Organocatalytic Enantioselective Mannich Reaction ••••••••••• 435
40.1.1.5.2.1.1 Method 1: α-Aminoalkylation of Ketones ••••••••••• 436
40.1.1.5.2.1.1.1 Variation 1: Proline-Catalyzed Aminoalkylation of Aliphatic Ketones ••••••••••• 436
40.1.1.5.2.1.1.2 Variation 2: Chiral Brønsted Acid Catalyzed Aminoalkylation of Ketones ••••••••••• 438
Variation 3: Aminoalkylation under High Pressure .. 439

Method 2: α-Aminomethylation of Ketones ... 440

Variation 1: Proline-Catalyzed α-Aminomethylation 440

Variation 2: α-Aminomethylation of Ketones under Microwave Irradiation 441

Method 3: α-Aminoalkylation of Hydroxy and Protected Amino Ketones 442

Variation 1: Synthesis of syn-1,2-Amino Alcohols 442

Variation 2: α-Aminomethylation of Ketones under Microwave Irradiation 441

Method 3: α-Aminoalkylation of Hydroxy and Protected Amino Ketones 442

Variation 1: Synthesis of syn-1,2-Amino Alcohols 442

Variation 2: Synthesis of Protected Amino Sugars by Direct Mannich Reaction .. 443

Variation 3: Synthesis of Protected Amino Sugars by Direct Mannich Reaction .. 443

Variation 4: Synthesis of anti-1,2-Amino Alcohols 446

Method 4: Asymmetric Cross-Mannich Reaction of Aldehydes 447

Variation 1: Stereoselective Synthesis of β-Amino Alcohols 448

Variation 2: Self-Mannich Reaction of Aliphatic and α-Hydroxy Aldehydes 449

Variation 3: One-Pot Direct Synthesis of β-Formyl-α-amino Acids 449

Variation 4: Synthesis of anti-1,2-Amino Alcohols 446

Method 5: β-Amino Acids by Indirect Mannich Reaction of Ketene Silyl Acetals with Protected Imines 461

Variation 1: Chiral-Thiourea-Catalyzed Addition of Ketene Silyl Acetals to N-(tert-Butoxycarbonyl)aldimines 461

Variation 2: Chiral Brønsted Acid Catalyzed Reaction of Aldimines with Ketene Silyl Acetals .. 462

Variation 3: Synthesis of Optically Active Quaternary α-Amino Acid Derivatives .. 460

Variation 4: anti-Mannich Reactions of Unmodified Ketones 458

Variation 5: Synthesis of Optically Active Quaternary α-Amino Acid Derivatives .. 460

Variation 6: β-Amino Acids by Indirect Mannich Reaction of Ketene Silyl Acetals with Protected Imines 461

Variation 7: Chiral-Thiourea-Catalyzed Addition of Ketene Silyl Acetals 461

Variation 8: Chiral Brønsted Acid Catalyzed Reaction of Aldimines with Ketene Silyl Acetals .. 462

Variation 9: β-Amino Acids by Addition of CH-Acidic 1,3-Dicarbonyl Compounds to Protected Imines 464
Modification of Mannich Adducts

J. Ipaktschi and M. R. Saidi

Modification of Mannich Adducts

- **Modification of the Amino Group**
 - Method 1: Deprotection of the N-(tert-Butoxycarbonyl) Group
 - Method 2: Deprotection of N-(4-Hydroxyphenyl), N-(4-Methoxyphenyl), and N-(2-Methoxyphenyl) Groups
 - Method 3: Deprotection of N-(Diarylphosphoryl) Groups
 - Method 4: Deprotection of N-(Arylsulfonyl) Groups
 - Method 5: Deprotection of the N-[(R)-2-Hydroxy-1-phenylethyl] Group
 - Method 6: Acylation Using Triphosgene
 - Method 7: Guanidinylation and the Synthesis of Capreomycidine
 - Method 8: Synthesis of Enantioenriched Dihydropyrimidinones

- **Modification of the Carbonyl Group**
 - Method 1: Enantioselective Synthesis of β2-Amino Acid Derivatives
 - Method 2: Enantioselective Synthesis of β2,3-Amino Acid Derivatives
 - Method 3: Baeyer–Villiger Oxidation
 - Method 4: Diastereoselective Reduction: Synthesis of (+)-Polyoxamic Acid
 - Method 5: Synthesis of β-Lactams
 - Method 6: Palladium-Catalyzed Carbonylation: Synthesis of (±)-Gelsemine
 - Method 7: Synthesis of Peptides: Synthesis of Azumamide A

- **Reduction of the Carbonyl Group and Imines**
 - Method 1: Enantioselective Synthesis of 1,3-Amino Alcohols: Synthesis of HPA-12
Method 2: Enantioselective Synthesis of 1,3-Amino Alcohols: Synthesis of (-)-Sedamine 495

Method 3: Enantioselective Synthesis of 1,3-Diamines 497

Substitution on the Amine Nitrogen
S. A. Lawrence

Dealkylation Reactions of Amines 501

Method 1: The von Braun Reaction with Cyanogen Bromide 501
Method 2: Dealkylation by Acylation 504
Method 3: Nitrosative Dealkylation Reactions 509
Method 4: Dealkylation by Transamination 509
Method 5: Acid-Mediated Dealkylation 511
Method 6: Photolytic Dealkylation 512
Method 7: Cleavage of the C—N Bond Using Selenols 512
Method 8: Cleavage of the C—N Bond Using Wilkinson’s Catalyst 513
Method 9: Reductive Cleavage of the C—N Bond 514

Dealkylation Reactions of Ammonium Salts 515

Method 1: Thermolytic Dealkylation 515
Method 2: The Hofmann Elimination Reaction 515
Method 3: Dealkylation with Ammonia, Amines, 2-Aminoethanol, or Other Bases 518
Method 4: Dealkylation Reactions with Alkali Metals or Metal Hydrides 519
Method 5: Dealkylation Reactions Using Sulfur Nucleophiles 520
Method 6: Electrolytic Methods of Cleavage 523

Replacement of Halogen Functionalities 523

Method 1: Reaction of Ammonia with Alkyl Halides 523
Method 2: Reactions of Primary, Secondary, or Tertiary Amines with Alkyl Halides 526
Method 3: Reactions of Alkali Metal Amide Salts 531
Method 4: The Gabriel Synthesis and Related Reactions of Carboxylic Acid Derivatives 531
Method 5: Reactions of Nitrogen-Containing Derivatives of Carbonic Acid 534

Method 6: Reactions with Hexamethylenetetramine 536
Method 7: Reaction with Sulfonamides 538
Method 8: Reaction with Amides of Phosphorus Acids 539
Method 9: Reactions of Alkyl Halides with Silylamines and Silylamides 542
Method 10: Intra- and Intermolecular Cyclization Reactions 543
Method 11: Reactions of Haloamines 547

Replacement of Oxygen Functionalities 548

Method 1: Reactions of Ammonia with Alcoholic Hydroxy Groups 548
Method 2: Reactions of Primary or Secondary Amines with Alcoholic Hydroxy Groups 550
40.1.5.4.4.3 Method 3: The Mitsunobu and Related Reactions 552
40.1.5.4.4.4 Method 4: Intermolecular Schmidt Reaction 559
40.1.5.4.4.5 Method 5: Reactions of Ammonia and Amines with Ethers 560
40.1.5.4.4.6 Method 6: Alkylation with Sulfates 565
40.1.5.4.4.7 Method 7: Alkylation with Sulfonates 566
40.1.5.4.4.8 Method 8: Alkylation with Nitrates 569
40.1.5.4.4.9 Method 9: Reactions with O—P Groups 569
40.1.5.4.4.10 Method 10: Reactions with O—Si Groups 569

40.1.2 Product Subclass 2: Propargylic Amines
J. Q. Feng and C.-J. Li

40.1.2.1 Synthesis of Product Subclass 2 ... 579
40.1.2.1.1 Method 1: Ethynylations of Azomethines 579
40.1.2.1.2 Variation 1: Catalyzed by Iridium(I) Complexes 579
40.1.2.1.3 Variation 2: Catalyzed by a Copper(I)–pybox Complex 580
40.1.2.2 Method 2: Three-Component Coupling of an Aldehyde, an Alkyne, and an Amine ... 580
40.1.2.2.1 Variation 1: Catalyzed by Copper(I) Salts 580
40.1.2.2.2 Variation 2: Catalyzed by Copper(I) Bromide/Ruthenium(III) Chloride 582
40.1.2.2.3 Variation 3: Catalyzed by Gold(III) Bromide 582
40.1.2.2.4 Variation 4: Catalyzed by Silver(I) Salts 583
40.1.2.3 Method 3: Copper-Catalyzed Cross-Dehydrogenative Coupling 584

40.1.3 Product Subclass 3: Allylic Amines
J. Q. Feng and C.-J. Li

40.1.3.1 Synthesis of Product Subclass 3 ... 587
40.1.3.1.1 Method 1: Synthesis by Substitution of Hydrogen 587
40.1.3.1.1.1 Variation 1: By Ene-Type Reaction 587
40.1.3.1.1.2 Variation 2: Allylic Amination via the Insertion of Nitrenes 590
40.1.3.1.2 Method 2: Synthesis by the Substitution of a Halogen or a Leaving Group 591
40.1.3.1.2.1 Variation 1: By Palladium-Catalyzed Allylic Substitution 591
40.1.3.1.3 Method 3: Synthesis by Addition ... 594
40.1.3.1.3.1 Variation 1: Of Nitrogen Reagents to Vinylphosphonium Salts 594
40.1.3.1.3.2 Variation 2: By Aza-Baylis–Hillman Reaction 597
40.1.3.1.3.3 Variation 3: By Aza-Diels–Alder Reaction 601
40.1.3.1.4 Method 4: Synthesis by Rearrangement 606
40.1.3.1.4.1 Variation 1: Of Aziridines .. 606
40.1.3.1.4.2 Variation 2: By Aza-Oxa-Cope Rearrangement 606
40.1.3.1.4.3 Variation 3: By [2,3]-Sigmatropic Rearrangement 609
Product Subclass 4: n-Nitrogen- or n-Phosphorus-Functionalized Alkylamines (n ≥ 2)
K.-M. Roy

Synthesis of Product Subclass 4

4.1 Synthesis by Addition across C–C Bonds

4.1.1 Method 1: Amination of 1,3-Dienes

4.1.1.1 Variation 1: 1,2-Diamination

4.1.1.2 Variation 2: 1,4-Diamination

4.1.1.3 Method 2: Amination of Alkenes

4.1.1.4 Variation 1: Direct Addition of Nitrogen Compounds

4.1.1.5 Variation 2: α,α-Diamines by Carbonylative Bis(hydroaminomethylation) of α,α-Dialkenes

4.1.1.6 Variation 3: 1,2-Diamines via 4,5-Dihydroimidazoles

4.1.2 Synthesis by Addition across C–N Bonds

4.1.2.1 Method 1: Ring Opening of Aziridines

4.1.2.1.1 Variation 1: Addition of Amines

4.1.2.1.2 Variation 2: Addition of Azides

4.1.2.2 Method 2: Ring Opening of Azetidines

4.1.2.3 Method 3: Synthesis by Coupling of Nitrogen Compounds

4.1.2.3.1 Variation 1: Coupling of Imines

4.1.2.3.2 Variation 2: Coupling of Amines

4.1.2.3.3 Variation 3: Coupling of Nitriles

4.1.3 Synthesis by Addition across C–C Bonds

4.1.3.1 Method 1: Amine Addition to Epoxides

4.1.4 Synthesis by Rearrangement

4.1.4.1 Method 1: 1,2-Diamines via [2,3]-Sigmatropic Rearrangement

4.1.4.1.1 Variation 1: Rearrangement of Sulfur Imides

4.1.4.1.2 Variation 2: Rearrangement of Selenium Imides

4.1.4.2 Method 2: 1,2-Diamines via [3,3]-Sigmatropic Rearrangement

4.1.5 Synthesis by Reduction of α-Amino Amides

4.1.6 Synthesis of 2-Nitroamines

4.1.6.1 Method 1: Synthesis by Nitro-Mannich Reaction

4.1.6.2 Method 2: Synthesis by Addition of Nitrogen Compounds to Alkenes

4.1.7 Synthesis of (Aminoalkyl)phosphines

4.1.7.1 Method 1: Synthesis by Amination of Unsaturated Phosphines

4.1.7.2 Method 2: Synthesis by Addition of Phosphines to Unsaturated Amines

4.1.8 Applications of Product Subclass 4 in Organic Synthesis
Product Subclass 5: Aziridines

J. B. Sweeney

Synthesis of Product Subclass 5

Method 1: Addition to Alkenes

Variation 1: Addition of Nitrenes

Variation 2: Addition of Metal Nitrenoids

Variation 3: Addition of Azides

Variation 4: Addition of Hydrazine Derivatives

Variation 5: Addition of Hydroxylamine Derivatives

Method 2: Addition to Imines

Variation 1: Addition of Carbenes

Variation 2: Addition of Metal Carbenoids

Variation 3: Via Nucleophilic Attack of Anions of 2-Halo and 2-Pseudohalo Esters

Variation 4: Cyclization of Azomethine Ylides

Variation 5: Addition of Nucleophiles to Azirines

Variation 6: Cycloaddition of Azirines

Method 3: Addition to Aldehydes Using Guanidinium Ylides

Method 4: Cyclization Reactions

Variation 1: Cyclization of 2-Haloalkanamines

Variation 2: Cyclization of 2-Aminoalkanols

Variation 3: Cyclization of 2-Azidoalkanols

Variation 4: Via Cyclic Sulfates

Variation 5: Cyclization of 1-Azido-2-haloalkanes

Variation 6: Cyclization of Alleny1-Substituted Amines

Variation 7: Cyclization of (2-Bromoallyl)amines

Method 5: Ring Contraction of 4,5-Dihydro-1H-1,2,3-triazoles

Method 6: Substituent Modification

Variation 1: Substitution of Existing Substituents

Variation 2: Of Hydrogen: Deprotonation

Applications of Product Subclass 5 in Organic Synthesis

Ring Opening of Saturated Aziridines

Method 1: Ring Opening with Hydrogen

Variation 1: Hydrogenolysis

Variation 2: By Complex Hydrides

Variation 3: By Metal Reducing Agents

Method 2: Ring Opening Using Oxygen Nucleophiles

Variation 1: By Water

Variation 2: By Alcohols

Variation 3: By Carboxylates

Variation 4: Intramolecular Ring Opening by Oxygen Nucleophiles

Method 3: Ring Opening Using Nitrogen Nucleophiles

Variation 1: By Aliphatic Amines

Variation 2: By Aromatic Amines
40.1.5.2.1.3.3 Variation 3: By Azide ... 726
40.1.5.2.1.3.4 Variation 4: By Hydroxylamine ... 729
40.1.5.2.1.3.5 Variation 5: Intramolecular Ring Opening by Nitrogen Nucleophiles 730
40.1.5.2.1.4 Method 4: Ring Opening Using Sulfur Nucleophiles 730
40.1.5.2.1.5 Method 5: Ring Opening Using Halogen Nucleophiles 732
40.1.5.2.1.6 Method 6: Ring Opening Using Carbon Nucleophiles 735
40.1.5.2.1.6.1 Variation 1: By Carbanions ... 735
40.1.5.2.1.6.2 Variation 2: By Enolates .. 741
40.1.5.2.1.6.3 Variation 3: By Arenes ... 742
40.1.5.2.1.6.4 Variation 4: By Cyanide ... 744
40.1.5.2.1.7 Method 7: Ring Opening by Deprotonation 745
40.1.5.2.1.7.1 Variation 1: Elimination Reactions ... 745
40.1.5.2.1.7.2 Variation 2: Rearrangement Reactions .. 746
40.1.5.2.1.8 Method 8: Ring Opening Using Lewis Acids 747
40.1.5.2.1.9 Method 9: Ring Opening by Thermolysis 749
40.1.5.2.1.10 Method 10: Carbonylative Ring Expansion 750
40.1.5.2.2 Ring Opening of Alkenyl- and Alkynylaziridines 751
40.1.5.2.2.1 Method 1: Ring Opening by Hydride ... 751
40.1.5.2.2.2 Method 2: Ring Opening by Oxygen Nucleophiles 752
40.1.5.2.2.2.1 Variation 1: From Amines and 1,3-Dihalo Compounds 752
40.1.5.2.2.2.2 Variation 2: From Amines and 1,3-Diol Derivatives 753
40.1.5.2.2.2.3 Variation 3: Intramolecular Ring Opening by Oxygen Nucleophiles ... 753
40.1.5.2.2.3 Method 3: Ring Opening Using Amino Nucleophiles 754
40.1.5.2.2.4 Method 4: Ring Opening Using Halogen Nucleophiles 755
40.1.5.2.2.5 Method 5: Ring Opening Using Carbon Nucleophiles 755
40.1.5.2.2.5.1 Variation 1: By Carbanions ... 755
40.1.5.2.2.5.2 Variation 2: With Palladium Catalysis .. 758
40.1.5.2.2.6 Method 6: Ring Opening via Rearrangement 759

40.1.6 Product Subclass 6: Azetidines
F. Couty

40.1.6 Product Subclass 6: Azetidines ... 773
40.1.6.1 Synthesis of Product Subclass 6 .. 773
40.1.6.1.1 Ring-Closure Reactions ... 773
40.1.6.1.1.1 Method 1: Ring Closure of Amines and 1,3-Functionalized Hydrocarbons 773
40.1.6.1.1.1.1 Variation 1: From Amines and 1,3-Dihalo Compounds 773
40.1.6.1.1.1.2 Variation 2: From Amines and 1,3-Diol Derivatives 774
40.1.6.1.1.2 Method 2: Thermal [2+2] Cycloaddition of Imines and Alkenes 775
40.1.6.1.1.3 Method 3: Ring Closure of Acyclic Amines 776
40.1.6.1.1.3.1 Variation 1: Of γ-Haloamines ... 776
40.1.6.1.1.3.2 Variation 2: Of γ-Amino Alcohols and Derivatives 777
40.1.6.1.1.3.3 Variation 3: Of Alkenyl- or Allenylamines 782
40.1.6.1.1.3.4 Variation 4: Of γ,δ-Epoxyamines .. 784
40.1.6.1.1.3.5 Variation 5: Of γ-Azidoamines .. 785
40.1.6.1.1.4 Method 4: Ring Closure of Acyclic Imine Derivatives 785
Method 5: Ring Closure of Stabilized Carbanions (C—C Bond Formation)

Variation 1: Intramolecular Alkylation of β-Amino Halides

Variation 2: Intramolecular Michael Addition

Method 6: Photochemical Cyclizations

Variation 1: Intermolecular Photochemical Cyclizations

Variation 2: Intramolecular Photochemical Cyclizations

Method 7: Cyclizations through Insertion of Carbenoids into N—H Bonds

Method 8: Cyclizations through Copper-Catalyzed Intramolecular N-Vinylation

Method 9: Cyclization of Amines with Alkenes via Azazirconacyclopentanes

Reduction of Four-Membered Ring Compounds

Method 1: Reduction of Azetidin-2-ones (β-Lactams)

Method 2: Alkenation of Azetidin-2-ones (β-Lactams)

Method 3: Reduction of Azetidinium Ions

Ring-Transformation Reactions

Method 1: Ring Expansion of Three-Membered Rings

Method 2: Ring Contraction of Five- or Six-Membered Rings

Method 3: Ring Transformation of 3-(Chloromethyl)azetidin-2-ones

Product Subclass 7: Ammonium Compounds and Nitrogen Ylides

E. Kruiswijk and J. A. Deck

Method 1: Synthesis of Quaternary Ammonium Compounds from Primary and Secondary Amines

Method 2: Synthesis from Amines and Diazomethane

Variation 1: From Amines and Activated Diazomethane

Variation 2: From Amino Acids

Method 3: Alkylation of Tertiary Amines

Variation 1: With Haloalkanes under Pressure

Variation 2: With Tertiary Oxonium Salts

Variation 3: With Dialkoxycarbenium Salts

Variation 4: With Methyl Trifluoromethanesulfonate

Variation 5: With Methyl Chloroformate

Variation 6: With O-Alkylisoureas

Variation 7: With Dimethyl Sulfate

Variation 8: With Electron-Poor Alkenes and Alkynes

Variation 9: With Alkylideneammonium Halides

Variation 10: Synthesis of Polymer-Bound Ammonium Compounds

Method 4: Synthesis of Compounds Containing Several Quaternary Ammonium Centers

Variation 1: Derivatives of Diamines

Variation 2: Derivatives of Bis(aminomethyl)arenes

Variation 3: Derivatives of N-Alkylated Macrocycles
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.1.7.5</td>
<td>Method 5:</td>
<td>Synthesis of Nitrogen Ylides</td>
<td>835</td>
</tr>
<tr>
<td>40.1.7.5.1</td>
<td>Variation 1:</td>
<td>From Quaternary Ammonium Compounds</td>
<td>835</td>
</tr>
<tr>
<td>40.1.7.5.2</td>
<td>Variation 2:</td>
<td>Addition of a Tertiary Amine to a Metal Carbene</td>
<td>836</td>
</tr>
<tr>
<td>40.1.7.5.3</td>
<td>Variation 3:</td>
<td>Addition of a Tertiary Amine to the Simmons–Smith Reagent</td>
<td>837</td>
</tr>
<tr>
<td>40.1.7.2</td>
<td></td>
<td>Applications of Product Subclass 7 in Organic Synthesis</td>
<td>838</td>
</tr>
</tbody>
</table>

Keyword Index

- i

Author Index

- lix

Abbreviations

- cv
Volume 40b:
Amine N-Oxides, Haloamines, Hydroxylamines and Sulfur Analogues, and Hydrazines

Preface .. V
Volume Editors’ Preface .. VII
Table of Contents .. IX

40.2 Product Class 2: Nitroxyl Radicals (Nitrooxides)
A. Studer and T. Vogler .. 845

40.3 Product Class 3: Amine N-Oxides
I. O’Neil ... 855

40.4 Product Class 4: N-Haloamines
U. Wille ... 893

40.5 Product Class 5: Hydroxylamines
D. Geffken and M. A. Köllner .. 937

40.6 Product Class 6: 1-Oxa-2-azacycloalkanes
D. Geffken and M. A. Köllner .. 1083

40.7 Product Class 7: Hydrazines and Hydrazinium Salts
P. Rademacher .. 1133

40.8 Product Class 8: 1,2-Diazacycloalkanes
W. Maison .. 1211

40.9 Product Class 9: Triazanes and Tetrazanes
E. Schaumann .. 1253

40.10 Product Class 10: Amido Derivatives of Sulfanediol
S. R. Chemler .. 1259

40.11 Product Class 11: Amido Derivatives of Sulfurous Acid
S. R. Chemler .. 1269

40.12 Product Class 12: N-Alkylsulfamic Acids and Derivatives
E. S. Sherman and S. R. Chemler .. 1285

40.13 Product Class 13: Ammoniumsulfonates, Thiohydroxylamines, and Aminosulfonium Salts
E. Schaumann .. 1305

Keyword Index .. 1309
Author Index .. 1339
Abbreviations .. 1371
Table of Contents

40.2 Product Class 2: Nitroxy Radicals (Nitroxides)
A. Studer and T. Vogler

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.2</td>
<td>Synthesis of Product Class 2</td>
<td>845</td>
</tr>
<tr>
<td>40.2.1</td>
<td>Method 1: Oxidation of Amines</td>
<td>846</td>
</tr>
<tr>
<td>40.2.2</td>
<td>Method 2: Oxidation of Hydroxylamines</td>
<td>847</td>
</tr>
<tr>
<td>40.2.1.1</td>
<td>Variation 1: From Hydroxylamines</td>
<td>847</td>
</tr>
<tr>
<td>40.2.1.2</td>
<td>Variation 2: From Nitrones</td>
<td>848</td>
</tr>
<tr>
<td>40.2.1.3</td>
<td>Methods 3: Other Methods</td>
<td>848</td>
</tr>
<tr>
<td>40.2.2</td>
<td>Applications of Product Class 2 in Organic Synthesis</td>
<td>849</td>
</tr>
<tr>
<td>40.2.2.1</td>
<td>Method 1: Alcohol Oxidation</td>
<td>849</td>
</tr>
<tr>
<td>40.2.2.2</td>
<td>Method 2: Controlled Radical Polymerization</td>
<td>850</td>
</tr>
<tr>
<td>40.2.2.3</td>
<td>Method 3: Radical Carboaminoxylations</td>
<td>851</td>
</tr>
</tbody>
</table>

40.3 Product Class 3: Amine N-Oxides
I. O’Neil

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.3</td>
<td>Synthesis of Product Class 3</td>
<td>855</td>
</tr>
<tr>
<td>40.3.1</td>
<td>Method 1: Reaction of Hydroxylamines with Alkylating Agents</td>
<td>860</td>
</tr>
<tr>
<td>40.3.1.2</td>
<td>Method 2: Oxidation of Tertiary Amines</td>
<td>861</td>
</tr>
<tr>
<td>40.3.1.2.1</td>
<td>Variation 1: Using Hydrogen Peroxide</td>
<td>862</td>
</tr>
<tr>
<td>40.3.1.2.2</td>
<td>Variation 2: Using Alkyl Hydroperoxides</td>
<td>865</td>
</tr>
<tr>
<td>40.3.1.2.3</td>
<td>Variation 3: Using Peracids</td>
<td>868</td>
</tr>
<tr>
<td>40.3.1.2.4</td>
<td>Variation 4: Using Molecular Oxygen</td>
<td>872</td>
</tr>
<tr>
<td>40.3.1.2.5</td>
<td>Variation 5: Using Ozone</td>
<td>872</td>
</tr>
<tr>
<td>40.3.1.2.6</td>
<td>Variation 6: Using Oxaziridines</td>
<td>873</td>
</tr>
<tr>
<td>40.3.1.2.7</td>
<td>Variation 7: Using Dimethyldioxirane</td>
<td>874</td>
</tr>
<tr>
<td>40.3.1.2.8</td>
<td>Variation 8: Using Magnesium Monoperoxypthalate</td>
<td>875</td>
</tr>
<tr>
<td>40.3.1.2.9</td>
<td>Variation 9: Using Hypofluorous Acid–Acetonitrile Complex</td>
<td>875</td>
</tr>
<tr>
<td>40.3.1.2.10</td>
<td>Variation 10: Using Biomimetic Hydroperoxides</td>
<td>875</td>
</tr>
<tr>
<td>40.3.1.2.11</td>
<td>Variation 11: Using Enzymatic Transformations</td>
<td>877</td>
</tr>
<tr>
<td>40.3.1.3</td>
<td>Method 3: Reverse Cope Cyclization</td>
<td>878</td>
</tr>
<tr>
<td>40.3.1.4</td>
<td>Method 4: Synthesis of Enamine N-Oxides</td>
<td>885</td>
</tr>
</tbody>
</table>

40.4 Product Class 4: N-Haloamines
U. Wille

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.4</td>
<td>Synthesis of Product Subclass 1</td>
<td>894</td>
</tr>
<tr>
<td>40.4.1</td>
<td>Product Subclass 1: N-Fluoroamines</td>
<td>894</td>
</tr>
<tr>
<td>40.4.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td>894</td>
</tr>
</tbody>
</table>

Science of Synthesis Original Edition Volume 40b © Georg Thieme Verlag KG
<table>
<thead>
<tr>
<th>Section</th>
<th>Subclass</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.4.1.1.1</td>
<td>Method 1:</td>
<td>Synthesis of N-Fluoroalkanamines</td>
<td>894</td>
<td></td>
</tr>
<tr>
<td>40.4.1.1.1</td>
<td>Variation 1: From Amines</td>
<td></td>
<td>894</td>
<td></td>
</tr>
<tr>
<td>40.4.1.1.2</td>
<td>Variation 2: From Amides</td>
<td></td>
<td>895</td>
<td></td>
</tr>
<tr>
<td>40.4.1.1.3</td>
<td>Variation 3: From Amines</td>
<td></td>
<td>896</td>
<td></td>
</tr>
<tr>
<td>40.4.1.1.2</td>
<td>Method 2: Synthesis of Acyclic N-Fluorodialkylamines</td>
<td></td>
<td>897</td>
<td></td>
</tr>
<tr>
<td>40.4.1.1.2</td>
<td>Variation 1: From Amines</td>
<td></td>
<td>897</td>
<td></td>
</tr>
<tr>
<td>40.4.1.1.2</td>
<td>Variation 2: From Secondary Amines</td>
<td></td>
<td>897</td>
<td></td>
</tr>
<tr>
<td>40.4.1.1.3</td>
<td>Method 3: Synthesis of 1-Fluoroaziridines</td>
<td></td>
<td>898</td>
<td></td>
</tr>
<tr>
<td>40.4.1.1.4</td>
<td>Method 4: Synthesis of Higher N-Fluoroazacyclanes</td>
<td></td>
<td>901</td>
<td></td>
</tr>
<tr>
<td>40.4.2</td>
<td>Product Subclass 2: N-Chloroamines</td>
<td></td>
<td>901</td>
<td></td>
</tr>
<tr>
<td>40.4.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td></td>
<td>901</td>
<td></td>
</tr>
<tr>
<td>40.4.2.1.1</td>
<td>Method 1:</td>
<td>Synthesis of N-Chloroalkanamines</td>
<td>901</td>
<td></td>
</tr>
<tr>
<td>40.4.2.1.1</td>
<td>Variation 1: From Primary Amines Using Chlorine</td>
<td></td>
<td>901</td>
<td></td>
</tr>
<tr>
<td>40.4.2.1.2</td>
<td>Variation 2: From Primary Amines Using a Metal Hypochlorite</td>
<td></td>
<td>902</td>
<td></td>
</tr>
<tr>
<td>40.4.2.1.3</td>
<td>Variation 3: From Primary Amines Using tert-Butyl Hypochlorite</td>
<td></td>
<td>903</td>
<td></td>
</tr>
<tr>
<td>40.4.2.1.4</td>
<td>Variation 4: From Primary Amines Using N-Chlorosuccinimide</td>
<td></td>
<td>903</td>
<td></td>
</tr>
<tr>
<td>40.4.2.1.5</td>
<td>Variation 5: From N-(Trimethylsilyl)ethanamine</td>
<td></td>
<td>904</td>
<td></td>
</tr>
<tr>
<td>40.4.2.1.2</td>
<td>Method 2: Synthesis of Acyclic N-Chlorodialkylamines</td>
<td></td>
<td>904</td>
<td></td>
</tr>
<tr>
<td>40.4.2.1.2</td>
<td>Variation 1: From Secondary Amines Using Metal Hypochlorites</td>
<td></td>
<td>904</td>
<td></td>
</tr>
<tr>
<td>40.4.2.1.2</td>
<td>Variation 2: From Secondary Amines Using tert-Butyl Hypochlorite</td>
<td></td>
<td>907</td>
<td></td>
</tr>
<tr>
<td>40.4.2.1.3</td>
<td>Variation 3: From Secondary Amines Using N-Chloroamides</td>
<td></td>
<td>907</td>
<td></td>
</tr>
<tr>
<td>40.4.2.1.4</td>
<td>Variation 4: From (Trialkylsilyl)amines</td>
<td></td>
<td>908</td>
<td></td>
</tr>
<tr>
<td>40.4.2.1.5</td>
<td>Variation 5: From Imines and Alkenes</td>
<td></td>
<td>909</td>
<td></td>
</tr>
<tr>
<td>40.4.2.1.6</td>
<td>Variation 6: From Aziridines</td>
<td></td>
<td>910</td>
<td></td>
</tr>
<tr>
<td>40.4.2.1.3</td>
<td>Method 3: Synthesis of 1-Chloroaziridines</td>
<td></td>
<td>910</td>
<td></td>
</tr>
<tr>
<td>40.4.2.1.3</td>
<td>Variation 1: Using Chlorine</td>
<td></td>
<td>911</td>
<td></td>
</tr>
<tr>
<td>40.4.2.1.3</td>
<td>Variation 2: Using a Metal Hypochlorite</td>
<td></td>
<td>911</td>
<td></td>
</tr>
<tr>
<td>40.4.2.1.3</td>
<td>Variation 3: Using tert-Butyl Hypochlorite</td>
<td></td>
<td>912</td>
<td></td>
</tr>
<tr>
<td>40.4.2.1.4</td>
<td>Variation 4: Using N-Chlorosuccinimide</td>
<td></td>
<td>915</td>
<td></td>
</tr>
<tr>
<td>40.4.2.1.5</td>
<td>Method 4: Synthesis of 1-Chloroazetidines</td>
<td></td>
<td>915</td>
<td></td>
</tr>
<tr>
<td>40.4.2.1.5</td>
<td>Method 5: Synthesis of Higher N-Chloroazacyclanes</td>
<td></td>
<td>916</td>
<td></td>
</tr>
<tr>
<td>40.4.2.1.5</td>
<td>Variation 1: From Azacyclanes Using Chlorine</td>
<td></td>
<td>916</td>
<td></td>
</tr>
<tr>
<td>40.4.2.1.5</td>
<td>Variation 2: From Azacyclanes Using Hypochlorites</td>
<td></td>
<td>917</td>
<td></td>
</tr>
<tr>
<td>40.4.2.1.5</td>
<td>Variation 3: From Azacyclanes Using N-Chlorosuccinimide</td>
<td></td>
<td>918</td>
<td></td>
</tr>
<tr>
<td>40.4.2.1.5</td>
<td>Variation 4: From Cyclic Imines</td>
<td></td>
<td>919</td>
<td></td>
</tr>
<tr>
<td>40.4.3</td>
<td>Product Subclass 3: N-Bromoamines</td>
<td></td>
<td>920</td>
<td></td>
</tr>
<tr>
<td>40.4.3.1</td>
<td>Synthesis of Product Subclass 3</td>
<td></td>
<td>920</td>
<td></td>
</tr>
<tr>
<td>40.4.3.1.1</td>
<td>Method 1:</td>
<td>Synthesis of N-Bromoalkanamines</td>
<td>920</td>
<td></td>
</tr>
<tr>
<td>40.4.3.1.1</td>
<td>Variation 1: Using Bromine</td>
<td></td>
<td>920</td>
<td></td>
</tr>
<tr>
<td>40.4.3.1.2</td>
<td>Variation 2: Using Sodium Hypobromite</td>
<td></td>
<td>921</td>
<td></td>
</tr>
<tr>
<td>40.4.3.1.2</td>
<td>Method 2: Synthesis of Acyclic N-Bromodialkylamines</td>
<td></td>
<td>921</td>
<td></td>
</tr>
<tr>
<td>40.4.3.1.2</td>
<td>Variation 1: From Secondary Amines</td>
<td></td>
<td>922</td>
<td></td>
</tr>
<tr>
<td>40.4.3.1.2</td>
<td>Variation 2: From N-Silylamines</td>
<td></td>
<td>922</td>
<td></td>
</tr>
<tr>
<td>40.4.3.1.3</td>
<td>Variation 3: From Imines</td>
<td></td>
<td>923</td>
<td></td>
</tr>
<tr>
<td>40.4.3.1.3</td>
<td>Method 3: Synthesis of 1-Bromoaziridines</td>
<td></td>
<td>923</td>
<td></td>
</tr>
<tr>
<td>40.4.3.1.3</td>
<td>Variation 1: Using Bromine</td>
<td></td>
<td>923</td>
<td></td>
</tr>
</tbody>
</table>
40.4.3.3.2 Variation 2: Using N-Bromosuccinimide 924
40.4.3.1.4 Method 4: Synthesis of 1-Bromoazetidines 925
40.4.3.1.5 Method 5: Synthesis of Higher N-Bromoazacyclanes 925
40.4.3.1.5.1 Variation 1: From Azacyclanes Using Bromine 925
40.4.3.1.5.2 Variation 2: From Azacyclanes Using Hypobromite 925
40.4.3.1.5.3 Variation 3: From Azacyclanes Using N-Bromosuccinimide 926
40.4.3.1.5.4 Variation 4: From Cyclic Imines ... 926
40.4.3.1.5.5 Variation 5: From Tertiary Cyclic Amines 927
40.4.4 Product Subclass 4: N-Iodoamines ... 928
40.4.4.1 Synthesis of Product Subclass 4 ... 928
40.4.4.1.1 Method 1: Synthesis of N-Iodoalkanamines 928
40.4.4.1.2 Method 2: Synthesis of Acyclic N-Iododialkylamines 928
40.4.4.1.2.1 Variation 1: Direct Alkylation of Hydroxylamine 928
40.4.4.1.2.2 Variation 2: Alkylation of O,N-Diprotected Hydroxylamines 929
40.4.4.1.2.3 Variation 3: Alkylation of N-(Benzyloxy)-4-toluenesulfonamide 941
40.4.4.1.2.4 Variation 4: Addition to Multiple Bonds 942
40.4.4.1.2.5 Variation 5: Alkylation of Ethyl 3-Methyl-5-oxo-2,5-dihydroisoxazole-4-carboxylate ... 942
40.4.4.1.1 Method 2: Reduction of Oximes .. 943
40.4.4.1.1.2 Variation 1: Using Borohydride or Cyanoborohydride 943
40.4.4.1.1.2 Variation 2: Using Pyridine–Borane 948
40.4.4.1.1.2 Variation 3: Using Diborane .. 950
40.4.4.1.1.2 Variation 4: Using Borane–Trialkylamines 950
40.4.4.1.1.3 Method 3: Reaction of Organometallic Reagents with Oximes 951
40.4.4.1.1.3 Variation 1: Addition of Organolithium Reagents to Oximes 951
40.4.4.1.1.3 Variation 2: Addition of Organomagnesium Reagents to Oximes 951
40.4.4.1.1.3 Variation 3: Reaction of O-Trimethylsilyl Oxime Ethers with Ketene Acetals 952
40.4.4.1.1.3 Variation 4: Addition of Allylboronates to Oximes 953
40.4.4.1.1.4 Method 4: Synthesis from Nitrones and Organometallic Reagents 953
40.4.4.1.1.5 Method 5: Alkylation of Oximes 955
40.4.4.1.1.6 Method 6: Synthesis from O-Benzylhydroxylamines 956
<table>
<thead>
<tr>
<th>Variation</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Using Alkyl Halides</td>
<td>By Alkylation–Hydrogenolysis of N-Alkyl-O-benzylhydroxylamines</td>
<td>970</td>
</tr>
<tr>
<td>2</td>
<td>Using Hydrogen Peroxide and Sodium Tungstate</td>
<td>By Hydrogenation of Primary Amines</td>
<td>965</td>
</tr>
<tr>
<td>3</td>
<td>Using Organosulfonic Acid Esters</td>
<td>By Reduction of Nitroalkanes</td>
<td>974</td>
</tr>
<tr>
<td>4</td>
<td>Using Dimethyldioxirane</td>
<td>By Catalytic Hydrogenation</td>
<td>975</td>
</tr>
<tr>
<td>5</td>
<td>Using Peroxy Acids or Peroxy Acid Anhydrides</td>
<td>By Catalytic Hydrogenation</td>
<td>976</td>
</tr>
<tr>
<td>6</td>
<td>Using Samarium(II) Iodide</td>
<td>By Catalytic Hydrogenation</td>
<td>978</td>
</tr>
<tr>
<td>7</td>
<td>Using Sodium Dithionite</td>
<td>By Catalytic Hydrogenation</td>
<td>981</td>
</tr>
<tr>
<td>8</td>
<td>By Electrochemical Reduction</td>
<td>By Catalytic Hydrogenation</td>
<td>984</td>
</tr>
<tr>
<td>9</td>
<td>By Palladium-Catalyzed Hydrogenation with Triethylsilane</td>
<td>By Catalytic Hydrogenation</td>
<td>987</td>
</tr>
<tr>
<td>10</td>
<td>Oxidation of Primary Amines</td>
<td>By Catalytic Hydrogenation</td>
<td>990</td>
</tr>
<tr>
<td>11</td>
<td>Hydrolysis of OxaZiridines</td>
<td>By Catalytic Hydrogenation</td>
<td>991</td>
</tr>
</tbody>
</table>
40.5.1.2.10 Method 10: Oxidation of Secondary Amines

<table>
<thead>
<tr>
<th>Variation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.2.10.1</td>
<td>Using Dibenzoyl Peroxide</td>
</tr>
<tr>
<td>1.1.2.10.2</td>
<td>By Catalytic Oxidation with Hydrogen Peroxide</td>
</tr>
<tr>
<td>1.1.2.10.3</td>
<td>Using Dimethyldioxirane</td>
</tr>
<tr>
<td>1.1.2.10.4</td>
<td>Using Oxone</td>
</tr>
</tbody>
</table>

40.5.1.11 Method 11: Samarium(II) Iodide Induced Reductive Cross Coupling of Nitrones with Aldehydes and Ketones

40.5.1.3 N-Alkoxyammonium Salts

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.3.1</td>
<td>Alkylation of Tertiary Amine Oxides with Haloalkanes</td>
</tr>
<tr>
<td>1.1.3.2</td>
<td>Alkylation of Tertiary Amine Oxides with Sultones or Glycol Sulfites</td>
</tr>
<tr>
<td>1.1.3.3</td>
<td>Alkylation of O,N,N-Trisubstituted Hydroxylamines with Haloalkanes</td>
</tr>
<tr>
<td>1.1.3.4</td>
<td>Alkylation of O,N,N-Trisubstituted Hydroxylamines with Methyl Trifluoromethanesulfonate</td>
</tr>
<tr>
<td>1.1.3.5</td>
<td>Exhaustive Methylation of O-Alkylhydroxylamines</td>
</tr>
<tr>
<td>1.1.3.6</td>
<td>Synthesis from 3-(Bromomethyl)-3-phenyl-1,2-dioxetane and Tertiary Amines</td>
</tr>
</tbody>
</table>

40.5.2 Product Subclass 2: Acyclic O-Alkyl-, O,N-Dialkyl-, and Trialkylhydroxylamines

40.5.2.1 Synthesis of Product Subclass 2

40.5.2.1.1 Acyclic O-Alkylhydroxylamines

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1.1</td>
<td>Synthesis from O-Alkylloximes</td>
</tr>
<tr>
<td>1.1.1.2</td>
<td>Synthesis from O-Alkyl Hydroxamates</td>
</tr>
<tr>
<td>1.1.1.3</td>
<td>Synthesis from Cyclic N-Hydroxyimides by Alkylation with Organic Halides</td>
</tr>
<tr>
<td>1.1.1.4</td>
<td>Synthesis from Cyclic N-Hydroxyimides by Alkylation with Alcohols</td>
</tr>
<tr>
<td>1.1.1.5</td>
<td>Synthesis from N-Hydroxy carbamates</td>
</tr>
<tr>
<td>1.1.1.6</td>
<td>Synthesis from Ethyl N-Hydroxyimidates</td>
</tr>
<tr>
<td>1.1.1.7</td>
<td>Electrophilic Amination of Alkoxides</td>
</tr>
<tr>
<td>1.1.1.8</td>
<td>Synthesis from Hydroxyamine-N,N-disulfonic Acid</td>
</tr>
</tbody>
</table>

40.5.2.1.2 Acyclic O,N-Dialkylhydroxylamines

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.1</td>
<td>Alkylation of Hydroxyamine</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Alkylation of O-Alkylhydroxylamines</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Alkylation of N-Alkoxy carbamates</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Alkylation of Hydroxamic Acids</td>
</tr>
<tr>
<td>1.2.5</td>
<td>Alkylation of N-Alkoxyureas</td>
</tr>
<tr>
<td>1.2.6</td>
<td>Alkylation of O-Benzyl-N-(diethoxyphosphoryl)hydroxylamine</td>
</tr>
</tbody>
</table>

40.5.2.1.7 Method 7: Synthesis from Quaternized Oximes

40.5.2.1.8 Method 8: Reduction of Oxime Ethers

40.5.2.1.9 Method 9: Carbon Radical Addition to Aldoxime Ethers

40.5.2.1.10 Method 10: Addition of Organometallic Reagents to Oxime Ethers
40.5.2.1.2.11 Method 11: Oxidation of Tertiary Alkyl Lithium Amides with tert-Butyl Peroxybenzoate ... 1052
40.5.2.1.2.12 Method 12: Electroreductive Coupling of Ketones with Oxime Ethers ... 1052
40.5.2.1.3 Method 13: O,N,N-Trialkylhydroxylamines ... 1053
40.5.2.1.3.1 Method 1: Alkylation of O-Alkylhydroxylamines 1053
40.5.2.1.3.2 Method 2: Alkylation of O,N-Dialkylhydroxylamines 1054
40.5.2.1.3.3 Method 3: Alkylation of N,N-Dialkylhydroxylamines 1055
40.5.2.1.3.4 Method 4: Reductive Alkylation of O,N-Dialkylhydroxylamines with Ketones or Aldehydes ... 1056
40.5.2.1.3.5 Method 5: Addition of Carbon Radicals to Nitroxides 1058
40.5.2.1.3.6 Method 6: Synthesis from Tertiary Amine Oxides by Meisenheimer Rearrangement .. 1060
40.5.2.1.3.7 Method 7: Synthesis from 2,2-Disubstituted Isoxazolidinium Salts 1063
40.5.2.1.3.8 Method 8: Synthesis from Acyclic Oxyiminium Ions 1063
40.5.2.1.3.9 Method 9: Reduction of Weinreb Amides 1064
40.5.2.1.3.10 Method 10: Direct Amination of Alkenes 1065

40.6 Product Class 6: 1-Oxa-2-azacycloalkanes

D. Geffken and M. A. Köllner

40.6 Product Class 6: 1-Oxa-2-azacycloalkanes ... 1083
40.6.1 Synthesis of Product Class 6 ... 1083
40.6.1.1 Method 1: Synthesis from Hydroxylamine and 2,4-Dibromo- 2,4-dimethylpentan-3-one ... 1083
40.6.1.2 Method 2: Intramolecular Cyclization of N-Alkylhydroxylamines 1083
40.6.1.3 Method 3: Synthesis from Phorone with Hydroxylamine 1084
40.6.1.4 Method 4: Alkylation of Alkyl N-Hydroxycarbamates 1084
40.6.1.5 Method 5: Synthesis from N-Hydroxyphthalimide 1086
40.6.1.6 Method 6: Synthesis from Benzohydroxamic Acid 1088
40.6.1.7 Method 7: Synthesis from N-Allylhydroxylamines 1089
40.6.1.8 Method 8: Synthesis from N-Homoallylic Hydroxylamines 1089
40.6.1.9 Method 9: Synthesis from O-Allylic Hydroxylamines 1090
40.6.1.10 Method 10: Synthesis from O-Homoallylic Hydroxylamines 1091
40.6.1.11 Method 11: Synthesis from N-Alka-2,3-dienylhydroxylamines 1092
40.6.1.12 Method 12: Synthesis from O-Allyloximes by Selenocyclization 1093
40.6.1.13 Method 13: Ring-Closing Metathesis of N,O-Dialkenyl-Substituted Hydroxylamines ... 1094
40.6.1.14 Method 14: Reduction of 5,6-Dihydro-4H-1,2-oxazines 1097
40.6.1.15 Method 15: Reduction of 4,5-Dihydroisoxazolium Tetrafluoroborates 1098
40.6.1.16 Method 16: Boron Trifluoride Assisted Alkylation of 4,5-Dihydroisoxazoles 1098
40.6.1.17 Method 17: Synthesis from 5,6-Dihydro-4H-oxazinium Salts 1099
40.6.1.18 Method 18: Allylation of Isoxazolidin-5-ols 1100
40.6.1.19 Method 19: Synthesis from Organonitroso Compounds by Cycloaddition 1100
40.6.1.19.1 Variation 1: Synthesis from Perfluoronitrosoalkanes 1100
40.6.1.19.2 Variation 2: Synthesis from Acylnitroso Compounds 1101
40.6.1.19.3 Variation 3: Synthesis from α-Chloronitroso Compounds 1105

Science of Synthesis Original Edition Volume 40b
© Georg Thieme Verlag KG
40.6.1.20 Method 20: Rearrangement of Cyclic N-Oxides (Meisenheimer Rearrangement) .. 1107
40.6.1.21 Method 21: Synthesis from Nitrones by 1,3-Dipolar Cycloaddition 1111
40.6.1.21.1 Variation 1: Synthesis from Achiral Nitrones .. 1111
40.6.1.21.2 Variation 2: Synthesis from Chiral Nitrones .. 1119
40.6.1.21.3 Variation 3: Addition of Lithiated Methoxyallene to Chiral Nitrones 1121
40.6.1.21.4 Variation 4: In Situ Conversion of Oximes into Nitrones Followed by 1,3-Cycloaddition .. 1122
40.6.1.21.5 Variation 5: Palladium-Catalyzed Allene Insertion Coupled with Nitrone 1,3-Dipolar Cycloaddition .. 1124
40.6.1.21.6 Variation 6: Synthesis from Nitrones via [3 + 3] Dipolar Cycloaddition with Cyclopropane-1,1-dicarboxylates .. 1124
40.6.1.22 Method 22: Synthesis from Nitrones and α-Lithiated Aryloxiranes 1126
40.6.1.23 Method 23: Synthesis from Nitrones and Lithiated 2-(1-Chloroethyl)-4,5-dihydrooxazoles .. 1127
40.6.1.24 Method 24: Synthesis from Nitrones via [3 + 3] Dipolar Cycloaddition with Cyclopropane-1,1-dicarboxylates 1124

40.7 Product Class 7: Hydrazines and Hydrazinium Salts
P. Rademacher

40.7 Product Class 7: Hydrazines and Hydrazinium Salts 1133
40.7.1 Product Subclass 1: Acyclic Alkylhydrazines .. 1133
40.7.1.1 Synthesis of Product Subclass 1 ... 1135
40.7.1.1.1 Method 1: Direct Substitution (Alkylation) of Free Hydrazine and Alkylhydrazines ... 1135
40.7.1.1.1 Variation 1: Using Alkyl Halides .. 1136
40.7.1.1.2 Variation 2: Using Alcohols ... 1137
40.7.1.1.3 Variation 3: Using Cyclic Carboxylates (Lactones) 1137
40.7.1.1.4 Variation 4: Using Alkyl Sulfonates ... 1138
40.7.1.1.5 Variation 5: Using Sultones ... 1139
40.7.1.1.6 Variation 6: Using Dialkyl Sulfates ... 1139
40.7.1.1.7 Variation 7: Using Oxiranes ... 1140
40.7.1.1.8 Variation 8: Using Thiiranes ... 1141
40.7.1.1.9 Variation 9: Using Aziridines ... 1141
40.7.1.1.10 Variation 10: Using Sulfones .. 1142
40.7.1.1.11 Variation 11: Using Alkylamines ... 1143
40.7.1.1.12 Variation 12: Using Diazenolates ... 1144
40.7.1.1.12 Method 2: Substitution of Protected Hydrazines 1144
40.7.1.1.12.1 Variation 1: Alkylation of Hydrazones 1145
40.7.1.1.12.2 Variation 2: Alkylation of Hydrazides 1145
40.7.1.1.12.3 Variation 3: Reductive Alkylation of Hydrazides 1147
40.7.1.1.12.4 Variation 4: Alkylation of Azines .. 1147
40.7.1.1.12.5 Variation 5: Alkylation of tert-Butyl Isopropylidenehydrazinecarboxylate 1148
40.7.1.1.12.6 Variation 6: Alkylation of P,P-Diphenyolphosphinic Hydrazide 1150
40.7.1.1.12.7 Variation 7: Alkylation of Di-tert-butyl Hydrazine-1,2-dicarboxylate .. 1151
40.7.1.1.12.8 Variation 8: Alkylation of Tri-tert-butyl Hydrazine-1,1,2-tricarboxylate 1153
40.7.1.1.12.9 Variation 9: Alkylation of Orthogonally Triprotected Hydrazines 1154
<table>
<thead>
<tr>
<th>Table of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.7.1.13 Method 3: Addition of Hydrazines to Activated Alkenes</td>
</tr>
<tr>
<td>40.7.1.14 Method 4: Reduction of Hydrazones</td>
</tr>
<tr>
<td>40.7.1.14.1 Variation 1: Catalytic Hydrogenation</td>
</tr>
<tr>
<td>40.7.1.14.2 Variation 2: Using Complex Hydrides</td>
</tr>
<tr>
<td>40.7.1.15 Method 5: Reduction of Aines</td>
</tr>
<tr>
<td>40.7.1.15.1 Variation 1: Catalytic Hydrogenation</td>
</tr>
<tr>
<td>40.7.1.15.2 Variation 2: Using Metals</td>
</tr>
<tr>
<td>40.7.1.15.3 Variation 3: Using Complex Hydrides</td>
</tr>
<tr>
<td>40.7.1.16 Method 6: Reduction of Hydrazides</td>
</tr>
<tr>
<td>40.7.1.17 Method 7: Addition of Organometallic Compounds to Hydrazones (C-Alkylation)</td>
</tr>
<tr>
<td>40.7.1.17.1 Variation 1: Using Grignard Reagents</td>
</tr>
<tr>
<td>40.7.1.17.2 Variation 2: Using Aryllithium Reagents</td>
</tr>
<tr>
<td>40.7.1.17.3 Variation 3: Stereoselective Addition of Organometallic Compounds</td>
</tr>
<tr>
<td>40.7.1.17.4 Variation 4: Stereoselective Addition of Radicals</td>
</tr>
<tr>
<td>40.7.1.18 Method 8: Reductive Coupling of Phenylhydrazones</td>
</tr>
<tr>
<td>40.7.1.19 Method 9: Amination of Amines</td>
</tr>
<tr>
<td>40.7.1.19.1 Variation 1: Using N-Chloro(alkyl)amines with Amines and Metalated</td>
</tr>
<tr>
<td>40.7.1.19.2 Variation 2: Using Hydroxylamine-O-sulfonic Acids</td>
</tr>
<tr>
<td>40.7.1.19.3 Variation 3: Using Oxaziridines</td>
</tr>
<tr>
<td>40.7.1.1.10 Method 10: Amination of Amines via Diaziridines</td>
</tr>
<tr>
<td>40.7.1.10.1 Variation 1: Using Hydroxylamine-O-sulfonic Acid</td>
</tr>
<tr>
<td>40.7.1.10.2 Variation 2: Using Hypochlorite</td>
</tr>
<tr>
<td>40.7.1.11 Method 11: Synthesis from Ureas</td>
</tr>
<tr>
<td>40.7.1.12 Method 12: Synthesis from N-Alkylsulfamides</td>
</tr>
<tr>
<td>40.7.1.13 Method 13: Synthesis from Phosphonic Acid Diamides</td>
</tr>
<tr>
<td>40.7.1.14 Method 14: Tetraalkylhydrazines by Anodic Oxidation of Secondary</td>
</tr>
<tr>
<td>Amine Anions</td>
</tr>
<tr>
<td>40.7.1.15 Method 15: Hydrolysis of Nitrogen Heterocycles</td>
</tr>
<tr>
<td>40.7.1.15.1 Variation 1: Of Dihydropyrazolium Compounds</td>
</tr>
<tr>
<td>40.7.1.15.2 Variation 2: Of Pyrazolidin-3-ones</td>
</tr>
<tr>
<td>40.7.1.15.3 Variation 3: Of Diaziridines</td>
</tr>
<tr>
<td>40.7.1.15.4 Variation 4: Of Diaziridinones</td>
</tr>
<tr>
<td>40.7.1.15.5 Variation 5: Of Sydnones</td>
</tr>
<tr>
<td>40.7.1.16 Method 16: Hydrolysis of Alkylhydrazones</td>
</tr>
<tr>
<td>40.7.1.17 Method 17: Hydrolysis of Acylated Alkylhydrazines</td>
</tr>
<tr>
<td>40.7.1.18 Method 18: 1,1-Dialkylhydrazines by Reduction of Dialkynitrosamines</td>
</tr>
<tr>
<td>40.7.1.18.1 Variation 1: Using Catalytic Hydrogenation</td>
</tr>
<tr>
<td>40.7.1.18.2 Variation 2: Using Metals</td>
</tr>
<tr>
<td>40.7.1.18.3 Variation 3: Using Complex Hydrides</td>
</tr>
<tr>
<td>40.7.1.18.4 Variation 4: Using Metal Salts</td>
</tr>
<tr>
<td>40.7.1.18.5 Variation 5: Using Sodium Bisulfite</td>
</tr>
<tr>
<td>40.7.1.18.6 Variation 6: Electrochemical Reduction</td>
</tr>
<tr>
<td>40.7.1.19 Method 19: Monoalkylhydrazines by Reduction of N-Alkyl-N-nitrosoureas</td>
</tr>
<tr>
<td>40.7.1.20 Method 20: Monoalkylhydrazines by Reduction of N-Nitrosoamides</td>
</tr>
<tr>
<td>40.7.1.21 Method 21: Monoalkylhydrazines by Reduction of N-Alkyl-N-nitrosohydroxylamines</td>
</tr>
</tbody>
</table>
Method 22: 1,2-Dialkylhydrazines by Reduction of Dialkyldiazenes

Method 23: Trialkylhydrazines from 1,1,1-Trialkylhydrazinium Salts

Method 24: Tetraalkylhydrazines by Thermolysis of Tetraaz-2-enes

Method 25: Addition of Organometallic Compounds to Azodicarboxylic Esters (N-Alkylation)

Method 26: Synthesis from Dialkylnitrosamines and Grignard Reagents

Method 27: Synthesis from N-Phthalimidoaziridines

Method 28: Addition to Azodicarboxylic Esters

Method 29: Synthesis from 1-Aminoaziridines

Method 30: Oxidative Coupling of Amines

Applications of Product Subclass 1 in Organic Synthesis

Method 1: Alkylation of Hydrazines and Alkylhydrazines

Variation 1: Using Alkyl Halides

Variation 2: Using Dialkyl Sulfates or Alkyl Sulfonates

Method 2: Amination of Tertiary Amines

Variation 1: Using N-Chloro(alkyl)amines

Variation 2: Using Hydroxylamine-\(O\)-sulfonic Acids

Method 3: Dicationic Hydrazinium Compounds by Protonation of Hydrazinium Compounds

Method 4: Dicationic Hydrazinium Compounds by Alkylation of Hydrazinium Compounds

Method 5: Ammoniumimines by Deprotonation of Hydrazinium Compounds

Method 6: (Ammonium)acylimines from 1,1-Dialkylhydrazines

Variation 1: Using Oxiranes and Carboxylic Acid Esters

Variation 2: Using Acyl Halides and Alkyl Halides

Method 7: (Ammonium)acylimines from 1,1,1-Trialkylhydrazinium Compounds

Variation 1: Using Acyl Halides

Variation 2: Acylation of (Trialkylammonium)imines–Bis(tert-butyloxirane) Adducts

Method 8: (Ammonium)cyanoimines from Trialkylamines

Method 9: Synthesis of Hydrazinium C,N-Betaines

Applications of Product Subclass 2 in Organic Synthesis

Product Class 8: 1,2-Diazacycloalkanes

W. Maison

Synthesis of Product Class 8

Method 1: Alkylation of Hydrazines

Variation 1: Alkylation with Haloalkanes

Variation 2: Alkylation with Alkanesulfonates

Variation 3: Alkylation with Epoxides

Method 6: (Ammonium)acylimines from 1,1-Dialkylhydrazines

Variation 1: Using Oxiranes and Carboxylic Acid Esters

Variation 2: Using Acyl Halides and Alkyl Halides

Method 7: (Ammonium)acylimines from 1,1,1-Trialkylhydrazinium Compounds

Variation 1: Using Acyl Halides

Variation 2: Acylation of (Trialkylammonium)imines–Bis(tert-butyloxirane) Adducts

Method 8: (Ammonium)cyanoimines from Trialkylamines

Method 9: Synthesis of Hydrazinium C,N-Betaines

Applications of Product Subclass 2 in Organic Synthesis
40.8.1.2 Method 2: Cyclization of N-Chloroalkanamines 1218
40.8.1.3 Method 3: Reduction of N=N Bonds 1218
40.8.1.4 Method 4: Reduction of C=N and C=O Bonds 1219
40.8.1.4.1 Variation 1: Reduction of Hydrazones and Azines 1219
40.8.1.4.2 Variation 2: Reduction of N-Acylhydrazines and N-Acylhydrazones .. 1220
40.8.1.4.3 Variation 3: Reductive Amination 1224
40.8.1.5 Method 5: Reductive Alkylation of Azo Compounds 1224
40.8.1.6 Method 6: Reductive α-Aminoalkylation 1224
40.8.1.7 Method 7: Reduction of Dialkyl Nitrosamines 1229
40.8.1.8 Method 8: Synthesis by Cycloaddition 1230
40.8.1.8.1 Variation 1: [4 + 2] Cycloadditions of Azo Compounds 1230
40.8.1.8.2 Variation 2: [3 + 2] Cycloadditions 1234
40.8.1.8.3 Variation 3: Criss-Cross [3 + 2] Cycloadditions 1241
40.8.1.9 Method 9: Addition of Organometallic Reagents to N=N Bonds 1243
40.8.1.10 Method 10: Addition of Organometallic Reagents to C=N Bonds 1244
40.8.1.11 Method 11: Addition of Hydrazines to Activated Alkenes 1245
40.8.1.12 Method 12: Diazenium Cyclization 1245
40.8.1.13 Method 13: Alkene Metathesis 1246

40.9 Product Class 9: Triazanes and Tetrazanes
E. Schaumann

40.9.1 Synthesis of Product Class 9 ... 1253
40.9.1.1 Method 1: Synthesis of Triazanes by Addition of Amines to Azo Compounds .. 1253
40.9.1.2 Method 2: Synthesis of Triazanes by Ring Opening of Oxaziridines with Hydrazines ... 1254
40.9.1.3 Method 3: Synthesis of Triazidines and Heteroatom Analogues 1255
40.9.1.4 Method 4: Synthesis of Tetrazanes 1256

40.10 Product Class 10: Amido Derivatives of Sulfanediol
S. R. Chemler

40.10.1 Product Subclass 1: Alkylaminesulfenyl Halides 1259
40.10.1.1 Synthesis of Product Subclass 1 1259
40.10.1.1.1 Method 1: Synthesis of Alkylaminesulfenyl Fluorides by Halide Exchange .. 1259
40.10.1.1.2 Method 2: Synthesis of Alkylaminesulfenyl Chlorides 1260
40.10.1.1.2.1 Variation 1: Using Sulfur Dichloride 1260
40.10.1.1.2.2 Variation 2: By Chlorination of the Corresponding Diamino Disulfides .. 1260
40.10.1.1.3 Method 3: Synthesis of Alkylaminesulfenyl Bromides and Alkylaminesulfenyl Iodides .. 1261
40.10.1.1.3.1 Variation 1: By Bromination of Bis(dialkylamino) Disulfides 1261
40.10.1.1.3.2 Variation 2: By Halide Exchange 1262
40.10.1.2 Applications of Product Subclass 1 in Organic Synthesis 1262
Method 1: Synthesis via Reaction of Anilines with Disulfur Dichloride

Product Subclass 6: N,N'-Dialkylsulfur Diimides

Synthesis of Product Subclass 6

Method 1: Synthesis of N,N'-Bis(methoxycarbonyl)sulfur Diimide from Sulfur Tetrafluoride

Method 2: Synthesis of N,N'-Dialkylsulfur Diimides from Sulfur Tetrafluoride

Method 3: Synthesis of N,N'-Diarylsulfur Diimides via Amidosulfur Dichlorides

Applications of Product Subclass 6 in Organic Synthesis

Product Class 12: N-Alkylsulfamic Acids and Derivatives

E. S. Sherman and S. R. Chemler

Product Subclass 1: N-Alkylsulfamoyl Halides

Synthesis of Product Subclass 1

Method 1: Synthesis of N-Alkylsulfamoyl Fluorides

Variation 1: From Amines and Sulfuryl Fluoride

Variation 2: From Amines and Sulfuryl Chloride Fluoride

Variation 3: From N-Alkylsulfamoyl Chlorides

Method 2: Synthesis of N-Alkylsulfamoyl Chlorides

Variation 1: From N-Alkylsulfamic Acids and Phosphorus Pentachloride

Variation 2: From Amines and Sulfuryl Chloride

Method 3: Synthesis of N-Alkylsulfamoyl Bromides

Product Subclass 2: N-Alkylsulfamic Acids

Synthesis of Product Subclass 2

Method 1: Synthesis from Amines and Chlorosulfonic Acid

Method 2: Synthesis by Aminolysis of Amine–Sulfur Trioxide Complexes

Method 3: Synthesis from Isocyanates and Sulfuric Acid

Method 4: Synthesis by Hydrolysis of Aryl Sulfamates

Method 5: Synthesis from N-Alkylsulfamoyl Chlorides

Method 6: Synthesis by Hydrolysis of Sulfamoyl Azides

Product Subclass 3: N-Alkylsulfamides

Synthesis of Product Subclass 3

Method 1: Synthesis of Linear Sulfamides

Variation 1: From N-Alkylsulfamoyl Chlorides

Variation 2: From N-Alkylsulfamic Acid Esters

Variation 3: From Chlorosulfonyl Isocyanate

Variation 4: From N-Sulfamoyloxazolidinone Derivatives

Variation 5: From Sulfamide and Amines

Method 2: Synthesis of Cyclic Sulfamides

Variation 1: From Amino Alcohols with Burgess-Type Reagents

Variation 2: From Linear Sulfamides and Alkenes

Variation 3: From N,N-Dimethylsulfamoylaziridines and Amines

Table of Contents
Variation 4: From α-Amino Acid Esters and Sulfamide 1302

Product Class 13: Ammoniumsulfonates, Thiohydroxylamines, and Aminosulfonium Salts
E. Schaumann

Table of Contents

40.12 Variation 4: From α-Amino Acid Esters and Sulfamide 1302

40.13 Product Class 13: Ammoniumsulfonates, Thiohydroxylamines, and Aminosulfonium Salts
E. Schaumann

Keyword Index .. 1309
Author Index ... 1339
Abbreviations .. 1371
Volume 41:
Nitro, Nitroso, Azo, Azoxy, and Diazonium Compounds, Azides, Triazenes, and Tetrazenes

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume Editor’s Preface</td>
<td></td>
<td>VII</td>
</tr>
<tr>
<td>Table of Contents</td>
<td></td>
<td>XI</td>
</tr>
</tbody>
</table>

Introduction

K. Banert

41.1 Product Class 1: Nitroalkanes

R. A. Aitken and K. M. Aitken

41.2 Product Class 2: Nitrosoalkanes and Nitroso Acetals (N,N-Dialkoxyamines)

H.-U. Reissig, B. Dugović, and R. Zimmer

41.3 Product Class 3: N-Nitroamines

U. Jahn

41.4 Product Class 4: N-Nitrosoamines

M. M. K. Boysen

41.5 Product Class 5: Aliphatic Azoxy Compounds (Aliphatic Diazene Oxides)

M. M. K. Boysen

41.6 Product Class 6: Aliphatic Azo Compounds

S. Kempa, L. Wallach, and K. Rück-Braun

41.7 Product Class 7: Diazonium Compounds

S. Kubik

41.8 Product Class 8: Azidoalkanes

S. Bräse, B. Lesch, and V. Zimmermann

41.9 Product Class 9: Alkyltriazenes

N. Jung and S. Bräse

41.10 Product Class 10: Alkyltetrazenes

N. Jung and S. Bräse

41.11 Product Class 11: N,N-Dihaloamines

S. J. Collier and W. Xiang

Keyword Index

681

Author Index

721

Abbreviations

765
Table of Contents

Introduction
K. Banert

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.1</td>
<td>Product Class 1: Nitroalkanes</td>
<td>9</td>
</tr>
<tr>
<td>41.1.1</td>
<td>Synthesis by Substitution</td>
<td>9</td>
</tr>
<tr>
<td>41.1.1.1</td>
<td>Method 1: Substitution of Hydrogen Using Nitric Acid</td>
<td>9</td>
</tr>
<tr>
<td>41.1.1.1.1</td>
<td>Variation 1: Using Dilute Nitric Acid</td>
<td>9</td>
</tr>
<tr>
<td>41.1.1.1.2</td>
<td>Variation 2: Using Concentrated or Fuming Nitric Acid</td>
<td>10</td>
</tr>
<tr>
<td>41.1.1.1.3</td>
<td>Variation 3: Using Nitric Acid with Sulfuric Acid</td>
<td>12</td>
</tr>
<tr>
<td>41.1.1.1.4</td>
<td>Variation 4: Using Nitric Acid with Acetic Acid</td>
<td>13</td>
</tr>
<tr>
<td>41.1.1.1.5</td>
<td>Variation 5: Using Nitric Acid in Ionic Liquids</td>
<td>13</td>
</tr>
<tr>
<td>41.1.1.1.6</td>
<td>Variation 6: Using Nitric Acid in the Gas Phase</td>
<td>13</td>
</tr>
<tr>
<td>41.1.1.1.7</td>
<td>Variation 7: Using Nitric Acid with Oxygen and Halogens in the Gas Phase</td>
<td>14</td>
</tr>
<tr>
<td>41.1.1.2</td>
<td>Method 2: Substitution of Hydrogen Using Metal Nitrates</td>
<td>15</td>
</tr>
<tr>
<td>41.1.1.2.1</td>
<td>Variation 1: Using Copper(II) or Manganese(II) Nitrates</td>
<td>15</td>
</tr>
<tr>
<td>41.1.1.2.2</td>
<td>Variation 2: Using Aluminum Trinitrate</td>
<td>15</td>
</tr>
<tr>
<td>41.1.1.3</td>
<td>Method 3: Substitution of Hydrogen Using Sulfuric Acid and Ammonium Nitrate</td>
<td>15</td>
</tr>
<tr>
<td>41.1.1.4</td>
<td>Method 4: Substitution of Hydrogen Using Nitrogen Dioxide</td>
<td>15</td>
</tr>
<tr>
<td>41.1.1.4.1</td>
<td>Variation 1: Without Additional Reagents</td>
<td>15</td>
</tr>
<tr>
<td>41.1.1.4.2</td>
<td>Variation 2: With Oxygen</td>
<td>16</td>
</tr>
<tr>
<td>41.1.1.4.3</td>
<td>Variation 3: With Hydrogen Peroxide</td>
<td>17</td>
</tr>
<tr>
<td>41.1.1.5</td>
<td>Method 5: Substitution of Hydrogen Using Sodium Nitrite and Silver(I) Nitrate</td>
<td>17</td>
</tr>
<tr>
<td>41.1.1.6</td>
<td>Method 6: Substitution of Hydrogen Using Alkyl Nitrates</td>
<td>17</td>
</tr>
<tr>
<td>41.1.1.6.1</td>
<td>Variation 1: Without Additional Reagents</td>
<td>17</td>
</tr>
<tr>
<td>41.1.1.6.2</td>
<td>Variation 2: With 3-Methylbutyl Nitrite and Butyllithium</td>
<td>18</td>
</tr>
<tr>
<td>41.1.1.7</td>
<td>Method 7: Substitution of Hydrogen Using Alkyl Nitrates with a Base</td>
<td>18</td>
</tr>
<tr>
<td>41.1.1.8</td>
<td>Method 8: Substitution of Hydrogen Using 2,4,6-Trichloro-N-nitroaniline</td>
<td>20</td>
</tr>
<tr>
<td>41.1.1.9</td>
<td>Method 9: Substitution of Lithium</td>
<td>20</td>
</tr>
<tr>
<td>41.1.1.10</td>
<td>Method 10: Substitution of Potassium</td>
<td>20</td>
</tr>
<tr>
<td>41.1.1.11</td>
<td>Method 11: Substitution of Magnesium</td>
<td>20</td>
</tr>
<tr>
<td>41.1.1.12</td>
<td>Method 12: Substitution of Mercury</td>
<td>21</td>
</tr>
<tr>
<td>41.1.1.13</td>
<td>Method 13: Substitution of a Carboxy Group</td>
<td>21</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>41.1.1.14</td>
<td>Method 14: Substitution of a Cyano Group</td>
<td>22</td>
</tr>
<tr>
<td>41.1.1.15</td>
<td>Method 15: Substitution of Chlorine Using Sodium Nitrite</td>
<td>22</td>
</tr>
<tr>
<td>41.1.1.15.1</td>
<td>Variation 1: Without Additional Reagents</td>
<td>23</td>
</tr>
<tr>
<td>41.1.1.15.2</td>
<td>Variation 2: With Urea</td>
<td>23</td>
</tr>
<tr>
<td>41.1.1.15.3</td>
<td>Variation 3: With Benzene-1,3,5-triol</td>
<td>24</td>
</tr>
<tr>
<td>41.1.1.16</td>
<td>Method 16: Substitution of Chlorine Using Potassium Nitrite</td>
<td>24</td>
</tr>
<tr>
<td>41.1.1.16.1</td>
<td>Variation 1: In the Presence of a Base</td>
<td>24</td>
</tr>
<tr>
<td>41.1.1.16.2</td>
<td>Variation 2: With Crown Ethers</td>
<td>25</td>
</tr>
<tr>
<td>41.1.1.17</td>
<td>Method 17: Substitution of Chlorine Using Silver(I) Nitrite</td>
<td>25</td>
</tr>
<tr>
<td>41.1.1.17.1</td>
<td>Variation 1: Without Additional Reagents</td>
<td>25</td>
</tr>
<tr>
<td>41.1.1.17.2</td>
<td>Variation 2: With Urea</td>
<td>26</td>
</tr>
<tr>
<td>41.1.1.18</td>
<td>Method 18: Substitution of Chlorine Using Mercury(I) Nitrite</td>
<td>27</td>
</tr>
<tr>
<td>41.1.1.19</td>
<td>Method 19: Substitution of Chlorine Using Polymer-Supported Nitrite</td>
<td>27</td>
</tr>
<tr>
<td>41.1.1.20</td>
<td>Method 20: Substitution of Bromine Using Sodium Nitrite</td>
<td>27</td>
</tr>
<tr>
<td>41.1.1.20.1</td>
<td>Variation 1: Without Additional Reagents</td>
<td>27</td>
</tr>
<tr>
<td>41.1.1.20.2</td>
<td>Variation 2: With Benzene-1,2-diol</td>
<td>29</td>
</tr>
<tr>
<td>41.1.1.20.3</td>
<td>Variation 3: With Benzene-1,3,5-triol</td>
<td>29</td>
</tr>
<tr>
<td>41.1.1.20.4</td>
<td>Variation 4: With Urea</td>
<td>31</td>
</tr>
<tr>
<td>41.1.1.20.5</td>
<td>Variation 5: With Urea and Benzene-1,3,5-triol</td>
<td>32</td>
</tr>
<tr>
<td>41.1.1.20.6</td>
<td>Variation 6: With a Phase-Transfer Catalyst</td>
<td>34</td>
</tr>
<tr>
<td>41.1.1.20.7</td>
<td>Variation 7: With an Ionic Liquid</td>
<td>34</td>
</tr>
<tr>
<td>41.1.1.21</td>
<td>Method 21: Substitution of Bromine Using Potassium Nitrite</td>
<td>34</td>
</tr>
<tr>
<td>41.1.1.22</td>
<td>Method 22: Substitution of Bromine Using Silver(I) Nitrite</td>
<td>35</td>
</tr>
<tr>
<td>41.1.1.23</td>
<td>Method 23: Substitution of Bromine Using Ammonium Nitrites</td>
<td>38</td>
</tr>
<tr>
<td>41.1.1.24</td>
<td>Method 24: Substitution of Bromine Using Polymer-Supported Nitrite</td>
<td>39</td>
</tr>
<tr>
<td>41.1.1.25</td>
<td>Method 25: Substitution of Iodine Using Sodium Nitrite</td>
<td>39</td>
</tr>
<tr>
<td>41.1.1.25.1</td>
<td>Variation 1: Without Additional Reagents</td>
<td>40</td>
</tr>
<tr>
<td>41.1.1.25.2</td>
<td>Variation 2: With Benzene-1,3,5-triol</td>
<td>41</td>
</tr>
<tr>
<td>41.1.1.25.3</td>
<td>Variation 3: With Urea</td>
<td>41</td>
</tr>
<tr>
<td>41.1.1.25.4</td>
<td>Variation 4: With Urea and Benzene-1,3,5-triol</td>
<td>42</td>
</tr>
<tr>
<td>41.1.1.26</td>
<td>Method 26: Substitution of Iodine Using Silver(I) Nitrite</td>
<td>43</td>
</tr>
<tr>
<td>41.1.1.27</td>
<td>Method 27: Substitution of Iodine Using Ammonium Nitrites</td>
<td>46</td>
</tr>
<tr>
<td>41.1.1.28</td>
<td>Method 28: Substitution of Iodine Using Polymer-Supported Nitrite</td>
<td>46</td>
</tr>
<tr>
<td>41.1.1.29</td>
<td>Method 29: Substitution of Sulfates</td>
<td>46</td>
</tr>
<tr>
<td>41.1.1.30</td>
<td>Method 30: Substitution of Sulfonates</td>
<td>47</td>
</tr>
<tr>
<td>41.1.1.31</td>
<td>Method 31: Substitution of Oxonium Tetrafluoroborates</td>
<td>48</td>
</tr>
<tr>
<td>41.1.1.32</td>
<td>Method 32: Substitution of Nitrogen in Azo Compounds</td>
<td>48</td>
</tr>
<tr>
<td>41.1.1.2</td>
<td>Synthesis by Oxidation Reactions</td>
<td>49</td>
</tr>
<tr>
<td>41.1.1.2.1</td>
<td>Method 1: Oxidation of a Primary Amino Group Using Caro’s Acid</td>
<td>49</td>
</tr>
<tr>
<td>41.1.1.2.2</td>
<td>Method 2: Oxidation of a Primary Amino Group Using Hypofluorous Acid</td>
<td>49</td>
</tr>
<tr>
<td>41.1.1.2.3</td>
<td>Method 3: Oxidation of a Primary Amino Group Using Organic Peroxides</td>
<td>50</td>
</tr>
<tr>
<td>41.1.1.2.3.1</td>
<td>Variation 1: Using Dimethyldioxirane</td>
<td>50</td>
</tr>
<tr>
<td>41.1.1.2.3.2</td>
<td>Variation 2: Using tert-Butyl Hydroperoxide and Chromium Silicalite</td>
<td>52</td>
</tr>
</tbody>
</table>
\begin{table}[h]
\centering
\begin{tabular}{ll}
\textbf{41.1.1.2.3.3} & Variation 3: Using tert-Butyl Hydroperoxide and Zirconium(IV) tert-Butoxide \hspace{1cm} .. 52 \\
\textbf{41.1.1.2.3.4} & Variation 4: Using Oxaziridinium Salts \hspace{1cm} 53 \\
\textbf{41.1.1.2.4} & Method 4: Oxidation of a Primary Amino Group Using Organic Peroxy Acids \hspace{1cm} .. 53 \\
\textbf{41.1.1.2.4.1} & Variation 1: Using Peracetic Acid \hspace{1cm} .. 53 \\
\textbf{41.1.1.2.4.2} & Variation 2: Using 3-Chloroperoxybenzoic Acid \hspace{1cm} .. 54 \\
\textbf{41.1.1.2.5} & Method 5: Oxidation of a Primary Amino Group Using Ozone \hspace{1cm} 55 \\
\textbf{41.1.1.2.6} & Method 6: Oxidation of an Azido Group Using Hypofluorous Acid \hspace{1cm} 56 \\
\textbf{41.1.1.2.7} & Method 7: Oxidation of an Azido Group Using Ozone and a Phosphine \hspace{1cm} .. 57 \\
\textbf{41.1.1.2.8} & Method 8: Oxidation of a Hydroxylamino Group Using Nitric Acid \hspace{1cm} 57 \\
\textbf{41.1.1.2.8.1} & Variation 1: Without Additional Reagents \hspace{1cm} 57 \\
\textbf{41.1.1.2.8.2} & Variation 2: With Ammonium Nitrate \hspace{1cm} .. 58 \\
\textbf{41.1.1.2.9} & Method 9: Oxidation of a Hydroxylamino Group Using Potassium Permanganate in Sulfuric Acid \hspace{1cm} .. 58 \\
\textbf{41.1.1.2.10} & Method 10: Oxidation of a Nitroso Group Using Nitric Acid \hspace{1cm} 59 \\
\textbf{41.1.1.2.10.1} & Variation 1: Without Additional Reagents \hspace{1cm} 59 \\
\textbf{41.1.1.2.10.2} & Variation 2: With Ammonium Nitrate \hspace{1cm} .. 59 \\
\textbf{41.1.1.2.11} & Method 11: Oxidation of a Nitroso Group Using Hydrogen Peroxide \hspace{1cm} 59 \\
\textbf{41.1.1.2.11.1} & Variation 1: Without Additional Reagents \hspace{1cm} 59 \\
\textbf{41.1.1.2.11.2} & Variation 2: With Sulfuric Acid \hspace{1cm} .. 59 \\
\textbf{41.1.1.2.12} & Method 12: Oxidation of a Nitroso Group Using Manganese(VII) \hspace{1cm} 60 \\
\textbf{41.1.1.2.12.1} & Variation 1: Using Potassium Permanganate in Acetone \hspace{1cm} 60 \\
\textbf{41.1.1.2.12.2} & Variation 2: Using Manganese(VII) Oxide \hspace{1cm} 60 \\
\textbf{41.1.1.2.13} & Method 13: Oxidation of a Nitroso Group Using Chromium(VI) \hspace{1cm} 60 \\
\textbf{41.1.1.2.13.1} & Variation 1: Using Chromium(VI) Oxide Alone \hspace{1cm} 60 \\
\textbf{41.1.1.2.13.2} & Variation 2: Using Chromium(VI) Oxide and Acetic Acid \hspace{1cm} 60 \\
\textbf{41.1.1.2.13.3} & Variation 3: Using Chromium(VI) Oxide with Acetic and Sulfuric Acids \hspace{1cm} .. 61 \\
\textbf{41.1.1.2.14} & Method 14: Oxidation of a Nitroso Group Using Lead(IV) Oxide \hspace{1cm} 62 \\
\textbf{41.1.1.2.15} & Method 15: Oxidation of a Nitroso Group Using Oxidizing Gases \hspace{1cm} 62 \\
\textbf{41.1.1.2.15.1} & Variation 1: Using Air \hspace{1cm} .. 62 \\
\textbf{41.1.1.2.15.2} & Variation 2: Using Oxygen \hspace{1cm} .. 62 \\
\textbf{41.1.1.2.15.3} & Variation 3: Using Nitrogen Dioxide/Dinitrogen Tetroxide \hspace{1cm} 62 \\
\textbf{41.1.1.2.16} & Method 16: Oxidation of a Nitroso Group Using Organic Peroxy Acids \hspace{1cm} 63 \\
\textbf{41.1.1.2.16.1} & Variation 1: Using Trifluoroperoxyacetic Acid \hspace{1cm} 63 \\
\textbf{41.1.1.2.16.2} & Variation 2: Using 3-Chloroperoxybenzoic Acid \hspace{1cm} 63 \\
\textbf{41.1.1.2.17} & Method 17: Photochemical Oxidation of a Nitroso Group \hspace{1cm} 64 \\
\textbf{41.1.1.2.18} & Method 18: Oxidation of a Nitroso Group Using Iodosylbenzene \hspace{1cm} 64 \\
\textbf{41.1.1.2.19} & Method 19: Oxidation of an Oxime Group Using Nitric Acid \hspace{1cm} 64 \\
\textbf{41.1.1.2.19.1} & Variation 1: Without Other Reagents \hspace{1cm} .. 64 \\
\textbf{41.1.1.2.19.2} & Variation 2: With Sulfuric Acid \hspace{1cm} .. 64 \\
\textbf{41.1.1.2.20} & Method 20: Oxidation of an Oxime Group Using Peroxysulfates \hspace{1cm} 65 \\
\textbf{41.1.1.2.20.1} & Variation 1: Using Caro’s Acid \hspace{1cm} .. 65 \\
\textbf{41.1.1.2.20.2} & Variation 2: Using Oxone \hspace{1cm} .. 65 \\
\end{tabular}
\end{table}
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Oxidation of an Oxime Group Using Hydrogen Peroxide with Urea and Methyltrioxorhenium(VII) Catalyst</td>
</tr>
<tr>
<td>22</td>
<td>Oxidation of an Oxime Group Using Lead(IV) Acetate</td>
</tr>
<tr>
<td>23</td>
<td>Oxidation of an Oxime Group with Potassium Permanganate</td>
</tr>
<tr>
<td>24</td>
<td>Oxidation of an Oxime Group with Sodium Perborate</td>
</tr>
<tr>
<td>25</td>
<td>Oxidation of an Oxime Group Using Organic Peroxy Acids</td>
</tr>
<tr>
<td>25.1</td>
<td>Variation 1: Using Trifluoroperoxyacetic Acid</td>
</tr>
<tr>
<td>25.2</td>
<td>Variation 2: Using 3-Chloroperoxybenzoic Acid</td>
</tr>
<tr>
<td>26</td>
<td>Oxidation of an Oxime Group Using Dinitrogen Tetroxide</td>
</tr>
<tr>
<td>27</td>
<td>Enzymatic Oxidation of an Oxime Group</td>
</tr>
<tr>
<td>31</td>
<td>Synthesis by Addition Reactions</td>
</tr>
<tr>
<td>31.1</td>
<td>Method 1: Oxidative Nitrosation of an Oxime Group</td>
</tr>
<tr>
<td>31.2</td>
<td>Method 2: Oxidative Nitration of an Oxime Using Nitric Acid</td>
</tr>
<tr>
<td>31.2.1</td>
<td>Variation 1: Without Additional Reagents</td>
</tr>
<tr>
<td>31.2.2</td>
<td>Variation 2: Followed by Hydrogen Peroxide</td>
</tr>
<tr>
<td>31.2.3</td>
<td>Variation 3: With Acetic Acid, Followed by Hydrogen Peroxide</td>
</tr>
<tr>
<td>31.3</td>
<td>Method 3: Oxidative Nitration of an Oxime Using Nitrogen Oxides</td>
</tr>
<tr>
<td>31.3.1</td>
<td>Variation 1: Using Nitrogen Dioxide/Dinitrogen Tetroxide</td>
</tr>
<tr>
<td>31.3.2</td>
<td>Variation 2: Using Nitrogen Dioxide and Magnesium Sulfate</td>
</tr>
<tr>
<td>31.3.3</td>
<td>Variation 3: Using Dinitrogen Pentoxide</td>
</tr>
<tr>
<td>31.4</td>
<td>Method 4: Oxidative Chlorination of an Oxime Using Chlorine</td>
</tr>
<tr>
<td>31.4.1</td>
<td>Variation 1: Using Chlorine Followed by Ozone</td>
</tr>
<tr>
<td>31.4.2</td>
<td>Variation 2: Using Chlorine with Hydrochloric, Nitric, and Acetic Acids</td>
</tr>
<tr>
<td>31.5</td>
<td>Method 5: Oxidative Chlorination of an Oxime Using Sodium Hypochlorite</td>
</tr>
<tr>
<td>31.6</td>
<td>Method 6: Oxidative Chlorination of an Oxime Using Sodium Chloride, Oxone, and Alumina</td>
</tr>
<tr>
<td>31.7</td>
<td>Method 7: Oxidative Chlorination of an Oxime Using Hydrochloric Acid and Hydrogen Peroxide</td>
</tr>
<tr>
<td>31.8</td>
<td>Method 8: Oxidative Bromination of an Oxime Using Sodium Hypobromite Followed by Nitric Acid</td>
</tr>
<tr>
<td>31.9</td>
<td>Method 9: Oxidative Bromination of an Oxime Using N-Bromoacetamide</td>
</tr>
<tr>
<td>31.10</td>
<td>Method 10: Oxidative Bromination of an Oxime Using N-Bromosuccinimide and Potassium Carbonate</td>
</tr>
<tr>
<td>31.11</td>
<td>Method 11: Oxidative Bromination of an Oxime Using Sodium Bromide, Oxone, and Alumina</td>
</tr>
<tr>
<td>31.13</td>
<td>Method 13: Addition of Nitrous Acid to an Alkene</td>
</tr>
<tr>
<td>31.13.1</td>
<td>Variation 1: Using Sodium Nitrite and Acetic Acid</td>
</tr>
<tr>
<td>31.13.2</td>
<td>Variation 2: Using Sodium Nitrite and Hydrochloric Acid</td>
</tr>
<tr>
<td>31.14</td>
<td>Method 14: Addition of Tetranitromethane to an Alkene</td>
</tr>
</tbody>
</table>
41.1.3.15 Method 15: Nitrofluorination of an Alkene 84
41.1.3.15.1 Variation 1: Using Nitric and Hydrofluoric Acids 84
41.1.3.15.2 Variation 2: Using Nitril Fluoride .. 85
41.1.3.15.3 Variation 3: Using Nitronium Tetrafluoroborate and Pyridinium Fluoride ... 85
41.1.3.16 Method 16: Nitrochlorination of an Alkene 86
41.1.3.16.1 Variation 1: Using Nitrosyl Chloride 86
41.1.3.16.2 Variation 2: Using Nitrosyl Chloride, Nitrogen Dioxide, and Oxygen ... 87
41.1.3.16.3 Variation 3: Using Nitril Chloride ... 88
41.1.3.16.4 Variation 4: Using Nitrogen Dioxide and Boron Trifluoride 89
41.1.3.16.5 Variation 5: Using Nitrogen Dioxide and Chlorine..................... 89
41.1.3.16.6 Variation 6: Using Nitrogen Dioxide, Phosphorus Trichloride, and Oxygen ... 90
41.1.3.17 Method 17: Nitrobromination of an Alkene 90
41.1.3.17.1 Variation 1: Using Sodium Nitrite, Mercury(II) Chloride, and Bromine 90
41.1.3.17.2 Variation 2: Using Nitrosyl Bromide 91
41.1.3.17.3 Variation 3: Using Nitrogen Dioxide and Bromine 92
41.1.3.17.4 Variation 4: Using Nitrogen Dioxide, Phosphorus Tribromide, and Oxygen ... 92
41.1.3.18 Method 18: Nitroiodination of an Alkene 92
41.1.3.18.1 Variation 1: Using Silver(I) Nitrite and Iodine .. 92
41.1.3.18.2 Variation 2: Using Nitrogen Dioxide and Iodine 93
41.1.3.19 Method 19: Nitroacetamidation of an Alkene 94
41.1.3.20 Method 20: Nitronitrosation of an Alkene (Synthesis of ψ-Nitrosites) 94
41.1.3.20.1 Variation 1: Using Sodium Nitrite and Sulfuric Acid 95
41.1.3.20.2 Variation 2: Using Sodium Nitrite and Hydrochloric Acid 96
41.1.3.20.3 Variation 3: Using Sodium Nitrite and Acetic Acid 96
41.1.3.20.4 Variation 4: Using Sodium Nitrite and Phosphoric Acid 97
41.1.3.20.5 Variation 5: Using Nitric Oxide with Catalysts 97
41.1.3.20.6 Variation 6: Using Nitric Oxide with Air 98
41.1.3.21 Method 21: 1,2-Dinitration of an Alkene 99
41.1.3.21.1 Variation 1: Using Pentyl Nitrite and Acetic Acid 99
41.1.3.21.2 Variation 2: Using Nitrogen Dioxide 99
41.1.3.21.3 Variation 3: Using Nitrogen Dioxide and Oxygen 101
41.1.3.22 Method 22: Nitrohydroxylation of an Alkene 101
41.1.3.22.1 Variation 1: Using Nitric Acid ... 101
41.1.3.22.2 Variation 2: Using Nitric and Sulfuric Acids 102
41.1.3.22.3 Variation 3: Using Sodium Nitrate and Ammonium Cerium(IV) Nitrate .. 102
41.1.3.22.4 Variation 4: Using Dinitrogen Trioxide 103
41.1.3.22.5 Variation 5: Using Nitrogen Dioxide 103
41.1.3.22.6 Variation 6: Using Organic Nitrating Agents 104
41.1.3.23 Method 23: Nitromethoxylation of an Alkene Using Tetranitromethane and Methanol .. 105
41.1.3.24 Method 24: Addition of a Nitro Group and a Nitrate Group to an Alkene .. 105
<p>| 41.1.3.24.1 | Variation 1: Using Nitric Acid | 105 |
| 41.1.3.24.2 | Variation 2: Using Nitrogen Dioxide and Oxygen | 105 |
| 41.1.3.24.3 | Variation 3: Using Dinitrogen Pentoxide | 106 |
| 41.1.3.25 | Method 25: Nitroacetoxylation of an Alkene | 108 |
| 41.1.3.25.1 | Variation 1: Using Acetyl Nitrate | 108 |
| 41.1.3.25.2 | Variation 2: Using Nitric and Sulfuric Acids Followed by Acetic Anhydride | 109 |
| 41.1.3.26 | Method 26: Addition of a Nitro Group and a Perchlorate Group to an Alkene | 109 |
| 41.1.3.28 | Method 28: Conversion of Alkenes into α-Nitro Ketones | 110 |
| 41.1.3.28.1 | Variation 1: Using Nitrogen Dioxide and Oxygen in Dimethyl Sulfoxide | 110 |
| 41.1.3.28.2 | Variation 2: Using Chlorotrimethylsilane, Silver(I) Nitrate, and Chromium(VI) Oxide | 111 |
| 41.1.3.28.3 | Variation 3: Using Chlorotrimethylsilane, Silver(I) Nitrate, and Dimethyl Sulfoxide | 112 |
| 41.1.3.29 | Method 29: Nitration of Silyl Enol Ethers | 112 |
| 41.1.3.29.1 | Variation 1: Using Tetranitromethane | 112 |
| 41.1.3.29.2 | Variation 2: Using Nitronium Ethyl Sulfate | 113 |
| 41.1.3.30 | Method 30: Destructive Nitration | 113 |
| 41.1.3.4 | Synthesis by Rearrangement or Disproportionation | 115 |
| 41.1.3.1 | Method 1: Rearrangement of Alkyl Nitrates | 115 |
| 41.1.3.2 | Method 2: Disproportionation Reactions | 116 |
| 41.1.3.5 | Synthesis with Retention of the Nitro Group | 116 |
| 41.1.3.5.1 | Method 1: Alkylation of Nitroalkanes with Alkyl Halides | 117 |
| 41.1.3.5.1.1 | Variation 1: With Fluoroalkanes | 117 |
| 41.1.3.5.1.2 | Variation 2: With Chloroalkanes | 117 |
| 41.1.3.5.1.3 | Variation 3: With Bromoalkanes | 119 |
| 41.1.3.5.1.4 | Variation 4: With Iodoalkanes | 121 |
| 41.1.3.5.2 | Method 2: Alkylation of Nitroalkanes with Alkylammonium Salts | 122 |
| 41.1.3.5.3 | Method 3: Alkylation of Nitroalkanes with Alkyl(phenyl)iodonium Reagents | 122 |
| 41.1.3.5.4 | Method 4: Alkylation of Nitroalkanes with Alkyl Arenesulfonates | 123 |
| 41.1.3.5.5 | Method 5: Alkylation of Nitroalkanes with Alkyl Aryl Sulfones | 124 |
| 41.1.3.5.6 | Method 6: Alkylation of Nitroalkanes with Hydrates or Hemiacetalts of Aldehydes | 125 |
| 41.1.3.5.7 | Method 7: Alkylation of Nitroalkanes with Alkyl Azides | 126 |
| 41.1.3.5.8 | Method 8: Alkylation of Nitroalkanes with an Alkyl Difluoromethyl Nitrite | 126 |
| 41.1.3.5.9 | Method 9: Vinylation of Nitroalkanes | 126 |
| 41.1.3.5.10 | Method 10: Arylation of Nitroalkanes | 127 |
| 41.1.3.5.11 | Method 11: Allylation of Nitroalkanes | 129 |
| 41.1.3.5.11.1 | Variation 1: Nucleophilic Substitution | 129 |
| 41.1.3.5.11.2 | Variation 2: Palladium-Catalyzed Allylation | 131 |</p>
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Reaction of Nitroalkyl Anions with Aldehydes and Ketones (Henry Reaction)</td>
</tr>
<tr>
<td>13</td>
<td>Aza-Henry Reaction</td>
</tr>
<tr>
<td>14</td>
<td>Reaction of Nitroalkyl Anions with Carboxylic and Carbonic Acid Derivatives</td>
</tr>
<tr>
<td>14.1</td>
<td>Variation 1: With Acid Halides</td>
</tr>
<tr>
<td>14.2</td>
<td>Variation 2: With Esters</td>
</tr>
<tr>
<td>14.3</td>
<td>Variation 3: With Anhydrides</td>
</tr>
<tr>
<td>14.4</td>
<td>Variation 4: With Carbonates</td>
</tr>
<tr>
<td>14.5</td>
<td>Variation 5: With Carbamoyl Chlorides</td>
</tr>
<tr>
<td>14.6</td>
<td>Variation 6: With Isoic Anhydride</td>
</tr>
<tr>
<td>14.7</td>
<td>Variation 7: With Benzotriazole Derivatives</td>
</tr>
<tr>
<td>15</td>
<td>Method 15: Reaction of Nitroalkyl Anions with Reactive Alkenes Not Conjugated to a Carbonyl Group</td>
</tr>
<tr>
<td>16</td>
<td>Method 16: Reaction of Nitroalkyl Anions with Alkylmercury Compounds</td>
</tr>
<tr>
<td>17</td>
<td>Method 17: Substitution of Chlorine in α-Chloronitroalkanes by a Carbanion Prepared from a Ketone</td>
</tr>
<tr>
<td>18</td>
<td>Method 18: Substitution of Chlorine in α-Chloronitroalkanes by a Carbanion Prepared from a Nitroalkane</td>
</tr>
<tr>
<td>19</td>
<td>Method 19: Substitution of Chlorine in α-Chloronitroalkanes by a Carbanion Prepared from a Malonate</td>
</tr>
<tr>
<td>20</td>
<td>Method 20: Substitution of Chlorine in α-Chloronitroalkanes by a Carbanion Prepared from a 3-Oxo Ester</td>
</tr>
<tr>
<td>21</td>
<td>Method 21: Substitution of Chlorine in α-Chloronitroalkanes by a Carbanion Prepared from a 1,3-Diketone</td>
</tr>
<tr>
<td>22</td>
<td>Method 22: Substitution of Chlorine in α-Chloronitroalkanes by a Carbanion Prepared from a Nitrile</td>
</tr>
<tr>
<td>23</td>
<td>Method 23: Substitution of Chlorine in α-Chloronitroalkanes by a Carbanion Prepared from a (Alkoxycarbonyl)methyl Aryl Sulfone</td>
</tr>
<tr>
<td>24</td>
<td>Method 24: Substitution of Chlorine in α-Chloronitroalkanes by an Alkynyllithium Reagent</td>
</tr>
<tr>
<td>25</td>
<td>Method 25: Substitution of Chlorine in α-Chloronitroalkanes by an Organotin(IV) Reagent</td>
</tr>
<tr>
<td>26</td>
<td>Method 26: Substitution of Bromine in α-Bromonitroalkanes by a Carbanion Prepared from a Nitroalkane</td>
</tr>
<tr>
<td>27</td>
<td>Method 27: Substitution of Bromine in α-Bromonitroalkanes by a Carbanion Prepared from a Malonate</td>
</tr>
<tr>
<td>28</td>
<td>Method 28: Substitution of Bromine in α-Bromonitroalkanes by a Carbanion Prepared from a Nitrile</td>
</tr>
<tr>
<td>29</td>
<td>Method 29: Substitution of Bromine in α-Bromonitroalkanes by a Carbanion Prepared from a 3-Oxo Nitrile</td>
</tr>
<tr>
<td>30</td>
<td>Method 30: Substitution of Bromine in α-Bromonitroalkanes by a Carbanion Prepared from a 2-Cyano Ester</td>
</tr>
<tr>
<td>31</td>
<td>Method 31: Substitution of Bromine in α-Bromonitroalkanes by a Carbanion Prepared from an α-Cyanoalkyl Sulfone</td>
</tr>
</tbody>
</table>
41.1.5.32 Method 32: Substitution of Bromine in α-Bromonitroalkanes by a Carbanion Prepared from a Malononitrile 153
41.1.5.33 Method 33: Substitution of Bromine in α-Bromonitroalkanes by an Organotin(IV) Reagent .. 153
41.1.5.34 Method 34: Substitution of Iodine in α-Iodonitroalkanes by a Carbanion Prepared from a Nitroalkane .. 154
41.1.5.35 Method 35: Substitution of an Arylsulfonyl Group or Arylsulfanyl Group in Nitroalkanes by Carbon Nucleophiles 154
41.1.5.36 Method 36: Substitution of a Nitro Group in Geminal Dinitroalkanes by Carbon Nucleophiles ... 155
41.1.5.37 Method 37: Dimerization of Nitroalkanes ... 157
41.1.5.37.1 Variation 1: Starting from Nitroalkanes .. 157
41.1.5.37.2 Variation 2: Starting from Halonitroalkanes .. 158
41.1.5.38 Method 38: Decarboxylation of 2-Nitro Acids ... 160
41.1.5.39 Method 39: Dehalogenation of α-Halonitroalkanes .. 161
41.1.5.39.1 Variation 1: Using Potassium Hydroxide .. 161
41.1.5.39.2 Variation 2: Using Sodium Borohydride ... 162
41.1.5.39.3 Variation 3: Using Catalytic Hydrogenation .. 162
41.1.5.39.4 Variation 4: Using Tributyltin Hydride ... 163
41.1.5.40 Method 40: Desulfoninylation of Nitro Sulfones ... 164
41.1.5.41 Method 41: Catalytic Reduction of Nitroalkenes ... 164
41.1.5.42 Method 42: Borohydride Reduction of Nitroalkenes .. 166
41.1.5.42.1 Variation 1: Using Sodium Borohydride ... 166
41.1.5.42.2 Variation 2: Using Lithium Borohydride ... 167
41.1.5.42.3 Variation 3: Using Zinc Borohydride .. 167
41.1.5.42.4 Variation 4: Using Sodium Trimethoxyborohydride .. 168
41.1.5.43 Method 43: Reduction of Nitroalkenes with Lithium Aluminum Hydride 168
41.1.5.44 Method 44: Enantioselective Reduction of Nitroalkenes with Silanes 169
41.1.5.45 Method 45: Reduction of Nitroalkenes Using Biological and Biomimetic Reducing Agents ... 169
41.1.5.46 Method 46: Hydrocyanation of a Nitroalkene Using Hydrogen Cyanide 170
41.1.5.47 Method 47: Hydrocyanation of a Nitroalkene Using Potassium Cyanide 171
41.1.5.48 Method 48: Addition to a Nitroalkene by Electrophilic Aromatic Substitution 172
41.1.5.49 Method 49: Addition to a Nitroalkene Using a Carbanion Prepared from an Aldehyde ... 174
41.1.5.50 Method 50: Addition to a Nitroalkene Using a Carbanion Prepared from a Ketone 176
41.1.5.51 Method 51: Addition to a Nitroalkene Using a Carbanion Prepared from an Ester 179
41.1.5.52 Method 52: Addition to a Nitroalkene Using a Carbanion Prepared from a Nitrile 181
41.1.5.53 Method 53: Addition to a Nitroalkene Using a Carbanion
Prepared from an Amide .. 182
41.1.5.54 Method 54: Addition to a Nitroalkene Using a Carbanion
Prepared from a 1,3-Diester .. 184
41.1.5.55 Method 55: Addition to a Nitroalkene Using a Carbanion
Prepared from a 1,3-Diketone 189
41.1.5.56 Method 56: Addition to a Nitroalkene Using a Carbanion
Prepared from a 3-Oxo Ester .. 191
41.1.5.57 Method 57: Addition to a Nitroalkene Using a Carbanion
Prepared from a 2-Cyano Ester 194
41.1.5.58 Method 58: Addition to a Nitroalkene Using a Carbanion
Prepared from a Dinitrile ... 195
41.1.5.59 Method 59: Addition to a Nitroalkene Using a Carbanion
Prepared from a Thioester .. 195
41.1.5.60 Method 60: Addition to a Nitroalkene Using a Carbanion
Prepared from a (2,2,6,6-Tetramethylpiperidin-1-yloxycarbonyl)alkane .. 196
41.1.5.61 Method 61: Addition to a Nitroalkene Using a Carbanion
Prepared from a 1,3-Oxazine 196
41.1.5.62 Method 62: Addition to a Nitroalkene Using a Silyl Enol Ether .. 197
41.1.5.63 Method 63: Addition to a Nitroalkene Using Enamino Compounds .. 199
41.1.5.63.1 Variation 1: Using Enamines 199
41.1.5.63.2 Variation 2: Using Enamino Esters 201
41.1.5.63.3 Variation 3: Using Enamino Ketones 202
41.1.5.63.4 Variation 4: Using Enaminonitriles 203
41.1.5.64 Method 64: Addition to a Nitroalkene Using Organosulfur Reagents .. 203
41.1.5.64.1 Variation 1: Using Sulfones ... 203
41.1.5.64.2 Variation 2: Using 1,3-Dithianes 204
41.1.5.64.3 Variation 3: Using Sulfur Ylides 205
41.1.5.65 Method 65: Addition to a Nitroalkene Using a Carbanion
Prepared from an Isocyanide 205
41.1.5.66 Method 66: Addition to a Nitroalkene Using a Carbanion
Prepared from a Nitroalkane 206
41.1.5.67 Method 67: Addition to a Nitroalkene Using a Carbanion
Prepared from a 2-Nitro Ester 207
41.1.5.68 Method 68: Addition to a Nitroalkene Using a Carbanion
Prepared from an α-Cyano-α-nitro Ester 208
41.1.5.69 Method 69: Addition to a Nitroalkene Using Organophosphorus
Reagents ... 208
41.1.5.69.1 Variation 1: Using Phosphonoacetate Esters 208
41.1.5.69.2 Variation 2: Using Phosphorus Ylides 209
41.1.5.70 Method 70: Addition to a Nitroalkene Using an
Organolithium Reagent ... 210
41.1.5.71 Method 71: Addition to a Nitroalkene Using an
Organomagnesium Reagent ... 211
41.1.5.71.1 Variation 1: Using Alkylmagnesium Chlorides 211
41.1.5.71.2 Variation 2: Using Alkylmagnesium Bromides 212
41.1.5.71.3 Variation 3: Using Alkylmagnesium Iodides 213
Method 72: Addition to a Nitroalkene Using an Alkylsamarium(II) Bromide .. 214
Method 73: Addition to a Nitroalkene Using an Alkylmanganese(II) Chloride 214
Method 74: Addition to a Nitroalkene Using an Alkylcopper Reagent ... 215
Method 74.1: Variation 1: Using Alkylcoppers .. 215
Method 74.2: Variation 2: Using Halozinc Alkylcyanocuprates ... 215
Method 74.3: Variation 3: Using Alkylzinc Alkylcyanocuprates ... 216
Method 75: Addition to a Nitroalkene Using an Organozinc Reagent ... 217
Method 75.1: Variation 1: Using Alkylzinc Chlorides ... 217
Method 75.2: Variation 2: Using Alkylzinc Bromides ... 218
Method 75.3: Variation 3: Using Dialkylzincs ... 218
Method 76: Addition to a Nitroalkene Using an Arylboronic Acid ... 221
Method 77: Addition to a Nitroalkene Using an Alkylaluminum Reagent ... 222
Method 77.1: Variation 1: Using Trialkylaluminums ... 222
Method 77.2: Variation 2: Using Tetraalkylaluminates ... 224
Method 78: Addition to a Nitroalkene Using a Lithium Tetraalkylgallate ... 225
Method 79: Addition to a Nitroalkene Using Triethoxy(phenyl)silane ... 225
Method 80: Addition to a Nitroalkene Using a Tetraalkylstannane ... 226
Method 81: Addition to a Nitroalkene Using Dialkyl Phosphites ... 226
Method 82: [2 + 2]-Cycloaddition Reactions of Nitroalkenes ... 227
Method 82.1: Variation 1: With Another Nitroalkene ... 227
Method 82.2: Variation 2: With Enamines ... 228
Method 82.3: Variation 3: With Tetramethoxymethane .. 229
Method 83: [3 + 2]-Cycloaddition Reactions of Nitroalkenes ... 229
Method 83.1: Variation 1: With Diazo Compounds ... 229
Method 83.2: Variation 2: With Methylene cyclopropanes ... 230
Method 83.3: Variation 3: With Azides ... 231
Method 83.4: Variation 4: With Azomethine Ylides .. 231
Method 83.5: Variation 5: With Enamino Ketones .. 231
Method 83.6: Variation 6: With Nitrones ... 232
Method 84: [2 + 4]-Cycloaddition Reactions of Nitroalkenes with Dienes ... 232
Method 85: Rearrangements in the Synthesis of Nitroalkanes from Other Nitro Compounds 238
Method 85.1: Variation 1: Baylis–Hillman Reaction .. 238
Method 85.2: Variation 2: Disproportionation ... 238
Method 85.3: Variation 3: Thio-Claisen Rearrangement ... 239
Method 85.4: Variation 4: Cope Rearrangement .. 239
41.2 Product Class 2: Nitrosoalkanes and Nitroso Acetals (N,N-Dialkoxyamines)

H.-U. Reissig, B. Dugović, and R. Zimmer

41.2.1 Synthesis of Product Class 2

41.2.1.1 Method 1: Substitution Reactions

41.2.1.2 Variation 1: Substitution of a Hydrogen Atom in Nonactivated Compounds

41.2.1.3 Variation 2: Substitution of a Hydrogen Atom in Halogenated Compounds

41.2.1.4 Variation 3: Substitution of a Hydrogen Atom in Acceptor-Substituted Compounds

41.2.1.5 Variation 4: Substitution of Other Functional Groups

41.2.1.6 Variation 5: Substitution of Metals

41.2.1.7 Method 2: Addition Reactions

41.2.1.8 Variation 1: Addition to Alkenes

41.2.1.9 Variation 2: Addition to Electron-Rich Aromatic Compounds

41.2.1.10 Method 3: Elimination Reactions and Pyrolysis

41.2.1.11 Method 4: Oxidation Reactions

41.2.1.12 Variation 1: Oxidation of Amines

41.2.1.13 Variation 2: Oxidation of Hydroxylamines

41.2.1.14 Variation 3: Oxidation of Cyclic Nitrogen Compounds

41.2.1.15 Method 5: Reduction of Nitroalkanes

41.2.1.16 Method 6: Photochemical Reactions

41.2.1.17 Method 7: Rearrangements

41.2.1.18 Method 8: Conversions of Oximes

41.2.1.19 Method 9: Derivatization of Stable Nitrosoalkanes

41.2.1.20 Method 10: Synthesis of Metal-Coordinated Nitrosoalkanes

41.2.1.21 Method 11: Synthesis of Nitroso Acetals

41.2.2 Applications of Product Class 2 in Organic Synthesis

41.2.2.1 Method 1: Oxidation to Nitroalkanes

41.2.2.2 Method 2: Reduction to Amines

41.2.2.3 Method 3: Formation of Oximes and Derivatives

41.2.2.4 Method 4: Synthesis of Compounds with an N=X Functionality (X = C, N, P)

41.2.2.5 Method 5: Conversion into Nitrosoalkenes

Table of Contents
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.2.6</td>
<td>Method 6:</td>
<td>Synthesis of Heterocycles</td>
<td>332</td>
</tr>
<tr>
<td>41.2.6.1</td>
<td>Variation 1:</td>
<td>Synthesis of Four-Membered Heterocycles</td>
<td>332</td>
</tr>
<tr>
<td>41.2.6.2</td>
<td>Variation 2:</td>
<td>Synthesis of Five-Membered Heterocycles</td>
<td>334</td>
</tr>
<tr>
<td>41.2.6.3</td>
<td>Variation 3:</td>
<td>Synthesis of Six-Membered Heterocycles</td>
<td>338</td>
</tr>
<tr>
<td>41.2.7</td>
<td>Method 7:</td>
<td>Synthesis of α-Carbonyl Hydroxylamines and N-Allyl Hydroxylamines</td>
<td>347</td>
</tr>
<tr>
<td>41.2.8</td>
<td>Method 8:</td>
<td>Reactions of Nitroso Acetals</td>
<td>352</td>
</tr>
<tr>
<td>41.3</td>
<td>Product Class 3:</td>
<td>N-Nitroamines</td>
<td>371</td>
</tr>
<tr>
<td>41.3.1</td>
<td>Product Subclass 1:</td>
<td>N-Alkyl-N-nitroamines</td>
<td>373</td>
</tr>
<tr>
<td>41.3.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td></td>
<td>373</td>
</tr>
<tr>
<td>41.3.1.1.1</td>
<td>Method 1:</td>
<td>Nitration of Amines with Cyanohydrin Nitrates</td>
<td>373</td>
</tr>
<tr>
<td>41.3.1.1.2</td>
<td>Method 2:</td>
<td>Nitration of Lithium Amides</td>
<td>374</td>
</tr>
<tr>
<td>41.3.1.1.3</td>
<td>Method 3:</td>
<td>Decacylation of N-Acyl-N-nitroamines and Related Reactions</td>
<td>374</td>
</tr>
<tr>
<td>41.3.1.1.3.1</td>
<td>Variation 1:</td>
<td>Of N-Nitrocarbamates</td>
<td>374</td>
</tr>
<tr>
<td>41.3.1.1.3.2</td>
<td>Variation 2:</td>
<td>Of N-Nitroureas</td>
<td>377</td>
</tr>
<tr>
<td>41.3.1.1.3.3</td>
<td>Variation 3:</td>
<td>Of N-Nitroguanidines</td>
<td>379</td>
</tr>
<tr>
<td>41.3.1.1.3.4</td>
<td>Variation 4:</td>
<td>Of N-Nitro Amides</td>
<td>381</td>
</tr>
<tr>
<td>41.3.1.1.3.5</td>
<td>Variation 5:</td>
<td>Of N-Nitro Sulfonamides</td>
<td>382</td>
</tr>
<tr>
<td>41.3.1.1.4</td>
<td>Method 4:</td>
<td>Substitution of N,N-Dichloroamines</td>
<td>383</td>
</tr>
<tr>
<td>41.3.1.1.5</td>
<td>Method 5:</td>
<td>Reduction of N-Nitroimines</td>
<td>384</td>
</tr>
<tr>
<td>41.3.1.1.6</td>
<td>Method 6:</td>
<td>Cleavage of Alkyl Groups in N,N-Dialkyl-N-nitroamines</td>
<td>386</td>
</tr>
<tr>
<td>41.3.2</td>
<td>Product Subclass 2:</td>
<td>N-Aryl-N-nitroamines</td>
<td>387</td>
</tr>
<tr>
<td>41.3.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td></td>
<td>388</td>
</tr>
<tr>
<td>41.3.2.1.1</td>
<td>Method 1:</td>
<td>Nitration of Anilines</td>
<td>388</td>
</tr>
<tr>
<td>41.3.2.1.2</td>
<td>Method 2:</td>
<td>Nitration of Metal Anilides</td>
<td>395</td>
</tr>
<tr>
<td>41.3.2.1.3</td>
<td>Method 3:</td>
<td>Decacylation of N-Acyl-N-nitroanilines</td>
<td>395</td>
</tr>
<tr>
<td>41.3.2.1.4</td>
<td>Method 4:</td>
<td>Oxidation of (E)-Diazeneolates</td>
<td>396</td>
</tr>
<tr>
<td>41.3.3</td>
<td>Product Subclass 3:</td>
<td>N-Nitro-N-vinylamines</td>
<td>397</td>
</tr>
<tr>
<td>41.3.3.1</td>
<td>Synthesis of Product Subclass 3</td>
<td></td>
<td>397</td>
</tr>
<tr>
<td>41.3.3.1.1</td>
<td>Method 1:</td>
<td>Isomerization of N-Nitroimines</td>
<td>397</td>
</tr>
<tr>
<td>41.3.4</td>
<td>Product Subclass 4:</td>
<td>N,N-Dialkyl-N-nitroamines</td>
<td>399</td>
</tr>
<tr>
<td>41.3.4.1</td>
<td>Synthesis of Product Subclass 4</td>
<td></td>
<td>399</td>
</tr>
<tr>
<td>41.3.4.1.1</td>
<td>Method 1:</td>
<td>Nitration of Amines</td>
<td>399</td>
</tr>
<tr>
<td>41.3.4.1.1.1</td>
<td>Variation 1:</td>
<td>Using Nitric Acid</td>
<td>399</td>
</tr>
<tr>
<td>41.3.4.1.1.2</td>
<td>Variation 2:</td>
<td>Using Dinitrogen Pentoxide or Dinitrogen Tetroxide</td>
<td>403</td>
</tr>
<tr>
<td>41.3.4.1.1.3</td>
<td>Variation 3:</td>
<td>Using Cyanohydryn Nitrates</td>
<td>404</td>
</tr>
<tr>
<td>41.3.4.1.1.4</td>
<td>Variation 4:</td>
<td>Using Mesitylcarbonyl Nitrate</td>
<td>405</td>
</tr>
<tr>
<td>41.3.4.1.1.5</td>
<td>Variation 5:</td>
<td>Using Nitronium Salts</td>
<td>405</td>
</tr>
</tbody>
</table>
41.3.4.1.6 Variation 6: Using N-Methyl-N,N-dinitroamine 406
41.3.4.1.2 Method 2: Nitrolysis of Amides ... 406
41.3.4.1.2.1 Variation 1: Using Nitric Acid 406
41.3.4.1.2.2 Variation 2: Using Dinitrogen Pentoxide 408
41.3.4.1.2.3 Variation 3: Using Nitronium Salts 408
41.3.4.1.3 Method 3: Nitration of Sulfamates 409
41.3.4.1.4 Method 4: Substitution of tert-Butylamines 409
41.3.4.1.5 Method 5: Nitroso Group Exchange by Nitration 410
41.3.4.1.6 Method 6: Alkylation of N-Alkyl-N-nitroamines 411
41.3.4.1.6.1 Variation 1: Using Alkyl, Allyl, and Benzyl Halides, Dimethyl Sulfate, Activated Alcohols, or Activated Amines 411
41.3.4.1.6.2 Variation 2: Using Diazoalkanes 415
41.3.4.1.7 Method 7: Radical Cyclizations of N-Alkyl-N-nitroamines 416
41.3.5 Product Subclass 5: N-Alkyl-N-aryl-N-nitroamines 417
41.3.5.1 Synthesis of Product Subclass 5 .. 417
41.3.5.1.1 Method 1: Nitration of N-Alkylanilines 417
41.3.5.1.2 Method 2: Nitration of N,N-Dialkylanilines 422

41.4 Product Class 4: N-Nitrosoamines
M. M. K. Boysen

41.4 Product Class 4: N-Nitrosoamines .. 437
41.4.1 Synthesis of Product Class 4 ... 438
41.4.1.1 Formation of the N—N Bond .. 438
41.4.1.1.1 Method 1: Nitrosation with Sodium Nitrite and Acids 438
41.4.1.1.2 Variation 1: Nitrosation with Sodium Nitrite and Aqueous Acids 438
41.4.1.1.2 Variation 2: Nitrosation with Sodium Nitrite and Solid Acids 439
41.4.1.1.2 Method 2: Nitrosation with Nitrogen Oxides 439
41.4.1.1.3 Method 3: Nitrosation with Nitrosyl Chloride 440
41.4.1.1.4 Method 4: Nitrosation with Nitrosonium Tetrafluoroborate 441
41.4.1.1.5 Method 5: Nitrosation with Alkyl Nitrites 442
41.4.1.1.6 Method 6: Dealkylating Nitrosation of Tertiary Amines 443
41.4.1.2 Formation of C—C Bonds ... 443
41.4.1.2.1 Method 1: α-Alkylation of N-Nitrosoamines 443
41.4.1.2.2 Method 2: Alkylation of Diazonlates 445
41.4.1.3 Formation and Cleavage of N—O Bonds 446
41.4.1.3.1 Method 1: Reduction of N-Nitroamines 446
41.4.1.3.2 Method 2: Oxidation of 1,1-Disubstituted Hydrazines 446

Science of Synthesis Original Edition Volume 41
© Georg Thieme Verlag KG
41.5 Product Class 5: Aliphatic Azoxy Compounds (Aliphatic Diazene Oxides)
M. M. K. Boysen

41.5.1 Synthesis of Product Class 5 .. 450
41.5.1.1 Formation or Cleavage of N−O Bonds 450
41.5.1.2 Method 2: Oxidation of Hydrazones 451
41.5.1.3 Method 3: Oxidation of Hydrazines .. 452
41.5.1.4 Method 4: Reduction of Dimeric Nitroso Compounds 452
41.5.1.2 Formation of the N=N Bond .. 452
41.5.1.2.1 Method 1: Condensation of Hydroxylamines with Dimeric Nitroso Compounds .. 452
41.5.1.2.2 Method 2: Condensation of N,N-Dihaloamines with Nitroso Compounds .. 454
41.5.1.2.3 Method 3: Oxidation of Hydroxylamines 455
41.5.1.3 Formation of the C−N Bond .. 455
41.5.1.3.1 Method 1: Alkylation of Diazonolates 455

41.6 Product Class 6: Aliphatic Azo Compounds
S. Kempa, L. Wallach, and K. Rück-Braun

41.6.1 Synthesis by Formation of the N=N Bond 460
41.6.1.1 Method 1: Oxidative Coupling of Primary Amines 460
41.6.1.2 Method 2: Condensation of Nitrosoalkanes with Alkylamines 462
41.6.1.3 Method 3: Rearrangement of N,N′-Dialkylsulfamides 464
41.6.1.3.1 Variation 1: Rearrangement of N,N′-Dialkylureas 468
41.6.2 Synthesis from Compounds Containing an N−N Bond 469
41.6.2.1 Method 1: Oxidation of 1,2-Dialkylhydrazines 469
41.6.2.1.1 Variation 1: From Corresponding Ketazines 477
41.6.2.2 Method 2: 1,4-Elimination of α-Substituted Alkylhydrazones 478
41.6.2.3 Method 3: Reduction of Azoxy Compounds 481
41.6.2.4 Method 4: Oxidation of Alkylhydrazones 483
41.6.2.4.1 Variation 1: Oxidation with Lead(IV) Acetate 483
41.6.2.4.2 Variation 2: Oxidation with Peracetic Acid 484
41.6.2.4.3 Variation 3: Oxidation with (Diacetoxyiodo)benzene 485
41.6.2.4.4 Variation 4: Oxidation of Ketazines with Lead(IV) Acetate 486
41.6.2.5 Method 5: Alkylation of Alkylhydrazones 487
41.6.2.6 Method 6: Isomerization of Alkylhydrazones 491
41.6.2.7 Method 7: Hydrogenation of Ketazines 492
41.6.2.8 Method 8: Chlorination of Ketazines 492
Method 9: Ring Opening of Heterocycles ... 497
Method 10: [2,3]-Sigmatropic Rearrangement of 1-Alkyl-1-allyldiazenes and 1-Alkyl-1-propargyldiazenes 500
Method 11: Reactions of 2-Diazo 1,3-Diketones with CH-Acidic Compounds ... 501
Synthesis by Other Methods .. 502

Product Class 7: Diazonium Compounds
S. Kubik

Product Subclass 1: Alkanediazonium Compounds ... 507
Method 1: Synthesis from Primary Amines ... 509
Variation 1: With Nitrous Acid .. 509
Variation 2: With Disodium Pentacyanonitrosylferrate(III) 510
Variation 3: With Alkyl Nitrites .. 510
Variation 4: With Nitrosyl Chloride .. 511
Variation 5: With Dinitrogen Tetroxide ... 511
Method 2: Synthesis from Triazenes ... 511
Method 3: Synthesis from N-Nitrosoamides ... 512
Variation 1: By Thermolysis .. 512
Variation 2: By Alkali Cleavage .. 513
Method 4: Synthesis from Diazoaalkanes ... 514
Method 5: Miscellaneous Methods .. 514

Product Subclass 2: Alkenediazonium Compounds ... 514
Synthesis of Product Subclass 2 .. 517
Method 1: Synthesis from Diazoaalkanes ... 517
Method 2: Synthesis from 2-Diazocarbonyl Compounds 517
Variation 1: By O-Alkylation .. 518
Variation 2: By O-Sulfonylation or O-Benzoylation 520
Method 3: Synthesis from Hydrazones ... 521
Variation 1: From Aldehyde Hydrazones ... 522
Variation 2: From Ketone Hydrazones ... 524
Method 4: Synthesis from Alk-1-enyl Derivatives ... 525
Variation 1: From Enamines .. 525
Variation 2: From Alk-1-enyl Isocyanates ... 527
Variation 3: From Alk-1-enytriazenes ... 528
Variation 4: From 1-(Tosylazo)alk-1-enes ... 529
Method 5: Synthesis from N-Nitrosooxazolidin-2-ones 529
Method 6: Synthesis from Other Alkenediazonium Compounds 531

Applications of Product Subclass 2 in Organic Synthesis 534
Method 1: Synthesis of Pyrazoles ... 534
Method 2: Synthesis of 1H-1,2,3-Triazoles ... 535
Method 3: Synthesis of 6H-1,3,4-Oxadiazines and 1,3,4-Oxadiazoles

536

Method 4: Synthesis of 2-Diazoimines

536

Product Class 8: Azidoalkanes

S. Bräse, B. Lesch, and V. Zimmermann

543

41.8.1 Synthesis of Product Class 8

543

Method 1: Synthesis from Benzyl Ethers or Related Compounds by Radical Substitution (C–H Activation)

543

Method 2: Synthesis from Carboxylic Acids by Azidative Decarboxylation

544

Method 3: Synthesis from Alkyl Halides by Radical Substitution

545

Method 4: Synthesis by Nucleophilic Substitution of Alkyl Halides

545

Variation 1: Classical Synthesis

545

Variation 2: Asymmetric Synthesis

548

Variation 3: 1,3-Substitution in Allyl Halides

550

Method 5: Synthesis by Nucleophilic Substitution of Alkyl Esters and Related Compounds

551

Variation 1: Classical Synthesis

551

Variation 2: Asymmetric Synthesis

554

Method 6: Synthesis by Nucleophilic Substitution of Alkanols and Related Compounds

556

Variation 1: Classical Synthesis

556

Variation 2: Asymmetric Synthesis

560

Method 7: Synthesis from Acetals

566

Method 8: Synthesis by Ring Opening of Epoxides, Aziridines, and Related Compounds

567

Variation 1: Classical Synthesis

567

Variation 2: Asymmetric Synthesis

577

Method 9: Electrophilic Azidation

578

Method 10: Synthesis by Addition to C=C Bonds

580

Variation 1: Nucleophilic Hydroazidation of C=C Bonds

580

Variation 2: Electrophilic Hydroazidation of C=C Bonds

581

Variation 3: Radical Hydroazidation of C=C Bonds

584

Variation 4: Carboazidation of C=C Bonds

585

Variation 5: Haloazidation of C=C Bonds

585

Variation 6: Azidoselanylation of C=C Bonds

590

Method 11: Synthesis by Addition to C=X Bonds

590

Method 12: Synthesis from Amines by Nitrogen Transfer

591

Method 13: Synthesis with Retention of Azide Functionality

594

Application of Product Class 8 in Organic Synthesis

594

Method 1: Reactions with All-Carbon Functional Groups

594

Variation 1: [3 + 2]-Cycloaddition Reactions

594
Table of Contents

41.8.2.2 Method 2: Hydrogenation and Reactions with Heteroatom-Containing Groups

<table>
<thead>
<tr>
<th>Variation</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reduction to Amines</td>
<td>595</td>
</tr>
<tr>
<td>41.8.2.2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.8.2.2.2</td>
<td>Schmidt and Boyer Reactions</td>
<td>598</td>
</tr>
<tr>
<td>41.8.2.2.3</td>
<td>Staudinger Reductions</td>
<td>600</td>
</tr>
<tr>
<td>41.8.2.2.4</td>
<td>Staudinger Ligations</td>
<td>602</td>
</tr>
<tr>
<td>41.8.2.2.5</td>
<td>Aza-Wittig Reactions</td>
<td>603</td>
</tr>
<tr>
<td>41.8.2.2.6</td>
<td>Miscellaneous Reactions</td>
<td>605</td>
</tr>
</tbody>
</table>

41.9 Product Class 9: Alkyltriazenes

N. Jung and S. Bräse

<table>
<thead>
<tr>
<th>Method 1: Alkylation of Alkyl Azides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variation 1: By Grignard Reagents</td>
</tr>
<tr>
<td>Variation 2: By Lithium Reagents</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method 2: Alkylation or Acylation of Aryl- or Alkyltriazenes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variation 1: Alkylation</td>
</tr>
<tr>
<td>Variation 2: Acylation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method 3: Reaction of Arenediazonium Salts with Primary Amines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variation 1: Diazotization of Arylamines and Reaction with</td>
</tr>
<tr>
<td>Secondary Amines</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method 4: Reaction of Diazonium Salts with Secondary Amines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variation 1:</td>
</tr>
<tr>
<td>Variation 2:</td>
</tr>
<tr>
<td>Variation 3:</td>
</tr>
<tr>
<td>Variation 4:</td>
</tr>
<tr>
<td>Variation 5:</td>
</tr>
<tr>
<td>Variation 6:</td>
</tr>
<tr>
<td>Variation 7:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method 5: Synthesis from N'-Alkyl-N-aryl-N-nitrosoureas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variation 1:</td>
</tr>
<tr>
<td>Variation 2:</td>
</tr>
</tbody>
</table>

| Method 6: Synthesis from Nitroso-Containing Compounds with |
| Alkylhydrazines | 630 |

<table>
<thead>
<tr>
<th>Method 7: Reaction of Arenediazonium Salts with Primary Amines and Formaldehyde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variation 1:</td>
</tr>
<tr>
<td>Variation 2:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method 8: Reaction of Arenediazonium Salts with Diamines and Formaldehyde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variation 1:</td>
</tr>
<tr>
<td>Variation 2:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method 9: Synthesis by Ring Opening of Cyclic Compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variation 1:</td>
</tr>
<tr>
<td>Variation 2:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method 10: Ring Opening of Spirocyclic Triazoles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variation 1:</td>
</tr>
</tbody>
</table>

Science of Synthesis Original Edition Volume 41
© Georg Thieme Verlag KG
41.9.4 Variation 4: Ring Opening of Benzotriazoles 634
41.9.2 Applications of Product Class 9 in Organic Synthesis 635

41.10 Product Class 10: Alkyltetrazenes
N. Jung and S. Bräse

41.10.1 Product Subclass 1: Tetraz-1-enes 641

41.10.1.1 Method 1: Reaction of 1,1-Dialkylhydrazines with Diazonium Chlorides 641

41.10.2 Product Subclass 2: Tetraz-2-enes 642

41.10.2.1 Method 1: Symmetrical Oxidative Dimerization of Hydrazines 642
41.10.2.1.2 Method 2: Tetrazenes from N-Nitrosoamines 645
41.10.2.1.3 Method 3: Dimerization of Diazenes Generated from Amines 645
41.10.2.1.4 Method 4: Dimerization of Diazenes Generated from Hydrazones 646
41.10.2.1.5 Method 5: Synthesis of Unsymmetrical Tetrazenes 646
41.10.2.1.6 Method 6: Synthesis of Tetrazenes from Cyclic Precursors 647
41.10.2.1.7 Method 7: Synthesis of Vinyltetrazenes 648

41.11 Product Class 11: N,N-Dihaloamines
S. J. Collier and W. Xiang

41.11.1 Product Subclass 1: N,N-Difluoroamines 651

41.11.1.1 Method 1: Direct Fluorination of Amines and Related Reactions 653
41.11.1.2 Method 2: Difluoroamination of Carbon Skeletons 655
41.11.1.2.1 Variation 1: With Tetrafluorohydrazine 655
41.11.1.2.2 Variation 2: With Difluoroamine and Related Reagents 659
41.11.1.3 Method 3: Other Methods 662

41.11.2 Product Subclass 2: N,N-Dichloroamines 663

41.11.2.1 Synthesis of Product Subclass 2 665
41.11.2.1.1 Method 1: Direct Chlorination of Amines 665
41.11.2.1.2 Method 2: Chlorination of Nitriles and Related Reactions 666
41.11.2.1.3 Method 3: Dichloroamination of Carbon Skeletons 668
41.11.2.1.4 Method 4: Other Methods 669

41.11.3 Product Subclass 3: N,N-Dibromoamines 669

41.11.3.1 Synthesis of Product Subclass 3 670
41.11.3.1.1 Method 1: Direct Bromination of Amines 670
<table>
<thead>
<tr>
<th>Method</th>
<th>Subclass Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.11.3.1.2</td>
<td>Halide Metathesis of (N,N)-Dichloroamines</td>
<td>670</td>
</tr>
<tr>
<td>41.11.3.1.3</td>
<td>Other Methods</td>
<td>672</td>
</tr>
<tr>
<td>41.11.4</td>
<td>\textbf{Product Subclass 4:} (N,N)-Diodoamines</td>
<td>672</td>
</tr>
<tr>
<td>41.11.4.1</td>
<td>Synthesis of Product Subclass 4</td>
<td>672</td>
</tr>
<tr>
<td>41.11.5</td>
<td>\textbf{Product Subclass 5:} (N)-Chloro-(N)-fluoroamines</td>
<td>673</td>
</tr>
<tr>
<td>41.11.5.1</td>
<td>Synthesis of Product Subclass 5</td>
<td>673</td>
</tr>
<tr>
<td>41.11.5.1.1</td>
<td>Chlorofluorination of Nitriles</td>
<td>673</td>
</tr>
<tr>
<td>41.11.5.1.2</td>
<td>Chlorofluorination of (N)-Fluoroimines</td>
<td>674</td>
</tr>
<tr>
<td>41.11.5.1.3</td>
<td>Fluorination of (N)-Chloroaziridines</td>
<td>675</td>
</tr>
<tr>
<td>41.11.6</td>
<td>\textbf{Product Subclass 6:} (N)-Bromo-(N)-fluoroamines</td>
<td>675</td>
</tr>
<tr>
<td>41.11.6.1</td>
<td>Synthesis of Product Subclass 6</td>
<td>675</td>
</tr>
<tr>
<td>41.11.7</td>
<td>\textbf{Product Subclass 7:} (N)-Bromo-(N)-chloroamines</td>
<td>675</td>
</tr>
<tr>
<td>41.11.7.1</td>
<td>Synthesis of Product Subclass 7</td>
<td>676</td>
</tr>
</tbody>
</table>

\textbf{Keyword Index} | 681
\textbf{Author Index} | 721
\textbf{Abbreviations} | 765
Volume 42:
Organophosphorus Compounds
(incl. RO—P and RN—P)

<table>
<thead>
<tr>
<th>Preface</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume Editor’s Preface</td>
<td>VII</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>XI</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
</tbody>
</table>

42.1 Product Class 1: Phosphinidenes and Terminal Phosphinidene Complexes

J. C. Slootweg and K. Lammertsma 15

42.2 Product Class 2: Oxo-, Thioxo-, Selenoxo-, and Iminophosphines and Diphosphenes

M. Yoshifuji 37

42.3 Product Class 3: Phosphenium Salts

M. Yoshifuji 63

42.4 Product Class 4: Alkylphosphines

E. Hey-Hawkins and A. A. Karasik 71

42.5 Product Class 5: Bis(alkylphosphino)- and Poly(alkylphosphino)alkanes, and Di- and Polyphosphines with a P—P Bond

E. Hey-Hawkins and A. A. Karasik 109

42.6 Product Class 6: Cyclic Phosphines

D. Gudat 155

42.7 Product Class 7: Dialkylphosphinous Acids and Derivatives

K. M. Pietrusiewicz and M. Stankevič 221

42.8 Product Class 8: Alkylphosphonous Acids and Derivatives

K. M. Pietrusiewicz and M. Stankevič 243

42.9 Product Class 9: Phosphorous Acid and Derivatives

M. Stankevič and K. M. Pietrusiewicz 275

42.10 Applications of Tricoordinated Phosphorus Compounds in Homogeneous Catalysis

42.10.1 General Catalytic Methods

M. Toffano 347

42.10.2 Enantioselective Catalytic Methods

J.-C. Fiaud and A. Marinetti 391
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.11</td>
<td>Applications of Tricoordinated Phosphorus Compounds in Organocatalysis</td>
<td>J. L. Methot and W. R. Roush</td>
<td>469</td>
</tr>
<tr>
<td>42.12</td>
<td>Product Class 12: Alkylphosphonium Salts</td>
<td>D. Virieux, J.-N. Volle, and J.-L. Pirat</td>
<td>503</td>
</tr>
<tr>
<td>42.13</td>
<td>Product Class 13: Trialkylphosphine Oxides, Sulfides, Selenides, Tellurides, and Imides</td>
<td>N. L. Kilah and S. B. Wild</td>
<td>595</td>
</tr>
<tr>
<td>42.14</td>
<td>Product Class 14: Dialkylphosphinic Acids and Derivatives</td>
<td>J. Drabowicz, J. Lewkowski, C. V. Stevens, D. Krasowska, and R. Karpowicz</td>
<td>633</td>
</tr>
<tr>
<td>42.15</td>
<td>Product Class 15: Alkylphosphonic Acids and Derivatives</td>
<td>J. Drabowicz, P. Kiełbasiński, P. Łyżwa, M. Mikołajczyk, and A. Zając</td>
<td>679</td>
</tr>
<tr>
<td>42.16</td>
<td>Product Class 16: Phosphoric Acid and Derivatives</td>
<td>C. E. McKenna, B. A. Kashemirov, and K. M. Blażewska</td>
<td>779</td>
</tr>
<tr>
<td>42.17</td>
<td>Product Class 17: Phosphazenes</td>
<td>S. Urgaonkar and J. G. Verkade</td>
<td>923</td>
</tr>
<tr>
<td>42.18</td>
<td>Product Class 18: Pentacoordinated Phosphoranes</td>
<td>T. Kawashima and J. Kobayashi</td>
<td>953</td>
</tr>
<tr>
<td>42.19</td>
<td>Product Class 19: Hexacoordinated Phosphates</td>
<td>D. Linder and J. Lacour</td>
<td>977</td>
</tr>
<tr>
<td></td>
<td>Keyword Index</td>
<td></td>
<td>993</td>
</tr>
<tr>
<td></td>
<td>Author Index</td>
<td></td>
<td>1049</td>
</tr>
<tr>
<td></td>
<td>Abbreviations</td>
<td></td>
<td>1121</td>
</tr>
</tbody>
</table>
Table of Contents

Introduction
F. Mathey

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.1</td>
<td>Product Class 1: Phosphinidenes and Terminal Phosphinidene Complexes</td>
<td>15</td>
</tr>
<tr>
<td>42.1.1</td>
<td>Product Subclass 1: Free Phosphinidenes</td>
<td>15</td>
</tr>
<tr>
<td>42.1.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td>16</td>
</tr>
<tr>
<td>42.1.1.1.1</td>
<td>Method 1: Elimination</td>
<td>16</td>
</tr>
<tr>
<td>42.1.1.1.2</td>
<td>Variation 1: Thermal Generation</td>
<td>16</td>
</tr>
<tr>
<td>42.1.1.1.2</td>
<td>Variation 2: Photolytic Generation</td>
<td>16</td>
</tr>
<tr>
<td>42.1.1.1.2</td>
<td>Method 2: Reduction</td>
<td>17</td>
</tr>
<tr>
<td>42.1.1.1.3</td>
<td>Method 3: Phospha-Wittig Reagents</td>
<td>17</td>
</tr>
<tr>
<td>42.1.1.2</td>
<td>Applications of Product Subclass 1 in Organic Synthesis</td>
<td>18</td>
</tr>
<tr>
<td>42.1.1.2.1</td>
<td>Method 1: Trapping Reactions</td>
<td>18</td>
</tr>
<tr>
<td>42.1.1.2</td>
<td>Product Subclass 2: Neutral Electrophilic Phosphinidene Complexes</td>
<td>19</td>
</tr>
<tr>
<td>42.1.1.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>20</td>
</tr>
<tr>
<td>42.1.1.2.1.1</td>
<td>Method 1: Cheletropic Elimination</td>
<td>20</td>
</tr>
<tr>
<td>42.1.1.2.1.1.1</td>
<td>Variation 1: From 7-Phosphanorbornadienes</td>
<td>20</td>
</tr>
<tr>
<td>42.1.1.2.1.1.2</td>
<td>Variation 2: From Phosphiranes</td>
<td>22</td>
</tr>
<tr>
<td>42.1.1.2.1.1.3</td>
<td>Variation 3: From Phosphirennes</td>
<td>22</td>
</tr>
<tr>
<td>42.1.1.2.1.2</td>
<td>Method 2: Salt Metathesis</td>
<td>23</td>
</tr>
<tr>
<td>42.1.1.2.2</td>
<td>Applications of Product Subclass 2 in Organic Synthesis</td>
<td>24</td>
</tr>
<tr>
<td>42.1.1.2.2.1</td>
<td>Method 1: Trapping Reactions</td>
<td>24</td>
</tr>
<tr>
<td>42.1.1.3</td>
<td>Product Subclass 3: Cationic Electrophilic Phosphinidene Complexes</td>
<td>24</td>
</tr>
<tr>
<td>42.1.1.3.1</td>
<td>Synthesis of Product Subclass 3</td>
<td>24</td>
</tr>
<tr>
<td>42.1.1.3.1.1</td>
<td>Method 1: Chloride Abstraction</td>
<td>24</td>
</tr>
<tr>
<td>42.1.1.4</td>
<td>Product Subclass 4: Nucleophilic Phosphinidene Complexes</td>
<td>25</td>
</tr>
<tr>
<td>42.1.1.4.1</td>
<td>Synthesis of Product Subclass 4</td>
<td>25</td>
</tr>
<tr>
<td>42.1.1.4.1.1</td>
<td>Method 1: Salt Metathesis/Elimination</td>
<td>25</td>
</tr>
<tr>
<td>42.1.1.4.1.1.1</td>
<td>Variation 1: Of Metal Hydrides</td>
<td>26</td>
</tr>
<tr>
<td>42.1.1.4.1.1.2</td>
<td>Variation 2: Of Alkali Metal Phosphides</td>
<td>26</td>
</tr>
<tr>
<td>42.1.1.4.1.1.3</td>
<td>Variation 3: Of Transition Metal Phosphides</td>
<td>28</td>
</tr>
<tr>
<td>42.1.1.4.1.2</td>
<td>Method 2: Addition/Elimination</td>
<td>29</td>
</tr>
<tr>
<td>42.1.1.4.1.3</td>
<td>Method 3: Dehydrohalogenation/Ligation</td>
<td>30</td>
</tr>
<tr>
<td>42.1.1.4.1.4</td>
<td>Method 4: α-Hydrogen Migration</td>
<td>31</td>
</tr>
<tr>
<td>42.1.1.4.1.5</td>
<td>Method 5: Oxidation/Deprotonation</td>
<td>32</td>
</tr>
<tr>
<td>42.1.4.2</td>
<td>Applications of Product Subclass 4 in Organic Synthesis</td>
<td>33</td>
</tr>
<tr>
<td>42.1.4.2.1</td>
<td>Method 1: Phosphinidene-Transfer Reactions</td>
<td>33</td>
</tr>
</tbody>
</table>

42.2 Product Class 2: Oxo-, Thioxo-, Selenoxo-, and Iminophosphines and Diphosphenes

M. Yoshifuji

42.2	Product Class 2: Oxo-, Thioxo-, Selenoxo-, and Iminophosphines and Diphosphenes	37
42.2.1	Product Subclass 1: Oxophosphines	37
42.2.1.1	Synthesis of Product Subclass 1	37
42.2.1.1.1	Method 1: Elimination Reactions	37
42.2.1.1.2	Method 2: Cycloreversion Reactions	38
42.2.2	Product Subclass 2: Thioxophosphines and Selenoxophosphines	39
42.2.2.1	Synthesis of Product Subclass 2	40
42.2.2.1.1	Method 1: Elimination Reactions	40
42.2.2.1.2	Method 2: Cycloreversion Reactions	40
42.2.2.1.3	Methods 3: Miscellaneous Reactions	42
42.2.3	Product Subclass 3: Iminophosphines	44
42.2.3.1	Synthesis of Product Subclass 3	44
42.2.3.1.1	Method 1: Elimination Reactions	44
42.2.3.1.2	Method 2: Substitution Reactions	45
42.2.3.1.3	Method 3: Cycloreversion Reactions	46
42.2.4	Product Subclass 4: Diphosphenes	47
42.2.4.1	Synthesis of Product Subclass 4	47
42.2.4.1.1	Method 1: Elimination and/or Condensation Reactions	47
42.2.4.1.2	Method 2: Rearrangement Reactions	51
42.2.4.1.3	Method 3: Substitution Reactions	52
42.2.5	Product Subclass 5: Heteroatom-Substituted Diphosphenes	53
42.2.6	Product Subclass 6: Stereodefined Diphosphenes	54
42.2.7	Product Subclass 7: Heteroatom-Substituted Iminophosphines	56
42.2.7.1	Synthesis of Product Subclass 7	56
42.2.7.1.1	Method 1: Elimination Reactions	56
42.2.7.1.2	Method 2: Substitution Reactions	58
42.2.8	Product Subclass 8: Tetraphosphenes	58
42.2.8.1	Synthesis of Product Subclass 8	58
42.2.8.1.1	Method 1: Activation of White Phosphorus	58
42.3 Product Class 3: Phosphenium Salts
M. Yoshifuji

42.3 Synthesis of Product Class 3 .. 63
42.3.1 Method 1: Halogen Abstraction of Halophosphines 63
42.3.2 Method 2: Alkylation or Protonation of Diphosphenes 66
42.3.3 Applications of Product Class 3 in Organic Synthesis 67
42.3.3.1 Method 1: Reactions of Phosphenium Cations with Unsaturated Hydrocarbons ... 67

42.4 Product Class 4: Alkylphosphines
E. Hey-Hawkins and A. A. Karasik

42.4 Synthesis of Product Class 4 .. 71
42.4.1 Method 1: Synthesis from Phosphine, or Primary or Secondary Phosphines, and Alkyl Halides .. 73
42.4.1.1 Variation 1: From Phosphine and Alkyl Halides 73
42.4.1.2 Variation 2: From Primary Phosphines and Alkyl Halides 74
42.4.1.3 Variation 3: From Secondary Phosphines and Alkyl or Acyl Halides 75
42.4.1.4 Method 2: Synthesis from Metal Organophosphides and Electrophiles 75
42.4.1.4.1 Variation 1: Synthesis from Metal Organophosphides and Alkyl Halides 75
42.4.1.4.2 Variation 2: Synthesis from Metal Organophosphides and Esters 79
42.4.1.4.3 Variation 3: Ring Opening of Tetrahydrofuran 80
42.4.1.4.4 Variation 4: Addition of Phosphines to C—X Multiple Bonds 81
42.4.1.4.5 Variation 5: Addition to Alk-1-enes or Cyclic Alkenes 81
42.4.1.4.6 Variation 2: Addition to Carboxyl Groups 83
42.4.1.4.7 Variation 3: Mannich-Type Reactions of Phosphines, Formaldehyde, and Amines 83
42.4.1.4.8 Method 4: Synthesis from Halophosphines 83
42.4.1.4.9 Variation 1: From Phosphorus Trihalides or Trialkyl Phosphites and Organometallic Alkali Metal Compounds or Grignard Reagents 83
42.4.1.4.10 Variation 2: From Alkylhalophosphines and Organometallic Alkali Metal Compounds or Grignard Reagents 86
42.4.1.4.11 Variation 3: From Dialkylhalophosphines and Organometallic Alkali Metal Compounds or Grignard Reagents 87
42.4.1.4.12 Variation 4: From Chlorophosphines and Other Organometallic Reagents 90
42.4.1.4.13 Method 5: Cleavage of Diphosphenes 90
42.4.1.4.14 Method 6: Synthesis from Elemental Phosphorus and Alkyl Halides, Alcohols, or Alkenes 91
42.4.1.4.15 Method 7: Reduction of Halophosphines, Phosphinic Acids, Phosphinic Acid Esters or Halides, and Trialkyl- and Dialkylphosphine Oxides 93
42.4.1.4.16 Method 8: Reduction of Halophosphines with Lithium Aluminum Hydride or Other Metal Hydrides 93
Variation 2: Reduction of Alkylphosphonates with Lithium Aluminum Hydride

Variation 3: Reduction of Dialkylphosphine Oxides, Dialkylphosphinates, or Alkylphosphonates with Aluminum Derivatives

Variation 4: Reduction of Trialkylphosphine Oxides with Lithium Aluminum Hydride

Variation 5: Reduction of Dialkylphosphine Oxides, Dialkylphosphinates, or Alkylphosphinates with Silanes

Variation 1: With Alkali Metals

Variation 2: With Lithium Aluminum Hydride

Variation 1: Synthesis from Tetrakis(hydroxymethyl)phosphonium Halides

Method 10: Disproportionation of Dialkylphosphine Oxides

Method 11: Addition Reactions of Unsaturated Tertiary Vinylphosphines

Method 12: Enantioselective Cleavage of a P—C Bond in Alkyldimethylphosphine–Borane Complexes

Product Class 5: Bis(alkylphosphino)- and Poly(alkylphosphino)alkanes, and Di- and Polyphosphines with a P—P Bond

E. Hey-Hawkins and A. A. Karasik

Method 1: Synthesis from Metal Dialkylphosphides and Aliphatic Electrophiles

Variation 1: Synthesis from Dialkylphosphides or Dialkylphosphines and Polyhaloalkanes

Variation 2: Synthesis from Dialkylphosphides and Cyclic Sulfates

Variation 3: Synthesis from Dialkylphosphides and (Dialkylphosphino)alkyl Sulfonates

Variation 4: Synthesis from Dialkylphosphines and Polyhaloalkanes, Alkylamines, and Alcohols

Variation 5: Synthesis from Alkylphosphides and Dihaloalkanes

Variation 6: Synthesis from Bis(alkylphosphides) and Alkyl Halides

Method 2: Synthesis from Metal Phosphinomethanides and Electrophiles Containing Phosphino Groups

Method 1: Synthesis from (Dialkylphosphino)methanides and Dialkylhalophosphines

Variation 2: Enantioselective Synthesis from Lithium (Dialkylphosphino)methanide–Borane Complexes and Alkylhalophosphines
Variation 3: Synthesis from Poly(dialkylphosphino)methanides and Dialkylhalophosphines .. 123

Variation 4: Synthesis from [(Dialkylphosphino)methyl]silanes or -stannanes and Dialkylhalophosphines 124

Variation 5: Oxidative Coupling of (Dialkylphosphino)methanides ... 125

Variation 6: Synthesis from (Dialkylphosphino)methanides and Polyhaloalkanes or Analogues ... 127

Method 3: Synthesis from Halophosphines and Organometallic Compounds ... 129

Variation 1: Synthesis from Dialkylhalophosphines and Dimetalated Alkanes, Alkenes, or Alkynes .. 129

Variation 2: Synthesis from Bis(halophosphino)alkanes and Organometallic Compounds ... 130

Method 4: Reduction of Phosphine Oxides .. 132

Variation 1: Reduction of Bis(dialkylphosphoryl)alkanes with Silanes ... 132

Variation 2: Reduction of Bis(dialkylphosphoryl)alkanes with Lithium Aluminum Hydride ... 133

Method 5: Addition to Double Bonds .. 135

Variation 1: Addition of Phosphines to Polyenes and Their Heteroatom Analogues ... 135

Variation 2: Addition of Dialkylphosphines to Vinyl- or Allylphosphines ... 137

Variation 3: Addition of Polyphosphinoalkanes to C=C or C=X Bonds ... 139

Variation 4: Addition of Diphosphines to Alkynes .. 141

Method 6: Decomposition of Phosphonium Salts .. 142

Variation 1: Reductive Cleavage of Quaternary Phosphonium Salts ... 142

Variation 2: Alcoholysis of Quaternary Phosphonium Salts .. 143

Method 7: Interconversion of Poly(alkylphosphino)alkanes .. 143

Variation 1: From Diphenphosphinomethanides .. 143

Variation 2: Di- and Oligomerization by Interaction of Functional Groups of Phosphines ... 144

Variation 1: Di- and Oligomerization of Phosphino Alcohols .. 144

2.1.1.2.3

Product Subclass 2: Tetraalkyldiphosphines and Polyalkylpolyphosphines with a P—P Bond .. 145

Synthesis of Product Subclass 2 .. 146

Method 1: Synthesis from Dialkylphosphides or Dialkylphosphines and Dialkylhalophosphines .. 146

Method 2: Coupling of Dialkylphosphine Derivatives .. 147

Variation 1: Oxidative Coupling of Dialkylphosphines by Transition-Metal Complexes ... 147

Variation 2: Reductive Coupling of Dialkylhalophosphines by Alkali Metals .. 148

Method 3: Interconversion of Alkylpolyphosphines .. 148

Variation 1: Alkylation of Polyphosphide Anions .. 148

Variation 2: Insertion into P—P Bonds .. 149
Variation 1: From Phosphines and \(\alpha,\omega\)-Dihalides or Disulfonates of \(\alpha,\omega\)-Diols .. 181

Variation 2: From Phosphines and Cyclic Sulfates .. 183

Method 2: Alkylation of Dichlorophosphines or Phosphinic Acid

Variation 1: From Dichlorophosphines or Phosphinic Acid \(O,S\)-Diesters and \(\alpha,\omega\)-Di-Grignard or Dilithium Reagents ... 186

Variation 2: From Dichlorophosphines, Alkenes, and Organometallic Reagents 187

Method 3: Hydrophosphination of Double Bonds .. 188

Variation 1: Addition of Phosphines to Alkenes .. 189

Variation 2: Addition of Phosphine and Primary Phosphines to 1,4-Dien-3-ones .. 190

Variation 3: Addition of Phosphines to Carbonyl Compounds ... 192

Variation 4: Cycloaddition or Metathesis Reactions ... 192

Variation 1: 2,5-Dihydrophospholes from Dihalophosphines and Dienes via [4 + 1] Cycloaddition and Reduction .. 193

Variation 2: 1,2,5,6-Tetrahydrophosphinines from Phosphaalkenes and 1,3-Dienes via [4 + 2] Cycloaddition .. 195

Variation 3: 7-Phosphanorbornenes from [4 + 2] Cycloaddition of Phosphate Derivatives with Dienophiles 196

Variation 4: 2,5-Dihydrophospholes from Diallylphosphines via Alkene Metathesis .. 199

Method 5: Transformation of Cyclic Phosphines ... 200

Variation 1: Transformation of P-Substituents in Five- and Six-Membered Heterocycles .. 200

Variation 2: Lithiation and Electrophilic Substitution at \(\alpha\)-C—H Bonds in Cyclic Phosphate Oxides and Borane Complexes 201

Methods 6: Miscellaneous Reactions ... 203

Product Subclass 5: Cyclic Phosphines with Seven-Membered and Larger Rings .. 204

Synthesis of Product Subclass 5 ... 205

Method 1: P-Alkylation of Phosphines ... 205

Method 2: P-Alkylation of Dihalophosphines ... 206

Method 3: P-Alkylation of Tertiary Phosphines or Diphosphines and Reduction .. 207

Method 4: Hydrophosphination of Alkenes and Alkynes .. 210

Methods 5: Miscellaneous Reactions ... 212

Product Class 7: Dialkylphosphinous Acids and Derivatives

K. M. Pietrusiewicz and M. Stankevič

Product Class 7: Dialkylphosphinous Acids and Derivatives .. 221

Product Subclass 1: Dialkylphosphinous Acid Halides .. 221

Synthesis of Product Subclass 1 ... 221

Method 1: Synthesis from Phosphorous Halides by P—C Bond Formation 221
42.8.1.1 Method 1: Electrophilic Alkylation of Phosphorus Trihalides 244
42.8.1.2 Method 2: Nucleophilic Alkylation of Phosphorus Trihalides by Organometallic Reagents 244
42.8.1.3 Method 3: Ligand Exchange Using Alkylphosphines as Substrates 245
42.8.1.2 Applications of Product Subclass 1 in Organic Synthesis 246
42.8.2 Product Subclass 2: Alkylphosphonous Acid Monohalides 247
42.8.2.1 Synthesis of Product Subclass 2 .. 247
42.8.2.1.1 Method 1: Partial Hydrolysis of Alkyl(dihalo)phosphines 247
42.8.3 Product Subclass 3: Alkylphosphonous Acid Monoester Monohalides 247
42.8.3.1 Synthesis of Product Subclass 3 .. 247
42.8.3.1.1 Method 1: Ligand Exchange in Alkyl(dihalo)phosphines 247
42.8.4 Product Subclass 4: Alkylthiophosphonous Acid Monohalide Monoesters 248
42.8.4.1 Synthesis of Product Subclass 4 ... 248
42.8.4.1.1 Method 1: Ligand Exchange of Alkyl(dihalo)phosphines 248
42.8.5 Product Subclass 5: Alkylphosphonous Acid Monoamide Monohalides 249
42.8.5.1 Synthesis of Product Subclass 5 ... 249
42.8.5.1.1 Method 1: Partial Aminolysis of Alkyl(dihalo)phosphines 249
42.8.5.1.2 Method 2: Ligand Exchange in Alkyl(amino)phosphine Derivatives .. 250
42.8.6 Product Subclass 6: Alkylphosphonous Acids 251
42.8.6.1 Synthesis of Product Subclass 6 ... 251
42.8.6.1.1 Method 1: Hydrolysis of Alkyl(halo)phosphines 251
42.8.6.1.2 Method 2: Hydrophosphination of Alkenes 252
42.8.6.2 Applications of Product Subclass 6 in Organic Synthesis 252
42.8.7 Product Subclass 7: Alkylphosphonous Acid Monoesters 253
42.8.7.1 Synthesis of Product Subclass 7 ... 253
42.8.7.1.1 Method 1: Alcoholsysis of Alkylphosphines 253
42.8.7.1.2 Method 2: Esterification of Monoalkylphosphinic Acids 254
42.8.7.1.3 Method 3: Hydrolysis of Dialkyl Phosphonites and Related Compounds 255
42.8.7.1.4 Method 4: Hydrophosphination of Alkenes 255
42.8.7.2 Applications of Product Subclass 7 in Organic Synthesis 256
42.8.8 Product Subclass 8: Alkylphosphonous Acid Diesters 256
42.8.8.1 Synthesis of Product Subclass 8 ... 256
42.8.8.1.1 Method 1: Alcoholsysis of Alkylphosphonites 256
42.8.8.1.2 Method 2: Synthesis from Halophosphonites 257
42.8.8.2 Applications of Product Subclass 8 in Organic Synthesis 258
42.8.9 Product Subclass 9: Alkylthiophosphonous Acid S-Monoesters 258
42.8.9.1 Synthesis of Product Subclass 9 ... 258
42.8.9.1.1 Method 1: Hydrolysis of Alkyl(alkylsulfanyl)(halo)phosphines 258
42.8.10 Product Subclass 10: Alkylphosphonous Acid Monoamides 259
42.8.10.1 Synthesis of Product Subclass 10 ... 259
42.8.10.1.1 Method 1: Hydrolysis of Alkyl(diamino)phosphines 259
42.8.11 Product Subclass 11: Alkylthiophosphonous Acid O-Monoesters 259
42.8.11.1 Synthesis of Product Subclass 11 ... 260
42.8.11.1.1 Method 1: Synthesis from Alkyl(alkoxy)(halo)phosphines 260
42.8.12 Product Subclass 12: Alkylthiophosphonous Acid Diesters 260
42.8.12.1 Synthesis of Product Subclass 12 ... 260
42.8.12.1.1 Method 1: Alcoholysis of Alkyl(alkylsulfanyl)(halo)phosphines 260
42.8.13 Product Subclass 13: Alkylphosphonous Acid Monoester Monoamides 261
42.8.13.1 Synthesis of Product Subclass 13 ... 261
42.8.13.1.1 Method 1: Alcoholysis of Alkylphosphine Derivatives 261
42.8.13.1.2 Method 2: Aminolysis of Alkylphosphonous Acid Derivatives 262
42.8.13.2 Applications of Product Subclass 13 in Organic Synthesis 262
42.8.14 Product Subclass 14: Alkylidithiophosphonous Acid Diesters 263
42.8.14.1 Synthesis of Product Subclass 14 ... 263
42.8.14.1.1 Method 1: Synthesis from Primary Alkylphosphines and Disulfides 263
42.8.14.1.2 Method 2: Thioalcoholysis of Alkyl(dihalo)phosphines 263
42.8.15 Product Subclass 15: Alkylthiophosphonous Acid Monoester Monoamides 264
42.8.15.1 Synthesis of Product Subclass 15 ... 264
42.8.15.1.1 Method 1: Thioalcoholysis of Alkyl(diamino)phosphines 264
42.8.16 Product Subclass 16: Alkylidiselenophosphonous Acid Diesters ... 265
42.8.16.1 Synthesis of Product Subclass 16 ... 265
42.8.16.1.1 Method 1: Selenoalcoholysis of Alkyl(dihalo)phosphines 265
42.8.17 Product Subclass 17: Alkylphosphonous Acid Diamides 265
42.8.17.1 Synthesis of Product Subclass 17 ... 265
42.8.17.1.1 Method 1: Aminolysis of Substituted Alkylphosphines 265
42.8.17.1.2 Method 2: Synthesis from Diamino(halo)phosphines 266
42.8.17.2 Applications of Product Subclass 17 in Organic Synthesis 266

42.9 Product Class 9: Phosphorous Acid and Derivatives
M. Stankevič and K. M. Pietrusiewicz

42.9 Product Class 9: Phosphorous Acid and Derivatives 275
42.9.1 Product Subclass 1: Phosphorous Acid Monoester Dihalides 275
42.9.1.1 Synthesis of Product Subclass 1 ... 275
42.9.1.1.1 Method 1: Alcoholysis of Phosphorus Trihalides 275
42.9.1.1.2 Method 2: Ligand-Exchange Reactions of Phosphorous Acid Derivatives 276
42.9.1.2 Applications of Product Subclass 1 in Organic Synthesis 276
42.9.2 Product Subclass 2: Phosphorothious Acid S-Monoester Dihalides 276
42.9.2.1 Synthesis of Product Subclass 2 ... 277
42.9.2.1.1 Method 1: Thioalcoholysis of Phosphorus Trihalides 277
42.9.2.2 Applications of Product Subclass 2 in Organic Synthesis 277
42.9.3 Product Subclass 3: Phosphorous Acid Monoamide Dihalides 277
42.9.3.1 Synthesis of Product Subclass 3 ... 277
42.9.3.1.1 Method 1: Aminolysis of Phosphorus Trihalides ... 277
42.9.3.1.2 Method 2: Ligand-Exchange Reactions of Phosphorous Acid Derivatives 278
42.9.3.2 Applications of Product Subclass 3 in Organic Synthesis 279
42.9.4 Product Subclass 4: Phosphorous Acid Monoester Monohalides 279
42.9.5 Product Subclass 5: Phosphorous Acid Diester Monohalides 279
42.9.5.1 Synthesis of Product Subclass 5 ... 280
42.9.5.1.1 Method 1: Alcoholysis of Phosphorous Acid Derivatives 280
42.9.5.1.2 Method 2: Ligand-Exchange Reactions of Phosphorous Acid Derivatives 280
42.9.5.3 Applications of Product Subclass 5 in Organic Synthesis 281
42.9.6 Product Subclass 6: Phosphorothious Acid Diester Monohalides 282
42.9.6.1 Synthesis of Product Subclass 6 ... 282
42.9.6.1.1 Method 1: Amine–Halogen Exchange in Phosphorothious Acid Diester Monoamides ... 282
42.9.7 Product Subclass 7: Phosphorous Acid Monoester Monoamide Monohalides 282
42.9.7.1 Synthesis of Product Subclass 7 ... 283
42.9.7.1.1 Method 1: Alcoholysis of Phosphorous Acid Monoamide Dihalides 283
42.9.7.1.2 Method 2: Aminolysis of Phosphorous Acid Monoester Dihalides 283
42.9.7.1.3 Method 3: Consecutive Alcoholysis and Aminolysis of Phosphorus Trihalides ... 283
42.9.7.1.4 Method 4: Ligand-Exchange Reactions of Phosphorous Acid Derivatives 284
42.9.7.2 Applications of Product Subclass 7 in Organic Synthesis 284
42.9.8 Product Subclass 8: Phosphorodithious Acid Diester Monohalides 285
42.9.8.1 Synthesis of Product Subclass 8 ... 285
42.9.8.1.1 Method 1: Thioalcoholysis of Phosphorus Trihalides 285
42.9.8.1.2 Method 2: Ligand-Exchange Reactions of Phosphorous Acid Derivatives 285
42.9.9 Product Subclass 9: Phosphorothious Acid Monoester Monoamide Monohalides 286
42.9.9.1 Synthesis of Product Subclass 9 ... 286
42.9.9.1.1 Method 1: Amine–Halogen Exchange in Phosphorothious Acid Diester Monoamides ... 286
42.9.10 Product Subclass 10: Phosphorous Acid Diamide Monohalides 287
42.9.10.1 Synthesis of Product Subclass 10 .. 287
42.9.10.1.1 Method 1: Aminolysis of Phosphorous Acid Derivatives 287
42.9.10.1.2 Method 2: Ligand-Exchange Reactions of Phosphorous Acid Derivatives 288
Applications of Product Subclass 10 in Organic Synthesis .. 288

Product Subclass 11: Phosphorous Acid Monoesters .. 288

Synthesis of Product Subclass 11 ... 289

Method 1: Hydrolysis of Phosphorous Acid Esters .. 289

Method 2: Synthesis from Other Phosphorous Acid Derivatives 289

Method 3: Esterification of Phosphorous Acid ... 290

Applications of Product Subclass 11 in Organic Synthesis 291

Product Subclass 12: Phosphorous Acid Diesters (Secondary Phosphites) 291

Synthesis of Product Subclass 12 ... 291

Method 1: Hydrolysis of Phosphorous Acid Derivatives 291

Method 2: Alcoholysis of Phosphorous Acid Derivatives 292

Method 3: Other Syntheses from Phosphorous Acid Derivatives 293

Method 4: Esterification of Phosphorous Acid Derivatives 293

Applications of Product Subclass 12 in Organic Synthesis 294

Product Subclass 13: Phosphorous Acid Triesters (Tertiary Phosphites) 295

Synthesis of Product Subclass 13 ... 295

Method 1: Alcoholysis of Phosphorous Acid Derivatives 295

Method 2: Transesterification of Phosphorous Acid Triesters 297

Applications of Product Subclass 13 in Organic Synthesis 297

Product Subclass 14: Phosphorothious Acid O-Monoesters 298

Synthesis of Product Subclass 14 ... 298

Method 1: Sulfanylation of Phosphorous Acid Diesters 298

Product Subclass 15: Phosphorothious Acid O,O-Diesters 299

Synthesis of Product Subclass 15 ... 299

Method 1: Sulfanylation of Phosphorous Acid Derivatives 299

Applications of Product Subclass 15 in Organic Synthesis 300

Product Subclass 16: Phosphorothious Acid Triesters 300

Synthesis of Product Subclass 16 ... 300

Method 1: Alcoholysis of Phosphorothious Acid Derivatives 300

Method 2: Thioalcoholysis of Phosphorous Acid Derivatives 301

Product Subclass 17: Phosphorodithious Acid S,S-Diesters 301

Product Subclass 18: Phosphorodithious Acid O-Monoesters 301

Product Subclass 19: Phosphorodithious Acid Triesters 302

Synthesis of Product Subclass 19 ... 302

Method 1: Thioalcoholysis of Phosphorous Acid Derivatives 302

Product Subclass 20: Phosphoroselenous Acid O,O-Diesters 303

Synthesis of Product Subclass 20 ... 303

Method 1: Selanylation of Phosphorous Acid Diester Monohalides 303
42.9.21 Product Subclass 21: Phosphorous Acid Monoester Monoamides 303
42.9.21.1 Synthesis of Product Subclass 21 .. 303
42.9.21.1.1 Method 1: Hydrolysis of Phosphorous Acid Derivatives 303
42.9.22 Product Subclass 22: Phosphorous Acid Diester Monoamides 304
42.9.22.1 Synthesis of Product Subclass 22 .. 304
42.9.22.1.1 Method 1: Alcoholysis of Phosphorous Acid Derivatives 304
42.9.22.1.2 Method 2: Aminolysis of Phosphorous Acid Derivatives 306
42.9.22.2 Applications of Product Subclass 22 in Organic Synthesis 306
42.9.23 Product Subclass 23: Phosphorothious Acid Diester Monoamides 307
42.9.23.1 Synthesis of Product Subclass 23 .. 307
42.9.23.1.1 Method 1: Thioalcoholysis of Phosphorous Acid Derivatives 307
42.9.24 Product Subclass 24: Phosphorous Acid Diamides 308
42.9.24.1 Synthesis of Product Subclass 24 .. 308
42.9.24.1.1 Method 1: Hydrolysis of Phosphorous Acid Derivatives 308
42.9.25 Product Subclass 25: Phosphorous Acid Monoester Diamides 309
42.9.25.1 Synthesis of Product Subclass 25 .. 309
42.9.25.1.1 Method 1: Alcoholysis of Phosphorous Acid Derivatives 309
42.9.25.1.2 Method 2: Aminolysis of Phosphorous Acid Derivatives 310
42.9.25.2 Applications of Product Subclass 25 in Organic Synthesis 311
42.9.26 Product Subclass 26: Phosphorotrithious Acid Triesters 311
42.9.26.1 Synthesis of Product Subclass 26 .. 311
42.9.26.1.1 Method 1: Thioalcoholysis of Phosphorous Acid Derivatives 311
42.9.27 Product Subclass 27: Phosphorodithious Acid Diester Monoamides 312
42.9.27.1 Synthesis of Product Subclass 27 .. 312
42.9.27.1.1 Method 1: Aminolysis of Phosphorous Acid Derivatives 312
42.9.28 Product Subclass 28: Phosphorothious Acid Monoester Diamides 312
42.9.28.1 Synthesis of Product Subclass 28 .. 313
42.9.28.1.1 Method 1: Thioalcoholysis of Phosphorous Acid Derivatives 313
42.9.29 Product Subclass 29: Phosphorotriselenous Acid Triesters 313
42.9.29.1 Synthesis of Product Subclass 29 .. 313
42.9.29.1.1 Method 1: Reaction of a Diselenide with Elemental Phosphorus 313
42.9.30 Product Subclass 30: Phosphorous Acid Triamides 313
42.9.30.1 Synthesis of Product Subclass 30 .. 314
42.9.30.1.1 Method 1: Aminolysis of Phosphorous Acid Derivatives 314
42.9.30.2 Applications of Product Subclass 30 in Organic Synthesis 315
42.10 Applications of Tricoordinated Phosphorus Compounds in Homogeneous Catalysis

42.10.1 General Catalytic Methods
M. Toffano

42.10.1.1 General Catalytic Methods

42.10.1.1 Formation of C—C Bonds

42.10.1.1.1 Method 1: Palladium-Promoted Cross-Coupling Reactions

42.10.1.1.2 Method 2: Catalysis with Phosphonium Salts as Ligand Precursors

42.10.1.2 Formation of C—N Bonds

42.10.1.2.1 Method 1: Amination of Aryl and Hetaryl Halides or Trifluoromethanesulfonates

42.10.1.2.2 Method 2: Amination of Alk-1-enyl Halides or Trifluoromethanesulfonates

42.10.1.2.3 Method 3: Intramolecular Amination Reactions

42.10.1.3 Formation of C—O Bonds

42.10.1.3.1 Method 1: Alkyl Aryl Ether Synthesis

42.10.1.3.2 Method 2: Diaryl Ether Synthesis

42.10.1.4 Formation of C—P Bonds

42.10.1.4.1 Method 1: Formation of Alkylphosphorus Compounds

42.10.1.4.2 Method 2: Formation of Alkenylphosphorus Compounds

42.10.1.4.2.1 Variation 1: Hyrophosphination of Alkenes

42.10.1.4.2.2 Variation 2: Coupling Reactions

42.10.1.4.3 Method 3: Formation of Alkynylphosphorus Compounds

42.10.1.4.4 Method 4: Formation of Arylphosphorus Compounds

42.10.1.5 Formation of C—S Bonds

42.10.1.5.1 Method 1: Formation of an Aryl—Sulfur Bond

42.10.1.5.2 Method 2: Formation of an Alkenyl—Sulfur Bond

42.10.1.5.3 Method 3: Formation of an Alkynyl—Sulfur Bond

42.10.1.6 Formation of C—Sn Bonds

42.10.1.7 Synthesis with Catalyst Recycling

42.10.1.7.1 Method 1: Catalysis with Fluorinated Phosphines

42.10.1.7.2 Method 2: Catalysis with Water-Soluble Phosphines

42.10.1.7.2.1 Variation 1: Catalysis with Sulfonated and Carboxylated Phosphines

42.10.1.7.2.2 Variation 2: Catalysis with Phosphines Bearing Ammonium Groups

42.10.1.7.2.3 Variation 3: Catalysis with Carbohydrate-Derived Phosphines

42.10.1.7.2.4 Variation 4: Catalysis with Polyether Phosphines

42.10.1.7.3 Method 3: Catalysis with Polymer-Supported Phosphines

42.10.1.7.3.1 Variation 1: Metal-Promoted Catalysis with Polymer-Supported Phosphines

42.10.1.7.3.2 Variation 2: Catalysis with Polymer-Supported Phosphine Reagents

347
347
352
353
353
353
360
360
361
361
362
363
363
364
364
366
368
368
368
369
369
370
370
371
372
373
373
374
375
376
377
377
378
378
380
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.10.2</td>
<td>Enantioselective Catalytic Methods</td>
<td>391</td>
</tr>
<tr>
<td>42.10.2.1</td>
<td>Approaches to Enantioselective Catalysts</td>
<td>391</td>
</tr>
<tr>
<td>42.10.2.1.1</td>
<td>Method 1: Approaches to Chiral Cyclic Phosphines</td>
<td>397</td>
</tr>
<tr>
<td>42.10.2.1.1.1</td>
<td>Variation 1: Phospholane-Based Chiral Ligands</td>
<td>397</td>
</tr>
<tr>
<td>42.10.2.1.1.2</td>
<td>Variation 2: Phosphetane-Based Chiral Ligands</td>
<td>398</td>
</tr>
<tr>
<td>42.10.2.1.1.3</td>
<td>Variation 3: Phosphepin-Based Chiral Ligands</td>
<td>399</td>
</tr>
<tr>
<td>42.10.2.1.2</td>
<td>Method 2: Approaches to Atropisomeric Biaryl Biphosphines</td>
<td>399</td>
</tr>
<tr>
<td>42.10.2.1.3</td>
<td>Method 3: Approaches to Ferrocenylphosphines with Planar Chirality</td>
<td>402</td>
</tr>
<tr>
<td>42.10.2.1.4</td>
<td>Method 4: Approaches to Hybrid Phosphorus–Nitrogen Ligands</td>
<td>405</td>
</tr>
<tr>
<td>42.10.2.1.4.1</td>
<td>Variation 1: Phosphino-4,5-dihydrooxazole Ligands</td>
<td>405</td>
</tr>
<tr>
<td>42.10.2.1.4.2</td>
<td>Variation 2: Phosphinite–4,5-Dihydrooxazole Ligands</td>
<td>408</td>
</tr>
<tr>
<td>42.10.2.1.4.3</td>
<td>Variation 3: Phosphino-4,5-dihydro-1H-imidazole Ligands</td>
<td>408</td>
</tr>
<tr>
<td>42.10.2.1.4.4</td>
<td>Variation 4: Phosphopyridine and Phosphinoquiline Ligands</td>
<td>408</td>
</tr>
<tr>
<td>42.10.2.1.4.5</td>
<td>Variation 5: Pyridylphosphinite and Quinolylphosphinite Ligands</td>
<td>409</td>
</tr>
<tr>
<td>42.10.2.1.4.6</td>
<td>Variation 6: Trist Ligands</td>
<td>409</td>
</tr>
<tr>
<td>42.10.2.1.5</td>
<td>Method 5: Approaches to Ligands Bearing P–O and P–N Bonds</td>
<td>410</td>
</tr>
<tr>
<td>42.10.2.1.5.1</td>
<td>Variation 1: Phosphinite [P(C,C,O)] Ligands</td>
<td>410</td>
</tr>
<tr>
<td>42.10.2.1.5.2</td>
<td>Variation 2: Phosphonite [P(C,O,O)] Ligands</td>
<td>410</td>
</tr>
<tr>
<td>42.10.2.1.5.3</td>
<td>Variation 3: Phosphite [P(O,O,O)] Ligands</td>
<td>410</td>
</tr>
<tr>
<td>42.10.2.1.5.4</td>
<td>Variation 4: Phosphoramidite [P(O,O,N)] Ligands</td>
<td>410</td>
</tr>
<tr>
<td>42.10.2.2</td>
<td>Enantioselective C–C Bond-Forming Reactions</td>
<td>411</td>
</tr>
<tr>
<td>42.10.2.2.1</td>
<td>Method 1: Metal-Catalyzed Allylic Alkylation (Tsui–Trost Reaction)</td>
<td>411</td>
</tr>
<tr>
<td>42.10.2.2.1.1</td>
<td>Variation 1: Using 1,3-Symmetrically Substituted Allylic Ligands</td>
<td>411</td>
</tr>
<tr>
<td>42.10.2.2.1.2</td>
<td>Variation 2: Using Monosubstituted Allylic Ligands</td>
<td>413</td>
</tr>
<tr>
<td>42.10.2.2.1.3</td>
<td>Variation 3: Using 1,3-Dissymmetrically Disubstituted Allylic Substrates</td>
<td>415</td>
</tr>
<tr>
<td>42.10.2.2.2</td>
<td>Method 2: Palladium-Catalyzed Arylation of Alkenes (Heck Reaction)</td>
<td>418</td>
</tr>
<tr>
<td>42.10.2.2.2.1</td>
<td>Variation 1: Selection of Enantiotopic C=C Bonds of an Achiral Substrate</td>
<td>419</td>
</tr>
<tr>
<td>42.10.2.2.2.2</td>
<td>Variation 2: Selection of Enantiotopic Faces of an Achiral Alkenic Substrate</td>
<td>420</td>
</tr>
<tr>
<td>42.10.2.2.2.3</td>
<td>Variation 3: Selection of Enantiotopic Sites of an Achiral Alkenic Substrate</td>
<td>423</td>
</tr>
<tr>
<td>42.10.2.2.3</td>
<td>Method 3: Metal-Catalyzed Coupling Reactions</td>
<td>424</td>
</tr>
<tr>
<td>42.10.2.2.4</td>
<td>Method 4: Conjugate Addition Reactions</td>
<td>427</td>
</tr>
<tr>
<td>42.10.2.2.4.1</td>
<td>Variation 1: Metal-Catalyzed 1,4-Addition of Organometallic Reagents to Activated Alkenes</td>
<td>427</td>
</tr>
<tr>
<td>42.10.2.2.4.2</td>
<td>Variation 2: Copper-Catalyzed Asymmetric 1,4-Addition of Organozinc Reagents</td>
<td>427</td>
</tr>
<tr>
<td>42.10.2.2.4.3</td>
<td>Variation 3: Conjugate Addition to Cyclohexa-2,5-dienones</td>
<td>428</td>
</tr>
<tr>
<td>42.10.2.2.4.4</td>
<td>Variation 4: Copper-Catalyzed Asymmetric 1,4-Addition of Grignard Reagents</td>
<td>429</td>
</tr>
<tr>
<td>42.10.2.2.4.5</td>
<td>Variation 5: Rhodium-Catalyzed Asymmetric 1,4-Addition of Organoboron Reagents</td>
<td>429</td>
</tr>
<tr>
<td>42.10.2.2.5</td>
<td>Methods 5: Miscellaneous Methods</td>
<td>431</td>
</tr>
<tr>
<td>42.10.2.2.5.1</td>
<td>Variation 1: Metal-Catalyzed Addition of Organometallic Reagents to Unactivated Alkenes</td>
<td>431</td>
</tr>
</tbody>
</table>
Variation 2: Metal-Catalyzed Addition of Organometallic Reagents to Carbonyl Compounds .. 432

Enantioselective C–H Bond-Forming Reactions .. 433

Method 1: Rhodium-Promoted Hydrogenation of Alkenes 433

Method 2: Iridium-Promoted Hydrogenation of Nonfunctionalized Alkenes .. 438

Method 3: Iridium-Promoted Hydrogenation of Imines 441

Method 4: Ruthenium-Promoted Hydrogenation of Ketones 444

Method 5: Rhodium-Promoted Hydroformylation of Alkenes 451

Method 6: Rhodium-Promoted Hydroboration of Alkenes 454

Applications of Tricoordinated Phosphorus Compounds in Organocatalysis
J. L. Methot and W. R. Roush

Method 1: Morita–Baylis–Hillman Reactions 469

Variation 1: Tandem Phosphorylsilylation/Ireland–Claisen Rearrangement 472

Variation 2: Intramolecular Morita–Baylis–Hillman Allylic Alkylation 473

Variation 3: α-Arylation of Enones with Hypervalent Bismuth Reagents .. 474

Variation 4: Phosphine-Mediated Reductive Condensation of Acyloxybutynoates ... 474

Variation 5: Regioselective Allylic Displacement 475

Variation 6: The Morita–Baylis–Hillman Reaction Using Air-Stable Phosphine Reagents ... 476

Variation 7: Asymmetric Morita–Baylis–Hillman Reactions 476

Variation 8: The Aza-Morita–Baylis–Hillman Reaction 477

Method 2: Michael Addition Reactions ... 479

Method 3: Nucleophilic Addition Reactions at Nonactivated Positions ... 481

Variation 1: Chiral Nucleophilic Addition Reactions 484

Variation 2: Nucleophilic Interception at the α-Position 485

Variation 3: Tandem α- or γ-Addition and Michael Addition Reactions ... 486

Method 4: [3 + 2]-Cycloaddition Reactions 487

Method 5: [4 + 2]-Cycloaddition Reactions 492

Method 6: Acylation and Kinetic Resolution of Alcohols 495

Method 7: Isomerization of Activated Alkynes to Dienes 497

Product Class 12: Alkylphosphonium Salts
D. Virieux, J.-N. Volle, and J.-L. Pirat

Product Class 12: Alkylphosphonium Salts 503

Product Subclass 1: Non-Heteroatom-Substituted Alkylphosphonium Salts ... 503

Synthesis of Product Subclass 1 .. 503

Method 1: Alkylation of Phosphines ... 503

Method 1: Alkylation of Tertiary Phosphines 503
Variation 2: Alkylation of Tertiary Phosphines Using Alcohols or Derivatives 504
Variation 3: Successive Alkylation of Phosphines, Phosphides, or Polyphosphines ... 505
Variation 4: Nucleophilic Addition of Phosphines or Derivatives to Alkenes or Alkynes ... 505
Method 2: Modification of Phosphonium Salts 507
Variation 1: Diels–Alder Reaction of Triphenyl(vinyl)phosphonium Salts with 1,4-Dienes ... 507
Variation 2: Modification of Phosphonium Salts by Reaction of Ylides .. 507
Method 3: Reaction of Phosphaalkenes 508
Product Subclass 2: Hydroxyphosphonium Salts 509
Method 1: Synthesis of α-Hydroxyphosphonium Salts and Derivatives .. 509
Variation 1: Addition of Phosphines to Aldehydes or Ketones 509
Variation 2: Alkylation of (α-Hydroxyalkyl)phosphines or Derivatives 511
Variation 3: Reaction of Phosphines with Acetals, Ketals, or Hemiacetals 513
Method 2: Synthesis of β-Hydroxyphosphonium Salts and Derivatives 514
Variation 1: Alkylation of Phosphines with β-Hydroxyalkyl Halides or Derivatives 514
Variation 2: Alkylation of (β-Hydroxyalkyl)phosphines or Derivatives 517
Variation 3: Reaction of Phosphines with Epoxides 520
Variation 4: Reaction of Ylides with Ketones or Aldehydes 522
Variation 5: Transformation of β-Functionalized Phosphonium Salts 524
Method 3: Synthesis of γ-Hydroxyphosphonium Salts and Derivatives 526
Variation 1: Alkylation of Phosphines with γ-Hydroxyalkyl Halides or Derivatives 526
Variation 2: Alkylation of γ-Hydroxyphosphines and Derivatives with Alkyl Halides 528
Variation 3: Reaction of Ylides with Epoxides and 3-Oxaalkyl Halides 529
Variation 4: Transformation of γ-Functionalized Phosphonium Salts 530
Product Subclass 3: Sulfanyl- and Selanylphosphonium Salts and Derivatives 531
Method 1: Synthesis of α-Sulfanyl and α-Selanylphosphonium Salts and Derivatives 531
Variation 1: Alkylation of Phosphines with Sulfur- or Selenium-Substituted Alkyl Halides 531
Variation 2: Alkylation of Phosphines with Bis(sulfanyl)- or Bis(selanyl) Alkyl Halides, or Cationic Derivatives 533
Variation 3: Transformation of Phosphonium Salts with Anionic Sulfur Nucleophiles 535
Variation 4: Reaction of Ylides with Sulfur- or Selenium-Containing Electrophiles 536
Method 2: Synthesis of β-Sulfanyl- and β-Selanylphosphonium Salts and Derivatives 537
42.12.3.1.2.1 Variation 1: Alkylation of Phosphines with Sulfur- or Selenium-Containing Alkyl Halides or Sulfonates ... 538
42.12.3.1.2.2 Variation 2: Reaction of Phosphines with 1,1,2-Trimethyldisulfanium or 1-Methyl-1,2-diphenyldisulfanium Salts 539
42.12.3.1.2.3 Variation 3: Reaction of Vinylphosphonium Salts with Sulfur Dioxide, Thiol, or Associated Anions .. 540
42.12.3.1.2.4 Variation 4: Reaction of Ylides with Miscellaneous Electrophiles 542
42.12.3.1.3 Method 3: Synthesis of γ-Sulfanyl- and γ-Selanylphosphonium Salts and Derivatives ... 543
42.12.3.1.3.1 Variation 1: Alkylation of Phosphines with Sulfur- or Selenium-Substituted Alkyl Halides or Related Compounds 543
42.12.3.1.3.2 Variation 2: Transformation of Phosphonium Salts .. 544

42.12.3.1.3.1 Variation 1: Alkylation of Phosphines with Sulfur- or Selenium-Substituted Alkyl Halides or Related Compounds 543
42.12.3.1.3.2 Variation 2: Transformation of Phosphonium Salts .. 544

42.12.4 Product Subclass 4: Carbonylphosphonium Salts and Derivatives 545
42.12.4.1 Synthesis of Product Subclass 4 .. 545
42.12.4.1.1 Method 1: Synthesis of P-Carbonylphosphonium Salts and Derivatives 545
42.12.4.1.1.1 Variation 1: Reaction of Phosphines with Various Carbonyl Electrophiles 546
42.12.4.1.1.2 Variation 2: Alkylation of P-Carbonylphosphines with Alkyl Halides or Sulfonates .. 548
42.12.4.1.2 Method 2: Synthesis of α-Carbonylphosphonium Salts and Derivatives 550
42.12.4.1.2.1 Variation 1: Alkylation of Phosphines with α-(Halomethyl)carbonyl Species 550
42.12.4.1.2.2 Variation 2: Reaction of Ylides with Carbonylated Electrophiles 553
42.12.4.1.2.3 Variation 3: Reaction of Stabilized Ylides with Other Electrophiles 556
42.12.4.1.2.4 Variations 4: Miscellaneous Reactions .. 557
42.12.4.1.3 Method 3: Synthesis of β-Carbonyl-Substituted Phosphonium Salts and Derivatives ... 558
42.12.4.1.3.1 Variation 1: Alkylation of Phosphines with β-Carbonyl-Substituted Alkyl Halides .. 559
42.12.4.1.3.2 Variation 2: Reaction of Phosphines with α,β-Unsaturated Carbonyl Species .. 561
42.12.4.1.3.3 Variation 3: Alkylation of β-Carbonylphosphines with Alkyl Halides 565

42.12.5 Product Subclass 5: Polyphosphonium Salts 565
42.12.5.1 Synthesis of Product Subclass 5 .. 565
42.12.5.1.1 Method 1: Synthesis of Multiphosphonium Salts .. 566
42.12.5.1.1.1 Variation 1: Reaction with Multihalides .. 566
42.12.5.1.1.2 Variation 2: Reaction of Unsaturated Precursors 566
42.12.5.1.1.3 Variation 3: Recursive Synthesis from a Phosphine 567
42.12.5.1.2 Method 2: Synthesis of Polymeric Phosphonium Salts 567
42.12.5.1.2.1 Variation 1: Reaction of Phosphonium Monomers 567
42.12.5.1.2.2 Variation 2: Functionalization of Polymeric Backbones 569

42.12.6 Product Subclass 6: Cyclic Phosphonium Salts 570
42.12.6.1 Synthesis of Product Subclass 6 .. 570
42.12.6.1.1 Method 1: Cyclization onto Phosphorus .. 570
42.12.6.1.1.1 Variation 1: Reaction of Secondary Phosphines or Derivatives with 1,ν-Dielectrophiles .. 570
42.12.6.1.1.2 Variation 2: Intramolecular Cyclization of Tertiary Phosphines 571
42.12.6.1.3 Variation 3: Intermolecular Cyclization of Tertiary Phosphines 572
42.12.6.1.4 Variation 4: Reaction of Halophosphines 574
42.12.6.1.5 Variation 5: Reaction of Methylenephosphonium Ions 575
42.12.6.1.6 Method 2: Cyclization between Two Phosphorus Substituents 576
42.12.7 Product Subclass 7: Heterophosphonium Salts 577
42.12.7.1 Synthesis of Product Subclass 7 .. 577
42.12.7.1.1 Method 1: Synthesis from Tricoordinate Phosphorus Compounds 577
42.12.7.1.1.1 Variation 1: Alkylation of Tricoordinate Reagents 577
42.12.7.1.1.2 Variation 2: Reaction of Phosphines with Heteroatomic Electrophiles 580
42.12.7.1.2 Method 2: Synthesis from Tetracoordinate Phosphorus Compounds ... 581
42.12.7.1.2.1 Variation 1: Modification of Heterophosphonium Salts 581
42.12.7.1.2.2 Variation 2: Reaction of Electrophiles with Tetracoordinate Phosphorus Derivatives .. 582
42.12.7.1.2.3 Variation 3: Reaction of Secondary Phosphine–Borane Complexes 582

42.13 Product Class 13: Trialkylphosphine Oxides, Sulfides, Selenides, Tellurides, and Imides
N. L. Kilah and S. B. Wild

42.13 Product Class 13: Trialkylphosphine Oxides, Sulfides, Selenides, Tellurides, and Imides .. 595
42.13.1 Product Subclass 1: Trialkylphosphine Oxides 595
42.13.1.1 Synthesis of Product Subclass 1 .. 595
42.13.1.1.1 Method 1: Oxidation of Trialkylphosphines 595
42.13.1.1.1 Variation 1: Oxidation with Hydrogen Peroxide 595
42.13.1.1.1.2 Variation 2: Oxidation with Sulfur(VI) Oxides 596
42.13.1.1.1.3 Variation 3: Oxidation by Nitrous Oxide 597
42.13.1.1.4 Variation 4: Oxidation with an Iodosylaryl Sulfone 597
42.13.1.1.2 Method 2: Oxidation of Phosphonium Salts 598
42.13.1.1.3 Method 3: Addition of Dialkylphosphine Oxides to Alkenes 599
42.13.1.1.4 Method 4: Addition of Dialkylphosphine Oxides to Ketones or Aldehydes 600
42.13.1.1.5 Method 5: Reactions of Dialkylphosphine Oxides with Alkyl Halides 602
42.13.1.1.5.1 Variation 1: Base-Induced Ionization 602
42.13.1.1.5.2 Variation 2: Lewis Acid Catalysis 603
42.13.1.1.5.3 Variation 3: Reduction with Sodium Bis(2-methoxyethoxy)aluminum Hydride ... 604
42.13.1.1.6 Method 6: Additions of Dialkyl(chloro)phosphines to Enones 605
42.13.1.1.7 Method 7: Reactions of Chlorophosphine Oxides with Grignard Reagents 606
42.13.1.1.8 Method 8: Reactions of Dialkylphosphinates with Alkyl Halides 607
42.13.1.1.9 Method 9: Isomerization of Dialkylphosphinates 609
42.13.1.1.10 Method 10: Cycloaddition of Alkyl(dichloro)phosphines with Dienes ... 610
42.13.1.1.11 Method 11: Addition of Dialkylphosphine Oxides to Imines 612
42.13.1.1.12 Method 12: Hydrogenation of Tertiary Arylphosphine Oxides 612
42.13.1.1.13 Method 13: Conversion of Trialkylphosphine Ylides into Trialkylphosphine Oxides .. 614
42.13.1.1.14 Method 14: Oxygenation of Trialkylphosphine Imides 615
42.13.1.14.1 Variation 1: By Reaction with a Ketone .. 615
42.13.1.14.2 Variation 2: By Reaction with Methanol 615
42.13.1.14.3 Variation 3: By Treatment with an Oxidizing Agent 616
42.13.1.15 Method 15: Oxygenation of Trialkylphosphine Sulfides 616
42.13.1.15.1 Variation 1: Treatment with Phosgene 616
42.13.1.15.2 Variation 2: Treatment with Dimethyldioxirane 617
42.13.1.15.3 Variation 3: Treatment with Trifluoroacetic Anhydride 617
42.13.1.15.4 Variation 4: Treatment with 7-Oxabicyclo[4.1.0]heptane and Trifluoroacetic Acid ... 617
42.13.1.16 Method 16: Oxygenation of a Trialkylphosphine Selenide 617

42.13.2 Product Subclass 2: Trialkylphosphine Sulfides 618
42.13.2.1 Synthesis of Product Subclass 2 .. 618
42.13.2.1.1 Method 1: Addition of Dialkylphosphine Sulfides to Alkenes 618
42.13.2.1.1.1 Variation 1: Base-Promoted Addition 618
42.13.2.1.1.2 Variation 2: Free-Radical-Initiated Addition 619
42.13.2.1.2 Method 2: Addition of Dialkylphosphine Sulfides to Aldehydes or Ketones .. 619
42.13.2.1.3 Method 3: Sulfurization of Trialkylphosphines with Elemental Sulfur 621
42.13.2.1.4 Method 4: Reaction of Dialkyl(vinyl)phosphine Sulfides with Nucleophiles .. 621
42.13.2.1.5 Method 5: Reaction of Triethylphosphine with a (Phosphonio)(phosphanylidene)methanethiolate 622
42.13.2.1.6 Method 6: Addition of a 1,3-Diene to an Alkyl(chloro)(methyl-sulfanyl)phosphine 622
42.13.2.1.7 Method 7: Sulfurization of Trialkylphosphine Oxides 623

42.13.3 Product Subclass 3: Trialkylphosphine Selenides 623
42.13.3.1 Synthesis of Product Subclass 3 ... 623
42.13.3.1.1 Method 1: Addition of a Dialkylphosphine Selenide to an Aldehyde 623
42.13.3.1.2 Method 2: Addition of Potassium Selenocyanate to Trialkylphosphines 624
42.13.3.1.3 Method 3: Addition of Elemental Selenium to Trialkylphosphines 625
42.13.3.1.4 Method 4: Catalytic Reaction of Diphenyl Diselenide and Tributylphosphine under Microwave Irradiation 625
42.13.3.1.5 Method 5: Reaction of a 1,2,3-Selenadiazole with a Trialkylphosphine 625

42.13.4 Product Subclass 4: Trialkylphosphine Tellurides 626
42.13.4.1 Synthesis of Product Subclass 4 ... 626
42.13.4.1.1 Method 1: Addition of Elemental Tellurium to Trialkylphosphines 626

42.13.5 Product Subclass 5: Trialkylphosphine Imides [Trialkyl(imino)phosphoranes] 627
42.13.5.1 Synthesis of Product Subclass 5 .. 627
42.13.5.1.1 Method 1: Reaction of an Azide with a Trialkylphosphine (The Staudinger Reaction) .. 627
42.13.5.1.2 Method 2: Addition of Base to Aminophosphonium Salts 628
42.13.5.1.3 Method 3: Addition of an Iodonium Ylide to Tributylphosphine 628
42.14 **Product Class 14: Dialkylphosphinic Acids and Derivatives**
J. Drabowicz, J. Lewkowski, C. V. Stevens, D. Krasowska, and R. Karpowicz

42.14.1 **Product Subclass 1: Dialkyltrihalophosphoranes and Other Heteroatom-Containing Analogues**

42.14.1.1 Method 1: Halogenation of Dialkylhalophosphines

42.14.1.2 Method 2: Electrochemical Fluorination of Secondary Phosphines

42.14.2 **Product Subclass 2: Dialkylphosphinic Halides**

42.14.2.1 Method 1: Halogenation of Tri- and Tetracoordinated Phosphorus-Containing Precursors

42.14.2.1.1 Variation 1: Halogenation of Dialkylphosphinic Acids and Derivatives

42.14.2.1.2 Variation 2: Halogenation of Dialkylphosphine Oxides

42.14.2.1.3 Variation 3: Halogenation of Dialkylphosphines and Dialkylphosphinites

42.14.2.2 Method 2: Oxidation of Dialkylhalophosphines

42.14.2.3 Method 3: Synthesis from Dialkyltrihalophosphoranes

42.14.3 **Product Subclass 3: Dialkylphosphinic Acids**

42.14.3.1 Method 1: Oxidation of Secondary Dialkylphosphines

42.14.3.2 Method 2: Dealkylation of Alkyl Dialkylphosphinates

42.14.3.3 Method 3: Alkylation Reactions of Tri- and Tetracoordinated Phosphorus-Containing Precursors

42.14.3.3.1 Variation 1: Alkylation of Hypophosphorous Acid Salts

42.14.3.3.2 Variation 2: Alkylation of Bis(trimethylsilyl) Phosphonite

42.14.3.3.3 Method 4: Hydrolysis of Tetra- and Pentacoordinated Phosphorus-Containing Precursors

42.14.3.3.4 Variation 1: Hydrolysis of Dialkylphosphinonic Halides

42.14.3.3.5 Variation 2: Hydrolysis of P,P-Dialkylphosphinic Amides

42.14.3.3.6 Variation 3: Hydrolysis of Dialkyltrihalophosphoranes

42.14.3.3.7 Method 5: Oxidative Cleavage of Tetraalkyldiphosphine Disulfides

42.14.3.3.8 Method 6: Reaction of Alkylphosphinic Acids with Alkenes

42.14.4 **Product Subclass 4: Alkyl/Aryl Dialkylphosphinates**

42.14.4.1 Method 1: Oxidation of Alkyl/Aryl Dialkylphosphinites

42.14.4.2 Method 2: Arbuzov Reaction of Dialkyl Alkylphosphonites

42.14.4.3 Method 3: Reaction of Dialkylphosphinonic Halides with Alcohols or Phenols

42.14.4.4 Method 4: Alkylation of Alkyl Alkylphosphinates

42.14.4.5 Method 5: Esterification of Dialkylphosphonic Acids and Transesterification of Alkyl Dialkylphosphinates

42.14.5 **Product Subclass 5: S-Alkyl/Aryl Dialkylphosphinothioates**

42.14.5.1 Synthesis of Product Subclass 5
42.14.5.1.1 Method 1: S-Alkylation of Dialkylphosphinothioic O-Acids 650
42.14.5.1.2 Method 2: Reaction of Dialkylphosphinic Halides with Thiols 651
42.14.5.1.3 Method 3: Reaction of Secondary Phosphine Oxides or Dialkylhalophosphine Derivatives with Disulfides or Thiocarbonyl Derivatives 651

42.14.6 Product Subclass 6: P,P-Dialkylphosphinic Amides 652
42.14.6.1 Synthesis of Product Subclass 6 .. 652
42.14.6.1.1 Method 1: Reaction of Dialkylphosphinic Halides with Amine Derivatives 652
42.14.6.1.2 Method 2: Oxidation of Aminophosphines 653
42.14.6.1.3 Method 3: Reaction of Dialkylhalophosphines with Hydroxylamine Derivatives 654

42.14.7 Product Subclass 7: Dialkylphosphinothioic Halides 654
42.14.7.1 Synthesis of Product Subclass 7 .. 654
42.14.7.1.1 Method 1: Halogenation of Pentavalent Phosphinothioic Precursors 654
42.14.7.1.1.1 Variation 1: Halogenation of Dialkylphosphinothioic Acids 654
42.14.7.1.1.2 Variation 2: Halogenation of Tetraalkyldiphosphine Disulfides 655
42.14.7.1.1.3 Variation 3: Halogenation of Se-Alkyl Dialkylphosphinoselenothioates .. 655
42.14.7.1.2 Method 2: Addition of Sulfur to Dialkylhalophosphines 656
42.14.7.1.3 Method 3: Reaction of Phosphonothioic Dihalides with Organometallic Reagents 656
42.14.7.1.4 Method 4: Halogenation of Dialkylphosphinothioic Amides and S-Amino Derivatives of Dialkylphosphinodithioic Acids 657

42.14.8 Product Subclass 8: Dialkylphosphinothioic O-Acids and Their Sulfur and Selenium Analogues .. 658
42.14.8.1 Synthesis of Product Subclass 8 .. 658
42.14.8.1.1 Method 1: Hydrolysis of Dialkylphosphinothioic Halides 658
42.14.8.1.2 Method 2: Preparation of Dialkylphosphinodithioic Acids 658
42.14.8.1.3 Method 3: Preparation of Dialkylphosphinoselenothioic Se-Acids 659

42.14.9 Product Subclass 9: O-Alkyl/Aryl Dialkylphosphinothioates 659
42.14.9.1 Synthesis of Product Subclass 9 .. 659
42.14.9.1.1 Method 1: Reaction of Dialkylphosphinothioic Halides with Alcohols or Phenols 659
42.14.9.1.2 Method 2: Sulfuration of Alkyl Dialkylphosphinites 660
42.14.9.1.3 Method 3: Alkylation of O-Alkyl Alkylphosphinothioates 661
42.14.9.1.4 Method 4: Reaction of Tetraalkyldiphosphine Disulfides or Phosphine Sulfides 661

42.14.10 Product Subclass 10: Alkyl/Aryl Dialkylphosphinodithioates and Se-Alkyl/Aryl Dialkylphosphinoselenothioates .. 662
42.14.10.1 Synthesis of Product Subclass 10 662
42.14.10.1.1 Method 1: Alkylation of Dialkylphosphinodithioic Acids or Their Salts 662
42.14.10.1.2 Method 2: Arbuzov-Type Alkylation of Alkylphosphonotrithioates 662
42.14.10.1.3 Method 3: Reaction of Tetraalkyldiphosphine Disulfides with Disulfides and Diselenides 663
42.14.11 Product Subclass 11: \emph{P,P}-Dialkylphosphinothioic Amides 664
42.14.11.1 Synthesis of Product Subclass 11 ... 664
42.14.11.1.1 Method 1: Reaction of Dialkylphosphinothioic Halides with Amines 664
42.14.11.1.2 Method 2: Sulfuration of Aminophosphines .. 665
42.14.12 Product Subclass 12: Dialkylphosphinoselenoic Halides .. 665
42.14.12.1 Synthesis of Product Subclass 12 ... 665
42.14.12.1.1 Method 1: Addition of Selenium to Dialkylhalophosphines 665
42.14.13 Product Subclass 13: Dialkylphosphinoselenoic \emph{O}-Acids and Dialkylphosphinodiselenoic Acids ... 666
42.14.13.1 Synthesis of Product Subclass 13 ... 666
42.14.13.1.1 Method 1: Hydrolysis of Dialkylphosphinoselenoic Halides 666
42.14.13.1.2 Method 2: Acidification of Sodium Dialkylphosphinodiselenoates 667
42.14.14 Product Subclass 14: \emph{O}-Alkyl/Aryl Dialkylphosphinoselenoatoes 667
42.14.14.1 Synthesis of Product Subclass 14 ... 667
42.14.14.1.1 Method 1: Addition of Selenium to Dialkylphosphinites 667
42.14.14.1.2 Method 2: Reaction of Dialkylphosphinoselenoic Halides with Alcohols 668
42.14.15 Product Subclass 15: \emph{S}-Alkyl/Aryl Dialkylphosphinoselenothioates 668
42.14.15.1 Synthesis of Product Subclass 15 ... 668
42.14.15.1.1 Method 1: Addition of Selenium to Dialkylphosphinothioites 668
42.14.16 Product Subclass 16: \emph{P,P}-Dialkylphosphinoselenoic Amides 669
42.14.16.1 Synthesis of Product Subclass 16 ... 669
42.14.16.1.1 Method 1: Addition of Selenium to Aminophosphines 669
42.14.16.1.2 Method 2: Reaction of Dialkylphosphinoselenoic Halides with Amines 669
42.14.17 Product Subclass 17: Anhydrides of Dialkylphosphinic Acids and Their Sulfur and Selenium Analogues ... 670
42.14.17.1 Synthesis of Product Subclass 17 ... 670
42.14.17.1.1 Method 1: Oxidation of Dialkylphosphine Disulfides 670
42.14.17.1.2 Method 2: Condensation of Dialkylphosphinic Acid Esters with Dialkylphosphinic Halides and Their Sulfur Analogues 671
42.14.17.1.3 Method 3: Self-Condensation of Dialkylphosphinic Halides and Their Sulfur Analogues ... 671
42.14.17.1.4 Method 4: Oxidation or Sulfuration of Dialkylphosphinous Anhydrides 673
42.15 Product Class 15: Alkylphosphonic Acids and Derivatives
J. Drabowicz, P. Kielbasiński, P. Łyżwa, M. Mikołajczyk, and A. Zając
42.15 Product Class 15: Alkylphosphonic Acids and Derivatives .. 679
42.15.1 Product Subclass 1: Alkylphosphonic Dihalides and Their Sulfur and Selenium Derivatives ... 680
42.15.1.1 Synthesis of Product Subclass 1 ... 680
42.15.1.1 Method 1: Alkylphosphonic Dihalides from Alkylphosphonic Acids and Their Derivatives ... 680

42.15.1.1.1 Variation 1: Reaction of Phosphonic Acids with Halogenating Reagents ... 680

42.15.1.1.2 Variation 2: Reaction of Phosphonic Acid Diesters with Halogenating Reagents .. 681

42.15.1.2 Method 2: Alkylphosphonic Dihalides from Alkyltetrahalophosphoranes ... 682

42.15.1.3 Method 3: Hydrolytic (or Other) Decompositions of Aluminum Halide Complexes of Alkyltetrahalophosphoranes 682

42.15.1.4 Method 4: Oxidation of Alkyldihalophosphines ... 683

42.15.1.5 Method 5: Alkylphosphonic Dihalides from Phosphorus Trihalides ... 684

42.15.1.5.1 Variation 1: Reaction of Phosphorus Trihalides with Aliphatic Hydrocarbons .. 684

42.15.1.5.2 Variation 2: Other Protocols Based on the Use of Phosphorus Trichloride .. 684

42.15.1.6 Method 6: Alkylphosphonic Dihalides by Miscellaneous Procedures ... 684

42.15.1.7 Method 7: Synthesis of Alkylphosphonothioic Dihalides .. 685

42.15.1.7.1 Variation 1: Sulfuration of Alkylphosphonic Dihalides .. 685

42.15.1.7.2 Variation 2: Sulfuration of Alkyldihalophosphines .. 685

42.15.1.7.3 Variation 3: Other Protocols ... 685

42.15.1.8 Method 8: Synthesis of Alkylphosphonoselenoic Dihalides .. 686

42.15.1.8.1 Variation 1: Addition of Selenium to Alkyldihalophosphines .. 686

42.15.2 Product Subclass 2: Alkylphosphonic Acids and Their Sulfur and Selenium Analogues ... 686

42.15.2.1 Synthesis of Product Subclass 2 ... 686

42.15.2.1.1 Method 1: Hydrolysis of Alkyltetrachlorophosphoranes .. 686

42.15.2.1.2 Method 2: Hydrolysis of Alkylphosphonic Dihalides .. 687

42.15.2.1.3 Method 3: Alkylphosphonic Acids from Alkylphosphonic Acid Esters .. 687

42.15.2.1.3.1 Variation 1: Hydrolysis of Alkylphosphonic Acid Esters .. 687

42.15.2.1.2.2 Variation 2: Dealkylation of Dialkyl Alkylphosphonates .. 688

42.15.2.1.4 Method 4: Hydrolysis of Alkylphosphonic Acid Amides .. 689

42.15.2.1.5 Method 5: Disproportionation of Alkylphosphonous Acids .. 690

42.15.2.1.6 Method 6: In Situ Oxidation of Alkylphosphonous Acids .. 690

42.15.2.1.7 Method 7: Oxidation of Primary Alkylphosphines .. 691

42.15.2.1.8 Method 8: Addition of Phosphorous Acid to Alkenes, Carbonyl Compounds, Imines, and Nitriles 691

42.15.2.1.9 Method 9: Reaction of Phosphorus Trichloride with Carbonyl Compounds or Carboxylic Acid Derivatives Followed by Hydrolysis .. 692

42.15.2.1.10 Method 10: Hydrolysis of 1-Aryl-1-[(4-tolylsulfinyl)amino]methylbis(diethylamino)phosphine–Boranes ... 693

42.15.2.1.11 Method 11: Synthesis of Alkylphosphonothioic Acids .. 694

42.15.3 Product Subclass 3: Alkyl/Aryl Alkylphosphonohalidates ... 694

42.15.3.1 Synthesis of Product Subclass 3 .. 694

42.15.3.1.1 Method 1: Reaction of Dialkyl Alkylphosphonates with Halogenating Agents .. 694

42.15.3.1.2 Method 2: Reaction of Aluminum Halide Complexes of Alkyltetrachlorophosphoranes with Alcohols 695
42.15.3.1.3 Method 3: Reaction of Dialkyl Chlorophosphites with Alkyl Halides 695
42.15.3.1.4 Method 4: Reaction of Alkylphosphonic Dihalides with Alcohols or Phenols .. 696
42.15.3.1.5 Method 5: Halogenation of Alkylphosphinates 696

42.15.3 Product Subclass 4: 5-Alkyl/Arly Alkylphosphonohalidothioates and Sulfur Derivatives .. 696
42.15.3.1 Method 1: Reaction of Alkylphosphonic Dihalides with Thiols .. 696
42.15.3.2 Method 2: Reaction of Alkylthiorphosphorochlorides with Sulfenyl Chlorides 697
42.15.3.3 Method 3: Chlorination of O,O-Dialkyl Alkylphosphonothioates 697
42.15.3.4 Method 4: Reaction of Alkylphosphonothioic Dihalides with Alkane-/Arenethiols .. 697

42.15.4 Product Subclass 5: P-Alkylphosphonamidic Halides and Their Sulfur and Selenium Derivatives 698
42.15.4.1 Method 1: Reaction of Alkylphosphonic Dihalides with Amines 698
42.15.4.2 Method 2: Exchange Reactions of Alkylphosphonic Diamides 699
42.15.4.3 Method 3: Rearrangement of Allyl Dialkylphosphoramidochloridites 699
42.15.4.4 Method 4: Oxidative Conversion of Aminochlorophosphines 700
42.15.4.5 Method 5: Ring Opening of 1-Functionalized Aziridines with Alkylphosphonic Dihalides .. 701
42.15.4.6 Method 6: Reaction of Alkylphosphonothioic Dihalides with Amines 702
42.15.4.7 Method 8: Reaction of Aminesulfenamides with Alkylphosphonic Dichlorides ... 703
42.15.4.8 Method 10: Addition of Selenium to Alkyl(chloro)(dialkylamino)phosphines .. 704

42.15.5 Product Subclass 6: Alkyl/Aryl Hydrogen Alkylphosphonates and Their 0-Alkyl/Aryl Sulfur and Selenium Derivatives 704
42.15.6.1 Method 1: Synthesis from Alkylphosphonic Dichlorides 704
42.15.6.2 Method 2: Hydrolysis of Alkyl/Aryl Alkylphosphonochloridates 707
42.15.6.3 Method 3: Hydrolysis of Diesters of Alkylphosphonic Acids 708
42.15.6.4 Method 4: Esterification of Alkylphosphonic Acids 709
42.15.6.5 Method 5: Dealkylation of Dialkyl Alkylphosphonates 710
42.15.6.6 Method 6: Dealkylation of Dialkyl Phosphonates with Sodium Iodide 711
42.15.6.7 Method 7: Dealkylation of Dialkyl Phosphonates with Sodium Azide 711
42.15.6.8 Method 8: Selective Monodebenzylation of Dibenzyl Phosphonates with Tertiary Amines 712
42.15.6.9 Method 9: Dealkylation of Dialkyl Methylphosphonates with Diphenylguanidine .. 713
42.15.6.10 Method 10: Silylation–Desilylation Procedure 714
42.15.6.11 Method 11: Alkyl/Aryl Hydrogen Alkylphosphonates by Miscellaneous Methods ... 714
Method 7: Hydrolysis of Dialkyl/Diaryl Alkylphosphonothioates 717
Method 8: Synthesis of O-Alkyl Hydrogen Alkylphosphonothioates from Alkylphosphonothioic Dichlorides 719
Method 9: Hydrolysis of O-Alkyl Alkylphosphonochloridothioates 719
Method 11: Addition of Sulfur to Alkyl Alkylphosphinates 721
Method 14: Alcoholysis of Monothiophosphonic Anhydrides 724
Method 15: Synthesis of O-Alkyl Hydrogen Alkylphosphoselenoates 725

Product Subclass 7: S-Alkyl/Aryl Hydrogen Alkylphosphonothioates and Their Sulfur and Selenium Derivatives 725
Method 1: Coupling Reaction of Alkylphosphonic Acids with Thiols 725
Method 2: Alkylation of Alkylphosphonothioic Acid Anions with Alkyl Halides 726

Product Subclass 8: P-Alkylphosphonamidic Acids and Their Sulfur and Selenium Derivatives 726
Method 1: Reaction of Alkyl/Aryl Alkylphosphonohalidates with Tertiary Amines 726
Method 2: Synthesis of P-Ethylphosphonamidothioic Acids 727

Product Subclass 9: O,O-Dialkyl/Diaryl Alkylphosphonates and Their Sulfur and Selenium Derivatives 728
Method 1: Reaction of Alkylphosphonic Dihalides with Alcohols 728
Method 2: Reaction of Alkyl/Aryl Alkylphosphonohalidates with Alcohols 728
Method 3: Reaction of Phosphites with α-Halo Ketones 728
Method 4: Michaelis–Becker Reaction ... 728
Method 5: Michaelis–Arbuzov Reaction ... 730
Method 6: Addition of Tricoordinated Organophosphorus Derivatives to Unsaturated Systems 730
Variation 1: Addition of Dialkyl Phosphites to Alkenes, Allenes, and Alkynes ... 730
Variation 2: Addition of Dialkyl Phosphites to Carbonyl Groups 731
Variation 3: Addition of Dialkyl Phosphite Anions to Imines 733
Method 7: Transesterification Reactions ... 736
Method 8: Reaction of Alkyl/Aryl Hydrogen Phosphonates with Alcohols 737
Method 9: Reaction of O-Alkyl/Aryl Alkylphosphonohalidothioates with Alcohols 738
Method 10: Reaction of Alkylphosphonothioic Dihalides with Alcoholates 739
Method 11: Sulfurization of Tricoordinated Alkylphosphonous Acid Diesters ... 740

Method 12: Miscellaneous Protocols Leading to O,O-Dialkyl/Diaryl Alkylphosphonothioates 741

Product Subclass 10: O,S-Dialkyl/Diaryl Alkylphosphonothioates and Their Sulfur and Selenium Derivatives ... 743

Synthesis of Product Subclass 10 ... 743

Method 1: Reaction of Alkyl/Aryl Alkylphosphonohalidates with Alkali Metal Thiolates ... 743

Method 2: Reaction of Dithiocarboxylic Acids with Dialkyl Chlorophosphites ... 743

Method 3: Reaction of Alkyl/Aryl Alkylphosphonohalidodithioates with Alcohols .. 743

Method 4: Reaction of Alkylphosphonic Dihalides with Alcohols and Thiols, or Sulfanyl Alcohols 743

Method 5: Alkylation of O-Alkyl/Aryl Alkylphosphonothioate Anions 745

Methods 6: Miscellaneous Procedures 746

Product Subclass 11: S,S-Dialkyl/Diaryl Alkylphosphonodithioates and Their Sulfur and Selenium Derivatives 746

Synthesis of Product Subclass 11 .. 746

Method 1: Arbuzov Reaction of Trialkyl Trithiophosphites with Alkyl Halides .. 746

Method 2: Preparation of Di- and Trithioesters from Alkylphosphonothioic and Alkylphosphonic Dichlorides 747

Method 3: Addition of Phosphonodithioyl and Phosphonotrithioyl Radicals to Alkenes .. 748

Product Subclass 12: O- and S-Alkyl/Aryl P-Alkylphosphonamidates and Their Sulfur and Selenium Derivatives 749

Synthesis of Product Subclass 12 .. 749

Method 1: Reaction of Alkyl/Aryl Alkylphosphonohalidates with Amines .. 749

Method 2: Reaction of Alkylphosphonic Dichlorides with Amino Alcohols or with an Alcohol and an Amine 751

Method 3: Reaction of P-Alkylphosphonamidic Halides with Alcohols ... 752

Method 4: Reaction of Dialkyl Amidophosphites with Alkyl Halides ... 753

Method 5: Oxidation of Alkylphosphonamidous Acid Esters ... 754

Method 6: Aminolysis of Dialkyl Alkylphosphonates ... 755

Method 7: Perkov-Type Reaction .. 755

Method 8: Reaction of Alkylphosphonothioic Dihalides with Amino Alcohols ... 755

Method 9: Reaction of O-Alkyl/Aryl Alkylphosphonohalidothioates with Amines ... 756

Method 10: Sulfuration or Selenation of Alkylphosphonamidites ... 757

Product Subclass 13: P-Alkylphosphonic Diamides and Their Sulfur and Selenium Derivatives ... 757
42.15.13.1 Synthesis of Product Subclass 13 ... 757
42.15.13.1.1 Method 1: Reaction of Alkylphosphonic Dihalides with Amines 757
42.15.13.1.2 Method 2: Reaction of O-Alkyl Phosphorous Diamides with Alkyl Halides 758
42.15.13.1.3 Method 3: Reaction of N,N,N',N'-Tetraalkylphosphorodiamicid Chlorides with Organometallic Reagents 758
42.15.13.1.4 Method 4: Transamination of P-Alkylphosphonic Diamides 759
42.15.13.1.5 Method 5: Oxidation of P-Alkylphosphonous Diamides 759
42.15.13.1.6 Method 6: Sulfurization of Bis(dialkylamino)phosphines 760
42.15.13.1.7 Method 7: Reaction of Alkyl Phosphorodiamidothioites with Alkyl Halides 760
42.15.13.1.8 Method 8: Selenation of Bis(dialkylamino)phosphines 761

42.15.14 Product Subclass 14: Anhydrides of Alkylphosphonic Acids and Their Derivatives .. 761
42.15.14.1 Synthesis of Product Subclass 14 ... 761
42.15.14.1.1 Method 1: Reaction of Dialkyl Alkylphosphonates with Halides of Oxoacids of Phosphorus 761
42.15.14.1.2 Method 2: Reaction of Alkylphosphonic Acids and Their Sulfur Analogues with Carbodiimides 762
42.15.14.1.2.1 Variation 1: Reaction of Alkylphosphonic Acids with Carbodiimides 762
42.15.14.1.2.2 Variation 2: Reaction of O-Alkyl/Aryl Alkylphosphonothioic Acids with Carbodiimides 762
42.15.14.1.3 Method 3: Reactions of Alkyl/Aryl Alkylphosphonomidic Halides and N,N,P-Trialkylphosphonamidic Halides 763
42.15.14.1.3.1 Variation 1: Reactions of Alkyl/Aryl Alkylphosphonomidic Halides with Nucleophiles 763
42.15.14.1.3.2 Variation 2: Reactions of N,N,P-Trialkylphosphonamidic Halides with Nucleophiles 763
42.15.14.1.4 Method 4: Synthesis of Oligomers of Alkylphosphonic and Alkylphosphonothioic Anhydrides 764
42.15.14.1.5 Methods 5: Miscellaneous Procedures 766

42.16 Product Class 16: Phosphoric Acid and Derivatives
C. E. McKenna, B. A. Kashemirov, and K. M. Blazewska

42.16 Product Class 16: Phosphoric Acid and Derivatives 779
42.16.1 Product Subclass 1: P—O Phosphates 780
42.16.1.1 Synthesis of Product Subclass 1 780
42.16.1.1.1 Mixed Anhydrides of Phosphoric Acid and Esters of Phosphoric Acid with Non-Phosphorus-Containing Acids 780
42.16.1.1.1.1 Method 1: Reaction of Phosphates with Anhydrides of Carboxylic Acids 780
42.16.1.1.1.2 Method 2: Reaction of Phosphate Esters with Anhydrides of Strong Carboxylic Acids 781
42.16.1.1.1.3 Method 3: Reaction of Phosphates or Phosphate Esters with Amino Acids in the Presence of Diisopropylcarbodiimide or Dicyclohexylcarbodiimide 781
42.16.1.1.2 Alkyl Dihydrogen Phosphates 782
Method 1: Phosphorylation of Alcohols with Phosphoryl Chloride 782

Variation 1: Phosphorylation of Unprotected Nucleosides 782
Variation 2: Phosphorylation of Other Alcohols 783
Method 2: Catalytic Condensation of Phosphoric Acid with Alcohols 784
Method 3: Phosphoramidites as Phosphorylating Agents 784

Method 1: Phosphorylation of Solid-Supported Oligonucleotides by tert-Butyl 2-Cyanoethyl Diisopropylphosphoramidite 785

Variation 2: Solid-Phase Phosphoramidites for Selective Monophosphorylation of Carbohydrates and Nucleosides 786

Method 4: Disodium 2-([2-[Bis(4-methoxyphenyl)(phenyl)methoxy]ethyl]sulfonyl)ethyl Phosphate as a Phosphorylating Agent for Primary and Secondary Alcohol Functions in Nucleosides 788

Method 1: Selective Dealkylation ... 789
Method 2: S-Alkylation of Phosphorothioic Acid 790

Alkyl Trihydrogen Diphosphates .. 791

Method 1: Phosphorylation by Tris(tetrabutylammonium) Hydrogen Pyrophosphate ... 791

Variation 1: Phosphorylation of Homoallylic 4-Toluenesulfonates or Allylic Halides ... 791

Variation 2: Phosphorylation of 5'-Tosyl Nucleosides 792

Method 2: Phosphorylation of Activated 5'-Nucleoside Monophosphates 793

Variation 1: Activation by Imidazolides 793
Variation 2: Activation by Conversion into Phosphorodichloridates ... 795

Method 1: Thiophosphorylation of 4-Toluenesulfonates or Bromides ... 796

Alkyl Tetrahydrogen Triphosphates ... 797

Method 1: The Ludwig One-Pot, Three-Step Procedure 797
Method 2: The Ludwig–Eckstein Procedure 798
Method 3: Enzymatic Approaches ... 799
Method 4: Synthesis via a Reactive Pyrrolidinium Phosphoramidate Zwitterion Intermediate ... 801

Method 5: Solid-Phase Synthesis of Nucleoside β-Tripphosphates 802

Anhydrides of Phosphoric Acid: Nucleoside Triphosphate Analogues 804

Method 1: Synthesis of β,γ-Methylene Nucleoside Triphosphate Analogues through Activation by Trihaloacetic Anhydrides and 1-Methylimidazole .. 804

Method 2: Synthesis of β,γ-Methylene Deoxynucleoside Triphosphate Analogues via Morpholidates .. 806

Method 3: Synthesis of α,β-Methylene Deoxynucleoside Triphosphate Analogues by Enzymatic Phosphorylation of the Corresponding α,β-Methylene Deoxynucleoside Diphosphate Analogues ... 807

Alkyl/Aryl Phosphorohalidates ... 809
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.16.1.8.1</td>
<td>Method 1: Phosphorylation with Phosphoryl Chloride</td>
<td>809</td>
</tr>
<tr>
<td>42.16.1.8.2</td>
<td>Method 2: Synthesis of Alkyl/Aryl Phosphorodifluoridates</td>
<td>809</td>
</tr>
<tr>
<td>42.16.1.8.2.1</td>
<td>Variation 1: Fluorination of Alkyl or Aryl Phosphorodichloridates</td>
<td>809</td>
</tr>
<tr>
<td>42.16.1.8.2.2</td>
<td>Variation 2: Fluorination of P—N Imidazole Derivatives</td>
<td>810</td>
</tr>
<tr>
<td>42.16.1.8.9</td>
<td>S-Alkyl/S-Aryl Phosphorodihalidothioates</td>
<td>811</td>
</tr>
<tr>
<td>42.16.1.10</td>
<td>Dialkyl/Diaryl Hydrogen Phosphates</td>
<td>811</td>
</tr>
<tr>
<td>42.16.1.10.1</td>
<td>Method 1: Stepwise Esterification of Phosphoryl Chloride</td>
<td>812</td>
</tr>
<tr>
<td>42.16.1.10.2</td>
<td>Method 2: Selective Hydrolysis of Triesters of Phosphoric Acid</td>
<td>812</td>
</tr>
<tr>
<td>42.16.1.10.3</td>
<td>Method 3: Solid-Phase Synthesis of Dinucleoside and Nucleoside–Carbohydrate Phosphodiester</td>
<td>813</td>
</tr>
<tr>
<td>42.16.1.11</td>
<td>O,S-Dialkyl/O,S-Diaryl Hydrogen Phosphorodithioates</td>
<td>814</td>
</tr>
<tr>
<td>42.16.1.11.1</td>
<td>Method 1: Alkylation of Sulfur in Phosphorothioate Derivatives</td>
<td>815</td>
</tr>
<tr>
<td>42.16.1.11.2</td>
<td>Method 2: Oxidation of O,S-Disubstituted Phosphonothiolates</td>
<td>816</td>
</tr>
<tr>
<td>42.16.1.11.3</td>
<td>Method 3: Selective Dealkylation of Triesters Bearing a P—S—C Bond System</td>
<td>817</td>
</tr>
<tr>
<td>42.16.1.12</td>
<td>S,S-Dialkyl/S,S-Diaryl Hydrogen Phosphorodithioates</td>
<td>818</td>
</tr>
<tr>
<td>42.16.1.12.1</td>
<td>Method 1: Reaction of Phosphorodichloridates with Alkane- or Arenethiols</td>
<td>818</td>
</tr>
<tr>
<td>42.16.1.12.2</td>
<td>Method 2: Reaction of Elemental Phosphorus with Benzenethiol</td>
<td>818</td>
</tr>
<tr>
<td>42.16.1.12.3</td>
<td>Method 3: Reaction of N-(Alkylsulfanyl)phthalimides with Phosphinates in the Presence of Hexamethyldisilazane</td>
<td>819</td>
</tr>
<tr>
<td>42.16.1.13</td>
<td>Dialkyl Dihydrogen Diphosphates</td>
<td>820</td>
</tr>
<tr>
<td>42.16.1.13.1</td>
<td>Method 1: Synthesis of Dialkyl Dihydrogen Diphosphates by Morpholidate Coupling</td>
<td>820</td>
</tr>
<tr>
<td>42.16.1.13.2</td>
<td>Method 2: Triphenylphosphine and Di-2-pyridyl Disulfide as Coupling Agents in One-Pot Syntheses of Symmetrical Dinucleoside 5',5''-Pyrophosphates</td>
<td>821</td>
</tr>
<tr>
<td>42.16.1.13.3</td>
<td>Method 3: Sugar Nucleoside Diphosphates via a Reactive Zwitterionic Phosphoramidate Intermediate</td>
<td>822</td>
</tr>
<tr>
<td>42.16.1.13.4</td>
<td>Method 4: Solid-Phase Synthesis of Symmetrical Nucleoside Phosphodiester</td>
<td>823</td>
</tr>
<tr>
<td>42.16.1.14</td>
<td>Dialkyl/Diaryl Phosphorohalides</td>
<td>825</td>
</tr>
<tr>
<td>42.16.1.14.1</td>
<td>Method 1: Chlorination of Phosphites with 1,3,5-Trichloro-1,3,5-triazinane-2,4,6-trione or tert-Butyl(chloro)cyanamide</td>
<td>825</td>
</tr>
<tr>
<td>42.16.1.14.2</td>
<td>Method 2: Halogenation of Bis(fluoroalkyl) Phosphites</td>
<td>826</td>
</tr>
<tr>
<td>42.16.1.15</td>
<td>Trialkyl/Triaryl Phosphates</td>
<td>827</td>
</tr>
<tr>
<td>42.16.1.15.1</td>
<td>Method 1: Addition of Hydrogen Chloride to Vinyl Phosphates</td>
<td>827</td>
</tr>
<tr>
<td>42.16.1.15.2</td>
<td>Method 2: Phosphorylation</td>
<td>828</td>
</tr>
<tr>
<td>42.16.1.15.2.1</td>
<td>Variation 1: Phosphorylation with Diphenyl Phosphorochloridate</td>
<td>828</td>
</tr>
<tr>
<td>42.16.1.15.2.2</td>
<td>Variation 2: Phosphorylation with (2-Oxo-5,5-diphenyloxazolidin-3-yl)phosphonates</td>
<td>829</td>
</tr>
<tr>
<td>42.16.1.15.2.3</td>
<td>Variation 3: Phosphorylation Catalyzed by a Low-Molecular-Weight Peptide-Based Catalyst</td>
<td>832</td>
</tr>
<tr>
<td>42.16.1.15.3</td>
<td>Method 3: Phosphite Oxidation in the Presence of Alcohols</td>
<td>833</td>
</tr>
</tbody>
</table>
Method 4: Phosphate Esterification Promoted by Silver(I) Oxide 833

Method 1: Synthesis of Phosphorothioates Containing an \(\alpha,\beta \)-Unsaturated Carbonyl Moiety 834

Method 2: Redox Reaction of a Phosphate with Tellurium Tetrachloride 836

Method 3: Solvent-Free S-Alkylation of Phosphites 836

Method 1: Reaction of Potassium \(O_2O \)-Dialkyl Phosphoroselenoates with Alkenyl(phenyl)iodonium Salts 837

Method 2: Selenophosphorylation of Silyl Enol Ethers 838

Tetraalkyl/Tetraaryl Diphosphates 839

Method 1: \(N \)-[Chloro(dimethylamino)methylene]-\(N \)-methylmethaniminium Chloride as the Condensing Reagent 839

Method 2: Synthesis from a Phosphorochloridate 840

Product Subclass 2: \(P=S \) Phosphorothioates 842

Synthesis of Product Subclass 2 842

Method 1: Thiophosphorylation with Thiophosphoryl Chloride 843

Method 2: Sulfurization of Monoalkyl \(H \)-Phosphonates 844

Variation 1: Sulfurization of Monoalkyl \(H \)-Phosphonates with Elemental Sulfur 844

Variation 2: Sulfurization of a Bis(trimethylsilyl) Phosphite Ester 844

Method 3: Synthesis from Sulfidodithiaphospholanes 853

Variation 1: Synthesis of Nucleoside 3\'-O-Phosphorodithioates 853

Variation 2: Synthesis of Nucleoside 5\'-O-Phosphorodithioates 854

Method 1: Phosphorylation of an \(O \)-Alkyl Phosphorothioate 855

Method 2: Synthesis via Imidazolides 855

Method 3: Ring Opening of a 5\'-\(1 \)-Thiocyclotriphosphate with Ethane-1,2-diamine 856

Method 1: Phosphorylation with 2-Chloro-4\(H \)-1,3,2-benzodioxaphosphinin-4-one and Subsequent Reaction with Pyrophosphate 858
Table of Contents

42.16.2.1.4.2 Method 2: Thio phosphorylation and Subsequent Reaction with
Pyrophosphate .. 859
42.16.2.1.4.2.1 Variation 1: Direct Thiophosphorylation of the Hydroxy Group 860
42.16.2.1.4.2.2 Variation 2: Thiophosphorylation of Tributylstannyl Ethers 861
42.16.2.1.4.2.3 Variation 3: Enzymatic Thiophosphorylation 861
42.16.2.1.5 O-Alkyl Tetrahydrogen 1,1-Dithiatriphosphates 862
42.16.2.1.5.1 Method 1: Ring Opening of a 5′-(1-Sulfidocyclotriphosphate) with
Lithium Sulfide .. 862
42.16.2.1.5.2 Method 2: Synthesis via 2-Sulfido-1,3,2-Dithiaphospholanes 863
42.16.2.1.6 Anhydrides of Phosphoric Acid: Nucleoside Triphosphate Analogues 865
42.16.2.1.7 O-Alkyl Tetrahydrogen 1,2,3-Trithiaporphosphates 866
42.16.2.1.8 O-Alkyl/O-Aryl Phosphorofluoridothioates .. 868
42.16.2.1.8.1 Method 1: Sulfurization of Phosphorofluoridothioates 868
42.16.2.1.8.2 Method 2: Oxidation and Fluorination of Thio- and Dithiophosphonates 871
42.16.2.1.9 O-Alkyl Phosphorodifluoridothioates ... 871
42.16.2.1.9.1 Method 1: Sulfurization of a Difluorophosphite 871
42.16.2.1.9.2 Method 2: Synthesis from a Bis(1H-imidazol-1-yl)phosphinothioate 872
42.16.2.1.10 O,O-Dialkyl/O,O-Diaryl Hydrogen Phosphorothioates 873
42.16.2.1.10.1 Method 1: Stereocontrolled Synthesis via 2-Sulfido-1,3,2-oxathia-
phospholanes .. 874
42.16.2.1.10.2 Method 2: Stereocontrolled Synthesis via Cyclic N-Acylphosphoramidites 876
42.16.2.1.10.3 Method 3: Stereocontrolled Synthesis via 3′-O-Oxazaphospholides 877
42.16.2.1.10.4 Method 4: Sulfurization of Phosphate Triester 880
42.16.2.1.10.4.1 Variation 1: Sulfurization with 3H-1,2-Benzodithiol-3-one 1,1-Dioxide
(Beaucage’s Reagent) ... 880
42.16.2.1.10.4.2 Variation 2: Sulfurization with Phenylacetyl Disulfide 882
42.16.2.1.10.4.3 Variation 3: Sulfurization with 1,1′,1″,1″″-[Disulfanediylibis(carbono-
thioylnitrilo)]tetraethane .. 882
42.16.2.1.10.4.4 Variation 4: Sulfurization with Lawesson’s Reagent 882
42.16.2.1.10.5 Method 5: Direct Sulfurization of Dialkyl H-Phosphonates 883
42.16.2.1.10.6 Method 6: Polymerization Catalyzed by Uranyl Ion 884
42.16.2.1.11 O,O-Dialkyl/O,O-Diaryl Hydrogen Phosphorodithioates 885
42.16.2.1.11.1 Method 1: Sulfurization of Disubstituted Phosphorodithioates 885
42.16.2.1.11.1.1 Variation 1: From Phosphorochloridites 886
42.16.2.1.11.1.2 Variation 2: Solid-Phase Synthesis of O,O-Dialkyl Phosphorodithioates 886
42.16.2.1.11.2 Method 2: The Dithiaphospholane Method 888
42.16.2.1.11.2.1 Variation 1: From N,N-Diisopropyl-1,3,2-dithiaphospholane-2-amine 888
42.16.2.1.11.2.2 Variation 2: From 2-Chloro-1,3,2-dithiaphospholane 890
42.16.2.1.11.3 Method 3: Dithiophosphorylation of Alcohols and Hydrolysis of the
Triester .. 891
42.16.2.1.11.4 Method 4: Reduction and Subsequent Sulfurization of O,O-Dialkyl
Phosphorochloridithioates 893
42.16.2.1.11.5 Method 5: Solid-Phase Sulfurization of Phosphoramidothioites 893
42.16.2.1.12 O,O-Dialkyl/O,O-Diaryl Phosphorofluoridothioates 895
42.16.2.1.12.1 Method 1: Sulfurization of Phosphorofluoridites 895
42.16.2.1.12.2 Method 2: Fluorination of O,O-Dialkyl Phosphonothioates 896
42.16.2.1.12.3 Method 3: Desulfurization of Phosphorodithioates 897
42.16.2.1.13 O,O, O-Trialkyl/O,O, O-Triaryl Phosphorothioates 898
42.16.2.1.13.1 Method 1: Sulfurization of Trivalent Phosphorus Compounds 898
42.16.2.1.13.1.1 Variation 1: Sulfurization with Thiirane .. 899
42.16.2.1.13.1.2 Variation 2: Sulfurization with Dibenzoyl Tetrasulfide 899
42.16.2.1.13.1.3 Variation 3: Sulfurization with Bis[3-(triethoxysilyl)propyl] Tetrasulfide 899
42.16.2.1.13.2 Method 2: Methanolysis of Phosphoramidothioates 900
42.16.2.1.14 O, O, S-Trialkyl/O, O-S-Triaryl Phosphorodithioates 901
42.16.2.1.14.1 Method 1: Thiophosphorylation of Silyl Enol Ethers 901
42.16.2.1.14.2 Method 2: Alkylation of O, O-Dialkyl Phosphorodithioates 902
42.16.2.1.14.3 Method 3: S-Alkynylation of Potassium O, O-Dialkyl Phosphorodithioates 902
42.16.2.1.14.4 Method 4: Sulfurization of Phosphorochloridothioates 903
42.16.3 Product Subclass 3: P=Se Phosphates .. 903
42.16.3.1 Synthesis of Product Subclass 3 ... 904
42.16.3.1.1 O, O-Dialkyl Phosphoroselenoates ... 904
42.16.3.1.1.1 Method 1: Synthesis via Phosphoramidites 904
42.16.3.1.1.2 Method 2: Synthesis via H-Phosphonates .. 906
42.16.3.1.1.2.1 Variation 1: Oxidation of O, O-Dialkyl Phosphonates with Potassium Selenocyanate ... 906
42.16.3.1.1.2.2 Variation 2: Oxidation of O, O-Dialkyl H-Phosphonates with Triphenylphosphine Selenide ... 907
42.16.3.1.1.2.3 Variation 3: Oxidation of O, O-Dialkyl H-Phosphonates with 3H-1,2-Benzothiaselenol-3-one ... 907
42.16.3.1.1.2.4 Variation 4: Oxidation of O, O-Dialkyl H-Phosphonates with 3-(Phthalimidoselanyl)propanenitrile ... 909
42.16.3.1.1.3 Method 3: Synthesis via 1,3,2-Oxathiaphospholane 2-Selenides 911
42.16.3.1.2 O, O-Trialkyl Phosphoroselenoates ... 913
42.16.3.1.2.1 Method 1: The Phosphoramidite Approach 913
42.17 Product Class 17: Phosphazenes
S. Urgaonkar and J. G. Verkade

42.17 Product Class 17: Phosphazenes ... 923
42.17.1 Product Subclass 1: Schesthesinger Bases ... 923
42.17.1.1 Synthesis of Product Subclass 1 ... 924
42.17.1.1.1 Method 1: Synthesis from Phosphonium Salts 924
42.17.1.2 Applications of Product Subclass 1 in Organic Synthesis 925
42.17.1.2.1 Method 1: Deprotonation Reactions .. 925
42.17.1.2.2 Method 2: Addition of O- and N-Nucleophiles to Alkynes 930
42.17.1.2.3 Method 3: Activation of Arene—Silicon Bonds 930
42.17.1.2.4 Method 4: Halogen–Zinc Exchange Reactions of Aryl Iodides 931
42.17.1.2.5 Method 5: Sigmatropic Rearrangement of Allylic Amines and Alcohols 932
42.17.1.2.6 Method 6: Synthesis of Diaryl Ethers and Sulfides 933
42.17.1.2.7 Method 7: Michael Addition .. 934
42.17.2 Product Subclass 2: Proazaphosphatrane Sulfides 934
42.17.2.1 Synthesis of Product Subclass 2 .. 934
42.17.2.1.1 Method 1: Reaction of Proazaphosphatranes with Sulfur 934
42.17.2.2 Applications of Product Subclass 2 in Organic Synthesis 935
42.17.2.2.1 Method 1: Baylis–Hillman Reaction ... 935
42.17.3 Product Subclass 3: Proazaphosphatrane Oxides 935
42.17.3.1 Synthesis of Product Subclass 3 .. 936
42.17.3.1.1 Method 1: Reaction of Proazaphosphatranes with Bis(trimethylsilyl) Peroxide .. 936
42.17.3.2 Applications of Product Subclass 3 in Organic Synthesis 936
42.17.3.2.1 Method 1: Silylation of Alcohols .. 936
42.17.3.2.2 Method 2: Transformation of Isocyanates into Carbodiimides 937
42.17.4 Product Subclass 4: Phosphoramides ... 937
42.17.4.1 Synthesis of Product Subclass 4 .. 938
42.17.4.1.1 Method 1: Synthesis by Oxidation ... 938
42.17.4.1.2 Method 2: Synthesis by Nucleophilic Substitution 938
42.17.4.2 Applications of Product Subclass 4 in Organic Synthesis 939
42.17.4.2.1 Method 1: Asymmetric Aldol Reactions ... 939
42.17.4.2.2 Method 2: Enantioselective Allylation Reactions 940
42.17.4.2.3 Method 3: Asymmetric Diels–Alder Reaction 941
42.17.4.2.4 Method 4: Borane Reduction of Ketones .. 941
42.17.4.2.5 Method 5: Oxidation Reactions .. 941
42.17.4.2.6 Method 6: Reduction Reactions ... 942
42.17.4.2.7 Method 7: Conjugate Addition Reactions 943
42.17.5 Product Subclass 5: Linear and Cyclic Organophosphazenes 944
42.17.5.1 Synthesis of Product Subclass 5 .. 944
42.17.5.1.1 Method 1: Reaction of Phosphorus Pentachloride with Ammonium Chloride or Tris(trimethylsilyl)amine 944
42.17.5.2 Applications of Product Subclass 5 in Organic Synthesis 946
42.17.5.2.1 Method 1: Synthesis of Poly(dichlorophosphazene) 946
42.18 Product Class 18: Pentacoordinated Phosphoranes
T. Kawashima and J. Kobayashi

42.18 Product Class 18: Pentacoordinated Phosphoranes 953
42.18.1 Synthesis of Product Class 18 ... 954
42.18.1.1 Method 1: Nucleophilic Substitution on Pentacoordinated Phosphoranes 954
42.18.1.1.1 Variation 1: Addition of Alcohols to Phosphoranes 954
Variation 2: Addition of Amines to Halophosphoranes

Variation 3: Reaction of Alkoxy- or Aminosilanes with Halophosphoranes

Variation 4: Reaction of Unsaturated Compounds with Halophosphoranes

Method 2: Addition to Tetracoordinated Phosphorus Compounds

Variation 1: Addition of Carbonyl Compounds to Phosphorus Ylides

Variation 2: Addition of 1,3-Dipoles to Phosphorus Ylides

Variation 3: Addition to Phosphonium Salts

Variation 4: Addition to Alkylated Iminophosphoranes

Method 3: Oxidation of Tricoordinated Phosphorus Compounds

Variation 1: Reaction with Dihalogenes

Variation 2: Reactions with Other Halogenating Reagents

Variation 3: Reaction with Peroxides

Variation 4: Reaction with \(\alpha \)-Diketones

Variation 5: Reaction with \(\alpha, \beta \)-Unsaturated Carbonyl Compounds

Method 4: Condensation Reactions

Variation 1: Dehydrative Condensation

Variation 2: Reaction of Carbonyl Compounds with Tricoordinated Phosphorus

Method 5: Insertion Reactions

Variation 1: Insertion of Tricoordinated Phosphorus

Variation 2: Insertion into the P—H Bond of Hydrophosphoranes

Product Class 19: Hexacoordinated Phosphates
D. Linder and J. Lacour

Product Subclass 1: Anionic Hexacoordinated Phosphorus Derivatives with P—O Bonds Only

Synthesis of Product Subclass 1

Method 1: Direct Synthesis from Phosphorus Pentachloride

Method 2: Stepwise Synthesis from Phosphorus(III) Compounds

Variation 1: From Phosphites

Variation 2: From Phosphorous Triamides

Product Subclass 2: Anionic Hexacoordinated Phosphorus Derivatives with P—O and P—C Bonds

Synthesis of Product Subclass 2

Method 1: Stepwise Synthesis from Phosphorus(V) Adducts

Method 2: Direct Oxidation of Phosphorus(III) Adducts

Keyword Index

Author Index

Abbreviations
Volume 43: Polyynes, Arynes, Enynes, and Alkynes

Preface .. V

Volume Editor's Preface VII

Table of Contents .. XI

Introduction
H. Hopf .. 1

43.1 Product Class 1: Linear Conjugated Diynes, Oligoynes, and Polynes
A. Hirsch and O. Vostrowsky 37

43.2 Product Class 2: Cyclic Conjugated Diynes, Triynes, Tetranyes, and Polynes
F. Diederich, R. R. Tykwinski, and M. B. Nielsen 119

43.3 Product Class 3: Arynes
T. L. Gilchrist .. 151

43.4 Product Class 4: Linear Enynes
C. Burmester, O. Haß, and R. Faust 225

43.5 Product Class 5: Cyclic Enynes
A. G. Fallis and M. S. Souweha 289

43.6 Product Class 6: Acyclic Arylalkynes
A. G. Griesbeck and A. Soldevilla 345

43.7 Product Class 7: Cyclic Arylalkynes
Y. Tobe and R. Umeda .. 393

43.8 Product Class 8: Linear Alkynes

43.8.1 Synthesis by Elimination
S. Sankararaman .. 435

43.8.2 Synthesis by Rearrangement
A. Krueger .. 469

43.8.3 Synthesis from Other Alkynes
R. A. Aitken and K. Aitken 555

43.9 Product Class 9: Cycloalkynes
R. Gleiter and D. B. Werz 631
Table of Contents

Introduction
H. Hopf

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>43.1</td>
<td>Product Class 1: Linear Conjugated Diynes, Oligoynes, and Polyynes</td>
<td>37</td>
</tr>
<tr>
<td>43.1.1</td>
<td>Product Subclass 1: Alka-1,3-diynes</td>
<td>38</td>
</tr>
<tr>
<td>43.1.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td>38</td>
</tr>
<tr>
<td>43.1.1.1.1</td>
<td>Method 1: Copper-Promoted Oxidative Homocoupling of Terminal Alkynes</td>
<td>38</td>
</tr>
<tr>
<td>43.1.1.1.1.1</td>
<td>Variation 1: Glaser Coupling</td>
<td>39</td>
</tr>
<tr>
<td>43.1.1.1.1.2</td>
<td>Variation 2: Eglinton Coupling</td>
<td>42</td>
</tr>
<tr>
<td>43.1.1.1.1.3</td>
<td>Variation 3: Hay Coupling</td>
<td>44</td>
</tr>
<tr>
<td>43.1.1.1.1.4</td>
<td>Variation 4: Copper-Promoted Oxidative Homocoupling of Silylacetylenes</td>
<td>48</td>
</tr>
<tr>
<td>43.1.1.1.1.5</td>
<td>Variation 5: Copper-Mediated Solid-State Coupling</td>
<td>49</td>
</tr>
<tr>
<td>43.1.1.1.1.6</td>
<td>Variation 6: Silver(I) 4-Toluenesulfonate/Copper(II) Chloride/(N,N,N',N'-)Tetramethylethylenediamine Catalytic System and Solid-Phase On-Bead Coupling</td>
<td>49</td>
</tr>
<tr>
<td>43.1.1.1.2</td>
<td>Method 2: Heterocoupling of Terminal Alkynes with 1-Haloalkynes</td>
<td>51</td>
</tr>
<tr>
<td>43.1.1.1.2.1</td>
<td>Variation 1: The Cadiot–Chodkiewicz Coupling</td>
<td>51</td>
</tr>
<tr>
<td>43.1.1.1.2.2</td>
<td>Variation 2: Polymer-Supported Cadiot–Chodkiewicz Coupling</td>
<td>54</td>
</tr>
<tr>
<td>43.1.1.1.2.3</td>
<td>Variation 3: Other Copper(I)-Catalyzed Heterocoupling Reactions</td>
<td>55</td>
</tr>
<tr>
<td>43.1.1.1.2.4</td>
<td>Variation 4: Cross Coupling of Alkynyl(phenyl)iodonium 4-Toluenesulfonates</td>
<td>56</td>
</tr>
<tr>
<td>43.1.1.1.2.5</td>
<td>Variation 5: Copper(I)-Promoted Heterocoupling between Silylalkynes and Choroalkynes</td>
<td>57</td>
</tr>
<tr>
<td>43.1.1.1.3</td>
<td>Method 3: Homocoupling of Alkynyl Grignard Compounds</td>
<td>57</td>
</tr>
<tr>
<td>43.1.1.1.4</td>
<td>Method 4: Heterocoupling of Alkynyl Grignard Derivatives with 1-Haloalkynes</td>
<td>58</td>
</tr>
<tr>
<td>43.1.1.1.5</td>
<td>Method 5: Homocoupling of Alkynyllithium Compounds</td>
<td>59</td>
</tr>
<tr>
<td>43.1.1.1.6</td>
<td>Method 6: Coupling of Alkynylstannanes</td>
<td>60</td>
</tr>
<tr>
<td>43.1.1.1.6.1</td>
<td>Variation 1: Homocoupling of Alkynylstannanes</td>
<td>60</td>
</tr>
<tr>
<td>43.1.1.1.6.2</td>
<td>Variation 2: Cross Coupling of Alkynylstannanes</td>
<td>60</td>
</tr>
<tr>
<td>43.1.1.1.7</td>
<td>Method 7: Homocoupling and Cross Coupling of Alkynylboron Derivatives</td>
<td>61</td>
</tr>
<tr>
<td>43.1.1.1.8</td>
<td>Method 8: Dimerization of 1-Selanylalkynes</td>
<td>62</td>
</tr>
<tr>
<td>43.1.1.1.9</td>
<td>Method 9: Demercuration of Bis(alkynyl)mercury Compounds</td>
<td>63</td>
</tr>
<tr>
<td>43.1.1.1.10</td>
<td>Method 10: Coupling of Alkynylnickel Complexes</td>
<td>63</td>
</tr>
<tr>
<td>43.1.1.1.11</td>
<td>Method 11: Buta-1,3-diynes from Alkynylzirconocenes</td>
<td>64</td>
</tr>
<tr>
<td>43.1.1.1.12</td>
<td>Method 12: Palladium-Catalyzed Coupling of Terminal Alkynes</td>
<td>64</td>
</tr>
<tr>
<td>43.1.1.1.12.1</td>
<td>Variation 1: Homocoupling of Terminal Alkynes</td>
<td>65</td>
</tr>
<tr>
<td>43.1.1.1.12.2</td>
<td>Variation 2: Heterocoupling of Terminal Alkynes</td>
<td>67</td>
</tr>
</tbody>
</table>
43.1.1.13 Method 13: Palladium-Catalyzed Coupling of Alkynylstannanes 70
43.1.1.14 Method 14: Other Transition-Metal-Mediated Alkyne Coupling Processes 70
43.1.1.15 Method 15: Elimination of a Hydrogen Halide from 1,4-Dihalobut-2-ynes 71
43.1.1.16 Method 16: Elimination of a Hydrogen Halide from Haloalkynes 72
43.1.1.16.1 Variation 1: Elimination of a Hydrogen Halide from 1-Haloalk-1-en-3-ynes 72
43.1.1.16.2 Variation 2: Elimination of a Hydrogen Halide from 2-Haloalk-1-en-3-ynes 75
43.1.1.16.3 Variation 3: Elimination of a Hydrogen Halide from 1-Haloalk-3-en-1-ynes 76
43.1.1.17 Method 17: Buta-1,3-diynel Formation from Carbenes and Carbenoids (Fritsch–Buttenberg–Wiechell Rearrangement) 77
43.1.1.18 Method 18: Wittig Synthesis Using Phosphacumulene Ylides 79
43.1.1.18.1 Variation 1: Wittig Synthesis Using Phosphacumulene Ylides 79
43.1.1.18.2 Variation 2: Flash-Vacuum Pyrolysis of 2-Oxoalk-3-ynylidenetriphenylphosphoranes ... 80
43.1.1.19 Method 19: Base-Catalyzed Triple-Bond Isomerizations (Zipper Reaction) 82
43.1.2 Product Subclass 2: Linear Conjugated Oligoynes and Polyyynes 83
 43.1.2.1 Synthesis of Product Subclass 2 .. 83
 43.1.2.1.1 Method 1: Convergent Synthesis of Polyyynes by Acetylene Coupling Reactions ... 83
 43.1.2.1.1.1 Variation 1: Glaser Coupling .. 83
 43.1.2.1.1.2 Variation 2: Eglinton Coupling ... 84
 43.1.2.1.1.3 Variation 3: Hay Coupling ... 86
 43.1.2.1.2 Method 2: Cadiot–Chodkiewicz Cross Coupling 91
 43.1.2.1.3 Method 3: Tetranyenes from Oxidative Homocoupling of Alkadiynyl Grignard Derivatives ... 94
 43.1.2.1.4 Method 4: Homocoupling of Transition-Metal-Bound Buta-1,3-diynes 95
 43.1.2.1.5 Method 5: Iterative Synthesis of Polyyynes Using Acetylene Coupling Reactions ... 95
 43.1.2.1.6 Method 6: Dehydrohalogenation of Halogenated Polyyne Precursors 98
 43.1.2.1.6.1 Variation 1: Elimination of Hydrogen Chloride from 1,6-Dichlorohexa-2,4-diynes ... 98
 43.1.2.1.6.2 Variation 2: Convergent Synthesis of Polyyynes by the Alkynylation/ Elimination of 1,1-Dibromoalk-1-en-3-ynes 99
 43.1.2.1.7 Method 7: Polyyne Formation from Carbenes and Carbenoids (Fritsch–Buttenberg–Wiechell Rearrangement) 100
 43.1.2.1.8 Method 8: Synthesis of Higher Polyyynes by Pyrolysis 104
 43.1.2.1.8.1 Variation 1: Flash-Vacuum Pyrolysis of Ethyl 3-Oxo-7-(4-tolyl)- 2-(triphenylphosphoranylidene)hepta-4,6-diyanoate 104
 43.1.2.1.8.2 Variation 2: Linear Polyyynes from Solution-Spray Flash-Vacuum Pyrolysis of Cyclobutene-1,2-diones ... 105
43.1.3 Product Subclass 3: Polyyne Fractions with Varying Numbers of Triple Bonds .. 105
 43.1.3.1 Synthesis of Product Subclass 3 .. 105
 43.1.3.1.1 Method 1: Laser Ablation of Carbon Particles in Suspension 105
 43.1.3.1.2 Method 2: Synthesis by Electric Arc Discharge 106
 43.1.3.1.3 Method 3: Synthesis of Polyyne Fractions from the Hydrolysis of Carbides .. 107
method 4: polydisperse α,ω-dicyanopolyyne fractions from electric arcing

43.2 product class 2: cyclic conjugated diynes, triynes, tetracynes, and polyynes

43.2.1 product subclass 1: cyclic conjugated diynes

43.2.1.1 synthesis of product subclass 1

43.2.1.1.1 oxidative homocoupling

43.2.1.1.1.1 variation 1: synthesis via oligomerization under standard conditions

43.2.1.1.1.2 variation 2: synthesis via oligomerization with addition of copper(i) chloride

43.2.1.1.1.3 variation 3: synthesis via oligomerization under oxygen-free conditions

43.2.1.1.1.4 variation 4: synthesis via oligomerization in acetonitrile

43.2.1.1.1.5 variation 5: stepwise synthesis under standard conditions

43.2.1.1.1.6 variation 6: stepwise synthesis with addition of copper(i) chloride

43.2.1.1.1.7 variation 7: stepwise synthesis under oxygen-free conditions

43.2.1.1.2 method 2: hay conditions with terminal alkynes

43.2.1.1.2.1 variation 1: synthesis via oligomerization

43.2.1.1.2.2 variation 2: stepwise synthesis

43.2.1.1.2.3 variation 3: synthesis via oligomerization under oxygen-free conditions

43.2.1.1.3 oxidative heterocoupling of terminal alkynes and bromoalkynes

43.2.1.1.3.1 method 1: cadiot–chodkiewicz conditions

43.2.1.1.3.2 variation 1: with pyridine as solvent

43.2.1.1.3.3 variation 2: under palladium catalysis

43.2.1.1.3.4 nucleophilic substitution

43.2.1.1.4 cumulene dimerization

43.2.1.1.4.1 method 1: dimerization under copper catalysis

43.2.1.1.4.2 method 2: dimerization without copper catalysis

43.2.1.1.4.3 method 3: 1,6-elimination from 1,6-dibromohexa-2,4-diyn

43.2.1.1.5 iodolactonization

43.2.1.1.6 applications of product subclass 1 in organic synthesis

43.2.1.1.6.1 method 1: reaction with sulfur

43.2.1.1.6.2 method 2: reaction with tetrachlorothiophene 1,1-dioxide

43.2.1.1.6.3 method 3: palladium-catalyzed enyne–diyne cross-benzannulation

43.2.1.1.6.4 method 4: hydrogenation
Table of Contents

43.2.1.2.5 Method 5: Reduction with a Trialkylborane .. 139
43.2.1.2.6 Method 6: Annulene Formation .. 139
43.2.1.2.7 Method 7: Radialene Formation .. 139
43.2.1.2.8 Method 8: Transannular Cyclization .. 140
43.2.1.2.8.1 Variation 1: With Potassium Hydroxide ... 140
43.2.1.2.8.2 Variation 2: With Potassium Hydroxide and Heat 140
43.2.1.2.8.3 Variation 3: With Sodium Bis(2-methoxyethoxy)aluminum Hydride 141

Method 6: Annulene Formation

43.2.1.2.8.4 Method 9: Annulene Formation .. 141

Method 7: Radialene Formation

43.2.1.2.8.5 Method 10: Radialene Formation .. 141

Method 8: Transannular Cyclization

43.2.1.2.8.6 Method 11: Transannular Cyclization ... 141

43.2.2 Method 2: Product Subclass 2: Cyclic Conjugated Triynes 141

43.2.2.2.1 Synthesis of Product Subclass 2 .. 141

43.2.2.2.1.1 Method 1: Nucleophilic Substitution .. 141

43.2.2.2.2 Method 3: Method 1: Reaction of Sodium Acetylides with Alkyl Bromides 142

43.2.2.3 Method 3: Product Subclass 3: Cyclic Conjugated Tetraynes 142

43.2.2.3.1 Synthesis of Product Subclass 3 .. 142

43.2.2.3.1.1 Method 1: Oxidative Homocoupling ... 142

43.2.2.3.2 Method 2: Method 1: Glaser–Eglinton Conditions 142

43.2.2.3.3 Method 4: Method 1: Fritsch–Buttenberg–Wiechell Conditions 143

43.2.4 Method 4: Product Subclass 4: Cyclic Conjugated Polyynes 144

43.2.4.1 Synthesis of Product Subclass 4 .. 144

43.2.4.1.1 Method 1: Method 1: Decarbonylation ... 144

43.2.4.1.2 Method 2: Method 2: Retro-Diels–Alder Reactions 145

43.2.4.1.3 Method 3: Method 3: Retro-[2 + 2] Reactions 145

43.2.4.1.4 Method 4: Method 4: [2 + 1]-Cheletropic Fragmentation 146

43.2.4.2 Applications of Product Subclass 4 in Organic Synthesis 146

43.2.4.2.1 Method 1: Method 1: Reaction with Furan ... 146

43.2.4.2.2 Method 2: Method 2: Fullerene Formation ... 147

43.3 Method 3: Product Class 3: Arynes

T. L. Gilchrist

43.3.1 Method 3: Product Class 3: Arynes .. 151

43.3.1.1 Method 3: Product Subclass 1: 1,2-Didehydroarenes and 1,2-Didehydrohetarenes 156

43.3.1.1.1 Synthesis of Product Subclass 1 .. 156

43.3.1.1.1.1 Method 1: Method 1: Elimination of Hydrogen 156

43.3.1.1.1.2 Method 2: Method 2: Elimination of a Hydrogen and a Halogen Function 156

43.3.1.1.1.3 Method 3: Method 3: Elimination of a Hydrogen and a Nitrogen Function 162

43.3.1.1.1.4 Method 4: Method 4: Elimination of a Hydrogen and an Oxygen Function 162

43.3.1.1.1.5 Method 5: Method 5: Elimination of a Hydrogen and a Sulfur or Selenium Function 163

43.3.1.1.1.6 Method 6: Method 6: Elimination of a Silicon and a Halogen Function 163

43.3.1.1.1.7 Method 7: Method 7: Elimination of a Silicon and an Oxygen Function 166

43.3.1.1.1.8 Method 8: Method 8: Elimination of Two Carbon Functions 168

43.3.1.1.1.9 Method 9: Method 9: Variation 1: From Benzocyclobutene-1,2-diones 168
43.3.1.8.2 Variation 2: From Phthalic Anhydrides 170
43.3.1.8.3 Variation 3: From Phthaloyl Peroxide 173
43.3.1.8.4 Variation 4: From 1H-2,3-Benzoxazin-1-ones 173
43.3.1.9 Method 9: Elimination of a Carbon and a Halogen Function 174
43.3.1.10 Method 10: Elimination of a Carbon and an Oxygen Function 175
43.3.1.11 Method 11: Elimination of a Carbon and a Nitrogen Function 175
43.3.1.11.1 Variation 1: From ortho-Diazoanilinocarboxylates 175
43.3.1.11.2 Variation 2: From ortho-(3,3-Dimethyltriaz-1-enyl)anilinocarboxylic Acids 177
43.3.1.12 Method 12: Elimination of Two Halogen Functions 178
43.3.1.12.1 Variation 1: From ortho-Haloarylmagnesium Halides 178
43.3.1.12.2 Variation 2: From ortho-Haloaryllithium Species 179
43.3.1.13 Method 13: Elimination of a Halogen and an Oxygen Function 181
43.3.1.13.1 Variation 1: From ortho-(Arylsulfonyloxy)arylcarboxylates 181
43.3.1.13.2 Variation 2: From ortho-Sulfonylarylcarboxylic Acids 183
43.3.1.14 Method 14: Elimination of a Halogen and a Sulfur Function 184
43.3.1.15 Method 15: Elimination of a Nitrogen and a Sulfur Function 184
43.3.1.16 Method 16: Elimination of Two Nitrogen Functions 185
43.3.1. Applications of Product Subclass 1 in Organic Synthesis 187
43.3.1.2.1 Method 1: Diels–Alder Reactions .. 188
43.3.1.2.2 Method 2: 1,3-Dipolar Cycloaddition Reactions 191
43.3.1.2.3 Method 3: [2 + 2]-Cycloaddition Reactions 194
43.3.1.2.4 Method 4: Ene Reactions .. 196
43.3.1.2.5 Method 5: Reactions with Nucleophiles 197
43.3.1.2.6 Method 6: Reactions Catalyzed by Palladium 203
43.3.2 Product Subclass 2: 1,3-Didehydroarenes and 1,3-Didehydrohetarenes 206
43.3.2.1 Synthesis of Product Subclass 2 ... 207
43.3.2.1.1 Method 1: Elimination of Two Carbon Functions 207
43.3.2.1.1.1 Variation 1: From Diacetyl Isophthaloyl Peroxide 207
43.3.2.1.2 Variation 2: From Cyclophanediones 208
43.3.2.1.2.2 Method 2: Elimination of Two Halogen Functions 208
43.3.2.1.3 Method 3: Elimination of Two Nitrogen Functions 209
43.3.2.1.4 Method 4: Routes Applicable to Specific meta-Arynes 209
43.3.2.1.4.1 Variation 1: Synthesis of 2-Chloro-1,3-didehydrophenanthrene by Elimination of Hydrogen and Halogen Functions 209
43.3.2.1.4.2 Variation 2: Synthesis of 2,4-Didehydrophenol by Elimination of a Carbon and a Nitrogen Function .. 210
43.3.2.1.4.3 Variation 3: Synthesis of 2-Phenyl-1,3-didehydrobenzene by Rearrangement .. 210
43.3.2.1.4.4 Variation 4: Synthesis of 1,8-Didehydrophenanthrene by Elimination of Two Nitrogen Functions .. 211
43.3.2.1.4.5 Variation 5: Synthesis of 1,2,3-Tridehydrobenzene by Elimination of One Halogen and Two Carbon Functions 211
43.3.2.1.4.6 Variation 6: Synthesis of Trifluoro-1,3,5-tridehydrobenzene by Elimination of Three Halogen Functions 212
43.3.3 Product Subclass 3: 1,4-Didehydroarenes and 1,4-Didehydrohetarenes 212
43.3.3.1 Synthesis of Product Subclass 3 ... 213
43.3.1.1 Method 1: Elimination of Two Carbon Functions 213
43.3.1.1.1 Variation 1: From Diacyl Terephthaloyl Peroxides 213
43.3.1.1.2 Variation 2: From Propellanes .. 213
43.3.1.2 Method 2: Elimination of Two Halogen Functions 214
43.3.1.3 Method 3: Rearrangement Reactions .. 215

43.4 Product Class 4: Linear Enynes
C. Burmester, O. Haß, and R. Faust

43.4.1 Synthesis of Product Class 4 .. 225
43.4.1.1 Method 1: Palladium-Catalyzed Cross-Coupling Reactions 225
43.4.1.1.1 Variation 1: Using Terminal Alkynes ... 225
43.4.1.1.2 Variation 2: Using Organoboron Compounds 228
43.4.1.1.3 Variation 3: Using Organomagnesium Compounds 230
43.4.1.1.4 Variation 4: Using Organotin Compounds 232
43.4.1.1.5 Variation 5: Using Organozinc Compounds 234
43.4.1.2 Method 2: Copper-Mediated Reactions .. 235
43.4.1.2.1 Variation 1: Copper(I) Catalysis with Terminal Alkynes 236
43.4.1.2.2 Variation 2: Starting from Vinylboranes 237
43.4.1.2.3 Variation 3: Starting from Other Vinyl Organometallic Compounds 239
43.4.1.2.4 Variation 4: Starting from Alkynylcopper Species 240
43.4.1.3 Method 3: Carbene Reactions .. 241
43.4.1.4 Method 4: Elimination Reactions To Form the Alkene 244
43.4.1.4.1 Variation 1: From Propargylic Systems 244
43.4.1.4.2 Variation 2: From Cyclic Carbonates ... 247
43.4.1.4.3 Variation 3: Coupling–Elimination Reactions 248
43.4.1.4.4 Variation 4: By Carbonyl Alkenation ... 249
43.4.1.4.5 Variation 5: From Silicon or Sulfur Compounds 252
43.4.1.5 Method 5: Elimination Reactions To Form the Alkyne 254
43.4.1.5.1 Variation 1: From 1,1-Dibromobutadienes 254
43.4.1.5.2 Variation 2: From Vinyl Sulfones ... 255
43.4.1.6 Method 6: Addition Reactions to Diynes 257
43.4.1.6.1 Variation 1: Addition of Complex Aluminum and Boron Hydrides 257
43.4.1.6.2 Variation 2: Hydrosilylation, Hydrostannylation, and Stannylation of Diynes ... 258
43.4.1.6.3 Variation 3: Hydroaminations, Hydrophosphinylation, and the Addition of Alcohols, Thiols, and Higher Group 16 Analogues 260
43.4.1.6.4 Variation 4: Addition of Carbon Fragments 263
43.4.1.7 Method 7: Synthesis from Heterocyclic Compounds 266
43.4.1.8 Method 8: Synthesis by Rearrangement 268
43.4.1.9 Method 9: Alkyne Dimerizations ... 273
43.4.1.9.1 Variation 1: Base-Induced Dimerizations 273
43.4.1.9.2 Variation 2: Transition-Metal-Catalyzed Alkyne Dimerizations 274
43.4.1.9.3 Variation 3: Rare Earth and Main Group Metal Catalyzed Dimerizations 279

Science of Synthesis Original Edition Volume 43
© Georg Thieme Verlag KG
43.5 Product Class 5: Cyclic Enynes
A. G. Fallis and M. S. Souweha

43.5 Product Class 5: Cyclic Enynes .. 289
43.5.1 Product Subclass 1: Cyclooctenyynes 290
43.5.1.1 Synthesis of Product Subclass 1 .. 290
43.5.1.1.1 Method 1: Alkyne Formation Post Ring Closure 290
43.5.1.1.1.1 Variation 1: Base-Mediated Cycloelimination Reaction 290
43.5.2 Product Subclass 2: Cyclononenynes 291
43.5.2.1 Synthesis of Product Subclass 2 .. 293
43.5.2.1.1 Method 1: Ring Closure by Alkynylmetal Condensations with Carbonyl Groups and Related Electrophiles 293
43.5.2.1.2 Method 2: Ring Closure by Condensation of Alkyne–Hexacarbonyldicobalt Complexes (Nicholas Reaction) 294
43.5.2.1.3 Method 3: Ring-Contraction Reactions 295
43.5.2.1.3.1 Variation 1: Wittig Rearrangement 295
43.5.2.1.3.2 Variation 2: Photochemical Sulfur Dioxide Extrusion 295
43.5.2.1.4 Method 4: Alkene Formation Post Ring Closure 296
43.5.2.1.4.1 Variation 1: Elimination Reactions with Base 296
43.5.2.1.4.2 Variation 2: Decomplexation Reactions 296
43.5.2.1.5 Method 5: Alkyne Formation Post Ring Closure 297
43.5.3 Product Subclass 3: Cyclodecenynes 297
43.5.3.1 Synthesis of Product Subclass 3 .. 298
43.5.3.1.1 Method 1: Base-Mediated Ring Closure by Alkynylmetal Condensations with Carbonyl Groups and Related Electrophiles 298
43.5.3.1.1.1 Variation 1: Aldol Condensation Reaction 301
43.5.3.1.1.2 Variation 2: Carbene Insertion–Elimination Reaction 302
43.5.3.1.1.3 Variation 3: Chromium(II) Chloride/Nickel(II) Chloride Condensation Reactions ... 302
43.5.3.1.1.4 Variation 4: Alkynyltrimethylsilane Condensations with Fluoride Ion ... 305
43.5.3.1.1.5 Variation 5: Condensations from Enol Ethers with a Lewis Acid ... 306
43.5.3.1.2 Method 2: Ring Closure by Condensation of Alkyne–Hexacarbonyldicobalt Complexes (Nicholas Reaction) 306
43.5.3.1.2.1 Variation 1: With In Situ Enolization 308
43.5.3.1.3 Method 3: Pinacol Ring-Closure Reactions 309
43.5.3.1.3.1 Variation 1: Pinacol Ring Closure–Alkene Formation 310
43.5.3.1.4 Method 4: Palladium Coupling Reactions 311
43.5.3.1.4.1 Variation 1: Double Palladium Coupling Reactions 312
43.5.3.1.5 Method 5: Ring-Contraction Reactions 313
43.5.3.1.5.1 Variation 1: Sulfur Dioxide Extrusion 313
43.5.3.1.6 Method 6: Intramolecular Diels–Alder Reactions 314
43.5.3.1.7 Method 7: Alkene Formation Post Ring Closure 315
43.5.3.1.7.1 Variation 1: Thermolysis Reactions 315
43.5.3.1.7.2 Variation 2: Enzyme-Mediated Reactions 316
43.5.3.1.7.3 Variation 3: Allylic Rearrangement Reactions 316
Variation 4: Dehydrogenation Reactions 317
Variation 5: Retro-Diels–Alder Reactions 317
Method 8: Alkyne Formation Post Ring Closure 318
Method 9: Ruthenium Coupling Reactions 318

Product Subclass 4: Cycloundecenynes 319

Synthesis of Product Subclass 4 ... 319

Method 1: Ring Closure by Alkynylmetal Condensations with Carbonyl Groups and Related Electrophiles 319
Variation 1: Chromium(II) Chloride/Nickel(II) Chloride Condensations 320
Method 2: Ring Closure by Condensation of Alkyne–Hexacarbonyl-dicobalt Complexes (Nicholas Reaction) 320
Method 3: Palladium Coupling Reactions 321
Method 4: Ring-Contraction Reactions 321
Variation 1: Sulfur Dioxide Extrusion 321
Variation 2: Sigmatropic Rearrangements 322
Method 5: Intramolecular Diels–Alder Reactions 323
Method 6: Alkene Formation Post Ring Closure 323
Variation 1: Thermolysis Reactions 323

Product Subclass 5: Cyclododecenynes 324

Synthesis of Product Subclass 5 .. 324

Method 1: Ring Closure by Chromium(II) Chloride/Nickel(II) Chloride Condensations ... 324
Method 2: Copper Coupling Reactions 325
Method 3: Ruthenium Coupling Reactions 326
Method 4: Ring-Contraction Reactions 326
Variation 1: Sulfur Dioxide Extrusion 326
Method 5: Alkene Formation Post Ring Closure 327
Variation 1: Thermolysis Reactions 327
Method 6: Alkyne Formation Post Ring Closure 327

Product Subclass 6: Cyclotridecenynes 328

Synthesis of Product Subclass 6 .. 328

Method 1: Ring-Contraction Reactions 328
Variation 1: Sulfur Dioxide Extrusion 328
Variation 2: Sigmatropic Rearrangement Reaction 328

Product Subclass 7: Cyclotetradecenynes 329

Synthesis of Product Subclass 7 .. 329

Method 1: Ring-Contraction Reactions 329
Variation 1: Sulfur Dioxide Extrusion 329
Method 2: Copper Coupling Reactions 329
Method 3: Ruthenium Coupling Reactions 330

Product Subclass 8: Cyclopentadecenynes 330

Synthesis of Product Subclass 8 .. 330

Method 1: Ring-Contraction Reactions 330
43.5.8.1.1 Variation 1: Sulfur Dioxide Extrusion .. 330
43.5.8.1.2 Method 2: Alkyne Formation Post Ring Closure 331
43.5.9 Product Subclass 9: Cyclohexadecenynes ... 331
43.5.9.1 Synthesis of Product Subclass 9 .. 331
43.5.9.1.1 Method 1: Ruthenium Coupling Reactions 331
43.5.9.1.2 Method 2: Ring-Contraction Reactions ... 332
43.5.10 Product Subclass 10: Cyclophanes and Annulenes with Enyne Bridge Components ... 332
43.5.10.1 Synthesis of Product Subclass 10 ... 332
43.5.10.1.1 Method 1: Copper Coupling Reactions 332
43.5.10.1.2 Method 2: Palladium Coupling Reactions 338
43.6 Product Class 6: Acyclic Arylalkynes
A. G. Griesbeck and A. Soldevilla

43.6.1 Product Class 6: Acyclic Arylalkynes .. 345
43.6.1.1 Synthesis of Product Class 6 ... 347
43.6.1.1.1 Synthesis from Metalated Arenes and Haloalkynes 347
43.6.1.1.2 Method 1: Cross Coupling of Aryl Cuprates and Haloalkynes 347
43.6.1.1.2 Method 2: Cross Coupling of Aryl Stannanes and Haloalkynes 348
43.6.1.2 Synthesis from Haloarenes and Metal Alkynides 349
43.6.1.2.1 Method 1: Palladium-Catalyzed Cross Coupling with Tin Alkynides 349
43.6.1.2.2 Method 2: Palladium-Catalyzed Cross Coupling with Zinc Alkynides ... 350
43.6.1.2.3 Method 3: Palladium-Catalyzed Cross Coupling with Copper Alkynides (The Stephens–Castro Reaction) ... 351
43.6.1.2.4 Method 4: Palladium-Catalyzed Cross Coupling with Silicon Alkynides 352
43.6.1.2.5 Method 5: Palladium-Catalyzed Cross Coupling with Aluminum Alkynides ... 353
43.6.1.2.6 Method 6: Palladium-Catalyzed Cross Coupling with Magnesium Alkynides (Kumada–Corriu-Type Coupling) 355
43.6.1.2.7 Method 7: Palladium-Catalyzed Cross Coupling with Boron Alkynides 355
43.6.1.3 Synthesis from Haloarenes and Terminal Alkynes 357
43.6.1.3.1 Method 1: Silver/Palladium-Catalyzed Cross Coupling of Haloarenes and Terminal Alkynes .. 357
43.6.1.3.2 Method 2: Indium/Palladium-Catalyzed Cross Coupling of Haloarenes and Terminal Alkynes ... 358
43.6.1.3.3 Method 3: Zinc/Palladium-Catalyzed Cross Coupling of Haloarenes and Terminal Alkynes .. 359
43.6.1.3.4 Method 4: Copper/Palladium-Catalyzed Cross Coupling of Haloarenes and Terminal Alkynes (The Sonogashira–Hagihara Cross-Coupling Reaction) .. 359
43.6.1.3.4.1 Variation 1: Sonogashira Cross-Coupling Reactions for Bromoarenes Using Specially Designed Ligands .. 361
Variation 2: Sonogashira Reaction under Microwave-Irradiation Conditions .. 362
Variation 3: Sonogashira Reaction under Phase-Transfer Conditions 363
Variation 4: Sonogashira Reactions in Water or Aqueous Mixtures of Solvents ... 364
Variation 5: Palladium-Catalyzed Cross Coupling (Copper-Free Sonogashira Reaction) ... 365
Variation 1: Domino Halogen-Exchange (Halex) and Copper-Free Sonogashira Reaction .. 368
Variation 2: Palladium-Catalyzed Cross Coupling in Water .. 369
Variation 3: Palladium-Catalyzed Cross Coupling in Ionic Liquids 370
Variation 4: Palladium-Catalyzed Coupling Using Palladium(0) Nanoparticles ... 371
Variation 5: Solvent-Free Palladium-Catalyzed Cross Coupling .. 372
Variation 6: Palladium-Catalyzed Cross Coupling Using Microwave Irradiation 373
Variation 7: Metal-Free Cross Coupling (Metal-Free Sonogashira Reaction) 374
Method 6: Metal-Free Cross Coupling .. 375
Method 1: Elimination of Arylalkanes .. 375
Variation 1: Halogenation Followed by Double Dehydrohalogenation .. 375
Variation 2: Benzylation Followed by Double Dehydrohalogenation .. 376
Method 2: Elimination from Vinylethene 376
Variation 1: 1,1-Dehydrohalogenation and 1,1-Dehalogenation .. 376
Method 3: Elimination from Cyclopropenones .. 377
Method 4: Elimination of Dinitrogen from Five-Membered Heterocycles 379
Method 5: Synthesis from Aromatic Aldehydes .. 380
Variation 1: Alkenylation and Subsequent Elimination .. 380
Variation 2: Corey–Fuchs Modification ... 381
Variation 3: Seyferth–Gilbert Modification .. 382
Variation 4: Bestmann–Ohira Modification .. 383
Synthesis by Metathesis Reactions .. 385
Variation 1: Alkyne Homodimerization .. 385
Variation 2: Alkyne Cross Metathesis .. 386
Variation 3: Ring-Closure Alkyne Metathesis .. 386
Variation 4: Acyclic Diyne Metathesis .. 387

Product Class 7: Cyclic Arylalkynes
Y. Tobe and R. Umeda

Product Class 7: Cyclic Arylalkynes .. 393
Synthesis of Product Class 7 .. 393
Formation of Triple-Bond-Containing Rings by C–C Bond Formation .. 393
Method 1: Formation of C(sp³)–C(sp³) Bonds by Wurtz-Type Coupling Reactions .. 393
Method 2: Formation of $\text{C}(\text{sp}^3) \rightarrow \text{C}(\text{sp}^3)$ Bonds by Nucleophilic Substitution
Reactions of Metal Acetylides with Haloalkanes

Method 3: Formation of $\text{C}(\text{sp}^2) \rightarrow \text{C}(\text{sp}^2)$ Bonds by Copper(II)-Catalyzed Coupling Reactions of Aryllithiums

Method 4: Formation of $\text{C}(\text{sp}^2) \rightarrow \text{C}(\text{sp})$ Bonds by Transition-Metal-Catalyzed Cross-Coupling Reactions

Method 5: Formation of $\text{C}(\text{sp}) \rightarrow \text{C}(\text{sp})$ Bonds by Transition-Metal-Mediated Oxidative Coupling Reactions

Variation 1: Stephens–Castro Reactions of Copper(I) Acetylides with Aryl and Vinyl Halides

Variation 2: Copper(I)-Catalyzed Coupling of Acetylenes with Aryl Halides

Variation 3: Hagihara–Sonogashira Reactions of Acetylenes with Aryl and Vinyl Halides

Variation 4: Palladium(0)-Catalyzed Cross-Coupling Reactions of Acetylenes with Vinyl Trifluoromethanesulfonates

Variation 5: In Situ Deprotection–Palladium(0)-Catalyzed Cross-Coupling Reactions

Variation 6: Preparation of Macroyclic Arylacetylenes Using Covalently Bound Templates

Variation 7: Palladium(0)-Catalyzed Cross Coupling of Terminal Alkynes with Bromoalkynes

Method 6: Alkyne Metathesis

Method 7: Cycloaddition Reaction of Cumulenic Quinodimethanes

Formation of Triple-Bond-Containing Rings by Elimination Reactions

Method 1: Double Dehydrohalogenation Reactions

Method 2: Double Elimination Reactions of $/C^2\text{S}_2$-Substituted Sulfones

Method 3: Oxidative Fragmentation of Bishydrazones

Formation of Aromatic Rings

Method 1: Metal-Catalyzed Cyclotrimerizations

Method 2: Palladium(0)-Catalyzed Enyne–Diyne [4 + 2] Cross Benzannulation

Method 3: Valence Isomerization
Product Class 8: Linear Alkynes

Synthesis by Elimination
S. Sankararaman

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>43.8.1</td>
<td>1,2-Elimination</td>
<td>435</td>
</tr>
<tr>
<td>43.8.1.1</td>
<td>Method 1: Dehydrogenation of Alkanes and Alkenes</td>
<td>435</td>
</tr>
<tr>
<td>43.8.1.2</td>
<td>Method 2: Dehydrohalogenation of Vicinal Dihaloalkanes</td>
<td>437</td>
</tr>
<tr>
<td>43.8.1.3</td>
<td>Method 3: Elimination Reactions of Heteroatom-Substituted Vinyl Derivatives</td>
<td>438</td>
</tr>
<tr>
<td>43.8.1.4</td>
<td>Method 4: Elimination of Vicinal Heteroatom Groups</td>
<td>441</td>
</tr>
<tr>
<td>43.8.1.2</td>
<td>1,1-Elimination</td>
<td>442</td>
</tr>
<tr>
<td>43.8.1.2.1</td>
<td>Method 1: Dehalogenation of 1,1-Dihaloalkenes (Corey–Fuchs Reaction)</td>
<td>442</td>
</tr>
<tr>
<td>43.8.1.2.1.1</td>
<td>Variation 1: Normal Corey–Fuchs Reactions</td>
<td>442</td>
</tr>
<tr>
<td>43.8.1.2.1.2</td>
<td>Variation 2: Modified Corey–Fuchs Reactions</td>
<td>444</td>
</tr>
<tr>
<td>43.8.1.2.2</td>
<td>Method 2: Rearrangement of Vinyl Carbenoids (Fritsch–Buttenburg–Wiechell Rearrangement)</td>
<td>445</td>
</tr>
<tr>
<td>43.8.1.3</td>
<td>Thermolytic Elimination</td>
<td>447</td>
</tr>
<tr>
<td>43.8.1.3.1</td>
<td>Method 1: Elimination Reactions of Vinyl Selenoxides</td>
<td>447</td>
</tr>
<tr>
<td>43.8.1.3.2</td>
<td>Method 2: Elimination Reactions of Thiirene Dioxides (Ramberg–Bäcklund Reaction), Phosphirene Oxides, and α-Oxo Ylides</td>
<td>448</td>
</tr>
<tr>
<td>43.8.1.3.3</td>
<td>Method 3: Elimination Reactions of Cyclic 1,2,3-Selenadiazoles</td>
<td>450</td>
</tr>
<tr>
<td>43.8.1.4</td>
<td>Photolytic Elimination</td>
<td>451</td>
</tr>
<tr>
<td>43.8.1.4.1</td>
<td>Method 1: Cycloreversion of Fused Benzocyclobutene Derivatives</td>
<td>451</td>
</tr>
<tr>
<td>43.8.1.4.2</td>
<td>Method 2: Elimination of Carbon Monoxide from Cyclopropenone and Cyclobutenediene Derivatives</td>
<td>452</td>
</tr>
<tr>
<td>43.8.1.5</td>
<td>Double Elimination Reactions of 1,2-Disubstituted Motifs from Aldol-Type Condensations</td>
<td>454</td>
</tr>
<tr>
<td>43.8.1.5.1</td>
<td>Method 1: Wittig Reactions of (Halomethylene)phosphoranes and (Halomethyl)phosphonates</td>
<td>454</td>
</tr>
<tr>
<td>43.8.1.5.1.1</td>
<td>Variation 1: Wittig Reactions of (α-Halomethylene)phosphoranes</td>
<td>454</td>
</tr>
<tr>
<td>43.8.1.5.1.2</td>
<td>Variation 2: Wittig Reactions of (Halomethyl)phosphonates</td>
<td>455</td>
</tr>
<tr>
<td>43.8.1.5.2</td>
<td>Method 2: Synthesis Using α-Diazo β-Oxo Phosphonates (Bestmann–Ohira Reagent)</td>
<td>456</td>
</tr>
<tr>
<td>43.8.1.5.2.1</td>
<td>Variation 1: One-Pot Oxidation of Benzyl Alcohols and Subsequent Treatment with the Bestmann–Ohira Reagent</td>
<td>458</td>
</tr>
<tr>
<td>43.8.1.5.2.2</td>
<td>Variation 2: Reaction Using a Gel-Supported Bestmann–Ohira Reagent</td>
<td>459</td>
</tr>
<tr>
<td>43.8.1.5.3</td>
<td>Method 3: Aldol Condensation of α-Sulfonyl Anions with Aldehydes, Followed by Double Elimination</td>
<td>461</td>
</tr>
<tr>
<td>43.8.1.5.3.1</td>
<td>Variation 1: Double Elimination of Acetoxy and Siloxy Derivatives</td>
<td>461</td>
</tr>
<tr>
<td>43.8.1.5.3.2</td>
<td>Variation 2: Double Elimination Involving Peterson Elimination</td>
<td>461</td>
</tr>
</tbody>
</table>
43.8.1.5.3.3 Variation 3: Double Elimination Using a Chlorophosphonate as a Trapping Agent ... 462

43.8.1.6 Oxidative Elimination ... 463

43.8.1.6.1 Method 1: Oxidative Elimination of 1,2-Bis(hydrazones) 463
43.8.1.6.2 Method 2: Oxidative Elimination of Vinylstannanes 465

43.8.2 Synthesis by Rearrangement
A. Krueger

43.8.2 Synthesis by Rearrangement ... 469

43.8.2.1 Thermal Rearrangements ... 469

43.8.2.1.1 Method 1: Thermal Isomerization of Cyclopropenes 469
43.8.2.1.2 Method 2: Cope and Claisen Rearrangements and Related Reactions ... 471
43.8.2.1.3 Method 3: Ene Reaction and Related Conversions 476
43.8.2.1.4 Method 4: Rearrangement of Alkylidenecarbenes 478
43.8.2.1.5 Method 5: Fritsch–Buttenberg–Wiechell Rearrangement and Related Carbenoid Reactions ... 483

43.8.2.1.5.1 Variation 1: Fritsch–Buttenberg–Wiechell Rearrangement of 1-Haloalkenes and 1,1-Dihaloalkenes 483
43.8.2.1.5.2 Variation 2: Photo-Fritsch–Buttenberg–Wiechell Rearrangement 486
43.8.2.1.5.3 Variation 3: Electrochemical-Fritsch–Buttenberg–Wiechell Rearrangement ... 487
43.8.2.1.5.4 Variation 4: Carbenoid Rearrangement of Other Metalated Species 488
43.8.2.1.5.5 Variation 5: Carbenoid Rearrangements of α-Halo-π-β,γ-diarylacrylic Acids and α-Halocinnamic Acids ... 489
43.8.2.1.5.6 Variation 6: Carbenoid Rearrangement of 3-Nitrosooxazolidin-2-ones and Related Compounds ... 491
43.8.2.1.5.7 Variation 7: Carbenoid Rearrangement of 5-Methyltetrazoles 492
43.8.2.1.5.8 Variation 8: Carbenoid Rearrangement of Ketene Adducts with Phosphites 493
43.8.2.1.6 Method 6: Miscellaneous Thermal Rearrangements 493
43.8.2.1.6.1 Variation 1: Alkynes by a Hydrogen-Shift Reaction 493
43.8.2.1.6.2 Variation 2: Alkynes by Retro-Diels–Alder Reaction 494
43.8.2.1.6.3 Variation 3: Alkynes by [2,3]-Sigmatropic Rearrangement 495
43.8.2.2 Photochemical Rearrangements ... 495

43.8.2.2.1 Method 1: Photochemical Rearrangement of Allenes 495
43.8.2.2.2 Method 2: Photochemical Vinylidenecarbene Rearrangements 497
43.8.2.2.3 Method 3: Photochemical Rearrangement of Cyclopropenes 498
43.8.2.2.4 Method 4: Formal Cycloreversion of Cyclobutenes 499

43.8.2.3 Base-Catalyzed Rearrangements ... 500

43.8.2.3.1 Method 1: Alk-2-ynes by Base-Catalyzed Rearrangement of Alk-1-ynes 500
43.8.2.3.2 Method 2: Alk-1-ynes by Base-Catalyzed Rearrangement of Internal Alkynes ... 503
43.8.2.3.3 Method 3: Base-Catalyzed Rearrangement of Internal Alkynes 506
43.8.2.3.4 Method 4: Base-Catalyzed Rearrangement of Allenes 507
43.8.2.4 Acid-Catalyzed Rearrangements ... 509
43.8.2.4.1 Method 1: Acid-Catalyzed Rearrangement of Alkynes and Allenes 510
43.8.2.4.2 Method 2: Dienol–Benzene and Dienone–Benzene Rearrangements 511
43.8.2.4.3 Method 3: Anomeric Oxygen-to-Carbon Rearrangement of Alkynyltributylstannanes 514
43.8.2.5 Metal-Catalyzed Rearrangements 516
43.8.2.5.1 Method 1: Alkyne Metathesis 516
43.8.2.5.2 Method 2: Gold-Catalyzed Rearrangements 524
43.8.2.5.3 Method 3: Tandem Zinc-Promoted Brook Rearrangement and Ene–Allene Cyclization 525
43.8.2.5.4 Method 4: Metal-Catalyzed Rearrangements with Other Metals 527
43.8.2.6 Coarctate Rearrangements 532
43.8.2.6.1 Method 1: Diazirine Rearrangement 533
43.8.2.6.2 Method 2: Spiroozonide Conversion 533
43.8.2.6.3 Method 3: Rearrangement of Cyclopropylcarbenes 534
43.8.2.6.4 Method 4: The Eschenmoser–Tanabe Fragmentation of Epoxy Ketones 537
43.8.2.6.5 Method 5: Fragmentation of 1,3,4-Oxadiazolidin-2-ones 543
43.8.2.6.6 Method 6: Cyclopropenylcarbene Fragmentation 544
43.8.2.6.7 Method 7: Furfurylidene Rearrangement 546
43.8.2.6.7 Method 7: Metal-Catalyzed Rearrangements 547
43.8.3 Synthesis from Other Alkynes
R. A. Aitken and K. Aitken

43.8.3.1 Conversion into an Alkynylmetal Followed by Reaction with an Electrophile 555
43.8.3.1.1 Method 1: Reaction of an Alkynyllithium with an Alkyl Halide or Equivalent 555
43.8.3.1.1.1 Variation 1: With a Chloroalkane 555
43.8.3.1.1.2 Variation 2: With a Bromoalkane 558
43.8.3.1.1.3 Variation 3: With an Iodoalkane 569
43.8.3.1.1.4 Variation 4: With a Dialkyl Sulfate 577
43.8.3.1.1.5 Variation 5: With an Alkyl Methanesulfonate 578
43.8.3.1.1.6 Variation 6: With an Alkyl Arenesulfonate 579
43.8.3.1.1.7 Variation 7: With an Alkyl Trifluormethanesulfonate 581
43.8.3.1.1.8 Variation 8: With an Alkylation Ester or Carbonate 582
43.8.3.1.1.9 Variation 9: With an Alcohol 583
43.8.3.1.1.10 Variation 10: With a Trialkylborane 583
43.8.3.1.1.11 Variation 11: With an Alkytlzirconium Reagent 585
43.8.3.1.2 Method 2: Reaction of an Alkynylsodium with an Alkyl Halide or Equivalent 586
43.8.3.1.2.1 Variation 1: With a Chloroalkane 586
43.8.3.1.2.2 Variation 2: With a Bromoalkane 586
43.8.3.1.2.3 Variation 3: With an Iodoalkane 589
43.8.3.1.2.4 Variation 4: With a Dialkyl Sulfate 590
43.8.3.1.2.5 Variation 5: With an Alkyl Arenesulfonate 591
43.8.3.1.3 Method 3: Reaction of an Alkynylpotassium with an Alkyl Halide or Equivalent .. 591
43.8.3.1.4 Method 4: Reaction of an Alkynyl Grignard Reagent with an Alkyl Halide or Equivalent .. 591
43.8.3.1.4.1 Variation 1: With a Chloroalkane ... 591
43.8.3.1.4.2 Variation 2: With a Bromoalkane 593
43.8.3.1.4.3 Variation 3: With an Iodoalkane .. 594
43.8.3.1.4.4 Variation 4: With a Dialkyl Sulfate ... 595
43.8.3.1.4.5 Variation 5: With an Alkyl Methanesulfonate 596
43.8.3.1.4.6 Variation 6: With an Alkyl Arenesulfonate 597
43.8.3.1.4.7 Variation 7: With an Allyl Ester .. 597
43.8.3.1.4.8 Variation 8: With an Alkylzirconium Reagent 598
43.8.3.1.5 Method 5: Reaction of an Alkynylcalcium with an Alkyl Halide or Equivalent .. 599
43.8.3.1.6 Method 6: Reaction of an Alkynylbarium with an Alkyl Halide or Equivalent .. 599
43.8.3.1.7 Method 7: Palladium/Copper-Catalyzed Reaction of an Alk-1-yne with an Alkyl Halide or Equivalent .. 599
43.8.3.1.7.1 Variation 1: With a Chloroalkane ... 599
43.8.3.1.7.2 Variation 2: With a Bromoalkane 601
43.8.3.1.7.3 Variation 3: With an Iodoalkane .. 605
43.8.3.1.7.4 Variation 4: With an Alkyl Methanesulfonate 605
43.8.3.1.7.5 Variation 5: With an Alkyl Arenesulfonate 606
43.8.3.1.7.6 Variation 6: With a Trialkylborane 606
43.8.3.1.8 Method 8: Reaction of an Alkynylcopper with an Alkyl Halide or Equivalent .. 606
43.8.3.1.8.1 Variation 1: With a Bromoalkane 606
43.8.3.1.9 Method 9: Reaction of an Alkynylmercury with an Alkyl Halide or Equivalent .. 607
43.8.3.1.9.1 Variation 1: With a Bromoalkane 607
43.8.3.1.9.2 Variation 2: With an Iodoalkane .. 607
43.8.3.1.10 Method 10: Reaction of an Alkynylboron Reagent with an Alkyl Halide or Equivalent .. 607
43.8.3.1.11 Method 11: Reaction of an Alkynylaluminum Reagent with an Alkyl Halide or Equivalent .. 608
43.8.3.1.11.1 Variation 1: With a Chloroalkane ... 608
43.8.3.1.11.2 Variation 2: With a Bromoalkane 609
43.8.3.1.11.3 Variation 3: With an Alkyl Methanesulfonate 609
43.8.3.1.11.4 Variation 4: With an Alkyl Phenyl Sulfone 609
43.8.3.1.11.5 Variation 5: With a Propiolactone 610
43.8.3.1.12 Method 12: Reaction of a (Trialkylsilyl)alkyne with an Alkyl Halide or Equivalent .. 611
43.8.3.1.12.1 Variation 1: With a Chloroalkane ... 611
43.8.3.1.13 Method 13: Reaction of an Alkynyllithium with an Allene or Other Alkene .. 611
43.8.3.1.13.1 Variation 1: With a Bromoallene 611
43.8.3.2 Nucleophilic Substitution by an Organometallic Reagent at an Alkyne Derivative .. 612
43.8.3.2.1 Method 1: Reaction of a Chloroalkyne with an Organometallic Reagent .. 612
43.8.3.2.1.1 Variation 1: With a Silyl Enol Ether .. 612
43.8.3.2.1.2 Variation 2: With an Organozirconium Reagent 612
43.8.3.2.2 Method 2: Reaction of a Bromoalkyne with an Organometallic Reagent 613
43.8.3.2.2.1 Variation 1: With a Grignard Reagent 613
43.8.3.2.2.2 Variation 2: With an Organozinc Reagent 613
43.8.3.2.2.3 Variation 3: With a Trialkylaluminum Reagent 616
43.8.3.2.2.4 Variation 4: With an Organozirconium Reagent 617
43.8.3.2.3 Method 3: Reaction of an Iodoalkyne with an Organometallic Reagent 617
43.8.3.2.3.1 Variation 1: With a Grignard Reagent 617
43.8.3.2.3.2 Variation 2: With an Organozinc Reagent 618
43.8.3.2.3.3 Variation 3: With an Organocopper Reagent 618
43.8.3.2.3.4 Variation 4: With an Organozirconium Reagent 619
43.8.3.2.4 Method 4: Reaction of an Alkynyl Aryl Sulfone with an Alkylithium 620
43.8.3.3 Reactions Involving neither Electrophilic nor Nucleophilic Attack 620
43.8.3.3.1 Method 1: Reaction of an Alkynyl Trifluoromethyl Sulfone with an Alkane 620
43.8.3.3.2 Method 2: Reaction of an Alkynyl Phenyl Sulfone with
a β-Alkylcatecholborane .. 621
43.8.3.3.3 Method 3: Ruthenium-Catalyzed Reaction of an Alkyne with a 1,3-Diene 622
43.8.3.3.4 Method 4: Nickel-Catalyzed Reaction of an Alkyne with an Allyl Ester 622
43.8.3.3.5 Method 5: Palladium-Catalyzed Oxidative Coupling of an Alkynyl-
stannane Reagent with an Alkylzinc Reagent 623

43.9 Product Class 9: Cycloalkynes
R. Gleiter and D. B. Werz

43.9.1 Synthesis of Product Class 9 ... 631
43.9.1.1 Method 1: Ring-Closure Reactions 631
43.9.1.1.1 Variation 1: Using sp-Carbon Nucleophiles 631
43.9.1.1.2 Variation 2: Using sp3-Carbon Nucleophiles 634
43.9.1.1.3 Variation 3: Using Chalcogen Nucleophiles 638
43.9.1.1.4 Variation 4: Using Nitrogen Nucleophiles 639
43.9.1.1.5 Variation 5: Alkyne Metathesis .. 644
43.9.1.2 Method 2: Elimination and Fragmentation Reactions 648
43.9.1.2.1 Variation 1: 1,2-Elimination Reactions 648
43.9.1.2.2 Variation 2: Cycloelimination Reactions 653
43.9.1.2.3 Variation 3: Eschenmoser Fragmentation 656
43.9.1.3 Method 3: Isomerization Reactions 657
43.9.1.3.1 Variation 1: Pericyclic Ring-Opening Reactions 657
43.9.1.4 Method 4: Ring-Enlargement Reactions 658
43.9.1.4.1 Variation 1: Fritsch–Buttenberg–Wiechell Rearrangement 658
43.9.1.4.2 Variation 2: Carbene Reactions .. 658
43.9.1.5 Method 5: Decomplexation Reactions 660
43.9.1.5.1 Variation 1: Cleavage of Hexacarbonyldicobalt Complexes 660
43.9.2 Applications of Product Class 9 in Organic Synthesis 661
43.9.2.1 Method 1: Reactions of Cyclic Alkynes with Organometallic Reagents 661
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>43.9.2.1</td>
<td>Variation 1: Reactions of Cyclic Alkynes with ((\eta^5\text{-Cyclopentadienyl})\text{cobalt(I)})</td>
<td>661</td>
</tr>
<tr>
<td>43.9.2.2</td>
<td>Variation 2: Reactions of Cyclic Alkynes with Aluminum Trichloride</td>
<td>663</td>
</tr>
</tbody>
</table>

Keyword Index .. 669
Author Index .. 707
Abbreviations ... 739
Volume 44: Cumulenes and Allenes

Preface ... V
Volume Editor’s Preface .. VII
Table of Contents .. XI

Introduction
N. Krause ... 1

44.1 Product Class 1: Cumulenes
M. Ogasawara .. 9

44.2 Product Class 2: Linear Allenes

44.2.1 Synthesis by Substitution
H. Ohno and K. Tomioka .. 71

44.2.2 Synthesis by Elimination
V. Gandon and M. Malacria 175

44.2.3 Synthesis by Addition
K. K. Wang .. 229

44.2.4 Synthesis by Rearrangement
A. S. K. Hashmi .. 287

44.2.5 Synthesis from Other Allenes
H.-U. Reissig and R. Zimmer 301

44.2.6 Applications of Allenes in Organic Synthesis
M. A. Tius .. 353

44.3 Product Class 3: Cyclic Allenes
T. Kawase .. 395

Keyword Index ... 451
Author Index .. 485
Abbreviations ... 503
Table of Contents

Introduction
N. Krause

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
</table>
| 44.1 | **Product Class 1: Cumulenes**
M. Ogasawara | 9 |
| 44.1.1 | **Product Subclass 1: [6]- and Higher Cumulenes** | 10 |
| 44.1.1.1 | Synthesis of Product Subclass 1 | 10 |
| 44.1.1.1.1 | Synthesis by Elimination | 10 |
| 44.1.1.1.1.1 | Method 1: Reduction of α,ω-Dihydroxypolynes | 10 |
| 44.1.1.1.1.2 | Method 2: Double Elimination of Methanol from 1,7-Dimethoxyhepta-2,4-diynes | 11 |
| 44.1.1.1.2 | Synthesis Mediated by Carbene Species | 12 |
| 44.1.1.1.1.1 | Method 1: Dimerization of Allenylidene Species | 12 |
| 44.1.1.1.1.2 | Variation 1: Dimerization of Allenylidene Species Generated from Propargylic Precursors | 15 |
| 44.1.1.1.2.1.2 | Variation 2: Dimerization of Allenylidene Species Generated from Bromoallenes | 17 |
| 44.1.1.1.2.1.3 | Variation 3: Dimerization of Allenylidene–Chromium Species | 17 |
| 44.1.1.2 | Synthesis Mediated by Carbene Species | 18 |
| 44.1.1.2.1 | Method 1: Dimerization of Allenylidene Species | 18 |
| 44.1.1.2.2 | Method 2: Trapping of Hexapentaenylidene Species | 18 |
| 44.1.3 | **Product Subclass 3: Pentatetraenes ([4]Cumulenes)** | 18 |
| 44.1.3.1 | Synthesis of Product Subclass 3 | 18 |
| 44.1.3.1.1 | Synthesis by Substitution | 18 |
| 44.1.3.1.1.1 | Method 1: Lithiation and Silylation of Hexa-2,4-diynes | 18 |
| 44.1.3.1.2 | Method 2: S_N2'' Substitution on Penta-2,4-diynyl Esters | 19 |
| 44.1.3.1.2 | Synthesis by Elimination | 20 |
| 44.1.3.1.2.1 | Method 1: Double Dehydrobromination of 2,4-Dibromopenta-1,4-diienes | 20 |
| 44.1.3.1.2.2 | Method 2: 1,2- and 1,4-Elimination from 5-Methoxypent-2-yn-1-ols | 20 |
Method 3: Oxidation of Hexapentaenes Followed by Carbon Monoxide Elimination

Method 4: Reductive 1,4-Dechlorination of a 2,5-Dichloropent-1-en-3-yne

Method 5: 1,1-Dehalogenation and Rearrangement of 1,1-Dihalocyclopropanes

Method 6: Sulfur Elimination from Penta-1,2,3,4-tetraene Episulfides

Method 7: Wittig Reaction

Variation 1: Wittig Reaction of Carbon Suboxide with Alkylidenephosphoranes

Variation 2: Wittig Reaction of Alka-2,3-dienoyl Chlorides with Alkylidenephosphoranes

Method 8: Retro-Diels–Alder Reaction

Product Subclass 4: Butatrienes ([3]Cumulenes)

Synthesis of Product Subclass 4

Synthesis by Substitution

Method 1: S_n2" Substitution on Pent-4-en-2-ynyl Derivatives and Related Reactions

Variation 1: On Pent-4-en-2-ynyl Methanesulfonates with Alkylsilver(I) Reagents

Variation 2: On 2-(But-3-en-1-ynyl)oxiranes with Alkylsilver(I) Reagents

Variation 3: Reduction of Alka-4,5-dien-2-ynols or Related Alcohols by Lithium Aluminum Hydride

Method 2: S_n2 Substitution on 2-Bromo-1-en-3-ynes

Variation 1: With Alkylcopper Reagents

Variation 2: With Soft Carbon Nucleophiles Catalyzed by a Palladium Complex

Method 3: Synthesis of Phosphinobutatrienes from 2-Vinyl-1H-phosphirenes and Alkylolithium Reagents

Method 4: Pyrolysis of Hexakis(trimethylsilyl)but-2-yne

Method 5: Dehalogenation

Variation 1: 1,4-Dehalogenation of 1,4-Dihaloalk-2-ynes

Variation 2: 1,2-Dehalogenation of 2,3-Dihaloalk-2-ynes
44.1.4.1.2.6 Method 6: 1,1-Dehalogenation and Rearrangement of 2-Alkenylidene-1,1-dihalocyclopropanes ... 40
44.1.4.1.2.7 Method 7: Dehydroxylation of Alk-2-yne-1,4-diols 41
44.1.4.1.2.8 Method 8: 1,4-Elimination from 4-Hydroxybut-2-ynylsilanes or -stannanes 42
44.1.4.1.2.8.1 Variation 1: From 4-Hydroxybut-2-ynylsilanes 42
44.1.4.1.2.8.2 Variation 2: From 4-Hydroxybut-2-ynylstannanes 44
44.1.4.1.2.9 Method 9: Desulfurization of Cyclic Thithiocarbonates 44
44.1.4.1.2.10 Method 10: Sulfur Elimination from Alkylidenecyclopropanethiones 45
44.1.4.1.2.11 Method 11: Wittig and Related Reactions 46
44.1.4.1.2.11.1 Variation 1: Wittig Reaction of Aldehydes or Ketones with Allenylidene phosphoranes ... 46
44.1.4.1.2.11.2 Variation 2: Double Wittig Reaction of a Phosphorus Diylide with an Aldehyde ... 47
44.1.4.1.2.11.3 Variation 3: Horner–Emmons-Type Reactions of Aldehydes or Ketones 48
44.1.4.1.2.11.4 Variation 4: Wittig Reaction of a Ketene with a Vinylidene phosphorane 49
44.1.4.1.2.12 Method 12: Base-Induced Borane Elimination from Bis(1-iodoalkenyl)boranes ... 50
44.1.4.1.2.13 Method 13: Retro-Diels–Alder Reactions 50
44.1.4.1.2.14 Method 14: Thermal Decomposition of a Disodium Salt of a Cyclobutane-1,3-dione Bis(tosylhydrazone) ... 51
44.1.4.1.3 Synthesis by Addition ... 51
44.1.4.1.3.1 Method 1: Electrophilic 1,4-Addition to 1,3-Diynes 51
44.1.4.1.3.2 Method 2: 1,4-Disilylation of 1,4-Disilyl-1,3-diynes 52
44.1.4.1.3.2.1 Variation 1: 1,4-Disilylation of 1,4-Disilyl-1,3-diynes by a Silylmanganese Reagent 52
44.1.4.1.3.2.2 Variation 2: Palladium-Catalyzed 1,4-Disilylation of 1,4-Disilyl-1,3-diynes 53
44.1.4.1.3.3 Method 3: Palladium-Catalyzed Double Arylation of 1,4-Diaryl-1,3-diynes 54
44.1.4.1.3.4 Method 4: 1,6-Addition of Bromine to 1,5-Dien-3-ynes 54
44.1.4.1.4 Synthesis by Rearrangement .. 55
44.1.4.1.4.1 Method 1: Base-Promoted Rearrangement of a Conjugated Bisallene to an Alkenylbutatriene ... 55
44.1.4.1.4.2 Method 2: Photorearrangement of Vinylidene cyclopropanes to Butatriene Derivatives ... 55
44.1.4.1.5 Synthesis Mediated by Carbene Species .. 56
44.1.4.1.5.1 Method 1: Dimerization of Vinylidene Species or Vinylidene Equivalents Generated from gem-Dihaloalkenes ... 56
44.1.4.1.5.1.1 Variation 1: Dimerization of Vinylidene Species or Vinylidene Equivalents Generated from gem-Dihaloalkenes ... 56
44.1.4.1.5.1.2 Variation 2: Dimerization of Vinylidene Species or Vinylidene Equivalents Generated from 1-Halo-1-hydroalkenes ... 57
44.1.4.1.5.1.3 Variation 3: Formation of a Butatriene from 2-Nitro-1,1-diphenylethene 58
44.1.4.1.5.1.4 Variation 4: Dimerization of Allenylidene Species Generated from Dialkenylcuprates ... 59
44.1.4.1.5.1.5 Variation 5: Desulfurization–Dimerization of Dithioacetals with Hexacarbonyltungsten(0) ... 59
44.1.4.1.5.1.6 Variation 6: Dimerization of Vinylidene–Tungsten Species 59
44.1.4.1.5.2 Method 2: Reactions Involving Allenylidene Species 60
44.1.4.1.5.2.1 Variation 1: Reactions of Allenylidene Species with Diazoalkanes 60
44.1.4.1.5.2.2 Variation 2: Reactions of Allenylidene–Rhodium Complexes with
Diazomethane .. 60
44.1.4.1.5.3 Method 3: Reactions of 1,2,3-Trienyldene Species 61
44.1.4.1.5.3.1 Variation 1: Reactions of 1,2,3-Trienyldene Species with Alkenes 61
44.1.4.1.5.3.2 Variation 2: Reactions of 1,2,3-Trienyldene Species with Group 14 Hydrides ... 61
44.1.4.1.6 Other Methods for the Synthesis of Butatrienes .. 62
44.1.4.1.6.1 Method 1: Dimerization of Terminal Alkynes by Transition-Metal Catalysts ... 62
44.1.4.1.6.2 Method 2: Coupling Reactions between 1,1-Dichloroalkenes and
Terminal Alkenes ... 64
44.1.4.1.6.3 Method 3: Zirconium-Mediated Coupling Reactions of 1,3-Dienes with
Aldehydes or Ketones .. 64
44.1.4.1.6.3.1 Variation 1: Reactions of Zirconacycles with Aldehydes To Form
Butatrienyl Monoalcohols ... 64
44.1.4.1.6.3.2 Variation 2: Reactions of Zirconacycles with Ketones To Form
Butatrienyl Diols .. 65

44.2 Product Class 2: Linear Allenes

44.2.1 Synthesis by Substitution
H. Ohno and K. Tomioka

44.2.1 Synthesis by Substitution ... 71
44.2.1.1 Method 1: Organocopper-Mediated Reactions of Propargylic and
Related Substrates .. 71
44.2.1.1.1 Variation 1: Reactions of Various Propargylic Substrates 75
44.2.1.1.2 Variation 2: Reactions Using Various Copper Nucleophiles 81
44.2.1.1.3 Variation 3: Synthesis of Enantiomerically Enriched Allenes 83
44.2.1.1.4 Variation 4: Ring-Opening Reactions ... 94
44.2.1.1.5 Variation 5: 1,5-Substitution Reactions ... 100
44.2.1.1.6 Variation 6: Halogenation of Propargylic Substrates 101
44.2.1.1.7 Method 2: Aluminum-Mediated Reactions of Propargylic Substrates 102
44.2.1.1.8 Variation 1: Reactions of Propargylic Halides 102
44.2.1.1.9 Variation 2: Reactions of Propargylic Alcohols 103
44.2.1.1.10 Variation 3: Reactions of Propargylic Sulfonates 106
44.2.1.1.11 Variation 4: Reactions of Propargylic Ethers 108
44.2.1.1.12 Variation 5: Reactions of Propargylic Amine Derivatives 110
44.2.1.1.13 Variation 6: Ring-Opening Reactions .. 111
44.2.1.1.14 Variations 7: Miscellaneous Reactions .. 115
44.2.1.1.15 Method 3: Lithium-, Magnesium-, or Zinc-Mediated Reactions of
Propargylic and Related Substrates 115
44.2.1.1.16 Variation 1: Lithium-Mediated Reactions ... 115
44.2.1.1.17 Variation 2: Magnesium-Mediated Reactions 117
44.2.1.1.18 Variation 3: Zinc-Mediated Reactions ... 119
44.2.1.4 Method 4: Borane- or Gallium-Mediated Reactions of Propargylic Substrates ... 120
44.2.1.4.1 Variation 1: Borane-Mediated Reactions ... 120
44.2.1.4.2 Variation 2: Gallium-Mediated Reactions ... 123
44.2.1.5 Method 5: Iron-Catalyzed Reactions of Propargylic Substrates 123
44.2.1.5.1 Variation 1: Ring-Opening Reactions of Epoxides 125
44.2.1.6 Method 6: Palladium-Catalyzed Reactions of Propargylic Substrates 126
44.2.1.6.1 Variation 1: Reactions with Grignard Reagents 127
44.2.1.6.2 Variation 2: Reactions with Zinc Reagents 127
44.2.1.6.3 Variation 3: Reactions with Borane Reagents 129
44.2.1.6.4 Variation 4: Reactions with Aluminum or Tin Reagents 131
44.2.1.6.5 Variation 5: Reactions with Copper Acetylenes 132
44.2.1.6.6 Variation 6: Reactions with Samarium Reagents 133
44.2.1.6.7 Variation 7: Carbonylation Reactions .. 134
44.2.1.6.8 Variation 8: Reactions with Hydride Reagents 138
44.2.1.6.9 Variations 9: Miscellaneous Reactions ... 141
44.2.1.7 Methods 7: Miscellaneous Reactions of Propargylic Substrates 145
44.2.1.7.1 Variation 1: Reactions with Nitrogen Nucleophiles 145
44.2.1.7.2 Variation 2: Reactions with Enol Ethers .. 146
44.2.1.7.3 Variation 3: Chromium-Catalyzed Reactions 146
44.2.1.7.4 Variation 4: Nickel-Mediated Reactions ... 147
44.2.1.7.5 Variation 5: Reactions with Copper Cyanide 147
44.2.1.7.6 Variation 6: Zirconocene-Mediated Reactions 148
44.2.1.7.7 Variation 7: Ruthenium-Catalyzed Reactions 148
44.2.1.7.8 Variation 8: Samarium-Mediated Reactions 149
44.2.1.8 Method 8: Substitution of Haloallenes ... 150
44.2.1.8.1 Variation 1: Copper-Mediated Reactions .. 150
44.2.1.8.2 Variation 2: Palladium-Catalyzed Reactions 155
44.2.1.8.3 Variation 3: Other Reactions with Carbon Nucleophiles 161
44.2.1.8.4 Variation 4: Reactions with Nitrogen Nucleophiles 163
44.2.1.8.5 Variation 5: Reactions with Oxygen Nucleophiles 166
44.2.1.8.6 Variation 6: Reactions with Sulfur Nucleophiles 166
44.2.1.9 Method 9: Substitution of 2-Halobuta-1,3-dienes and Related Compounds ... 166
44.2.1.9.1 Variation 1: Copper-Mediated Reactions .. 166
44.2.1.9.2 Variation 2: Palladium-Catalyzed Reactions 167

44.2.2 Synthesis by Elimination
V. Gandon and M. Malacria

44.2.2 Synthesis by Elimination ... 175
44.2.2.1 1,3-Elimination from Substituted Vinylic or Allylic Derivatives 176
44.2.2.1.1 Method 1: Dehydrohalogenation of 2-Halopropenes 176
44.2.2.1.1.1 Variation 1: From Nonactivated Substrates 176
44.2.2.1.1.2 Variation 2: From α,β-Unsaturated Substrates 178
44.2.2.1.2 Method 2: Dehydrosilylation of Silyl Enol Ethers 178
44.2.2.1.3 Method 3: Dehydroalumination of Vinyl Trifluoromethanesulfonates 180

Science of Synthesis Original Edition Volume 44
© Georg Thieme Verlag KG
44.2.1.4 Method 4: Dehydration of Allylic Alcohols 181
44.2.1.5 Method 5: Elimination from Vinyl Sulfoxides and Vinyl Sulfones 182
44.2.1.6 Method 6: Elimination from Phenyl Vinyl Selenoxides 182
44.2.1.6.1 Variation 1: Oxidation with 3-Chloroperoxybenzoic Acid 182
44.2.1.6.2 Variation 2: Asymmetric Elimination Using Sharpless Oxidation 183
44.2.1.6.3 Variation 3: Asymmetric Elimination Using Chiral Diferrocenyl Dihydroxybenzoic Acid 185
44.2.1.7 Method 7: Elimination from Vinyl- and Allylmetal Intermediates 186
44.2.1.7.1 Variation 1: Vinylcopper and Vinylmagnesium Intermediates from Propargyl Ethers and Organocopper and Organomagnesium Reagents 186
44.2.1.8 Method 8: Elimination from Vinylsilanes and Vinylstannanes 188
44.2.1.9 Method 9: Peterson Reaction ... 190
44.2.1.10 Method 10: Elimination from Vinyl- and Allylmetal Intermediates 192
44.2.1.10.1 Variation 1: Oxidation with 3-Chloroperoxybenzoic Acid 182
44.2.1.10.2 Variation 2: Asymmetric Elimination Using Sharpless Oxidation 183
44.2.1.10.3 Variation 3: Asymmetric Elimination Using Chiral Diferrocenyl Dihydroxybenzoic Acid 185
44.2.1.11 Method 11: Dehalogenation of 2,3-Dihalopropenes and Deoxyhalogenation of β-Haloalkyl Alcohol Derivatives 197
44.2.1.12 Method 12: Debromosulfinylation of 1-(Bromomethyl)vinyl Sulfoxides and Sulfides 197
44.2.1.12.1 Variation 1: Using Tributyltin Hydride 198
44.2.1.12.2 Variation 2: Using Tris(trimethylsilyl)silane 199
44.2.1.13 Method 13: Debromosulfinylation from 1-(Sulfinylalkyl)vinyl Trifluoromethanesulfonates 200
44.2.1.14 Method 14: Elimination from 1-(Sulfinylalkyl)vinyl Trifluoromethanesulfonates 201
44.2.1.14.1 Variation 1: Using Acid Chlorides 201
44.2.1.14.2 Variation 2: Elimination from 1-(Sulfinylalkyl)vinyl Trifluoromethanesulfonates 201
44.2.2 Wittig Alkenations and Related Reactions 203
44.2.2.1 Method 1: Synthesis Using or via (Hydroxyalkenyl)phosphonate and (Hydroxyalkenyl)phosphine Oxide Intermediates 204
44.2.2.1.1 Variation 1: Baylis–Hillman-Type Reaction of Alkenylphosphorus Compounds with Aldehydes 204
44.2.2.1.2 Variation 2: Sulfanyl-, Selanyl-, or Carbometalation of Alkynylphosphine Oxides and Reaction with Aldehydes 205
44.2.2.2 Method 2: Synthesis via β-Hydroxyallylphosphonate Derivatives Prepared from Ketones or Ketene Equivalents 207
44.2.2.2.1 Variation 1: Using Alcohol Derivatives 208
44.2.2.2.2 Variation 2: Using Aryl Esters 209
44.2.2.3 Metal–Vinylidene Routes to Allenes 211
44.2.2.3.1 Method 1: Synthesis from 1,1-Dimetalloalkenes 211
44.2.2.3.2 Method 2: Synthesis via Alkenyltitanocene Derivatives 212
44.2.2.3.3 Method 3: Double Alkenation Using Titanium-Substituted Ylides 214
44.2.2.3.4 Method 4: Synthesis via Alkenylidenemagnesium Intermediates 215
Elimination from 1,1-Disubstituted Cyclopropane Derivatives

Method 1: Dehalogenation of 1,1-Dihalocyclopropanes through Carbenoid Intermediates

Method 2: Synthesis from 1-Halo-1-(phenylsulfinyl)cyclopropanes via Carbenoid Intermediates

Miscellaneous Methods

Method 1: Nitrogen Elimination by Oxidation of Pyrazol-3-ones Using Lead(IV) Acetate

Method 2: Dehydration of Ketones

Synthesis by Addition
K. K. Wang

Method 1: Reduction of Pent-2-en-4-yn-1-ols with Lithium Aluminum Hydride

Method 2: 1,4-Addition of Hydroboranes to Conjugated Enynes

Method 3: 1,4-Addition of Hydrosilanes to Conjugated Enynes

Method 4: 1,4-Addition of Hydrogen Halides and Halogens to Conjugated Enynes

Method 5: Conjugate Addition of Organometallic Reagents to Acceptor-Substituted Enynes

Variation 1: 1,6-Addition of Organometallic Reagents to Acceptor-Substituted Enynes

Variation 2: 1,8-, 1,10-, and 1,12-Addition of Organometallic Reagents to Acceptor-Substituted Enynes

Method 6: 1,4-Addition of Organometallic Reagents to Conjugated Enynes

Method 7: 1,4-Addition of Carbon Pronucleophiles to Conjugated Enynes

Method 8: Friedel–Crafts Acylation and Alkylation of Conjugated Enynes

Method 9: 1,4-Addition of Nucleophiles to Ynones and Ynoates

Method 10: Condensation of Propargylboranes with Carbonyl and Related Compounds

Method 11: Condensation of Propargylsilanes with Carbonyl and Related Compounds

Method 12: Condensation of Propargylstannanes with Carbonyl and Related Compounds

Method 13: Condensation of Other Propargylic Organometallic Reagents with Carbonyl Compounds

Synthesis by Rearrangement
A. S. K. Hashmi

Method 1: Prototropic Rearrangements

Variation 1: Stoichiometric Deprotonation Followed by Protonation
44.2.4.1.2 Variation 2: Using Catalytic Potassium tert-Butoxide .. 289
44.2.4.1.3 Variation 3: Spontaneous Rearrangement on Chromatographic Workup 290
44.2.4.2 Method 2: [2,3]-Sigmatropic Rearrangements .. 291
44.2.4.2.1 Variation 1: Via In Situ Formation of Propargyl Sulenates 291
44.2.4.2.2 Variation 2: Via In Situ Formation of Propargyl Phosphites 292
44.2.4.2.3 Variation 3: Via In Situ Formation of Propargyl Phosphinites 293
44.2.4.2.4 Variation 4: Via [2,3]-Wittig Rearrangement ... 294
44.2.4.3 Method 3: [3,3]-Sigmatropic Rearrangements .. 295
44.2.4.3.1 Variation 1: Thermal Claisen Rearrangement of Propargyl Vinyl Ethers 295
44.2.4.3.2 Variation 2: In Situ from Ortho Esters and a Propargyl Alcohol 296
44.2.4.3.3 Variation 3: Flash-Vacuum Pyrolysis of Thiocyanates and Related Compounds .. 296

44.2.5 Synthesis from Other Allenes
H.-U. Reissig and R. Zimmer

44.2.5.1 Method 1: Substitution Reactions of Metalated Allenes .. 301
44.2.5.1.1 Variation 1: Of Nonactivated Allenes ... 301
44.2.5.1.2 Variation 2: Of Acceptor-Substituted Allenes .. 303
44.2.5.1.3 Variation 3: Of Donor-Substituted Allenes ... 304
44.2.5.1.4 Variation 4: Of α-Functionalized Allenes .. 307
44.2.5.2 Method 2: Transition-Metal-Catalyzed Cross-Coupling Reactions of Allenes 308
44.2.5.2.1 Variation 1: Alkylations ... 308
44.2.5.2.2 Variation 2: Arylations and Vinylations ... 310
44.2.5.2.3 Variation 3: Alkynylations .. 313
44.2.5.2.4 Variation 4: Reactions with CH-Acidic Compounds .. 313
44.2.5.2.5 Variation 5: Carbonylations ... 315
44.2.5.2.6 Variation 6: Amination, Amidation, and Imidation Reactions 315
44.2.5.3 Method 3: Substitution Reactions of Oxygen- and Halogen-Substituted Allenes .. 316
44.2.5.3.1 Variation 1: Of 1-Halogen-Substituted Allenes .. 316
44.2.5.3.2 Variation 2: Of α-Halogen-Substituted Allenes ... 318
44.2.5.3.3 Variation 3: Of 1-Oxygen-Substituted Allenes ... 319
44.2.5.3.4 Variation 4: Of α-Oxygen-Substituted Allenes ... 319
44.2.5.4 Method 4: Oxidation Reactions ... 320
44.2.5.4.1 Variation 1: Oxidation of α-Hydroxy-Substituted Allenes 320
44.2.5.4.2 Variation 2: Oxidation of Carboxy-Substituted Allenes 321
44.2.5.4.3 Variation 3: Oxidation of Heteroatom-Substituted Allenes 322
44.2.5.4.4 Variation 4: Oxidation of Alkynyl-Substituted Allenes 324
44.2.5.5 Method 5: Reductions of Allenes .. 325
44.2.5.5.1 Variation 1: Reduction of α-Carbonyl-Substituted Allenes 325
44.2.5.5.2 Variation 2: Reduction of Heteroatom-Substituted Allenes 326
44.2.5.5.3 Variation 3: Reduction of Alkynyl-Substituted Allenes 327
44.2.5.5.4 Variation 4: Reduction of Allenes Bearing an Epoxide Moiety 328
44.2.5.6 Method 6: Addition Reactions .. 328
44.2.5.6.1 Variation 1: Additions on α-Carbonyl-Substituted Allenes 328
44.2.5.6.2 Variation 2: Allkenation Reactions 330
44.2.5.6.3 Variation 3: Additions to Heteroatom-Substituted Allenes 333
44.2.5.6.4 Variation 4: [2 + 1] Cycloadditions 333
44.2.5.6.5 Variation 5: [2 + 2] Cycloadditions 335
44.2.5.6.6 Variation 6: [3 + 2] Cycloadditions 336
44.2.5.6.7 Variation 7: [4 + 2] Cycloadditions 337
44.2.5.6.8 Variation 8: Aldol Additions of Allenyl Enolate 337
44.2.5.6.9 Variation 9: Hydrolysis of 1-Cyano-Substituted Allenes 338
44.2.5.7 Method 7: Elimination Reactions, Rearrangements, and Metathesis Reactions 339
44.2.5.7.1 Variation 1: Eliminations 339
44.2.5.7.2 Variation 2: Rearrangements 340
44.2.5.7.3 Variation 3: Metathesis and Cycloisomerization 341

44.2.6 Applications of Allenes in Organic Synthesis
M. A. Tius

44.2.6.1 Method 1: Diels–Alder Reactions of Allenes 353
44.2.6.1.1 Variation 1: Intermolecular Reactions To Form Carbocyclic Products 353
44.2.6.1.2 Variation 2: Intermolecular Reactions To Form Heterocyclic Products 355
44.2.6.1.3 Variation 3: Intramolecular Reactions 356
44.2.6.2 Method 2: [2 + 2]-Cycloaddition Reactions of Allenes 359
44.2.6.2.1 Variation 1: Using Photochemical Methods 359
44.2.6.2.2 Variation 2: Using Thermal Methods 360
44.2.6.3 Method 3: Nazarov Reactions 362
44.2.6.3.1 Variation 1: With Allenes 362
44.2.6.3.2 Variation 2: With Allenyl Ethers and Ketones 363
44.2.6.3.3 Variation 3: With Allenyl Ethers and Nitriles 364
44.2.6.3.4 Variation 4: With Allenyl Ethers and Amides 364
44.2.6.3.5 Variation 5: Oxidative Cyclizations of Enallenes 365
44.2.6.4 Method 4: Pauson–Khand Reactions of Allenes 366
44.2.6.5 Method 5: [3 + 2] Cycloadditions of Allenes 369
44.2.6.6 Method 6: [5 + 2] Cycloadditions of Allenes 374
44.2.6.7 Method 7: Claisen Rearrangement of Allenyl Ethers 375
44.2.6.8 Method 8: Allenes as Precursors 376
44.2.6.8.1 Variation 1: Of Acylsilanes 376
44.2.6.8.2 Variation 2: Of Lactones 378
44.2.6.8.3 Variation 3: Of Spiroketalts 379
44.2.6.8.4 Variation 4: Of Spirobisepoxides 380
44.2.6.8.5 Variation 5: Of Cyclic Ethers, Amines, and Sulfides 382
44.2.6.9 Method 9: Prins Reaction of Allenes 385
44.2.6.9.1 Variation 1: With Aldehydes 385
44.2.6.9.2 Variation 2: With Ketones 387
44.2.6.9.3 Variation 3: With Imines 388
44.2.6.10 Method 10: Ene Reactions 390
Product Class 3: Cyclic Allenes
T. Kawase

Product Subclass 1: Cyclohexa-1,2-dienes

Method 1: Ring Enlargement by the Doering–Moore–Skattebøl Reaction

Variation 1: From 1,1-Dibromocyclopropanes

Variation 2: From 1-Bromo-1-fluorocyclopropanes

Method 2: Dehydrohalogenation of 1-Halocyclohexenes

Variation 1: Base-Promoted Reactions

Variation 2: Photochemical or Thermal Reaction of Intermediate Allyl Anions

Method 3: Dehalogenation of 2,3-Dihalocyclohexenes

Method 4: Elimination from 2-Halo-3-(trimethylsilyl)cyclohexenes

Product Subclass 2: Cyclohexa-1,2,4-trienes

Method 1: [4 + 2]-Cycloaddition Reactions

Variation 1: From Vinylalkynes and Alkynes

Variation 2: From Arylalkynes and Alkynes

Variation 3: From Diarylacetylenes and Alkynes

Variation 4: From Two Arylalkynes

Method 2: Electrocyclization of (Z)-Hexa-1,3-dien-5-ynes

Method 3: Ring Enlargement by the Doering–Moore–Skattebøl Reaction

Method 4: Dehydrohalogenation of 1-Halocyclohexa-1,4-dienes

Product Subclass 3: Bicyclo[4.4.0]deca-1,3,5,7,8-pentaenes

Method 1: [4 + 2]-Cycloaddition Reactions

Variation 1: Intermolecular [4 + 2]-Cycloaddition Reactions

Variation 2: Intramolecular [4 + 2]-Cycloaddition Reactions

Method 2: Ring Enlargement by the Doering–Moore–Skattebøl Reaction

Method 3: Dehydrohalogenation of 3-Bromo-1,2-dihydronaphthalenes

Product Subclass 4: Cyclohepta-1,2-dienes

Method 1: Ring Enlargement by the Doering–Moore–Skattebøl Reaction

Variation 1: From 1,1-Dihalocyclopropanes

Variation 2: From 7-Bromo-7-(trimethylstannyl)bicyclo[4.1.0]heptane

Method 2: Ring Enlargement by Cope Rearrangement from 1,2-Diethynylcyclopropanes

Method 3: Ring Enlargement by Thermolysis of Tricyclo[4.1.0.0^2,4]-hept-5-yliden or 1-Ethynyl-2-vinylcyclopropane

Method 4: Dehydrohalogenation of 1-Halocycloheptenes

Method 5: Dehalogenation of 1,7-Dihalocycloheptenes

Method 6: Synthesis from 2-Halo-3-(trimethylsilyl)cycloheptenes
44.3.5 **Product Subclass 5: Cyclohepta-1,2,4,6-tetraenes** .. 417

44.3.5.1 Synthesis of Product Subclass 5 .. 417
44.3.5.1.1 Method 1: Ring Enlargement by the Doering–Moore–Skattebøl Reaction 418
44.3.5.1.2 Method 2: Ring Enlargement by Extrusion of Nitrogen from Phenylidiazomethanes .. 419
44.3.5.1.3 Method 3: Ring Enlargement by Extrusion of Nitrogen from 7-Diazobicyclo[2.2.1]hepta-2,5-diene ... 421
44.3.5.1.4 Method 4: Ring Enlargement by Extrusion of Nitrogen from 2-Diazobicyclo[3.2.0]hepta-3,6-diene and Its Benzo Derivative .. 422
44.3.5.1.5 Method 5: Dehydrohalogenation of Halocycloheptatrienes 423
44.3.5.1.6 Method 6: Thermal and Photochemical Decomposition of Sodium Salts of Cyclohepta-2,4,6-trien-1-one Tosylhydrazone .. 424

44.3.6 **Product Subclass 6: Cycloocta-1,2-dienes** ... 425

44.3.6.1 Synthesis of Product Subclass 6 .. 425
44.3.6.1.1 Method 1: Intramolecular Ene Reaction of Oct-1-ene-7-yne 425
44.3.6.1.2 Method 2: Electrocyclization of Octa-3,5-diene-1,7-diynes 425
44.3.6.1.3 Method 3: Base-Promoted Cyclization of 1-(3-Chloropropyl)-7-(3-phenylprop-2-ynyl)tricyclo[4.1.0]heptane .. 426
44.3.6.1.4 Method 4: Ring Enlargement by the Doering–Moore–Skattebøl Reaction 427
44.3.6.1.5 Method 5: Ring Enlargement by Cope Rearrangement from 1,2-Diethynylcyclobutane and 1-Ethynyl-2-vinylcyclobutane 428
44.3.6.1.6 Method 6: Ring Enlargement of Bicyclo[5.1.0]octa-3,5-dien-2-one 428
44.3.6.1.7 Method 7: Ring Enlargement of 2-(Diazomethyl)bicyclo[4.4.1]-undeca-1,3,5,7,9-pentaene .. 429
44.3.6.1.8 Method 8: Dehydrohalogenation of 1-Halocyclooctenes 430
44.3.6.1.9 Method 9: Dehydrohalogenation of 3-Bromocyclooct-3-en-1-one 430

44.3.7 **Product Subclass 7: Cyclonona-1,2-dienes** ... 431

44.3.7.1 Synthesis of Product Subclass 7 .. 431
44.3.7.1.1 Method 1: S_N2 Substitution of Organocopper Reagents with a 3-Alkoxyalkyne ... 431
44.3.7.1.2 Method 2: Ring Enlargement by the Doering–Moore–Skattebøl Reaction 431
44.3.7.1.2.1 Variation 1: From 9,9-Dibromobicyclo[6.1.0]nonane Derivatives 431
44.3.7.1.2.2 Variation 2: From (trans-1-Bicyclo[6.1.0]non-9-yl)-1-nitrosourea 433
44.3.7.1.3 Method 3: Ring Enlargement by Photochemical Rearrangement of 2-Ethynylcycloheptanone ... 434
44.3.7.1.4 Method 4: Dehydrohalogenation of 1-Halocyclononenes 434

44.3.8 **Product Subclass 8: Cyclodeca-1,2-dienes** .. 435

44.3.8.1 Synthesis of Product Subclass 8 .. 435
44.3.8.1.1 Method 1: S_N2 Substitution of Organocopper(l) Reagents with a 3-Alkoxyalkyne ... 435
44.3.8.1.2 Method 2: Ring Enlargement by the Doering–Moore–Skattebøl Reaction 435
44.3.8.1.3 Method 3: Dehydrohalogenation of 1-Halocyclodecenes 436
Product Subclass 9: Macrocyclic Allenes.. 437

Method 1: Ring-Closure Reactions ... 437
Variation 1: Wittig-Type Alkenation from Aromatic Dialdehydes 437
Variation 2: Ring-Closing Alkene Metathesis by Using Grubbs’ First-Generation Catalyst .. 438

Method 2: Ring Transformations .. 439
Variation 1: Ring Enlargement by the Doering–Moore–Skattebøl Reaction 439
Variation 2: Extrusion of Nitrogen from an Aryldiazomethane 439

Method 3: Synthesis from 3-Oxo-, 3-Acetoxy-, or 3-Mesyloxy Cyclic Alkynes ... 440
Variation 1: Base-Promoted Hydrogen Transfer from a Cycloalk-3-ynone 440
Variation 2: SN₂’ Substitution of Organocopper Reagents with 3-Acetoxycycloalkynes ... 441
Variation 3: Palladium(0)-Catalyzed Carbonylation of a Macrocyclic Propargylic Methanesulfonate in the Presence of an Alcohol 441

Method 4: Substituent Modification ... 442
Variation 1: From 1,1,3,3-Tetraalkyll Allenes 442
Variation 2: From 1,3-Diarylallenenes 443
Variation 3: From 1,3-Diethynylallenenes 444

Keyword Index .. 451
Author Index ... 485
Abbreviations ... 503
Table of Contents

Introduction
J. S. Siegel and Y. Tobe

45.1 Product Class 1: Cyclopropenium Salts, Cyclopropenones and Heteroatom Analogues, and Cyclopropenyl Radicals and Anions
P. Merino

45.1.1 Product Subclass 1: Cyclopropenium Salts

45.1.1.1 Synthesis of Product Subclass 1

45.1.1.1.1 Method 1: Synthesis from Cyclopropenes

45.1.1.1.2 Variation 1: Hydride Abstraction

45.1.1.1.3 Variation 2: Protonation

45.1.1.1.4 Variation 3: Halide Abstraction

45.1.1.2 Method 2: Synthesis from Halocyclopropanes

45.1.1.3 Method 3: Synthesis from Cyclopropenones or Their Heteroatom Analogues

45.1.1.3.1 Variation 1: O-Alkylation and Related Processes

45.1.1.3.2 Variation 2: Protonation

45.1.1.3.3 Variation 3: Formation of Dications

45.1.1.4 Method 4: Transformations of Other Cyclopropenium Salts

45.1.1.4.1 Variation 1: Friedel–Crafts-Type Reactions

45.1.1.4.2 Variation 2: Substitution

45.1.2 Applications of Product Subclass 1 in Organic Synthesis

45.1.2.1 Method 1: Synthesis of Cyclopropenes

45.1.2.2 Method 2: Synthesis of Cyclic Compounds

45.1.2.3 Method 3: Synthesis of Acyclic Compounds

45.1.2 Product Subclass 2: Cyclopropenones and Their Heteroatom Analogues

45.1.2.1 Synthesis of Product Subclass 2

45.1.2.1.1 Method 1: Synthesis from Cyclopropenonium Salts

45.1.2.2 Applications of Product Subclass 2 in Organic Synthesis

45.1.2.2.1 Method 1: Synthesis of Heterocyclic Systems

45.1.2.2.1.1 Variation 1: Nitrogen Heterocycles

45.1.2.2.1.2 Variation 2: Oxygen Heterocycles

45.1.2.2.2 Method 2: Synthesis of Carbocycles

45.1.3 Product Subclass 3: Cyclopropenyl Radicals

45.1.3.1 Synthesis of Product Subclass 3
<table>
<thead>
<tr>
<th>45.1.4</th>
<th>Product Subclass 4: Cyclopropenyl Anions</th>
<th>44</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.1.4.1</td>
<td>Synthesis of Product Subclass 4</td>
<td>44</td>
</tr>
</tbody>
</table>

| 45.2 | **Product Class 2: Cyclobutadienes, Cyclobutenediones, and Squaric Acids** | S. J. Collier and S. K. Singh | 49 |

<table>
<thead>
<tr>
<th>45.2.1</th>
<th>Product Subclass 1: Cyclobutadienes</th>
<th>49</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.2.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td>57</td>
</tr>
<tr>
<td>45.2.1.1.1</td>
<td>Method 1: Synthesis by Cycloreversion</td>
<td>57</td>
</tr>
<tr>
<td>45.2.1.1.2</td>
<td>Method 2: Synthesis by Decomposition of Cyclopropenyl Diazomethanes</td>
<td>60</td>
</tr>
<tr>
<td>45.2.1.1.3</td>
<td>Method 3: Synthesis from Metal–Cyclobutadiene Complexes</td>
<td>62</td>
</tr>
<tr>
<td>45.2.1.1.3.1</td>
<td>Variation 1: Using Iron Complexes</td>
<td>62</td>
</tr>
<tr>
<td>45.2.1.1.3.2</td>
<td>Variation 2: Using Other Metal Complexes</td>
<td>65</td>
</tr>
<tr>
<td>45.2.1.1.4</td>
<td>Method 4: Other Methods</td>
<td>66</td>
</tr>
<tr>
<td>45.2.2</td>
<td>Product Subclass 2: Cyclobutenediones</td>
<td>68</td>
</tr>
<tr>
<td>45.2.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>69</td>
</tr>
<tr>
<td>45.2.2.1.1</td>
<td>Method 1: Synthesis from Alkynes</td>
<td>69</td>
</tr>
<tr>
<td>45.2.2.1.1.1</td>
<td>Variation 1: By Cycloaddition Reactions</td>
<td>69</td>
</tr>
<tr>
<td>45.2.2.1.1.2</td>
<td>Variation 2: Using Transition-Metal Complexes</td>
<td>71</td>
</tr>
<tr>
<td>45.2.2.1.2</td>
<td>Method 2: Synthesis from Alkenes</td>
<td>73</td>
</tr>
<tr>
<td>45.2.2.1.3</td>
<td>Method 3: Synthesis from Other Cyclobutenediones</td>
<td>75</td>
</tr>
<tr>
<td>45.2.2.1.3.1</td>
<td>Variation 1: Friedel–Crafts Reaction of Halocyclobutenes</td>
<td>75</td>
</tr>
<tr>
<td>45.2.2.1.3.2</td>
<td>Variation 2: Reaction of Squaric Acid Derivatives and Carbon Nucleophiles</td>
<td>77</td>
</tr>
<tr>
<td>45.2.2.1.3.3</td>
<td>Variation 3: Transition-Metal-Catalyzed Cross-Coupling Reactions</td>
<td>80</td>
</tr>
<tr>
<td>45.2.2.1.4</td>
<td>Method 4: Other Methods</td>
<td>82</td>
</tr>
<tr>
<td>45.2.3</td>
<td>Product Subclass 3: Squaric Acids and Derivatives</td>
<td>83</td>
</tr>
<tr>
<td>45.2.3.1</td>
<td>Synthesis of Product Subclass 3</td>
<td>86</td>
</tr>
<tr>
<td>45.2.3.1.1</td>
<td>Method 1: Synthesis of Squaric Acids from Polyhalocyclobutenes and Related Reactions</td>
<td>86</td>
</tr>
<tr>
<td>45.2.3.1.2</td>
<td>Method 2: Synthesis of Squarate Esters from Squaric Acids</td>
<td>88</td>
</tr>
<tr>
<td>45.2.3.1.3</td>
<td>Method 3: Synthesis via Transesterification and Related Reactions</td>
<td>90</td>
</tr>
<tr>
<td>45.2.3.1.4</td>
<td>Method 4: Other Methods</td>
<td>91</td>
</tr>
<tr>
<td>45.2.4</td>
<td>Product Subclass 4: Sulfur Analogues of Squaric Acid and Related Compounds</td>
<td>91</td>
</tr>
<tr>
<td>45.2.4.1</td>
<td>Synthesis of Product Subclass 4</td>
<td>95</td>
</tr>
<tr>
<td>45.2.4.1.1</td>
<td>Method 1: Synthesis from Squarate Esters and Sulfur Nucleophiles, and Related Reactions</td>
<td>95</td>
</tr>
<tr>
<td>45.2.4.1.2</td>
<td>Method 2: Synthesis by Alkylation of Thiosquarate Anions</td>
<td>98</td>
</tr>
<tr>
<td>45.2.4.1.3</td>
<td>Method 3: Other Methods</td>
<td>99</td>
</tr>
<tr>
<td>45.3</td>
<td>Product Class 3: Cyclopentadienyl Anions, Cyclopentadienones, and Heteroatom Analogues</td>
<td>P. Merino</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>45.3.1</td>
<td>Product Subclass 1: Cyclopentadienyl Anions</td>
<td>110</td>
</tr>
<tr>
<td>45.3.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td>110</td>
</tr>
<tr>
<td>45.3.1.1.1</td>
<td>Method 1: Direct Deprotonation</td>
<td>110</td>
</tr>
<tr>
<td>45.3.1.1.2</td>
<td>Variation 1: Using Alkylithium Reagents</td>
<td>110</td>
</tr>
<tr>
<td>45.3.1.1.3</td>
<td>Variation 2: Using Metal Hydrides</td>
<td>113</td>
</tr>
<tr>
<td>45.3.1.1.4</td>
<td>Variation 3: Using Elemental Alkaline Metals</td>
<td>115</td>
</tr>
<tr>
<td>45.3.1.1.5</td>
<td>Variation 4: Using Alkali Metal Amides</td>
<td>116</td>
</tr>
<tr>
<td>45.3.1.1.6</td>
<td>Method 2: Metal Exchange</td>
<td>117</td>
</tr>
<tr>
<td>45.3.1.1.7</td>
<td>Method 3: Synthesis from Pentafulvenes</td>
<td>118</td>
</tr>
<tr>
<td>45.3.1.1.8</td>
<td>Method 4: Synthesis from Spirocyclopentadienes</td>
<td>122</td>
</tr>
<tr>
<td>45.3.1.2</td>
<td>Applications of Product Subclass 1 in Organic Synthesis</td>
<td>123</td>
</tr>
<tr>
<td>45.3.1.2.1</td>
<td>Method 1: Synthesis of Metallocenes and Metal Complexes</td>
<td>123</td>
</tr>
<tr>
<td>45.3.1.2.2</td>
<td>Method 2: Synthesis of Functionalized Cyclopentadienes</td>
<td>123</td>
</tr>
<tr>
<td>45.3.1.2.3</td>
<td>Method 3: Synthesis of Substituted Cyclopentadienes and Indenes</td>
<td>125</td>
</tr>
<tr>
<td>45.3.1.2.3.1</td>
<td>Variation 1: Alkylation Reactions</td>
<td>125</td>
</tr>
<tr>
<td>45.3.1.2.3.2</td>
<td>Variation 2: Nucleophilic Addition to Carbonyl Compounds</td>
<td>126</td>
</tr>
<tr>
<td>45.3.2</td>
<td>Product Subclass 2: Cyclopentadienones and Heteroatom Analogues</td>
<td>129</td>
</tr>
<tr>
<td>45.3.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>129</td>
</tr>
<tr>
<td>45.3.2.1.1</td>
<td>Method 1: Synthesis from Dicarbonyl Compounds</td>
<td>129</td>
</tr>
<tr>
<td>45.3.2.1.2</td>
<td>Method 2: Synthesis from Alkynes</td>
<td>133</td>
</tr>
<tr>
<td>45.3.2.1.2.1</td>
<td>Variation 1: Insertion of Carbon Monoxide</td>
<td>133</td>
</tr>
<tr>
<td>45.3.2.1.2.2</td>
<td>Variation 2: Reaction with Cyclopropenones</td>
<td>135</td>
</tr>
<tr>
<td>45.3.2.1.2.3</td>
<td>Variation 3: Reaction with Isoyanates or Isothiocyanates</td>
<td>137</td>
</tr>
<tr>
<td>45.3.2.1.3</td>
<td>Method 3: Synthesis from 1,3-Diene-1,4-diyldilithium Compounds</td>
<td>138</td>
</tr>
<tr>
<td>45.3.2.1.4</td>
<td>Method 4: Synthesis from Cyclopentenones and Related Compounds</td>
<td>140</td>
</tr>
<tr>
<td>45.3.2.1.5</td>
<td>Method 5: Ring-Contraction Methods</td>
<td>141</td>
</tr>
<tr>
<td>45.3.2.2</td>
<td>Applications of Product Subclass 2 in Organic Synthesis</td>
<td>143</td>
</tr>
<tr>
<td>45.3.2.2.1</td>
<td>Method 1: Formation of Metal Complexes</td>
<td>143</td>
</tr>
<tr>
<td>45.3.2.2.2</td>
<td>Method 2: Synthesis of Functionalized Cyclopentadienes</td>
<td>143</td>
</tr>
<tr>
<td>45.3.2.2.3</td>
<td>Method 3: Synthesis of Fused Systems</td>
<td>145</td>
</tr>
<tr>
<td>45.3.2.2.3.1</td>
<td>Variation 1: Polycyclic Compounds</td>
<td>145</td>
</tr>
<tr>
<td>45.3.2.2.3.2</td>
<td>Variation 2: Polycyclic Compounds</td>
<td>147</td>
</tr>
</tbody>
</table>
45.4 **Product Class 4: Benzene and Alkylbenzenes**
E. Zysman-Colman

45.4.1 **Product Subclass 1: Benzene**

45.4.1.1 Method 1: Thermal Aromatization of Acetylene

45.4.1.1.1 Variation 1: Metal-Catalyzed Aromatization of Acetylene

45.4.1.1.2 Method 2: Metal-Catalyzed Aromatization of Alkanes

45.4.1.1.3 Method 3: Metal-Catalyzed Aromatization of Cycloalkanes

45.4.1.1.3.1 Variation 1: Aromatization of Cycloalkenes Using Sonication

45.4.2 **Product Subclass 2: Monoalkylbenzenes**

45.4.2.1 Synthesis of Product Subclass 2

45.4.2.1.1 Method 1: Friedel–Crafts Alkylation of Arenes

45.4.2.1.1.1 Variation 1: Lewis Acid Catalyzed Friedel–Crafts Alkylation of Arenes with Alkyl Halides

45.4.2.1.1.2 Variation 2: Brønsted Acid or Base Catalyzed Friedel–Crafts Alkylation of Arenes with Alkyl Halides

45.4.2.1.1.3 Variation 3: Photochemical Friedel–Crafts Alkylation of Arenes with Alkyl Halides

45.4.2.1.1.4 Variation 4: Friedel–Crafts Alkylation of Arenes with Alcohols

45.4.2.1.1.5 Variation 5: Friedel–Crafts Alkylation of Arenes with Alkenes

45.4.2.1.1.6 Variation 6: Via Tandem Lewis Acid Catalyzed Halogenation and Friedel–Crafts Alkylation of Alkenes with Alkyl Methanesulfonates or Trifluoromethanesulfonates

45.4.2.1.1.7 Variation 7: Friedel–Crafts Alkylation of Arenes with Epoxides

45.4.2.1.1.8 Variation 8: Friedel–Crafts Alkylation of Arenes with Aldehydes

45.4.2.1.1.9 Variation 9: Friedel–Crafts Alkylation of Arenes with Alkyl

45.4.2.1.1.10 Variation 10: Lewis Acid Catalyzed Friedel–Crafts Alkylation of Arenes with γ-Alkenyl Silyl Ethers

45.4.2.1.1.11 Variation 11: Lewis Acid Catalyzed Friedel–Crafts Alkylation of Arenes with Allylic Acetates

45.4.2.1.2 Method 2: Alkylation of Arenes via Cross Coupling of Arenes to Benzyl Ethers

45.4.2.1.3 Method 3: Alkylation of Arenes via a Tandem Alkylation–Hydride Reduction Sequence

45.4.2.1.3.1 Variation 1: Via Palladium-Catalyzed C—H Activation of Arenes and Coupling with Alkylstannanes

45.4.2.1.4 Method 4: Alkylation of Arenes via Suzuki Reaction of Alkylboranes and Related Alkylboron Reagents with Aryl Halides

45.4.2.1.4.1 Variation 1: Via Nickel-Catalyzed Cross Coupling

45.4.2.1.4.2 Variation 2: Via Organocuprate Coupling to Aryl Trifluoromethanesulfonates

45.4.2.1.4.3 Variation 3: Via Kumada-Type Cross Coupling
45.4.2.1.4.4 Variation 4: Via Negishi-Type Cross-Coupling Reactions 180
45.4.2.1.4.5 Variation 5: Via Stille-Type Cross-Coupling Reactions 181
45.4.2.1.4.6 Variation 6: Via Hiyama-Type Cross-Coupling Reactions 182
45.4.2.1.5 Method 5: Alkylation of Benzenes through an S_{N}Ar Mechanism 183
45.4.2.1.6 Method 6: Alkylation of Benzyl Bromides Using Organocuprates in the Presence of Trialkylboranes .. 183
45.4.2.1.7 Method 7: Reduction of Alkyl Aryl Ketones Using Hydrazine and a Base under Wolff–Kishner Conditions ... 184
45.4.2.1.7.1 Variation 1: Microwave Heating under Classic Wolff–Kishner Conditions .. 185
45.4.2.1.7.2 Variation 2: Wolff–Kishner Reduction of N-(tert-Butyldimethylsilyl)hydrazones .. 185
45.4.2.1.7.3 Variation 3: Using Tosylhydrazones and Alkylboranes 187
45.4.2.1.7.4 Variation 4: Reduction Using Zinc–Hydrochloric Acid under Clemmensen Conditions .. 187
45.4.2.1.7.5 Variation 5: Using Phenylphosphines .. 187
45.4.2.1.7.6 Variation 6: Using Trialkyl Phosphites .. 188
45.4.2.1.7.7 Variation 7: Using Organosilanes ... 188
45.4.2.1.7.8 Variation 8: Using Metal Aluminum or Boron Hydrides and a Second Co-reductant .. 189
45.4.2.1.7.9 Variation 9: Using Selenium under an Atmosphere of Carbon Monoxide ... 192
45.4.2.1.7.10 Variation 10: Using Hydrogen Gas in the Presence of a Metal Catalyst 192
45.4.2.1.7.11 Variation 11: Using Water or Alcohols as Hydrogen Sources for Reduction in the Presence of a Metal Catalyst .. 193
45.4.2.1.7.12 Variation 12: Via Tandem Thioketal Formation and Metal Reduction 194
45.4.2.1.7.13 Variation 13: Using Palladium/Carbon as a Catalyst 195
45.4.3 Product Subclass 3: Polyalkylbenzenes .. 195
45.4.3.1 Synthesis of Product Subclass 3 ... 195
45.4.3.1.1 Method 1: Polyalkylbenzenes via a Directed Carbopalladation Reaction 195
45.4.3.1.2 Method 2: [2 + 2 + 2] Transition-Metal-Catalyzed Cyclotrimerization of Alkynes .. 195
45.4.3.1.3 Method 3: Nickel-Catalyzed Synthesis of Polyalkylated Phenols 198
45.4.3.1.4 Method 4: [4 + 2] Cyclization of Alkynes with Enynes 198
45.4.3.1.5 Method 5: Tandem Sonogashira–[4 + 2] Benzannulation Protocol of Alkynes with Vinyl Bromides .. 203
45.4.3.1.6 Method 6: Alkene Metathesis ... 203

45.5 Product Class 5: Styrenes, Stilbenes, and Other Alk-1-enylbenzenes
D. A. Alonso and C. Nájera

45.5.1 Synthesis of Product Class 5 ... 209
45.5.1.1 Alkenation of Aldehydes ... 209
45.5.1.1.1 Method 1: Wittig-Type Reactions ... 210
45.5.1.1.1 Variation 1: The Wittig Reaction .. 210
45.5.1.1.2 Variation 2: The Horner–Wittig Reaction .. 212
45.5.1.1.3 Variation 3: The Horner–Wadsworth–Emmons Reaction 214
45.5.1.1.2 Method 2: The Peterson Reaction .. 215
45.5.1.1.3 Method 3: The Julia Reaction .. 216
45.5.1.1.4 Method 4: The Perkin Reaction .. 217
45.5.1.1.5 Method 5: The Modified Julia Reaction ... 218
45.5.1.1.6 Method 6: The McMurry Reaction .. 220
45.5.1.2 Elimination Reactions ... 221
45.5.1.2.1 Method 1: Elimination of Alcohols .. 221
45.5.1.2.2 Method 2: Elimination of Alkyl Halides ... 222
45.5.1.2.3 Method 3: Elimination of 1,2-Dibromides 223
45.5.1.3 Reduction of Alkynes ... 224
45.5.1.3.1 Method 1: Partial Catalytic Hydrogenation of Alkynes 224
45.5.1.4 Alkene Cross-Metathesis Reactions .. 226
45.5.1.4.1 Method 1: Using Molybdenum and Ruthenium Carbene Complexes 226
45.5.1.5 Palladium-Catalyzed Cross-Coupling Reactions 227
45.5.1.5.1 Method 1: The Mizoroki–Heck Reaction ... 227
45.5.1.5.1.1 Variation 1: Aryl Halides as Electrophiles 228
45.5.1.5.1.2 Variation 2: Arenediazonium Salts as Electrophiles 232
45.5.1.5.1.3 Variation 3: Decarbonylative Heck Reaction 234
45.5.1.5.1.4 Variation 4: Desulfonylative Heck Reaction 236
45.5.1.5.2 Method 2: The Suzuki–Miyaura Reaction ... 237
45.5.1.5.3 Method 3: The Hiyama Reaction ... 239
45.5.1.5.4 Method 4: The Kosugi–Migita–Stille Reaction 240
45.5.1.5.5 Method 5: The Negishi Reaction ... 242
45.5.1.5.6 Method 6: The Kumada–Tamao–Corriu Reaction 243
45.5.1.5.7 Method 7: Organoindium Cross-Coupling Reactions 244

45.6 Product Class 6: Annulated Benzenes (1H-Cyclopropabenzenes,
1,2-Dihydrocyclobutabenzenes, Indanes, and Indenes)
P. Merino

45.6 Product Class 6: Annulated Benzenes (1H-Cyclopropabenzenes,
1,2-Dihydrocyclobutabenzenes, Indanes, and Indenes) 253
45.6.1 Product Subclass 1: 1H-Cyclopropabenzenes ... 253
45.6.1.1 Synthesis of Product Subclass 1 ... 253
45.6.1.1.1 Method 1: Photolysis of 3H-Pyrazoles ... 253
45.6.1.1.2 Method 2: Aromatization Reactions .. 254
45.6.1.1.3 Method 3: Synthesis from Other Cyclopropabenzenes 255
45.6.1.1.4 Method 4: Direct Formation of the Cyclopropane Ring 257
45.6.1.1.5 Method 5: Synthesis of Silicon, Germanium, and Boron Analogues of
Cyclopropabenzenes ... 258
45.6.1.2 Applications of Product Subclass 1 in Organic Synthesis 259
45.6.1.2.1 Method 1: Synthesis of Carbon-Containing Aromatic Compounds 259
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.6.2</td>
<td>Product Subclass 2: 1,2-Dihydrocyclobutabenzenes</td>
<td>261</td>
</tr>
<tr>
<td>45.6.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>263</td>
</tr>
<tr>
<td>45.6.2.1.1</td>
<td>Method 1: Synthesis from Cycloproparenes</td>
<td>263</td>
</tr>
<tr>
<td>45.6.2.1.2</td>
<td>Method 2: Synthesis from 2H-Pyran-2-ones</td>
<td>264</td>
</tr>
<tr>
<td>45.6.2.1.3</td>
<td>Method 3: Photochemical Reactions</td>
<td>265</td>
</tr>
<tr>
<td>45.6.2.1.4</td>
<td>Method 4: Synthesis from Benzyne Derivatives</td>
<td>267</td>
</tr>
<tr>
<td>45.6.2.1.5</td>
<td>Method 5: Other Annulation Reactions</td>
<td>270</td>
</tr>
<tr>
<td>45.6.2.1.6</td>
<td>Method 6: Synthesis from Metallocyclopentadienes</td>
<td>278</td>
</tr>
<tr>
<td>45.6.2.2</td>
<td>Applications of Product Subclass 2 in Organic Synthesis</td>
<td>280</td>
</tr>
<tr>
<td>45.6.2.2.1</td>
<td>Method 1: Synthesis of Aromatic Compounds</td>
<td>280</td>
</tr>
<tr>
<td>45.6.2.2.1.1</td>
<td>Variation 1: Synthesis of Substituted Benzenes</td>
<td>280</td>
</tr>
<tr>
<td>45.6.2.2.1.2</td>
<td>Variation 2: Synthesis of Condensed Systems</td>
<td>280</td>
</tr>
<tr>
<td>45.6.2.2.2</td>
<td>Method 2: Synthesis of Heterocyclic Compounds</td>
<td>285</td>
</tr>
<tr>
<td>45.6.2.2.3</td>
<td>Method 3: Synthesis of Steroid Derivatives</td>
<td>287</td>
</tr>
<tr>
<td>45.6.3</td>
<td>Product Subclass 3: Indanes</td>
<td>289</td>
</tr>
<tr>
<td>45.6.3.1</td>
<td>Synthesis of Product Subclass 3</td>
<td>289</td>
</tr>
<tr>
<td>45.6.3.1.1</td>
<td>Method 1: Friedel–Crafts Cyclization</td>
<td>289</td>
</tr>
<tr>
<td>45.6.3.1.2</td>
<td>Method 2: Nazarov Cyclizations</td>
<td>291</td>
</tr>
<tr>
<td>45.6.3.1.3</td>
<td>Method 3: Metal-Mediated Cyclization Reactions</td>
<td>292</td>
</tr>
<tr>
<td>45.6.3.1.3.1</td>
<td>Variation 1: Palladium-Catalyzed Cyclization (Heck Reaction)</td>
<td>292</td>
</tr>
<tr>
<td>45.6.3.1.3.2</td>
<td>Variation 2: Rhodium-Catalyzed Cyclization</td>
<td>296</td>
</tr>
<tr>
<td>45.6.3.1.4</td>
<td>Method 4: Electrochemical Cyclization</td>
<td>299</td>
</tr>
<tr>
<td>45.6.3.1.5</td>
<td>Method 5: Ring-Contraction Reactions</td>
<td>300</td>
</tr>
<tr>
<td>45.6.3.1.6</td>
<td>Method 6: Multicomponent Reactions</td>
<td>302</td>
</tr>
<tr>
<td>45.6.3.1.7</td>
<td>Method 7: Cycloaddition Reactions</td>
<td>304</td>
</tr>
<tr>
<td>45.6.3.2</td>
<td>Applications of Product Subclass 3 in Organic Synthesis</td>
<td>305</td>
</tr>
<tr>
<td>45.6.3.2.1</td>
<td>Method 1: Indanes as Ligands in Organometallic Complexes</td>
<td>305</td>
</tr>
<tr>
<td>45.6.3.2.2</td>
<td>Method 2: Synthesis of Heterocyclic Systems</td>
<td>306</td>
</tr>
<tr>
<td>45.6.4</td>
<td>Product Subclass 4: Indenes</td>
<td>307</td>
</tr>
<tr>
<td>45.6.4.1</td>
<td>Synthesis of Product Subclass 4</td>
<td>307</td>
</tr>
<tr>
<td>45.6.4.1.1</td>
<td>Method 1: Friedel–Crafts Annulations</td>
<td>307</td>
</tr>
<tr>
<td>45.6.4.1.2</td>
<td>Method 2: Metal-Catalyzed Annulation Reactions</td>
<td>311</td>
</tr>
<tr>
<td>45.6.4.1.2.1</td>
<td>Variation 1: Palladium-Catalyzed Annulation</td>
<td>311</td>
</tr>
<tr>
<td>45.6.4.1.2.2</td>
<td>Variation 2: Nickel-Catalyzed Annulation</td>
<td>314</td>
</tr>
<tr>
<td>45.6.4.1.2.3</td>
<td>Variation 3: Ruthenium-Catalyzed Annulation</td>
<td>315</td>
</tr>
<tr>
<td>45.6.4.1.2.4</td>
<td>Variation 4: Rhodium-Catalyzed Annulation</td>
<td>316</td>
</tr>
<tr>
<td>45.6.4.1.2.5</td>
<td>Variation 5: Rhenium-Catalyzed Annulation</td>
<td>318</td>
</tr>
<tr>
<td>45.6.4.1.2.6</td>
<td>Variation 6: Cobalt-Catalyzed Annulation</td>
<td>318</td>
</tr>
<tr>
<td>45.6.4.1.2.7</td>
<td>Variation 7: Gold-Catalyzed Annulation</td>
<td>319</td>
</tr>
<tr>
<td>45.6.4.1.2.8</td>
<td>Variation 8: Platinum-Catalyzed Annulation</td>
<td>320</td>
</tr>
<tr>
<td>45.6.4.2</td>
<td>Applications of Product Subclass 4 in Organic Synthesis</td>
<td>320</td>
</tr>
</tbody>
</table>
45.6.2.1 Method 1: Synthesis of Fused Indanes and Related Compounds ... 320
45.6.2.2 Method 2: Synthesis of Heterocyclic Systems ... 321

45.7 Product Class 7: Cycloheptatrienylum (Tropylium) Salts, Tropones, Tropolones, and Heteroatom Analogues
K. Abou-Hadeed and H.-J. Hansen

45.7.1 Product Subclass 1: Cycloheptatrienylum (Tropylium) Salts ... 329
45.7.2.1 Synthesis of Product Subclass 1 ... 330
45.7.2.1.1 Method 1: Ring Enlargement of Benzene Derivatives .. 330
45.7.2.1.2 Method 2: Aryl-Substituted Tropylium Ions by Arylation of the Parent Ion 332
45.7.2.1.3 Method 3: Oxidation of Cycloheptatrienes with Nitrosyl Tetrafluoroborate 333
45.7.2.1.4 Method 4: Tropylium Salts by Alkylation of Tropones and Tropothiones 334
45.7.2.1.5 Method 5: Formation of Silatropylium Ions ... 335
45.7.2.1.6 Method 6: Formation of Azatropylium (Azepinium) Ions ... 336

45.7.2 Product Subclass 2: Tropones ... 337
45.7.2.2 Synthesis of Product Subclass 2 ... 337
45.7.2.2.1 Syntheses by [6 + 1] Combinations ... 337
45.7.2.2.1.1 Method 1: Synthesis from Phenols by Dihalocarbene Addition 337
45.7.2.2.1.1.1 Variation 1: Reduction of (Dihalomethyl)cyclohexadienones with Polymer-Bound Dibutyltin Hydride ... 339
45.7.2.2.1.2 Method 2: Annulated Tropones by Intramolecular Oxidative Coupling of Phenols ... 341
45.7.2.2.1.3 Method 3: 2,3-Dichloro-5,6-dicyanobenzo-1,4-quinone Oxidation of Spirocyclic Naphthalen-2-ones ... 342
45.7.2.2.1.4 Method 4: Synthesis from Dihalocarbene Adducts of Cyclohexadienes 342
45.7.2.2.1.4.1 Variation 1: Chlorocarbene Addition to Silyl Enol Ethers 343
45.7.2.2.1.5 Method 5: Tropones via Halotropylium Ions as Reactive Intermediates 344
45.7.2.2.1.6 Method 6: Tropones from [4 + 2] Cycloaddition of Benzo-1,2-quinones and Arylalkynes ... 346

45.7.2.2.2 Syntheses by [5 + 2] Combinations ... 347
45.7.2.2.2.1 Method 1: cine Substitution of exo-7-Chlorobicyclo[3.2.0]hept-2-en-6-one 348
45.7.2.2.2.2 Method 2: Light-Induced Synthesis of 3- and 4-Alkyltropones 349

45.7.2.3 Syntheses by [4 + 3] Combinations .. 350
45.7.2.3.1 Method 1: Rearrangement of 8-Oxabicyclo[3.2.1]oct-6-en-3-ones with Trimethylsilyl Trifluoromethanesulfonate and Triethylamine 350
45.7.2.3.1.1 Variation 1: Cycloaddition of Furans and 1,1,3,3-Tetrachloro-2-oxidopropenylium Cation ... 351
45.7.2.3.1.2 Variation 2: 2,7-Dichlorotropones from [3 + 4] Cycloaddition of Buta-1,3-dienes and 1,1,3,3-Tetrachloro-2-oxidopropenylium Cation ... 353
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.7.2.1.3.2</td>
<td>Method 2</td>
<td>3-Aminotropones from an N-tert-Butyloxycarbonyl-Protected Furan-2-amine</td>
<td>354</td>
</tr>
<tr>
<td>45.7.2.1.3.3</td>
<td>Method 3</td>
<td>Cyclopropanation of Buta-1,3-diene with Ethyl 3-Diazopyruvate</td>
<td>355</td>
</tr>
<tr>
<td>45.7.2.1.3.4</td>
<td>Method 4</td>
<td>Cyclopropanation of Buta-1,3-diens with Vinylcarbenes Followed by Cope Rearrangement</td>
<td>356</td>
</tr>
<tr>
<td>45.7.2.1.3.5</td>
<td>Method 5</td>
<td>[4 + 2] Cycloadditions with 4,8-Dioxaspiro[2.5]oct-1-ene</td>
<td>359</td>
</tr>
<tr>
<td>45.7.2.1.3.6</td>
<td>Method 6</td>
<td>Reaction of Functionalized Buta-1,3-diens and Tetrachlorocyclopropane</td>
<td>361</td>
</tr>
<tr>
<td>45.7.2.1.4</td>
<td>Method 1</td>
<td>Heteroanologues of Tropones</td>
<td>361</td>
</tr>
<tr>
<td>45.7.2.1.4.1</td>
<td>Method 1</td>
<td>Oxidation of a 3H-Azepine</td>
<td>362</td>
</tr>
<tr>
<td>45.7.3</td>
<td>Product Subclass 3: Tropolones</td>
<td>363</td>
<td></td>
</tr>
<tr>
<td>45.7.3.1</td>
<td>Synthesis of Product Subclass 3</td>
<td>364</td>
<td></td>
</tr>
<tr>
<td>45.7.3.1.1</td>
<td>Syntheses by [6 + 1] Combinations</td>
<td>364</td>
<td></td>
</tr>
<tr>
<td>45.7.3.1.1.1</td>
<td>Method 1</td>
<td>Rearrangement of 7-Halobicyclo[4.1.0]heptanediones</td>
<td>364</td>
</tr>
<tr>
<td>45.7.3.1.1.2</td>
<td>Method 2</td>
<td>Photooxygenation of Ethyl 4,5-Dioxymethylene cyclohepta-2,4,6-triene carboxylate</td>
<td>366</td>
</tr>
<tr>
<td>45.7.3.1.1.3</td>
<td>Method 3</td>
<td>β-Tropolones from o-Quinones and Triphenylbismuthonium 2-Oxoalkalides</td>
<td>367</td>
</tr>
<tr>
<td>45.7.3.1.1.4</td>
<td>Method 4</td>
<td>β-Tropolones from o-Quinones and 2-Methylquinolines</td>
<td>368</td>
</tr>
<tr>
<td>45.7.3.1.2</td>
<td>Syntheses by [5 + 2] Combinations</td>
<td>369</td>
<td></td>
</tr>
<tr>
<td>45.7.3.1.2.1</td>
<td>Method 1</td>
<td>Base-Catalyzed Rearrangement of 7,7-Dichloro-4-isopropylidenebicyclo[3.2.0]hept-2-en-6-ones</td>
<td>369</td>
</tr>
<tr>
<td>45.7.3.1.2.2</td>
<td>Method 2</td>
<td>Best Route to γ-Tropolone</td>
<td>370</td>
</tr>
<tr>
<td>45.7.3.1.2.3</td>
<td>Method 3</td>
<td>Pyrylium 3-Oxides as a New Tool for α-Tropolone Synthesis</td>
<td>371</td>
</tr>
<tr>
<td>45.7.3.1.3</td>
<td>Syntheses by [4 + 3] Combinations</td>
<td>372</td>
<td></td>
</tr>
<tr>
<td>45.7.3.1.3.1</td>
<td>Method 1</td>
<td>Cyclopropanation of 2-Methoxy-Substituted Buta-1,3-diene Ketals</td>
<td>372</td>
</tr>
<tr>
<td>45.7.3.1.3.1.1</td>
<td>Variation 1</td>
<td>β-Tropolone Methyl Ethers from Cyclopropanation of 3-Methoxy-Substituted Buta-1,3-diene Ketals</td>
<td>373</td>
</tr>
<tr>
<td>45.7.3.1.3.2</td>
<td>Method 2</td>
<td>[3 + 4] Cycloaddition of a Methoxy-2-oxidopropenyl Cation with Furans</td>
<td>374</td>
</tr>
<tr>
<td>45.7.3.1.3.3</td>
<td>Method 3</td>
<td>α-Tropolones by Hydroxylation of 8-Oxabicyclo[3.2.1]oct-6-en-3-ones</td>
<td>375</td>
</tr>
<tr>
<td>45.7.3.1.3.4</td>
<td>Method 4</td>
<td>β-Tropolone Formation on Basic Cleavage of 2,2-Dimethoxy-8-oxabicyclo[3.2.1]oct-6-en-3-ones</td>
<td>376</td>
</tr>
<tr>
<td>45.7.3.1.4</td>
<td>Heteroanalogues of Tropolones</td>
<td>377</td>
<td></td>
</tr>
</tbody>
</table>

45.8

Product Class 8: Cyclooctatetraenes

T. Nishinaga

<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.8.1</td>
<td>Synthesis of Product Subclass 8</td>
<td>384</td>
<td></td>
</tr>
<tr>
<td>45.8</td>
<td>Product Class 8: Cyclooctatetraenes</td>
<td>383</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

45.8.1.1 Method 1: Cyclization of Octatetraenes .. 384
45.8.1.2 Method 2: Copper-Mediated Cyclotetramerization of Ethenes 384
45.8.1.3 Method 3: Metal-Mediated Cylcodimerization of Butadienes 385
45.8.1.3.1 Variation 1: Copper-Mediated Homocoupling 385
45.8.1.3.2 Variation 2: Copper-Mediated Cross Coupling 387
45.8.1.3.3 Variation 3: Nickel-Mediated Homocoupling 388
45.8.1.3.4 Variation 4: Nickel-Mediated Cross Coupling 388
45.8.1.4 Method 4: Reduction of Cyclooctadienes and Cyclooctatrienes Followed by Oxidation of the Resultant Dianion 389
45.8.1.5 Method 5: Dehydrohalogenation of Annulated Cyclooctatrienes and Cyclooctadienes .. 390
45.8.1.6 Method 6: Removal of Acidic Protons .. 391
45.8.1.7 Method 7: Decarbonylation and Decarboxylation 391
45.8.1.8 Method 8: Wittig Reaction ... 393
45.8.1.9 Method 9: Extrusion of Oxygen .. 393
45.8.1.10 Method 10: Extrusion of Sulfur Dioxide ... 393
45.8.1.11 Method 11: Nickel-Catalyzed Cyclotetramerization of Alkynes 394
45.8.1.12 Method 12: Isomerization of Cyclooctatetraene Valence Isomers 396
45.8.1.12.1 Variation 1: Isomerization of Bicyclo[4.2.0]octatrienes 396
45.8.1.12.2 Variation 2: Isomerization of Tricyclo[4.2.0.0^{2,5}]octa-3,7-dienes 398
45.8.1.12.3 Variation 3: Isomerization of Semibullvalenes 398
45.8.1.12.4 Variation 4: Isomerization of Cubanes ... 399
45.8.1.12.5 Variation 5: Photolysis of Barrelene .. 399
45.8.1.13 Method 13: Base-Catalyzed Rearrangement of Cyclocta-1,5-diene 399
45.8.1.14 Method 14: Ring Expansion by Carbene Rearrangement 400
45.8.1.15 Method 15: Synthesis with Retention of the Cyclooctatetraene Ring by Halogenation of Cyclooctatetraene ... 400
45.8.1.16 Method 16: Synthesis with Retention of the Cyclooctatetraene Ring by Functionalization of Bromocyclooctatetraene 401
45.8.1.16.1 Variation 1: Metalation Reactions ... 401
45.8.1.16.2 Variation 2: Dehydrobromination Reactions 402
45.8.1.16.3 Variation 3: Cross-Coupling Reactions ... 403

45.9 Product Class 9: Nine-Membered and Higher Annulenes and Related Ions
T. Nishinaga

45.9.1 Product Subclass 1: Annulenes and Related Ions 407
45.9.1.1 Synthesis of Product Subclass 1 ... 407
45.9.1.1.1 Method 1: Halogenation Followed by Dehydrohalogenation 407
45.9.1.1.2 Method 2: Corey–Winter Alkene Synthesis 408
45.9.1.1.3 Method 3: Wittig Reaction ... 409
45.9.1.1.4 Method 4: McMurry Coupling ... 409
45.9.1.1.5 Method 5: Reductive Elimination of Chlorine 410
45.9.1.1.6 Method 6: Hydrogenation of Dehydroannulenes 410
45.9.1.1.7 Method 7: Valence Isomerization .. 412
Table of Contents

45.9.1.8 Method 8: Reductive Methylation of Octalene Dianion 414
45.9.1.9 Method 9: Prototopic Rearrangement 414
45.9.1.10 Method 10: Substitution of Annulene Rings 415

45.9.2 Product Subclass 2: Methano[n]annulenes and Related Ions 416
45.9.2.1 Synthesis of Product Subclass 2 .. 416
45.9.2.1.1 Method 1: Electrocyclization Followed by Dehydrohalogenation 416
45.9.2.1.2 Method 2: Dehydrogenation of Dihydro- or Tetrahydro[n]annulenes and Tetrahydropyrenes 416
45.9.2.1.3 Method 3: Dihydropyrenes by Elimination of Dimethyl Sulfide 417
45.9.2.1.4 Method 4: Dehydration of Allylic Alcohols 418
45.9.2.1.5 Method 5: Elimination of Methanol 418
45.9.2.1.6 Method 6: Dehydrohalogenation 418
45.9.2.1.7 Method 7: Sulfur Elimination .. 419
45.9.2.1.8 Method 8: McMurry Coupling ... 419
45.9.2.1.9 Method 9: Diels–Alder Reactions of Cyclopropabenzene 420
45.9.2.1.10 Method 10: Cycloaddition of Acetylene Followed by C—C Bond Cleavage 420
45.9.2.1.11 Method 11: Reductive Addition to Dienones 421
45.9.2.1.12 Method 12: Electrophilic Substitution of Annulene Rings 421
45.9.2.1.13 Method 13: Substitution via Organometallic Species 422
45.9.2.1.14 Method 14: Decarbonylation of Dialdehydes 423
45.9.2.1.15 Method 15: Functionalization of Annulenes via Annulynes 423
45.9.2.1.16 Method 16: Functionalization of Annulenes via Homocoupling 424
45.9.2.1.17 Method 17: Functionalization via Cross Coupling 424

45.10 Product Class 10: Fulvenes
S. Ito and N. Morita

45.10 Product Class 10: Fulvenes .. 429
45.10.1 Product Subclass 1: Triafulvenes 430
45.10.1.1 Synthesis of Product Subclass 1 430
45.10.1.1.1 Method 1: Synthesis from Cyclopropenones 430
45.10.1.1.1.1 Variation 1: Condensation Reactions with Active Methylene Compounds initiated by Acetic Anhydride 430
45.10.1.1.1.2 Variation 2: Wittig and Peterson Alkenation Reactions 431
45.10.1.1.1.3 Variation 3: Condensation Reactions with Ketenes 432
45.10.1.1.1.4 Variation 4: Reaction of Cyclopropenethione with Tetracyanoethene Oxide 432
45.10.1.1.2 Method 2: Synthesis from Cyclopropenylum Salts 433
45.10.1.1.2.1 Variation 1: Proton Abstraction from Substituted Cyclopropenylum Salts 433
45.10.1.1.2.2 Variation 2: Reaction of Heterosubstituted Cyclopropenylum Salts with Active Methylene Compounds 434
45.10.1.1.3 Method 3: Synthesis from Substituted Methylene cyclopropanes by Elimination 435
45.10.1.1.4 Method 4: Carbene Reactions of Cyclopropenylidenes 436
45.10.1.1.5 Method 5: Synthesis of Benzotriafulvenes by Peterson Alkenation 437
<table>
<thead>
<tr>
<th>Section</th>
<th>Subclass</th>
<th>Synthesis Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.10.2</td>
<td>Product Subclass 2: Triafulvalenes</td>
<td>-</td>
<td>438</td>
</tr>
<tr>
<td>45.10.2.1</td>
<td></td>
<td>Synthesis of Product Subclass 2</td>
<td>438</td>
</tr>
<tr>
<td>45.10.2.1.1</td>
<td>Method 1:</td>
<td>Synthesis of Dibenzoatriafulvalenes by Carbene Dimerization</td>
<td>438</td>
</tr>
<tr>
<td>45.10.2.1.2</td>
<td>Method 2:</td>
<td>Synthesis of Naphthotriafulvalenes by Peterson Alkenation</td>
<td>439</td>
</tr>
<tr>
<td>45.10.3</td>
<td>Product Subclass 3: Pentatriafulvalenes</td>
<td>-</td>
<td>439</td>
</tr>
<tr>
<td>45.10.3.1</td>
<td></td>
<td>Synthesis of Product Subclass 3</td>
<td>440</td>
</tr>
<tr>
<td>45.10.3.1.1</td>
<td>Method 1:</td>
<td>Synthesis from Cyclopropenones</td>
<td>440</td>
</tr>
<tr>
<td>45.10.3.1.1.1</td>
<td>Variation 1:</td>
<td>Condensation Reactions with Cyclopentadiene Derivatives Initiated by Acetic Anhydride</td>
<td>440</td>
</tr>
<tr>
<td>45.10.3.1.1.2</td>
<td>Variation 2:</td>
<td>Condensation Reactions with Substituted Cyclo pentadienes</td>
<td>441</td>
</tr>
<tr>
<td>45.10.3.1.2</td>
<td>Method 2:</td>
<td>Synthesis from Cyclopropenylium Salts</td>
<td>441</td>
</tr>
<tr>
<td>45.10.3.1.2.1</td>
<td>Variation 1:</td>
<td>Proton Abstraction from Substituted Cyclopropenylium Salts</td>
<td>441</td>
</tr>
<tr>
<td>45.10.3.1.2.2</td>
<td>Variation 2:</td>
<td>Condensation Reactions of Heterosubstituted Cyclopropenylium Salts</td>
<td>441</td>
</tr>
<tr>
<td>45.10.3.3</td>
<td>Method 3:</td>
<td>Condensation Reactions of Dichlorocyclopropene Derivatives</td>
<td>444</td>
</tr>
<tr>
<td>45.10.3.4</td>
<td>Method 4:</td>
<td>Synthesis of Benzopentatriafulvalenes by Peterson Alkenation</td>
<td>444</td>
</tr>
<tr>
<td>45.10.4</td>
<td>Product Subclass 4: Heptatriafulvalenes</td>
<td>-</td>
<td>445</td>
</tr>
<tr>
<td>45.10.4.1</td>
<td></td>
<td>Synthesis of Product Subclass 4</td>
<td>445</td>
</tr>
<tr>
<td>45.10.4.1.1</td>
<td>Method 1:</td>
<td>Synthesis of Benzoheptatriafulvalenes by Peterson Alkenation</td>
<td>445</td>
</tr>
<tr>
<td>45.10.5</td>
<td>Product Subclass 5: Pentafulvenes</td>
<td>-</td>
<td>445</td>
</tr>
<tr>
<td>45.10.5.1</td>
<td></td>
<td>Synthesis of Product Subclass 5</td>
<td>446</td>
</tr>
<tr>
<td>45.10.5.1.1</td>
<td>Method 1:</td>
<td>Reactions of Cyclopentadienes with Aldehydes or Ketones</td>
<td>446</td>
</tr>
<tr>
<td>45.10.5.1.1.1</td>
<td>Variation 1:</td>
<td>Condensation Reactions Initiated by Strong Bases</td>
<td>446</td>
</tr>
<tr>
<td>45.10.5.1.1.2</td>
<td>Variation 2:</td>
<td>Condensation Reactions Initiated by Secondary Amines</td>
<td>447</td>
</tr>
<tr>
<td>45.10.5.1.1.3</td>
<td>Variation 3:</td>
<td>Condensation Reactions of Cyclopentadienide Ions with Ketones</td>
<td>448</td>
</tr>
<tr>
<td>45.10.5.1.2</td>
<td>Method 2:</td>
<td>Reactions of Sodium Cyclopentadienide with 1-Haloalkyl Acetates</td>
<td>449</td>
</tr>
<tr>
<td>45.10.5.1.3</td>
<td>Method 3:</td>
<td>Reactions of Cyclopentadienes with Carboxylic Acid Derivatives</td>
<td>450</td>
</tr>
<tr>
<td>45.10.5.1.3.1</td>
<td>Variation 1:</td>
<td>Reaction with a Vilsmeier Reagent</td>
<td>450</td>
</tr>
<tr>
<td>45.10.5.1.3.2</td>
<td>Variation 2:</td>
<td>Condensation Reactions with O-Alkylated Amides</td>
<td>450</td>
</tr>
<tr>
<td>45.10.5.1.3.3</td>
<td>Variation 3:</td>
<td>Condensation Reactions with S-Alkylated Thioamides</td>
<td>451</td>
</tr>
<tr>
<td>45.10.5.1.3.4</td>
<td>Variation 4:</td>
<td>Condensation Reactions with Iminium Salts</td>
<td>452</td>
</tr>
<tr>
<td>45.10.5.1.4</td>
<td>Method 4:</td>
<td>Reactions of Cyclopentadienes with Triheteromethyl Cations</td>
<td>453</td>
</tr>
<tr>
<td>45.10.5.1.4.1</td>
<td>Variation 1:</td>
<td>Condensation Reactions with O-Alkylated Urea Derivatives</td>
<td>453</td>
</tr>
<tr>
<td>45.10.5.1.4.2</td>
<td>Variation 2:</td>
<td>Condensation Reactions with 5-Methylated Thiourea Derivatives</td>
<td>453</td>
</tr>
<tr>
<td>45.10.5.1.5</td>
<td>Method 5:</td>
<td>Metal-Catalyzed Cyclization Reactions</td>
<td>454</td>
</tr>
<tr>
<td>45.10.5.1.5.1</td>
<td>Variation 1:</td>
<td>Trimerization of Alkynes</td>
<td>454</td>
</tr>
<tr>
<td>45.10.5.1.5.2</td>
<td>Variation 2:</td>
<td>Cyclization Reactions of Alkynes and Vinyl Halides</td>
<td>454</td>
</tr>
<tr>
<td>45.10.6</td>
<td>Product Subclass 6: Pentafulvalenes</td>
<td>-</td>
<td>455</td>
</tr>
<tr>
<td>45.10.6.1</td>
<td></td>
<td>Synthesis of Product Subclass 6</td>
<td>455</td>
</tr>
<tr>
<td>45.10.6.1.1</td>
<td>Method 1:</td>
<td>Oxidative Coupling of Cyclopentadienides</td>
<td>455</td>
</tr>
</tbody>
</table>
Table of Contents

45.10.6.1.2 Method 2: Synthesis from Cyclopentadienones 456
45.10.6.1.2.1 Variation 1: Condensation Reactions with Cyclopentadienides 457
45.10.6.1.2.2 Variation 2: Peterson Alkenation ... 458
45.10.6.1.3 Method 3: Reductive Coupling of 5,5-Dihalocyclopentadienes 458
45.10.7 Product Subclass 7: Heptapentafulvalenes ... 459
45.10.7.1 Synthesis of Product Subclass 7 .. 459
45.10.7.1.1 Method 1: Reactions of Cyclopentadienides with Tropylium Salts 459
45.10.7.1.1.1 Variation 1: Coupling of Cyclopentadienides with Tropylium Salts 460
45.10.7.1.1.2 Variation 2: Reactions of Cyclopentadienides with Acetoxytropylium Salts · 460
45.10.7.1.2 Method 2: Reactions of Cyclopentadienes with Tropones 461
45.10.7.1.3 Method 3: Synthesis from Cyloheptatrienylpentafulvenes by Hydrogen Migration ... 462
45.10.8 Product Subclass 8: Heptafulvenes .. 462
45.10.8.1 Synthesis of Product Subclass 8 .. 463
45.10.8.1.1 Method 1: Synthesis from Tropones ... 463
45.10.8.1.1.1 Variation 1: Condensation Reactions with Active Methylene Compounds Initiated by Acetic Anhydride .. 463
45.10.8.1.1.2 Variation 2: Reaction with Grignard Reagents 464
45.10.8.1.1.3 Variation 3: Condensation Reactions with Ketenes 465
45.10.8.1.1.4 Variation 4: Reaction of Cyloheptatrienethiones with Tetraacyanoethene · 466
45.10.8.1.2 Method 2: Synthesis from Tropylium Salts 466
45.10.8.1.2.1 Variation 1: Proton Abstraction from Alkyl-Substituted Tropylium Salts · 466
45.10.8.1.2.2 Variation 2: Condensation Reactions with Active Methylene Compounds · 468
45.10.8.1.2.3 Variation 3: Reactions with Bromomalononitrile 469
45.10.8.1.3 Method 3: Synthesis from Heterosubstituted Tropylium Salts 469
45.10.8.1.3.1 Variation 1: Reaction of an Alkoxytropylium Salt with an Active Methylene Compound ... 469
45.10.8.1.3.2 Variation 2: Reaction of an Acetoxytropylium Salt with a Lithium Reagent · 470
45.10.8.1.4 Method 4: Enolization of Acyloheptatrienienes 470
45.10.8.1.5 Method 5: Synthesis by Hofmann Elimination 471
45.10.8.1.6 Method 6: Synthesis from Heptafulvenone 472
45.10.8.1.6.1 Variation 1: Reactions of Heptafulvenone with Carbonyl Compounds · 472
45.10.8.1.6.2 Variation 2: Reactions of Heptafulvenone with Thioketones 473
45.10.9 Product Subclass 9: Heptafulvalenes ... 473
45.10.9.1 Synthesis of Product Subclass 9 .. 474
45.10.9.1.1 Method 1: Dimerization of Cyloheptatrienylidenes 474
45.10.9.1.1.1 Variation 1: Heptafulvalenes from the Sodium Salts of Tropone Tosylhydrazones ... 474
45.10.9.1.1.2 Variation 2: Dehydrochlorination of Chlorocyloheptatrienes 475
45.10.9.1.1.3 Variation 3: Rearrangement of Phenylcarbenes 475
45.10.9.1.2 Method 2: Reductive Coupling of 7,7-Dichlorocyloheptatrienes 476
45.10.9.1.3 Method 3: Reactions of Heptafulvenone with Tropone Derivatives 477
45.11 Product Class 11: Dimethylenecyclobutenes and Quinodimethanes
H. Sano and J. Nishimura

45.11 Product Subclass 1: Dimethylenecyclobutenes .. 483

45.11.1 Synthesis of Product Subclass 1 ... 484

45.11.1.1 Method 1: [3,3]-Sigmatropic Rearrangements and Electrocyclic Reactions 484
45.11.1.1.1 Variation 1: Thermolysis of Hexa-1,5-dienes .. 484
45.11.1.1.2 Variation 2: Thermolysis of Substituted Diallenes 485
45.11.1.1.3 Variation 3: Dimerization of Species Generated In Situ from Propenes,
Propadienes, or Propynes ... 485

45.11.1.2 Method 2: Synthesis from Cyclobutenes .. 487

45.11.1.2.1 Variation 1: By the Formation of exo-Doubles Bonds via Hofmann
Elimination ... 487
45.11.1.2.2 Variation 2: By Wittig Reaction .. 487
45.11.1.2.3 Variation 3: By Dehydrochlorination .. 488
45.11.1.2.4 Variation 4: By Substitution of Carbanionic Species Generated from
1,2-Dimethyl-3,4-dimethylenecyclobutene 488

45.11.2 Product Subclass 2: Quinodimethanes ... 489

45.11.2.1 Synthesis of Product Subclass 2 ... 490

45.11.2.1.1 Method 1: α-Quinodimethanes by Thermal Reactions 490
45.11.2.1.1.1 Variation 1: Ring Opening of Benzannulated Cyclobutenes 490
45.11.2.1.1.2 Variation 2: Elimination of Sulfur Dioxide from Sulfones 493
45.11.2.1.1.3 Variation 3: Elimination of Sulfur Dioxide from Sultines 494
45.11.2.1.1.4 Variation 4: Elimination of Carbon Dioxide from
5,8-Dihydro-7H-1,3-dioxolo[4,5-g][2]benzopyran-7-one 494

45.11.2.1.1.5 Variation 5: Elimination of Hydrogen Chloride from
1-Methyl-2-(trichloromethyl)benzenes 494
45.11.2.1.2 Method 2: α-Quinodimethanes by 1,4-Elimination Reactions of
1,2-Dialkylbenzenes Containing Leaving Groups Bonded to the
Alkyl Substituents .. 495

45.11.2.1.2.1 Variation 1: Using Metals as Reducing Agents 495
45.11.2.1.2.2 Variation 2: Anion-Induced 1,4-Eliminations 496
45.11.2.1.2.3 Variation 3: Hofmann Elimination of
N,N,NTrimethyl(10-methyl-9-phenanthryl)methanaminium
Chloride ... 498

45.11.2.1.2.4 Variation 4: Proton-Induced 1,4-Eliminations 499
45.11.2.1.3 Method 3: α-Quinodimethanes by Addition/Elimination Reactions 499
45.11.2.1.4 Method 4: α-Quinodimethanes by Photochemical Reactions 500
45.11.2.1.4.1 Variation 1: Photochemically Induced 1,5-Shifts 500
45.11.2.1.4.2 Variation 2: Photochemically Induced Eliminations 501
45.11.2.1.5 Method 5: α-Quinodimethanes by Cathodic Reduction and Anodic
Oxidation of 1,2-Dialkylbenzenes .. 502
45.11.2.1.6 Method 6: α-Quinodimethanes by Palladium(0)/Samarium(II) Iodide
Induced Intramolecular Cyclization .. 503
<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.11.2.1.7</td>
<td>Method 7</td>
<td>p-Quinodimethanes by Pyrolysis of 1,4-Dialkylbenzenes and Their Derivatives</td>
<td>503</td>
</tr>
<tr>
<td>45.11.2.1.8</td>
<td>Method 8</td>
<td>p-Quinodimethanes by Methylenation of Naphtho-1,4-quinone or Anthra-9,10-quinone</td>
<td>504</td>
</tr>
<tr>
<td>45.12</td>
<td>Product Class 12: Radialenes</td>
<td></td>
<td>507</td>
</tr>
<tr>
<td>45.12.1</td>
<td>Product Subclass 1: [3]Radialenes</td>
<td></td>
<td>508</td>
</tr>
<tr>
<td>45.12.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td></td>
<td>508</td>
</tr>
<tr>
<td>45.12.1.1.1</td>
<td>Method 1</td>
<td>Synthesis by Substitution Reactions</td>
<td>508</td>
</tr>
<tr>
<td>45.12.1.1.1.1</td>
<td>Variation 1</td>
<td>Aromatic Substitution Reactions</td>
<td>508</td>
</tr>
<tr>
<td>45.12.1.1.1.2</td>
<td>Variation 2</td>
<td>Nucleophilic Substitution Reactions</td>
<td>512</td>
</tr>
<tr>
<td>45.12.1.1.2</td>
<td>Method 2</td>
<td>Synthesis by Elimination Reactions</td>
<td>515</td>
</tr>
<tr>
<td>45.12.1.1.2.1</td>
<td>Variation 1</td>
<td>E2 Elimination of Hydrogen Halides</td>
<td>515</td>
</tr>
<tr>
<td>45.12.1.1.2.2</td>
<td>Variation 2</td>
<td>Elimination of Trimethylamine (Hofmann Elimination)</td>
<td>516</td>
</tr>
<tr>
<td>45.12.1.1.3</td>
<td>Method 3</td>
<td>Synthesis by Addition Reactions</td>
<td>516</td>
</tr>
<tr>
<td>45.12.1.1.3.1</td>
<td>Variation 1</td>
<td>Addition of Methylene carbenes</td>
<td>516</td>
</tr>
<tr>
<td>45.12.1.1.3.2</td>
<td>Variation 2</td>
<td>Addition and Oligomerization of Transition Metal Carbenoids</td>
<td>517</td>
</tr>
<tr>
<td>45.12.1.1.4</td>
<td>Method 4</td>
<td>Synthesis by Cyclization Reactions</td>
<td>518</td>
</tr>
<tr>
<td>45.12.1.1.4.1</td>
<td>Variation 1</td>
<td>Synthesis by Ring Closure with Transition Metals</td>
<td>519</td>
</tr>
<tr>
<td>45.12.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td></td>
<td>519</td>
</tr>
<tr>
<td>45.12.2.1.1</td>
<td>Method 1</td>
<td>Synthesis by Elimination Reactions</td>
<td>519</td>
</tr>
<tr>
<td>45.12.2.1.1.1</td>
<td>Variation 1</td>
<td>E2 Elimination of Hydrogen Halides and Pyrolysis of Hofmann Bases</td>
<td>520</td>
</tr>
<tr>
<td>45.12.2.1.1.2</td>
<td>Variation 2</td>
<td>1,4-Dehalogenation, Reductive Dehydroxylation, and Retro-Diels–Alder Reaction</td>
<td>522</td>
</tr>
<tr>
<td>45.12.2.1.2</td>
<td>Method 2</td>
<td>Synthesis by Dimerization Reactions</td>
<td>523</td>
</tr>
<tr>
<td>45.12.2.1.2.1</td>
<td>Variation 1</td>
<td>Thermal and Photochemical Dimerization Reactions</td>
<td>524</td>
</tr>
<tr>
<td>45.12.2.1.2.2</td>
<td>Variation 2</td>
<td>Transition-Metal-Mediated Dimerization and Oligomerization Reactions</td>
<td>527</td>
</tr>
<tr>
<td>45.12.3.1</td>
<td>Synthesis of Product Subclass 3</td>
<td></td>
<td>536</td>
</tr>
<tr>
<td>45.12.3.1.1</td>
<td>Method 1</td>
<td>Transition-Metal-Mediated Oligomerization Reactions</td>
<td>536</td>
</tr>
<tr>
<td>45.12.3.1.2</td>
<td>Method 2</td>
<td>Addition–Elimination Reactions of [5]Radialenones</td>
<td>537</td>
</tr>
<tr>
<td>45.12.4</td>
<td>Product Subclass 4: [6]Radialenes</td>
<td></td>
<td>539</td>
</tr>
<tr>
<td>45.12.4.1</td>
<td>Synthesis of Product Subclass 4</td>
<td></td>
<td>539</td>
</tr>
<tr>
<td>45.12.4.1.1</td>
<td>Method 1</td>
<td>Synthesis by Reductive Elimination Reactions</td>
<td>539</td>
</tr>
<tr>
<td>45.12.4.1.2</td>
<td>Method 2</td>
<td>Synthesis by Elimination or Isomerization Reactions at High Temperature</td>
<td>540</td>
</tr>
<tr>
<td>45.12.4.1.3</td>
<td>Method 3</td>
<td>Transition-Metal-Mediated Oligomerization Reactions</td>
<td>541</td>
</tr>
<tr>
<td>45.12.5</td>
<td>Product Subclass 5: Expanded Radialenes</td>
<td>542</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>45.12.5.1</td>
<td>Synthesis of Product Subclass 5</td>
<td>542</td>
<td></td>
</tr>
</tbody>
</table>

Keyword Index | i |

Author Index | xxxiii |

Abbreviations | bxi |
Volume 45b:
Aromatic Ring Assemblies, Polycyclic Aromatic Hydrocarbons, and Conjugated Polyenes

Preface .. V

Table of Contents ... IX

45.13 Product Class 13: Biaryls
D. A. Black and K. Fagnou ... 547

45.14 Product Class 14: Arylalkanes
D. A. Black and K. Fagnou ... 627

45.15 Product Class 15: Poly(phenylene)
M. Abe and T. Yamamoto ... 653

45.16 Product Class 16: Poly(p-phenylenevinylene)
L. Pu ... 677

45.17 Product Class 17: Poly(xylylene)
T. Itoh .. 697

45.18 Product Class 18: Polystyrenes
F. Aldabbagh and O. Gibbons .. 723

45.19 Product Class 19: Naphthalenes, Anthracenes, 9H-Fluorenes, and Other Acenes
S. Toyota and T. Iwanaga ... 745

45.20 Product Class 20: Cyclobutabenzenes, Biphenylenes, and [N]Phenylenes
S. Toyota ... 855

45.21 Product Class 21: Phenanthrenes, Helicenes, and Other Angular Acenes
I. G. Stará and I. Starý .. 885

45.22 Product Class 22: Pyrenes, Circulenes, and Other Condensed Acenes
C.-S. Chang and Y.-T. Wu .. 955

45.23 Product Class 23: Annulated Polycyclic Aromatic Hydrocarbons
W.-C. Lin and Y.-T. Wu ... 1017

45.24 Product Class 24: Pentalenes, s-Indacenones, os-Indacenones, Azulenes, and Heptalenes, and Their Benzo Derivatives
K. Abou-Hadeed and H.-J. Hansen .. 1043
<table>
<thead>
<tr>
<th>45.25</th>
<th>Product Class 25: Extended Polyaromatic Hydrocarbons: Graphite, Fullerene, and Carbon Nanotube Substructures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I. G. Stará and I. Starý</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>45.26</td>
<td>Product Class 26: Triphenylenes, Tetraphenylenes, and Related Compounds</td>
</tr>
<tr>
<td></td>
<td>S. R. Waldvogel and N. Welschoff</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>45.27</td>
<td>Product Class 27: Calixarenes</td>
</tr>
<tr>
<td></td>
<td>T. Haino and H. Iwamoto</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>45.28</td>
<td>Product Class 28: Mononuclear Cyclophanes</td>
</tr>
<tr>
<td></td>
<td>T. Shinmyozu and M. Shibahara</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>45.29</td>
<td>Product Class 29: Polynuclear Cyclophanes</td>
</tr>
<tr>
<td></td>
<td>Y. Tobe and T. Takeda</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>45.30</td>
<td>Product Class 30: Conjugated Polynes, Including Cyclic Polynes That Are Not Fully Conjugated</td>
</tr>
<tr>
<td></td>
<td>S. Koo</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>45.31</td>
<td>Product Class 31: Macromolecular Conjugated Polynes</td>
</tr>
<tr>
<td></td>
<td>T. Masuda, M. Shiotsuki, and F. Sanda</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Keyword Index</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Author Index</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abbreviations</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.13</td>
<td>Product Class 13: Biaryls</td>
<td>547</td>
</tr>
<tr>
<td>45.13.1</td>
<td>Synthesis of Product Class 13</td>
<td>547</td>
</tr>
<tr>
<td>45.13.1.1</td>
<td>Synthesis Using Copper Catalysis</td>
<td>547</td>
</tr>
<tr>
<td>45.13.1.1.1</td>
<td>Method 1: The Ullmann Reaction</td>
<td>547</td>
</tr>
<tr>
<td>45.13.1.1.2</td>
<td>Method 2: Cross-Coupling Reactions</td>
<td>549</td>
</tr>
<tr>
<td>45.13.1.1.2.1</td>
<td>Variation 1: Using Boronic Acids</td>
<td>549</td>
</tr>
<tr>
<td>45.13.1.1.2.2</td>
<td>Variation 2: Using Organotin Reagents</td>
<td>550</td>
</tr>
<tr>
<td>45.13.1.2</td>
<td>The Suzuki Cross-Coupling Reaction</td>
<td>551</td>
</tr>
<tr>
<td>45.13.1.2.1</td>
<td>Method 1: Aryl Iodides in Suzuki Cross-Coupling Reactions</td>
<td>552</td>
</tr>
<tr>
<td>45.13.1.2.2</td>
<td>Method 2: Aryl Bromides in Suzuki Cross-Coupling Reactions</td>
<td>555</td>
</tr>
<tr>
<td>45.13.1.2.3</td>
<td>Method 3: Aryl Chlorides in Suzuki Cross-Coupling Reactions</td>
<td>562</td>
</tr>
<tr>
<td>45.13.1.2.4</td>
<td>Method 4: Aryl 4-Toluenesulfonates and Trifluoromethanesulfonates in Suzuki Cross-Coupling Reactions</td>
<td>567</td>
</tr>
<tr>
<td>45.13.1.2.5</td>
<td>Method 5: Diazonium Salts in Suzuki Cross-Coupling Reactions</td>
<td>571</td>
</tr>
<tr>
<td>45.13.1.2.6</td>
<td>Method 6: Synthesis of Hindered Biaryls Using the Suzuki Cross-Coupling Reaction</td>
<td>572</td>
</tr>
<tr>
<td>45.13.1.2.7</td>
<td>Method 7: Synthesis of Oligoaromatics Using the Suzuki Cross-Coupling Reaction</td>
<td>575</td>
</tr>
<tr>
<td>45.13.1.3</td>
<td>The Stille Cross-Coupling Reaction</td>
<td>577</td>
</tr>
<tr>
<td>45.13.1.3.1</td>
<td>Method 1: Aryl Iodides in Stille Cross-Coupling Reactions</td>
<td>578</td>
</tr>
<tr>
<td>45.13.1.3.2</td>
<td>Method 2: Aryl Bromides in Stille Cross-Coupling Reactions</td>
<td>579</td>
</tr>
<tr>
<td>45.13.1.3.3</td>
<td>Method 3: Aryl Chlorides in Stille Cross-Coupling Reactions</td>
<td>580</td>
</tr>
<tr>
<td>45.13.1.3.4</td>
<td>Method 4: Aryl Trifluoromethanesulfonates in Stille Cross-Coupling Reactions</td>
<td>581</td>
</tr>
<tr>
<td>45.13.1.3.5</td>
<td>Method 5: Synthesis of Hindered Biaryls Using the Stille Cross-Coupling Reaction</td>
<td>582</td>
</tr>
<tr>
<td>45.13.1.4</td>
<td>The Negishi Cross-Coupling Reaction</td>
<td>584</td>
</tr>
<tr>
<td>45.13.1.4.1</td>
<td>Method 1: Aryl Iodides in Negishi Cross-Coupling Reactions</td>
<td>584</td>
</tr>
<tr>
<td>45.13.1.4.2</td>
<td>Method 2: Aryl Bromides in Negishi Cross-Coupling Reactions</td>
<td>586</td>
</tr>
<tr>
<td>45.13.1.4.3</td>
<td>Method 3: Aryl Chlorides in Negishi Cross-Coupling Reactions</td>
<td>587</td>
</tr>
<tr>
<td>45.13.1.4.4</td>
<td>Method 4: Aryl Trifluoromethanesulfonates in Negishi Cross-Coupling Reactions</td>
<td>588</td>
</tr>
<tr>
<td>45.13.1.4.5</td>
<td>Method 5: Synthesis of Hindered Biaryls Using the Negishi Cross-Coupling Reaction</td>
<td>589</td>
</tr>
<tr>
<td>45.13.1.5</td>
<td>The Hiyama Cross-Coupling Reaction</td>
<td>591</td>
</tr>
<tr>
<td>45.13.1.5.1</td>
<td>Method 1: Aryl Iodides in Hiyama Cross-Coupling Reactions</td>
<td>591</td>
</tr>
<tr>
<td>45.13.1.5.2</td>
<td>Method 2: Aryl Bromides in Hiyama Cross-Coupling Reactions</td>
<td>594</td>
</tr>
<tr>
<td>Section</td>
<td>Method</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>45.13.1.5.3</td>
<td>Method 3</td>
<td>Aryl Chlorides in Hiyama Cross-Coupling Reactions</td>
</tr>
<tr>
<td>45.13.1.5.4</td>
<td>Method 4</td>
<td>Aryl Trifluoromethanesulfonates in Hiyama Cross-Coupling Reactions</td>
</tr>
<tr>
<td>45.13.1.5.5</td>
<td>Method 5</td>
<td>Synthesis of Oligoaromatics Using the Hiyama Cross-Coupling Reaction</td>
</tr>
<tr>
<td>45.13.1.6</td>
<td>The Kumada–Corriu Cross-Coupling Reaction</td>
<td>599</td>
</tr>
<tr>
<td>45.13.1.6.1</td>
<td>Method 1</td>
<td>Aryl Iodides in Kumada–Corriu Cross-Coupling Reactions</td>
</tr>
<tr>
<td>45.13.1.6.2</td>
<td>Method 2</td>
<td>Aryl Bromides in Kumada–Corriu Cross-Coupling Reactions</td>
</tr>
<tr>
<td>45.13.1.6.3</td>
<td>Method 3</td>
<td>Aryl Chlorides in Kumada–Corriu Cross-Coupling Reactions</td>
</tr>
<tr>
<td>45.13.1.6.4</td>
<td>Method 4</td>
<td>Aryl Trifluoromethanesulfonates and Arenesulfonates in Kumada–Corriu Cross-Coupling Reactions</td>
</tr>
<tr>
<td>45.13.1.6.5</td>
<td>Method 5</td>
<td>Synthesis of Hindered Biaryls Using the Kumada–Corriu Cross-Coupling Reaction</td>
</tr>
<tr>
<td>45.13.1.6.6</td>
<td>Method 6</td>
<td>Synthesis of Oligoaromatics Using the Kumada–Corriu Coupling Reaction</td>
</tr>
<tr>
<td>45.13.1.7</td>
<td>Direct Arylation</td>
<td>606</td>
</tr>
<tr>
<td>45.13.1.7.1</td>
<td>Method 1</td>
<td>Intramolecular Direct Arylation</td>
</tr>
<tr>
<td>45.13.1.7.2</td>
<td>Method 2</td>
<td>Intermolecular Direct Arylation</td>
</tr>
<tr>
<td>45.13.1.7.2.1</td>
<td>Variation 1</td>
<td>In the Presence of Directing Groups</td>
</tr>
<tr>
<td>45.13.1.7.2.2</td>
<td>Variation 2</td>
<td>Without Directing Groups</td>
</tr>
<tr>
<td>45.13.1.7.3</td>
<td>Method 3</td>
<td>Palladium-Catalyzed Domino/Cascade Reactions Involving Direct Arylation</td>
</tr>
<tr>
<td>45.14</td>
<td>Product Class 14: Arylalkanes</td>
<td>627</td>
</tr>
<tr>
<td>45.14.1</td>
<td>Synthesis of Product Class 14</td>
<td>627</td>
</tr>
<tr>
<td>45.14.1.1</td>
<td>Method 1</td>
<td>Friedel–Crafts Alkylation</td>
</tr>
<tr>
<td>45.14.1.1.1</td>
<td>Variation 1</td>
<td>Using Alkyl Halides</td>
</tr>
<tr>
<td>45.14.1.1.2</td>
<td>Variation 2</td>
<td>Using Alkenes</td>
</tr>
<tr>
<td>45.14.1.1.3</td>
<td>Variation 3</td>
<td>Using Alcohols</td>
</tr>
<tr>
<td>45.14.1.1.4</td>
<td>Variation 4</td>
<td>Using Esters</td>
</tr>
<tr>
<td>45.14.1.1.5</td>
<td>Variation 5</td>
<td>Asymmetric Friedel–Crafts Alkylation</td>
</tr>
<tr>
<td>45.14.1.2</td>
<td>Method 2</td>
<td>Alkylation of Aromatic Ketones with Alkenes by C—H Activation</td>
</tr>
<tr>
<td>45.14.1.3</td>
<td>Method 3</td>
<td>Alkylation via Transition-Metal-Catalyzed Cross-Coupling Reactions with Alkyl Electrophiles</td>
</tr>
<tr>
<td>45.14.1.3.1</td>
<td>Variation 1</td>
<td>Kumada Cross-Coupling Reaction</td>
</tr>
<tr>
<td>45.14.1.3.2</td>
<td>Variation 2</td>
<td>Suzuki Cross-Coupling Reaction</td>
</tr>
<tr>
<td>45.14.1.3.3</td>
<td>Variation 3</td>
<td>Negishi Cross-Coupling Reaction</td>
</tr>
<tr>
<td>45.14.1.3.4</td>
<td>Variation 4</td>
<td>Stille Cross-Coupling Reaction</td>
</tr>
<tr>
<td>45.14.1.3.5</td>
<td>Variation 5</td>
<td>Hiyama Cross-Coupling Reaction</td>
</tr>
<tr>
<td>45.14.1.4</td>
<td>Method 4</td>
<td>Alkylation via Transition-Metal-Catalyzed Cross-Coupling Reactions with Alkyl Nucleophiles</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Subtitle</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>45.14.1.4</td>
<td>Variation 1</td>
<td>Kumada Cross-Coupling Reaction</td>
</tr>
<tr>
<td>45.14.1.2</td>
<td>Variation 2</td>
<td>Suzuki Cross-Coupling Reaction</td>
</tr>
<tr>
<td>45.14.1.3</td>
<td>Variation 3</td>
<td>Negishi Cross-Coupling Reaction</td>
</tr>
<tr>
<td>45.14.1.4</td>
<td>Variation 4</td>
<td>Hiyama Cross-Coupling Reaction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Subtitle</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.15</td>
<td>Product Class 15: Poly(phenylenes)</td>
<td></td>
<td>M. Abe and T. Yamamoto</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Subtitle</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.15.1</td>
<td>Product Class 15: Poly(phenylenes)</td>
<td></td>
</tr>
<tr>
<td>45.15.1.1</td>
<td>Product Subclass 1: Linear Poly(phenylenes)</td>
<td></td>
</tr>
<tr>
<td>45.15.1.1.1</td>
<td>Method 1:</td>
<td>Kovacic Procedure</td>
</tr>
<tr>
<td>45.15.1.1.2</td>
<td>Method 2:</td>
<td>Dehalogenative Polycoupled Reactions of Disubstituted Benzenes Using Nickel(0) Complexes</td>
</tr>
<tr>
<td>45.15.1.1.2.1</td>
<td>Variation 1:</td>
<td>Using Bis(η⁴-cycloocta-1,5-diene)nickel(0)</td>
</tr>
<tr>
<td>45.15.1.1.2.2</td>
<td>Variation 2:</td>
<td>Using a Nickel Complex as the Catalyst and Zinc as the Reducing Reagent</td>
</tr>
<tr>
<td>45.15.1.1.3</td>
<td>Method 3:</td>
<td>Grignard Coupling Reactions</td>
</tr>
<tr>
<td>45.15.1.1.4</td>
<td>Method 4:</td>
<td>Suzuki Coupling Reactions</td>
</tr>
<tr>
<td>45.15.1.1.4.1</td>
<td>Variation 1:</td>
<td>AB-Type Approach</td>
</tr>
<tr>
<td>45.15.1.1.4.2</td>
<td>Variation 2:</td>
<td>AA/BB-Type Approach</td>
</tr>
<tr>
<td>45.15.1.1.5</td>
<td>Method 5:</td>
<td>Stille Coupling Reactions</td>
</tr>
<tr>
<td>45.15.1.1.6</td>
<td>Method 6:</td>
<td>Reactions Utilizing Intermediate Polymers</td>
</tr>
<tr>
<td>45.15.1.1.6.1</td>
<td>Variation 1:</td>
<td>Aromatization by Decarboxylation of Soluble Precursor Polymers</td>
</tr>
<tr>
<td>45.15.1.1.6.2</td>
<td>Variation 2:</td>
<td>Decarboxylation of a Precursor with a Poly(p-phenylene) Backbone</td>
</tr>
<tr>
<td>45.15.1.1.7</td>
<td>Method 7:</td>
<td>Diels–Alder Polycoupled Reactions</td>
</tr>
<tr>
<td>45.15.2</td>
<td>Product Subclass 2: Macrocyclic Poly(phenylenes)</td>
<td></td>
</tr>
<tr>
<td>45.15.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td></td>
</tr>
<tr>
<td>45.15.2.1.1</td>
<td>Method 1:</td>
<td>Reductive Coupling Reactions</td>
</tr>
<tr>
<td>45.15.2.1.2</td>
<td>Method 2:</td>
<td>Suzuki Coupling Reactions</td>
</tr>
<tr>
<td>45.15.3</td>
<td>Product Subclass 3: Dendritic Poly(phenylenes)</td>
<td></td>
</tr>
<tr>
<td>45.15.3.1</td>
<td>Synthesis of Product Subclass 3</td>
<td></td>
</tr>
<tr>
<td>45.15.3.1.1</td>
<td>Method 1:</td>
<td>Suzuki Coupling Reactions</td>
</tr>
<tr>
<td>45.15.3.1.2</td>
<td>Method 2:</td>
<td>Diels–Alder Cycloaddition Reactions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Subtitle</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.16</td>
<td>Product Class 16: Poly(p-phenylenevinylene)</td>
<td></td>
<td>L. Pu</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Subtitle</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.16</td>
<td>Product Class 16: Poly(p-phenylenevinylene)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.16.1</td>
<td>Product Subclass 1: Unsubstituted Poly(p-phenylenevinylene)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.16.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Method 1</th>
<th>Method 2</th>
<th>Method 3</th>
<th>Method 4</th>
<th>Method 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.16.1.1</td>
<td>Polymerization of Sulfonium Salts</td>
<td>Polymerization of Dithiocarbonates</td>
<td>Polymerization of Dithiocarbamates</td>
<td>Polymerization of Sulfanyl Compounds</td>
<td>Ring-Opening Metathesis Polymerization</td>
</tr>
<tr>
<td>45.16.1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.16.1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.16.1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.16.1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.16.2</td>
<td>Product Subclass 2: Substituted, Soluble Poly(p-phenylenevinylenes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.16.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.16.2.1.1</td>
<td>Polymerization of Sulfonium Salts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.16.2.1.2</td>
<td>The Gilch Method</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.16.2.1.3</td>
<td>Polymerization of Dithiocarbamates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.16.2.1.4</td>
<td>Wittig Reactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.16.2.1.5</td>
<td>Horner Reactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.16.2.1.6</td>
<td>Heck Coupling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.16.2.1.7</td>
<td>Stille Coupling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.16.2.1.8</td>
<td>Acyclic Diene Metathesis Polymerization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.16.2.1.9</td>
<td>Ring-Opening Metathesis Polymerization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.16.2.1.10</td>
<td>Polymerization of (Dichloromethyl)aryls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.16.2.1.11</td>
<td>McMurry Reaction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.16.2.1.12</td>
<td>Knoevenagel Condensation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.17</td>
<td>Product Class 17: Poly(xylylenes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.17.1</td>
<td>Synthesis of Product Subclass 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.17.1.1</td>
<td>Wurtz–Fittig Dehalogenation of 1,4-Bis(halomethyl)arenes in the Presence of a Metal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.17.1.2</td>
<td>Friedel–Crafts Coupling of Benzene with 1,2-Dihaloethanes, or of (2-Haloethyl)benzenes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.17.1.3</td>
<td>Synthesis by Isomerization Polymerization of Diazocompounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.17.1.4</td>
<td>Reductive Coupling of Aromatic Dialdehydes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.17.1.5</td>
<td>Polycrerecombination in the Presence of Peroxide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.17.1.6</td>
<td>Hofmann and Hofmann-Analogous Degradations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.17.1.6.1</td>
<td>Of Trimethyl[(4-methylbenzyl)ammonium] Salts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.17.1.6.2</td>
<td>Of Trimethyl[4-(trimethylsilylmethyl)benzyl]ammonium Halides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.17.1.7</td>
<td>Electrochemical Reduction of 1,4-Bis(halomethyl)benzenes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.17.1.8</td>
<td>Dehydrohalogenation with Base</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.17.1.8.1</td>
<td>Of 1-(Halomethyl)-4-methylarenes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.17.1.8.2</td>
<td>Of 1,4-Bis(halomethyl)arenes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.17.1.8.3</td>
<td>Of p-Xylylenes(dialkylsulfonium) Dihalide Salts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.17.1.8.4</td>
<td>Of 4-(Chloromethyl)benzyl Sulfoxides or Sulfones</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.17.1.9</td>
<td>Chemical Vapor Deposition by Pyrolysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

45.17.1.1.9.1 Variation 1: Of \(p \)-Xylenes

Page 709

45.17.1.1.9.2 Variation 2: Of Esters of 1,4-Phenylenedimethanols

Page 710

45.17.1.1.9.3 Variation 3: Of 1-(Halomethyl)- or 1-(Dihalomethyl)-4-methylbenzenes, or 1,4-Bis(dihalomethyl)benzenes

Page 711

45.17.1.1.9.4 Variation 4: Of Cyclophanes

Page 712

45.17.1.1.9.5 Variation 5: Of a Spiro Compound

Page 714

45.17.1.1.10 Method 10: Dehalogenation of 1,4-Bis(trihalomethyl)benzenes via Chemical Vapor Deposition by Pyrolysis with Metal Contact

Page 714

45.17.2 Product Subclass 2: Poly(m-xylylenes)

Page 715

45.17.2.1 Synthesis of Product Subclass 2

Page 715

45.17.2.1.1 Method 1: Wurtz–Fittig Dehalogenation of 1,3-Bis(halomethyl)benzenes in the Presence of a Metal

Page 715

45.17.2.1.2 Method 2: Reductive Coupling of Aromatic Dialdehydes

Page 716

45.17.3 Product Subclass 3: Poly(o-xylylenes)

Page 716

45.17.3.1 Synthesis of Product Subclass 3

Page 716

45.17.3.1.1 Method 1: Wurtz–Fittig Dehalogenation of a 1,2-Bis(halomethyl)benzene in the Presence of a Metal

Page 716

45.17.3.1.2 Method 2: Electrochemical Reduction of 1,2-Bis(halomethyl)benzenes

Page 717

45.17.3.1.3 Method 3: Ring-Opening Reactions

Page 717

45.17.3.1.3.1 Variation 1: Of Spiro Compounds

Page 717

45.17.3.1.3.2 Variation 2: Of Benzocyclobutenes

Page 718

45.18 Product Class 18: Polystyrenes

F. Aldabbagh and O. Gibbons

45.18.1 Product Class 18: Polystyrenes

Page 723

45.18.1.1 Product Subclass 1: Linear Polystyrenes

Page 723

45.18.1.1.1 Synthesis of Product Subclass 1

Page 723

45.18.1.1.1 Method 1: Conventional Radical Polymerization

Page 724

45.18.1.1.1.1 Variation 1: Addition–Fragmentation Chain Transfer (AFCT)

Page 725

45.18.1.1.1.2 Method 2: Controlled/Living Radical Polymerization (CLRP)

Page 726

45.18.1.1.1.2.1 Variation 1: Nitroxide-Mediated Radical Polymerization (NMP)

Page 727

45.18.1.1.1.2.2 Variation 2: Atom Transfer Radical Polymerization (ATRP)

Page 728

45.18.1.1.1.2.3 Variation 3: Reversible Addition–Fragmentation Chain Transfer (RAFT)

Page 729

45.18.1.1.1.2.4 Variation 4: Organotellurium-Mediated Living Radical Polymerization (TERP)

Page 730

45.18.1.1.1 Method 3: Living Anionic Polymerization

Page 730

45.18.1.1.4 Method 4: Living Cationic Polymerization

Page 731

45.18.1.1.5 Method 5: Coordination Polymerization

Page 732

45.18.1.1.5.1 Variation 1: Isotactic Polymerization

Page 733

45.18.1.1.5.2 Variation 2: Syndiotactic Polymerization

Page 733

45.18.1.1.6 Method 6: Modification of Substituents

Page 734

45.18.1.1.6.1 Variation 1: Click Chemistry Approach

Page 734

45.18.1.1.6.2 Variation 2: Miscellaneous Organic Functional Group Transformations

Page 735
Table of Contents

45.18.1.2 Applications of Product Subclass 1 in Organic Synthesis .. 736

45.18.1.2.1 Method 1: Soluble Polystyrene Supports Made by Controlled/Living Radical Polymerization .. 737

45.18.2 Product Subclass 2: Branched Polystyrenes ... 737

45.18.2.1 Synthesis of Product Subclass 2 ... 737

45.18.2.1.1 Method 1: Alkoxyamine-Initiated Radical Polymerization .. 738

45.18.2.1.2 Method 2: Controlled/Living Radical Copolymerization with Macromonomers .. 739

45.18.3 Product Subclass 3: Cross-Linked Polystyrenes .. 739

45.18.3.1 Synthesis of Product Subclass 3 ... 740

45.18.3.1.1 Method 1: Suspension Copolymerization of Styrene with Cross-Linking Monomers .. 740

45.19 Product Class 19: Naphthalenes, Anthracenes, 9H-Fluorenes, and Other Acenes

S. Toyota and T. Iwanaga

45.19 Product Class 19: Naphthalenes, Anthracenes, 9H-Fluorenes, and Other Acenes ... 745

45.19.1 Product Subclass 1: Naphthalenes ... 746

45.19.1.1 Synthesis of Product Subclass 1 ... 746

45.19.1.1.1 Synthesis by Ring-Closure Reactions ... 746

45.19.1.1.1.1 Variation 1: Palladium-Catalyzed Cyclization of Alkynes and Alkenes 747

45.19.1.1.1.2 Variation 2: Palladium-Catalyzed Cyclization of Alkynes .. 747

45.19.1.1.1.3 Variation 3: Iridium-Catalyzed Cyclization .. 748

45.19.1.1.1.4 Variation 4: Copper-Catalyzed Cyclization of Organozirconium Compounds 748

45.19.1.1.1.5 Variation 5: Insertion of a Nickel–Benzyne Complex .. 749

45.19.1.1.1.6 Variation 2: Palladium-Catalyzed Cyclization of Organozirconium Compounds 750

45.19.1.1.1.7 Variation 1: Titanium-Catalyzed Cyclization .. 750

45.19.1.1.1.8 Variation 2: Palladium-Catalyzed Cyclization of Organozirconium Compounds 750

45.19.1.1.1.9 Variation 3: Palladium-Catalyzed Cyclization of Vinyl and Aryl Iodides 751

45.19.1.1.1.10 Variation 4: Diels–Alder Reaction of o-Quinodimethanes .. 752

45.19.1.1.1.11 Variation 5: Diels–Alder Reaction of Organotungsten Compounds 753

45.19.1.1.1.12 Variation 6: Electrophilic Cyclization .. 753

45.19.1.1.1.13 Variation 7: Lewis Acid Catalyzed Cyclization .. 754

45.19.1.1.1.14 Variation 8: Cyclization of Phosphonium Salts with Enolates .. 755

45.19.1.1.1.15 Method 3: Formation of Two C—C Bonds with a C3 Unit .. 756

45.19.1.1.1.16 Variation 1: Cyclization with Enones .. 756

45.19.1.1.1.17 Variation 2: Cyclization with 3-Oxo Acetals .. 757

45.19.1.1.1.18 Variation 3: Cyclization with 3-Oxo Dithioacetals .. 757
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.19.1.1.1.4</td>
<td>Method 4: Formation of Two C–C Bonds with a C₆ Unit</td>
<td>759</td>
</tr>
<tr>
<td>45.19.1.1.1.4.1</td>
<td>Variation 1: Diels–Alder Reaction with Cyclopentadienones</td>
<td>760</td>
</tr>
<tr>
<td>45.19.1.1.1.4.2</td>
<td>Variation 2: Diels–Alder Reaction with Pyrroles</td>
<td>760</td>
</tr>
<tr>
<td>45.19.1.1.1.4.3</td>
<td>Variation 3: Diels–Alder Reaction with Furans</td>
<td>761</td>
</tr>
<tr>
<td>45.19.1.1.1.5</td>
<td>Method 5: Formation of One C–C Bond to a Benzene Ring</td>
<td>763</td>
</tr>
<tr>
<td>45.19.1.1.1.5.1</td>
<td>Variation 1: Friedel–Crafts Acylation</td>
<td>764</td>
</tr>
<tr>
<td>45.19.1.1.1.5.2</td>
<td>Variation 2: Friedel–Crafts Alkylation</td>
<td>764</td>
</tr>
<tr>
<td>45.19.1.1.1.5.3</td>
<td>Variation 3: Lewis Acid Catalyzed Rearrangement of Vinylidenecyclopropanes</td>
<td>765</td>
</tr>
<tr>
<td>45.19.1.1.1.5.4</td>
<td>Variation 4: Electrophilic Cyclization of Alkynes</td>
<td>766</td>
</tr>
<tr>
<td>45.19.1.1.1.5.5</td>
<td>Variation 5: Base-Catalyzed Cyclization of Enynes</td>
<td>766</td>
</tr>
<tr>
<td>45.19.1.1.1.5.6</td>
<td>Variation 6: Base-Catalyzed Rearrangement of Methylene tetrahydrofurans</td>
<td>767</td>
</tr>
<tr>
<td>45.19.1.1.6</td>
<td>Method 6: Formation of One C–C Bond at Other Sites</td>
<td>768</td>
</tr>
<tr>
<td>45.19.1.1.6.1</td>
<td>Variation 1: Bergman Cyclization</td>
<td>768</td>
</tr>
<tr>
<td>45.19.1.1.6.2</td>
<td>Variation 2: Tellurium-Mediated Cycloaddition</td>
<td>769</td>
</tr>
<tr>
<td>45.19.1.1.6.3</td>
<td>Variation 3: Reductive Cyclization</td>
<td>769</td>
</tr>
<tr>
<td>45.19.1.1.6.4</td>
<td>Variation 4: Ring-Closing Metathesis</td>
<td>770</td>
</tr>
<tr>
<td>45.19.1.1.6.5</td>
<td>Variation 5: Metal-Catalyzed Cyclization</td>
<td>770</td>
</tr>
<tr>
<td>45.19.1.1.1.2</td>
<td>Synthesis by Ring Transformation</td>
<td>771</td>
</tr>
<tr>
<td>45.19.1.1.2.1</td>
<td>Method 1: Valence Isomerism</td>
<td>771</td>
</tr>
<tr>
<td>45.19.1.1.2.1.1</td>
<td>Variation 1: From Dewar Benzenes</td>
<td>771</td>
</tr>
<tr>
<td>45.19.1.1.2.1.2</td>
<td>Variation 2: From Benzvalenes</td>
<td>772</td>
</tr>
<tr>
<td>45.19.1.1.2.2</td>
<td>Method 2: Rearrangement Reactions</td>
<td>772</td>
</tr>
<tr>
<td>45.19.1.1.2.2.1</td>
<td>Variation 1: Metal-Mediated Ring Expansion</td>
<td>772</td>
</tr>
<tr>
<td>45.19.1.1.2.2.2</td>
<td>Variation 2: Thermal Ring Expansion</td>
<td>773</td>
</tr>
<tr>
<td>45.19.1.1.2.2.3</td>
<td>Variation 3: Acid-Catalyzed Ring Contraction</td>
<td>773</td>
</tr>
<tr>
<td>45.19.1.1.3</td>
<td>Synthesis by Aromatization</td>
<td>774</td>
</tr>
<tr>
<td>45.19.1.1.3.1</td>
<td>Method 1: Oxidation of Hydrogenated Compounds</td>
<td>774</td>
</tr>
<tr>
<td>45.19.1.1.3.1.1</td>
<td>Variation 1: Dehydrogenation over Palladium on Carbon</td>
<td>774</td>
</tr>
<tr>
<td>45.19.1.1.3.1.2</td>
<td>Variation 2: Dehydrogenation by Sulfur</td>
<td>775</td>
</tr>
<tr>
<td>45.19.1.1.3.1.3</td>
<td>Variation 3: Dehydrogenation by Benzoquinones</td>
<td>776</td>
</tr>
<tr>
<td>45.19.1.1.3.1.4</td>
<td>Variation 4: Other Methods</td>
<td>776</td>
</tr>
<tr>
<td>45.19.1.1.3.2</td>
<td>Method 2: Synthesis from Tetralones or Naphthoquinones</td>
<td>777</td>
</tr>
<tr>
<td>45.19.1.1.3.2.1</td>
<td>Variation 1: Direct Conversion into Naphthalenes</td>
<td>777</td>
</tr>
<tr>
<td>45.19.1.1.3.2.2</td>
<td>Variation 2: Stepwise Conversion into Naphthalenes</td>
<td>778</td>
</tr>
<tr>
<td>45.19.1.1.3.3</td>
<td>Method 3: Elimination Reactions</td>
<td>779</td>
</tr>
<tr>
<td>45.19.1.1.3.3.1</td>
<td>Variation 1: Dehydration</td>
<td>779</td>
</tr>
<tr>
<td>45.19.1.1.3.3.2</td>
<td>Variation 2: Dehydrobromination</td>
<td>780</td>
</tr>
<tr>
<td>45.19.1.1.4</td>
<td>Synthesis by Substitution of Existing Substituents</td>
<td>780</td>
</tr>
<tr>
<td>45.19.1.1.4.1</td>
<td>Method 1: Substitution of Hydrogen</td>
<td>780</td>
</tr>
<tr>
<td>45.19.1.1.4.1.1</td>
<td>Variation 1: Friedel–Crafts Alkylation</td>
<td>780</td>
</tr>
<tr>
<td>45.19.1.1.4.2</td>
<td>Method 2: Substitution of Carbon</td>
<td>781</td>
</tr>
<tr>
<td>45.19.1.1.4.2.1</td>
<td>Variation 1: Dealkylation</td>
<td>781</td>
</tr>
<tr>
<td>45.19.1.1.4.3</td>
<td>Method 3: Substitution of Heteroatoms</td>
<td>782</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>45.1.1.4.3.1</td>
<td>Variation 1: Coupling with Organoboranes</td>
<td>782</td>
</tr>
<tr>
<td>45.1.1.4.3.2</td>
<td>Variation 2: Coupling with Grignard Reagents</td>
<td>783</td>
</tr>
<tr>
<td>45.1.1.4.3.3</td>
<td>Variation 3: Coupling with Organoaluminum Complexes</td>
<td>784</td>
</tr>
<tr>
<td>45.1.1.4.3.4</td>
<td>Variation 4: Coupling with Other Organometallic Reagents</td>
<td>785</td>
</tr>
<tr>
<td>45.1.1.5</td>
<td>Synthesis by Modification of Substituents</td>
<td>785</td>
</tr>
<tr>
<td>45.1.1.5.1</td>
<td>Method 1: Alkylation of Alkyl Substituents</td>
<td>785</td>
</tr>
<tr>
<td>45.1.1.5.2</td>
<td>Method 2: Dehalogenation of Halomethyl Groups</td>
<td>786</td>
</tr>
<tr>
<td>45.1.1.5.3</td>
<td>Method 3: Deoxygenation of Hydroxymethyl Groups</td>
<td>787</td>
</tr>
<tr>
<td>45.1.1.5.4</td>
<td>Method 4: Reduction of Acyl Groups</td>
<td>787</td>
</tr>
<tr>
<td>45.1.2</td>
<td>Product Subclass 2: Anthracenes</td>
<td>788</td>
</tr>
<tr>
<td>45.1.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>788</td>
</tr>
<tr>
<td>45.1.2.1.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>788</td>
</tr>
<tr>
<td>45.1.2.1.1.1</td>
<td>Method 1: Formation of the Two Terminal Benzene Rings</td>
<td>788</td>
</tr>
<tr>
<td>45.1.2.1.1.1.1</td>
<td>Variation 1: Palladium-Catalyzed Cyclization</td>
<td>788</td>
</tr>
<tr>
<td>45.1.2.1.1.1.2</td>
<td>Variation 2: Copper-Catalyzed Cyclization with Organozirconium Compounds</td>
<td>789</td>
</tr>
<tr>
<td>45.1.2.1.1.3</td>
<td>Variation 3: Diels–Alder Reaction with Furans and Pyrroles</td>
<td>790</td>
</tr>
<tr>
<td>45.1.2.1.1.4</td>
<td>Variation 4: Diels–Alder Reaction of Benzo-1,4-quinone</td>
<td>791</td>
</tr>
<tr>
<td>45.1.2.1.1.5</td>
<td>Variation 5: Bergman Cyclization</td>
<td>792</td>
</tr>
<tr>
<td>45.1.2.1.1.6</td>
<td>Method 2: Formation of the Central Benzene Ring and a Terminal Benzene Ring</td>
<td>793</td>
</tr>
<tr>
<td>45.1.2.1.2</td>
<td>Synthesis by Ring Transformation</td>
<td>800</td>
</tr>
<tr>
<td>45.1.2.1.2.1</td>
<td>Method 1: Ring Contraction by Pyrolysis</td>
<td>800</td>
</tr>
<tr>
<td>45.1.2.1.3</td>
<td>Synthesis by Aromatization</td>
<td>801</td>
</tr>
<tr>
<td>45.1.2.1.3.1</td>
<td>Method 1: Oxidation of Dihydroanthracenes</td>
<td>801</td>
</tr>
<tr>
<td>45.1.2.1.3.1.1</td>
<td>Variation 1: Dehydrogenation by Conventional Methods</td>
<td>801</td>
</tr>
<tr>
<td>45.1.2.1.3.1.2</td>
<td>Variation 2: Dehydrogenation via an Anion</td>
<td>802</td>
</tr>
<tr>
<td>45.1.2.1.3.1.3</td>
<td>Variation 3: Dehydrogenation by Oxygen</td>
<td>803</td>
</tr>
<tr>
<td>45.1.2.1.3.2</td>
<td>Method 2: Synthesis from Oxygenated Compounds</td>
<td>804</td>
</tr>
<tr>
<td>45.1.2.1.3.2.1</td>
<td>Variation 1: Alkylation of Anthraquinones</td>
<td>804</td>
</tr>
<tr>
<td>45.1.2.1.3.2.2</td>
<td>Variation 2: Alkylation of Anthracen-9(10H)-ones</td>
<td>805</td>
</tr>
<tr>
<td>45.1.2.1.3.3</td>
<td>Variation 3: Reduction of Anthraquinones</td>
<td>806</td>
</tr>
<tr>
<td>45.1.2.1.3.4</td>
<td>Variation 4: Reduction of Anthracenones</td>
<td>807</td>
</tr>
</tbody>
</table>
Table of Contents

45.19.2.1.3.3 Method 3: Elimination Reactions 808
45.19.2.1.3.3.1 Variation 1: Deoxygenation ... 808
45.19.2.1.3.3.2 Variation 2: Retro-Diels–Alder Reaction 809
45.19.2.1.4 Synthesis by Substitution of Existing Substituents 809
45.19.2.1.4.1 Method 1: Substitution of Hydrogen 809
45.19.2.1.4.1.1 Variation 1: Friedel–Crafts Alkylation 809
45.19.2.1.4.1.2 Variation 2: Alkylation of 9,10-Dihydroanthracenes 810
45.19.2.1.4.1.3 Variation 3: Alkylation of 1,4-Dihydroanthracene 812
45.19.2.1.4.2 Method 2: Substitution of Carbon 812
45.19.2.1.4.2.1 Variation 1: Dealkylation .. 812
45.19.2.1.4.2.3 Variation 3: Substitution of Heteroatoms 813
45.19.2.1.4.3.1 Method 1: Nucleophilic Alkylation 813
45.19.2.1.4.3.2 Method 2: Alkylation via Organolithium Compounds 814
45.19.2.1.4.3.3 Variation 3: Cross-Coupling Reactions 815
45.19.2.1.5 Synthesis by Modification of Substituents 816
45.19.2.1.5.1 Method 1: Reduction of Acyl Groups 816
45.19.3 Product Subclass 3: 9H-Fluorenes .. 817
45.19.3.1 Synthesis of Product Subclass 3 ... 817
45.19.3.1.1 Synthesis by Ring-Closure Reactions 818
45.19.3.1.1.1 Method 1: Formation of the Five-Membered Ring by Formation of Two Bonds .. 818
45.19.3.1.1.2 Method 2: Formation of the Five-Membered Ring by C9—C9 Bond Formation .. 819
45.19.3.1.1.2.1 Variation 1: Niobium-Catalyzed Cyclizations 819
45.19.3.1.1.2.2 Variation 2: Thermal Cyclization 819
45.19.3.1.1.2.3 Variation 3: Electrophilic Cyclization 820
45.19.3.1.1.3 Method 3: Formation of the Five-Membered Ring by C9—C9 Bond Formation .. 820
45.19.3.1.1.3.1 Variation 1: Metal-Catalyzed Coupling 820
45.19.3.1.1.3.2 Variation 2: Palladium-Catalyzed Coupling 821
45.19.3.1.1.3.3 Variation 3: Electrophilic Substitution 821
45.19.3.1.1.4 Method 4: Formation of a Terminal Benzene Ring 822
45.19.3.1.1.4.1 Variation 1: Diels–Alder Reaction 822
45.19.3.1.1.4.2 Variation 2: Cyclization of Indene Derivatives 823
45.19.3.1.2 Synthesis by Reduction of Oxygenated Compounds 824
45.19.3.1.2.1 Method 1: Reduction of 9H-Fluoren-9-ones 824
45.19.3.1.2.2 Method 2: Reduction of 9H-Fluoren-9-ols 825
45.19.3.1.2.3 Method 3: Elimination and Reduction of 9H-Fluoren-9-ols .. 825
45.19.3.1.3 Synthesis by Substitution of Existing Substituents 826
45.19.3.1.3.1 Method 1: Substitution of Aromatic Hydrogen 826
45.19.3.1.3.1.1 Variation 1: Friedel–Crafts Alkylation 826
45.19.3.1.3.1.2 Variation 2: Transalkylation 827
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Substitution Details</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.19.3.1.3.2</td>
<td>Method 2:</td>
<td>Substitution of Hydrogen at C9</td>
<td>828</td>
</tr>
<tr>
<td>45.19.3.1.3.2.1</td>
<td>Variation 1:</td>
<td>Substitution Using Alkyl Halides</td>
<td>828</td>
</tr>
<tr>
<td>45.19.3.1.3.2.2</td>
<td>Variation 2:</td>
<td>Substitution by Sodium Alkoxides</td>
<td>829</td>
</tr>
<tr>
<td>45.19.3.1.3.3</td>
<td>Method 3:</td>
<td>Substitution of Carbon</td>
<td>830</td>
</tr>
<tr>
<td>45.19.3.1.3.3.1</td>
<td>Variation 1:</td>
<td>Dealkylation</td>
<td>830</td>
</tr>
<tr>
<td>45.19.3.1.3.3.2</td>
<td>Variation 2:</td>
<td>Decarboxylation</td>
<td>830</td>
</tr>
<tr>
<td>45.19.3.1.4</td>
<td>Method 1:</td>
<td>Reduction of a Substituted Methyl Group</td>
<td>831</td>
</tr>
<tr>
<td>45.19.3.1.4.1</td>
<td>Method 2:</td>
<td>Alkylation of an Acyl Group</td>
<td>831</td>
</tr>
<tr>
<td>45.19.3.1.4.3</td>
<td>Method 3:</td>
<td>Reduction of an Acyl Group</td>
<td>832</td>
</tr>
<tr>
<td>45.19.4</td>
<td>Product Subclass 4: Higher Acenes</td>
<td></td>
<td>832</td>
</tr>
<tr>
<td>45.19.4.1</td>
<td>Synthesis of Product Subclass 4</td>
<td></td>
<td>832</td>
</tr>
<tr>
<td>45.19.4.1.1</td>
<td>Method 1:</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td>833</td>
</tr>
<tr>
<td>45.19.4.1.1.1</td>
<td>Method 1:</td>
<td>Metal-Catalyzed Cyclization</td>
<td>833</td>
</tr>
<tr>
<td>45.19.4.1.1.1.1</td>
<td>Variation 1:</td>
<td>Cyclization of an Alkyne with Organozirconium Compounds</td>
<td>833</td>
</tr>
<tr>
<td>45.19.4.1.1.1.2</td>
<td>Variation 2:</td>
<td>Cyclization of Iodoarenes with Organozirconium Compounds</td>
<td>834</td>
</tr>
<tr>
<td>45.19.4.1.1.2</td>
<td>Method 2:</td>
<td>Condensation Reactions</td>
<td>836</td>
</tr>
<tr>
<td>45.19.4.1.1.2.1</td>
<td>Variation 1:</td>
<td>Thermal Cyclodehydration</td>
<td>836</td>
</tr>
<tr>
<td>45.19.4.1.1.2.2</td>
<td>Variation 2:</td>
<td>Friedel–Crafts Acylation</td>
<td>836</td>
</tr>
<tr>
<td>45.19.4.1.1.2.3</td>
<td>Variation 3:</td>
<td>Condensation of Diaxides and Diketones</td>
<td>837</td>
</tr>
<tr>
<td>45.19.4.1.1.2.4</td>
<td>Variation 4:</td>
<td>Condensation of Diaxides and Diesters</td>
<td>838</td>
</tr>
<tr>
<td>45.19.4.1.1.3</td>
<td>Method 3:</td>
<td>Bergman Cyclization</td>
<td>839</td>
</tr>
<tr>
<td>45.19.4.1.1.4</td>
<td>Method 4:</td>
<td>Diels–Alder Reaction</td>
<td>840</td>
</tr>
<tr>
<td>45.19.4.1.1.4.1</td>
<td>Variation 1:</td>
<td>Reaction of Furans with Arynes</td>
<td>840</td>
</tr>
<tr>
<td>45.19.4.1.1.4.2</td>
<td>Variation 2:</td>
<td>Reaction of Pyrroles with Arynes</td>
<td>842</td>
</tr>
<tr>
<td>45.19.4.1.1.4.3</td>
<td>Variation 3:</td>
<td>Reaction of Bicyclic Pentaenes with Arynes</td>
<td>842</td>
</tr>
<tr>
<td>45.19.4.1.1.4.4</td>
<td>Variation 4:</td>
<td>Reaction of &-Quinodimethanes with Dienophiles</td>
<td>843</td>
</tr>
<tr>
<td>45.19.4.1.1.4.5</td>
<td>Variation 5:</td>
<td>Reaction of Dienes and 1,4-Quinones</td>
<td>845</td>
</tr>
<tr>
<td>45.19.4.1.2</td>
<td>Method 3:</td>
<td>Synthesis by Ring Transformation</td>
<td>846</td>
</tr>
<tr>
<td>45.20</td>
<td>Product Class 20: Cyclobutabenzenes, Biphenylenes, and [N]Phenylenes</td>
<td></td>
<td>855</td>
</tr>
<tr>
<td>45.20.1</td>
<td>Synthesis of Product Subclass 1</td>
<td></td>
<td>856</td>
</tr>
<tr>
<td>45.20.1.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td></td>
<td>856</td>
</tr>
<tr>
<td>45.20.1.1.1</td>
<td>Method 1:</td>
<td>Thermal Reaction of Dienediynes</td>
<td>856</td>
</tr>
<tr>
<td>45.20.1.1.1.2</td>
<td>Method 2:</td>
<td>Thermal Reaction of Dialk-1-ynylcyclobutenes</td>
<td>857</td>
</tr>
<tr>
<td>45.20.2</td>
<td>Synthesis of Product Subclass 2</td>
<td></td>
<td>858</td>
</tr>
<tr>
<td>45.20.2.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td></td>
<td>859</td>
</tr>
<tr>
<td>45.20.2.1.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
<td></td>
<td>859</td>
</tr>
</tbody>
</table>
45.20.2.1.1.1 Method 1: Formation of Two Rings by Cobalt-Catalyzed Cyclization of Alkynes .. 859
45.20.2.1.1.2 Method 2: Formation of the Cyclobutadiene Ring by Dimerization of Benzynes .. 860
45.20.2.1.1.1.1 Variation 1: Generated from 2-Diazo -nobi s o n a 861
45.20.2.1.1.1.1 Variation 2: Generated by Elimination from 2-Metalated Halobenzenes 861
45.20.2.1.1.1.1 Variation 3: Generated by Oxidation of 1-Aminobenzotriazole 862
45.20.2.1.1.1.2 Method 3: Formation of the Four-Membered Ring by Coupling Reactions 863
45.20.2.1.1.1.2.1 Variation 1: Copper-Catalyzed Coupling of Organo Halides 863
45.20.2.1.1.1.2.2 Variation 2: Copper-Catalyzed Coupling of Organolithiums 864
45.20.2.1.1.1.2.3 Variation 3: Copper-Catalyzed Coupling of Organozincs 865
45.20.2.1.1.1.2.4 Variation 4: Coupling of Organomercurials 867
45.20.2.1.1.1.3 Method 4: Formation of One Benzene Ring by Cycloaddition of Cyclobutabenzene .. 868
45.20.2.1.1.1.4 Method 5: Substitution of Hydrogen .. 870
45.20.2.1.1.1.5 Method 6: Substitution of Non-Hydrogen Atoms 872
45.20.2.1.1.1.6 Method 7: Reduction of Oxygen-Containing Substituents .. 873
45.20.2.1.2 Synthesis by Substitution .. 875
45.20.2.1.2.1 Method 1: Substitution of Hydrogen .. 875
45.20.2.1.2.1.1 Variation 1: Electrophilic Substitution 877
45.20.2.1.2.1.2 Variation 2: Substitution of Lithiated Biphenylene 874
45.20.2.1.2.2 Method 2: Substitution of Non-Hydrogen Atoms 872
45.20.2.1.2.2.1 Variation 1: Substitution of Silicon 872
45.20.2.1.2.2.2 Variation 2: Substitution of Halogen 872
45.20.2.1.3 Synthesis by Modification of Substituents 874
45.20.2.1.3.1 Method 1: Reduction of Oxygen-Containing Substituents .. 873
45.20.2.1.3.1.1 Variation 1: Reduction of Carbons 873
45.20.2.1.3.1.2 Variation 2: Reduction of Hydroxymethyl Groups 874
45.20.2.1.4 Product Subclass 3: \[N\]Phenyl enes .. 874
45.20.2.1.4.1 Method 1: Synthesis of Product Subclass 3 875
45.20.2.1.4.2 Synthesis by Ring-Closure Reactions 875
45.20.2.1.4.3 Method 1: Formation of Four- and Six-Membered Rings .. 875
45.20.2.1.4.3.1 Variation 1: Cobalt-Catalyzed Cyclization with an Alkyne 875
45.20.2.1.4.3.2 Variation 2: Cobalt-Catalyzed Cyclization with a Triyne 877
45.20.2.1.4.3.3 Variation 3: Cobalt-Catalyzed Intramolecular Cyclization 878
45.20.2.1.4.3.4 Method 2: Formation of a Six-Membered Ring by Cy cloaddition 879
45.20.2.1.4.3.5 Method 3: Formation of Four-Membered Ring by Thermal Radical Coupling 880
45.20.2.1.4.6 Synthesis by Substitution .. 881
45.20.2.1.4.7 Method 1: Substitution of Silicon 881
45.21 Product Class 21: Phenanthrenes, Helicenes, and Other Angular Acenes
I. G. Stará and I. Starý

45.21 Product Class 21: Phenanthrenes, Helicenes, and Other Angular Acenes

45.21.1 Product Subclass 1: Phenanthrenes and Benzo[c]phenanthrenes

45.21.1.1 Synthesis of Product Subclass 1

45.21.1.1 Method 1: Photodehydrocyclization of Stilbenes

45.21.1.1.1 Variation 1: Friedel–Crafts Cycloalkylation

45.21.1.1.2 Method 2: Photochemical Cyclization of Biaryl Aldehydes

45.21.1.1.3 Method 3: Friedel–Crafts Reactions

45.21.1.1.3.1 Variation 1: Friedel–Crafts Cycloalkylation

45.21.1.1.3.2 Variation 2: Friedel–Crafts Cycloacylation

45.21.1.1.3.3 Variation 3: Cyclization of Aromatic Nitriles

45.21.1.1.4 Method 4: Cyclization of 4-Arylquinol Ketals

45.21.1.1.5 Method 5: Homolytic Aromatic Substitution

45.21.1.1.5.1 Variation 1: The Pschorr Reaction

45.21.1.1.5.2 Variation 2: Tributyltin Hydride Mediated Radical Cyclization

45.21.1.1.6 Method 6: Oxidative Aryl Coupling

45.21.1.1.7 Method 7: The McMurry Reaction

45.21.1.1.8 Method 8: Ring-Closing Alkene Metathesis

45.21.1.1.9 Method 9: Directed Remote Metalation of Biaryls

45.21.1.1.10 Method 10: Cycloisomerization of Alkynylbiaryls

45.21.1.2 Syntheses Involving Intermolecular Cyclization Reactions

45.21.1.2.1 Method 1: Friedel–Crafts Acylation/Cycloalkylation

45.21.1.2.2 Method 2: Suzuki–Miyaura Coupling/Aldol Condensations

45.21.1.2.3 Method 3: Reactions of Arynes

45.21.1.2.3.1 Variation 1: Cycloadditions between Arynes and Fursans

45.21.1.2.3.2 Variation 2: Cocyclization of Arynes and Allylic Halides

45.21.1.2.3.3 Variation 3: Cocyclization of Arynes and Halostyrenes

45.21.1.2.3.4 Variation 4: Cocyclization of Arynes and Alkynes

45.21.1.2.3.5 Variation 5: Cocyclization of Aryl Halides, Alkynes, and Arynes

45.21.1.2.4 Method 4: Cocyclization of Aromatic Halides and Alkynes

45.21.1.2.4.1 Variation 1: Cocyclization of Aryl Iodides and Alkynes

45.21.1.2.4.2 Variation 2: Cocyclization of Aryl Iodides and Alkynes in the Presence of Norbornene

45.21.1.2.4.3 Variation 3: Cocyclization of Iodobiaryls and Alkynes

45.21.1.2.4.4 Variation 4: Cocyclization of Diiodobiaryls and Alkynes

45.21.1.2.4.5 Variation 5: Chromium-Mediated Cocyclization between Halobiaryls and Alkynes

45.21.1.2.5 Method 5: Cocyclization between Chromium–Carbene Complexes and Alkynes

45.21.1.3 Synthesis by Other Processes

45.21.1.4 Synthesis of Nonracemic Benzo[c]phenanthrenes
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.21.1.4.1</td>
<td>Method 1: Resolution of Racemic 1,12-Dimethylbenzo[c]phenanthrene-5,8-dicarboxylic Acid</td>
<td>908</td>
</tr>
<tr>
<td>45.21.1.4.2</td>
<td>Method 2: Asymmetric Diels–Alder Cycloaddition/Aromatization</td>
<td>910</td>
</tr>
<tr>
<td>45.21.2</td>
<td>Product Subclass 2: Helicenes</td>
<td>910</td>
</tr>
<tr>
<td>45.21.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>911</td>
</tr>
<tr>
<td>45.21.2.1.1</td>
<td>Synthesis by Intramolecular Cyclization Reactions with the Formation of One Ring</td>
<td>911</td>
</tr>
<tr>
<td>45.21.2.1.1.1</td>
<td>Method 1: Photodehydrocyclization of Stilbene-Type Precursors</td>
<td>911</td>
</tr>
<tr>
<td>45.21.2.1.1.2</td>
<td>Method 2: Ring-Closing Alkene Metathesis</td>
<td>915</td>
</tr>
<tr>
<td>45.21.2.1.1.3</td>
<td>Method 3: Carbenoid Coupling</td>
<td>917</td>
</tr>
<tr>
<td>45.21.2.1.1.4</td>
<td>Method 4: The McMurry Reaction</td>
<td>917</td>
</tr>
<tr>
<td>45.21.2.1.1.5</td>
<td>Method 5: Rearrangement of Benzannulated Enediynes</td>
<td>917</td>
</tr>
<tr>
<td>45.21.2.1.2</td>
<td>Synthesis by Intramolecular Cyclization Reactions with the Formation of Two Rings</td>
<td>918</td>
</tr>
<tr>
<td>45.21.2.1.2.1</td>
<td>Method 1: Photodehydrocyclization of 1,4-Bis(2-phenylvinyl)benzenes</td>
<td>918</td>
</tr>
<tr>
<td>45.21.2.1.2.2</td>
<td>Method 2: Friedel–Crafts Cycloacylation</td>
<td>921</td>
</tr>
<tr>
<td>45.21.2.1.2.3</td>
<td>Method 3: Friedel–Crafts Cycloalkylation</td>
<td>922</td>
</tr>
<tr>
<td>45.21.2.1.2.4</td>
<td>Method 4: Homolytic Aromatic Substitution</td>
<td>923</td>
</tr>
<tr>
<td>45.21.2.1.2.5</td>
<td>Method 5: C—H Arylation</td>
<td>925</td>
</tr>
<tr>
<td>45.21.2.1.3</td>
<td>Synthesis by Intramolecular Cyclization Reactions with the Formation of Three Rings</td>
<td>926</td>
</tr>
<tr>
<td>45.21.2.1.3.1</td>
<td>Method 1: Cycloisomerization of Dienetriynes</td>
<td>926</td>
</tr>
<tr>
<td>45.21.2.1.3.2</td>
<td>Method 2: Cycloisomerization of Triynes</td>
<td>929</td>
</tr>
<tr>
<td>45.21.2.1.4</td>
<td>Synthesis via Intermolecular Cyclization Reactions with the Formation of One Ring</td>
<td>933</td>
</tr>
<tr>
<td>45.21.2.1.4.1</td>
<td>Method 1: Diels–Alder Cycloadditions</td>
<td>933</td>
</tr>
<tr>
<td>45.21.2.1.5</td>
<td>Synthesis via Intermolecular Cyclization Reactions with the Formation of Two Rings</td>
<td>934</td>
</tr>
<tr>
<td>45.21.2.1.5.1</td>
<td>Method 1: Diels–Alder Cycloadditions</td>
<td>934</td>
</tr>
<tr>
<td>45.21.2.1.6</td>
<td>Synthesis by Other Processes</td>
<td>937</td>
</tr>
<tr>
<td>45.21.2.1.7</td>
<td>Synthesis of Nonracemic Helicenes</td>
<td>938</td>
</tr>
<tr>
<td>45.21.2.1.7.1</td>
<td>Method 1: Resolution of Racemic Helicen-1-ols</td>
<td>938</td>
</tr>
<tr>
<td>45.21.2.1.7.2</td>
<td>Method 2: Asymmetric Photodehydrocyclization</td>
<td>940</td>
</tr>
<tr>
<td>45.21.2.1.7.2.1</td>
<td>Variation 1: Diastereoselective Photodehydrocyclization Controlled by Internal Chiral Centers</td>
<td>940</td>
</tr>
<tr>
<td>45.21.2.1.7.2.2</td>
<td>Variation 2: Diastereoselective Photodehydrocyclization Controlled by External Chiral Centers</td>
<td>941</td>
</tr>
<tr>
<td>45.21.2.1.7.2.3</td>
<td>Variation 3: Stereoconservative Photodehydrocyclization Controlled via the Helical Unit</td>
<td>941</td>
</tr>
<tr>
<td>45.21.2.1.7.3</td>
<td>Method 3: Asymmetric Diels–Alder Cycloaddition/Aromatizations</td>
<td>942</td>
</tr>
<tr>
<td>45.21.2.1.7.4</td>
<td>Method 4: Diastereoselective Aromatic Oxy-Cope Rearrangements</td>
<td>943</td>
</tr>
<tr>
<td>45.21.2.1.7.5</td>
<td>Method 5: Enantioselective Cycloisomerization of Aromatic Triynes</td>
<td>943</td>
</tr>
<tr>
<td>45.21.2.1.7.6</td>
<td>Method 6: Enantioselective Cocyclization of Arynes and Alkynes</td>
<td>944</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>45.21.2.1.7.7</td>
<td>Method 7: Stereoconservative Cyclization of 1,1'-Binaphthalene-2,2'-diylbis(methylene)bis(triphenylphosphonium) Diperiodate</td>
<td>945</td>
</tr>
<tr>
<td>45.21.2.1.7.8</td>
<td>Method 8: Stereoconservative Stevens Rearrangements</td>
<td>946</td>
</tr>
<tr>
<td>45.21.3</td>
<td>Product Subclass 3: Other Angular Acenes</td>
<td>946</td>
</tr>
<tr>
<td>45.21.3.1</td>
<td>Synthesis of Product Subclass 3</td>
<td>946</td>
</tr>
<tr>
<td>45.22</td>
<td>Product Class 22: Pyrenes, Circulenes, and Other Condensed Acenes</td>
<td>955</td>
</tr>
<tr>
<td>45.22.1</td>
<td>Product Subclass 1: Pyrenes, Cyclopenta[cd]pyrenes, and Benzopyrenes</td>
<td>955</td>
</tr>
<tr>
<td>45.22.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td>956</td>
</tr>
<tr>
<td>45.22.1.1.1.1</td>
<td>Method 1: Synthesis from [2.2]Metacyclophanes</td>
<td>956</td>
</tr>
<tr>
<td>45.22.1.1.1.1.1</td>
<td>Variation 1: Cycloaromatization</td>
<td>956</td>
</tr>
<tr>
<td>45.22.1.1.1.1.2</td>
<td>Variation 2: Cyclization and Aromatization of 8-Methoxy[2.2]metacyclophanes</td>
<td>956</td>
</tr>
<tr>
<td>45.22.1.1.1.2</td>
<td>Method 2: Synthesis from [2.2]Metacyclophane-1,9-dienes</td>
<td>957</td>
</tr>
<tr>
<td>45.22.1.1.1.3</td>
<td>Method 3: Lewis Acid Catalyzed Aromatization of [2.2]Metaparacyclophane-1,9-dienes</td>
<td>959</td>
</tr>
<tr>
<td>45.22.1.1.4</td>
<td>Method 4: Photocyclization and Aromatization of Biphenyl Derivatives</td>
<td>960</td>
</tr>
<tr>
<td>45.22.1.1.5</td>
<td>Method 5: Synthesis from 4-Ethynylphenanthrene Derivatives</td>
<td>961</td>
</tr>
<tr>
<td>45.22.1.2</td>
<td>Cyclopenta[cd]pyrene</td>
<td>962</td>
</tr>
<tr>
<td>45.22.1.2.1</td>
<td>Method 1: Flash-Vacuum Pyrolysis</td>
<td>962</td>
</tr>
<tr>
<td>45.22.1.2.1.1</td>
<td>Variation 1: Of 1-(1-Chlorovinyl)pyrene</td>
<td>962</td>
</tr>
<tr>
<td>45.22.1.2.1.2</td>
<td>Variation 2: Of 1,8-Bis(1-chlorovinyl)anthracene</td>
<td>962</td>
</tr>
<tr>
<td>45.22.1.2.2</td>
<td>Method 2: Synthesis via Cyclopenta[cd]pyren-3(4H)-one</td>
<td>963</td>
</tr>
<tr>
<td>45.22.1.3</td>
<td>Benzo[a]pyrene</td>
<td>964</td>
</tr>
<tr>
<td>45.22.1.3.1</td>
<td>Method 1: Oxidative Dehydrogenation of Dihydrobenzo[a]pyrenes</td>
<td>965</td>
</tr>
<tr>
<td>45.22.1.3.1.1</td>
<td>Variation 1: Synthesis via 11,12-Dihydrobenzo[a]pyrene</td>
<td>965</td>
</tr>
<tr>
<td>45.22.1.3.1.2</td>
<td>Variation 2: Synthesis via 9,10-Dihydrobenzo[a]pyrene</td>
<td>965</td>
</tr>
<tr>
<td>45.22.1.3.2</td>
<td>Method 2: Cyclodehydrogenation of a Biphenyl-Based Cyclophane</td>
<td>966</td>
</tr>
<tr>
<td>45.22.1.3.3</td>
<td>Method 3: Cyclization of 2-(2,6-Divinylphenyl)naphthalene Derivatives</td>
<td>966</td>
</tr>
<tr>
<td>45.22.1.3.4</td>
<td>Method 4: Dehydro-Diels–Alder Reaction of 1,8-Diethynylnaphthalene with Benzylene</td>
<td>968</td>
</tr>
<tr>
<td>45.22.1.3.5</td>
<td>Benzo[e]pyrene</td>
<td>968</td>
</tr>
<tr>
<td>45.22.1.4</td>
<td>Method 1: Synthesis from Pyrene</td>
<td>968</td>
</tr>
<tr>
<td>45.22.1.4.1</td>
<td>Method 2: Synthesis from Pyrene-4,5-dione</td>
<td>969</td>
</tr>
<tr>
<td>45.22.1.4.2</td>
<td>Method 3: Photocyclization of 4,5-Diphenylphenanthrene</td>
<td>969</td>
</tr>
<tr>
<td>45.22.1.4.3</td>
<td>Method 4: Synthesis from 7H-Benz[de]anthracene</td>
<td>970</td>
</tr>
<tr>
<td>45.22.1.5</td>
<td>Dibenzo[b,def]chrysene</td>
<td>971</td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.22.1.15.1</td>
<td>Method 1: Synthesis via a Dodecahydrodibenzo[\textit{b,def}]chrysene</td>
<td>971</td>
</tr>
<tr>
<td>45.22.1.15.2</td>
<td>Method 2: Cyclization of 1,5-Diarylnaphthalene Derivatives</td>
<td>972</td>
</tr>
<tr>
<td>45.22.1.16</td>
<td>Benzo[\textit{rst}]pentaphene</td>
<td>973</td>
</tr>
<tr>
<td>45.22.1.16.1</td>
<td>Method 1: Synthesis via Dodecahydrobenzo[\textit{rst}]pentaphene</td>
<td>974</td>
</tr>
<tr>
<td>45.22.1.16.2</td>
<td>Method 2: Cyclization of 1,4-Diarylnaphthalene Derivatives</td>
<td>975</td>
</tr>
<tr>
<td>45.22.1.17</td>
<td>Dibenzo[\textit{def,p}]chryseses</td>
<td>976</td>
</tr>
<tr>
<td>45.22.1.17.1</td>
<td>Method 1: Scholl Reaction of 1-Phenylbenzo[a]anthracene Derivatives</td>
<td>977</td>
</tr>
<tr>
<td>45.22.1.17.2</td>
<td>Method 2: Cyclization of 7-Aryl-5,6-dihydro-4f-benz[\textit{de}]anthracene Derivatives</td>
<td>978</td>
</tr>
<tr>
<td>45.22.1.17.3</td>
<td>Method 3: Cyclization of 12-Arylbenzo[a]anthracene Derivatives</td>
<td>979</td>
</tr>
<tr>
<td>45.22.1.18</td>
<td>Dibenzo[\textit{fg,op}]naphthacene</td>
<td>980</td>
</tr>
<tr>
<td>45.22.1.19</td>
<td>Dibenzo[\textit{c,mno}]chrysene</td>
<td>981</td>
</tr>
<tr>
<td>45.22.1.10</td>
<td>Naphtho[\textit{8,1,2-ghi}]chrysene</td>
<td>982</td>
</tr>
<tr>
<td>45.22.2</td>
<td>Product Subclass 2: Circulenes</td>
<td>983</td>
</tr>
<tr>
<td>45.22.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>984</td>
</tr>
<tr>
<td>45.22.2.1.1</td>
<td>Dibenzo[\textit{ghi,mno}]fluoranthene</td>
<td>985</td>
</tr>
<tr>
<td>45.22.2.1.1.1</td>
<td>Method 1: Flash-Vacuum Pyrolysis</td>
<td>986</td>
</tr>
<tr>
<td>45.22.2.1.1.2</td>
<td>Method 2: Solution-Phase Methods</td>
<td>987</td>
</tr>
<tr>
<td>45.22.2.1.2</td>
<td>Acenaphth[\textit{3,2,1,8-lmnoa}]acephenanthrylene</td>
<td>988</td>
</tr>
<tr>
<td>45.22.2.1.2.1</td>
<td>Method 1: Synthesis from Fluoranthenes</td>
<td>989</td>
</tr>
<tr>
<td>45.22.2.1.3</td>
<td>8,9-Dihydroacenaphth[\textit{3,2,1,8-lmnoa}]acephenanthrylene</td>
<td>990</td>
</tr>
<tr>
<td>45.22.2.1.3.1</td>
<td>Method 1: Synthesis from Dibenzo[\textit{ghi,mno}]fluoranthenes</td>
<td>991</td>
</tr>
<tr>
<td>45.22.2.1.4</td>
<td>\textit{peri}-Annulated Dibenzo[\textit{ghi,mno}]fluoranthenes</td>
<td>992</td>
</tr>
<tr>
<td>45.22.2.1.4.1</td>
<td>Method 1: Synthesis from 1,10-Bis(bromomethyl)dibenzo[\textit{ghi,mno}]fluoranthenes</td>
<td>993</td>
</tr>
<tr>
<td>45.22.2.1.5</td>
<td>Benzo- and Dibenzo-Annulated Dibenzo[\textit{ghi,mno}]fluoranthenes</td>
<td>994</td>
</tr>
<tr>
<td>45.22.2.1.6</td>
<td>Indeno-Annulated Dibenzo[\textit{ghi,mno}]fluoranthenes</td>
<td>995</td>
</tr>
<tr>
<td>45.22.2.1.6.1</td>
<td>Method 1: Suzuki–Heck-Type Couplings</td>
<td>996</td>
</tr>
<tr>
<td>45.22.2.1.6.2</td>
<td>Method 2: Synthesis from Diynes and Alkynes</td>
<td>997</td>
</tr>
<tr>
<td>45.22.2.1.7</td>
<td>Coronene and Its Derivatives</td>
<td>998</td>
</tr>
<tr>
<td>45.22.2.1.7.1</td>
<td>Method 1: Synthesis from Benzo[\textit{ghi}]perylene</td>
<td>999</td>
</tr>
<tr>
<td>45.22.2.1.7.2</td>
<td>Method 2: Synthesis from Anthracene Derivatives</td>
<td>1000</td>
</tr>
<tr>
<td>45.22.2.1.7.3</td>
<td>Method 3: Dehydrocyclization of Cyclophanes</td>
<td>1001</td>
</tr>
<tr>
<td>45.22.2.1.7.4</td>
<td>Method 4: Photocyclization of a Diencylcyclopane</td>
<td>1002</td>
</tr>
<tr>
<td>45.22.2.1.8</td>
<td>Benzo[\textit{1,2,3-bc}:4,5,6-b’c’]dicoronene</td>
<td>1003</td>
</tr>
<tr>
<td>45.22.2.1.9</td>
<td>Hexabenzo[\textit{bc,ef,hi,kl,no,qr}]coronenes</td>
<td>1004</td>
</tr>
<tr>
<td>45.22.2.1.9.1</td>
<td>Method 1: Lewis Acid Catalyzed Cyclodehydrogenation of Hexaarylbzenes</td>
<td>1005</td>
</tr>
<tr>
<td>45.22.2.1.10</td>
<td>Tribenzo[\textit{fg,gh,pqr,za,b}]trinaphthylene</td>
<td>1006</td>
</tr>
<tr>
<td>45.22.2.1.11</td>
<td>Peralkylated Coronenes</td>
<td>1007</td>
</tr>
</tbody>
</table>
Table of Contents

45.22. Product Subclass 3: Condensed Acenes

45.22.1. Synthesis of Product Subclass 3

45.22.1.1. Method 1: Cyclization of a Dialdehyde

45.22.1.2. Method 2: Flash-Vacuum Pyrolysis of a Cyclic Sulfone

45.22.1.3. Naphtho[2,1,8,7-ghij:2¢,1¢,8¢,7¢-nopq]pleiadene

45.22.2. Product Class 23: Annulated Polycyclic Aromatic Hydrocarbons

W.-C. Lin and Y.-T. Wu

45.23.1. Product Subclass 1: Acenaphtylenes

45.23.1.1. Synthesis of Product Subclass 1

45.23.1.1.1. Method 1: Synthesis from 1,2-Dihydroacenaphthylene Derivatives

45.23.1.1.2. Method 2: Synthesis from 1-Bromo- or 1,3-Dibromo-1H,3H-naphtho[1,8-cd]thiopyran 2,2-Dioxide

45.23.1.1.3. Method 3: Catalytic Annulation of Naphthalene Derivatives with Alkynes
<table>
<thead>
<tr>
<th>Section</th>
<th>Subclass</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.23.2</td>
<td>Product Subclass 2: Cyclopent[fg]acenaphthylenes</td>
<td>1022</td>
</tr>
<tr>
<td>45.23.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>1022</td>
</tr>
<tr>
<td>45.23.3</td>
<td>Product Subclass 3: Aceanthrylenes</td>
<td>1022</td>
</tr>
<tr>
<td>45.23.3.1</td>
<td>Synthesis of Product Subclass 3</td>
<td>1022</td>
</tr>
<tr>
<td>45.23.3.1.1</td>
<td>Method 1: Pyrolysis of 9-Ethynylanthracene</td>
<td>1022</td>
</tr>
<tr>
<td>45.23.3.1.2</td>
<td>Method 2: Zirconium(IV)/Nickel(II)-Mediated Cycloadditions</td>
<td>1023</td>
</tr>
<tr>
<td>45.23.3.1.3</td>
<td>Method 3: Palladium-Catalyzed Cycloaddition Reactions</td>
<td>1023</td>
</tr>
<tr>
<td>45.23.4</td>
<td>Product Subclass 4: 1H-Phenalenes and Related Compounds</td>
<td>1024</td>
</tr>
<tr>
<td>45.23.4.1</td>
<td>Synthesis of Product Subclass 4</td>
<td>1024</td>
</tr>
<tr>
<td>45.23.4.1.1</td>
<td>Method 1: Synthesis of 1H-Phenalenes</td>
<td>1024</td>
</tr>
<tr>
<td>45.23.4.1.1.1</td>
<td>Variation 1: By Dehydration of 2,3-Dihydro-1H-phenalen-1-ols</td>
<td>1024</td>
</tr>
<tr>
<td>45.23.4.1.1.2</td>
<td>Variation 2: Via 1H-Phenalen-1-one</td>
<td>1025</td>
</tr>
<tr>
<td>45.23.4.1.2</td>
<td>Method 2: Synthesis of Heteroatom-Substituted Phenalenes</td>
<td>1026</td>
</tr>
<tr>
<td>45.23.4.1.2.1</td>
<td>Variation 1: Synthesis of Naphtho[1,8-bc]pyrans</td>
<td>1026</td>
</tr>
<tr>
<td>45.23.4.1.2.2</td>
<td>Variation 2: Synthesis of 1-Methyl-1H-benzo[de]quinolines</td>
<td>1027</td>
</tr>
<tr>
<td>45.23.4.1.3</td>
<td>Method 3: Synthesis of Cyclopenta[de]quinolines</td>
<td>1029</td>
</tr>
<tr>
<td>45.23.5</td>
<td>Product Subclass 5: Fluoranthenes</td>
<td>1029</td>
</tr>
<tr>
<td>45.23.5.1</td>
<td>Synthesis of Product Subclass 5</td>
<td>1029</td>
</tr>
<tr>
<td>45.23.5.1.1</td>
<td>Method 1: Diels–Alder Reaction</td>
<td>1029</td>
</tr>
<tr>
<td>45.23.5.1.1.1</td>
<td>Variation 1: From Cyclopentadienone Derivatives</td>
<td>1029</td>
</tr>
<tr>
<td>45.23.5.1.1.2</td>
<td>Variation 2: From Aceanthrylene</td>
<td>1031</td>
</tr>
<tr>
<td>45.23.5.1.2</td>
<td>Method 2: Thermolytic Rearrangement of 1-(But-1-en-3-ynyl)-8-ethynylnaphthalenes</td>
<td>1032</td>
</tr>
<tr>
<td>45.23.5.1.3</td>
<td>Method 3: Metal-Catalyzed C—C Bond-Forming Reactions</td>
<td>1033</td>
</tr>
<tr>
<td>45.23.5.1.3.1</td>
<td>Variation 1: Palladium-Catalyzed Annulations</td>
<td>1033</td>
</tr>
<tr>
<td>45.23.5.1.3.2</td>
<td>Variation 2: Rhodium-Catalyzed [(2 + 2) + 2] Cycloaddition</td>
<td>1034</td>
</tr>
<tr>
<td>45.23.5.1.3.3</td>
<td>Variation 3: Tellurium-Mediated Cycloaromatization</td>
<td>1035</td>
</tr>
<tr>
<td>45.23.6</td>
<td>Product Subclass 6: Benzo[j]fluoranthenes</td>
<td>1036</td>
</tr>
<tr>
<td>45.23.6.1</td>
<td>Synthesis of Product Subclass 6</td>
<td>1036</td>
</tr>
<tr>
<td>45.23.6.1.1</td>
<td>Method 1: Palladium-Catalyzed Annulation of Binaphthalenyl Trifluoromethanesulfonates</td>
<td>1036</td>
</tr>
<tr>
<td>45.23.7</td>
<td>Product Subclass 7: Benzo[k]fluoranthenes</td>
<td>1037</td>
</tr>
<tr>
<td>45.23.7.1</td>
<td>Synthesis of Product Subclass 7</td>
<td>1037</td>
</tr>
<tr>
<td>45.23.7.1.1</td>
<td>Method 1: Synthesis from 1,8-Bis(diphenylethynyl)naphthalene</td>
<td>1037</td>
</tr>
<tr>
<td>45.23.7.1.2</td>
<td>Method 2: Diels–Alder Reaction</td>
<td>1037</td>
</tr>
<tr>
<td>45.23.7.1.3</td>
<td>Method 3: Palladium-Catalyzed Annulations</td>
<td>1038</td>
</tr>
<tr>
<td>45.23.8</td>
<td>Product Subclass 8: Benz[e]acephenanthrylenes</td>
<td>1038</td>
</tr>
<tr>
<td>45.23.8.1</td>
<td>Synthesis of Product Subclass 8</td>
<td>1038</td>
</tr>
<tr>
<td>45.23.8.1.1</td>
<td>Method 1: Palladium-Catalyzed Annulation Reactions</td>
<td>1038</td>
</tr>
<tr>
<td>45.23.8.1.1.1</td>
<td>Variation 1: From Phenanthrene Derivatives</td>
<td>1038</td>
</tr>
<tr>
<td>45.23.8.1.1.2</td>
<td>Variation 2: From Fluorene Derivatives</td>
<td>1039</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Pages</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>45.23.8.1.2</td>
<td>Method 2: Base-Induced Cyclization of 9-(2-Bromobenzylidene)-9H-fluorene Derivatives</td>
<td>1040</td>
</tr>
<tr>
<td>45.24</td>
<td>Product Class 24: Pentalenes, s-Indacenes, as-Indacenes, Azulenes, and Heptalenes, and Their Benzo Derivatives</td>
<td>1043</td>
</tr>
<tr>
<td>45.24.1</td>
<td>Product Subclass 1: Pentalenes</td>
<td>1044</td>
</tr>
<tr>
<td>45.24.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td>1045</td>
</tr>
<tr>
<td>45.24.1.1.1</td>
<td>Pentalene Dimers</td>
<td>1045</td>
</tr>
<tr>
<td>45.24.1.1.1.1</td>
<td>Method 1: Elimination of Hydrogen Bromide from 1-Bromo-1,2-dihdropentalene Followed by Dimerization</td>
<td>1047</td>
</tr>
<tr>
<td>45.24.1.1.1.2</td>
<td>Method 2: Oxidative Coupling of Dilithium Pentalenediide</td>
<td>1046</td>
</tr>
<tr>
<td>45.24.1.1.2</td>
<td>Benzopentalenes and Their Heteroatom Analogues</td>
<td>1046</td>
</tr>
<tr>
<td>45.24.1.1.2.1</td>
<td>Method 1: Benzopentalenes by Flash-Vacuum Pyrolysis of Benzo-furandiones</td>
<td>1047</td>
</tr>
<tr>
<td>45.24.1.1.2.2</td>
<td>Method 2: 1H-Cyclopent[c]indene by Gas-Phase Dehydrogenation/Decarboxylation</td>
<td>1048</td>
</tr>
<tr>
<td>45.24.1.1.2.3</td>
<td>Method 3: 1H-Cyclopent[c]indene by Gas-Phase Elimination of Acetic Acid</td>
<td>1048</td>
</tr>
<tr>
<td>45.24.1.1.2.4</td>
<td>Method 4: 1H-Cyclopent[c]indene by Flash-Vacuum Pyrolysis Induced Rearrangement of 1,2-Didehydro-naphthalene</td>
<td>1049</td>
</tr>
<tr>
<td>45.24.1.1.3</td>
<td>Dibenzopentalenes</td>
<td>1049</td>
</tr>
<tr>
<td>45.24.1.1.3.1</td>
<td>Method 1: Dual Flash-Vacuum Pyrolysis of 1-Naphthylmethyl 3-Phenylprop-2-ynoate</td>
<td>1049</td>
</tr>
<tr>
<td>45.24.1.1.3.2</td>
<td>Method 2: Rearrangement of Anthryl-9,10-dicarbenic Species</td>
<td>1050</td>
</tr>
<tr>
<td>45.24.1.1.3.3</td>
<td>Method 3: Platinum(IV)-Catalyzed Ring Closure of 1,2-Bis(phenylethynyl)benzenes</td>
<td>1050</td>
</tr>
<tr>
<td>45.24.1.1.3.4</td>
<td>Method 4: Tellurium-Mediated Chlorine Transfer</td>
<td>1051</td>
</tr>
<tr>
<td>45.24.1.1.3.5</td>
<td>Method 5: Transition-Metal-Catalyzed Homocoupling of 1-Ethynyl-2-halobenzenes</td>
<td>1052</td>
</tr>
<tr>
<td>45.24.1.1.3.6</td>
<td>Method 6: Carbolithiation of 5,6,11,12-Tetradehydrodibenzo[α,ε]cyclooctene</td>
<td>1054</td>
</tr>
<tr>
<td>45.24.2</td>
<td>Product Subclass 2: s-Indacenes</td>
<td>1057</td>
</tr>
<tr>
<td>45.24.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>1057</td>
</tr>
<tr>
<td>45.24.2.1.1</td>
<td>1,3,5,7-Tetrasubstituted s-Indacenes and Their Heteroatom Analogues</td>
<td>1057</td>
</tr>
<tr>
<td>45.24.2.1.1.1</td>
<td>Method 1: 1,3,5,7-Tetra-tert-buty-l-s-indacene by Cyclocondensation</td>
<td>1058</td>
</tr>
<tr>
<td>45.24.2.1.1.2</td>
<td>Method 2: 1,3,5,7-Tetra-tert-buty-l-s-indacene by Acid-Catalyzed Condensation</td>
<td>1058</td>
</tr>
<tr>
<td>45.24.3</td>
<td>Product Subclass 3: as-Indacenes</td>
<td>1058</td>
</tr>
<tr>
<td>45.24.4</td>
<td>Product Subclass 4: Azulenes and Benzazulenes</td>
<td>1060</td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.24.4.1</td>
<td>Synthesis of Product Subclass 4</td>
<td>1060</td>
</tr>
<tr>
<td>45.24.4.1.1</td>
<td>Azulenes</td>
<td>1060</td>
</tr>
<tr>
<td>45.24.4.1.1.1</td>
<td>Method 1: Carbenoid [2 + 1]-Addition Reactions</td>
<td>1060</td>
</tr>
<tr>
<td>45.24.4.1.1.1.1</td>
<td>Variation 1: Intermolecular Carbenoid Addition to a 4,7-Dihydroindane</td>
<td>1060</td>
</tr>
<tr>
<td>45.24.4.1.1.1.2</td>
<td>Variation 2: Intramolecular Carbenoid Addition of (3-Aryl-3-bromopropanoyl)diazomethanes</td>
<td>1061</td>
</tr>
<tr>
<td>45.24.4.1.1.1.3</td>
<td>Variation 3: Reaction of 4-Aryl-2-oxobutanoates with Lithium Diazotrimethylsilylmethane</td>
<td>1063</td>
</tr>
<tr>
<td>45.24.4.1.1.2</td>
<td>Method 2: Ketene [2 + 2]-Addition Reactions</td>
<td>1065</td>
</tr>
<tr>
<td>45.24.4.1.1.2.1</td>
<td>Variation 1: With 3-Chloroazulen-2(1H)-one as an Intermediate</td>
<td>1065</td>
</tr>
<tr>
<td>45.24.4.1.1.2.2</td>
<td>Variation 2: Addition of Dichloroketene to 7-Methylcyclohepta-1,3,5-triene</td>
<td>1066</td>
</tr>
<tr>
<td>45.24.4.1.1.2.3</td>
<td>Variation 3: With 1-Chloroazulenes as Intermediates</td>
<td>1067</td>
</tr>
<tr>
<td>45.24.4.1.1.3</td>
<td>Method 3: [6 + 4]-Addition Reactions</td>
<td>1068</td>
</tr>
<tr>
<td>45.24.4.1.1.3.1</td>
<td>Variation 1: Of 2-(Cyclopenta-2,4-dien-1-ylidene)-1,3-dioxolane and 2H-Pyran-2-one</td>
<td>1068</td>
</tr>
<tr>
<td>45.24.4.1.1.3.2</td>
<td>Variation 2: Of a 6-Aminofulvene and Thiophene 1,1-Dioxides</td>
<td>1069</td>
</tr>
<tr>
<td>45.24.4.1.1.3.3</td>
<td>Variation 3: Of Substituted Fulvenes and Thiophene 1,1-Dioxides</td>
<td>1070</td>
</tr>
<tr>
<td>45.24.4.1.1.4</td>
<td>Method 4: [7 + 3]-Addition Reactions</td>
<td>1071</td>
</tr>
<tr>
<td>45.24.4.1.1.5</td>
<td>Method 5: [8 + 2]-Addition Reactions</td>
<td>1072</td>
</tr>
<tr>
<td>45.24.4.1.1.5.1</td>
<td>Variation 1: Reaction of Substituted Tropane Dimethyl Ketals with Dimethyl Acetylenediacarboxylate</td>
<td>1072</td>
</tr>
<tr>
<td>45.24.4.1.1.5.2</td>
<td>Variation 2: Reaction of Highly Methylated 2H-Cyclohepta[b]furan-2-ones with Enol Ethers or Enamines</td>
<td>1073</td>
</tr>
<tr>
<td>45.24.4.1.1.5.3</td>
<td>Variation 3: Thermal Intermolecular Reactions of 2H-Cyclohepta[b]furan-2-ones</td>
<td>1075</td>
</tr>
<tr>
<td>45.24.4.1.1.5.4</td>
<td>Variation 4: Reactions of 2H-Cyclohepta[b]furan-2-ones with Vinyl Ethers, Acetals, Ortho Esters, or Their Analogues</td>
<td>1076</td>
</tr>
<tr>
<td>45.24.4.1.1.5.5</td>
<td>Variation 5: Synthesis of Methyl (Azulen-2-yl)acetates</td>
<td>1078</td>
</tr>
<tr>
<td>45.24.4.1.1.5.6</td>
<td>Variation 6: 2-Alkyl-3-cyanoazulene-1-carboxylic Acids as Precursors for 2-Alkylazulenes</td>
<td>1078</td>
</tr>
<tr>
<td>45.24.4.1.1.6</td>
<td>Method 6: Transformation of Azulen-1(8aH)-ones into 1-Acetoxyazulenes</td>
<td>1079</td>
</tr>
<tr>
<td>45.24.4.1.1.7</td>
<td>Method 7: Seven-Membered Ring Formation through a Robinson Annulation</td>
<td>1080</td>
</tr>
<tr>
<td>45.24.4.1.1.8</td>
<td>Method 8: Five-Membered Ring Formation through an Intramolecular Wittig Reaction</td>
<td>1080</td>
</tr>
<tr>
<td>45.24.4.1.1.8.1</td>
<td>Variation 1: Reaction of 5-[(Dimethylamino)methylene]cycloenta-1,3-dieneacarbalddehyde with an Allylidene phosphorane</td>
<td>1081</td>
</tr>
<tr>
<td>45.24.4.1.1.8.2</td>
<td>Variation 2: Reaction of Dimethyl Acetylenediacarboxylate with [(Triphenylarsoranylidene)methyl)cycloheptatrienones</td>
<td>1082</td>
</tr>
<tr>
<td>45.24.4.1.1.9</td>
<td>Method 9: Five-Membered Ring Formation through Nazarov Cyclization Reactions</td>
<td>1082</td>
</tr>
<tr>
<td>45.24.4.1.1.10</td>
<td>Method 10: Ziegler–Hafner Synthesis of Deuterated Azulenes</td>
<td>1084</td>
</tr>
<tr>
<td>45.24.4.1.1.11</td>
<td>Method 11: Methyl Azulene-2-carboxylates by the Hafner Method</td>
<td>1084</td>
</tr>
</tbody>
</table>
45.24.1.1.12 Method 12: Conversion of 2-Arylazulene-1,1(8aH)-dicarbonitriles into 2-Arylazulene-1-carbonitriles ... 1085

45.24.1.2 Benzazulenes .. 1086
45.24.1.2.1 Method 1: Benz[a]azulenes by an Intramolecular Reaction of a Carbenoid ... 1087
45.24.1.2.2 Method 2: Benz[a]azulenes by an Intramolecular Heck Reaction 1087
45.24.1.2.3 Method 3: Benz[a]azulenes by Construction of the Benzo Ring 1089
45.24.1.2.4 Method 4: Synthesis of Heteroatom Analogues of Benz[a]azulene 1090
45.24.1.2.5 Method 5: Benz(cd)azulenes by the Buchner Reaction of Cyclopent(cd)azulenes .. 1091
45.24.1.2.6 Method 6: Benz(cd)azulenes by Successive Formation of the Benzo Ring 1091
45.24.1.2.7 Method 7: Alkylation of 4,5-Dihydro-3H-benz(cd)azulene To Give 9b-Methyl-9bH-benz(cd)azulene 1092

45.24.5 Product Subclass 5: Heptalenes and Benzoheptalenes 1092
45.24.5.1 Synthesis of Product Subclass 5 ... 1092
45.24.5.1.1 Heptalenes ... 1092
45.24.5.1.1.1 Method 1: Hafner’s Procedure .. 1093
45.24.5.1.1.1.1 Variation 1: Reaction in Toluene 1094
45.24.5.1.1.1.2 Variation 2: Reaction in Acetonitrile in the Presence of Dihydridotetakis(triphenylphosphine)ruthenium 1095
45.24.5.1.1.2 Method 2: Rearrangement of Dimethyl 11-Methyltricyclo[6.2.2.01,7]dodeca-2,4,6,9,11-pentaene-9,10-dicarboxylates 1096
45.24.5.1.1.3 Method 3: Photochemical π-Bond Shift in Heptalene-4,5-dicarboxylates 1097
45.24.5.1.1.4 Method 4: Thermal Rearrangement of Heptalene-4,5-dicarboxylates 1098
45.24.5.1.2 Benzoheptalenes .. 1099
45.24.5.1.2.1 Method 1: Decarboxylation of Dimethyl Benzo[a]heptalene-6,7-dicarboxylate .. 1099
45.24.5.1.2.2 Method 2: Methoxy-Substituted Benzo[a]heptalenes from Colchicines 1100
45.24.5.1.2.3 Method 3: Thermal Reaction of Benzo[a]azulenes with Acetylenedicarboxylates ... 1101
45.24.5.1.2.4 Method 4: Alkylation of Heptalene-4,5-dicarboxylates with (Sulfonfylmethyl)lithiums .. 1102
45.24.5.1.2.4.1 Variation 1: Alkylation of Heptalene Lactones with [(Phenylsulfonyl)methyl]lithium ... 1104
45.24.5.1.2.4.2 Variation 2: Alkylation of Methyl 4(5)-[(Phenylsulfonyl)acetyl]heptalene-5(4)-dicarboxylates with [(Phenylsulfonyl)methyl]lithium ... 1104
45.24.5.1.2.5 Method 5: Diels–Alder Reaction of Heptaleno[1,2-c]furans with Electron-Deficient Alkenes ... 1105
45.24.5.1.2.5.1 Variation 1: Reaction with (2E)-But-2-enedinitrile 1105
45.24.5.1.2.5.2 Variation 2: Reaction with Dimethyl (2Z)-But-2-enedioate 1107
45.24.5.1.2.5.3 Variation 3: Reaction with (Z)-1,2-Bis(phenylsulfonyl)ethene 1107
45.24.5.1.2.6 Method 6: Benzo[a]heptalene-2,3-dicarboxylates by Electrocyclization 1109
<table>
<thead>
<tr>
<th>Section</th>
<th>Product Class 25: Extended Polyaromatic Hydrocarbons: Graphite, Fullerene, and Carbon Nanotube Substructures</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.25</td>
<td>I. G. Stará and I. Starý</td>
</tr>
<tr>
<td>45.25.1</td>
<td>Product Subclass 1: Graphite Substructures and Graphene</td>
</tr>
<tr>
<td>45.25.1.1</td>
<td>Synthesis of Product Subclass 1</td>
</tr>
<tr>
<td>45.25.1.1.1</td>
<td>Method 1: Intermolecular Fusion of Small Polycyclic Aromatic Hydrocarbon Building Blocks</td>
</tr>
<tr>
<td>45.25.1.1.2</td>
<td>Method 2: Intramolecular Oxidative Cyclodehydrogenation of Oligophenylenes</td>
</tr>
<tr>
<td>45.25.1.1.3</td>
<td>Method 3: Intramolecular Photodehydrocyclization</td>
</tr>
<tr>
<td>45.25.1.1.4</td>
<td>Method 4: Cyclodehydrogenation on Copper</td>
</tr>
<tr>
<td>45.25.1.2</td>
<td>Synthesis of Graphene</td>
</tr>
<tr>
<td>45.25.1.2.1</td>
<td>Method 1: Exfoliation from Highly Oriented Pyrolytic Graphite</td>
</tr>
<tr>
<td>45.25.1.2.2</td>
<td>Method 2: Synthesis from Silicon Carbide</td>
</tr>
<tr>
<td>45.25.1.2.3</td>
<td>Method 3: Oxidation of Graphite: The Graphene Oxide Approach</td>
</tr>
<tr>
<td>45.25.1.2.4</td>
<td>Method 4: Other Processes</td>
</tr>
<tr>
<td>45.25.2</td>
<td>Product Subclass 2: Fullerene Substructures</td>
</tr>
<tr>
<td>45.25.2.1</td>
<td>Synthesis of Product Subclass 2</td>
</tr>
<tr>
<td>45.25.2.1.1</td>
<td>Method 1: Vaporization of Graphite</td>
</tr>
<tr>
<td>45.25.2.1.2</td>
<td>Method 2: Combustion</td>
</tr>
<tr>
<td>45.25.2.1.3</td>
<td>Method 3: Pyrolysis of Hydrocarbons</td>
</tr>
<tr>
<td>45.25.2.1.4</td>
<td>Method 4: Total Synthesis</td>
</tr>
<tr>
<td>45.25.2.1.4.1</td>
<td>Variation 1: Flash-Vacuum Pyrolysis</td>
</tr>
<tr>
<td>45.25.2.1.4.2</td>
<td>Variation 2: Cyclodehydrogenation on Platinum</td>
</tr>
<tr>
<td>45.25.2.1.2</td>
<td>Synthesis of Functionalized Fullerenes</td>
</tr>
<tr>
<td>45.25.2.1.3</td>
<td>Synthesis of Fullerene Substructures and Other Geodesic Polyarenes</td>
</tr>
<tr>
<td>45.25.2.1.3.1</td>
<td>Method 1: Flash-Vacuum Pyrolysis</td>
</tr>
<tr>
<td>45.25.2.1.3.2</td>
<td>Method 2: Intramolecular Palladium-Catalyzed Arylation</td>
</tr>
<tr>
<td>45.25.2.1.3.3</td>
<td>Method 3: Intramolecular Carbenoid Coupling</td>
</tr>
<tr>
<td>45.25.2.1.3.4</td>
<td>Method 4: Cyclodehydrogenation on Ruthenium</td>
</tr>
<tr>
<td>45.25.3</td>
<td>Product Subclass 3: Carbon Nanotube Substructures</td>
</tr>
<tr>
<td>45.25.3.1</td>
<td>Synthesis of Product Subclass 3</td>
</tr>
<tr>
<td>45.25.3.1.1</td>
<td>Method 1: Electric-Arc Discharge of Graphite Electrodes</td>
</tr>
<tr>
<td>45.25.3.1.2</td>
<td>Method 2: Laser Ablation of Graphite</td>
</tr>
<tr>
<td>45.25.3.1.3</td>
<td>Method 3: Chemical Vapor Deposition</td>
</tr>
<tr>
<td>45.25.3.1.4</td>
<td>Method 4: Other Processes</td>
</tr>
</tbody>
</table>
45.25.3.1.2 Covalent Modification of Carbon Nanotubes 1138
45.25.3.1.2.1 Method 1: Chemical Modification of Defect Sites 1138
45.25.3.1.2.2 Method 2: Chemical Functionalization of the Carbon Nanotube Skeleton .. 1139

45.26
Product Class 26: Triphenylenes, Tetraphenylenes, and Related Compounds
S. R. Waldvogel and N. Welschoff

45.26.1
Product Class 26: Triphenylenes, Tetraphenylenes, and Related Compounds .. 1147
45.26.1.1
Product Subclass 1: Triphenylenes .. 1147
45.26.1.1.1
Synthesis of Product Subclass 1 ... 1147
45.26.1.1.1.1 Method 1: Oxidative Trimerization of Benzene Derivatives 1147
45.26.1.1.1.1.1 Variation 1: Oxidative Trimerization of 1,2-Dialkoxybenzenes 1147
45.26.1.1.1.1.2 Variation 2: Trimerization of Catechol Ketals 1149
45.26.1.1.2
Method 2: Oxidative Cyclization .. 1151
45.26.1.1.2.1 Variation 1: Oxidative Addition of Benzene Derivatives to Biaryls 1151
45.26.1.1.2.2 Variation 2: Oxidative Cyclization of o-Terphenyls 1155
45.26.1.1.3
Method 3: Cyclization by Condensation Reaction 1156
45.26.1.1.3.1 Variation 1: Metal-Mediated Ring Closure 1156
45.26.1.1.3.2 Variation 2: Metal-Catalyzed Benzannulation of 2-Halobiphenyls ... 1159
45.26.1.1.3.3 Variation 3: Metal-Catalyzed Trimerization of 2-(Trimethylsilyl)aryl Trifluoromethanesulfonates .. 1161
45.26.1.1.4
Method 4: [4 + 2]-Cycloaddition Sequences .. 1161
45.26.1.1.4.1 Variation 1: Conversion of Phencyclones 1162

45.26.2
Product Subclass 2: Hydrotriphenylenes .. 1164
45.26.2.1
Synthesis of Product Subclass 2 ... 1164
45.26.2.1.1
Method 1: Synthesis of 1,2,3,4,5,6,7,8,9,10,11,12-Dodecahydrotriphenylenes 1164
45.26.2.1.1.1 Variation 1: Aldol Trimerization of Cyclohexanones 1164
45.26.2.1.2
Method 2: Synthesis of Dihydrotriphenylenes 1166
45.26.2.1.2.1 Variation 1: Synthesis of 1,2-Dihydrotriphenylene 1166
45.26.2.1.2.2 Variation 2: Synthesis of 1,4-Dihydrotriphenylene 1168

45.26.3
Product Subclass 3: Tetraphenylenes ... 1168
45.26.3.1
Synthesis of Product Subclass 3 ... 1169
45.26.3.1.1
Method 1: Dimerization of Biphenylene Derivatives 1169
45.26.3.1.1.1 Variation 1: Thermal Dimerization of Biphenylenes 1169
45.26.3.1.1.2 Variation 2: Transition-Metal-Catalyzed Dimerization of Biphenylenes 1170
45.26.3.1.2
Method 2: Oxidation of Dimetalated Derivatives 1172
45.26.3.1.2.1 Variation 1: Oxidation of 1,2-Dimetalated Benzenes 1172
45.26.3.1.2.2 Variation 2: Oxidation of 2,2'-Dimetalated Biphenyls 1173
45.26.3.1.3
Variation 3: Mixed Oxidation of 2,2'-Dimetalated Biphenyls 1176
Table of Contents

45.26.3.1.3 Method 3: Cycloaddition with Dehydrobenzocyclooctene Derivatives - 1177
45.26.3.1.3.1 Variation 1: Cycloaddition of 2,3,4,5-Tetraphenylcyclopenta-2,4-diene with Dehydrobenzocyclooctene Derivatives - 1178
45.26.3.1.3.2 Variation 2: Cycloaddition of Furans with Dehydrobenzocyclooctene Derivatives - 1178
45.26.4 Product Subclass 4: Higher Phenylenes - 1183
45.26.4.1 Synthesis of Product Subclass 4 - 1184
45.26.4.1.1 Method 1: Oxidation of 2,2'-Dimetalated Biphenyls - 1184
45.26.4.1.1.1 Variation 1: Direct Oxidation of 2,2'-Dimetalated Biphenyls - 1184
45.26.4.1.1.2 Variation 2: Oxidation of 2,2'-Dimetalated Biphenyls via an Intermediate Chromate - 1186
45.26.4.1.2 Method 2: Cycloaddition Sequences with Dehydroannulenes - 1188
45.26.4.1.2.1 Variation 1: Benzannulation of Dehydroannulenes by Addition of Cyclopentadienones - 1188

45.27 Product Class 27: Calixarenes

45.27.1 Product Class 27: Calixarenes - 1193
45.27.1.1 Product Subclass 1: Calix[4]arenes - 1194
45.27.1.1.1 Synthesis of Product Subclass 1 - 1194
45.27.1.1.1.1 Method 1: One-Step Synthesis - 1194
45.27.1.1.1.2 Variation 1: Base-Induced Reactions - 1194
45.27.1.1.1.2.1 Variation 2: Acid-Induced Reactions - 1196
45.27.1.1.2 Method 2: Functionalization Reactions - 1197
45.27.1.1.2.1 Variation 1: Substitution of Hydrogen - 1197
45.27.1.1.2.2 Variation 2: Substitution of tert-Butyl Groups - 1203
45.27.1.1.2.3 Variation 3: O-Demethylation - 1204
45.27.1.1.2.4 Variation 4: Substitution of Bromide - 1205
45.27.1.1.2.5 Variation 5: Substitution of Hydoxy Groups - 1207
45.27.1.1.2.6 Variation 6: Reduction of Nitro Groups - 1208
45.27.1.1.2.7 Variation 7: Protection of Phenolic Hydroxy Groups - 1210
45.27.2 Product Subclass 2: Calix[5]arenes - 1215
45.27.2.1 Synthesis of Product Subclass 2 - 1215
45.27.2.1.1 Method 1: One-Step Synthesis - 1215
45.27.2.1.2 Method 2: Fragment Condensation Synthesis - 1215
45.27.2.1.2.1 Variation 1: [3 + 2]-Type Condensation - 1215
45.27.2.1.2.2 Variation 2: Linear-Type Condensation - 1216
45.27.2.1.3 Method 3: Functionalization Reactions - 1217
45.27.2.1.3.1 Variation 1: Substitution of Hydrogen - 1217
45.27.2.1.3.2 Variation 2: Substitution of tert-Butyl Groups - 1219
45.27.2.1.3.3 Variation 3: Substitution of Halogen - 1221
45.27.2.1.3.4 Variation 4: Reduction of Nitro Groups - 1224
45.27.2.1.3.5 Variation 5: Protection of Phenolic Hydroxy Groups - 1225
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.27.3</td>
<td>Product Subclass 3: Calix[6]arenes</td>
<td>1226</td>
</tr>
<tr>
<td>45.27.3.1</td>
<td>Synthesis of Product Subclass 3</td>
<td>1226</td>
</tr>
<tr>
<td>45.27.3.1.1</td>
<td>Method 1: One-Step Synthesis</td>
<td>1226</td>
</tr>
<tr>
<td>45.27.3.1.2</td>
<td>Method 2: Functionalization Reactions</td>
<td>1227</td>
</tr>
<tr>
<td>45.27.3.1.2.1</td>
<td>Variation 1: Substitution of Hydrogen</td>
<td>1227</td>
</tr>
<tr>
<td>45.27.3.1.2.2</td>
<td>Variation 2: Substitution of tert-Butyl Groups</td>
<td>1231</td>
</tr>
<tr>
<td>45.27.3.1.2.3</td>
<td>Variation 3: Reduction of Nitro Groups</td>
<td>1233</td>
</tr>
<tr>
<td>45.27.3.1.2.4</td>
<td>Variation 4: Protection of Phenolic Hydroxy Groups</td>
<td>1233</td>
</tr>
<tr>
<td>45.27.4</td>
<td>Product Subclass 4: Calix[7]arenes</td>
<td>1237</td>
</tr>
<tr>
<td>45.27.4.1</td>
<td>Synthesis of Product Subclass 4</td>
<td>1237</td>
</tr>
<tr>
<td>45.27.4.1.1</td>
<td>Method 1: One-Step Synthesis</td>
<td>1237</td>
</tr>
<tr>
<td>45.27.4.1.2</td>
<td>Method 2: Functionalization Reactions</td>
<td>1238</td>
</tr>
<tr>
<td>45.27.4.1.2.1</td>
<td>Variation 1: Substitution of tert-Butyl Groups</td>
<td>1238</td>
</tr>
<tr>
<td>45.27.4.1.2.2</td>
<td>Variation 2: Protection of Phenolic Hydroxy Groups</td>
<td>1240</td>
</tr>
<tr>
<td>45.27.5</td>
<td>Product Subclass 5: Calix[8]arenes</td>
<td>1241</td>
</tr>
<tr>
<td>45.27.5.1</td>
<td>Synthesis of Product Subclass 5</td>
<td>1241</td>
</tr>
<tr>
<td>45.27.5.1.1</td>
<td>Method 1: One-Step Synthesis</td>
<td>1241</td>
</tr>
<tr>
<td>45.27.5.1.2</td>
<td>Method 2: Functionalization Reactions</td>
<td>1242</td>
</tr>
<tr>
<td>45.27.5.1.2.1</td>
<td>Variation 1: Substitution of Hydrogen</td>
<td>1242</td>
</tr>
<tr>
<td>45.27.5.1.2.2</td>
<td>Variation 2: Substitution of tert-Butyl Groups</td>
<td>1246</td>
</tr>
<tr>
<td>45.27.5.1.2.3</td>
<td>Variation 3: Substitution of Nitro Groups</td>
<td>1248</td>
</tr>
<tr>
<td>45.27.5.1.2.4</td>
<td>Variation 4: Protection of Phenolic Hydroxy Groups</td>
<td>1248</td>
</tr>
<tr>
<td>45.27.6</td>
<td>Product Subclass 6: Calix[4]resorcinarene-4,6,10,12,16,18,22,24-octols</td>
<td>1251</td>
</tr>
<tr>
<td>45.27.6.1</td>
<td>Synthesis of Product Subclass 6</td>
<td>1251</td>
</tr>
<tr>
<td>45.27.6.1.1</td>
<td>Method 1: One-Step Synthesis</td>
<td>1251</td>
</tr>
<tr>
<td>45.27.6.1.1.1</td>
<td>Variation 1: Acid-Induced Reactions</td>
<td>1251</td>
</tr>
<tr>
<td>45.27.6.1.1.2</td>
<td>Variation 2: Base-Induced Reactions</td>
<td>1252</td>
</tr>
<tr>
<td>45.27.6.1.2</td>
<td>Method 2: Functionalization Reactions</td>
<td>1253</td>
</tr>
<tr>
<td>45.27.6.1.2.1</td>
<td>Variation 1: Substitution of Hydrogen</td>
<td>1253</td>
</tr>
<tr>
<td>45.27.6.1.2.2</td>
<td>Variation 2: Substitution of Bromide</td>
<td>1254</td>
</tr>
<tr>
<td>45.27.6.1.2.3</td>
<td>Variation 3: Protection of Phenolic Hydroxy Groups</td>
<td>1256</td>
</tr>
<tr>
<td>45.27.7</td>
<td>Product Subclass 7: Homooxacalix[3]arene-25,26,27-triols</td>
<td>1259</td>
</tr>
<tr>
<td>45.27.7.1</td>
<td>Synthesis of Product Subclass 7</td>
<td>1259</td>
</tr>
<tr>
<td>45.27.7.1.1</td>
<td>Method 1: One-Step Synthesis</td>
<td>1259</td>
</tr>
<tr>
<td>45.27.7.1.2</td>
<td>Method 2: Functionalization Reactions</td>
<td>1260</td>
</tr>
<tr>
<td>45.27.7.1.2.1</td>
<td>Variation 1: Substitution of Bromide</td>
<td>1260</td>
</tr>
<tr>
<td>45.27.7.1.2.2</td>
<td>Variation 2: Protection of Phenolic Hydroxy Groups</td>
<td>1262</td>
</tr>
</tbody>
</table>
45.28 Product Class 28: Mononuclear Cyclophanes
T. Shinmyozu and M. Shibahara

45.28 Product Subclass 1: [n]Meta- and [n]Paracyclophanes

45.28.1 Synthesis of Product Subclass 1

45.28.1.1 Method 1: Construction of the Bridge by Acyloin Condensation

45.28.1.2 Method 2: Construction of the Bridge by Cross-Coupling Reactions with 1,6-Diorganometallic Species

45.28.1.2.1 Variation 1: Nickel-Catalyzed Cross Coupling with Di-Grignard Species (Kumada–Tamao Coupling)

45.28.1.2.2 Variation 2: Palladium-Catalyzed Cross Coupling with Diboryl Species (Suzuki–Miyaura Coupling)

45.28.1.3 Method 3: Construction of the Bridge by Cycloaddition

45.28.1.3.1 Variation 1: Reaction of Tetracyano-1,4-quinodimethane with Dicyclopropylethenes and Cyclopropylbutadienes

45.28.1.3.2 Variation 2: Reaction of Spirocyclic Cyclopropyl-Substituted Cyclohexadienes with Dienes

45.28.1.4 Method 4: Construction of the Bridge by Pyrolysis of Cyclic Sulfoxides

45.28.1.5 Method 5: Construction of the Bridge by Ring Contraction

45.28.1.6 Method 6: Construction of the Bridge by Hydrolysis of Furans

45.28.1.7 Method 7: Construction of the Aromatic Ring by Cycloaddition

45.28.1.7.1 Variation 1: Diels–Alder Reaction

45.28.1.7.2 Variation 2: Transition-Metal-Catalyzed Alkyne Cyclotrimerization

45.28.1.7.3 Variation 3: Palladium-Catalyzed Cycloaddition of Enynes

45.28.1.7.4 Variation 4: Cycloaddition of Fischer-Type Chromium–Carbene Complexes

45.28.1.8 Method 8: Construction of the Aromatic Ring by Rearrangement

45.28.1.8.1 Variation 1: Rearrangement of (Dibromocyclopropyl)carbinol-Containing [n.3.1]Propellanes

45.28.1.8.2 Variation 2: Rearrangement of Halogen-Substituted Unsaturated [n.3.1]Propellanes

45.28.1.8.3 Variation 3: Rearrangement of Dewar Benzene Type [n.2.2]Propellanes

45.28.1.8.4 Variation 4: Pyrolysis of a Tosylhydrazone Lithium Salt (Carbenoid Rearrangement)

45.28.2 Product Subclass 2: [n]Heterophanes

45.28.2.1 Synthesis of Product Subclass 2

45.28.2.1.1 Method 1: Synthesis by Paar–Knorr Reaction

45.28.2.1.2 Method 2: Synthesis by Nickel-Catalyzed Grignard Cyclocoupling

45.28.2.1.3 Method 3: Synthesis by Photoinduced Electron Transfer Promoted [3 + 2] Cycloaddition of Azirines

45.28.2.1.4 Method 4: Synthesis by Cobalt-Mediated [2 + 2 + 2] Cycloaddition of Diynes with Nitriles

45.28.2.1.5 Method 5: Synthesis by Ring Contraction Using Ruthenium(VIII) Oxide
45.28.3	**Product Subclass 3: [n]Cyclophanes Containing Polycyclic Aromatic Rings**	1298
45.28.3.1	Synthesis of Product Subclass 3	1298
45.28.3.1.1	Method 1: Synthesis by Acyloin Condensation	1298
45.28.3.1.2	Method 2: Synthesis by Furan Hydrolysis	1299
45.28.3.1.3	Method 3: Synthesis by Substitution of Dihaloalkanes	1300
45.28.3.1.4	Method 4: Synthesis by Cycloaddition	1302
45.28.3.1.5	Method 5: Synthesis by Rearrangement	1305

45.28.3.1.6	**Product Subclass 3.1**	1298
45.28.3.1.1.1	Method 1: Synthesis by Acyloin Condensation	1298
45.28.3.1.1.2	Method 2: Synthesis by Furan Hydrolysis	1299
45.28.3.1.1.3	Method 3: Synthesis by Substitution of Dihaloalkanes	1300
45.28.3.1.1.4	Method 4: Synthesis by Cycloaddition	1302
45.28.3.1.1.5	Method 5: Synthesis by Rearrangement	1305

45.29	**Product Class 29: Polynuclear Cyclophanes**	1311
45.29.1	**Product Subclass 1: Polynuclear Cyclophanes with Bridging Aliphatic Carbon Groups**	1313
45.29.1.1	Synthesis of Product Subclass 1	1313
45.29.1.1.1	Method 1: Construction of the Bridge by Condensation Reactions	1313
45.29.1.1.2	Variation 1: By Acyloin Condensation	1313
45.29.1.1.3	Variation 2: By Aldol Condensation	1315
45.29.1.1.4	Variation 3: By Wittig Reaction	1316
45.29.1.1.5	Variation 4: By Alkene Metathesis	1317
45.29.1.1.6	Variation 5: By McMurry Reaction	1318
45.29.1.1.7	Method 2: Construction of the Bridge by Coupling Reactions	1321
45.29.1.1.8	Variation 1: By Friedel–Crafts Reaction	1321
45.29.1.1.9	Variation 2: By Wurtz Coupling	1321
45.29.1.1.10	Variation 3: By Alkylation of an Active Methylene Group	1322
45.29.1.1.11	Variation 4: By Coupling Using Tosylmethyl Isocyanide	1323
45.29.1.1.12	Method 3: Construction of the Bridge by Addition Reactions	1325
45.29.1.1.13	Variation 1: By Cycloaddition of p-Quinodimethanes	1325
45.29.1.1.14	Variation 2: By Cycloaddition of o-Quinodimethanes	1326
45.29.1.1.15	Variation 3: By Photochemical [2 + 2] Cycloaddition of Alkenes	1327
45.29.1.1.16	Variation 4: By Acid-Catalyzed Addition of Alkenes	1328
45.29.1.1.17	Variation 5: By C—H Insertion of a Carbene	1329
45.29.1.1.18	Variation 6: By Insertion of Alkenes into the Bridge	1329
45.29.1.1.19	Method 4: Construction of the Bridge by Extrusion of a Sulfur or Selenium Atom	1330
45.29.1.1.20	Variation 1: By Thermal Extrusion of Sulfur Dioxide	1330
45.29.1.1.21	Variation 2: By Photochemical Extrusion of Sulfur	1332
45.29.1.1.22	Variation 3: By Wittig Rearrangement	1333
45.29.1.1.23	Variation 4: By Stevens Rearrangement	1334
45.29.1.1.24	Variation 5: By Extrusion of Selenium Atoms	1336
45.29.1.1.25	Method 5: Construction of the Aromatic Ring	1336
45.29.1.1.26	Variation 1: By Cyclotrimerization of Alkynes	1336
45.29.1.1.27	Variation 2: By Valence Isomerization of Dewar Benzene Isomers	1337
45.29.1.1.28	Method 6: Modification of the Aromatic Ring	1338
Table of Contents

45.29.1.6.1 Variation 1: By Annulation to the Aromatic Rings 1338
45.29.1.6.2 Variation 2: By Oxidative Transformation of the Aromatic Rings 1339
45.29.1.7 Method 7: Isomerization by Migration of the Bridge 1339
45.29 Product Subclass 2: Polynuclear Cyclophanes without Bridging Aliphatic Carbon Groups .. 1340
45.29.2.1 Synthesis of Product Subclass 2 ... 1340
45.29.2.1.1 Method 1: Cross Coupling of Aryl Halides 1340
45.29.2.1.1.1 Variation 1: Oxidative Coupling of Arylene Di-Grignard Reagents .. 1340
45.29.2.1.1.2 Variation 2: Coupling via Lipshutz Cuprates 1342
45.29.2.1.1.3 Variation 3: Coupling of Arylstannanes Using Copper(II) Nitrate 1343
45.29.2.1.2 Method 2: Construction of the Benzene Ring by Elimination 1344

45.30 Product Class 30: Conjugated Polyenes, Including Cyclic Polyenes That Are Not Fully Conjugated

S. Koo

45.30.1 Product Subclass 1: Open-Chain Noncarotenoid Conjugated Polyenes :: 1350
45.30.1.1 Synthesis of Product Subclass 1 .. 1350
45.30.1.1.1 Method 1: Palladium-Catalyzed Coupling Reactions 1351
45.30.1.1.1.1 Variation 1: Stille Coupling .. 1351
45.30.1.1.1.2 Variation 2: Negishi Coupling .. 1355
45.30.1.1.1.3 Variation 3: Suzuki Coupling .. 1356
45.30.1.1.1.4 Variation 4: Sonogashira Coupling 1358
45.30.1.1.1.5 Variation 5: Heck Reaction .. 1360
45.30.1.1.1.6 Variation 6: Silicon-Based Coupling 1361
45.30.1.1.1.7 Variation 7: Homocoupling .. 1362
45.30.1.1.2 Method 2: Rhodium-Catalyzed Coupling Reactions 1363
45.30.1.1.3 Method 3: Nickel-Catalyzed Coupling Reactions 1364
45.30.1.1.4 Method 4: Reductive Alkenation of Carbonyl Compounds 1365
45.30.1.1.5 Method 5: Sulfone-Mediated Alkenation 1365
45.30.1.1.5.1 Variation 1: Julia Alkenation ... 1366
45.30.1.1.5.2 Variation 2: Julia–Kocienski Alkenation 1368
45.30.1.1.6 Method 6: Wittig and Related Reactions 1369
45.30.1.1.6.1 Variation 1: Wittig Reaction ... 1370
45.30.1.1.6.2 Variation 2: Horner–Wadsworth–Emmons Modification 1371
45.30.1.1.7 Method 7: Coupling with Vinylc Organolithium Reagents 1372
45.30.1.1.8 Method 8: Lewis Acid Promoted Coupling Reactions 1374
45.30.1.1.9 Method 9: Ramberg–Bäcklund Rearrangement 1376
45.30.1.1.10 Method 10: Oxidative Ring-Fragmentation Reactions 1377
45.30.1.1.11 Method 11: Cyclopropyl Carbinol Rearrangement 1379
45.30.1.2 Applications of Product Subclass 1 in Organic Synthesis 1379
45.30.1.2.1 Method 1: Lewis Acid Catalyzed Cycloisomerization of Hexatriene 1379
45.30.1.2 Method 2: Thermal Electrocyclization of Hexatriene 1380
45.30.2 Product Subclass 2: Carotenoid Compounds 1381
45.30.2.1 Synthesis of Product Subclass 2 1381
45.30.2.1.1 Method 1: Palladium-Catalyzed Coupling Reactions 1382
45.30.2.1.1.1 Variation 1: Stille Coupling 1382
45.30.2.1.1.2 Variation 2: Negishi Coupling 1385
45.30.2.1.1.3 Variation 3: Suzuki Coupling 1386
45.30.2.1.2 Method 2: Reductive Alkenation of Carbonyl Compounds 1388
45.30.2.1.3 Method 3: Sulfone-Mediated Alkenation 1389
45.30.2.1.3.1 Variation 1: Julia Alkenation 1389
45.30.2.1.3.2 Variation 2: Julia–Kocienski Alkenation 1391
45.30.2.1.3.3 Variation 3: Reaction with 3-Sulfolenes 1393
45.30.2.1.3.4 Variation 4: Double Elimination Reaction 1394
45.30.2.1.4 Method 4: Wittig Reaction 1396
45.30.2.1.5 Method 5: Extended Knoevenagel Condensation 1398
45.30.2.1.6 Method 6: Ramberg–Bäcklund Rearrangement 1400
45.30.3 Product Subclass 3: Cycloheptatrienes 1402
45.30.3.1 Synthesis of Product Subclass 3 1402
45.30.3.1.1 Method 1: Transition-Metal-Mediated [3 + 2 + 2]-Cycloaddition Reaction 1402
45.30.3.1.1.1 Variation 1: Palladium-Catalyzed Cycloaddition 1402
45.30.3.1.1.2 Variation 2: Nickel-Mediated Cycloaddition 1403
45.30.3.1.2 Method 2: Rhodium-Catalyzed Addition of Diazo Compounds 1405
45.30.3.1.3 Method 3: Addition to a Tropylium Salt 1406
45.30.3.1.3.1 Variation 1: Using Organolithium Reagents 1406
45.30.3.1.3.2 Variation 2: Using Hetero Nucleophiles 1407
45.30.3.1.3.3 Variation 3: Using Reactive Alkenes 1410
45.30.3.1.3.4 Variation 4: Using Reactive Alkanes 1412
45.30.3.1.4 Method 4: Ring-Expansion Reactions 1413

45.31 Product Class 31: Macromolecular Conjugated Polyenes
T. Masuda, M. Shiotsuki, and F. Sanda

45.31 Product Class 31: Macromolecular Conjugated Polyenes 1421
45.31.1 Product Subclass 1: Polyacetylene 1421
45.31.1.1 Synthesis of Product Subclass 1 1421
45.31.1.1.1 Method 1: Polymerization by the Shirakawa Method 1421
45.31.1.1.2 Method 2: Polymerization by the Naarmann Method 1422
45.31.2 Product Subclass 2: Monosubstituted Aromatic Acetylene Polymers 1423
45.31.2.1 Synthesis of Product Subclass 2 1423
45.31.2.1.1 Method 1: Polymerization Using Rhodium Catalysts 1423
45.31.2.1.2 Method 2: Polymerization Using Tungsten Catalysts 1426
45.31.2.1.3 Method 3: Polymerization Using Molybdenum Catalysts 1428
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.31.3</td>
<td>Product Subclass 3: Monosubstituted Aliphatic Acetylene Polymers</td>
<td>1429</td>
</tr>
<tr>
<td>45.31.3.1</td>
<td>Synthesis of Product Subclass 3</td>
<td>1429</td>
</tr>
<tr>
<td>45.31.3.1.1</td>
<td>Method 1: Polymerization Using Rhodium Catalysts</td>
<td>1429</td>
</tr>
<tr>
<td>45.31.4</td>
<td>Product Subclass 4: Disubstituted Aromatic Acetylene Polymers</td>
<td>1432</td>
</tr>
<tr>
<td>45.31.4.1</td>
<td>Synthesis of Product Subclass 4</td>
<td>1432</td>
</tr>
<tr>
<td>45.31.4.1.1</td>
<td>Method 1: Polymerization Using Tantalum Catalysts</td>
<td>1432</td>
</tr>
<tr>
<td>45.31.4.1.2</td>
<td>Method 2: Polymerization Using Molybdenum Catalysts</td>
<td>1434</td>
</tr>
<tr>
<td>45.31.5</td>
<td>Product Subclass 5: Disubstituted Aliphatic Acetylene Polymers</td>
<td>1435</td>
</tr>
<tr>
<td>45.31.5.1</td>
<td>Synthesis of Product Subclass 5</td>
<td>1436</td>
</tr>
<tr>
<td>45.31.5.1.1</td>
<td>Method 1: Polymerization Using Tantalum Catalysts</td>
<td>1436</td>
</tr>
<tr>
<td>45.31.5.1.2</td>
<td>Method 2: Polymerization Using Molybdenum Catalysts</td>
<td>1437</td>
</tr>
</tbody>
</table>

Keyword Index | 1441

Author Index | 1497

Abbreviations | 1535
Volume 46:
1,3-Dienes

Preface .. V
Table of Contents .. IX

Introduction
V. H. Rawal and S. A. Kozmin .. 1

46.1 Synthesis Using the Wittig and Related Phosphorus-, Silicon-, or Sulfur-Based Reactions
A. D. Abell and M. K. Edmonds 23

46.2 Synthesis by Alkylidenation with Metal–Carbene Complexes and Related Reagents
T. Takeda and A. Tsubouchi .. 63

46.3 Synthesis by Alkene Metathesis
S. T. Diver ... 97

46.4 Synthesis by Aldol and Related Condensation Reactions
K. P. C. Minbiole .. 147

46.5 Synthesis by Metal-Mediated C—C Bond Forming Reactions of Alkynes, Diynes, and Enynes
V. Gandon, S. Thorimbert, and M. Malacría 173

46.6 Synthesis by Metal-Mediated Coupling Reactions
E. Negishi and G. Wang ... 239

46.7 Synthesis by Cycloaddition and Electroyclic Reactions
M. Shindo, T. Yoshikawa, and K. Yaji 353

46.8 Synthesis by Extrusion
R. S. Grainger and P. J. Jervis 401

46.9 Synthesis by Elimination
M. P. Schramm .. 445

46.10 Synthesis by Reduction
D. J. Ramón and M. Yus .. 523

46.11 Synthesis by Isomerization of Unconjugated Dienes, Allenes, Alkynes, and Methylene-cyclopropanes
R. E. Taylor, C. R. Diène, and E. M. Daly 549
Table of Contents

Introduction
V. H. Rawal and S. A. Kozmin

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.1</td>
<td>Synthesis Using the Wittig and Related Phosphorus-, Silicon-, or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sulfur-Based Reactions</td>
<td></td>
</tr>
<tr>
<td>46.1.1</td>
<td>The Wittig Reaction</td>
<td>23</td>
</tr>
<tr>
<td>46.1.1.1</td>
<td>Method 1: Synthesis from Phosphorus Ylides and Enones or Enals</td>
<td>24</td>
</tr>
<tr>
<td>46.1.1.1</td>
<td>Variation 1: From Stabilized Ylides</td>
<td>25</td>
</tr>
<tr>
<td>46.1.1.2</td>
<td>Variation 2: From Nonstabilized Ylides</td>
<td>27</td>
</tr>
<tr>
<td>46.1.1.2</td>
<td>Method 2: Synthesis from Allyl Phosphorus Ylides and Carbonyl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compounds</td>
<td>30</td>
</tr>
<tr>
<td>46.1.1.3</td>
<td>Method 3: Synthesis by Tandem Oxidation–Wittig Reaction</td>
<td>34</td>
</tr>
<tr>
<td>46.1.1.3.1</td>
<td>Variation 1: Simultaneous Diene Formation</td>
<td>35</td>
</tr>
<tr>
<td>46.1.1.3.2</td>
<td>Variation 2: Sequential Diene Formation</td>
<td>35</td>
</tr>
<tr>
<td>46.1.2</td>
<td>The Horner–Wittig Reaction</td>
<td>37</td>
</tr>
<tr>
<td>46.1.2.1</td>
<td>Method 1: Synthesis from Phosphine Oxides and Enals</td>
<td>38</td>
</tr>
<tr>
<td>46.1.2.2</td>
<td>Method 2: Synthesis from Alkenylphosphine Oxides and Aldehydes or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ketones</td>
<td>38</td>
</tr>
<tr>
<td>46.1.3</td>
<td>The Horner–Wadsworth–Emmons Reaction</td>
<td>39</td>
</tr>
<tr>
<td>46.1.3.1</td>
<td>Method 1: Synthesis from Phosphonates and Enones or Enals</td>
<td>40</td>
</tr>
<tr>
<td>46.1.3.1.1</td>
<td>Variation 1: The Ando Method</td>
<td>42</td>
</tr>
<tr>
<td>46.1.3.1.2</td>
<td>Variation 2: The Still–Gennari Modification</td>
<td>43</td>
</tr>
<tr>
<td>46.1.3.2</td>
<td>Method 2: Synthesis from Alkenylphosphonates and Carbonyl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compounds</td>
<td>44</td>
</tr>
<tr>
<td>46.1.3.2.1</td>
<td>Variation 1: The Still–Gennari Modification</td>
<td>46</td>
</tr>
<tr>
<td>46.1.4</td>
<td>The Peterson Reaction</td>
<td>46</td>
</tr>
<tr>
<td>46.1.4.1</td>
<td>Method 1: Synthesis from α,β-Unsaturated Carbonyl Compounds and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alkylsilanes</td>
<td>47</td>
</tr>
<tr>
<td>46.1.4.2</td>
<td>Method 2: Synthesis from Carbonyl Compounds and Alkylsilanes</td>
<td>49</td>
</tr>
<tr>
<td>46.1.4.3</td>
<td>Method 3: The Vinylogous Peterson Elimination</td>
<td>53</td>
</tr>
<tr>
<td>46.1.5</td>
<td>The Julia Reaction and Its Variations</td>
<td>54</td>
</tr>
<tr>
<td>46.1.5.1</td>
<td>Method 1: Synthesis from α,β-Unsaturated Carbonyl Compounds and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alkyl Sulfones</td>
<td>55</td>
</tr>
<tr>
<td>46.1.5.2</td>
<td>Method 2: Synthesis from Carbonyl Compounds and Alkyl Sulfones</td>
<td>57</td>
</tr>
</tbody>
</table>

Science of Synthesis Original Edition Volume 46
© Georg Thieme Verlag KG
Synthesis by Alkyldenation with Metal–Carbene Complexes and Related Reagents

T. Takeda and A. Tsubouchi

Synthesis by Alkyldenation with Metal–Carbene Complexes and Related Reagents

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.2.1</td>
<td>Methylenation</td>
<td>63</td>
</tr>
<tr>
<td>46.2.1.1</td>
<td>Method 1: Synthesis Using Titanium-Based Reagents</td>
<td>63</td>
</tr>
<tr>
<td>46.2.1.1.1</td>
<td>Variation 1: Using the Tebbe Reagent</td>
<td>63</td>
</tr>
<tr>
<td>46.2.1.1.2</td>
<td>Variation 2: Using Bis((\eta^3)-cyclopentadienyl)(dihalozinc)((\mu)-methylene)-titanium</td>
<td>68</td>
</tr>
<tr>
<td>46.2.1.1.3</td>
<td>Variation 3: Using Bis((\eta^3)-cyclopentadienyl)dimethyltinanium(IV) (The Petasis Reagent)</td>
<td>69</td>
</tr>
<tr>
<td>46.2.1.4</td>
<td>Variation 4: Using Titanacylclobutenes</td>
<td>72</td>
</tr>
<tr>
<td>46.2.2</td>
<td>Method 2: Synthesis Using Zinc-Based Reagents</td>
<td>73</td>
</tr>
<tr>
<td>46.2.3</td>
<td>Method 3: Synthesis Using Miscellaneous Reagents</td>
<td>77</td>
</tr>
<tr>
<td>46.2.2.1</td>
<td>Method 1: Synthesis Using Titanium-Based Reagents</td>
<td>80</td>
</tr>
<tr>
<td>46.2.2.2</td>
<td>Method 2: Synthesis Using Zinc-Based Reagents</td>
<td>81</td>
</tr>
<tr>
<td>46.2.2.3</td>
<td>Method 3: Synthesis Using Chromium-Based Reagents</td>
<td>82</td>
</tr>
<tr>
<td>46.2.3</td>
<td>Other Alkyldenation Reactions</td>
<td>87</td>
</tr>
<tr>
<td>46.2.3.1</td>
<td>Method 1: Synthesis Using Titanium-Based Reagents</td>
<td>87</td>
</tr>
<tr>
<td>46.2.3.2</td>
<td>Method 2: Synthesis Using Zinc-Based Reagents</td>
<td>90</td>
</tr>
<tr>
<td>46.2.3.3</td>
<td>Method 3: Synthesis Using Chromium-Based Reagents</td>
<td>91</td>
</tr>
<tr>
<td>46.2.3.4</td>
<td>Method 4: Synthesis Using Miscellaneous Reagents</td>
<td>92</td>
</tr>
</tbody>
</table>

Synthesis by Alkene Metathesis

S. T. Diver

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.3.1</td>
<td>Method 1: Ring-Closing Metathesis of Enynes</td>
<td>102</td>
</tr>
<tr>
<td>46.3.1.1</td>
<td>Variation 1: Using Grubbs’ Catalysts</td>
<td>102</td>
</tr>
<tr>
<td>46.3.1.2</td>
<td>Variation 2: Polycyclization Using Grubbs’ Catalysts</td>
<td>107</td>
</tr>
<tr>
<td>46.3.1.3</td>
<td>Variation 3: Using the Hoveyda–Blechert Catalyst</td>
<td>112</td>
</tr>
<tr>
<td>46.3.1.4</td>
<td>Variation 4: Polycyclization Using the Hoveyda–Blechert Catalyst</td>
<td>114</td>
</tr>
<tr>
<td>46.3.1.5</td>
<td>Variation 5: Using the Schrock Catalyst</td>
<td>115</td>
</tr>
<tr>
<td>46.3.2</td>
<td>Method 2: Ring-Closing Metathesis of Alkenes with Conjugated Dienes</td>
<td>118</td>
</tr>
<tr>
<td>46.3.3</td>
<td>Method 3: Cross Metathesis of Alkynes with Alkenes</td>
<td>121</td>
</tr>
<tr>
<td>46.3.3.1</td>
<td>Variation 1: Metathesis of Alkynes with Ethene</td>
<td>121</td>
</tr>
<tr>
<td>46.3.3.2</td>
<td>Variation 2: Metathesis of Terminal Alkynes with Other Alkynes</td>
<td>125</td>
</tr>
<tr>
<td>46.3.3.3</td>
<td>Variation 3: Metathesis of Internal Alkynes with Alkynes</td>
<td>129</td>
</tr>
<tr>
<td>46.3.3.4</td>
<td>Variation 4: Ethene-Assisted Metathesis</td>
<td>130</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>46.3.3.5</td>
<td>Variation 5: Metathesis of Alkynes with Cycloalkenes</td>
<td>131</td>
</tr>
<tr>
<td>46.3.4</td>
<td>Method 4: Cross Metathesis of Alkenes with Conjugated Dienes</td>
<td>135</td>
</tr>
<tr>
<td>46.3.5</td>
<td>Method 5: Cross Metathesis of Alkenes Followed by Elimination</td>
<td>140</td>
</tr>
<tr>
<td>46.3.6</td>
<td>Method 6: Ring-Rearrangement Metathesis</td>
<td>141</td>
</tr>
<tr>
<td>46.4</td>
<td>Synthesis by Aldol and Related Condensation Reactions</td>
<td>147</td>
</tr>
<tr>
<td>46.4.1</td>
<td>Synthesis of 1,3-Dienes with an Electron-Withdrawing Group at C1</td>
<td>148</td>
</tr>
<tr>
<td>46.4.1.1</td>
<td>Method 1: Formation of the α,β-Alkene</td>
<td>148</td>
</tr>
<tr>
<td>46.4.1.1</td>
<td>Variation 1: Under Basic Conditions with Thermodynamic Control</td>
<td>149</td>
</tr>
<tr>
<td>46.4.1.1</td>
<td>Variation 2: Under Kinetic Conditions with Subsequent Elimination</td>
<td>150</td>
</tr>
<tr>
<td>46.4.1.1</td>
<td>Variation 3: Under Lewis Acidic Conditions</td>
<td>151</td>
</tr>
<tr>
<td>46.4.1.1</td>
<td>Variation 4: Other Approaches</td>
<td>153</td>
</tr>
<tr>
<td>46.4.1.2</td>
<td>Method 2: Formation of the γ,δ-Alkene</td>
<td>153</td>
</tr>
<tr>
<td>46.4.1.2</td>
<td>Variation 1: Driven by Extended Conjugation</td>
<td>154</td>
</tr>
<tr>
<td>46.4.1.2</td>
<td>Variation 2: Lactone Formation</td>
<td>154</td>
</tr>
<tr>
<td>46.4.1.2</td>
<td>Variation 3: Other Reactions</td>
<td>156</td>
</tr>
<tr>
<td>46.4.2</td>
<td>Synthesis of 1,3-Dienes with an Electron-Withdrawing Group at C2</td>
<td>158</td>
</tr>
<tr>
<td>46.4.2.1</td>
<td>Method 1: Formation of the α,β-Alkene</td>
<td>158</td>
</tr>
<tr>
<td>46.4.2.1</td>
<td>Variation 1: Single-Step Reactions</td>
<td>159</td>
</tr>
<tr>
<td>46.4.2.1</td>
<td>Variation 2: Multistep Reactions</td>
<td>159</td>
</tr>
<tr>
<td>46.4.2.1</td>
<td>Variation 3: Other Strategies</td>
<td>160</td>
</tr>
<tr>
<td>46.4.3</td>
<td>Synthesis of 1,3-Dienes with Two Electron-Withdrawing Groups at C1</td>
<td>160</td>
</tr>
<tr>
<td>46.4.3.1</td>
<td>Method 1: Formation of the α,β-Alkene</td>
<td>161</td>
</tr>
<tr>
<td>46.4.3.1</td>
<td>Variation 1: Under Standard Basic Conditions</td>
<td>161</td>
</tr>
<tr>
<td>46.4.3.1</td>
<td>Variation 2: Using Alternative Promoters</td>
<td>162</td>
</tr>
<tr>
<td>46.4.3.1</td>
<td>Variation 3: From Non-Ester Substrates</td>
<td>162</td>
</tr>
<tr>
<td>46.4.3.2</td>
<td>Method 2: Formation of the γ,δ-Alkene</td>
<td>163</td>
</tr>
<tr>
<td>46.4.4</td>
<td>Synthesis of 1,3-Dienes with Electron-Withdrawing Groups at C1 and C3</td>
<td>164</td>
</tr>
<tr>
<td>46.4.4.1</td>
<td>Method 1: Knoevenagel and Related Condensations</td>
<td>165</td>
</tr>
<tr>
<td>46.4.5</td>
<td>Synthesis of 1,3-Dienes with Electron-Withdrawing Groups at C2 and C3</td>
<td>166</td>
</tr>
<tr>
<td>46.4.5.1</td>
<td>Method 1: Single Stobbe Reaction</td>
<td>166</td>
</tr>
<tr>
<td>46.4.5.2</td>
<td>Method 2: Double Stobbe Reaction</td>
<td>167</td>
</tr>
</tbody>
</table>

46.5

Synthesis by Metal-Mediated C—C Bond Forming Reactions of Alkynes, Dienes, and Enynes

K. P. C. Minbiole

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.5</td>
<td>Synthesis by Metal-Mediated C—C Bond Forming Reactions of Alkynes, Dienes, and Enynes</td>
<td>173</td>
</tr>
<tr>
<td>46.5.1</td>
<td>Acyclic 1,3-Dienes</td>
<td>173</td>
</tr>
</tbody>
</table>
Table of Contents

46.5.1.1
- **Method 1:** Nickel-Catalyzed Aldehyde–Alkyne and Aldehyde–Enyne Coupling
 - 173
- **Variation 1:** Nickel-Catalyzed Aldehyde–Alkyne Coupling
 - 173
- **Variation 2:** Nickel-Catalyzed Aldehyde–Enyne Coupling
 - 174
- **Method 2:** Coupling of Alkynes
 - 175
- **Variation 1:** Titanium-Mediated Carbometalation of Internal Alkynes
 - 176
- **Variation 2:** Zirconium-Mediated Carbometalation of Alkynes
 - 177
- **Variation 3:** Ruthenium-Catalyzed Dimerization of Propargyl Alcohols
 - 180
- **Method 3:** 2:1 Co-oligomerization of Alkynes and Alkenes
 - 181
- **Variation 1:** Cobalt-Mediated C–H Activation
 - 181
- **Variation 2:** Nickel-Mediated C–H Activation
 - 182

46.5.2
- **Endocyclic 1,3-Dienes**
 - 183
- **Method 1:** Synthesis via Zirconacyclopentadienes
 - 183
- **Method 2:** Six-Membered Rings by [2 + 2 + 2] Cycloaddition
 - 185
- **Variation 1:** Titanium-Catalyzed Cycloaddition
 - 186
- **Variation 2:** Zirconium-Mediated Cycloaddition
 - 186
- **Variation 3:** Ruthenium-Catalyzed Cycloaddition
 - 187
- **Variation 4:** Cobalt-Mediated Cycloaddition
 - 190
- **Variation 5:** Rhodium-Catalyzed Cycloaddition
 - 197
- **Variation 6:** Iridium-Catalyzed Cycloaddition
 - 201
- **Variation 7:** Nickel-Catalyzed Cycloaddition
 - 203
- **Method 3:** Six-Membered Rings by Cycloisomerization of 1,5-Enynes
 - 205
- **Method 4:** Seven-Membered Rings by Cycloaddition or Cycloisomerization of Diynes
 - 206
- **Method 5:** Codimerization Reaction between 1,3-Dienes and Alkynes
 - 207
- **Method 6:** Cobalt-Mediated Syntheses of Alkaloids and Steroids
 - 207

46.5.3
- **1,3-Dienes Having Two Exocyclic Double Bonds**
 - 210
- **Method 1:** Cyclization of Diynes
 - 210
- **Variation 1:** Titanium-Promoted Cyclization of Diynes
 - 210
- **Variation 2:** Zirconacene-Derivative-Promoted Cyclization of Diynes
 - 211
- **Variation 3:** Nickel-Catalyzed Cyclization of Diynes
 - 212
- **Method 2:** Cyclization of Enynes
 - 213
- **Variation 1:** Palladium-Catalyzed Cycloisomerization of Enynes
 - 214
- **Variation 2:** Ruthenium-Catalyzed Cycloisomerization of Enynes
 - 215
- **Variation 3:** Iridium(I)-Catalyzed Cycloisomerization of Enynes
 - 216
- **Variation 4:** Cobalt(I)-Mediated Cycloisomerization of 1,6-Enynes
 - 217
- **Method 3:** Cyclization of Allenynes
 - 218

46.5.4
- **Conjugated Vinylic Cycloalkenes**
 - 219
- **Method 1:** Cycloisomerization of 1,6-Enynes
 - 219
- **Variation 1:** Palladium-Catalyzed Cycloisomerization To Give Vinylcyclopentenes
 - 219
- **Variation 2:** Ruthenium-Catalyzed Cycloisomerization To Give Vinylicycloalkenes
 - 220
- **Variation 3:** Platinum- and Gold-Catalyzed Cycloisomerization To Give Vinylcycloalkenes
 - 221
Table of Contents

46.5.4.1.4 Variation 4: Iridium-Catalyzed Cycloisomerization To Give Vinylcycloalkenes .. 223
46.5.4.2 Method 2: Cycloisomerization of Allenynes ... 224
46.5.4.2.1 Variation 1: Platinum-Catalyzed Cycloisomerization To Give Vinylcycloalkenes .. 224
46.5.4.2.2 Variation 2: Gold- and Platinum-Catalyzed Cycloisomerization To Give Cross-Conjugated Trienes .. 225
46.5.4.2.3 Variation 3: Rhodium-Catalyzed Isomerization To Give Cross-Conjugated Trienes .. 225
46.5.4.2.4 Variation 4: Titanium(II)-Mediated Cyclization To Give Cross-Conjugated Trienes .. 226
46.5.4.2.5 Variation 5: Cobalt(I)-Mediated Cyclization To Give Cross-Conjugated Trienes .. 227
46.5.5 1,3-Dienes Having Endocyclic and Exocyclic Double Bonds 227
46.5.5.1 Method 1: Cycloisomerization of 1,6- and 1,7-Enynes 228
46.5.5.1.1 Variation 1: Palladium-Catalyzed Cycloisomerization 228
46.5.5.1.2 Variation 2: Gold-Catalyzed Cycloisomerization 228
46.5.5.1.3 Variation 3: Rhodium-Catalyzed Cycloisomerization 230
46.5.5.1.4 Variation 4: Ruthenium-Catalyzed Cycloisomerization 231
46.5.5.2 Method 2: Cycloisomerization of Allenynes .. 231
46.5.6 s-trans-Heteroannular 1,3-Dienes .. 232
46.5.6.1 Method 1: Cycloisomerization of Dienynes ... 232
46.5.6.2 Method 2: Cycloisomerization of Allenynes .. 232

46.6 Synthesis by Metal-Mediated Coupling Reactions
E. Negishi and G. Wang

46.6 Synthesis by Metal-Mediated Coupling Reactions 239
46.6.1 Method 1: Stoichiometric Synthesis of 1,3-Dienes by Metal-Mediated Coupling Reactions via Migratory Insertion 244
46.6.1.1 Variation 1: 1,4-Disubstituted E,E-1,3-Dienes by [2C + 2C] Alkenyl–Alkenyl Coupling via Organoboron Migratory Insertion Reactions 245
46.6.1.2 Variation 2: 1,4-Disubstituted E,Z-1,3-Dienes by [2C + 2C] Alkynyl–Alkenyl Coupling via Organoboron Migratory Insertion Reactions 246
46.6.1.3 Variation 3: 1,4-Disubstituted Z,Z-1,3-Dienes by [2C + 2C] Alkynyl–Alkynyl Coupling via Boron- or Zirconium-Mediated Migratory Insertion ... 247
46.6.1.4 Variation 4: Other Organozirconium Migratory Insertion Reactions for the Synthesis of 1,3-Dienes ... 248
46.6.2 Method 2: Stoichiometric Synthesis of 1,3-Dienes by Metal-Mediated [2C + 2C] Coupling via Carbometalation 249
46.6.2.1 Variation 1: Synthesis of 1,3-Dienes by Controlled Alkyne Dimerization via syn-Carbometalation ... 251
46.6.2.2 Variation 2: Chelation-Guided anti-Carbometalation with Alkenyl- and Alkynylmetals ... 252
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.6.2.3</td>
<td>Variation 3: Zirconium-Promoted Ene–Yne Coupling and Alkyne Dimerization</td>
<td>252</td>
</tr>
<tr>
<td>46.6.2.4</td>
<td>Variation 4: Titanium-Promoted Ene–Yne Coupling and Alkyne Dimerization</td>
<td>255</td>
</tr>
<tr>
<td>46.6.3</td>
<td>Method 3: Synthesis of 1,3-Dienes by Palladium-Catalyzed Cross-Coupling Reactions</td>
<td>256</td>
</tr>
<tr>
<td>46.6.3.1</td>
<td>Variation 1: 1,3-Dienes Containing the Parent Vinyl and/or 1-Monomethylvinyl Groups</td>
<td>266</td>
</tr>
<tr>
<td>46.6.3.2</td>
<td>Variation 2: 1,4-Disubstituted 1,3-Dienes</td>
<td>271</td>
</tr>
<tr>
<td>46.6.3.3</td>
<td>Variation 3: Trisubstituted 1,3-Dienes Excluding Those Containing a Vinyl or Vinylidene Group</td>
<td>275</td>
</tr>
<tr>
<td>46.6.3.4</td>
<td>Variation 4: Tetrasubstituted 1,3-Dienes Excluding Those Containing a Fully Substituted Alkenyl Group</td>
<td>285</td>
</tr>
<tr>
<td>46.6.3.5</td>
<td>Variation 5: Tetra-, Penta-, and Hexasubstituted 1,3-Dienes Containing One or Two Fully Substituted Alkenyl Groups Excluding 1,1,2,3-Tetrasubstituted 1,3-Dienes</td>
<td>287</td>
</tr>
<tr>
<td>46.6.4</td>
<td>Method 4: 1,3-Dienes through Modification of 4C Compounds</td>
<td>290</td>
</tr>
<tr>
<td>46.6.4.1</td>
<td>Variation 1: 1,3-Dienes via Heterofunctionalized 1,3-Dienes</td>
<td>290</td>
</tr>
<tr>
<td>46.6.4.2</td>
<td>Variation 2: 1,3-Dienes via 1,3-Enynes and 1,3-Diynes</td>
<td>300</td>
</tr>
<tr>
<td>46.6.5</td>
<td>Method 5: Synthesis of 1,3-Dienes by Catalytic Carbometalation and Oxymetalation Reactions</td>
<td>308</td>
</tr>
<tr>
<td>46.6.5.1</td>
<td>Variation 1: 1,3-Dienes via the Heck Reaction</td>
<td>308</td>
</tr>
<tr>
<td>46.6.5.2</td>
<td>Variation 2: Other Catalytic Carbopalladation Routes to 1,3-Dienes</td>
<td>315</td>
</tr>
<tr>
<td>46.6.5.3</td>
<td>Variation 3: 1,3-Dienes via Oxymetalation Reactions</td>
<td>326</td>
</tr>
<tr>
<td>46.6.6</td>
<td>Method 6: Synthesis of 1,3-Diene-Containing Oligoenes and Oligoenynes of Natural Origin and Related Compounds</td>
<td>332</td>
</tr>
</tbody>
</table>

46.7 Synthesis by Cycloaddition and Electro cyclic Reactions

M. Shindo, T. Yoshikawa, and K. Yaji

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.7</td>
<td>Synthesis by Cycloaddition and Electro cyclic Reactions</td>
<td>353</td>
</tr>
<tr>
<td>46.7.1</td>
<td>Method 1: Thermal Electro cyclic Ring-Opening Reactions of Cyclobutenes</td>
<td>353</td>
</tr>
<tr>
<td>46.7.1.1</td>
<td>Variation 1: Acyclic 1,3-Dienes from 3,4-Unsubstituted Cyclobutenes</td>
<td>354</td>
</tr>
<tr>
<td>46.7.1.2</td>
<td>Variation 2: Acyclic 1,3-Dienes from 3-Substituted Cyclobutenes</td>
<td>356</td>
</tr>
<tr>
<td>46.7.1.3</td>
<td>Variation 3: Acyclic 1,3-Dienes from Multisubstituted Cyclobutenes</td>
<td>359</td>
</tr>
<tr>
<td>46.7.1.4</td>
<td>Variation 4: Cycloalka-1,3-dienes from 3,4-Fused Cyclobutenes (Ring Expansion)</td>
<td>364</td>
</tr>
<tr>
<td>46.7.1.5</td>
<td>Variation 5: 1,3-Dienes from 1,2-Fused Cyclobutenes</td>
<td>368</td>
</tr>
<tr>
<td>46.7.1.6</td>
<td>Variation 6: 1,3-Dienes from 1,4-Fused Cyclobutenes</td>
<td>369</td>
</tr>
<tr>
<td>46.7.2</td>
<td>Method 2: Photochemical Reactions of Cyclobutenes</td>
<td>370</td>
</tr>
<tr>
<td>46.7.3</td>
<td>Method 3: Thermal Six-Electron Electro cyclic Reactions To Give Cyclohexa-1,3-dienes</td>
<td>371</td>
</tr>
<tr>
<td>46.7.3.1</td>
<td>Variation 1: Cyclohexa-1,3-dienes from Acyclic 1,3,5-Trienes</td>
<td>374</td>
</tr>
<tr>
<td>46.7.3.2</td>
<td>Variation 2: 1,6-Fused Cyclohexa-1,3-dienes from 1,2-Fused 1,3,5-Trienes</td>
<td>377</td>
</tr>
<tr>
<td>46.7.3.3</td>
<td>Variation 3: 1,2-Fused Cyclohexa-1,3-dienes from 2,3-Fused 1,3,5-Trienes</td>
<td>380</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>46.7.3.4</td>
<td>Variation 4: 2,3-Ring-Fused Cyclohexa-1,3-dienes from 3,4-Ring-Fused 1,3,5-Trienes 382</td>
<td></td>
</tr>
<tr>
<td>46.7.3.5</td>
<td>Variation 5: 5,6-Fused Cyclohexa-1,3-dienes from Cycloalka-1,3,5-trienes 383</td>
<td></td>
</tr>
<tr>
<td>46.7.4</td>
<td>Method 4: Photochemical Six-Electron Electrocyclizations 385</td>
<td></td>
</tr>
<tr>
<td>46.7.5</td>
<td>Method 5: Unsatuated Carbocycles via a Combination of Thermally Induced Electrocyclizations 386</td>
<td></td>
</tr>
<tr>
<td>46.7.6</td>
<td>Method 6: [6 + 4] Cycloadditions between Buta-1,3-dienes and Hexa-1,3,5-trienes 389</td>
<td></td>
</tr>
<tr>
<td>46.7.6.1</td>
<td>Variation 1: [6 + 4] Cycloadditions of Tropones 389</td>
<td></td>
</tr>
<tr>
<td>46.7.6.2</td>
<td>Variation 2: [6 + 4] Cycloadditions of Fulvenes 394</td>
<td></td>
</tr>
</tbody>
</table>

46.8 Synthesis by Extrusion

R. S. Grainger and P. J. Jervis

46.8.1 Synthesis by Extrusion

- 401
 - Extrusion of Alkenes 401
 - Method 1: Thermal Cracking of Cyclohexene 401
 - Method 2: Extrusion of Cyclopentadiene 402
 - Method 1.2.1 Variation 1: Cracking of Dicyclopentadiene 402
 - Method 1.2.2 Variation 2: Cyclopentadiene as a Protecting Group 402
 - Method 1.3 Method 3: Extrusion of Maleic Anhydride 403
 - Extrusion of Carbon Dioxide 404
 - Method 1: Carbon Dioxide Extrusion from Six-Membered Lactones 404
 - Method 2: Carbon Dioxide Extrusion with In Situ Trapping of the Diene 405
 - Method 3: Carbon Dioxide Extrusion from Vinyl-Substituted β-Lactones 406
 - Method 3.1 Variation 1: Decarboxylative Extrusion from β-Lactones 406
 - Method 3.2 Variation 2: Tandem Lactone Formation–Carbon Dioxide Extrusion 407
 - Extrusion of Carbon Monoxide 408
 - Method 1: Carbon Monoxide Extrusion from Monocyclic Cyclopent-3-en-1-ones 408
 - Method 2: Extrusion of a Bridging Carbon Monoxide from Strained Rings 409
 - Method 3: Carbon Monoxide Extrusion with In Situ Trapping of the Diene 410
 - Method 4: Carbon Monoxide Extrusion To Afford Cyclooctatetraenes 411
 - Method 3.5 Method 5: Carbon Monoxide Extrusion from β-Allenyl Aldehydes 411
 - Extrusion of Sulfur Dioxide 412
 - Method 1: Thermal Extrusion of Sulfur Dioxide from 2,5-Dihydrothiophene 1,1-Dioxides 412
 - Method 1.1 Variation 1: Preparation of 1,4-Disubstituted 1,3-Dienes via Thermolysis 412
 - Method 1.2 Variation 2: Preparation of Terminal 1,3-Dienes via Thermolysis 413
 - Method 1.3 Variation 3: Preparation of 2,3-Disubstituted 1,3-Dienes via Thermolysis 416
 - Method 1.4 Variation 4: Preparation of Other Substitution Patterns via Thermolysis 418
 - Method 2: Thermolysis Followed by In Situ Trapping 418
 - Method 2.1 Variation 1: Intermolecular Diels–Alder Trapping of the Diene 419
 - Method 2.2 Variation 2: Intramolecular Diels–Alder Trapping of the Diene 420
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.8.4.2.3</td>
<td>Variation 3: Other In Situ Trapping Reactions</td>
<td>421</td>
</tr>
<tr>
<td>46.8.4.3</td>
<td>Method 3: Extrusion from Cyclic Sulfones in the Presence of Lithium Aluminum Hydride</td>
<td>422</td>
</tr>
<tr>
<td>46.8.4.4</td>
<td>Method 4: Reaction of Cyclic Sulfones with Ultrasonically Dispersed Potassium</td>
<td>423</td>
</tr>
<tr>
<td>46.8.4.4.1</td>
<td>Variation 1: Using Standard Conditions</td>
<td>423</td>
</tr>
<tr>
<td>46.8.4.4.2</td>
<td>Variation 2: In the Presence of a Proton Source</td>
<td>424</td>
</tr>
<tr>
<td>46.8.4.5</td>
<td>Method 5: Tandem Retro-Diels–Alder/Sulfur Dioxide Extrusion from Cyclic Sulfones</td>
<td>425</td>
</tr>
<tr>
<td>46.8.4.6</td>
<td>Method 6: Photochemical Extrusion of Sulfur Dioxide from 2,5-Dihydrothiophene 1,1-Dioxides</td>
<td>426</td>
</tr>
<tr>
<td>46.8.4.7</td>
<td>Method 7: Extrusion from In Situ Generated Thirane 1,1-Dioxides (The Ramberg–Bäcklund Reaction)</td>
<td>427</td>
</tr>
<tr>
<td>46.8.4.7.1</td>
<td>Variation 1: Hexa-1,3,5-trienes from Diallyl Sulfones</td>
<td>427</td>
</tr>
<tr>
<td>46.8.4.7.2</td>
<td>Variation 2: Terminal 1,3-Dienes via The Vinylogous Ramberg–Bäcklund Reaction</td>
<td>428</td>
</tr>
<tr>
<td>46.8.4.7.3</td>
<td>Variation 3: Application of the Ramberg–Bäcklund Reaction to an Iterative Ring-Growing Procedure</td>
<td>429</td>
</tr>
<tr>
<td>46.8.4.8</td>
<td>Method 8: Base-Induced Isomerization and Thermal Elimination of 2,3-Dihydrothiophene 1,1-Dioxides</td>
<td>430</td>
</tr>
<tr>
<td>46.8.4.9</td>
<td>Method 9: Extrusion from Cyclic Sulfinate Esters</td>
<td>431</td>
</tr>
<tr>
<td>46.8.4.10</td>
<td>Method 10: 1,3,5-Trienes from 2,7-Dihydrothiepin 1,1-Dioxides</td>
<td>432</td>
</tr>
<tr>
<td>46.8.4.10.1</td>
<td>Variation 1: Synthesis of Open-Chain 1,3,5-Trienes</td>
<td>432</td>
</tr>
<tr>
<td>46.8.4.10.2</td>
<td>Variation 2: Synthesis of Cyclodecatetraenes</td>
<td>433</td>
</tr>
<tr>
<td>46.8.4.10.3</td>
<td>Variation 3: Synthesis of Cyclooctatetraenes</td>
<td>433</td>
</tr>
<tr>
<td>46.8.5</td>
<td>Extrusion of Nitrogen</td>
<td>434</td>
</tr>
<tr>
<td>46.8.5.1</td>
<td>Method 1: Dienes from 2,5-Dihydro-1H-pyrroles</td>
<td>435</td>
</tr>
<tr>
<td>46.8.5.2</td>
<td>Method 2: Extrusion of Nitrogen from Hydrazine-Derived Azo Compounds</td>
<td>435</td>
</tr>
<tr>
<td>46.8.5.3</td>
<td>Method 3: Extrusion of Nitrogen from Pyridazine-Derived Azo Compounds</td>
<td>436</td>
</tr>
<tr>
<td>46.8.6</td>
<td>Extrusion of 4-Phenyl-3H-1,2,4-triazole-3,5(4H)-diones and Related Molecules</td>
<td>436</td>
</tr>
<tr>
<td>46.8.6.1</td>
<td>Method 1: Extrusion of 4-Phenyl-3H-1,2,4-triazole-3,5(4H)-dione by Thermolysis</td>
<td>437</td>
</tr>
<tr>
<td>46.8.6.2</td>
<td>Method 2: Extrusion of 4-Phenyl-3H-1,2,4-triazole-3,5(4H)-dione in the Presence of a Reducing Agent</td>
<td>439</td>
</tr>
<tr>
<td>46.8.6.3</td>
<td>Method 3: Extrusion from Related Diazenes</td>
<td>441</td>
</tr>
</tbody>
</table>

46.9 Synthesis by Elimination

M. P. Schramm

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.9</td>
<td>Synthesis by Elimination</td>
<td>445</td>
</tr>
<tr>
<td>46.9.1</td>
<td>Synthesis by 1,2-Elimination</td>
<td>445</td>
</tr>
<tr>
<td>46.9.1.1</td>
<td>Method 1: Elimination of Hydrogen and a Heteroatom</td>
<td>446</td>
</tr>
<tr>
<td>46.9.1.1.1</td>
<td>Variation 1: Dehydrohalogenation</td>
<td>446</td>
</tr>
</tbody>
</table>
46.9.1.2 Variation 2: Dehydration 448
46.9.1.3 Variation 3: Loss of Acetic Acid or Trifluoroacetic Acid 457
46.9.1.4 Variation 4: Loss of a Sulfonic Acid 460
46.9.1.5 Variation 5: Loss of Hydrogen and an Alkoxo or Aryloxy Group 463
46.9.1.6 Variation 6: Loss of Hydrogen and an Arylsulfinyl Group 464
46.9.1.7 Variation 7: Loss of Hydrogen and a Selenium-Containing Group 465
46.9.1.8 Variation 8: Loss of Hydrogen and a Nitrogen-Containing Group 468
46.9.1.2 Method 2: Elimination of a Silicon-Containing Group and a Heteroatom 468
46.9.1.2.1 Variation 1: Elimination of Silicon- and Oxygen-Bearing Groups 469
46.9.1.2.2 Variation 2: Loss of Silicon- and Nitrogen-Containing Groups 471
46.9.1.3 Method 3: Elimination of a Carbon Fragment and a Heteroatom-Containing Group 472
46.9.1.3.1 Variation 1: Loss of Acetic Acid and Carbon Dioxide 472
46.9.1.3.2 Variation 2: Grob Fragmentation 473
46.9.1.4 Method 4: Elimination of Two Heteroatoms or Heteroatom-Containing Groups 475
46.9.1.4.1 Variation 1: Loss of an Oxygen-Containing Group and a Halogen Atom 475
46.9.1.4.2 Variation 2: Dehalogenation 476
46.9.1.4.3 Variation 3: Loss of Nitrate and Acetate (or Methanesulfonate) 477
46.9.1.5 Method 5: Elimination of a Shared Atom Such as Oxygen or Sulfur 477
46.9.1.5.1 Variation 1: Expulsion of Oxygen from Oxiranes 477
46.9.1.5.2 Variation 2: Desulfurization of Thiranes 478
46.9.2 Synthesis by 1,4-Elimination 479
46.9.2.1 Method 1: Elimination of Hydrogen and a Heteroatom 479
46.9.2.1.1 Variation 1: Elimination of a Hydrogen Halide 480
46.9.2.1.2 Variation 2: Elimination of Water or Its Equivalent 481
46.9.2.1.3 Variation 3: Elimination of Hydrogen and an Oxygen Atom Bonded to Carbon 485
46.9.2.1.4 Variation 4: Elimination of Acetic Acid 489
46.9.2.1.5 Variation 5: Elimination of Benzenesulfonic Acid 490
46.9.2.1.6 Variation 6: Elimination of Hydrogen and Oxygen from Peroxides 491
46.9.2.2 Method 2: Elimination of Two Carbon Atoms 492
46.9.2.3 Method 3: Elimination of a Carbon Fragment and a Heteroatom 493
46.9.2.4 Method 4: Elimination of Two Bromine Atoms or Two Heteroatom-Containing Groups 493
46.9.2.4.1 Variation 1: Elimination of Two Bromine Atoms 493
46.9.2.4.2 Variation 2: Elimination of Two Oxygen-Containing Groups 495
46.9.2.5 Method 5: Elimination of a Shared Heteroatom or Group 501
46.9.2.5.1 Variation 1: Elimination of Carbon Monoxide 501
46.9.2.5.2 Variation 2: Elimination of a Shared Oxygen Atom 502
46.9.2.5.3 Variation 3: Elimination of Sulfur Dioxide 502
46.9.3 Synthesis by 1,2,3,4-Elimination 503
46.9.3.1 Method 1: Elimination of Two Hydrogens and Two Heteroatoms or Heteroatom-Containing Groups 503
46.9.3.1.1 Variation 1: Double Dehydrobromination 503
46.9.3.1.2 Variation 2: Double Dehydrochlorination 506
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.9.3.1.3</td>
<td>Variation 3: Double Dehydroiodination</td>
<td>507</td>
</tr>
<tr>
<td>46.9.3.1.4</td>
<td>Variation 4: Double Dehydration</td>
<td>508</td>
</tr>
<tr>
<td>46.9.3.1.5</td>
<td>Variation 5: Dehydroxylation–Desulfonylation by the Loss of Acetoxy and Benzenesulfonate Functions</td>
<td>510</td>
</tr>
<tr>
<td>46.9.3.2</td>
<td>Method 2: Elimination of Four Bromine Atoms</td>
<td>514</td>
</tr>
<tr>
<td>46.9.3.3</td>
<td>Method 3: Elimination of Two Hydrogen Atoms and a Shared Oxygen Atom</td>
<td>514</td>
</tr>
<tr>
<td>46.9.4</td>
<td>Synthesis by Other Elimination Procedures</td>
<td>516</td>
</tr>
<tr>
<td>46.9.4.1</td>
<td>Method 1: Elimination of Sulfur Dioxide via Variations of the Ramberg–Bäcklund Reaction</td>
<td>516</td>
</tr>
<tr>
<td>46.9.4.2</td>
<td>Method 2: Elimination of 4-Methylpyridin-2-amine from N-[1-[4-(Dimethylamino)phenyl]pent-4-enyl]-4-methylpyridin-2-amine Using Rhodium(I)</td>
<td>517</td>
</tr>
<tr>
<td>46.9.4.3</td>
<td>Method 3: Elimination by Zeolite NaY</td>
<td>517</td>
</tr>
<tr>
<td>46.9.4.4</td>
<td>Method 4: Conversion of Propargyl Ethers into 1,3-Dienes</td>
<td>517</td>
</tr>
</tbody>
</table>

46.10 Synthesis by Reduction

D. J. Ramón and M. Yus

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.10</td>
<td>Synthesis by Reduction</td>
<td>523</td>
</tr>
<tr>
<td>46.10.1</td>
<td>Synthesis from Enynes</td>
<td>523</td>
</tr>
<tr>
<td>46.10.1.1</td>
<td>Method 1: Hydrogenation Reactions</td>
<td>523</td>
</tr>
<tr>
<td>46.10.1.1.1</td>
<td>Variation 1: Using the Lindlar Catalyst</td>
<td>523</td>
</tr>
<tr>
<td>46.10.1.2</td>
<td>Variation 2: Using a Poisoned Lindlar Catalyst</td>
<td>527</td>
</tr>
<tr>
<td>46.10.1.3</td>
<td>Variation 3: Using the Rosenmund Catalyst</td>
<td>528</td>
</tr>
<tr>
<td>46.10.1.4</td>
<td>Variation 4: Using a Palladium on Charcoal Catalyst</td>
<td>530</td>
</tr>
<tr>
<td>46.10.1.5</td>
<td>Variation 5: Using Raney Nickel Catalyst</td>
<td>530</td>
</tr>
<tr>
<td>46.10.1.6</td>
<td>Variation 6: Using the P-2 Nickel Catalyst</td>
<td>531</td>
</tr>
<tr>
<td>46.10.1.2</td>
<td>Method 2: Hydrometalation Reactions</td>
<td>532</td>
</tr>
<tr>
<td>46.10.1.2.1</td>
<td>Variation 1: Hydroboration</td>
<td>533</td>
</tr>
<tr>
<td>46.10.1.2.2</td>
<td>Variation 2: Hydroalumination</td>
<td>534</td>
</tr>
<tr>
<td>46.10.1.3</td>
<td>Method 3: Other Reduction Processes</td>
<td>537</td>
</tr>
<tr>
<td>46.10.1.3.1</td>
<td>Variation 1: Using Hydrazine</td>
<td>537</td>
</tr>
<tr>
<td>46.10.1.3.2</td>
<td>Variation 2: Using Metallic Zinc</td>
<td>537</td>
</tr>
<tr>
<td>46.10.2</td>
<td>Synthesis from Diynes</td>
<td>541</td>
</tr>
<tr>
<td>46.10.2.1</td>
<td>Method 1: Hydrogenation Reactions</td>
<td>541</td>
</tr>
<tr>
<td>46.10.2.2</td>
<td>Method 2: Hydrometalation Reactions</td>
<td>541</td>
</tr>
<tr>
<td>46.10.2.3</td>
<td>Method 3: Reduction Using Metallic Zinc</td>
<td>542</td>
</tr>
<tr>
<td>46.10.3</td>
<td>Synthesis from Arenes</td>
<td>543</td>
</tr>
<tr>
<td>46.10.3.1</td>
<td>Method 1: Birch Reduction</td>
<td>543</td>
</tr>
<tr>
<td>46.10.3.2</td>
<td>Method 2: Hydride Addition</td>
<td>544</td>
</tr>
</tbody>
</table>
Table of Contents

46.11 Synthesis by Isomerization of Unconjugated Dienes, Allenes, Alkynes, and Methylene cyclopropanes

R. E. Taylor, C. R. Diène, and E. M. Daly

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.11.1</td>
<td>Isomerization of Unconjugated Dienes</td>
<td>549</td>
</tr>
<tr>
<td>46.11.1.1</td>
<td>Method 1: Base-Mediated Isomerization</td>
<td>549</td>
</tr>
<tr>
<td>46.11.1.1</td>
<td>Variation 1: Of Unfunctionalized Unconjugated Dienes</td>
<td>549</td>
</tr>
<tr>
<td>46.11.1.1.2</td>
<td>Variation 2: Of Functionalized Unconjugated Dienes</td>
<td>550</td>
</tr>
<tr>
<td>46.11.1.2</td>
<td>Method 2: Acid-Mediated Isomerization</td>
<td>551</td>
</tr>
<tr>
<td>46.11.1.3</td>
<td>Method 3: Electron-Transfer-Mediated Isomerization</td>
<td>552</td>
</tr>
<tr>
<td>46.11.1.4</td>
<td>Method 4: Metal-Mediated Isomerization</td>
<td>553</td>
</tr>
<tr>
<td>46.11.1.4.1</td>
<td>Variation 1: Palladium-Catalyzed Isomerization</td>
<td>553</td>
</tr>
<tr>
<td>46.11.1.4.2</td>
<td>Variation 2: Europium-Catalyzed Isomerization</td>
<td>554</td>
</tr>
<tr>
<td>46.11.1.4.3</td>
<td>Variation 3: Zirconocene-Mediated Skeletal Rearrangements</td>
<td>555</td>
</tr>
<tr>
<td>46.11.1.4.4</td>
<td>Variation 4: Titanium-Mediated Skeletal Rearrangement</td>
<td>556</td>
</tr>
<tr>
<td>46.11.1.5</td>
<td>Method 5: Isomerization by Sigmatropic Rearrangements</td>
<td>557</td>
</tr>
<tr>
<td>46.11.1.5.1</td>
<td>Variation 1: Thermally Induced Sigmatropic Rearrangements</td>
<td>557</td>
</tr>
<tr>
<td>46.11.1.5.2</td>
<td>Variation 2: Palladium(II)-Assisted Cope Rearrangements</td>
<td>559</td>
</tr>
<tr>
<td>46.11.1.6</td>
<td>Method 6: Isomerization by Allylic Substitution Reactions</td>
<td>559</td>
</tr>
<tr>
<td>46.11.1.6.1</td>
<td>Variation 1: Palladium(0)-Mediated Substitution of Doubly Allylic Acetates and Carbonates</td>
<td>559</td>
</tr>
<tr>
<td>46.11.1.6.2</td>
<td>Variation 2: Rearrangements Mediated by Thionyl Chloride</td>
<td>561</td>
</tr>
<tr>
<td>46.11.1.7</td>
<td>Method 7: Isomerization by Other Processes</td>
<td>563</td>
</tr>
<tr>
<td>46.11.2</td>
<td>Isomerization of Allenes</td>
<td>563</td>
</tr>
<tr>
<td>46.11.2.1</td>
<td>Method 1: Acid-Catalyzed Isomerization</td>
<td>563</td>
</tr>
<tr>
<td>46.11.2.2</td>
<td>Method 2: Metal-Catalyzed Isomerization</td>
<td>565</td>
</tr>
<tr>
<td>46.11.2.3</td>
<td>Method 3: Thermally and Photochemically Induced Isomerization</td>
<td>568</td>
</tr>
<tr>
<td>46.11.2.3.1</td>
<td>Variation 1: Thermal Rearrangements of Polyenes</td>
<td>568</td>
</tr>
<tr>
<td>46.11.2.3.2</td>
<td>Variation 2: Photochemical Rearrangements of 1,2,6-Trienes</td>
<td>569</td>
</tr>
<tr>
<td>46.11.2.3.3</td>
<td>Variation 3: [1,5]-Sigmatropic Shifts of Vinylllenes</td>
<td>569</td>
</tr>
<tr>
<td>46.11.3</td>
<td>Isomerization of Alkynes</td>
<td>571</td>
</tr>
<tr>
<td>46.11.3.1</td>
<td>Method 1: Base-Catalyzed Isomerization</td>
<td>571</td>
</tr>
<tr>
<td>46.11.3.2</td>
<td>Method 2: Metal-Catalyzed Isomerization</td>
<td>571</td>
</tr>
<tr>
<td>46.11.3.2.1</td>
<td>Variation 1: Of Aliphatic Alkynes</td>
<td>571</td>
</tr>
<tr>
<td>46.11.3.2.2</td>
<td>Variation 2: Of Ynonies</td>
<td>574</td>
</tr>
<tr>
<td>46.11.3.3</td>
<td>Method 3: Thermally Induced Rearrangements</td>
<td>577</td>
</tr>
<tr>
<td>46.11.3.3.1</td>
<td>Variation 1: Cope Rearrangements of Enynes</td>
<td>578</td>
</tr>
<tr>
<td>46.11.3.3.2</td>
<td>Variation 2: Thermally Induced Rearrangements of Propargyl Vinyl Ethers</td>
<td>578</td>
</tr>
<tr>
<td>46.11.3.4</td>
<td>Method 4: Organocatalyzed Isomerization of Ynonies</td>
<td>581</td>
</tr>
<tr>
<td>46.11.4</td>
<td>Isomerization of Methylene cyclopropanes</td>
<td>583</td>
</tr>
<tr>
<td>46.11.4.1</td>
<td>Method 1: Transition-Metal-Catalyzed Isomerization of Methylene cyclopropanes</td>
<td>583</td>
</tr>
</tbody>
</table>
Table of Contents

46.12 Synthesis from Arenes and Polynes

Y.-S. Wong

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.12.1</td>
<td>Method 1: Reductive Dearomatization of Arenes by Addition of Organolithiums Followed by Electrophilic Trapping</td>
<td>591</td>
</tr>
<tr>
<td>46.12.1.1</td>
<td>Variation 1: Of Electron-Withdrawing Carbon-Substituted Arenes with Alkyl Organolithium Species</td>
<td>591</td>
</tr>
<tr>
<td>46.12.1.2</td>
<td>Variation 2: Of Alkenyl-Substituted Arenes with Alkenyl Organolithium Species</td>
<td>594</td>
</tr>
<tr>
<td>46.12.1.3</td>
<td>Variation 3: Of Sulfone-Substituted Arenes</td>
<td>595</td>
</tr>
<tr>
<td>46.12.1.4</td>
<td>Variation 4: Of Sulfonamide-Substituted Arenes</td>
<td>595</td>
</tr>
<tr>
<td>46.12.1.5</td>
<td>Variation 5: Of Phosphinamide-Substituted Arenes</td>
<td>596</td>
</tr>
<tr>
<td>46.12.2</td>
<td>Method 2: Alkylation of ortho-Substituted Phenols</td>
<td>596</td>
</tr>
<tr>
<td>46.12.2.1</td>
<td>Variation 1: Of Alkali Metal Phenolate Salts</td>
<td>596</td>
</tr>
<tr>
<td>46.12.2.2</td>
<td>Variation 2: Of Arenoxasulfonyl Ylides by [2,3]-Sigmatropic Rearrangement</td>
<td>599</td>
</tr>
<tr>
<td>46.12.3</td>
<td>Method 3: Alkenylation of ortho-Alkyl-Substituted Phenols</td>
<td>600</td>
</tr>
<tr>
<td>46.12.4</td>
<td>Method 4: Arylation of ortho-Alkyl-Substituted Phenols</td>
<td>601</td>
</tr>
<tr>
<td>46.12.5</td>
<td>Method 5: Alkynylation of ortho-Alkyl-Substituted Phenols</td>
<td>602</td>
</tr>
<tr>
<td>46.12.6</td>
<td>Method 6: Hydroxylation of ortho-Alkyl-Substituted Phenols (Synthesis of o-Quinols)</td>
<td>603</td>
</tr>
<tr>
<td>46.12.7</td>
<td>Method 7: Alkoxylation of ortho-Alkyl-Substituted Phenols (Synthesis of o-Quinol Ethers)</td>
<td>608</td>
</tr>
<tr>
<td>46.12.7.1</td>
<td>Variation 1: Of 2-(Hydroxymethyl)phenols To Give Spiropoxytetrahydrohexa-2,4-dien-1-ones</td>
<td>608</td>
</tr>
<tr>
<td>46.12.7.2</td>
<td>Variation 2: To Give 6-Alk oxy-6-alkyltetrahydrohexa-2,4-dien-1-ones</td>
<td>609</td>
</tr>
<tr>
<td>46.12.8</td>
<td>Method 8: Acyloxylation of ortho-Alkyl-Substituted Phenols (Synthesis of o-Quinol Acetates)</td>
<td>609</td>
</tr>
<tr>
<td>46.12.9</td>
<td>Method 9: Addition of Oximes to ortho-Alkyl-Substituted Phenols (Synthesis of o-Quinol Oximes)</td>
<td>612</td>
</tr>
<tr>
<td>46.12.10</td>
<td>Method 10: Alkoxylation of ortho-Alkoxy-Substituted Phenols (Synthesis of o-Quinone Acetals)</td>
<td>613</td>
</tr>
<tr>
<td>46.12.11</td>
<td>Method 11: Acyloxylation of ortho-Alkoxy-Substituted Phenols (Synthesis of o-Quinone Alkoxy Acetates)</td>
<td>615</td>
</tr>
<tr>
<td>46.12.12</td>
<td>Method 12: Diacyloxylation of Phenols (Synthesis of o-Quinone Diacetates)</td>
<td>616</td>
</tr>
<tr>
<td>46.12.13</td>
<td>Method 13: Amination of ortho-Alkyl-Substituted Phenol Derivatives</td>
<td>617</td>
</tr>
<tr>
<td>46.12.14</td>
<td>Method 14: Alkylation of ortho-Alkyl-Substituted Aniline Derivatives</td>
<td>619</td>
</tr>
<tr>
<td>46.12.14.1</td>
<td>Variation 1: By Hetero-Claissen Rearrangement of N-Arylhydroxylamine Derivatives</td>
<td>619</td>
</tr>
<tr>
<td>46.12.14.2</td>
<td>Variation 2: By Imino-Diels–Alder Reaction</td>
<td>619</td>
</tr>
<tr>
<td>46.12.15</td>
<td>Method 15: Alkenylation of ortho-Alkyl-Substituted Anilines</td>
<td>620</td>
</tr>
</tbody>
</table>
46.12.16 Method 16: Hydroxylation of ortho-Alkyl-Substituted Anilines (Synthesis of o-Quinol Imines) 620
46.12.17 Method 17: Acyloxylation of ortho-Alkyl-Substituted Aniline Derivatives (Synthesis of o-Quinol Imide Acetates) 621
46.12.17.1 Variation 1: By Wessely Oxidation 621
46.12.17.2 Variation 2: By Rearrangement of N-Arylhydroxylamine Derivatives 621
46.12.18 Method 18: Amidation of ortho-Alkyl-Substituted Aniline Derivatives (Synthesis of o-Quinol Imide Amides) 622
46.12.19 Method 19: cis-Cyclohexanediols by Enzymatic Dihydroxylation of Arenes 623
46.12.20 Method 20: Alkylations of Polyenes 626
46.12.20.1 Variation 1: Cyclopropanation 626
46.12.20.2 Variation 2: Hydrozirconation 626
46.12.20.3 Variation 3: Nickel-Catalyzed Polyene–Aldehyde Reductive Coupling Reaction with Triethylborane 627
46.12.20.4 Variation 4: Cobalt-Catalyzed Polyene–Alkyl Halide–[(Trimethylsilyl)methyl]magnesium Chloride Coupling Reaction 627
46.12.21 Method 21: Epoxidation of Polyenes 628
46.12.21.1 Variation 1: Julià–Colonna Asymmetric Epoxidation 628
46.12.21.2 Variation 2: Chiral Manganese(III)–salen Catalyzed Epoxidation 629
46.12.21.3 Variation 3: Chiral-Dioxirane-Catalyzed Epoxidation 629
46.12.22 Method 22: Dihydroxylation of Polyenes 630

46.13 Synthesis via Metal Complexes of Dienes
I. Bauer and H.-J. Knöller

46.13 Synthesis via Metal Complexes of Dienes 637
46.13.1 Release of 1,3-Dienes by Demetalation of Tricarbonyl(1,3-diene)iron Complexes 637
46.13.1.1 Method 1: Oxidative Demetalation 637
46.13.1.2 Method 2: Ligand Exchange 637
46.13.2 Isomerization of 1,4-Dienes 639
46.13.2.1 Method 1: Synthesis via Intermediate Tricarbonyl(1,3-diene)iron Complexes 639
46.13.3 Acylation of Tricarbonyl(1,3-diene)iron Complexes 640
46.13.3.1 Method 1: Intermolecular Acylation 640
46.13.3.2 Method 2: Intramolecular Acylation 642
46.13.4 Palladium-Catalyzed Coupling of Substituted (1,3-Diene)iron Complexes 642
46.13.5 Cyclization of (1,3-Diene)iron Complexes with Pendent Double Bonds 642
46.13.6 Oxidative Cyclization of (1,3-Diene)metal Complexes 643
46.13.6.1 Method 1: Oxidative Cyclization of Tricarbonyl(1,3-diene)iron Complexes 644
46.13.6.2 Method 2: Oxidative Cyclization of Cyclohexa-1,3-diene(cyclopentadienyl)cobalt Complexes 645
46.13.7 Modification at the Periphery of Tricarbonyl(η4-1,3-diene)iron Complexes 646
46.13.7.1 Method 1: Nucleophilic Addition to Carbonyl and Heterocarbonyl Functions Adjacent to Tricarbonyl(\(\eta^3\)-1,3-diene)iron Complexes .. 646
46.13.7.1.1 Variation 1: Addition to Aldehydes .. 646
46.13.7.1.2 Variation 2: Addition to Imines .. 647
46.13.7.1.3 Variation 3: Addition to Ketones .. 648
46.13.7.1.4 Variation 4: Addition to Carboxylic Acid Derivatives 650
46.13.7.2 Method 2: Reactions at Groups Other Than Carbonyl or Heterocarbonyl Adjacent to Tricarbonyl(\(\eta^4\)-1,3-diene)iron Complexes 651
46.13.7.2.1 Variation 1: Reaction of Electrophiles with Tricarbonyl(dienoate)iron or Tricarbonyl(diene)iron Complexes .. 651
46.13.7.2.2 Variation 2: Addition to Tricarbonyl(\(\eta^4\)-triene)iron Complexes 652
46.13.7.2.3 Variation 3: Substitution of Tricarbonyl(2,4-dien-1-ol)iron Derivatives 652
46.13.8 Reaction of (\(\eta^5\)-Dienyl)metal Complexes with Nucleophiles 654
46.13.8.1 Method 1: Reaction of Cyclic (\(\eta^5\)-Dienyl)iron Complexes with Nucleophiles .. 654
46.13.8.2 Method 2: Reaction of Acyclic (\(\eta^5\)-Dienyl)iron Complexes with Nucleophiles .. 657
46.13.8.3 Method 3: Reaction of Cyclic (\(\eta^5\)-Dienyl)manganese Complexes with Nucleophiles .. 658
46.13.9 Reactions of (\(\pi\)-Allyl)tricarbonyliron Lactone Complexes 660
46.13.9.1 Method 1: Modification at the Periphery of (\(\pi\)-Allyl)tricarbonyliron Lactone Complexes .. 660
46.13.10 Cyclopentadienones by Iron-Mediated [2 + 2 + 1] Cycloaddition 661
46.13.10.1 Method 1: Reaction of Alkynes with Pentacarbonyliron 661

Keyword Index .. 669

Author Index .. 711

Abbreviations .. 739
Volume 47a: Alkenes

Preface ... V

Volume Editor’s Preface VII

Table of Contents IX

Introduction
A. de Meijere .. 1

47.1 Product Class 1: Alkenes

47.1.1 Synthesis by Alkenation Reactions

47.1.1.1 Wittig and Related Phosphorus-Based Alkenations
R. Schobert, C. Hölzel, and B. Barnickle 9

47.1.1.2 Peterson Alkenation
D. J. Ager .. 85

47.1.1.3 Julia, Julia–Kocienski, and Related Sulfur-Based Alkenations
I. E. Markó and J. Pospíšil 105

47.1.1.4 Alkenation with Metal Carbenes and Related Reactions
N. A. Petasis ... 161

47.1.1.5 McMurry Coupling and Related Reductive Dimerization Reactions
T. Takeda and A. Tsubouchi 247

47.1.1.6 Alkene Metathesis
M. Michalak, Ł. Gułajski, and K. Grela 327

47.1.2 Synthesis by Metal-Mediated Coupling Reactions

47.1.2.1 Cross-Coupling and Heck Reactions
D. A. Alonso and C. Nájera 439

47.1.2.2 SN’ Allylations
M. Cherkinsky and S. Levinger 481

47.1.2.3 π-Allyl Substitution
G. Sartori and R. Maggi 517

47.1.2.4 Oligomerization of Alkenes to Higher Alkenes
M. Yus and F. Foubelo 549

Science of Synthesis Original Edition Volume 47a
© Georg Thieme Verlag KG
Overview

Keyword Index ... i
Author Index .. xxxv
Abbreviations ... lxvii
Table of Contents

Introduction
A. de Meijere

Introduction .. 1

47.1

Product Class 1: Alkenes

47.1.1

Synthesis by Alkenation Reactions

47.1.1.1 Wittig and Related Phosphorus-Based Alkenations
R. Schobert, C. Hölzel, and B. Barnickel

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>47.1.1.1</td>
<td>Wittig and Related Phosphorus-Based Alkenations</td>
<td>9</td>
</tr>
<tr>
<td>47.1.1.1</td>
<td>Monosubstituted Alkenes</td>
<td>10</td>
</tr>
<tr>
<td>47.1.1.1.1</td>
<td>Method 1: Synthesis from Aldehydes and Methyleneetriphenylphosphorane</td>
<td>10</td>
</tr>
<tr>
<td>47.1.1.1.1.1</td>
<td>Variation 1: Wittig Alkenation with Methyleneetriphenylphosphorane Generated In Situ</td>
<td>12</td>
</tr>
<tr>
<td>47.1.1.1.1.2</td>
<td>Variation 2: Wittig Alkenation with Methyleneetriphenylphosphorane and Aldehyde Generated In Situ</td>
<td>15</td>
</tr>
<tr>
<td>47.1.1.1.1.3</td>
<td>Variation 3: Wittig Alkenation under Phase-Transfer Conditions</td>
<td>17</td>
</tr>
<tr>
<td>47.1.1.1.1.4</td>
<td>Variation 4: Synthesis of 13C- and 2H-Labeled Terminal Alkenes from Labeled Methyltriphenylphosphonium Halides</td>
<td>18</td>
</tr>
<tr>
<td>47.1.1.1.2</td>
<td>Method 2: Synthesis from Formaldehyde and Alkylidenetriphenylphosphoranes</td>
<td>20</td>
</tr>
<tr>
<td>47.1.1.2</td>
<td>1,1-Disubstituted Alkenes</td>
<td>22</td>
</tr>
<tr>
<td>47.1.1.2.1</td>
<td>Method 1: Synthesis from Ketones and Methyleneetriphenylphosphorane</td>
<td>22</td>
</tr>
<tr>
<td>47.1.1.2.2</td>
<td>Method 2: Synthesis from Formaldehyde and Alkylidenetriphenylphosphoranes</td>
<td>26</td>
</tr>
<tr>
<td>47.1.1.2.2.1</td>
<td>Variation 1: Wittig Alkenation with Preformed Ylides and Formaldehyde in Aqueous Solution</td>
<td>26</td>
</tr>
<tr>
<td>47.1.1.2.2.2</td>
<td>Variation 2: Wittig Alkenation with Paraformaldehyde and Ylides Formed In Situ</td>
<td>27</td>
</tr>
<tr>
<td>47.1.1.3</td>
<td>Z-1,2-Disubstituted Alkenes</td>
<td>27</td>
</tr>
<tr>
<td>47.1.1.3.1</td>
<td>Method 1: Wittig Alkenation of Preformed Stable Aldehydes</td>
<td>28</td>
</tr>
<tr>
<td>47.1.1.3.1.1</td>
<td>Variation 1: Reaction under Homogeneous Conditions</td>
<td>28</td>
</tr>
<tr>
<td>47.1.1.3.1.2</td>
<td>Variation 2: Reaction with Immobilized Ylides</td>
<td>30</td>
</tr>
<tr>
<td>47.1.1.3.1.3</td>
<td>Variation 3: Reaction under Phase-Transfer Conditions</td>
<td>32</td>
</tr>
<tr>
<td>47.1.1.3.2</td>
<td>Method 2: Wittig Alkenation of Aldehydes Prepared In Situ</td>
<td>33</td>
</tr>
<tr>
<td>47.1.1.3.2.1</td>
<td>Variation 1: Alkenation of Aldehydes Prepared In Situ by Oxidation of Alcohols</td>
<td>33</td>
</tr>
<tr>
<td>47.1.1.3.2.2</td>
<td>Variation 2: Alkenation of Aldehydes Prepared In Situ by Reduction</td>
<td>37</td>
</tr>
<tr>
<td>47.1.1.3.2.3</td>
<td>Variation 3: Alkenation of Aldehydes Prepared by Oxidation of Ylides or Alkenes</td>
<td>40</td>
</tr>
<tr>
<td>47.1.1.3.2.4</td>
<td>Variation 4: Alkenation of Masked Aldehydes</td>
<td>41</td>
</tr>
<tr>
<td>47.1.1.3.3</td>
<td>Method 3: Alkenation with (Triphenylphosphoranylidene)alkanoates and -alkoxides</td>
<td>43</td>
</tr>
<tr>
<td>47.1.1.3.3.1</td>
<td>Variation 1: Ylide Generation with an Excess of Base</td>
<td>43</td>
</tr>
<tr>
<td>47.1.1.3.3.2</td>
<td>Variation 2: Alkenation with In Situ Silylated Alkoxide Ylides</td>
<td>45</td>
</tr>
<tr>
<td>47.1.1.3.4</td>
<td>Method 4: Z-Selective Wittig–Horner Alkenation</td>
<td>46</td>
</tr>
<tr>
<td>47.1.1.4</td>
<td>E-1,2-Disubstituted Alkenes</td>
<td>49</td>
</tr>
<tr>
<td>47.1.1.4.1</td>
<td>Method 1: The Schlosser Modification of the Wittig Alkenation</td>
<td>49</td>
</tr>
<tr>
<td>47.1.1.4.2</td>
<td>Method 2: E-Selective Wittig–Horner Alkenation</td>
<td>50</td>
</tr>
<tr>
<td>47.1.1.4.3</td>
<td>Method 3: E-Selective Alkenation with Ylides Bearing Substituents Other Than Triphenylphosphine</td>
<td>52</td>
</tr>
<tr>
<td>47.1.1.5</td>
<td>Tri- and Tetrasubstituted Alkenes</td>
<td>54</td>
</tr>
<tr>
<td>47.1.1.5.1</td>
<td>Method 1: Non-Stereoccontrolled Wittig Alkenations</td>
<td>54</td>
</tr>
<tr>
<td>47.1.1.5.1.1</td>
<td>Variation 1: Synthesis with Symmetrical Phosphoranes or Ketones</td>
<td>54</td>
</tr>
<tr>
<td>47.1.1.5.1.2</td>
<td>Variation 2: Synthesis with (Cycloalkylidene)triphenylphosphoranes</td>
<td>56</td>
</tr>
<tr>
<td>47.1.1.5.1.3</td>
<td>Variation 3: Synthesis with Unsymmetrical Phosphorus Ylides and Unsymmetrical Ketones</td>
<td>58</td>
</tr>
<tr>
<td>47.1.1.5.2</td>
<td>Method 2: Stereoccontrolled Alkenations</td>
<td>61</td>
</tr>
<tr>
<td>47.1.1.5.2.1</td>
<td>Variation 1: The SCOOPY Procedure</td>
<td>61</td>
</tr>
<tr>
<td>47.1.1.5.2.2</td>
<td>Variation 2: With Phosphole-Derived Ylides</td>
<td>62</td>
</tr>
<tr>
<td>47.1.1.5.2.3</td>
<td>Variation 3: Horner–Emmons and Wittig–Horner Alkenations with Phosphonates and Phosphine Oxides</td>
<td>64</td>
</tr>
<tr>
<td>47.1.1.5.2.4</td>
<td>Variation 4: Indirect Routes Based upon Stork–Zhao and Still–Gennari Modifications</td>
<td>68</td>
</tr>
<tr>
<td>47.1.1.6</td>
<td>Cycloalkenes</td>
<td>69</td>
</tr>
<tr>
<td>47.1.1.6.1</td>
<td>Method 1: Synthesis by Reaction of ω-Carbonyl-Substituted Phosphonium Salts</td>
<td>69</td>
</tr>
<tr>
<td>47.1.1.6.2</td>
<td>Method 2: Synthesis by Reaction of Vinylphosphonium Salts and ω-Carbonylated Enolates</td>
<td>70</td>
</tr>
<tr>
<td>47.1.1.6.3</td>
<td>Method 3: Synthesis by Partial Oxidation of Bis(alkylidenetriphenylphosphoranes)</td>
<td>71</td>
</tr>
<tr>
<td>47.1.1.6.4</td>
<td>Method 4: Synthesis by Reaction of Bis(alkylidenetriphenylphosphoranes) with Bisaldehydes</td>
<td>73</td>
</tr>
</tbody>
</table>

Peterson Alkenation

D. J. Ager

| 47.1.1.2 | Peterson Alkenation | 85 |
| 47.1.1.2.1 | Alkenation by Addition of α-Silyl Carbanions to Carbonyl Compounds | 85 |
47.1.2.1 Method 1: Generation of α-Silyl Carbanions by Direct Deprotonation of Silanes ... 87
47.1.2.1.2 Method 2: Generation of α-Silyl Carbanions from (Halomethyl)silanes ... 88
47.1.2.1.2.1 Variation 1: Halogen–Lithium Exchange .. 88
47.1.2.1.2.2 Variation 2: Formation of a Grignard Reagent 89
47.1.2.1.2.3 Variation 3: Formation of an Organocerium Compound 90
47.1.2.1.2.4 Variation 4: Formation of an Organosamarium Compound 92
47.1.2.1.3 Method 3: Generation of α-Silyl Carbanions by Transmetalation 92
47.1.2.1.3.1 Variation 1: Displacement of a Phenylsulfanyl Group with a Lithium Naphthalenide Species ... 92
47.1.2.1.3.2 Variation 2: Displacement of an Organoselanyl Group 94
47.1.2.1.3.3 Variation 3: Displacement of a Trialkylstannyl Group 94
47.1.2.1.3.4 Variation 4: Displacement of a Trialkylsilyl Group 95
47.1.2.1.4 Method 4: Generation of α-Silyl Carbanions by Addition of Alkyllithium Species to Vinylsilanes 95
47.1.2.2 Alkenation by Reduction of α-Silyl Carbonyl Compounds 96
47.1.2.2.1 Method 1: Addition of Metal Hydride Reagents 96
47.1.2.2.2 Method 2: Addition of Organometallic Reagents 97
47.1.2.2.2.1 Variation 1: Addition to α-Silyl Aldehydes 98
47.1.2.2.2.2 Variation 2: Addition to α-Silyl Ketones 98
47.1.2.2.2.3 Variation 3: Addition to α-Silyl Esters ... 100
47.1.2.2.3 Alkenation Based on Epoxide Ring Opening 100
47.1.2.2.3.1 Method 1: Addition of Silylmetal Species to Epoxides 100
47.1.2.2.3.2 Method 2: Addition to Silylated Epoxides 101

47.1.3 Julia, Julia–Kocienski, and Related Sulfur-Based Alkenations
I. E. Markó and J. Pospíšil

47.1.3.1 Julia, Julia–Kocienski, and Related Sulfur-Based Alkenations 105
47.1.3.1.1 Julia Alkenation ... 105
47.1.3.1.1.1 Method 1: Reaction of α-Sulfonyle Anions with Aldehydes and Ketones ... 106
47.1.3.1.1.1.1 Variation 1: Route toward Terminal Alkenes 107
47.1.3.1.1.1.2 Variation 2: Route toward 1,2-Disubstituted Alkenes 109
47.1.3.1.1.1.3 Variation 3: Route toward Trisubstituted Alkenes 113
47.1.3.1.1.1.4 Variation 4: Route toward Tetrasubstituted Alkenes 114
47.1.3.1.1.1.5 Variation 5: Special Cases .. 115
47.1.3.1.1.2 Method 2: Reaction of α-Sulfonyle Anions with Esters 120
47.1.3.1.1.3 Method 3: Reaction of α-Sulfonyle Anions with α-Haloorganometal Electrophiles ... 121
47.1.3.1.1.4 Method 4: Reaction of α-Sulfoxide Anions with Aldehydes and Ketones ... 123
47.1.3.1.1.5 Method 5: Reaction of Bis-sulfones with Aldehydes and Ketones 124
47.1.3.1.1.6 Method 6: Reaction of Sulfoximides with Aldehydes and Ketones 125
47.1.1.3.1.2 Reductive Elimination ... 126
47.1.1.3.1.2.1 Method 1: Reaction of β-Hydroxy Sulfones 127
47.1.1.3.1.2.2 Method 2: Reaction of Sulfones Bearing a β-Leaving Group 132
47.1.1.3.1.2.2.1 Variation 1: By Cleavage of the C—S Bond Followed by the C—O Bond 132
47.1.1.3.1.2.2.2 Variation 2: By Cleavage of the C—O Bond Followed by the C—S Bond 135
47.1.1.3.1.2.3 Method 3: Reaction of β-Mesyloxy and β-Acetoxy Sulfoxides 138
47.1.1.3.1.2.4 Method 4: Reaction of β-Benzoyloxy Sulfoxides 140
47.1.1.3.1.2.5 Method 5: Reaction of β-Hydroxy Sulfoximides 142
47.1.1.3.2 Julia–Kocienski and S. Julia Alkenation 143
47.1.1.3.2.1 Method 1: Addition to Carbonyl Compounds 152
47.1.1.3.2.1.1 Variation 1: 1,2-Disubstituted Alkenes 152
47.1.1.3.2.1.2 Variation 2: Trisubstituted Alkenes 155
47.1.1.3.2.2 Method 2: Addition to Lactones 156
47.1.1.4 Alkenation with Metal Carbenes and Related Reactions 161
47.1.1.4.1 Method 1: Synthesis by Methylenation with (μ-Chloro)bis-(η⁵-cyclopentadienyl)(dimethylaluminum)-(μ-methylene)titanium (The Tebbe Reagent) 162
47.1.1.4.1.1 Variation 1: Methylenation of Aldehydes 166
47.1.1.4.1.2 Variation 2: Methylenation of Ketones 168
47.1.1.4.1.3 Variation 3: Methylenation of Esters 171
47.1.1.4.1.4 Variation 4: Methylenation of Lactones 174
47.1.1.4.1.5 Variation 5: Methylenation of Miscellaneous Carbonyl Compounds 175
47.1.1.4.2 Method 2: Synthesis by Methylenation with Titanacyclobutanes 176
47.1.1.4.3 Method 3: Synthesis by Methylenation with Bis(η⁵-cyclopentadienyl)-dimethyltitanium(IV) (The Petasis Reagent) .. 177
47.1.1.4.3.1 Variation 1: Methylenation of Aldehydes 181
47.1.1.4.3.2 Variation 2: Methylenation of Ketones 183
47.1.1.4.3.3 Variation 3: Methylenation of Esters 185
47.1.1.4.3.4 Variation 4: Methylenation of Lactones 188
47.1.1.4.3.5 Variation 5: Methylenation of 1,3-Dioxolan-4-ones and 1,3-Dioxan-4-ones ... 195
47.1.1.4.3.6 Variation 6: Methylenation of Carbonates 199
47.1.1.4.3.7 Variation 7: Methylenation of Amides and Lactams 200
47.1.1.4.3.8 Variation 8: Methylenation of Miscellaneous Carbonyl Compounds 202
47.1.1.4.4 Method 4: Synthesis by Methylenation with gem-Dimetallic Reagents ... 204
47.1.1.4.4.1 Variation 1: Methylenation with the Nysted Reagent 207
47.1.1.4.4.2 Variation 2: Methylenation with Dibromomethane–Zinc–Titanium(IV) Chloride Reagents .. 208
47.1.1.4.4.3 Variation 3: Methylenation with Diiodomethane–Zinc Reagents 212
47.1.1.4.4.4 Variation 4: Methylenation with Dihalomethane–Magnesium Reagents ... 214
Table of Contents

47.1.1.4.5 Method 5: Synthesis by Methylenation with Molybdenum and Tungsten Carbenes

- **Methods**
 - **1.4.5** Method 5: Synthesis by Methylenation with Molybdenum and Tungsten Carbenes
 - Variation 1: Using Dibenzylicis\(\eta^5\)-cyclopentadienyl)titanium(IV) Reagents
 - Variation 2: Using Bis(\(\eta^5\)-cyclopentadienyl)dicyclopropyltitanium(IV) Reagents
 - Variation 3: Using \(\eta^5\)-Cyclopentadienyl[(trimethylsilyl)methyl]-titanium(IV) Reagents

47.1.1.4.6 Method 6: Synthesis by Methylenation with Diazo Compounds under Metal Catalysis

- **Methods**
 - **1.4.6** Method 6: Synthesis by Methylenation with Diazo Compounds under Metal Catalysis

47.1.1.4.7 Method 7: Synthesis by Alkylidenation with Dialkylbis(\(\eta^5\)-cyclopentadienyl)titanium(IV) Reagents (Petasis Alkenation)

- **Methods**
 - **1.4.7** Method 7: Synthesis by Alkylidenation with Dialkylbis(\(\eta^5\)-cyclopentadienyl)titanium(IV) Reagents (Petasis Alkenation)
 - **1.4.7.1** Variation 1: Using Dibenzylbis(\(\eta^5\)-cyclopentadienyl)titanium(IV) Reagents
 - **1.4.7.2** Variation 2: Using Bis(\(\eta^5\)-cyclopentadienyl)dicyclopropyltitanium(IV) Reagents
 - **1.4.7.3** Variation 3: Using \(\eta^5\)-Cyclopentadienyl[(trimethylsilyl)methyl]-titanium(IV) Reagents

47.1.1.4.8 Method 8: Synthesis by Alkylidenation with Low-Valent Titanium Reagents (Takeda Alkenation)

- **Methods**
 - **1.4.8** Method 8: Synthesis by Alkylidenation with Low-Valent Titanium Reagents (Takeda Alkenation)
 - **1.4.8.1** Variation 1: Using Alkyl Halides
 - **1.4.8.2** Variation 2: Using \(\text{gem}\)-Dihalides
 - **1.4.8.3** Variation 3: Using Dithioacetals
 - **1.4.8.4** Variation 4: Intramolecular Carbonyl Alkylidenation

47.1.1.4.9 Method 9: Synthesis by Alkylidenation with \(\text{gem}\)-Dimetallic Reagents

- **Methods**
 - **1.4.9** Method 9: Synthesis by Alkylidenation with \(\text{gem}\)-Dimetallic Reagents
 - **1.4.10** Method 10: Synthesis by Halomethylenation
 - **1.4.10.1** Variation 1: Using Chromium Reagents (Takai Alkenation)
 - **1.4.10.2** Variation 2: Using Titanium Reagents

47.1.1.4.11 Method 11: Synthesis by Allenation with Titanacyclobutanes

- **Methods**
 - **1.5** McMurry Coupling and Related Reductive Dimerization Reactions
 - **1.5.1** Method 1: Self-Coupling Reactions
 - **1.5.1.1** Variation 1: Of Aldehydes
 - **1.5.1.2** Variation 2: Of Ketones
 - **1.5.2** Method 2: Mixed Coupling Reactions
 - **1.5.2.1** Variation 1: Of Aldehydes
 - **1.5.2.2** Variation 2: Of Ketones
 - **1.5.2.3** Variation 3: Of Aldehydes and Ketones
 - **1.5.2.4** Variation 4: Sequential Cyclization Reactions of Dicarbonyl Compounds
 - **1.5.3** Method 3: Intramolecular Coupling Reactions
 - **1.5.3.1** Variation 1: Cyclization of Aliphatic Dialdehydes, Diketones, and Oxoaldehydes
 - **1.5.3.2** Variation 2: Synthesis of \([2.n]\)Cyclophan-1-enes by Cyclization of Two Aromatic Carbonyl Moieties Tethered by an Aliphatic Chain
Table of Contents

47.1.5.3.3 Variation 3: Synthesis of [2..n]Cyclophan-1-enes by Cyclization of Bis(aromatic aldehydes and ketones) with Tethers Containing Aromatic Rings .. 298

47.1.5.3.4 Variation 4: Synthesis of Ethene-1,2-diyl-Bridged Calix[4]arenes by Intramolecular Cyclization of Formyl-Substituted Calixarenes ... 301

47.1.5.3.5 Variation 5: Synthesis of Cyclic Phenylenevinylene and Related Polyaromatics by Intramolecular Coupling of Conjugated Diformyl Compounds Linked with Phenylene and/or Vinylene Moieties ... 303

47.1.5.3.6 Variation 6: Synthesis of Tetrapyrrolic Macrocycles by Intramolecular Coupling of Formyl Groups at the Ends of Acyclic Tetrapyrroles ... 306

47.1.5.3.7 Variation 7: Synthesis of Ferrocenophanes by Intramolecular Coupling of Ferrocene-Derived Bis(aldehydes) ... 306

47.1.5.3.8 Variation 8: Synthesis of Condensed Polyaromatics by Intramolecular Coupling of 2,2'-Diformylbiaryls and Related Compounds ... 308

47.1.5.3.9 Variation 9: Synthesis of Heterocycles by Intramolecular Cyclization of Bis(aldehydes) and Bis(ketones) with a Heteroatom-Containing Tether ... 311

47.1.5.3.10 Variation 10: Synthesis of Annulenes by Intramolecular Coupling of Conjugated Polylene Dialdehydes and Ketones ... 314

47.1.5.3.11 Variation 11: Miscellaneous Reactions ... 317

47.1.5.4 Method 4: Coupling in Polymer Synthesis ... 318

47.1.6 Alkene Metathesis

M. Michalak, Ł. Gulański, and K. Grela

47.1.6 Alkene Metathesis ... 327

47.1.6.1 Method 1: Cross Metathesis of a Reactive Alkene .. 332

47.1.6.1.1 Variation 1: Reaction with a Fast Homodimerizing Metathesis Partner ... 333

47.1.6.1.2 Variation 2: Reaction with a Very Slow Homodimerizing Metathesis Partner or a Spectator ... 340

47.1.6.1.3 Variation 3: Reaction with a Very Slow Homodimerizing Metathesis Partner or a Spectator ... 354

47.1.6.2 Method 2: Ring-Closing Metathesis ... 364

47.1.6.2.1 Variation 1: Synthesis of Cycloalkenes with Disubstituted Double Bonds ... 364

47.1.6.2.2 Variation 2: Synthesis of Cycloalkenes with Trisubstituted Double Bonds ... 380

47.1.6.2.3 Variation 3: Synthesis of Cycloalkenes with Tetrasubstituted Double Bonds ... 386

47.1.6.3 Method 3: Ene–Yne Metathesis ... 391

47.1.6.3.1 Variation 1: Cross Ene–Yne Metathesis ... 392

47.1.6.3.2 Variation 2: Ring-Closing Ene–Yne Metathesis ... 402

47.1.6.4 Method 4: Acyclic Diene Metathesis Polymerization ... 415

47.1.6.5 Method 5: Ring-Opening Metathesis ... 419

47.1.6.5.1 Variation 1: Ethenolysis ... 419
Synthesis by Metal-Mediated Coupling Reactions

47.1.2 Cross-Coupling and Heck Reactions
D. A. Alonso and C. Nájera

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Method</th>
<th>Reaction Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>47.1.2.1.1</td>
<td>Method 1</td>
<td>Synthesis by the Mizoroki–Heck Reaction</td>
</tr>
<tr>
<td>47.1.2.1.2</td>
<td>Method 2</td>
<td>Synthesis by Suzuki–Miyaura Coupling</td>
</tr>
<tr>
<td>47.1.2.1.2.1</td>
<td>Variation 1</td>
<td>Reaction of B-Alkenyl Compounds with Alkyl Electrophiles</td>
</tr>
<tr>
<td>47.1.2.1.2.2</td>
<td>Variation 2</td>
<td>Reaction of B-Alkyl Compounds with Alkenyl Electrophiles</td>
</tr>
<tr>
<td>47.1.2.1.3</td>
<td>Method 3</td>
<td>Synthesis by Kosugi–Migita–Stille Coupling</td>
</tr>
<tr>
<td>47.1.2.1.3.1</td>
<td>Variation 1</td>
<td>Reaction of Alkenylstannanes with Alkyl Electrophiles</td>
</tr>
<tr>
<td>47.1.2.1.3.2</td>
<td>Variation 2</td>
<td>Reaction of Alkylstannanes with Alkenyl Electrophiles</td>
</tr>
<tr>
<td>47.1.2.1.4</td>
<td>Method 4</td>
<td>Synthesis by Corriu–Kumada–Tamao Coupling</td>
</tr>
<tr>
<td>47.1.2.1.4.1</td>
<td>Variation 1</td>
<td>Reaction of Alkyl Grignard Compounds with Alkyl Electrophiles</td>
</tr>
<tr>
<td>47.1.2.1.4.2</td>
<td>Variation 2</td>
<td>Reaction of Grignard Reagents with Alkyl Electrophiles</td>
</tr>
<tr>
<td>47.1.2.1.5</td>
<td>Method 5</td>
<td>Synthesis by Negishi Coupling</td>
</tr>
<tr>
<td>47.1.2.1.5.1</td>
<td>Variation 1</td>
<td>Reaction of Alkylzinc Compounds with Alkenyl Electrophiles</td>
</tr>
<tr>
<td>47.1.2.1.5.2</td>
<td>Variation 2</td>
<td>Reaction of Alkenylzinc Reagents with Alkyl Electrophiles</td>
</tr>
<tr>
<td>47.1.2.1.5.3</td>
<td>Variation 3</td>
<td>Reaction of Alkenylzirconium Compounds with Alkyl Electrophiles</td>
</tr>
<tr>
<td>47.1.2.1.5.4</td>
<td>Variation 4</td>
<td>Reaction of Alkenylaluminum Compounds with Alkyl Electrophiles</td>
</tr>
<tr>
<td>47.1.2.1.6</td>
<td>Method 6</td>
<td>Synthesis by Organoindium Cross-Coupling Reactions</td>
</tr>
<tr>
<td>47.1.2.2</td>
<td>Nickel-Catalyzed C—C Coupling Reactions</td>
<td></td>
</tr>
<tr>
<td>47.1.2.2.1</td>
<td>Method 1</td>
<td>Synthesis by Suzuki–Miyaura Coupling</td>
</tr>
<tr>
<td>47.1.2.2.2</td>
<td>Method 2</td>
<td>Synthesis by Negishi Coupling</td>
</tr>
<tr>
<td>47.1.2.2.3</td>
<td>Method 3</td>
<td>Synthesis by Corriu–Kumada–Tamao Coupling</td>
</tr>
<tr>
<td>47.1.2.2.3.1</td>
<td>Variation 1</td>
<td>Reaction of Alkyl Grignard Reagents with Alkenyl Electrophiles</td>
</tr>
<tr>
<td>47.1.2.2.3.2</td>
<td>Variation 2</td>
<td>Reaction of Grignard Reagents with Dithioacetals</td>
</tr>
<tr>
<td>47.1.2.3</td>
<td>Iron-Catalyzed C—C Coupling Reactions</td>
<td></td>
</tr>
<tr>
<td>47.1.2.3.1</td>
<td>Method 1</td>
<td>Synthesis by Desulfinate Mizoroki–Heck-Type Reaction</td>
</tr>
<tr>
<td>47.1.2.3.1.1</td>
<td>Variation 1</td>
<td>Reaction of Alkenyl Grignard Reagents with Alkanesulfonyl Chlorides</td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>47.1.2.13.2</td>
<td>Method 2: Synthesis by Corriu–Kumada–Tamao Coupling</td>
<td>467</td>
</tr>
<tr>
<td>47.1.2.13.2.1</td>
<td>Variation 1: Reaction of Alkyl Grignard Reagents with Alkenyl Electrophiles</td>
<td>467</td>
</tr>
<tr>
<td>47.1.2.13.2.2</td>
<td>Variation 2: Reaction of Alkenyl Grignard Compounds with Alkyl Electrophiles</td>
<td>468</td>
</tr>
<tr>
<td>47.1.2.13.2.3</td>
<td>Variation 3: Reaction of Grignard Reagents with Allyl Electrophiles</td>
<td>469</td>
</tr>
<tr>
<td>47.1.2.14</td>
<td>Cobalt-Catalyzed C–C Coupling Reactions</td>
<td>470</td>
</tr>
<tr>
<td>47.1.2.14.1</td>
<td>Method 1: Synthesis by Corriu–Kumada–Tamao Coupling</td>
<td>470</td>
</tr>
<tr>
<td>47.1.2.14.1.1</td>
<td>Variation 1: Reaction of Alkyl Grignard Reagents with Alkenyl Electrophiles</td>
<td>470</td>
</tr>
<tr>
<td>47.1.2.14.1.2</td>
<td>Variation 2: Reaction of Allyl Grignard Reagents with Alkyl Electrophiles</td>
<td>471</td>
</tr>
<tr>
<td>47.1.2.14.2</td>
<td>Method 2: Synthesis by Negishi Coupling</td>
<td>472</td>
</tr>
<tr>
<td>47.1.2.14.2.1</td>
<td>Variation 1: Coupling of Alkylzinc Compounds with Alkenyl Electrophiles</td>
<td>472</td>
</tr>
<tr>
<td>47.1.2.14.2.2</td>
<td>Variation 2: Coupling of Alkylzinc Compounds with Allyl Electrophiles</td>
<td>473</td>
</tr>
<tr>
<td>47.1.2.14.2.3</td>
<td>Variation 3: Reaction of Arylzinc Compounds with Allyl Electrophiles</td>
<td>473</td>
</tr>
</tbody>
</table>

47.1.2.2

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>S(_N)′ Allylations</td>
<td>481</td>
</tr>
<tr>
<td>M. Cherkinsky and S. Levinger</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>47.1.2.2.1</td>
<td>Method 1: Synthesis of Alkenes Using Grignard Reagents</td>
<td>481</td>
</tr>
<tr>
<td>47.1.2.2.1.1</td>
<td>Variation 1: Catalyzed Reactions with Achiral Catalysts</td>
<td>482</td>
</tr>
<tr>
<td>47.1.2.2.1.2</td>
<td>Variation 2: Catalyzed Reactions with Chiral Catalysts</td>
<td>490</td>
</tr>
<tr>
<td>47.1.2.2.2</td>
<td>Method 2: Synthesis of Alkenes Using Organocopper Reagents</td>
<td>494</td>
</tr>
<tr>
<td>47.1.2.2.3</td>
<td>Method 3: Synthesis of Alkenes Using Lithium Organocuprate Reagents</td>
<td>496</td>
</tr>
<tr>
<td>47.1.2.2.3.1</td>
<td>Variation 1: Using Lower-Order Lithium Organocuprate Reagents</td>
<td>496</td>
</tr>
<tr>
<td>47.1.2.2.3.2</td>
<td>Variation 2: Using Lithium Heteroorganocuprate Reagents</td>
<td>499</td>
</tr>
<tr>
<td>47.1.2.2.3.3</td>
<td>Variation 3: Using Higher-Order Lithium Organocuprate Reagents</td>
<td>501</td>
</tr>
<tr>
<td>47.1.2.2.4</td>
<td>Method 4: Synthesis of Alkenes Using Organozinc Reagents</td>
<td>504</td>
</tr>
<tr>
<td>47.1.2.2.4.1</td>
<td>Variation 1: Using Zinc Organocuprate Reagents</td>
<td>504</td>
</tr>
<tr>
<td>47.1.2.2.4.2</td>
<td>Variation 2: Using Diorganozinc Reagents</td>
<td>509</td>
</tr>
<tr>
<td>47.1.2.2.5</td>
<td>Method 5: Synthesis of Alkenes Using Organoaluminum Reagents</td>
<td>512</td>
</tr>
</tbody>
</table>

47.1.2.3

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>G. Sartori and R. Maggi</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>47.1.2.3</td>
<td>π-Allyl Substitution</td>
<td>517</td>
</tr>
<tr>
<td>47.1.2.3.1</td>
<td>Palladium-Catalyzed Reactions</td>
<td>517</td>
</tr>
<tr>
<td>47.1.2.3.1.1</td>
<td>Method 1: Synthesis of Alkenes Using Carbon Nucleophiles</td>
<td>517</td>
</tr>
<tr>
<td>47.1.2.3.1.1.1</td>
<td>Variation 1: Using Nonstabilized or Stabilized Enolates</td>
<td>517</td>
</tr>
<tr>
<td>47.1.2.3.1.1.2</td>
<td>Variation 2: Using Miscellaneous Nucleophiles</td>
<td>520</td>
</tr>
</tbody>
</table>
47.1.2.3.1.2 Method 2: Synthesis of Alkenes Using Nitrogen, Oxygen, or Sulfur Nucleophiles 528

47.1.2.3.2 Other Metal-Catalyzed Reactions 532

47.1.2.3.2.1 Method 1: Synthesis of Alkenes Using Iron Catalysts 532

47.1.2.3.2.2 Method 2: Synthesis of Alkenes Using Ruthenium Catalysts 534

47.1.2.3.2.3 Method 3: Synthesis of Alkenes Using Miscellaneous Metal Catalysts 539

47.1.2.4 Oligomerization of Alkenes to Higher Alkenes
M. Yus and F. Foubelo

47.1.2.4 Oligomerization of Alkenes to Higher Alkenes 549

47.1.2.4.1 Method 1: Oligomerization of Ethene 549

47.1.2.4.1.1 Variation 1: Using Metallocenes and Related Complexes 549

47.1.2.4.1.2 Variation 2: Using Tridentate Bis(imino)pyridine Complexes of Transition Metals 551

47.1.2.4.1.3 Variation 3: Using SHOP-Type and Related Complexes 553

47.1.2.4.2 Method 2: Oligomerization of Propene 554

47.1.2.4.3 Method 3: Oligomerization of Higher Alk-1-enes 556

Keyword Index i

Author Index xxxv

Abbreviations lxvii
Table of Contents

Volume 47b: Alkenes

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Volume Editor's Preface</td>
<td></td>
<td></td>
<td>VII</td>
</tr>
<tr>
<td>Table of Contents</td>
<td></td>
<td></td>
<td>IX</td>
</tr>
</tbody>
</table>

47.1 Product Class 1: Alkenes

- **47.1.3 Synthesis by Pericyclic Reactions**
 - **47.1.3.1 Diels–Alder Reactions**
 - F. Fringuelli, O. Piermatti, F. Pizzo, and L. Vaccaro | 561
 - **47.1.3.2 Ene Reactions**
 - P. Chiu and S. K. Lam | 737
 - **47.1.3.3 Synthesis by Electrocyclic Reactions**
 - J.-M. Lu, L.-X. Shao, and M. Shi | 755
- **47.1.4 Synthesis by Elimination Reactions**
 - R. R. Kostikov, A. F. Khlebnikov, and V. V. Sokolov | 771
- **47.1.5 Synthesis from Alkynes by Addition Reactions**
 - **47.1.5.1 [2+2]-Cycloaddition Reactions**
 - V. V. Razin | 883
 - **47.1.5.2 Hydrogenation Reactions**
 - K.-M. Roy | 897
 - **47.1.5.3 Hydrometalation and Subsequent Coupling Reactions**
 - E. Negishi and G. Wang | 909
 - **47.1.5.4 Carbometalation and Subsequent Coupling Reactions**
 - E. Negishi and G. Wang | 971
- **47.1.6 Synthesis from Arenes and Polyenes by Addition Reactions**
 - R. A. Aitken and K. M. Aitken | 1017
- **47.1.7 Synthesis by Isomerization**
 - M. Yus and F. Foubelo | 1067
- **47.1.8 Synthesis from Other Alkenes without Isomerization**
 - M. Yus and F. Foubelo | 1095
47.2 Product Class 2: Cyclopropenes
M. S. Baird .. 1111

47.3 Product Class 3: Nonconjugated Di-, Tri-, and Oligoenes
K.-M. Roy .. 1135

Keyword Index .. 1157
Author Index ... 1195
Abbreviations .. 1225
Table of Contents

47.1 Product Class 1: Alkenes

47.1.3 Synthesis by Pericyclic Reactions

47.1.3.1 Diels–Alder Reactions
F. Fringuelli, O. Piermatti, F. Pizzo, and L. Vaccaro

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>47.1.3.1</td>
<td>Diels–Alder Reactions</td>
<td>561</td>
</tr>
<tr>
<td>47.1.3.1.1</td>
<td>Thermal Diels–Alder Reactions</td>
<td>579</td>
</tr>
<tr>
<td>47.1.3.1.1.1</td>
<td>Method 1: Reactions of Carbonyl Dienophiles</td>
<td>579</td>
</tr>
<tr>
<td>47.1.3.1.1.1.1</td>
<td>Variation 1: Synthesis of Cyclohexencarbaldehydes</td>
<td>579</td>
</tr>
<tr>
<td>47.1.3.1.1.1.2</td>
<td>Variation 2: Synthesis of Acetylcyclohexenes</td>
<td>585</td>
</tr>
<tr>
<td>47.1.3.1.1.1.3</td>
<td>Variation 3: Synthesis of Cyclohexencarboxylic Acids and Alkyl</td>
<td>591</td>
</tr>
<tr>
<td>47.1.3.1.1.1.4</td>
<td>Variation 4: Synthesis of Dialkyl Cyclohexenedicarboxylates</td>
<td>597</td>
</tr>
<tr>
<td>47.1.3.1.1.1.5</td>
<td>Variation 5: Synthesis of Cyclohexencarboxylic Acids, Cyclohexencarboxamides, and</td>
<td>601</td>
</tr>
<tr>
<td></td>
<td>Cyclohexenyl Silyl Ketones</td>
<td></td>
</tr>
<tr>
<td>47.1.3.1.1.6</td>
<td>Variation 6: Synthesis of Cyclohexenes Fused to Carbo- and Heterocycles</td>
<td>604</td>
</tr>
<tr>
<td>47.1.3.1.1.7</td>
<td>Variation 7: Synthesis of Bridged Cyclohexenes</td>
<td>619</td>
</tr>
<tr>
<td>47.1.3.1.1.8</td>
<td>Method 2: Reactions of Other Vinyl Dienophiles</td>
<td>631</td>
</tr>
<tr>
<td>47.1.3.1.1.9</td>
<td>Variation 1: Synthesis of Nitrocyclohexenes</td>
<td>631</td>
</tr>
<tr>
<td>47.1.3.1.1.10</td>
<td>Variation 2: Synthesis of Cyclohexenylboranes</td>
<td>634</td>
</tr>
<tr>
<td>47.1.3.1.1.11</td>
<td>Variation 3: Synthesis of Cyclohexencarbonitriles</td>
<td>638</td>
</tr>
<tr>
<td>47.1.3.1.1.12</td>
<td>Variation 4: Synthesis of Cyclohex-3-ethyl Phenyl Sulphones</td>
<td>641</td>
</tr>
<tr>
<td>47.1.3.1.1.13</td>
<td>Variation 5: Synthesis of (Hydroxyalkyl)cyclohexenes</td>
<td>644</td>
</tr>
<tr>
<td>47.1.3.1.1.14</td>
<td>Variation 6: Synthesis of Cyclohexenes from Unusual Dienophiles</td>
<td>648</td>
</tr>
<tr>
<td>47.1.3.1.1.15</td>
<td>Method 3: Synthesis of Cyclohexenyl-Substituted Fischer Carbene Complexes</td>
<td>651</td>
</tr>
<tr>
<td>47.1.3.1.1.16</td>
<td>Method 4: Synthetic Applications of Diels–Alder Reactions</td>
<td>655</td>
</tr>
<tr>
<td>47.1.3.1.1.17</td>
<td>Method 5: Catalyzed Diels–Alder Reactions in Conventional Organic Media</td>
<td>660</td>
</tr>
<tr>
<td>47.1.3.1.1.18</td>
<td>Method 1: Reactions Using Classic Lewis Acid Catalysts</td>
<td>662</td>
</tr>
<tr>
<td>47.1.3.1.1.19</td>
<td>Method 2: Reactions Using Chiral Lewis Acid Catalysts</td>
<td>671</td>
</tr>
<tr>
<td>47.1.3.1.1.20</td>
<td>Method 3: Reactions Using Brønsted Acid Catalysts</td>
<td>675</td>
</tr>
<tr>
<td>47.1.3.1.1.21</td>
<td>Method 4: Reactions Using Chiral Organocatalysts</td>
<td>679</td>
</tr>
<tr>
<td>47.1.3.1.1.22</td>
<td>Method 5: Lewis Acid Catalyzed Diels–Alder Reactions of Chiral</td>
<td>682</td>
</tr>
<tr>
<td></td>
<td>Dienophiles or Dienes</td>
<td></td>
</tr>
<tr>
<td>47.1.3.1.1.23</td>
<td>Variation 1: With Chiral Dienophiles</td>
<td>682</td>
</tr>
<tr>
<td>47.1.3.1.1.24</td>
<td>Variation 2: With Chiral Dienes</td>
<td>687</td>
</tr>
<tr>
<td>47.1.3.1.2.6</td>
<td>Method 6: Reactions Using Heterogeneous Catalysts</td>
<td>689</td>
</tr>
<tr>
<td>47.1.3.1.3</td>
<td>Diels–Alder Reactions in Unconventional Media</td>
<td>694</td>
</tr>
<tr>
<td>47.1.3.1.1</td>
<td>Method 1: Reactions in Water</td>
<td>694</td>
</tr>
<tr>
<td>47.1.3.1.1</td>
<td>Variation 1: Without a Catalyst</td>
<td>694</td>
</tr>
<tr>
<td>47.1.3.1.2</td>
<td>Variation 2: With a Lewis Acid Catalyst</td>
<td>697</td>
</tr>
<tr>
<td>47.1.3.1.3</td>
<td>Variation 3: With Organocatalysts</td>
<td>700</td>
</tr>
<tr>
<td>47.1.3.1.4</td>
<td>Variation 4: In Supercritical Water</td>
<td>701</td>
</tr>
<tr>
<td>47.1.3.1.5</td>
<td>Variation 5: In Pseudo-Biological Systems or Promoted by Biocatalysts</td>
<td>702</td>
</tr>
<tr>
<td>47.1.3.1.3.2</td>
<td>Method 2: Reactions in Nonaqueous Solvents and Their Salt Solutions</td>
<td>704</td>
</tr>
<tr>
<td>47.1.3.1.3.3</td>
<td>Method 3: Reactions in Ionic Liquids</td>
<td>707</td>
</tr>
<tr>
<td>47.1.3.1.4</td>
<td>Diels–Alder Reactions Induced by Other Physical Means</td>
<td>712</td>
</tr>
<tr>
<td>47.1.3.1.4.1</td>
<td>Method 1: Diels–Alder Reactions Promoted by Microwave Irradiation</td>
<td>712</td>
</tr>
<tr>
<td>47.1.3.1.4.2</td>
<td>Method 2: Diels–Alder Reactions Promoted by High Pressure</td>
<td>715</td>
</tr>
<tr>
<td>47.1.3.1.4.3</td>
<td>Method 3: Ultrasound-Assisted Diels–Alder Reactions</td>
<td>719</td>
</tr>
<tr>
<td>47.1.3.1.4.4</td>
<td>Method 4: Photoinduced Diels–Alder Reactions</td>
<td>722</td>
</tr>
</tbody>
</table>

Ene Reactions

Ene Reactions
P. Chiu and S. K. Lam

47.1.3.2	Ene Reactions	737
47.1.3.2.1	Method 1: Thermal Ene Reactions	739
47.1.3.2.1.1	Variation 1: Intermolecular Ene Reactions	739
47.1.3.2.1.2	Variation 2: Reactions of 1,n-Dienes	740
47.1.3.2.2	Method 2: Metallo-Ene Reactions of Allylmetal Species	743
47.1.3.2.2.1	Variation 1: Reactions Using Alkenes as Enophiles, Followed by Protonolysis	743
47.1.3.2.2.2	Variation 2: Reactions Using Vinylmetals as Enophiles, Followed by Protonolysis	746
47.1.3.2.3	Method 3: Metal-Catalyzed Metallo-Ene Reactions	747
47.1.3.2.3.1	Variation 1: Palladium-Catalyzed Metallo-Ene Reactions Terminated by Transmetalation and Protonation	747
47.1.3.2.3.2	Variation 2: Palladium-Catalyzed Metallo-Ene Reactions Terminated by Hydride Capture	748
47.1.3.2.4	Method 4: Metal-Catalyzed Rearrangements	749
47.1.3.2.5	Method 5: Retro-Ene Reactions of All-Carbon Ene Adducts	750
47.1.3.2.5.1	Variation 1: Reactions of Homoallylic Alcohols	750
47.1.3.2.5.2	Variation 2: Reactions of Allyldiazenes	750
47.1.3.2.5.3	Variation 3: Reactions of Alk-2-enesulfonic Acid Derivatives	751
47.3 Synthesis by Electro cyclic Reactions

J.-M. Lu, L.-X. Shao, and M. Shi

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>47.1.3.3</td>
<td>Synthesis by Electro cyclic Reactions</td>
<td>755</td>
</tr>
<tr>
<td>47.1.3.3.1</td>
<td>Method 1: Rearrangement of 4π-Electron Systems</td>
<td>755</td>
</tr>
<tr>
<td>47.1.3.3.1.1</td>
<td>Variation 1: Rearrangement of Acyclic 1,3-Dienes</td>
<td>755</td>
</tr>
<tr>
<td>47.1.3.3.1.2</td>
<td>Variation 2: Rearrangement of Cyclic 1,3-Dienes</td>
<td>756</td>
</tr>
<tr>
<td>47.1.3.3.1.3</td>
<td>Variation 3: Rearrangement of 1,2-Dimethylene-Substituted Cycloalkanes</td>
<td>758</td>
</tr>
<tr>
<td>47.1.3.3.1.4</td>
<td>Variation 4: Rearrangement of 1,2-Dimethylene-Substituted Heterocycles</td>
<td>759</td>
</tr>
<tr>
<td>47.1.3.3.2</td>
<td>Method 2: Rearrangement of 2π-Electron Systems</td>
<td>760</td>
</tr>
<tr>
<td>47.1.3.3.2.1</td>
<td>Variation 1: Solvolysis of Chlorocyclopropanes</td>
<td>760</td>
</tr>
<tr>
<td>47.1.3.3.2.2</td>
<td>Variation 2: Solvolysis of Cyclopropyl 4-Toluenesulfonates</td>
<td>762</td>
</tr>
<tr>
<td>47.1.3.3.3</td>
<td>Method 3: Cope Rearrangement</td>
<td>763</td>
</tr>
<tr>
<td>47.1.3.3.3.1</td>
<td>Variation 1: Rearrangement of Acyclic 1,5-Dienes</td>
<td>763</td>
</tr>
<tr>
<td>47.1.3.3.3.2</td>
<td>Variation 2: Rearrangement of Cyclic 1,5-Dienes</td>
<td>765</td>
</tr>
<tr>
<td>47.1.3.3.3.3</td>
<td>Variation 3: Rearrangement of 1,2-Divinylcycloalkanes</td>
<td>766</td>
</tr>
</tbody>
</table>

47.4 Synthesis by Elimination Reactions

R. R. Kostikov, A. F. Khlebnikov, and V. V. Sokolov

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>47.1.4</td>
<td>Synthesis by Elimination Reactions</td>
<td>771</td>
</tr>
<tr>
<td>47.1.4.1</td>
<td>Method 1: Synthesis by Decarbonylative Elimination</td>
<td>771</td>
</tr>
<tr>
<td>47.1.4.1.1</td>
<td>Variation 1: Oxidative Decarbonylation of Carboxylic Acids</td>
<td>771</td>
</tr>
<tr>
<td>47.1.4.1.2</td>
<td>Variation 2: Oxidative Decarbonylation of Acid Anhydrides</td>
<td>772</td>
</tr>
<tr>
<td>47.1.4.1.3</td>
<td>Variation 3: Decarbonylation of Acid Halides and Aldehydes</td>
<td>773</td>
</tr>
<tr>
<td>47.1.4.1.4</td>
<td>Variation 4: Decarbonylative Reactions of β,γ-Unsaturated Acids</td>
<td>773</td>
</tr>
<tr>
<td>47.1.4.1.5</td>
<td>Variation 5: Decarbonylative Elimination from β-Halo- and β-Hydroxycarboxylic Acids</td>
<td>774</td>
</tr>
<tr>
<td>47.1.4.1.6</td>
<td>Variation 6: Fragmentation of β-Lactones</td>
<td>776</td>
</tr>
<tr>
<td>47.1.4.1.7</td>
<td>Variation 7: Fragmentation of 1,3-Diketones</td>
<td>777</td>
</tr>
<tr>
<td>47.1.4.1.8</td>
<td>Variation 8: Grob Fragmentation</td>
<td>778</td>
</tr>
<tr>
<td>47.1.4.2</td>
<td>Method 2: Oxidative Decarbonylation of Dicarboxylic Acid Derivatives</td>
<td>778</td>
</tr>
<tr>
<td>47.1.4.2.1</td>
<td>Variation 1: Oxidative Decarbonylation of 1,2-Dicarboxylic Acid Derivatives</td>
<td>778</td>
</tr>
<tr>
<td>47.1.4.2.2</td>
<td>Variation 2: Oxidative Decarbonylation of 1,3-Dicarboxylic Acids</td>
<td>780</td>
</tr>
<tr>
<td>47.1.4.3</td>
<td>Method 3: Base-Catalyzed and Solvolytic HX Elimination</td>
<td>780</td>
</tr>
<tr>
<td>47.1.4.3.1</td>
<td>Variation 1: Elimination from Alkyl Halides</td>
<td>780</td>
</tr>
<tr>
<td>47.1.4.3.2</td>
<td>Variation 2: Elimination from Ethers and Sulfides</td>
<td>788</td>
</tr>
<tr>
<td>47.1.4.3.3</td>
<td>Variation 3: Elimination from Metal Alkoxides</td>
<td>790</td>
</tr>
<tr>
<td>47.1.4.3.4</td>
<td>Variation 4: Elimination from Ammonium Salts</td>
<td>792</td>
</tr>
<tr>
<td>47.1.4.3.5</td>
<td>Variation 5: Elimination from Sulfonium Salts</td>
<td>794</td>
</tr>
<tr>
<td>47.1.4.3.6</td>
<td>Variation 6: Solvolytic and Base-Catalyzed Elimination from 4-Toluenesulfonates and Other Sulfonates</td>
<td>795</td>
</tr>
<tr>
<td>47.1.4.4</td>
<td>Method 4: Acid-Catalyzed HX Elimination</td>
<td>799</td>
</tr>
<tr>
<td>47.1.4.4.1</td>
<td>Variation 1: Acid-Catalyzed Dehydration of Alcohols</td>
<td>799</td>
</tr>
</tbody>
</table>
47.1.4.2 Variation 2: Dehydration of Alcohols Using Lewis Acids and Heterogeneous Catalysts .. 803
47.1.4.3 Variation 3: Dehydration of Alcohols with Other Systems ... 807
47.1.4.5 Method 5: Pyrolytic HX Elimination ... 812
47.1.4.5.1 Variation 1: Pyrolysis of Alkyl Halides ... 812
47.1.4.5.2 Variation 2: Pyrolysis of Esters ... 813
47.1.4.5.3 Variation 3: Pyrolysis of Xanthates, Thiocarbamates, Thiophosphates, Arenesulfonates, Sulamates, and Sulfuranes ... 816
47.1.4.5.4 Variation 4: Cope Elimination from N-Oxides .. 821
47.1.4.5.5 Variation 5: Thermolytic Elimination from Ammonium Hydroxides ... 824
47.1.4.5.6 Variation 6: Thermolytic Elimination from Phosphonium Salts .. 825
47.1.4.5.7 Variation 7: Thermolytic Elimination from Alkyl Selenoxides ... 826
47.1.4.5.8 Variation 8: Thermolytic Dehydration of Alcohols in Dimethyl Sulfoxide or Hexamethylphosphoric Triamide ... 827
47.1.4.6 Method 6: Reductive Elimination from Halohydrins and Their Esters or Ethers 829
47.1.4.6.1 Variation 1: Dehalogenation of Vicinal Dihalides .. 829
47.1.4.6.2 Variation 2: Elimination from Halohydrins .. 832
47.1.4.6.3 Variation 3: Elimination from Halohydrin Esters .. 833
47.1.4.6.4 Variation 4: Elimination from Halohydrin Ethers ... 834
47.1.4.6.5 Variation 5: Elimination from vic-Diols .. 836
47.1.4.6.6 Variation 6: Elimination from vic-Diol Disulfonates ... 838
47.1.4.7 Method 7: Reductive Elimination of X₂ from Fragments of the Type CX₂—CH₂ 840
47.1.4.7.1 Variation 1: Dehalogenation of Geminal Dihalides ... 840
47.1.4.7.2 Variation 2: Elimination of Nitrogen from Diazo Compounds .. 841
47.1.4.8 Method 8: Reductive Extrusions from Three- to Five-Membered Heterocycles 841
47.1.4.8.1 Variation 1: From Oxiranes .. 841
47.1.4.8.2 Variation 2: From Thiiranes and Thiirane 1,1-Dioxides ... 844
47.1.4.8.3 Variation 3: Ramberg–Bäcklund Reaction ... 847
47.1.4.8.4 Variation 4: From Aziridines .. 848
47.1.4.8.5 Variation 5: From 1,3-Dioxolane- and 1,3-Dithiolane-2-thiones ... 849
47.1.4.8.6 Variation 6: From 2-Alkoxy- and 2-(Dimethylamino)-1,3-dioxolanes 851
47.1.4.9 Method 9: Reactions of Ketone (Arylsulfonyl)hydrazones ... 853
47.1.4.9.1 Variation 1: The Bamford–Stevens Reaction .. 854
47.1.4.9.2 Variation 2: The Shapiro Reaction .. 860
47.1.4.9.3 Variation 3: Sequential Transformations Based on the Shapiro Reaction 866
47.1.4.10 Method 10: Dehydrogenation of CH₂—CH₂ Fragments ... 871
47.1.5 Synthesis from Alkynes by Addition Reactions

47.1.5.1 [2+2]-Cycloaddition Reactions
V. V. Razin

47.1.5.1 [2+2]-Cycloaddition Reactions .. 883
47.1.5.1.1 Method 1: Photochemical and Microwave-Assisted Reactions 883
47.1.5.1.1 Variation 1: From Diphenylacetylene 883
47.1.5.1.2 Variation 2: From Diynes, Triynes, and Vinylacetylene 884
47.1.5.1.3 Variation 3: Intramolecular Reactions 886
47.1.5.1.2 Method 2: Thermocatalytic Reactions 887
47.1.5.1.2.1 Variation 1: Lewis Acid Catalyzed [2+2] Cycloadditions 887
47.1.5.1.2 Variation 2: Reactions Catalyzed by Nickel, Ruthenium, and Cobalt Complexes .. 888
47.1.5.1.2.3 Variation 3: Zirconocene-Catalyzed Cyclobutene Formation 892

47.1.5.2 Hydrogenation Reactions
K.-M. Roy

47.1.5.2 Hydrogenation Reactions .. 897
47.1.5.2.1 Method 1: Catalytic Hydrogenation 897
47.1.5.2.2 Method 2: Chemical Reduction ... 899
47.1.5.2.2.1 Variation 1: Reduction with Metals 899
47.1.5.2.2.2 Variation 2: Reduction by Hydrometalation–Protodemetalation 902

47.1.5.3 Hydrometalation and Subsequent Coupling Reactions
E. Negishi and G. Wang

47.1.5.3 Hydrometalation and Subsequent Coupling Reactions 909
47.1.5.3.1 Method 1: syn-Hydrometalation Reactions of Alkynes Producing E-β-Mono-, syn-α,β-Di-, and anti-α,β-Disubstituted Alkenylmetals 918
47.1.5.3.1.1 Variation 1: syn-Hydrometalation of Alkynes Involving Group 1, 2, 11, and 12 Metals .. 918
47.1.5.3.1.2 Variation 2: Hydroboration of Alkynes 919
47.1.5.3.1.3 Variation 3: Substitution of Boron in the Hydroboration Products with Hydrogen and Heteroatoms 921
47.1.5.3.1.4 Variation 4: C–C Bond-Forming Reactions That Are Unique to Organoboranes .. 923
47.1.5.3.1.5 Variation 5: Hydroalumination and Hydrozirconation of Alkynes 925
47.1.5.3.1.6 Variation 6: Substitution of the Metal in Alkenylaluminum and Alkenylzirconium Compounds with Hydrogen or Deuterium, Halogens, Other Heteroatoms, Metals, and Carbon 929
47.1.5.3.2 Method 2: anti-Hydrometalation Reactions of Alkynes Producing Z-β-Mono- and anti-α,β-Disubstituted Alkenylmetals 932
47.1.5.3.2.1 Variation 1: anti-Hydroalumination of Alkynes with Hydroaluminates 932
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>47.1.5.3.2.2</td>
<td>Variation 2: Other anti-Hydrometalation Reactions of Alkynes</td>
<td>933</td>
</tr>
<tr>
<td>47.1.5.3.2.3</td>
<td>Variation 3: Useful Alternatives to anti-Hydrometalation of Alkynes</td>
<td>933</td>
</tr>
<tr>
<td>47.1.5.3.3</td>
<td>Method 3: Palladium-Catalyzed Cross-Coupling Reactions of Alkenyllmetals or Alkenyl Electrophiles Prepared by Alkyne Hydrometalation</td>
<td>935</td>
</tr>
<tr>
<td></td>
<td>Variation 1: 1,2-Disubstituted E-Alkenes via β-Monosubstituted E-Alkenyl Derivatives</td>
<td>937</td>
</tr>
<tr>
<td></td>
<td>Variation 2: 1,2-Disubstituted E-Alkenes via β-Monosubstituted E-Alkenyl Derivatives Preparable by Methods Other Than Hydrometalation</td>
<td>950</td>
</tr>
<tr>
<td></td>
<td>Variation 3: 1,2-Disubstituted Z-Alkenes via β-Monosubstituted Z-Alkenyl Derivatives Preparable by Alkyne Hydrometalation, Ethyne Carbocupration, and Other Methods</td>
<td>953</td>
</tr>
<tr>
<td></td>
<td>Variation 4: Trisubstituted Alkenes via syn-α,β-Disubstituted Alkenyl Derivatives Preparable by Alkyne syn-Hydrometalation and Other Methods</td>
<td>957</td>
</tr>
<tr>
<td></td>
<td>Variation 5: Trisubstituted Alkenes via anti-α,β-Disubstituted Alkenyl Derivatives Prepared by Alkyne syn- or anti-Hydrometalation and Other Methods Not Involving Elementometalation</td>
<td>962</td>
</tr>
</tbody>
</table>

47.1.5.4 Carbometalation and Subsequent Coupling Reactions
E. Negishi and G. Wang

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>47.1.5.4</td>
<td>Carbometalation and Subsequent Coupling Reactions</td>
<td>971</td>
</tr>
<tr>
<td>47.1.5.4.1</td>
<td>Method 1: Syntheses of Trisubstituted Alkenes via Zirconium-Catalyzed syn-Carboalumination of Alkynes</td>
<td>978</td>
</tr>
<tr>
<td>47.1.5.4.2</td>
<td>Method 2: Syntheses of Trisubstituted Alkenes by Carbocupration of Alkynes</td>
<td>998</td>
</tr>
<tr>
<td>47.1.5.4.2.1</td>
<td>Variation 1: syn-Carbocupration of Alkynes</td>
<td>998</td>
</tr>
<tr>
<td>47.1.5.4.2.2</td>
<td>Variation 2: Copper-Catalyzed anti-Carbomagnesiation of Propargyl Alcohols</td>
<td>1002</td>
</tr>
<tr>
<td>47.1.5.4.3</td>
<td>Method 3: Synthesis of Trisubstituted Alkenes via syn-Haloboration of Alkynes</td>
<td>1003</td>
</tr>
<tr>
<td>47.1.5.4.4</td>
<td>Method 4: Synthesis of Trisubstituted Alkenes via β,β-Disubstituted Alkenyl Derivatives Preparable by Miscellaneous Other Methods</td>
<td>1007</td>
</tr>
<tr>
<td>47.1.5.4.5</td>
<td>Method 5: Synthesis of Tetrasubstituted Alkenes via Trisubstituted Alkenyl Derivatives</td>
<td>1010</td>
</tr>
</tbody>
</table>

47.1.6 Synthesis from Arenes and Polyenes by Addition Reactions
R. A. Aitken and K. M. Aitken

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>47.1.6</td>
<td>Synthesis from Arenes and Polyenes by Addition Reactions</td>
<td>1017</td>
</tr>
<tr>
<td>47.1.6.1</td>
<td>Synthesis from Arenes</td>
<td>1017</td>
</tr>
<tr>
<td>47.1.6.1.1</td>
<td>Method 1: Reduction by Metals in Liquid Ammonia</td>
<td>1017</td>
</tr>
<tr>
<td>47.1.6.1.1.1</td>
<td>Variation 1: Reduction by Lithium and Added Ethanol</td>
<td>1017</td>
</tr>
<tr>
<td>47.1.6.1.1.2</td>
<td>Variation 2: Reduction by Sodium and Added Ethanol</td>
<td>1018</td>
</tr>
<tr>
<td>47.1.6.1.1.3</td>
<td>Variation 3: Reduction by Potassium and Added tert-Butyl Alcohol</td>
<td>1018</td>
</tr>
</tbody>
</table>
Table of Contents

XVII

47.1.6.1.4

Variation 4:
Method 2:
Variation 1:
Variation 2:
Variation 3:
Method 3:
Method 4:

1018
1019
1019
1019
1019
1020
1020

47.1.6.2

Synthesis from 1,2-Dienes (Allenes)

47.1.6.2.1

Method 1:
Variation 1:
Variation 2:
Variation 3:
Variation 4:
Variation 5:
Variation 6:
Variation 7:
Variation 8:
Variation 9:
Variation 10:
Variation 11:
Method 2:

47.1.6.1.1.4
47.1.6.1.2
47.1.6.1.2.1
47.1.6.1.2.2
47.1.6.1.2.3
47.1.6.1.3

47.1.6.2.1.1
47.1.6.2.1.2
47.1.6.2.1.3
47.1.6.2.1.4
47.1.6.2.1.5
47.1.6.2.1.6
47.1.6.2.1.7
47.1.6.2.1.8
47.1.6.2.1.9
47.1.6.2.1.10
47.1.6.2.1.11
47.1.6.2.2
47.1.6.2.2.1
47.1.6.2.2.2
47.1.6.2.2.3
47.1.6.2.2.4
47.1.6.2.2.5

Variation 1:
Variation 2:
Variation 3:
Variation 4:
Variation 5:

Reduction by Calcium ·
Reduction by Lithium and Alkylamines ·
Reduction in Methylamine or Ethylamine · · · · · · · · · · · · · · · · ·
Reduction in Ethylenediamine ·
Reduction in Mixed-Amine Systems ·
Electrochemical Reduction in Methylamine · · · · · · · · · · · · · · ·
Reduction by Sodium and tert-Butyl Alcohol · · · · · · · · · · · · · ·
······································

1020

Reduction by Addition of Hydrogen ·
Catalytic Hydrogenation ·
Transfer Hydrogenation Using Ammonium Formate · · · · · ·
Reduction by Lithium or Sodium in Liquid Ammonia · · · · · ·
Reduction by Sodium and Ethanol ·
Reduction by the Zinc–Copper Couple ·
Reduction by Diimide ·
Reduction by Red Phosphorus and Hydriodic Acid · · · · · · · · ·
Reduction by Borane ·
Reduction by Aluminum Hydrides ·
Reduction by Baker’s Yeast ·
Miscellaneous Variations ·
Synthesis by Hydrocarbonation (Addition of Carbon
and Hydrogen) ·
Hydrocarbonation Using a Grignard Reagent · · · · · · · · · · · · ·
Hydrocarbonation Using Arylboronates · · · · · · · · · · · · · · · · · ·
Hydrocarbonation Using Stabilized Carbanions · · · · · · · · · · ·
Hydrocarbonation by Hydrozirconation Followed by
Zinc-Mediated Claisen Rearrangement · · · · · · · · · · · · · · · · · · ·
Hydrocarbonation by Reductive Coupling to
Carbonyl Compounds ·

1020
1020
1022
1022
1022
1023
1023
1023
1024
1024
1024
1024

47.1.6.3

Synthesis from 1,3-Dienes or Fully Conjugated Polyenes

47.1.6.3.1

Synthesis by Addition of Hydrogen

47.1.6.3.1.1

Method 1:
Variation 1:

47.1.6.3.1.1.1
47.1.6.3.1.1.2
47.1.6.3.1.1.3
47.1.6.3.1.1.4
47.1.6.3.1.1.5
47.1.6.3.1.2
47.1.6.3.1.2.1
47.1.6.3.1.2.2
47.1.6.3.1.2.3
47.1.6.3.1.2.4
47.1.6.3.1.2.5
47.1.6.3.1.2.6
47.1.6.3.1.2.7

Variation 2:
Variation 3:
Variation 4:
Variation 5:
Method 2:
Variation 1:
Variation 2:
Variation 3:
Variation 4:
Variation 5:
Variation 6:
Variation 7:

1024
1025
1025
1025
1026
1027

···················

1028

·······································

1028

Catalytic Hydrogenation ·
Hydrogenation Using Chromium or Molybdenum
Catalysts ·
Hydrogenation Using Nickel Catalysts ·
Hydrogenation Using Palladium Catalysts · · · · · · · · · · · · · · · ·
Hydrogenation Using Platinum Catalysts · · · · · · · · · · · · · · · · ·
Hydrogenation Using Other Metal Catalysts · · · · · · · · · · · · · ·
Dissolving Metal Reduction ·
Reduction by Lithium and Ammonia ·
Reduction by Sodium and Ammonia ·
Reduction by Sodium Amalgam ·
Reduction by Sodium and an Alcohol ·
Reduction by Magnesium ·
Reduction by Aluminum Amalgam ·
Reduction by Zinc and Acetic Acid ·

1028
1028
1029
1030
1031
1032
1033
1033
1033
1034
1035
1036
1036
1036


<table>
<thead>
<tr>
<th>Method</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.3</td>
<td>Reduction by Sodium Borohydride with Iodine or Disodium Tetracyanonickelate</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Reduction by Diasobutylaluminum Hydride</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Reduction by Platinum-Catalyzed Hydrosilylation</td>
</tr>
<tr>
<td>6.1.6</td>
<td>Reduction by Diimide</td>
</tr>
<tr>
<td>7.1.7</td>
<td>Reduction by Sodium Dithionite</td>
</tr>
<tr>
<td>8.1.8</td>
<td>Reduction by Zirconocene and Hydrochloric Acid</td>
</tr>
<tr>
<td>9.1.9</td>
<td>Reduction by Vanadium(II) and Pyrocatechol</td>
</tr>
<tr>
<td>10.1.10</td>
<td>Reduction by Samarium and Water</td>
</tr>
<tr>
<td>11.1.11</td>
<td>Electrochemical Reduction</td>
</tr>
<tr>
<td>12.1.12</td>
<td>Reduction by Nicotinamide Adenine Dinucleotide Model Dihydropyridines</td>
</tr>
<tr>
<td>13.1.13</td>
<td>Reduction by Yeasts</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Synthesis by Hydrocarbonation (Addition of Carbon and Hydrogen)</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Method 1: Hydrocarbonation Using Alkyl lithium Reagents</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Method 2: Hydrocarbonation Using Alkysodium Reagents</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Method 3: Hydrocarbonation Using Organometallic Reagents</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Method 4: Hydrocarbonation Using Nitroalkane Anions</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Method 5: Hydrocarbonation Using Stabilized Carbanions</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Synthesis by Carbonation (Formation of Two C—C Bonds)</td>
</tr>
<tr>
<td>3.3.1.1</td>
<td>Method 1: Carbonation Using an Alkyl or Arylithium and a Haloalkane</td>
</tr>
<tr>
<td>3.3.1.2</td>
<td>Method 2: Carbonation Using a Grignard Reagent Followed by Carbon Dioxide</td>
</tr>
<tr>
<td>3.3.1.3</td>
<td>Method 3: Carbonation Using a Nickel-Catalyst with Trimethylborane or Dimethylzinc and an Aldehyde</td>
</tr>
<tr>
<td>3.3.1.4</td>
<td>Method 4: Carbonation Using an Alkylcopper Reagent Followed by a Carbonyl or Haloalkane Electrophile</td>
</tr>
<tr>
<td>3.3.1.5</td>
<td>Method 5: Carbonation Using an Acyl(carbonyl)cobalt Reagent and a Stabilized Carbanion</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Addition Across Two Molecules of a 1,3-Diene</td>
</tr>
<tr>
<td>3.4.1.1</td>
<td>Method 1: Hydrocarbonation Using Nitroalkane Anions</td>
</tr>
<tr>
<td>3.4.1.2</td>
<td>Method 2: Hydrocarbonation Using Stabilized Carbanions</td>
</tr>
<tr>
<td>3.4.1.3</td>
<td>Method 3: Hydrocarbonation Using Reductive Coupling to Imines and Alkenes</td>
</tr>
<tr>
<td>3.4.1.4</td>
<td>Method 4: Carbonation Using Alkyl Radicals</td>
</tr>
<tr>
<td>3.4.1.5</td>
<td>Method 5: Addition of Ammonia and Amines</td>
</tr>
<tr>
<td>3.4.1.6</td>
<td>Method 6: Addition of Alcohols, Phenols, or Carboxylic Acids</td>
</tr>
<tr>
<td>3.4.1.7</td>
<td>Method 7: Addition of Arenesulfonic Acids</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Synthesis from 1,4-Dienes, 1,5-Dienes, or Higher Dienes</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Method 1: Catalytic Hydrogenation</td>
</tr>
<tr>
<td>3.4.1.1</td>
<td>Variation 1: Hydrogenation Using Nickel Catalysts</td>
</tr>
<tr>
<td>3.4.1.2</td>
<td>Variation 2: Hydrogenation Using Palladium Catalysts</td>
</tr>
</tbody>
</table>
Table of Contents

47.1.6.4.1.3 Variation 3: Hydrogenation Using Platinum Catalysts

1058

47.1.6.4.1.4 Variation 4: Hydrogenation Using Other Metal Catalysts

1059

47.1.6.4.2 Method 2: Reduction by Magnesium

1060

47.1.6.4.3 Method 3: Reduction by Diimide

1060

47.1.6.4.4 Method 4: Reduction by Sodium Hydrazide/Hydrazine

1061

47.1.6.4.5 Method 5: Reduction by Nicotinamide Adenine Dinucleotide
Model Dihydropyridines

1061

47.1.7 Synthesis by Isomerization
M. Yus and F. Foubelo

47.1.7 Synthesis by Isomerization

1067

47.1.7.1 Method 1: Rearrangement from Terminal to Internal Alkenes

1067

47.1.7.1.1 Variation 1: Using Ruthenium Complexes

1067

47.1.7.1.2 Variation 2: Using Rhodium Catalysts

1069

47.1.7.1.3 Variation 3: Using Palladium Complexes

1070

47.1.7.1.4 Variation 4: Using Diphenyl Disulfone

1071

47.1.7.2 Method 2: Rearrangement from Internal to Terminal Alkenes

1072

47.1.7.3 Method 3: Rearrangement of Z- and E-Alkenes

1074

47.1.7.3.1 Variation 1: Conversion of an E-Alkene into a Z-Alkene

1075

47.1.7.3.2 Variation 2: Conversion of a Z-Alkene into an E-Alkene

1076

47.1.7.4 Method 4: Allylic Rearrangement

1077

47.1.7.4.1 Variation 1: Of Alcohols and Ethers

1077

47.1.7.4.2 Variation 2: Of Esters and Imidates

1082

47.1.7.4.3 Variation 3: Of Sulfoxides, Selenoxides, Sulfones, and Related Compounds

1084

47.1.7.4.4 Variation 4: Of Azides

1086

47.1.7.5 Method 5: Rearrangement of Vinylcyclopropanes

1087

47.1.7.5.1 Variation 1: Under Thermal Conditions

1088

47.1.7.5.2 Variation 2: Under Photochemical Conditions

1088

47.1.7.5.3 Variation 3: Under Transition-Metal Catalysis

1090

47.1.8 Synthesis from Other Alkenes without Isomerization
M. Yus and F. Foubelo

47.1.8 Synthesis from Other Alkenes without Isomerization

1095

47.1.8.1 Method 1: Electrophilic Substitution

1095

47.1.8.1.1 Variation 1: Acylation Reactions

1095

47.1.8.1.2 Variation 2: Reactions of Vinilsilanes and Vinylstannanes

1096

47.1.8.2 Method 2: Nucleophilic Substitution

1099

47.1.8.2.1 Variation 1: Reactions with Carbon Nucleophiles

1099

47.1.8.2.2 Variation 2: Reactions with Heteroatom Nucleophiles

1100

47.1.8.3 Method 3: Alkylation of Organometallic Compounds

1102

47.1.8.3.1 Variation 1: Reactions of Organolithium Compounds

1103

47.1.8.3.2 Variation 2: Reactions of Organomagnesium Compounds

1105

47.1.8.3.3 Variation 3: Reactions of Organocopper Compounds

1107
47.2 Product Class 2: Cyclopropenes
M. S. Baird

47.2.1 Synthesis of Product Class 2

47.2.1.1 Method 1: Synthesis by Ring Closure with Formation of Two C—C Bonds

47.2.1.2 Method 2: Synthesis by Ring Closure with Formation of One C—C Bond

47.2.1.2.1 Variation 1: Dehydrohalogenation of Allylic Halides

47.2.1.2.2 Variation 2: Cyclizing Insertions of Methylene carbenes (Vinylidenes) or Related Species

47.2.1.2.3 Variation 3: 1,3-Elimination from Propenes

47.2.1.2.4 Variation 4: By Formation of the C=C Bond

47.2.1.3 Method 3: Synthesis by Ring Contraction

47.2.1.4 Method 4: Synthesis by 1,2-Elimination

47.2.1.4.1 Variation 1: Dehydrohalogenation

47.2.1.4.2 Variation 2: Dehalogenation

47.2.1.4.3 Variation 3: Dehalosilylation

47.2.1.4.4 Variation 4: Dehydroxysilylation

47.2.1.5 Method 5: Synthesis by Rearrangement of Methylene cyclopropanes

47.2.1.6 Method 6: Synthesis from Other Cyclopropenes

47.2.1.6.1 Variation 1: By Alkylation of a Carbon Nucleophile

47.2.1.6.2 Variation 2: By Alkylation with an Electrophilic Reagent

47.2.1.6.3 Variation 3: By Ene Reactions

47.2.1.7 Method 7: Miscellaneous Methods

47.2.2 Method 6: Synthesis from Other Cyclopropenes

47.2.2.1 Variation 1: By Alkylation of a Carbon Nucleophile

47.2.2.2 Variation 2: By Alkylation with an Electrophilic Reagent

47.2.2.3 Variation 3: By Ene Reactions

47.3 Product Class 3: Nonconjugated Di-, Tri-, and Oligoenes
K.-M. Roy

47.3.1 Synthesis of Product Class 3

47.3.1.1 Synthesis with C—C Bond Formation

47.3.1.1.1 Method 1: Wittig-Type Reactions

47.3.1.1.2 Method 2: Coupling Reactions with Organometallic Compounds

47.3.1.1.2.1 Variation 1: With Organomagnesium Compounds

47.3.1.1.2.2 Variation 2: With Organoboron Compounds

47.3.1.1.2.3 Variation 3: With Organo aluminum and Organo indium Compounds

47.3.1.1.2.4 Variation 4: With Organosilicon and Organotin Compounds

47.3.1.1.2.5 Variation 5: With Other Organometallic Compounds

47.3.1.1.3 Method 3: Dimerization and Oligomerization Reactions

47.3.1.2 Synthesis by Elimination

47.3.1.2.1 Method 1: Synthesis from Cyclopropylcarbinols

47.3.1.2.2 Method 2: Synthesis from Iodohydrin Derivatives

47.3.1.2.3 Method 3: Hydroboration–Elimination of Enamines
Volume 48: Alkanes

Preface ... V

Table of Contents .. IX

Introduction
H. Hiemstra .. 1

48.1 Product Class 1: Acyclic Alkanes

48.1.1 Synthesis by Metal Substitution with Retention of the Carbon Framework
E. A. B. Kantchev and M. G. Organ .. 9

48.1.2 Synthesis by Metal Substitution with Extension of the Carbon Framework
E. A. B. Kantchev and M. G. Organ .. 29

48.1.3 Synthesis by Reduction without C–C Bond Cleavage

48.1.3.1 Reduction of Carbonic or Carboxylic Acids, Aldehydes, Ketones, or Derivatives
J. Wicha ... 97

48.1.3.2 Reduction of Haloalkanes
P. Margaretha ... 149

48.1.3.3 Reduction of Alkanols and Derivatives
J. Wicha ... 163

48.1.3.4 Reduction of Other Heterofunctionalities
J. Drabowicz, D. Krasowska, and J. Wicha .. 245

48.1.3.5 Reduction of Alkynes
N. Chessum, S. Couty, and K. Jones .. 265

48.1.3.6 Reduction of Alkenes

48.1.3.6.1 Reduction by Heterogeneous Catalysis
N. Chessum, S. Couty, and K. Jones .. 275

48.1.3.6.2 Reduction by Homogeneous Catalysis or Biocatalysis
M. Tsukamoto and M. Kitamura ... 341

48.1.3.6.3 Reduction by Noncatalytic Methods
M. Zaidlewicz, M. P. Krzemioński, and A. Dzieleńdziak ... 359
<table>
<thead>
<tr>
<th>Section</th>
<th>Subject</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>48.1.4</td>
<td>Synthesis by Reduction of Alkenes via Intermolecular C–C Bond Formation</td>
<td>P. Eilbracht</td>
<td>393</td>
</tr>
<tr>
<td>48.1.5</td>
<td>Synthesis by Reduction with C–C Bond Cleavage</td>
<td>P. Margaretha</td>
<td>439</td>
</tr>
<tr>
<td>48.1.6</td>
<td>Synthesis from Other Alkanes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.1.6.1</td>
<td>Bond Cleavage Reactions</td>
<td>Á. Molnár and P. Margaretha</td>
<td>459</td>
</tr>
<tr>
<td>48.1.6.2</td>
<td>Dehydrodimerization Reactions</td>
<td>Á. Molnár</td>
<td>469</td>
</tr>
<tr>
<td>48.1.6.3</td>
<td>Isomerization Reactions</td>
<td>Á. Molnár</td>
<td>473</td>
</tr>
<tr>
<td>48.2</td>
<td>Product Class 2: Cyclopropanes</td>
<td>A. de Meijere and S. I. Kozhushkov</td>
<td>477</td>
</tr>
<tr>
<td>48.3</td>
<td>Product Class 3: Cyclobutanes</td>
<td>R. Kostikov and M. S. Baird</td>
<td>615</td>
</tr>
<tr>
<td>48.4</td>
<td>Product Class 4: Five-Membered and Larger-Ring Cycloalkanes</td>
<td>M. J. Palframan and A. F. Parsons</td>
<td>647</td>
</tr>
<tr>
<td>48.5</td>
<td>Product Class 5: Hydrocarbon Polymers</td>
<td>W. Kaminsky</td>
<td>695</td>
</tr>
<tr>
<td></td>
<td>Keyword Index</td>
<td></td>
<td>739</td>
</tr>
<tr>
<td></td>
<td>Author Index</td>
<td></td>
<td>783</td>
</tr>
<tr>
<td></td>
<td>Abbreviations</td>
<td></td>
<td>825</td>
</tr>
</tbody>
</table>
Table of Contents

- **Introduction**
 H. Hiemstra

48.1 Product Class 1: Acyclic Alkanes

48.1.1 **Synthesis by Metal Substitution with Retention of the Carbon Framework**
E. A. B. Kantchev and M. G. Organ

48.1.1 Method 1: Synthesis by Protonation of Carbon—Metal Bonds

Variation 1: Acidolysis of Alkyl Derivatives of Metals from Groups 14 and 15 (Including Boron)	10
Variation 2: Protonolysis of Alkyl Derivatives of Metals from Groups 5–11	14
Variation 3: Protonolysis of Alkyl Derivatives of Metals from Groups 3, 4, 12, and 13 (Including Lanthanides and Actinides, Excluding Boron)	15
Variation 4: Protonolysis of Alkyl Derivatives of Metals from Groups 1 and 2	18

48.1.2 Method 2: Synthesis by Hydrogenolysis of Carbon—Metal Bonds

| Variation 1: Hydrogenolysis and Reductive Cleavage of Carbon—Metal Bonds | 23 |
| Variation 2: Reductive Elimination from Alkyl–Transition Metal Hydrido Complexes | 25 |

48.1.2 **Synthesis by Metal Substitution with Extension of the Carbon Framework**
E. A. B. Kantchev and M. G. Organ

48.1.2.1 Method 1: Noncatalyzed Coupling Reactions of Nonactivated Alkyl Electrophiles with Organometallic Reagents

| Variation 1: Using Main-Group Organometallic Reagents | 30 |
| Variation 2: Using Transition-Metal Organometallic Reagents | 32 |

48.1.2.2 Method 2: Catalyzed Coupling Reactions of Nonactivated Alkyl Electrophiles with Organometallic Reagents

| Variation 1: Couplings of Alkyl Grignard Reagents (Kumada–Tamao–Corriu Reaction) Mediated by Copper, Silver, Nickel, Palladium, Iron, and Cobalt | 38 |
| Variation 2: Couplings of Alkylzinc Reagents (Negishi Reaction) Mediated by Nickel and Palladium | 51 |

Science of Synthesis Original Edition Volume 48
© Georg Thieme Verlag KG
48.1.2.3 Variation 3: Couplings of Alkyl Boron Compounds (Suzuki–Miyaura Reaction) Mediated by Palladium and Nickel ... 63
48.1.2.4 Variation 4: Couplings of Other Alkyl Organometallic Compounds ... 76
48.1.2.3 Method 3: Oxidative Coupling of Alkyl Organometallic Reagents ... 77
48.1.2.3.1 Variation 1: Reductive Elimination from Dialkyl Transition-Metal Complexes .. 83
48.1.2.3.2 Variation 2: Kolbe Electrolysis ... 85
48.1.2.4 Method 4: Reductive Coupling of Alkyl Halides ... 87

48.1.3 Synthesis by Reduction without C–C Bond Cleavage

48.1.3.1 Reduction of Carboxylic Acids, Aldehydes, Ketones, or Derivatives
J. Wicha

48.1.3.1 Reduction of Carboxylic Acids, Aldehydes, Ketones, or Derivatives ... 97
48.1.3.1.1 Method 1: The Clemmensen Reduction (Deoxygenation of Aldehydes or Ketones Using Zinc and Hydrochloric Acid) .. 99
48.1.3.1.1 Variation 1: Reduction with Zinc–Hydrochloric Acid in an Aqueous Solution ... 100
48.1.3.1.2 Variation 2: Reduction with Zinc–Hydrochloric Acid in the Presence of Water-Miscible Solvents ... 101
48.1.3.1.3 Variation 3: Reduction with Zinc–Hydrochloric Acid in the Presence of Water-Immiscible Solvents ... 102
48.1.3.1.4 Variation 4: Reduction with Zinc in Organic Solvents Saturated with Hydrogen Chloride ... 102
48.1.3.1.5 Variation 5: Ultrasound-Assisted Zinc–Protic Acid Reduction ... 104
48.1.3.1.6 Variation 6: Miscellaneous Methods .. 104
48.1.3.1.2 Method 2: Other Direct Deoxygenation Methods ... 105
48.1.3.1.2.1 Variation 1: Deoxygenation of Aromatic Ketones with Hydrogen Iodide ... 105
48.1.3.1.2.2 Variation 2: Deoxygenation of Carbonyl Compounds by Catalytic Hydrogenation ... 105
48.1.3.1.2.3 Variation 3: Deoxygenation of Aromatic Acids, Aldehydes, and Ketones Using the Trichlorosilane–Tripropylamine Couple ... 106
48.1.3.1.2.4 Variation 4: Deoxygenation of Ketones Using the Triethylsilane–Trifluoroacetic Acid Couple ... 107
48.1.3.1.2.5 Variation 5: Deoxygenation of Carboxylic Acids, Esters, Aldehydes, and Ketones Using Silanes in the Presence of Lewis Acids .. 108
48.1.3.1.2.6 Variation 6: Deoxygenation of Aromatic and α,β-Unsaturated Ketones Using the Sodium Borohydride–Trifluoroacetic Acid Couple ... 110
48.1.3.1.2.7 Variation 7: Miscellaneous Methods .. 111
48.1.3.1.3 Method 3: The Wolff–Kishner Reduction (Reduction of Aldehydes and Ketones via Hydrazones) ... 111
48.1.3.1.3.1 Variation 1: The Huang-Minlon Modification .. 114
48.1.3.1.3.2 Variation 2: The Barton Modification .. 117
48.1.3.1.3.3 Variation 3: The Cram and the Henbest Modifications .. 119
<table>
<thead>
<tr>
<th>Variation</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.3.3.4</td>
<td>The Nagata–Itazaki Modification</td>
<td>121</td>
</tr>
<tr>
<td>4.1.3.3.5</td>
<td>The Furrow–Myers Modification</td>
<td>123</td>
</tr>
<tr>
<td>4.1.3.3.6</td>
<td>Microwave-Assisted Wolff–Kishner Reductions</td>
<td>125</td>
</tr>
<tr>
<td>4.1.3.3.7</td>
<td>Reduction of Aldehydes and Ketones via Tosylhydrazones</td>
<td>126</td>
</tr>
<tr>
<td>4.1.3.3.8</td>
<td>Reduction of Tosylhydrazones with Lithium Aluminum Hydride</td>
<td>127</td>
</tr>
<tr>
<td>4.1.3.3.9</td>
<td>Reduction of Tosylhydrazones with Sodium Borohydride</td>
<td>128</td>
</tr>
<tr>
<td>4.1.3.3.10</td>
<td>Reduction of Tosylhydrazones with Sodium Cyanoborohydride–Protic Acid</td>
<td>129</td>
</tr>
<tr>
<td>4.1.3.3.11</td>
<td>Reduction of Tosylhydrazones with Catecholborane</td>
<td>131</td>
</tr>
<tr>
<td>4.1.3.3.12</td>
<td>Reduction of Tosylhydrazones with Hydrazine</td>
<td>133</td>
</tr>
<tr>
<td>4.1.3.3.13</td>
<td>Reduction of Tosylhydrazones with Hydrazine</td>
<td>134</td>
</tr>
<tr>
<td>4.1.3.3.14</td>
<td>Reduction of Tosylhydrazones with Hydrazine</td>
<td>135</td>
</tr>
<tr>
<td>4.1.3.3.15</td>
<td>Miscellaneous Methods</td>
<td>138</td>
</tr>
<tr>
<td>4.1.3.3.16</td>
<td>Deoxygenation of Aldehydes and Ketones via Dithioacetals and Other Sulfur-Containing Derivatives</td>
<td>137</td>
</tr>
<tr>
<td>4.1.3.3.17</td>
<td>Reduction of Dithioacetals Using Raney Nickel</td>
<td>139</td>
</tr>
<tr>
<td>4.1.3.3.18</td>
<td>Reduction of Dithioacetals Using Dissolving Metals</td>
<td>140</td>
</tr>
<tr>
<td>4.1.3.3.19</td>
<td>Reduction of Dithioacetals Using Tributyltin Hydride</td>
<td>141</td>
</tr>
<tr>
<td>4.1.3.3.20</td>
<td>Reduction of Dithioacetals with Hydrazine</td>
<td>142</td>
</tr>
<tr>
<td>4.1.3.3.21</td>
<td>Miscellaneous Methods</td>
<td>143</td>
</tr>
</tbody>
</table>

48.1.3 Reduction of Haloalkanes
P. Margaretha

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.3.2.1</td>
<td>Alkanes from Fluoroalkanes</td>
<td>149</td>
</tr>
<tr>
<td>4.1.3.2.2</td>
<td>Reduction of Fluoroalkanes with Hydrides</td>
<td>151</td>
</tr>
<tr>
<td>4.1.3.2.3</td>
<td>Alkanes from Chloroalkanes</td>
<td>151</td>
</tr>
<tr>
<td>4.1.3.2.4</td>
<td>Reduction of Chloroalkanes</td>
<td>151</td>
</tr>
<tr>
<td>4.1.3.2.5</td>
<td>Alkanes from Bromoalkanes</td>
<td>153</td>
</tr>
<tr>
<td>4.1.3.2.6</td>
<td>Reduction of Bromoalkanes</td>
<td>154</td>
</tr>
<tr>
<td>4.1.3.2.7</td>
<td>Alkanes from Iodoalkanes</td>
<td>155</td>
</tr>
<tr>
<td>4.1.3.2.8</td>
<td>Reduction of Alkanes from Iodoalkanes</td>
<td>157</td>
</tr>
</tbody>
</table>

48.1.3 Reduction of Alkanols and Derivatives
J. Wicha

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.3.3.1</td>
<td>Direct Replacement of C–OH Bonds by C–H Bonds in Benzylic, Allylic, or Other Activated Alcohols</td>
<td>165</td>
</tr>
<tr>
<td>4.1.3.3.2</td>
<td>Acid-Promoted Catalytic Hydrogenolysis of Alcohols</td>
<td>165</td>
</tr>
<tr>
<td>4.1.3.3.3</td>
<td>Dissolving-Metal Reduction of Benzylic Alcohols</td>
<td>166</td>
</tr>
<tr>
<td>4.1.3.3.4</td>
<td>Reduction of Alcohols by Mixed Metal Hydrides in the Presence of Lewis or Protic Acids</td>
<td>166</td>
</tr>
<tr>
<td>4.1.3.3.5</td>
<td>Reduction of Alcohols with the Triethylsilane/Trifluoroacetic Acid System or Other Silane/Acid Combinations</td>
<td>167</td>
</tr>
</tbody>
</table>
48.1.3.1.5 Variation 5: Deoxygenation of Alcohols with Diiododimethylsilane or Iodotrimethylsilane .. 168
48.1.3.1.6 Variation 6: Microwave-Promoted Deoxygenation of Benzyl Alcohols with Lawesson’s Reagent and Hexacarbonylmalodydenum(0) Catalyst .. 169
48.1.3.1.7 Variation 7: Deoxygenation of Alcohols by Electrolysis in the Presence of a Trialkyl- or Triarylphosphine .. 169
48.1.3.1.8 Variation 8: Deoxygenation of α-Hydroxy Ketones or α-Hydroxyaldehydes .. 170
48.1.3.1.9 Variation 9: Deoxygenation of Alcohols via Diazenes ... 170
48.1.3.2 Method 2: Deoxygenation of Alcohols via Carboxylic Esters ... 175
48.1.3.2.1 Variation 1: Photolysis of Carboxylic Esters ... 175
48.1.3.2.2 Variation 2: Deoxygenation of Alcohols through Electrochemical Reduction of Their Esters ... 177
48.1.3.2.3 Variation 3: Dissolving-Metal Deoxygenation of Alcohols via Their Carboxylic Esters ... 177
48.1.3.2.4 Variation 4: Deoxygenation of Alcohols via Their \(N,N' \)-Dicyclohexylcarbamidimide Esters ... 179
48.1.3.3 Method 3: Deoxygenation of Alcohols via Their Sulfonyl Derivatives ... 179
48.1.3.3.1 Variation 1: Reduction of Sulfonate Esters with Lithium Aluminum Hydride and Lithium Triethylborohydride ... 181
48.1.3.3.2 Variation 2: Deoxygenation of Sulfonate Esters with Sodium Borohydride, Sodium Cyanoborohydride, or Lithium (Diisopropylamino)-borohydride ... 185
48.1.3.3.3 Variation 3: Deoxygenation of Sulfonate Esters with Complex Copper Hydrides ... 186
48.1.3.3.4 Variation 4: Miscellaneous Reactions ... 186
48.1.3.3.4 Method 4: Deoxygenation of Alcohols via Phosphoryl Derivatives ... 187
48.1.3.3.4.1 Variation 1: Reduction of Phosphoramidate Derivative of Alcohols with Lithium in Ethylamine or with Lithium Naphthalenide ... 187
48.1.3.3.4.2 Variation 2: Reduction of Phosphate Esters of Alcohols with Lithium in Ethylamine or with Lithium Naphthalenide ... 190
48.1.3.3.4.3 Variation 3: Reduction of Alkoxyphosphonium Salts with Lithium Triethylborohydride ... 190
48.1.3.3.5 Method 5: The Barton–McCombie Deoxygenation Reaction Using Tributyltin Hydride or Other Metal Hydrides as the Hydrogen-Atom Source ... 190
48.1.3.3.5.1 Variation 1: Deoxygenation of Alcohols via S-Methyl Xanthates ... 195
48.1.3.3.5.2 Variation 2: Deoxygenation of Alcohols via Their \(1H \)-Imidazol-1-ylcarbonothioyl Derivatives ... 202
48.1.3.3.5.3 Variation 3: Deoxygenation of Alcohols via \(O \)-Alkyl \(O \)-Phenyl Carbonothioates or \(O \)-Alkyl \(O \)-(Halophenyl) Carbonothioates ... 207
48.1.3.3.5.4 Variation 4: Deoxygenation of Alcohols via Benzenecarbothioates ... 214
48.1.3.3.5.5 Variation 5: Deoxygenation of Alcohols via Acylcarbamothioates ... 215
48.1.3.3.5.6 Variation 6: Deoxygenation of Alcohols via Thioformates ... 216
48.1.3.3.5.7 Variation 7: Deoxygenation of One Hydroxy Group in a Diol via a Cyclic Carbonothioate ... 217
48.1.3.3.5.8 Variation 8: Deoxygenation of Alcohols via Methyl Oxalates ... 219
48.1.3.3.5.9 Variation 9: Deoxygenation of Alcohols via Other Radicophilic Derivatives ... 222

Science of Synthesis Original Edition Volume 48
© Georg Thieme Verlag KG
48.1.3.3.5 Variation 10: Deoxygenation of Alcohols Using Polymer-Bound Stannanes
- Page: 222

48.1.3.3.6 Variation 11: Deoxygenation of Alcohols Using Modified Stannanes
- Page: 224

48.1.3.3.7 Variation 12: Deoxygenation of Alcohols Using Other Metal Hydrides
- Page: 225

48.1.3.3.8 Variation 13: Deoxygenation of Alcohols Using Bis(tributyltin) Oxide–Poly(methylhydrosiloxane)
- Page: 225

48.1.3.6 Method 6: The Barton–McCombie Deoxygenation of Alcohols Using Silanes as the Hydrogen-Atom Source

Variation 1: Using Triethylsilane
- Page: 227

Variation 2: Using Diphenylsilane
- Page: 227

Variation 3: Using 5,10-Dimethyl-5,10-dihydrosilaanthracene Derivatives
- Page: 228

Variation 4: Using Tetraphenyldisilane
- Page: 229

Variation 5: Using Tris(trimethylsilyl)silane
- Page: 229

Variation 6: Using Silylated Dienes
- Page: 231

Variation 7: Using a Silane–Thiol System
- Page: 231

Variation 8: Reduction of Trifluoroacetates by Diphenylsilane
- Page: 232

48.1.3.7 Method 7: The Barton–McCombie Deoxygenation of Alcohols Using Phosphorus Compounds and Miscellaneous Hydrogen-Atom Donors

Variation 1: Using Phosphinic Acid and Its Salts
- Page: 233

Variation 2: Using Dialkyl Phosphites
- Page: 234

Variation 3: Using Other Phosphorus Compounds
- Page: 235

Variation 4: Using Propan-2-ol
- Page: 235

Variation 5: Using Formate Anion
- Page: 236

Variation 6: Using Water
- Page: 237

48.1.4 Reduction of Other Heterofunctionalities

J. Drabowicz, D. Krasowska, and J. Wicha

48.1.4.1 Method 1: Desulfurization of Thiols and Sulfides
- Page: 245

Variation 1: Using Raney Nickel
- Page: 245

Variation 2: Using Dissolving Metals and Amalgams
- Page: 248

Variation 3: Using Nickel, Cobalt, Iron, or Copper Compounds and Metal Hydrides
- Page: 248

Variation 4: Using Free-Radical Reagents
- Page: 249

Variation 5: Using Raney Nickel or Nickel Boride
- Page: 251

Variation 6: Using Dissolving Metals and Amalgams
- Page: 251

Variation 3: Miscellaneous Reactions
- Page: 252

Method 3: Reduction of Selenium Compounds
- Page: 252

Variation 1: Using Raney Nickel
- Page: 252

Variation 2: Using Dissolving Metals and Amalgams
- Page: 252

Variation 3: Using Tributyltin Hydride and Related Reagents
- Page: 253

Variation 4: Miscellaneous Reactions
- Page: 253

Method 4: Replacement of an Amino Group by Hydrogen (Deamination)
- Page: 254

Variation 1: Deamination of Amines via Arylsulfonyl Derivatives
- Page: 254

Variation 2: Deamination via Diazocompounds
- Page: 256
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>48.1.3.6.1.3.1</td>
<td>Method 1</td>
<td>Synthesis Using Cobalt Catalysts</td>
<td>290</td>
</tr>
<tr>
<td>48.1.3.6.1.3.2</td>
<td>Method 2</td>
<td>Synthesis Using Copper Catalysts</td>
<td>291</td>
</tr>
<tr>
<td>48.1.3.6.1.3.3</td>
<td>Method 3</td>
<td>Synthesis Using Iron Catalysts</td>
<td>291</td>
</tr>
<tr>
<td>48.1.3.6.1.3.4</td>
<td>Method 4</td>
<td>Synthesis Using Nickel Catalysts</td>
<td>292</td>
</tr>
<tr>
<td>48.1.3.6.1.3.4.1</td>
<td>Variation 1</td>
<td>Using Reduced Nickel</td>
<td>292</td>
</tr>
<tr>
<td>48.1.3.6.1.3.4.2</td>
<td>Variation 2</td>
<td>Using Nickel from Nickel Formate</td>
<td>292</td>
</tr>
<tr>
<td>48.1.3.6.1.3.4.3</td>
<td>Variation 3</td>
<td>Using Raney Nickel</td>
<td>293</td>
</tr>
<tr>
<td>48.1.3.6.1.3.4.4</td>
<td>Variation 4</td>
<td>Using Urushibara Nickel</td>
<td>296</td>
</tr>
<tr>
<td>48.1.3.6.1.3.4.5</td>
<td>Variation 5</td>
<td>Synthesis Using Palladium Catalysts</td>
<td>300</td>
</tr>
<tr>
<td>48.1.3.6.1.3.4.6</td>
<td>Variation 6</td>
<td>Synthesis Using Platinum Catalysts</td>
<td>306</td>
</tr>
<tr>
<td>48.1.3.6.1.3.7</td>
<td>Method 7</td>
<td>Synthesis Using Miscellaneous Catalysts</td>
<td>309</td>
</tr>
<tr>
<td>48.1.3.6.1.4</td>
<td>Method 5</td>
<td>Effect of Substrate Structure upon Reduction Using Hydrogen Gas</td>
<td>311</td>
</tr>
<tr>
<td>48.1.3.6.1.4.1</td>
<td>Method 1</td>
<td>Reduction of Monosubstituted Alkenes</td>
<td>312</td>
</tr>
<tr>
<td>48.1.3.6.1.4.2</td>
<td>Method 2</td>
<td>Reduction of Disubstituted Alkenes</td>
<td>312</td>
</tr>
<tr>
<td>48.1.3.6.1.4.3</td>
<td>Method 3</td>
<td>Reduction of Trisubstituted Alkenes</td>
<td>313</td>
</tr>
<tr>
<td>48.1.3.6.1.4.4</td>
<td>Method 4</td>
<td>Reduction of Tetrasubstituted Alkenes</td>
<td>314</td>
</tr>
<tr>
<td>48.1.3.6.1.4.5</td>
<td>Method 5</td>
<td>Hydrogenation of Alkenes in the Presence of Other Functional Groups</td>
<td>315</td>
</tr>
<tr>
<td>48.1.3.6.1.4.5.1</td>
<td>Variation 1</td>
<td>Selective Hydrogenation in the Presence of Oxygen or Nitrogen Protective Groups</td>
<td>315</td>
</tr>
<tr>
<td>48.1.3.6.1.4.5.2</td>
<td>Variation 2</td>
<td>Selective Hydrogenation in the Presence of a Carbonyl Group</td>
<td>318</td>
</tr>
<tr>
<td>48.1.3.6.1.4.5.3</td>
<td>Variation 3</td>
<td>Selective Hydrogenation in the Presence of a Halogen</td>
<td>319</td>
</tr>
<tr>
<td>48.1.3.6.1.4.5.4</td>
<td>Variation 4</td>
<td>Selective Hydrogenation in the Presence of a Cyclopropyl Group</td>
<td>320</td>
</tr>
<tr>
<td>48.1.3.6.1.4.5.5</td>
<td>Variation 5</td>
<td>Selective Hydrogenation in the Presence of an Allylic C–O Bond</td>
<td>321</td>
</tr>
<tr>
<td>48.1.3.6.1.4.5.6</td>
<td>Variation 6</td>
<td>Selective Hydrogenation in the Presence of an Aromatic Ring</td>
<td>321</td>
</tr>
<tr>
<td>48.1.3.6.1.4.5.7</td>
<td>Variation 7</td>
<td>Selective Hydrogenation in the Presence of a Cyan group</td>
<td>322</td>
</tr>
<tr>
<td>48.1.3.6.1.4.6</td>
<td>Method 6</td>
<td>Stereoselective Synthesis of Alkanes</td>
<td>323</td>
</tr>
<tr>
<td>48.1.3.6.1.4.6.1</td>
<td>Variation 1</td>
<td>Hydrogenation of Sterically Hindered Alkenes</td>
<td>325</td>
</tr>
<tr>
<td>48.1.3.6.1.4.6.2</td>
<td>Variation 2</td>
<td>Hydrogenation of Alkenes with Polar Groups</td>
<td>326</td>
</tr>
<tr>
<td>48.1.3.6.1.5</td>
<td>Method 7</td>
<td>Synthesis Using Hydrogen Transfer</td>
<td>327</td>
</tr>
<tr>
<td>48.1.3.6.1.5.1</td>
<td>Method 1</td>
<td>Catalytic Transfer Hydrogenation</td>
<td>328</td>
</tr>
<tr>
<td>48.1.3.6.1.5.2</td>
<td>Method 2</td>
<td>Catalytic Transfer Hydrogenation in the Presence of a Lewis Acid</td>
<td>330</td>
</tr>
<tr>
<td>48.1.3.6.1.5.3</td>
<td>Method 3</td>
<td>Catalytic Transfer Hydrogenation under Microwave Irradiation</td>
<td>330</td>
</tr>
<tr>
<td>48.1.3.6.1.5.4</td>
<td>Method 4</td>
<td>Catalytic Transfer Hydrogenation in an Ionic Liquid</td>
<td>331</td>
</tr>
<tr>
<td>48.1.3.6.1.6</td>
<td>Method 8</td>
<td>Reduction of Dienes and Polyenes</td>
<td>332</td>
</tr>
<tr>
<td>48.1.3.6.1.6.1</td>
<td>Method 1</td>
<td>Reduction of Dienes</td>
<td>332</td>
</tr>
<tr>
<td>48.1.3.6.1.6.1.1</td>
<td>Variation 1</td>
<td>Of Hindered Diene Systems</td>
<td>333</td>
</tr>
<tr>
<td>48.1.3.6.1.6.2</td>
<td>Method 2</td>
<td>Reduction of Polyenes</td>
<td>333</td>
</tr>
</tbody>
</table>
48.1.3.6.2 Reduction by Homogeneous Catalysis or Biocatalysis
M. Tsukamoto and M. Kitamura

48.1.3.6.2 Reduction by Homogeneous Catalysis or Biocatalysis 341
48.1.3.6.2.1 Method 1: Hydrogenation ... 342
48.1.3.6.2.1.1 Variation 1: Of Dienes .. 342
48.1.3.6.2.1.2 Variation 2: Of Aryl-Substituted Alkenes 344
48.1.3.6.2.1.3 Variation 3: Of Alkylated Alkenes 347
48.1.3.6.2.2 Method 2: Transfer Hydrogenation 350
48.1.3.6.2.2.1 Variation 1: Using Formic Acid 350
48.1.3.6.2.2.2 Variation 2: Using an Alcohol 351
48.1.3.6.2.2.3 Variation 3: Using Borane–Dimethylamine Complex 352
48.1.3.6.2.3 Method 3: Reduction of α,β-Unsaturated Carboxylic Acid Derivatives by Biocatalysis ... 352

48.1.3.6.3 Reduction by Noncatalytic Methods
M. Zaidlewicz, M. P. Krzeminski, and A. Dzieleńdziek

48.1.3.6.3 Reduction by Noncatalytic Methods ... 359
48.1.3.6.3.1 Method 1: Reduction of Alkenes or Dienes with Diimide 359
48.1.3.6.3.1.1 Variation 1: Anaerobic/Aerobic Hydrogenation 365
48.1.3.6.3.1.2 Variation 2: On a Solid Support 366
48.1.3.6.3.2 Method 2: Hydrogenation by Metals or Dissolving Metals 368
48.1.3.6.3.2.1 Variation 1: Using Sodium/Hexamethylphosphoric Triamide/tert-Butyl Alcohol ... 368
48.1.3.6.3.2.2 Variation 2: Using Alkali Metals in Solvents 369
48.1.3.6.3.3 Method 3: Reduction with Samarium(II) Iodide 371
48.1.3.6.3.4 Method 4: Hydroboration–Protonolysis, and Reduction of Organoboranes ... 372
48.1.3.6.3.4.1 Variation 1: Hydroboration–Protonolysis 373
48.1.3.6.3.4.2 Variation 2: Reduction of B-Alkyl Catecholboranes 375
48.1.3.6.3.5 Method 5: Hydrozirconation–Protonolysis 377
48.1.3.6.3.5.1 Variation 1: Protonolysis Using Schwartz’s Reagent 377
48.1.3.6.3.5.2 Variation 2: Hydrometalation–Protonolysis 380
48.1.3.6.3.6 Method 6: Ionic Hydrogenation .. 382
48.1.3.6.3.6.1 Variation 1: Via Carbocations ... 382
48.1.3.6.3.6.2 Variation 2: Via Cation Radicals 384
48.1.3.6.3.7 Method 7: Hydrogenation with Metal Hydrides–Metal Salts 386
48.1.3.6.3.7.1 Variation 1: Using Lithium Aluminum Hydride–Metal Salts 386
48.1.3.6.3.7.2 Variation 2: Using Sodium Borohydride–Metal Salts 387
48.1.3.6.3.7.3 Variation 3: Using Metal Hydrides–Metal Alkoxides or Metal Salts 388
Synthesis by Reduction of Alkenes via Intermolecular C–C Bond Formation
P. Eilbracht

Additions of Carbon Electrophiles
48.1.1 Method 1: Hydroalkylation of Alkenes with Haloalkanes and Similar Electrophilic Alkylating Reagents
48.1.1.2 Method 2: Hydroalkylation of Alkenes with Alkyl Chloroformates and Ethylaluminum Sesquichloride
48.1.1.3 Method 3: Hydroalkylation of Alkenes with Alkanes in the Presence of Acids

Additions of Carbon Nucleophiles
48.1.2 Method 1: Carbolithiation and Hydrolysis
48.1.2.1 Method 2: Carbomagnesiation and Hydrolysis
48.1.2.2 Variation 1: Uncatalyzed Carbomagnesiation
48.1.2.2 Variation 2: Catalyzed Carbomagnesiation
48.1.2.2 Variation 3: Stereoselective Carbomagnesiation
48.1.2.3 Method 3: Carbozincation and Hydrolysis
48.1.2.3 Variation 1: Uncatalyzed Carbozincation
48.1.2.3 Variation 2: Catalyzed Carbozincation
48.1.2.4 Method 4: Carbocupration and Hydrolysis
48.1.2.5 Method 5: Carboalumination and Hydrolysis
48.1.2.5 Variation 1: Uncatalyzed Carboalumination
48.1.2.5 Variation 2: Catalyzed Carboalumination
48.1.2.5 Variation 3: Enantioselective Carboalumination
48.1.2.5 Variation 4: Enantioselective Carboalumination in Target-Oriented Natural Product Synthesis
48.1.2.6 Method 6: Carbotitanation and Hydrolysis
48.1.2.7 Method 7: Carbozirconation and Hydrolysis
48.1.2.8 Method 8: Other Carbometalation Processes
48.1.3 Additions of Radicals
48.1.3.1 Method 1: Additions of Alkanes to Alkenes

Synthesis by Reduction with C–C Bond Cleavage
P. Margaretha

Alkanes by Carbon Monoxide Extrusion from Aldehydes
48.1.5.1 Method 1: Decarbonylation in the Presence of Rhodium Complexes
48.1.5.2 Method 2: Decarbonylation in the Presence of Other Group 8–10 Metal Complexes
48.1.5.3 Method 3: Light-Induced Decarbonylation
48.1.5.4 Method 4: Functional Decarbonylation via Homolytically Induced Decomposition of Unsaturated Peroxyacetals 444
48.1.5.2 Alkanes by Base-Induced Cleavage of Ketones 445
48.1.5.2.1 Method 1: Synthesis by the Haller–Bauer Reaction 445
48.1.5.3 Alkanes from Carboxylic Acid Derivatives 446
48.1.5.3.1 Method 1: Synthesis from Acid Chlorides 446
48.1.5.3.2 Method 2: Synthesis from Esters 447
48.1.5.3.3 Method 3: Synthesis from Thioesters 447
48.1.5.3.4 Method 4: Synthesis from Selenoesters 448
48.1.5.4 Alkanes from Carboxylic Acid Derivatives by Decarboxylation 450
48.1.5.4.1 Method 1: Synthesis from Peroxy Esters 450
48.1.5.4.2 Method 2: Synthesis from Acyl Derivatives of Hydroxamic Acids 451
48.1.5.4.3 Method 3: Synthesis from Acyl Derivatives of Thiohydroxamic Acids 452
48.1.5.5 Alkanes from Alkanecarbonitriles 454
48.1.5.5.1 Method 1: Reduction with Lithium or Sodium in Ammonia 454
48.1.5.5.2 Method 2: Reduction with Potassium Metal 455
48.1.5.5.3 Method 3: Reductive Decyanation Using Alkylithium Reagents 456

48.1.6 Synthesis from Other Alkanes

48.1.6.1 Bond Cleavage Reactions
Á. Molnár and P. Margaretha

48.1.6.1 Bond Cleavage Reactions 459
48.1.6.1.1 Method 1: Ring Opening of Small Carbon Rings 459
48.1.6.1.1.1 Variation 1: Catalytic Hydrogenolysis 459
48.1.6.1.1.2 Variation 2: Reductive Cleavage by Alkali Metals 463
48.1.6.1.2 Method 2: Demethylation of Alkanes 465

48.1.6.2 Dehydrodimerization Reactions
Á. Molnár

48.1.6.2 Dehydrodimerization Reactions 469
48.1.6.2.1 Method 1: Dehydrodimerization of Alkanes 469

48.1.6.3 Isomerization Reactions
Á. Molnár

48.1.6.3 Isomerization Reactions 473
48.1.6.3.1 Method 1: Skeletal Isomerization of Alkanes 473
48.2 Product Class 2: Cyclopropanes
A. de Meijere and S. I. Kozhushkov

48.2 Synthesis of Product Class 2: Cyclopropanes

48.2.1 Method 1: Synthesis by Cyclization Reactions

48.2.1.1 Variation 1: Intramolecular β-C–H Insertion of a Carbene

48.2.1.2 Variation 2: Radical Insertion into a C–H Bond

48.2.1.3 Variation 3: Radical Insertion into a C–C Bond

48.2.1.4 Variation 4: 1,5-Addition and Cycloaddition Reactions of Norbornadiene

48.2.1.5 Method 2: Synthesis by Cyclizing Elimination Reactions from a C₃ Building Block

48.2.1.6 Variation 1: 1,3-Elimination of Two Heteroatoms

48.2.1.7 Variation 2: 1,3-Elimination of HX (X = Heteroatom or Heteroatom-Containing Functional Group)

48.2.1.8 Variation 3: γ-Elimination of Group 14 Elements in a Carbocationic Species

48.2.1.9 Method 3: Synthesis by Ring-Contraction Reactions

48.2.1.10 Variation 1: Ring-Contracting Elimination of Nitrogen from 4,5-Dihydro-3H-pyrazoles

48.2.1.11 Variation 2: Ring-Contracting Elimination of One or Two C=O Units from Cyclobutanones or Cyclopentanediones

48.2.1.12 Method 4: Synthesis by Cycloaddition Reactions

48.2.1.13 Variation 1: Cyclopropanation with Photochemically or Thermally Generated Carbenes

48.2.1.14 Variation 2: Cyclopropanation with Catalytically Generated Methylene

48.2.1.15 Variation 3: Cyclopropanation with Methylenoids (Simmons–Smith Cyclopropanation)

48.2.1.16 Variation 4: Cyclopropanation with Dihalocarbenes Followed by Reductive Dehalogenation

48.2.1.17 Variation 5: Cyclopropanation with Arylcarbenes (Arylcarbenoids)

48.2.1.18 Variation 6: Cycloaddition Reactions of Cycloprenes

48.2.1.19 Variation 7: Dimerization and Oligomerization Reactions of Cyclopropenes

48.2.1.20 Method 5: Synthesis by Addition to C=C Bonds of Cyclopropenes with Retention of the Cyclopropane Ring

48.2.1.21 Variation 1: Hydrogenation

48.2.1.22 Variation 2: Addition of Organometallic Species

48.2.1.23 Method 6: Synthesis by Rearrangement of the Carbon Skeleton

48.2.1.24 Variation 1: Homoallyl or Cyclobutyl Rearrangements to a Cyclopropylmethyl Group

48.2.1.25 Variation 2: Rearrangements in Oligoene Systems

48.2.1.26 Variation 3: Miscellaneous Rearrangements

48.2.1.27 Method 7: Synthesis by Transformation of Other Cyclopropanes

48.2.1.28 Variation 1: Reactions without Ring Opening of the Cyclopropane Moieties

48.2.1.29 Variation 2: Reactions with Ring Opening of the Cyclopropane Moieties
48.2 Methods 8: Miscellaneous Reactions

48.2.1 Variation 1: Reductive Cyclopropanation of a Carbonyl Group

48.2.2 Variation 2: Cycloaddition and Insertion Reactions of Carbenoids

48.2.3 Variation 3: Oligo- and Polymerization Reactions

48.2.4 Variation 4: Cyclopropanation with Sulfur Ylides

48.2.2 Applications of Product Class 2 in Organic Synthesis

48.3 Product Class 3: Cyclobutanes

R. Kostikov and M. S. Baird

48.3.1 Synthesis of Product Class 3

48.3.1.1 Method 1: Ring-Opening Reactions

48.3.1.1.1 Variation 1: Opening of the Central Bond in Bicyclo[1.1.0]butanes

48.3.1.1.2 Variation 2: Ring Opening of One Bond in [1.1.n]Propellanes

48.3.1.2 Method 2: 1,4-Cycloelimination of Two Heteroatoms from 1,4-Dihalides or Similar Difunctional Compounds

48.3.1.3 Method 3: Ring-Contraction Reactions

48.3.1.3.1 Variation 1: Elimination of Nitrogen from Six-Membered Heterocycles

48.3.1.3.2 Variation 2: Decarbonylation of Cyclopentanones

48.3.1.3.3 Variation 3: Elimination of a Metal Atom from Metallacyclopentanes

48.3.1.3.4 Variation 4: Rearrangement of Bicyclo[4.1.0]hept-2-ene Derivatives

48.3.1.4 Method 4: [2 + 2]-Cycloaddition Reactions

48.3.1.4.1 Variation 1: Cycloaddition Reactions of Cyclopropenes

48.3.1.4.2 Variation 2: Cycloaddition Reactions of Methylene cyclopropanes

48.3.1.4.3 Variation 3: Cycloaddition Reactions of Cyclobutene

48.3.1.4.4 Variation 4: Miscellaneous Intramolecular Cycloadditions

48.3.1.5 Method 5: Synthesis with Retention of the Cyclobutane Ring

48.3.1.5.1 Variation 1: Hydrogenation of Unsaturated Hydrocarbons

48.3.1.5.2 Variation 2: Hydrogenation of 1-(Organosulfanyl)cyclobutenes

48.3.1.6 Method 6: Rearrangement of the Carbon Framework

48.3.1.6.1 Variation 1: Rearrangement of Cyclopropylmethyl and Homoallyl Derivatives

48.3.1.6.2 Variation 2: Rearrangement of Compounds Containing Hexa-1,5-dienyl or Dicyclopentyl Fragments

48.3.1.7 Method 7: Transformation of Other Cyclobutanes

48.3.2 Applications of Product Class 3 in Organic Synthesis

48.4 Product Class 4: Five-Membered and Larger-Ring Cycloalkanes

M. J. Palframan and A. F. Parsons

48.4.1 Synthesis of Product Class 4

48.4.1.1 Method 1: Synthesis by Reduction without C—C Bond Cleavage

48.4.1.1.1 Variation 1: Of Cycloalkenes
48.4.1.2 Variation 2: Of Cyclodienes .. 650
48.4.1.3 Variation 3: Of Substituted Benzenes 651
48.4.1.4 Method 2: Synthesis by Radical Cyclization 652
48.4.1.5 Variation 1: Formation of Cyclopentanes and Cyclohexanes 652
48.4.1.6 Variation 2: Formation of Medium-Sized Rings 663
48.4.1.7 Variation 3: Formation of Large-Sized Rings 664
48.4.1.8 Method 3: Synthesis by Polar Cyclization 665
48.4.1.9 Variation 1: Nucleophilic Substitution 665
48.4.1.10 Variation 2: Nucleophilic Addition 668
48.4.1.11 Method 4: Synthesis by Metal-Promoted Cyclization 673
48.4.1.12 Variation 1: Of Dienes ... 673
48.4.1.13 Variation 2: Of Enynes ... 675
48.4.1.14 Variation 3: Of Diynes ... 679
48.4.1.15 Variation 4: Of Trimethylenemethanes 681
48.4.1.16 Variation 5: Of Unsaturated Diazocompounds 683
48.4.1.17 Method 5: Synthesis by Ring Expansion 685
48.4.1.18 Method 6: Synthesis by Ring Contraction 687

48.5 Product Class 5: Hydrocarbon Polymers
W. Kaminsky

48.5.1 Product Subclass 1: Polyethenes 696
48.5.1.1 Synthesis of Product Subclass 1 696
48.5.1.2 Method 1: Synthesis by Decomposition of Diazomethane 696
48.5.1.3 Method 2: Synthesis by Radical Polymerization 697
48.5.1.4 Method 3: Synthesis by Coordination Catalysis 699
48.5.1.5 Variation 1: Using Early Ziegler–Natta Catalysts: Titanium Halides–Alkylaluminum Complexes 699
48.5.1.6 Variation 2: Using Third-Generation Supported Ziegler–Natta Catalysts ... 701
48.5.1.7 Variation 3: Using Phillips Catalysts 701
48.5.1.8 Variation 4: Using Homogeneous (Single-Site) Catalysis with Metalloccenes Activated by Methylaluminoxane 702
48.5.1.9 Variation 5: Using Homogeneous (Single-Site) Catalysis with Metalloccenes Activated by Fluorinated Boranes or Borates 705
48.5.1.10 Variation 6: Using Homogeneous (Single-Site) Catalysis with Late-Transition-Metal Catalysts 705

48.5.2 Product Subclass 2: Polyethylene Copolymers 708
48.5.2.1 Synthesis of Product Subclass 2 708
48.5.2.2 Method 1: Copolymerization of Ethene with Alk-1-enes 708
48.5.2.3 Variation 1: Using Ziegler–Natta Catalysts 709
48.5.2.4 Variation 2: Of Short- to Medium-Chain Alk-1-enes Using Single-Site Catalysts ... 709
48.5.2.5 Variation 3: Of Medium- to Long-Chain Alk-1-enes Using Single-Site Catalysts ... 711
48.5.2.6 Method 2: Synthesis of Ethene–Propene Rubbers 712
<table>
<thead>
<tr>
<th>Volume</th>
<th>Section Number</th>
<th>Contribution Title</th>
<th>Author</th>
<th>Number of Pages</th>
<th>Responsible Member of the Editorial Board</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Volume 1</td>
<td></td>
<td></td>
<td>B. M. Trost</td>
</tr>
<tr>
<td>2013/2</td>
<td>1.1.5</td>
<td>Organometallic Complexes of Nickel</td>
<td>R. M. Stolley and J. Louie</td>
<td>61</td>
<td>B. J. Plietker</td>
</tr>
<tr>
<td>2012/4</td>
<td>1.2.5</td>
<td>Product Subclass 5: Palladium(III)-Containing Complexes</td>
<td>D. C. Powers and T. Ritter</td>
<td>31</td>
<td>B. Stoltz</td>
</tr>
<tr>
<td>2013/2</td>
<td>1.2.6</td>
<td>High-Valent Palladium in Catalysis</td>
<td>P. Chen, G. Liu, K. M. Engle, and J.-Q. Yu</td>
<td>45</td>
<td>B. Stoltz</td>
</tr>
<tr>
<td>2012/3</td>
<td>1.4.5</td>
<td>Organometallic Complexes of Cobalt</td>
<td>M. Amatore, C. Aubert, M. Malacria, and M. Petit</td>
<td>121</td>
<td>B. J. Plietker</td>
</tr>
<tr>
<td>2014/1</td>
<td>1.7</td>
<td>Product Class 7: Organometallic Complexes of Iron</td>
<td>G. R. Stephenson</td>
<td>192</td>
<td>B. J. Plietker</td>
</tr>
<tr>
<td>2014/1</td>
<td>1.7.8.17</td>
<td>Ferrocenes</td>
<td>G. R. Stephenson</td>
<td>62</td>
<td>B. J. Plietker</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Volume 2</td>
<td></td>
<td></td>
<td>M. Shibasaki</td>
</tr>
<tr>
<td>2011/4</td>
<td>2.4.12</td>
<td>Arene Organometallic Complexes of Chromium, Molybdenum, and Tungsten</td>
<td>M. Uemura</td>
<td>24</td>
<td>I. Marek</td>
</tr>
<tr>
<td>2014/2</td>
<td>2.7.10</td>
<td>Carbonyl Complexes of Chromium, Molybdenum, and Tungsten with α-Bonded Ligands</td>
<td>E. Aguilar and L. A. López</td>
<td>137</td>
<td>I. Marek</td>
</tr>
<tr>
<td>2014/2</td>
<td>2.8.10</td>
<td>Organometallic Complexes of Vanadium</td>
<td>O. S. Shneider and A. M. Szpilman</td>
<td>33</td>
<td>I. Marek</td>
</tr>
<tr>
<td>2011/3</td>
<td>2.10.18</td>
<td>Organometallic Complexes of Titanium: Titanium-Mediated Alkenation Reactions</td>
<td>T. Takeda and A. Tsubouchi</td>
<td>36</td>
<td>I. Marek</td>
</tr>
<tr>
<td>2012/4</td>
<td>2.10.20</td>
<td>Organometallic Complexes of Titanium: Titanium-Mediated Reductive Cross-Coupling Reactions (Intermolecular Metallacycle-Mediated C-C Bond Formation)</td>
<td>G. C. Micalizio</td>
<td>65</td>
<td>I. Marek</td>
</tr>
<tr>
<td>2013/4</td>
<td>2.12.16</td>
<td>Organometallic Complexes of Scandium, Yttrium, and the Lanthanides</td>
<td>J. Hannedouche</td>
<td>126</td>
<td>I. Marek</td>
</tr>
<tr>
<td>2012/4</td>
<td>2.13</td>
<td>Product Class 13: Organometallic Complexes of the Actinides</td>
<td>R. J. Batrice, I.-S. R. Karmel, and M. S. Eisen</td>
<td>113</td>
<td>I. Marek</td>
</tr>
<tr>
<td>In Volume</td>
<td>Section Number</td>
<td>Contribution Title</td>
<td>Author</td>
<td>Number of Pages</td>
<td>Responsible Member of the Editorial Board</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>--</td>
<td>---</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>2011/4</td>
<td>2.14</td>
<td>Product Class 14: Group 4 Metallocene Complexes with Bis(trimethylsilyl)acetylene</td>
<td>T. Beweries and U. Rosenthal</td>
<td>61</td>
<td>I. Marek</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Volume 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014/1</td>
<td>3.1.11</td>
<td>Organometallic Complexes of Zinc</td>
<td>X.-F. Wu</td>
<td>96</td>
<td>N. Krause</td>
</tr>
<tr>
<td>2014/2</td>
<td>3.4.8</td>
<td>Organometallic Complexes of Copper</td>
<td>B. H. Lipshutz and S. Ghorei</td>
<td>43</td>
<td>N. Krause</td>
</tr>
<tr>
<td>2011/2</td>
<td>3.6.11</td>
<td>Organometallic Complexes of Gold: Gold-Catalyzed Cycloisomerizations of Enynes</td>
<td>V. López-Carrillo and A. M. Echavarren</td>
<td>70</td>
<td>N. Krause</td>
</tr>
<tr>
<td>2011/2</td>
<td>3.6.12</td>
<td>Organometallic Complexes of Gold: Gold-Catalyzed Propargylic Rearrangements</td>
<td>L. Zhang</td>
<td>30</td>
<td>N. Krause</td>
</tr>
<tr>
<td>2011/2</td>
<td>3.6.13</td>
<td>Organometallic Complexes of Gold: Gold-Catalyzed Coupling Reactions</td>
<td>M. N. Hopkinson and V. Gouverneur</td>
<td>52</td>
<td>N. Krause</td>
</tr>
<tr>
<td>2012/3</td>
<td>3.6.14</td>
<td>Organometallic Complexes of Gold: Asymmetric Gold-Catalyzed Transformations</td>
<td>M. J. Campbell and F. D. Toste</td>
<td>47</td>
<td>N. Krause</td>
</tr>
<tr>
<td>2012/1</td>
<td>4.4.1</td>
<td>Product Subclass 1: Disilenes</td>
<td>A. Meltzer and D. Scheschkwitz</td>
<td>17</td>
<td>M. Oestreich</td>
</tr>
<tr>
<td>2011/3</td>
<td>4.4.2.5</td>
<td>Silenes (Update 1, 2011)</td>
<td>H. Ottosson and A. M. Rouf</td>
<td>10</td>
<td>M. Oestreich</td>
</tr>
<tr>
<td>2011/3</td>
<td>4.4.2.6</td>
<td>Silenes (Update 2, 2011): Silenolates</td>
<td>H. Ottosson and J. Ohshita</td>
<td>9</td>
<td>M. Oestreich</td>
</tr>
<tr>
<td>2012/4</td>
<td>4.4.3</td>
<td>Product Subclass 3: Silylenes</td>
<td>S. Inoue and M. Driess</td>
<td>83</td>
<td>M. Oestreich</td>
</tr>
<tr>
<td>2015/1</td>
<td>4.4.4.8</td>
<td>Silyl Hydrides</td>
<td>R. W. Clark and S. L. Wiskur</td>
<td>58</td>
<td>M. Oestreich</td>
</tr>
<tr>
<td>2013/2</td>
<td>4.4.5</td>
<td>Product Subclass 5: Disilanes and Oligosilanes</td>
<td>C. Marschner and J. Baumgartner</td>
<td>31</td>
<td>M. Oestreich</td>
</tr>
<tr>
<td>2013/2</td>
<td>4.4.9</td>
<td>Product Subclass 9: Silylzinc Reagents</td>
<td>A. Durand, I. Hemone, and R. D. Singer</td>
<td>9</td>
<td>M. Oestreich</td>
</tr>
<tr>
<td>2013/2</td>
<td>4.4.21.13</td>
<td>Silylamines</td>
<td>A. Kawachi</td>
<td>18</td>
<td>M. Oestreich</td>
</tr>
<tr>
<td>2013/2</td>
<td>4.4.22</td>
<td>Product Subclass 22: Silyl Phosphines</td>
<td>M. Hayashi</td>
<td>27</td>
<td>M. Oestreich</td>
</tr>
<tr>
<td>2012/2</td>
<td>4.4.25.11</td>
<td>Acylsilanes</td>
<td>M. Nahm Garrett and J. S. Johnson</td>
<td>84</td>
<td>M. Oestreich</td>
</tr>
<tr>
<td>2015/1</td>
<td>4.4.34.35</td>
<td>Vinylsilanes</td>
<td>E. A. Anderson and D. S. W. Lim</td>
<td>99</td>
<td>M. Oestreich</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Volume 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012/1</td>
<td>4.4.2</td>
<td>Product Subclass 1: Disilenes</td>
<td>A. Meltzer and D. Scheschkwitz</td>
<td>17</td>
<td>M. Oestreich</td>
</tr>
<tr>
<td>2011/3</td>
<td>4.4.2.5</td>
<td>Silenes (Update 1, 2011)</td>
<td>H. Ottosson and A. M. Rouf</td>
<td>10</td>
<td>M. Oestreich</td>
</tr>
<tr>
<td>2011/3</td>
<td>4.4.2.6</td>
<td>Silenes (Update 2, 2011): Silenolates</td>
<td>H. Ottosson and J. Ohshita</td>
<td>9</td>
<td>M. Oestreich</td>
</tr>
<tr>
<td>2012/4</td>
<td>4.4.3</td>
<td>Product Subclass 3: Silylenes</td>
<td>S. Inoue and M. Driess</td>
<td>83</td>
<td>M. Oestreich</td>
</tr>
<tr>
<td>2015/1</td>
<td>4.4.4.8</td>
<td>Silyl Hydrides</td>
<td>R. W. Clark and S. L. Wiskur</td>
<td>58</td>
<td>M. Oestreich</td>
</tr>
<tr>
<td>2013/2</td>
<td>4.4.5</td>
<td>Product Subclass 5: Disilanes and Oligosilanes</td>
<td>C. Marschner and J. Baumgartner</td>
<td>31</td>
<td>M. Oestreich</td>
</tr>
<tr>
<td>2013/2</td>
<td>4.4.9</td>
<td>Product Subclass 9: Silylzinc Reagents</td>
<td>A. Durand, I. Hemone, and R. D. Singer</td>
<td>9</td>
<td>M. Oestreich</td>
</tr>
<tr>
<td>2013/2</td>
<td>4.4.21.13</td>
<td>Silylamines</td>
<td>A. Kawachi</td>
<td>18</td>
<td>M. Oestreich</td>
</tr>
<tr>
<td>2013/2</td>
<td>4.4.22</td>
<td>Product Subclass 22: Silyl Phosphines</td>
<td>M. Hayashi</td>
<td>27</td>
<td>M. Oestreich</td>
</tr>
<tr>
<td>2012/2</td>
<td>4.4.25.11</td>
<td>Acylsilanes</td>
<td>M. Nahm Garrett and J. S. Johnson</td>
<td>84</td>
<td>M. Oestreich</td>
</tr>
<tr>
<td>2015/1</td>
<td>4.4.34.35</td>
<td>Vinylsilanes</td>
<td>E. A. Anderson and D. S. W. Lim</td>
<td>99</td>
<td>M. Oestreich</td>
</tr>
<tr>
<td>Volume</td>
<td>Section Number</td>
<td>Contribution Title</td>
<td>Author(s)</td>
<td>Number of Pages</td>
<td>Responsible Member of the Editorial Board</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>--------------------</td>
<td>-----------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>2013/2</td>
<td>4.4.41.8</td>
<td>β-Silyl Carbonyl Compounds</td>
<td>F. Nahra and O. Riant</td>
<td>18</td>
<td>M. Oestreich</td>
</tr>
<tr>
<td>2013/3</td>
<td>4.4.43</td>
<td>Product Subclass 43: Silylium Ions and Stabilized Silylium Ions</td>
<td>T. Müller</td>
<td>42</td>
<td>M. Oestreich</td>
</tr>
<tr>
<td>2013/3</td>
<td>4.4.44</td>
<td>Product Subclass 44: Silyl Radicals</td>
<td>Y. Landais</td>
<td>50</td>
<td>M. Oestreich</td>
</tr>
<tr>
<td>2013/3</td>
<td>4.4.45</td>
<td>Product Subclass 45: Silanecarboxylic Acids and Esters</td>
<td>K. Igawa and K. Tomooka</td>
<td>7</td>
<td>M. Oestreich</td>
</tr>
<tr>
<td>2014/1</td>
<td>4.4.46</td>
<td>Product Subclass 46: Siloles</td>
<td>J. Kobayashi and T. Kawashima</td>
<td>19</td>
<td>M. Oestreich</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Volume 5
Compounds of Group 14 (Ge, Sn, Pb) E. J. Thomas

<table>
<thead>
<tr>
<th>Year</th>
<th>Section Number</th>
<th>Contribution Title</th>
<th>Author(s)</th>
<th>Number of Pages</th>
<th>Responsible Member of the Editorial Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010/1</td>
<td>5.1.1.8</td>
<td>Germanium Hydrides</td>
<td>A. C. Spivey and C.-C. Tseng</td>
<td>9</td>
<td>M. G. Moloney</td>
</tr>
<tr>
<td>2010/1</td>
<td>5.1.15.2</td>
<td>Germanium Cyanides</td>
<td>A. C. Spivey and C.-C. Tseng</td>
<td>3</td>
<td>M. G. Moloney</td>
</tr>
<tr>
<td>2010/1</td>
<td>5.1.16.6</td>
<td>Acylgermanes</td>
<td>A. C. Spivey and C.-C. Tseng</td>
<td>6</td>
<td>M. G. Moloney</td>
</tr>
<tr>
<td>2010/1</td>
<td>5.1.18.4</td>
<td>α-Halo- and α-Alkoxyvinylgermanes</td>
<td>A. C. Spivey and C.-C. Tseng</td>
<td>6</td>
<td>M. G. Moloney</td>
</tr>
<tr>
<td>2010/1</td>
<td>5.1.19.7</td>
<td>α-Halo-, α-Hydroxy-, α-Alkoxy-, and α-Aminooalkylgermanes</td>
<td>A. C. Spivey and C.-C. Tseng</td>
<td>7</td>
<td>M. G. Moloney</td>
</tr>
<tr>
<td>2010/1</td>
<td>5.1.20.4</td>
<td>Alkynylgermanes</td>
<td>A. C. Spivey and C.-C. Tseng</td>
<td>6</td>
<td>M. G. Moloney</td>
</tr>
<tr>
<td>2010/1</td>
<td>5.1.22.6</td>
<td>Aryl- and Heteroarylgermanes</td>
<td>A. C. Spivey and C.-C. Tseng</td>
<td>7</td>
<td>M. G. Moloney</td>
</tr>
<tr>
<td>2010/1</td>
<td>5.1.23.6</td>
<td>Vinylgermanes</td>
<td>A. C. Spivey and C.-C. Tseng</td>
<td>9</td>
<td>M. G. Moloney</td>
</tr>
<tr>
<td>2010/1</td>
<td>5.1.24.4</td>
<td>Propargyl- and Allenylgermanes</td>
<td>A. C. Spivey and C.-C. Tseng</td>
<td>3</td>
<td>M. G. Moloney</td>
</tr>
<tr>
<td>2010/1</td>
<td>5.1.25.3</td>
<td>Benzylgermanes</td>
<td>A. C. Spivey and C.-C. Tseng</td>
<td>5</td>
<td>M. G. Moloney</td>
</tr>
<tr>
<td>2010/1</td>
<td>5.1.26.6</td>
<td>Allylgermanes</td>
<td>A. C. Spivey and C.-C. Tseng</td>
<td>7</td>
<td>M. G. Moloney</td>
</tr>
<tr>
<td>2010/1</td>
<td>5.1.27.4</td>
<td>Alkylgermanes</td>
<td>A. C. Spivey and C.-C. Tseng</td>
<td>3</td>
<td>M. G. Moloney</td>
</tr>
<tr>
<td>2013/1</td>
<td>5.2.1</td>
<td>Product Subclass 1: Tin Hydrides</td>
<td>K. Tchabanenko</td>
<td>78</td>
<td>M. G. Moloney</td>
</tr>
<tr>
<td>2014/4</td>
<td>5.2.16.11</td>
<td>Tin Cyanides and Fulminates</td>
<td>P. B Wyatt</td>
<td>2</td>
<td>M. G. Moloney</td>
</tr>
<tr>
<td>2014/4</td>
<td>5.2.17.9</td>
<td>Acylstannanes (Including S, Se, and Te Analogues)</td>
<td>P. B Wyatt</td>
<td>8</td>
<td>M. G. Moloney</td>
</tr>
<tr>
<td>2014/4</td>
<td>5.2.18.8</td>
<td>Imidoxystannanes, Diazoalkylstannanes, Tin Isocyanates, and Tin Isothiocyanates</td>
<td>P. B Wyatt</td>
<td>2</td>
<td>M. G. Moloney</td>
</tr>
<tr>
<td>2011/2</td>
<td>5.2.27</td>
<td>Product Subclass 27: Benzylstannanes</td>
<td>J. S. Snaith</td>
<td>36</td>
<td>M. G. Moloney</td>
</tr>
<tr>
<td>2011/2</td>
<td>5.2.28</td>
<td>Product Subclass 28: Allylstannanes</td>
<td>J. S. Snaith</td>
<td>72</td>
<td>M. G. Moloney</td>
</tr>
</tbody>
</table>

Volume 6
Boron Compounds G. A. Molander

<table>
<thead>
<tr>
<th>Year</th>
<th>Section Number</th>
<th>Contribution Title</th>
<th>Author(s)</th>
<th>Number of Pages</th>
<th>Responsible Member of the Editorial Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012/3</td>
<td>6.1.3.8</td>
<td>Diborane(4) Compounds</td>
<td>G. E. Ferris, S. N. Mlynarski, and J. P. Morken</td>
<td>30</td>
<td>D. G. Hall</td>
</tr>
<tr>
<td>In Volume</td>
<td>Section Number</td>
<td>Contribution Title</td>
<td>Author</td>
<td>Number of Pages</td>
<td>Responsible Member of the Editorial Board</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>--------------------</td>
<td>--------</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>2013/3</td>
<td>6.1.6</td>
<td>Product Subclass 6: Haloborates</td>
<td>G. A. Molander and F. Beaumard</td>
<td>43</td>
<td>D. G. Hall</td>
</tr>
<tr>
<td>2011/4</td>
<td>6.1.7.11</td>
<td>Hydroxyboranes</td>
<td>D. G. Hall and H. Zheng</td>
<td>39</td>
<td>D. G. Hall</td>
</tr>
<tr>
<td>2012/4</td>
<td>6.1.28.24</td>
<td>Vinylboranes</td>
<td>M. Vaultier and M. Pucheuault</td>
<td>43</td>
<td>D. G. Hall</td>
</tr>
<tr>
<td>2012/3</td>
<td>6.1.35.20</td>
<td>Allylboranes</td>
<td>Yu. N. Bubnov and G. D. Kolomnikova</td>
<td>85</td>
<td>D. G. Hall</td>
</tr>
</tbody>
</table>

Volume 7

Compounds of Groups 13 and 2 (Al, Ga, In, Tl, Be -- Ba)

<table>
<thead>
<tr>
<th>In Volume</th>
<th>Section Number</th>
<th>Contribution Title</th>
<th>Author</th>
<th>Number of Pages</th>
<th>Responsible Member of the Editorial Board</th>
<th>Volume Editor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010/4</td>
<td>7.1.2.44</td>
<td>Aluminum Hydrides</td>
<td>H. Naka and S. Saito</td>
<td>9</td>
<td>K. Ishihara</td>
<td></td>
</tr>
<tr>
<td>2010/4</td>
<td>7.1.3.18</td>
<td>Aluminum Halides</td>
<td>H. Naka and S. Saito</td>
<td>14</td>
<td>K. Ishihara</td>
<td></td>
</tr>
<tr>
<td>2011/4</td>
<td>7.1.4.7</td>
<td>Aluminum Alkoxides and Phenoxides</td>
<td>K. Ohmatsu and T. Ooi</td>
<td>18</td>
<td>K. Ishihara</td>
<td></td>
</tr>
<tr>
<td>2011/4</td>
<td>7.1.7.15</td>
<td>Aluminum Amides</td>
<td>K. Ohmatsu and T. Ooi</td>
<td>8</td>
<td>K. Ishihara</td>
<td></td>
</tr>
<tr>
<td>2010/4</td>
<td>7.1.9.11</td>
<td>Triorganoaluminum Compounds</td>
<td>M. Oishi and H. Takikawa</td>
<td>20</td>
<td>K. Ishihara</td>
<td></td>
</tr>
<tr>
<td>2010/4</td>
<td>7.2.8</td>
<td>Gallium Compounds</td>
<td>M. Yamaguchi</td>
<td>12</td>
<td>K. Ishihara</td>
<td></td>
</tr>
<tr>
<td>2010/4</td>
<td>7.3</td>
<td>Product Class 3: Indium Compounds</td>
<td>S. Araki and T. Hirashita</td>
<td>70</td>
<td>K. Ishihara</td>
<td></td>
</tr>
<tr>
<td>2010/3</td>
<td>7.6.5.6</td>
<td>Aryl Grignard Reagents</td>
<td>H. Yorimitsu</td>
<td>9</td>
<td>K. Ishihara</td>
<td></td>
</tr>
<tr>
<td>2010/3</td>
<td>7.6.10.9</td>
<td>Alkyl Grignard Reagents</td>
<td>H. Yorimitsu</td>
<td>19</td>
<td>K. Ishihara</td>
<td></td>
</tr>
<tr>
<td>2013/1</td>
<td>7.6.11.21</td>
<td>Grignard Reagents with Transition Metals</td>
<td>Z. Song and T. Takahashi</td>
<td>33</td>
<td>K. Ishihara</td>
<td></td>
</tr>
<tr>
<td>2010/3</td>
<td>7.6.12.13</td>
<td>Magnesium Halides</td>
<td>M. Shimizu</td>
<td>29</td>
<td>K. Ishihara</td>
<td></td>
</tr>
<tr>
<td>2010/3</td>
<td>7.6.13.17</td>
<td>Magnesium Oxide, Alkoxides, and Carboxylates</td>
<td>M. Shimizu</td>
<td>9</td>
<td>K. Ishihara</td>
<td></td>
</tr>
<tr>
<td>2010/3</td>
<td>7.6.14</td>
<td>Product Subclass 14: Magnesium Amides</td>
<td>M. Shimizu</td>
<td>15</td>
<td>K. Ishihara</td>
<td></td>
</tr>
<tr>
<td>2011/1</td>
<td>7.6.15</td>
<td>Product Subclass 15: Dialkyl- and Diarylmagnesiums</td>
<td>L. Yang and C.-J. Li</td>
<td>14</td>
<td>K. Ishihara</td>
<td></td>
</tr>
<tr>
<td>2013/1</td>
<td>7.7</td>
<td>Product Class 7: Calcium Compounds</td>
<td>M. Hatano</td>
<td>44</td>
<td>K. Ishihara</td>
<td></td>
</tr>
<tr>
<td>2010/4</td>
<td>7.9.5</td>
<td>Barium Compounds</td>
<td>A. Yanagisawa</td>
<td>14</td>
<td>K. Ishihara</td>
<td></td>
</tr>
</tbody>
</table>

Volume 8

Compounds of Group 1 (Li -- Cs)

<table>
<thead>
<tr>
<th>In Volume</th>
<th>Section Number</th>
<th>Contribution Title</th>
<th>Author</th>
<th>Number of Pages</th>
<th>Responsible Member of the Editorial Board</th>
<th>Volume Editor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010/4</td>
<td>8.1.28</td>
<td>The Catalytic Use of Lithium Compounds for Bond Formation</td>
<td>S. Matsunaga</td>
<td>14</td>
<td>M. Yus</td>
<td></td>
</tr>
<tr>
<td>2011/4</td>
<td>8.1.29</td>
<td>Dearomatization Reactions Using Organolithiums</td>
<td>G. Lemière and J. Clayden</td>
<td>52</td>
<td>M. Yus</td>
<td></td>
</tr>
<tr>
<td>2011/4</td>
<td>8.1.30</td>
<td>Carbolithiation of Carbon–Carbon Multiple Bonds</td>
<td>E. Lete and N. Sotomayor</td>
<td>61</td>
<td>M. Yus</td>
<td></td>
</tr>
<tr>
<td>In Volume</td>
<td>Section Number</td>
<td>Contribution Title</td>
<td>Author</td>
<td>Number of Pages</td>
<td>Responsible Member of the Editorial Board</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>--------------------</td>
<td>--------</td>
<td>----------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>2012/1</td>
<td>8.1.31</td>
<td>Functionalized Organolithiums by Ring Opening of Heterocycles</td>
<td>M. Yus and F. Foubelo</td>
<td>46</td>
<td>M. Yus</td>
<td></td>
</tr>
<tr>
<td>2012/1</td>
<td>8.1.32</td>
<td>Syntheses Mediated by α-Lithiated Epoxides and Aziridines</td>
<td>L. Degennaro, F. M. Perna, and S. Florio</td>
<td>99</td>
<td>M. Yus</td>
<td></td>
</tr>
<tr>
<td>2012/1</td>
<td>8.1.33</td>
<td>Transition-Metal-Catalyzed Carbon—Carbon Bond Formation with Organolithiums</td>
<td>G. Manolikakes</td>
<td>12</td>
<td>M. Yus</td>
<td></td>
</tr>
<tr>
<td>2012/2</td>
<td>8.1.34</td>
<td>Asymmetric Lithiation</td>
<td>J.-C. Kizirian</td>
<td>63</td>
<td>M. Yus</td>
<td></td>
</tr>
<tr>
<td>2010/4</td>
<td>8.2.16</td>
<td>The Catalytic Use of Sodium Compounds for Bond Formation</td>
<td>T. Arai</td>
<td>14</td>
<td>M. Yus</td>
<td></td>
</tr>
</tbody>
</table>

Volume 9

Fully Unsaturated Small-Ring Heterocycles and Monocyclic Five-Membered Heteroarenes with One Heteroatom

<table>
<thead>
<tr>
<th>In Volume</th>
<th>Section Number</th>
<th>Contribution Title</th>
<th>Author</th>
<th>Number of Pages</th>
<th>Responsible Member of the Editorial Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011/2</td>
<td>9.10.4</td>
<td>Thiophenes, Thiophene 1,1-Dioxides, and Thiophene 1-Oxides</td>
<td>J. Schatz and M. Seßler</td>
<td>73</td>
<td>A. Fürstner</td>
</tr>
<tr>
<td>2010/1</td>
<td>9.11.4</td>
<td>Selenophenes</td>
<td>J. Schatz and M. Seßler</td>
<td>17</td>
<td>A. Fürstner</td>
</tr>
<tr>
<td>2010/1</td>
<td>9.12.3</td>
<td>Tellurophenes</td>
<td>J. Schatz and M. Seßler</td>
<td>9</td>
<td>A. Fürstner</td>
</tr>
<tr>
<td>2013/1</td>
<td>9.13.5</td>
<td>1H-Pyrroles</td>
<td>W. D. Lubell, D. J. St-Cyr, J. Dufour-Gallant, R. Hopewell, N. Boutard, T. Kassem, A. Dörr, and R. Zelli</td>
<td>252</td>
<td>A. Fürstner</td>
</tr>
</tbody>
</table>

Volume 10

Fused Five-Membered Heteroarenes with One Heteroatom

<table>
<thead>
<tr>
<th>In Volume</th>
<th>Section Number</th>
<th>Contribution Title</th>
<th>Author</th>
<th>Number of Pages</th>
<th>Responsible Member of the Editorial Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014/3</td>
<td>10.21</td>
<td>Product Class 21: Five–Five-Fused Heteroarenes with One Heteroatom in Each Ring</td>
<td>S. P. Stanforth</td>
<td>148</td>
<td>J. A. Joule</td>
</tr>
</tbody>
</table>

Volume 11

Five-Membered Heteroarenes with One Chalcogen and One Additional Heteroatom

<table>
<thead>
<tr>
<th>In Volume</th>
<th>Section Number</th>
<th>Contribution Title</th>
<th>Author</th>
<th>Number of Pages</th>
<th>Responsible Member of the Editorial Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010/1</td>
<td>11.9.5</td>
<td>Isoxazoles</td>
<td>P. Margaretha</td>
<td>23</td>
<td>E. Schaumann</td>
</tr>
<tr>
<td>In Volume</td>
<td>Section Number</td>
<td>Contribution Title</td>
<td>Author</td>
<td>Number of Pages</td>
<td>Responsible Member of the Editorial Board</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>--------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>2010/1</td>
<td>11.10.5</td>
<td>1,2-Benzisoxazoles and Related Compounds</td>
<td>S. Härtinger</td>
<td>20</td>
<td>E. Schaumann</td>
</tr>
<tr>
<td>2010/3</td>
<td>11.12.5</td>
<td>Oxazoles</td>
<td>A. Khartulyari and M. E. Maier</td>
<td>64</td>
<td>E. Schaumann</td>
</tr>
<tr>
<td>2010/1</td>
<td>11.13</td>
<td>Product Class 13: Benzoxazoles and Other Annulated Oxazoles</td>
<td>M. Schnürch, J. Hämerle, and P. Stanetty</td>
<td>54</td>
<td>E. Schaumann</td>
</tr>
<tr>
<td>2010/1</td>
<td>11.15.4</td>
<td>Isothiazoles</td>
<td>M. Sainsbury</td>
<td>42</td>
<td>E. Schaumann</td>
</tr>
<tr>
<td>2010/1</td>
<td>11.16.3</td>
<td>Benzisothiazoles</td>
<td>M. Sainsbury</td>
<td>17</td>
<td>E. Schaumann</td>
</tr>
<tr>
<td>2010/1</td>
<td>11.17.6</td>
<td>Thiiazoles</td>
<td>P. A. Koutentis and H. A. Ioannidou</td>
<td>125</td>
<td>E. Schaumann</td>
</tr>
<tr>
<td>2010/1</td>
<td>11.18.5</td>
<td>Benzothiazoles</td>
<td>H. Ulrich</td>
<td>12</td>
<td>E. Schaumann</td>
</tr>
<tr>
<td>2010/1</td>
<td>11.20.3</td>
<td>Isoselenazoles</td>
<td>K. Shimada</td>
<td>7</td>
<td>E. Schaumann</td>
</tr>
<tr>
<td>2010/1</td>
<td>11.21.5</td>
<td>Annulated Isoselenazole Compounds</td>
<td>K. Shimada</td>
<td>3</td>
<td>E. Schaumann</td>
</tr>
<tr>
<td>2010/1</td>
<td>11.22.4</td>
<td>Selenazoles</td>
<td>K. Shimada</td>
<td>38</td>
<td>E. Schaumann</td>
</tr>
<tr>
<td>2010/1</td>
<td>11.23.3</td>
<td>Annulated Selenazole Compounds</td>
<td>K. Shimada</td>
<td>11</td>
<td>E. Schaumann</td>
</tr>
<tr>
<td>2010/1</td>
<td>11.25.4</td>
<td>Isotellurazoles, and Annulated Isotellurazole and Tellurazole Compounds</td>
<td>K. Shimada</td>
<td>6</td>
<td>E. Schaumann</td>
</tr>
</tbody>
</table>

Volume 12

Five-Membered Hetarenes with Two Nitrogen or Phosphorus Atoms

<table>
<thead>
<tr>
<th>In Volume</th>
<th>Section Number</th>
<th>Contribution Title</th>
<th>Author</th>
<th>Number of Pages</th>
<th>Responsible Member of the Editorial Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011/1</td>
<td>12.2.5</td>
<td>1H- and 2H-Indazoles</td>
<td>K. Sapeta and M. A. Kerr</td>
<td>60</td>
<td>E. M. Carreira</td>
</tr>
</tbody>
</table>

Volume 13

Five-Membered Hetarenes with Three or More Heteroatoms

<table>
<thead>
<tr>
<th>In Volume</th>
<th>Section Number</th>
<th>Contribution Title</th>
<th>Author</th>
<th>Number of Pages</th>
<th>Responsible Member of the Editorial Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012/2</td>
<td>13.32</td>
<td>Product Class 32: 1,2,3-Trithioles, Their Benzo Derivatives, and Selenium and Tellurium Analogues</td>
<td>R. A. Aitken</td>
<td>50</td>
<td>R. A. Aitken</td>
</tr>
<tr>
<td>2012/2</td>
<td>13.33</td>
<td>Product Class 33: 1,2,4-Triazolium Salts</td>
<td>C. A. Gondo and J. W. Bode</td>
<td>16</td>
<td>R. A. Aitken</td>
</tr>
<tr>
<td>2012/2</td>
<td>13.34</td>
<td>Product Class 34: Dithiadiazolium Salts and Dithiadiazolyl-Containing Compounds</td>
<td>R. J. Pearson</td>
<td>18</td>
<td>R. A. Aitken</td>
</tr>
</tbody>
</table>

Volume 14

Six-Membered Hetarenes with One Chalcogen

<table>
<thead>
<tr>
<th>In Volume</th>
<th>Section Number</th>
<th>Contribution Title</th>
<th>Author</th>
<th>Number of Pages</th>
<th>Responsible Member of the Editorial Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013/3</td>
<td>14.1.5</td>
<td>Pyrylium Salts</td>
<td>A. T. Balaban and T. S. Balaban</td>
<td>72</td>
<td>A. P. Dobbs</td>
</tr>
</tbody>
</table>

Volume 15

Six-Membered Hetarenes with One Nitrogen or Phosphorus Atom

<table>
<thead>
<tr>
<th>In Volume</th>
<th>Section Number</th>
<th>Contribution Title</th>
<th>Author</th>
<th>Number of Pages</th>
<th>Responsible Member of the Editorial Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011/1</td>
<td>15.7.5</td>
<td>Quinolizinium Salts and Benzo Analogues</td>
<td>H. Ihmels</td>
<td>17</td>
<td>M. C. Bagley</td>
</tr>
<tr>
<td>In Volume</td>
<td>Section Number</td>
<td>Contribution Title</td>
<td>Author</td>
<td>Number of Pages</td>
<td>Responsible Member of the Editorial Board</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>-------------------</td>
<td>--------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>16</td>
<td>16.2.4</td>
<td>Six-Membered Hetarenes with Two Identical Heteroatoms</td>
<td>S. M. Sakya and J. Yang</td>
<td>14</td>
<td>J. J. Li</td>
</tr>
<tr>
<td>16</td>
<td>16.3.5</td>
<td>1,2-Dithiins</td>
<td>F. K. Yoshimoto and Q. Li</td>
<td>22</td>
<td>J. J. Li</td>
</tr>
<tr>
<td>16</td>
<td>16.4.6</td>
<td>1,4-Dithiiins</td>
<td>S. A. Kosarev</td>
<td>22</td>
<td>J. J. Li</td>
</tr>
<tr>
<td>16</td>
<td>16.5.2</td>
<td>1,2-Diselenins</td>
<td>T. J. Hagen</td>
<td>5</td>
<td>J. J. Li</td>
</tr>
<tr>
<td>16</td>
<td>16.6.4</td>
<td>1,4-Diselenins</td>
<td>T. J. Hagen</td>
<td>4</td>
<td>J. J. Li</td>
</tr>
<tr>
<td>16</td>
<td>16.8.5</td>
<td>Pyridazines</td>
<td>J. Zhang</td>
<td>40</td>
<td>J. J. Li</td>
</tr>
<tr>
<td>16</td>
<td>16.9.5</td>
<td>Cinnolines</td>
<td>R. Krishnamoorthy</td>
<td>65</td>
<td>J. J. Li</td>
</tr>
<tr>
<td>16</td>
<td>16.12</td>
<td>Product Class 12: Pyrimidines</td>
<td>S. von Angerer</td>
<td>389</td>
<td>J. J. Li</td>
</tr>
<tr>
<td>16</td>
<td>16.14.5</td>
<td>Pyrazines</td>
<td>N. Sato</td>
<td>91</td>
<td>J. J. Li</td>
</tr>
<tr>
<td>16</td>
<td>16.15.5</td>
<td>Quinolines</td>
<td>D. O. Tymoshenko</td>
<td>84</td>
<td>J. J. Li</td>
</tr>
<tr>
<td>16</td>
<td>16.18.7</td>
<td>Pyridopyridazines</td>
<td>S. Lou and J. Zhang</td>
<td>26</td>
<td>J. J. Li</td>
</tr>
<tr>
<td>16</td>
<td>16.19.5</td>
<td>Pyridopyrimidines</td>
<td>Y.-J. Wu</td>
<td>26</td>
<td>J. J. Li</td>
</tr>
<tr>
<td>16</td>
<td>16.20.3</td>
<td>Pyridopyrazines</td>
<td>J. Zhang</td>
<td>14</td>
<td>J. J. Li</td>
</tr>
<tr>
<td>16</td>
<td>16.21.4</td>
<td>1,2,3-Triazines and Phosphorus Analogues</td>
<td>P. Aggarwal and M. W. P. Bebbington</td>
<td>50</td>
<td>S. M. Weinreb</td>
</tr>
<tr>
<td>16</td>
<td>16.22.6</td>
<td>Other Diazinodiazines</td>
<td>T. Ishikawa</td>
<td>24</td>
<td>J. J. Li</td>
</tr>
<tr>
<td>16</td>
<td>16.23.4</td>
<td>Diphosphinines</td>
<td>J. W. Lippert, III</td>
<td>5</td>
<td>J. J. Li</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In Volume</th>
<th>Section Number</th>
<th>Contribution Title</th>
<th>Author</th>
<th>Number of Pages</th>
<th>Responsible Member of the Editorial Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>17.1.2.5</td>
<td>Six-Membered Hetarenes with Two or More Unlike or More Than Two Heteroatoms and Fully Unsaturated Larger-Ring Heterocycles</td>
<td>R. A. Aitken and A. Meehan</td>
<td>29</td>
<td>S. M. Weinreb</td>
</tr>
<tr>
<td>17</td>
<td>17.1.3.9</td>
<td>One Sulfur, Selenium, or Tellurium Atom and One Nitrogen or Phosphorus Atom</td>
<td>R. A. Aitken and A. Meehan</td>
<td>20</td>
<td>S. M. Weinreb</td>
</tr>
<tr>
<td>17</td>
<td>17.2.1.9</td>
<td>1,2,3-Triazines and Phosphorus Analogues</td>
<td>P. Aggarwal and M. W. P. Bebbington</td>
<td>34</td>
<td>S. M. Weinreb</td>
</tr>
<tr>
<td>17</td>
<td>17.2.2.3</td>
<td>1,2,4-Triazines</td>
<td>P. Aggarwal and M. W. P. Bebbington</td>
<td>50</td>
<td>S. M. Weinreb</td>
</tr>
<tr>
<td>17</td>
<td>17.2.3.6</td>
<td>1,3,5-Triazines and Phosphorus Analogues</td>
<td>P. Aggarwal and M. W. P. Bebbington</td>
<td>58</td>
<td>S. M. Weinreb</td>
</tr>
<tr>
<td>17</td>
<td>17.3.4</td>
<td>Six-Membered Hetarenes with More than Three Heteroatoms</td>
<td>S. L. Castle</td>
<td>31</td>
<td>S. M. Weinreb</td>
</tr>
<tr>
<td>17</td>
<td>17.4.1.5</td>
<td>Oxepins</td>
<td>J. Hong</td>
<td>8</td>
<td>S. M. Weinreb</td>
</tr>
<tr>
<td>17</td>
<td>17.4.2.5</td>
<td>Benzoxepins</td>
<td>J. Hong</td>
<td>23</td>
<td>S. M. Weinreb</td>
</tr>
<tr>
<td>17</td>
<td>17.4.5.5</td>
<td>Azepines, Cyclopentazepines, and Phosphorus Analogues</td>
<td>J. E. Camp</td>
<td>15</td>
<td>S. M. Weinreb</td>
</tr>
<tr>
<td>17</td>
<td>17.4.6.10</td>
<td>Benzazepines and Their Group 15 Analogues</td>
<td>J. E. Camp</td>
<td>43</td>
<td>S. M. Weinreb</td>
</tr>
<tr>
<td>17</td>
<td>17.5.4</td>
<td>Seven-Membered Hetarenes with Two or More Heteroatoms</td>
<td>J. Zhang</td>
<td>50</td>
<td>S. M. Weinreb</td>
</tr>
<tr>
<td>Volume</td>
<td>Section Number</td>
<td>Contribution Title</td>
<td>Author</td>
<td>Number of Pages</td>
<td>Responsible Member of the Editorial Board</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>--</td>
<td>---------------------------------</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>18</td>
<td>18.1.7</td>
<td>Cyanogen Halides, Cyanates and Their Sulfur, Selenium, and Tellurium Analogues, Sulfanyl and Sulfonyl Cyanides, Cyanamides, and Phosphaalkynes</td>
<td>J. Podlech</td>
<td>23</td>
<td>K. Banert</td>
</tr>
<tr>
<td></td>
<td>18.2.16</td>
<td>Carbon Dioxide, Carbonyl Sulfide, Carbon Disulfide, Isocyanates, Isothiocyanates, Carbodiimides, and Their Selenium, Tellurium, and Phosphorus Analogues</td>
<td>S. Braverman and M. Cherkinsky</td>
<td>117</td>
<td>K. Banert</td>
</tr>
<tr>
<td></td>
<td>18.3.7</td>
<td>Carbonic Acid Halides</td>
<td>R. A. Aitken and Y. Boubalouta</td>
<td>34</td>
<td>K. Banert</td>
</tr>
<tr>
<td></td>
<td>18.4.45</td>
<td>Acyclic and Cyclic Carbonic Acids and Esters, and Their Sulfur, Selenium, and Tellurium Analogues</td>
<td>R. Zimmer and D. Trawny</td>
<td>55</td>
<td>K. Banert</td>
</tr>
<tr>
<td></td>
<td>18.8.22</td>
<td>Acyclic and Cyclic Ureas</td>
<td>S. Kubik</td>
<td>93</td>
<td>K. Banert</td>
</tr>
<tr>
<td></td>
<td>18.11.10</td>
<td>Seleno- and Tellurocarbonic Acids and Derivatives</td>
<td>K. Shimada</td>
<td>40</td>
<td>K. Banert</td>
</tr>
<tr>
<td></td>
<td>18.16.20</td>
<td>Other Tetraheterosubstituted Methanes</td>
<td>W. Kantlehner</td>
<td>52</td>
<td>K. Banert</td>
</tr>
<tr>
<td>19</td>
<td>19.5.14.15</td>
<td>Synthesis from Nitriles with Retention of the Cyano Group</td>
<td>N. Mase</td>
<td>148</td>
<td>M. North</td>
</tr>
<tr>
<td></td>
<td>19.5.16</td>
<td>Asymmetric Synthesis of Nitriles</td>
<td>W. T. Wang, L. L. Lin, X. H. Liu, and X. M. Feng</td>
<td>68</td>
<td>M. North</td>
</tr>
<tr>
<td></td>
<td>19.5.17</td>
<td>Synthesis of Nitriles Using Cross-Coupling Reactions</td>
<td>D. M. Rudzinski and N. E. Leadbeater</td>
<td>61</td>
<td>M. North</td>
</tr>
<tr>
<td>20a</td>
<td>20.2.12.10</td>
<td>Synthesis from Carboxylic Acid Derivatives</td>
<td>A. K. Mourad and C. Czekelius</td>
<td>19</td>
<td>E. M. Carreira</td>
</tr>
<tr>
<td>20b</td>
<td>20.5.12.8</td>
<td>Synthesis from Carboxylic Acids and Derivatives</td>
<td>A. K. Mourad and C. Czekelius</td>
<td>15</td>
<td>E. M. Carreira</td>
</tr>
<tr>
<td></td>
<td>20.5.17.15</td>
<td>Synthesis with Retention of the Functional Group</td>
<td>G. Landelle and J.-F. Paquin</td>
<td>23</td>
<td>E. M. Carreira</td>
</tr>
<tr>
<td>In Volume</td>
<td>Section Number</td>
<td>Contribution Title</td>
<td>Author</td>
<td>Number of Pages</td>
<td>Responsible Member of the Editorial Board</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>--------</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>2014/1</td>
<td>20.5.9.2</td>
<td>2,2-Diheteroatom-Substituted Alkanoic Acid Esters</td>
<td>T. L. March and P. J. Duggan</td>
<td>26</td>
<td>E. M. Carreira</td>
</tr>
<tr>
<td>2012/3</td>
<td>21.16</td>
<td>Synthesis of Scalemic Amides by Kinetic Resolution</td>
<td>D. Seidel</td>
<td>17</td>
<td>J. W. Bode</td>
</tr>
<tr>
<td>2014/2</td>
<td>24.1.1.3</td>
<td>1,1-Dihaloallenes</td>
<td>K. Fuchibe and J. Ichikawa</td>
<td>15</td>
<td>M. Brøndsted Nielsen</td>
</tr>
<tr>
<td>2014/2</td>
<td>24.1.16</td>
<td>1,1-Bis(heteroatom-functionalized) Allenes</td>
<td>C. Ibis</td>
<td>12</td>
<td>M. Brøndsted Nielsen</td>
</tr>
<tr>
<td>2014/3</td>
<td>24.2.1.3</td>
<td>1,1-Dihaloalk-1-enes</td>
<td>B. Ameduri</td>
<td>36</td>
<td>M. Brøndsted Nielsen</td>
</tr>
<tr>
<td>2014/2</td>
<td>24.2.11.3</td>
<td>1,1-Bis(organosulfanyl)alk-1-enes (Ketene S,S-Acetals)</td>
<td>Q. Liu</td>
<td>42</td>
<td>M. Brøndsted Nielsen</td>
</tr>
<tr>
<td>2014/2</td>
<td>24.2.20</td>
<td>1,1-Bis(heteroatom-functionalized) Alk-1-enes: 1-Halo-1-(organooxy)alk-1-enes</td>
<td>P. Beier</td>
<td>72</td>
<td>M. Brøndsted Nielsen</td>
</tr>
<tr>
<td>2014/2</td>
<td>24.2.21</td>
<td>1,1-Bis(heteroatom-functionalized) Alk-1-enes: 1-(Organoxy)-1-(organosulfanyl)alk-1-enes (Ketene O,S-Acetals)</td>
<td>M. H. Vilhelmsen</td>
<td>18</td>
<td>M. Brøndsted Nielsen</td>
</tr>
<tr>
<td>2014/3</td>
<td>24.3.12</td>
<td>Bis(heteroatom-functionalized) Acetylenes</td>
<td>J. Udmark and M. Brøndsted Nielsen</td>
<td>32</td>
<td>M. Brøndsted Nielsen</td>
</tr>
<tr>
<td>2014/3</td>
<td>24.4.1.3</td>
<td>1-Haloalk-1-yne and Alk-1-yn-1-ols</td>
<td>A. U. Petersen and M. Brøndsted Nielsen</td>
<td>19</td>
<td>M. Brøndsted Nielsen</td>
</tr>
<tr>
<td>2014/1</td>
<td>26.8.4</td>
<td>Aryl Ketones</td>
<td>J. D. Sellars</td>
<td>51</td>
<td>P. G. Steel</td>
</tr>
<tr>
<td>2013/4</td>
<td>26.9.5</td>
<td>Enones</td>
<td>J. C. Collings</td>
<td>25</td>
<td>P. G. Steel</td>
</tr>
<tr>
<td>2013/4</td>
<td>26.12</td>
<td>Product Class 12: Seven-Membered and Larger-Ring Cyclic Ketones</td>
<td>P. J. H. Scott</td>
<td>57</td>
<td>P. G. Steel</td>
</tr>
<tr>
<td>2014/2</td>
<td>27.1.6</td>
<td>Sulfur Ylides</td>
<td>G. Mlostoñi and H. Heimgartner</td>
<td>16</td>
<td>E. Schaumann</td>
</tr>
<tr>
<td>2014/4</td>
<td>27.1.7</td>
<td>Sulfur Ylides</td>
<td>G. Mlostoñi and H. Heimgartner</td>
<td>24</td>
<td>E. Schaumann</td>
</tr>
<tr>
<td>In Volume</td>
<td>Section Number</td>
<td>Contribution Title</td>
<td>Author</td>
<td>Number of Pages</td>
<td>Responsible Member of the Editorial Board</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>--</td>
<td>--</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>2014/2</td>
<td>27.4.3</td>
<td>Thioaldehyde and Thioketone S-Oxides and S-Imides (Sulfines and Derivatives)</td>
<td>G. Mlostoń and H. Heimgartner</td>
<td>9</td>
<td>E. Schaumann</td>
</tr>
<tr>
<td>2011/3</td>
<td>27.7.6</td>
<td>Imines</td>
<td>S. Dekeukeleire, M. D’hooghe, and N. De Kimpe</td>
<td>58</td>
<td>E. Schaumann</td>
</tr>
<tr>
<td>2011/3</td>
<td>27.8.2</td>
<td>Iminium Salt</td>
<td>S. Dekeukeleire, M. D’hooghe, and N. De Kimpe</td>
<td>27</td>
<td>E. Schaumann</td>
</tr>
<tr>
<td>2010/4</td>
<td>27.13.3</td>
<td>Nitrones and Cyclic Analogues</td>
<td>P. Merino</td>
<td>79</td>
<td>E. Schaumann</td>
</tr>
<tr>
<td>2011/4</td>
<td>27.15</td>
<td>Product Class 15: Oximes</td>
<td>S. Chiba and K. Narasaka</td>
<td>55</td>
<td>E. Schaumann</td>
</tr>
<tr>
<td>2012/3</td>
<td>27.16.3</td>
<td>Azines</td>
<td>A. Nodzewska and R. Łazny</td>
<td>19</td>
<td>E. Schaumann</td>
</tr>
<tr>
<td>2012/3</td>
<td>27.17.5</td>
<td>Hydrazones</td>
<td>R. Łazny and A. Nodzewska</td>
<td>55</td>
<td>E. Schaumann</td>
</tr>
<tr>
<td>2012/3</td>
<td>27.18.3</td>
<td>Hydrazonium Compounds</td>
<td>A. Nodzewska and R. Łazny</td>
<td>4</td>
<td>E. Schaumann</td>
</tr>
<tr>
<td>2014/3</td>
<td>27.21.3</td>
<td>Diazo Compounds</td>
<td>H. Heydt</td>
<td>30</td>
<td>E. Schaumann</td>
</tr>
<tr>
<td>2012/1</td>
<td>27.25</td>
<td>Product Class 25: N-Sulfanyl-, N-Selanyl-, and N-Tellanylimines, and Their Oxidation Derivatives</td>
<td>F. Chemla, F. Ferreira, and A. Pérez-Luna</td>
<td>83</td>
<td>E. Schaumann</td>
</tr>
<tr>
<td>2014/2</td>
<td>27.26</td>
<td>Product Class 26: Thioaldehyde and Thioketone S-Sulfides (Thiosulfines)</td>
<td>G. Mloston and H. Heimgartner</td>
<td>9</td>
<td>E. Schaumann</td>
</tr>
</tbody>
</table>

Volume 29

<table>
<thead>
<tr>
<th>Section Number</th>
<th>Contribution Title</th>
<th>Author</th>
<th>Number of Pages</th>
<th>Responsible Member of the Editorial Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010/3</td>
<td>Acyclic and Semicyclic O/O Acetals</td>
<td>L. S. Fowler and A. Sutherland</td>
<td>30</td>
<td>D. J. Procter</td>
</tr>
<tr>
<td>2010/3</td>
<td>1,3-Dioxetanes and 1,3-Dioxolanes</td>
<td>D. Carbery</td>
<td>21</td>
<td>D. J. Procter</td>
</tr>
<tr>
<td>2010/3</td>
<td>Spiroketalles</td>
<td>E. A. Anderson and B. Gockel</td>
<td>56</td>
<td>D. J. Procter</td>
</tr>
<tr>
<td>2010/3</td>
<td>Product Class 16: Glycosyl Oxygen Compounds (Di- and Oligosaccharides)</td>
<td>A. V. Demchenko and C. De Meo</td>
<td>187</td>
<td>D. J. Procter</td>
</tr>
</tbody>
</table>

Volume 31a

<table>
<thead>
<tr>
<th>Section Number</th>
<th>Contribution Title</th>
<th>Author</th>
<th>Number of Pages</th>
<th>Responsible Member of the Editorial Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015/1</td>
<td>Fluoroarenes</td>
<td>A. Harsanyi and G. Sandford</td>
<td>16</td>
<td>C. A. Ramsden</td>
</tr>
<tr>
<td>2015/1</td>
<td>Chloroarenes</td>
<td>S. P. Stanforth</td>
<td>32</td>
<td>C. A. Ramsden</td>
</tr>
<tr>
<td>2015/1</td>
<td>Bromoarenes</td>
<td>S. P. Stanforth</td>
<td>26</td>
<td>C. A. Ramsden</td>
</tr>
<tr>
<td>2015/1</td>
<td>Hypervalent Iodoarenes and Aryliodonium Salts</td>
<td>V. V. Zhdankin</td>
<td>58</td>
<td>C. A. Ramsden</td>
</tr>
<tr>
<td>2010/1</td>
<td>Iodoarenes</td>
<td>S. R. Waldvogel</td>
<td>12</td>
<td>C. A. Ramsden</td>
</tr>
<tr>
<td>Volume</td>
<td>Section Number</td>
<td>Contribution Title</td>
<td>Author</td>
<td>Number of Pages</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>---------------------</td>
<td>--------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Volume 31b</td>
<td>31.41.3</td>
<td>Arene—X (X = N, P)) Arylphosphine Oxides and Heteroatom Derivatives</td>
<td>O. M. Demchuk, M. Stankević, and K. M. Pietrusiewicz</td>
<td>122</td>
</tr>
<tr>
<td>Volume 31b</td>
<td>31.42</td>
<td>Product Class 42: Arylphosphines and Derivatives</td>
<td>M. Stankević and K. M. Pietrusiewicz</td>
<td>61</td>
</tr>
<tr>
<td>Volume 32</td>
<td>32.3.1.3</td>
<td>1,2-Dihaloalkenes</td>
<td>A. Bredenkamp and S. F. Kirsch</td>
<td>36</td>
</tr>
<tr>
<td>Volume 32</td>
<td>32.4.3</td>
<td>Haloalkenes</td>
<td>B. Egart and C. Czekelius</td>
<td>41</td>
</tr>
<tr>
<td>Volume 34</td>
<td>34.1.1.7</td>
<td>Synthesis by Substitution of Hydrogen Fluorine</td>
<td>G. Sandford</td>
<td>7</td>
</tr>
<tr>
<td>Volume 34</td>
<td>34.9.2</td>
<td>β-Fluoro Alcohols</td>
<td>J. A. Kalow and A. G. Doyle</td>
<td>27</td>
</tr>
<tr>
<td>Volume 35</td>
<td>35.1.1.3.5</td>
<td>Synthesis by Substitution of Carbon Functionalities Chlorine, Bromine, and Iodine</td>
<td>P. Margaretha</td>
<td>9</td>
</tr>
<tr>
<td>Volume 35</td>
<td>35.1.1.4.3</td>
<td>Synthesis by Substitution of Other Halogens</td>
<td>P. Margaretha</td>
<td>2</td>
</tr>
<tr>
<td>Volume 35</td>
<td>35.1.1.5.13</td>
<td>Synthesis by Substitution of Oxygen Functionalities</td>
<td>P. Margaretha</td>
<td>17</td>
</tr>
<tr>
<td>Volume 35</td>
<td>35.1.1.6.2</td>
<td>Synthesis by Substitution of Sulfur, Selenium, or Tellurium Functionalities</td>
<td>P. Margaretha</td>
<td>2</td>
</tr>
<tr>
<td>Volume 35</td>
<td>35.1.4.2.4</td>
<td>Synthesis by Substitution of α-Bonded Heteroatoms</td>
<td>P. Margaretha</td>
<td>6</td>
</tr>
<tr>
<td>Volume 35</td>
<td>35.2.1.3.5</td>
<td>Synthesis by Substitution of Carbon Functionalities</td>
<td>P. Margaretha</td>
<td>11</td>
</tr>
<tr>
<td>Volume 35</td>
<td>35.2.1.8.10</td>
<td>Synthesis by Addition to p-Type C—C Bonds</td>
<td>Q. Yin and S.-L. You</td>
<td>5</td>
</tr>
<tr>
<td>Volume 35</td>
<td>35.2.5.1.9</td>
<td>Synthesis by Addition across C=C Bonds</td>
<td>G. Dagousset and G. Masson</td>
<td>49</td>
</tr>
<tr>
<td>Volume 39</td>
<td>39.1.15</td>
<td>Alkanesulfonic Acids and Acyclic Derivatives Sulfur, Selenium, and Tellurium</td>
<td>P. Łyzwa</td>
<td>31</td>
</tr>
<tr>
<td>Volume 39</td>
<td>39.3.9</td>
<td>Alkanesulfinic Acids and Acyclic Derivatives</td>
<td>R. Kawecki</td>
<td>59</td>
</tr>
<tr>
<td>Volume 39</td>
<td>39.5.2</td>
<td>Alkanethiols</td>
<td>D. Witt</td>
<td>42</td>
</tr>
<tr>
<td>Volume 39</td>
<td>39.6.1.2</td>
<td>Alkanethiols of Group 1, 2, and 13–15 Metals</td>
<td>D. Witt</td>
<td>64</td>
</tr>
<tr>
<td>In Volume</td>
<td>Section Number</td>
<td>Contribution Title</td>
<td>Author</td>
<td>Number of Pages</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>2011/1</td>
<td>39.17.3</td>
<td>Acyclic Dialkyl Selenoxides and Derivatives</td>
<td>T. Shimizu</td>
<td>10</td>
</tr>
<tr>
<td>2013/2</td>
<td>39.18.2</td>
<td>Alkaneselenols</td>
<td>C. Santi</td>
<td>15</td>
</tr>
<tr>
<td>2013/2</td>
<td>39.19.1.2</td>
<td>Alkaneselenolates of Group 1, 2, and 13–15 Metals</td>
<td>C. Santi</td>
<td>19</td>
</tr>
<tr>
<td>2014/3</td>
<td>39.19.2.3</td>
<td>Alkaneselenolates of Group 3–12 Metals</td>
<td>A. Polo and J. Real</td>
<td>12</td>
</tr>
<tr>
<td>2014/3</td>
<td>39.32.2.2</td>
<td>Alkanetellurolates of Group 3–12 Metals</td>
<td>A. Polo and J. Real</td>
<td>8</td>
</tr>
<tr>
<td>2011/3</td>
<td>39.39.1</td>
<td>Product Subclass 1: Cyclic Alkanetelluronic Acid Derivatives</td>
<td>T. Kimura</td>
<td>2</td>
</tr>
<tr>
<td>2014/3</td>
<td>39.39.2.2</td>
<td>Cyclic Alkanetellurolates of Group 3–12 Metals</td>
<td>A. Polo and J. Real</td>
<td>4</td>
</tr>
</tbody>
</table>

Volume 40a

Amines and Ammonium Salts

<table>
<thead>
<tr>
<th>In Volume</th>
<th>Section Number</th>
<th>Contribution Title</th>
<th>Author</th>
<th>Number of Pages</th>
<th>Responsible Member of the Editorial Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010/4</td>
<td>40.1.1.1.2</td>
<td>Reductive Amination of Carbonyl Compounds</td>
<td>P. Margaretha</td>
<td>38</td>
<td>E. Schaumann</td>
</tr>
<tr>
<td>2013/2</td>
<td>40.1.1.5.4.5</td>
<td>Substitution on the Amine Nitrogen</td>
<td>P. J. Scammells</td>
<td>35</td>
<td>E. Schaumann</td>
</tr>
<tr>
<td>2011/3</td>
<td>40.1.1.5.5</td>
<td>Metal-Mediated Cyclizations of Amines</td>
<td>J. Ipaktschi and M. R. Saidi</td>
<td>154</td>
<td>E. Schaumann</td>
</tr>
<tr>
<td>2012/4</td>
<td>40.1.1.5.6</td>
<td>Transition-Metal-Catalyzed Functionalization of C(sp³)—H Bonds of Amines</td>
<td>J. Ipaktschi and M. R. Saidi</td>
<td>129</td>
<td>E. Schaumann</td>
</tr>
<tr>
<td>Knowledge Update</td>
<td>Publication Date</td>
<td>Number of Pages</td>
<td>ISBN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KU 2010/1</td>
<td>2010</td>
<td>578</td>
<td>978-3-13-154141-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KU 2010/2</td>
<td>2011</td>
<td>546</td>
<td>978-3-13-154151-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KU 2010/3</td>
<td>2011</td>
<td>550</td>
<td>978-3-13-154161-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KU 2010/4</td>
<td>2011</td>
<td>506</td>
<td>978-3-13-154171-0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KU 2011/1</td>
<td>2011</td>
<td>572</td>
<td>978-3-13-164261-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KU 2011/2</td>
<td>2011</td>
<td>558</td>
<td>978-3-13-164281-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KU 2011/3</td>
<td>2012</td>
<td>572</td>
<td>978-3-13-164301-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KU 2011/4</td>
<td>2012</td>
<td>566</td>
<td>978-3-13-164321-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KU 2012/1</td>
<td>2012</td>
<td>562</td>
<td>978-3-13-167181-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KU 2012/2</td>
<td>2012</td>
<td>562</td>
<td>978-3-13-167211-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KU 2012/3</td>
<td>2012</td>
<td>592</td>
<td>978-3-13-167231-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KU 2012/4</td>
<td>2013</td>
<td>548</td>
<td>978-3-13-167251-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KU 2013/1</td>
<td>2013</td>
<td>554</td>
<td>978-3-13-172741-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KU 2013/2</td>
<td>2013</td>
<td>530</td>
<td>978-3-13-172761-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KU 2013/3</td>
<td>2014</td>
<td>510</td>
<td>978-3-13-172781-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KU 2013/4</td>
<td>2014</td>
<td>500</td>
<td>978-3-13-172811-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KU 2014/1</td>
<td>2014</td>
<td>518</td>
<td>978-3-13-164181-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KU 2014/2</td>
<td>2014</td>
<td>528</td>
<td>978-3-13-176241-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KU 2014/3</td>
<td>2014</td>
<td>536</td>
<td>978-3-13-176281-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KU 2014/4</td>
<td>2015</td>
<td>516</td>
<td>978-3-13-176321-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KU 2015/1</td>
<td>2015</td>
<td>524</td>
<td>978-3-13-176361-7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>